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Abstract

General Purpose Graphics Processing Units (GPGPUs) have become the prevalent
processor for AT/ML and other large computational problems because parallel pro-
cessing has not reached a hardware limit, unlike single-threaded processing. The
goal of the thesis is to investigate the suitability of a novel SRAM architecture
for implementation in a GPU without extensive GPU architecture changes. This
architecture features groups of SRAM cells called zones, which are leveraged to
perform pipelined SRAM read operations to reduce dynamic energy consump-
tion. This thesis examines the implementation of an energy-efficient SRAM in
GPU caches and analyzes its energy saving and performance under AT/ML work-
loads in a GPU. GPGPU-Sim [1] simulator was used to run all the benchmarks.
The simulator was modified to output all memory accesses made to L1 and L2
cache. Thereafter, the memory accesses were used by the software cache model
to analyze the performance and energy of all the workloads run. Hybrid SRAM
implementations with a small capacity conventional SRAM in tandem with the
Pseudo-random SRAM (PR-SRAM) were investigated to check penalty cycles and
reduction in dynamic energy consumption. A penalty cycle is a stall in the pipeline
caused by repeated access to a specific zone. The penalty cycle rate is the number
of penalty cycles per 100 accesses. The hybrid implementation featured a 33%
increase in energy consumption versus the pure PR-SRAM implementation. This
increase in energy consumption was the cost of reducing the penalty cycle rate
by 43%. The effect of cache replacement policy on the performance of the hy-
brid design was also investigated, Least Recently Used (LRU) achieved the lowest
penalty cycle rate. The gains were also measured against the complexity required
to perform necessary operations with the hybrid cache.
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Popular Science Summary

AT has become unavoidable in daily life; it is used to recommend services to us,
in virtual assistants, healthcare, finance, and more. The meteoric rise of Al and
its applications can be attributed to the technological advancements that have
allowed processing power to catch up with the computational requirements of Al
training.

These AI/ML models require large compute resources and are still limited by
hardware, as current models are designed to take advantage of all the available
hardware resources. Graphics Processing Units (GPUs) are the prevalent choice of
processors for specific repetitive workloads with parallelism due to the GPU struc-
ture. This has led to a great increase in the computing power of graphics cards
(GPUs) which has eclipsed the growth of computing power in Central Processing
Units (CPUs). Performance increases in GPUs can be attributed to advancements
in manufacturing processes and an increase in onboard memory.

To achieve these performance gains, improvements have been made across all as-
pects, including memory. Larger memory is required to store the growing amount
of data being processed. Data transfer rates for all memory hierarchy levels have
also been increased to improve latency, while wider buses and newer protocols
have been implemented to improve memory throughput. The pursuit of increas-
ing performance often results in energy efficiency taking a backseat. This thesis
investigates the benefits of using a new memory design to read data efficiently
with minimal impact on performance.

Scrutinising the benefits of Xenergic’s new memory in a GPU; required the use of
an accurate and detailed GPU simulator. A performance model was programmed
to calculate the energy consumption of the new memory against a conventional
memory. The model used details obtained from the simulator running benchmarks.
The model also implemented a dual-memory design to look into performance and
energy-saving trade-offs of different memory configurations. This thesis project
found considerable energy reduction with the new memory design.
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List of Abbreviations

AT Artificial Intelligence

ASIC Application Specific Integrated Circuit
CPU Central Processing Unit

CU Compute Unit

DRAM Dynamic Random Access Memory
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LRU Least Recently Used
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Chapter ]_

Introduction

Dennard’s Scaling Law is the trend of maintaining constant power density in in-
tegrated circuits (ICs) as transistors shrank in size [8]. Robert Dennard observed
that as transistor dimensions shrank so did their dynamic power consumption. The
operating frequency could be increased to improve performance because dynamic
power consumption decreased, and as a result power density remained constant.
Moore’s Law is the observation made by Gordon Moore that the density of tran-
sistors in an integrated circuit board doubled approximately every two years [9].
The consequences of both of these laws are explosive growth in the performance
capability of integrated circuits. Dennard’s scaling ended around 2005 to 2007
when clock frequency could not be increased without causing significant power
consumption and heating issues due to high leakage current at smaller transistor
sizes. Moore’s Law, however, held, that more transistors could be added to pro-
cessors. This has led the industry to pivot to parallel computing paradigms to
increase performance as a result modern CPUs feature parallelism but not to the
extent seen in GPUs.

1.1 Thesis Motivation

General-Purpose Graphics Processing Units (GPGPUs) have become the ubig-
uitous processor for large computation problems such as Electronic Design Au-
tomation (EDA) [10], bioinformatics [11], cryptography [12] and more. AI/ML
workloads involve repeatedly performing a limited set of operations on a large
amount of data. This allows for AI/ML processing to be carried out in parallel
processors such as GPGPUs and Application Specific Integrated Circuits (ASIC).
GPGPU price-to-performance ratio beats out the higher performance and energy
efficiency of ASICs. The main drawback to the widespread adoption of ASICs
apart from inflexibility is the very high price to design. As a result AI/ML pro-
cessing is performed with GPGPUs. The AI/ML boom has necessitated GPGPU
capabilities to be pushed further, therefore and more research and resources have
been poured in to produce innovations (in terms of interconnect protocols, cache
organisation, and more) that continue to push the boundaries of GPGPU memory
size, operating frequency, and performance throughput. Energy efficiency is an-
other aspect that, while important, usually takes a backseat to raw performance
gains. According to J. Tan [13], the L2 cache of GPUs consumes a large amount
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of chip energy due to the large SRAM structure it requires and its inefficient use
in GPUs. This work concerns investigating the energy consumption of the new
SRAM implementation and comparing its performance impact with a standard
SRAM architecture.

1.2 Thesis Scope

There has been a lot of research into different caching policies for performance
gains [14][15][16][17]; however, the scope of this thesis is on the SRAM used in
GPGPU caches.

To perform this analysis detailed inner working of caches under AI/ML workloads
were required. There are a number of different ways of performing this comparison
given that a lot of crucial information related to the GPU architecture is closed
source. A GPU simulator capable of simulating every clock cycle was used to run
relevant benchmarks and all cache accesses were retrieved for analysis.

The analysis of the cache accesses was performed with a cache performance model,
a Python program that calculates accumulated penalty cycles and energy consump-
tion. The analysis was also used to confirm details about the GPU used such as
the number of ports per cache bank and number of Streaming Multiprocessor (SM)
cores in the simulated GPU. The model was also used to compare the energy con-
sumption and performance impact between a conventional and a pseudo-random
SRAM (PR-SRAM).

A hybrid architecture was also investigated to compare energy consumption and
performance readings with PR-SRAM. The hybrid architecture used a combina-
tion of a small-capacity standard SRAM with the PR-SRAM in an attempt to
achieve an optimal balance.

1.3  Thesis Outline

The next chapter provides an overview of GPUs and their architecture. Chapter 3
elaborates on caches, their operation, composition, and GPU caches. The Chapter
also expounds on the architecture and operation of the PR-SRAMSs. In Chapter
4, the methodology applied in this project is explained. The results and analysis
of this project are presented in Chapter 5. A conclusion of this project is drawn
and discussed in Chapter 6 and Chapter 7 elaborates on the future work that can
be done for this project.



Chapter 2

Graphics Processing Units

GPUs are specialized electronic circuits designed to accelerate image and graphics
processing which require a parallel structure. Their parallel architecture was lever-
aged to solve exceedingly parallel problems at a higher rate compared to normal
CPUs, making them a popular option for processing large amounts of data that
can be split. The biggest advantage of parallel computing is that currently it is
limited by the workload and not a physical constraint. Embarrassingly parallel
problems are problems that require little to no effort to split the problem into
a number of parallel tasks [18]. The architecture of GPUs, primarily focused on
graphics was modified to improve the performance at a greater range of tasks, lead-
ing to the emergence of the aforementioned General-Purpose Graphics Processing
Units (GPGPUs). These modifications include implementing higher capacity and
bandwidth memory compared to standard GPUs as well as caches optimized for
general computing tasks.

State of the Art (SOTA) GPGPUs typically feature a large number of Compute
Units (CUs) for processing a large amount of data concurrently. For example,
OpenAl’'s SOTA large language model Chatgpt ran on General-Purpose GPUs
and was trained with around 570GB of data on thousands of GPUs[19]. These
advanced GPGPUs are utilized in High-Performance Computing (HPC) clusters,
where they can be interconnected with other GPU nodes to pool resources and
tackle much larger problems. GPU clusters have gained popularity due to their
efficient resolution of AI/ML, scientific, and engineering workloads [20]. Nvidia’s
SOTA H100 GPU features 80 GB of memory, capable of 67 floating point ter-
aFLOPS, and utilises NVLink protocol to interconnect with other GPUs to pool
memory and cores [21].

2.1 GPGPU Architecture

GPGPU architecture features thousands of processing cores grouped into tens of
multiprocessing cores. They also feature a large capacity on-chip cache as well as a
high bandwidth and capacity on-board memory. GPGPUs have a general structure
that is replicated across all designs. The significant difference between GPU archi-
tectures is the component type and number of components implemented into a de-
sign. Newer GPGPU architectures simply use a larger amount of multiprocessing
cores paired with larger and faster memory components. Some application-specific
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GPU Component Quadro GV100

GPCs 6
SMs/GPC 14
TPCs/GPC 7
SMs 84
TPCs 42
FP32 Cores/SM 64
FP64 Cores/SM 32
GPU Boost clock 1530 MHz
Memory Interface 4096 bit
Memory 16 GB
L2 Cache Size 6144 KB
L1 Cache/SM 128KB
Shared Memory/SM  Up to 96KB
Register File/SM 256KB

Table 2.1: Nvidia GPU components [2]

processing cores (accelerators) have also been added to efficiently process specific
workloads. The tensor cores shown in figure 2.1 were accelerators introduced to
speedup operations involving multidimensional arrays. The drawbacks of paral-
lelisation are still present in GPUs. Tasks that have a lot of data dependency or
cause resource contention between different parallel tasks significantly impact per-
formance. GPUs employ dependency analysis during code compilation to reduce
data dependencies. A thread is a group of the smallest schedulable instructions.
In GPUs, 32 consecutive threads are grouped into thread blocks. These thread
blocks are called warps in Nvidia’s documentation. These warps perform the same
operation on all threads. However, during execution, a condition may be met that
performs different operations on part of the warp. This is warp divergence lim-
its parallelism. The Nvidia Quadro GV100 GPU is a relatively modern GPGPU
designed with AT workflows in mind [2], therefore it would be interesting to in-
vestigate. The hardware architecture of the GV100’s Single Instruction Multiple
Thread (SIMD) core is depicted in Figure 2.1, and the specifications of the GPU
are detailed in table 2.1. Nvidia refers to the SIMD as a Streaming Multiprocessor
(SM) in their documentation and groups a number of them into GPU Processing
Clusters (GPCs). The table lists the number of floating-point (FP) 32-bit and
64-bit cores in each SM, cache sizes, the number of SMs in the GV100 GPU, as
well as the number of Texture Processing Clusters (TPCs)

GPUs have several types of memory to provide the necessary capacity and
transfer speed to supply the thousands of computing cores. The GV100 has larger
register files than level 1 caches to reduce context-switching latency. Context-
switching allows GPUs to hide the latency of cache accesses by changing the thread
being processed to another that has required data to be processed. Context switch-
ing is a process whereby a GPU changes between different tasks. It is crucial for
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Figure 2.1: Nvidia SM with 4 processing blocks [2]

resource utilisation and multitasking in a GPU.

GPUs leverage multilevel caches to optimise for improved performance. Two levels
are typically utilised in caches with the larger level 2 cache used by all GPU cores
and a number of smaller, faster level 2 caches used by groups of GPU cores as
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shown in figure 2.1.
In Figure 2.2, a chip micrograph of the GTX680 Kepler Architecture GPU die is

shown [3]. The middle band shown in multi-colours is occupied by the second level

cache.
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Figure 2.2: Nvidia Kepler Architecture die illustration [3]
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Cache

The memory hierarchy of GPUs starts with Dynamic Random Access Memory.
GPGPUs utilise a higher capacity and speed DRAM compared to GPUs to store
a larger amount of data on board. The next level in the GPU memory hierarchy
is the multilevel cache then the register file. The multilevel cache has level 1
comprising the fastest cache but lower capacity, the following levels of cache have
a higher capacity but lower speed. All cache levels are much faster than the
DRAM but smaller in capacity. The register files in GPUs are at the top of the
memory hierarchy. The cache is a high-speed data storage component type that
forgoes large data capacity for varying levels of speed up. Cache utilises temporal
and spatial locality of data to store data that is frequently required or data that
might be required next. The low storage capacity of the cache necessitated an
investigation of different utilisation policies designed to take advantage of the
limited size. A brief description of these policies is also listed in the appendix as
they were utilised in the hybrid SRAM architecture.

Cache Placement Policy

Cache placement policies determine how a cache is divided and where data can be
placed within a cache. There are three placement policies [22], namely:

e Directly mapped : A cache is divided into a number of sets that can only
hold a single cache block. A block is placed into a particular set depending
on the block’s address in the main memory. This placement policy is power
efficient and requires less hardware as searching for a block simply requires
checking a single location in the cache.

e Fully associative : The cache has a single set that stores all the cache blocks.
The cache blocks can be placed anywhere in the cache so that the cache
can be fully utilised. This policy is the most computationally expensive to
implement as the entire cache must be searched during a cache request.

e Set-associative : This policy offers a mix of directly mapped and fully asso-
ciative placement policies. The cache is divided into a number of sets which
hold a fixed number of cache blocks. During a cache request the necessary
set is calculated then all blocks within the set must be searched. The num-
ber of cache blocks that can occupy a set is referred to as associativity. This
policy also does not fully utilise a cache.
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Figure 3.1: Cache placement policy

The cache placement policies are illustrated in figure 3.1.

Cache Replacement Policy

Cache replacement policies describe which cache blocks in a full cache set should
be removed to make space for another cache block. There are several different
cache replacement policies such as first in first out, first in last out, and simple
eviction. This thesis project used the following policies:

e Random : This policy randomly selects a cache block within a set and
discards it.

e Least Recently Used (LRU) : This policy removes the least recently used
cache block within a set.

e Least Frequently Used (LFU): This policy keeps track of how often each
cache block is accessed and replaces the least used block.

LRU and LFU produce more consistent results, however require processing over-
head to implement. Depending on the cache access pattern, LRU and LFU can
result in wasted space as a cache block will not be removed. For example, a block
that is repeatedly accessed at the beginning of a program then never again will
not be removed if an LFU policy is implemented.

3.1 GPU Cache

SOTA GPGPU caches are designed with features that are common with CPU
caches such as multilevel caches, large cache capacities, and more [23]. The cache
of the GPU is managed by memory controllers while the shared memory is a type
of scratchpad memory that is managed by code being run on the GPU. The shared
memory uses part of the same physical L.1 cache. This arrangement is specific to
GV100 (Volta architecture) and can differ between GPGPUs.
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Figure 3.2: The memory hierarchy of the Nvidia GV100

3.2 GPU Cache Operation

All data transfers to and from GPU go through the L2 cache as shown in figure
3.2. The L1 data cache is used to reduce memory access latency to lower levels
in memory hierarchy while shared memory is used to store data that is shared
between threads. The constant cache is used for read accesses to read-only data.
Cache word line size is 128 bytes and is used to transfer cache lines between caches,
registers, and processing cores.

3.3 Static Random Access Memory

Caches are typically implemented with SRAM. SRAM is a form of Random Access
Memory that employs circuitry to store bits. It is a volatile memory, requiring
a power supply to maintain data stored in the circuits. There are a variety of
circuit architectures that accomplish storing bits and the 6 transistors shown in
Figure 3.3 is the most commonly used SRAM cell architecture. Other architectures
replace 2 of the transistors with resistors or are in a different configuration with
varying numbers of transistors from 4 transistors to more than 10 transistors to
store a single bit [24][25][26]. The different architectures have unique benefits and
drawbacks such as manufacturing complexity, latency, and die area.

3.3.1 Operation

The SRAM cell in figure 3.3 is a single port bitcell with 3 modes of operation
namely standby, reading, and writing. The transistors M; and M5 form an inverter
and transistors M3 and M, form another. The inverters are looped and connected
to each bit line through pass transistors M5 and Mg.
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Figure 3.3: The 6 Transistor SRAM cell [4]

Standby

In this mode of operation the word line is not asserted and transistors My and
Mg operate in the off state. The value of the bitcell remains latched in a positive
feedback loop. The value of the bitcell will be stored at either inverter output
(designer’s choice) as long the inverters remain powered.

Reading

In this mode of operation, the bit lines BL and BL are pre-charged to supply
voltage then the word line is asserted. The asserted word line turns on the pass
transistors M5 and Mg which causes one of the bit lines to drop by discharging
through the bitcell. The drop in voltage is detected by a sense amplifier(SA)
connected to both bit lines. The value read by the SA is determined by which bit
line experienced a drop in voltage. The SA is a circuit designed to amplify the
small changes in voltages found in the bit lines.

Writing

In this mode of operation, the value being written is applied to BL and the inver-
sion of the value is applied to BL. The word line is asserted high and the value is
latched between the 2 inverters. This is achieved through sizing of transistors to
have stronger NMOS pass transistors than the PMOS transistors (My & My) to
override the value already stored in the bitcell.

3.4 Pseudo Random SRAM

The pseudo-random SRAM (PR-SRAM) is a novel SRAM architecture that trades
latency for a significant reduction in dynamic energy consumption. PR-SRAM is
also capable of operating at a higher operating clock frequency compared to con-
ventional SRAM. The PR-SRAM read operation is illustrated in figure 3.4, which
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highlights the main drawback of this SRAM architecture. It requires accesses to
addresses that are spaced far enough apart to not cause penalty cycles which oc-
cur when reads are made to the same zone. The waveform shown in figure 3.5

T oonns )
PRSRAM ( PRSRAM PRSRAM PRSRAM b ( PRSRAM R [ PRSRAM

/8 %7
Z’%

el Bz |[[&

7]
7777

Figure 3.4: PR-SRAM 2 cycle pipeline operation

highlights the access conflict of the read operation for 4 cycle pipeline implemen-
tation. Figure 3.5 shows a 4 read cycle pipelined PR-SRAM. The first 4 reads

clock

Accesses

,,,,,,,,,,,

Pseudo random access SRAM

Figure 3.5: PS-SRAM waveform for 4 cycle pipeline

are performed on different SRAM zones and are processed immediately. The next
read instruction results in a zone conflict as zone 2 is already being accessed. All
accesses to the SRAM are stalled until zone 2 is cleared. The number of penalty
cycles or cycles the SRAM is stalled for is shown in a hatched pattern in figure
3.5. The best-case scenario implementation of PR-SRAM would require a pre-
determined access pattern that can be utilised to overcome the main PR-SRAM
drawback which results in penalty cycles. Another weakness with the PR-SRAM
is the increase in latency as data will always take longer from request to receiv-
ing unless the PR-SRAM is run at a higher clock frequency. Because of these
weaknesses, its suitability for use in GPGPUs has to be analysed.
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Chapter 4

Methodology

Exploring the suitability of the PR-SRAM in GPGPUs required a way to test
the PR-SRAM under GPU workloads. Nvidia GPUs run Compute Unified Device
Architecture (CUDA) code. When CUDA code is run on a GPU, it is compiled to
parallel thread execution code (ptx), then the CUDA compiler compiles the ptx
code into streaming assembler code (sass). Streaming assembler code is optimized
machine code specific to the target GPU architecture. Nvidia provides profiling
tools for programmers to check different performance metrics of GPU running
their code. The tools are capable of outputting .ptx and .sass snippets of code
being run, however, the code does not contain any information referencing cache
addresses being accessed. The memory profiling tool they provide also does not
show which cache addresses were being accessed as they are hardware managed
by the memory controllers. Short of having access to closed source Hardware De-
scription Language (HDL) of a GPU, retrieving all cache addresses would require
a GPU simulator capable of accurately simulating the operations of GPU caches.
Since most details of GPUs are closed source, researchers have reverse-engineered
details of GPUs including GPU cache through microbenchmarking like Saksham
[27] did to determine the L2 cache set addressing in the GTX1080 GPU. Their
results were used to create more accurate GPU models to simulate.

4.1 Project Flow

Figure 4.1 shows the project flow used to retrieve cache accesses and to analyse the
energy consumption and performance metrics of the different runs. GPGPU-Sim|[1]
was the chosen GPU simulator for this thesis. The source code of GPGPU-Sim
had to be altered to write out all cache addresses utilised as well as other infor-
mation related to each cache access. GPGPU-Sim used a memory-fetch object
to store all details about an individual memory request and a memory configura-
tion object to store memory configuration about a specific memory module being
accessed. The memory-fetch object stored details about each individual memory
request such as the access type, data size, multiprocessor core number, and more.
The memory configuration object kept track of the configuration of the caches,
the configuration included the number of cache lines, set indexing algorithm, and
cache associativity number among other attributes. Most of the memory fetch and
memory configuration attributes were written out to databases and analysed by

13
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Figure 4.1: Thesis project flow

the SRAM performance model.

4.2 Benchmarks

This thesis project focused on AI/ML workloads, therefore the benchmarks that
were run are some of the most frequently used operations in AI/ML applications.
A brief explanation of the algorithms used is highlighted in the appendix. The
benchmarks utilised in this project are listed below:

e Neural Net (NN)

e 2 Dimensional Convolution (CONV2D)

e 3 Dimensional Convolution (CONV3D)

e Back-propagation (BACKPROP)

Speckle Reducing Anisotropic Diffusion (SRAD)

421 Neural Net

Neural networks are computing models made to function like neural networks in
human brains [28]. They comprise a large number of nodes called artificial neu-
rons, which are also modeled after neural circuity in biology. The artificial neurons
have a number of inputs, weights, and a bias which are summed and the result is
sent out as an output. They are arranged into layers as shown in figure 4.2.

Each neuron processes its inputs and forwards the result to the next layer. The
weights and biases are adjusted during the ML process. This basis of operation al-
lows neural networks to perform various tasks such as predictive modeling, pattern
recognition, medical diagnosis, and more. SOTA neural networks are composed
of exceptionally large networks such as the Palm Language Model trained on 540
billion parameters [29]. Parameters in a neural network refer to the sum of all the
inputs to each individual neuron and the weights and biases of every neuron in the
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Hidden
Input
Output

Figure 4.2: Artificial neural network [5]

neural network. These large networks require large processing power and are run
on numerous SOTA GPGPUs or ASICs. This benchmark runs a trained neural
net to perform number recognition on a number of images.

422 CONV2D

Convolution is a mathematical operation performed on 2 functions which results
in a function that is the integral of the product of the 2 functions after reflecting
one of them in the y-axis. Discrete convolution is used in signal processing and
is visually represented in figure 4.3. The functions being convoluted are discrete
values in a 2-dimensional array which produces a 2-dimensional array as the result.
Convolution is an important operation with uses in probability, image processing,

=\ =\
\[\=\=\p

L]’\\

\

Figure 4.3: 2D convolution operation [6]

signal processing and more. Convolution is used in convolutional neural networks
which apply multiple cascaded convolution kernels in Al applications. It is a highly
parallel and computational operation which would be important for benchmarking
GPGPU for AI/ML applications.

4.2.3 CONV3D

3 dimensional convolution is the same operation as 2D convolution except the ar-
rays have an extra dimension.
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Figure 4.4: 2D convolution vs 3D convolution [7]

Figure 4.4 shows the difference between 2D and 3D convolution. 3D and higher di-
mensional convolution are being used in increasingly more complex AI/ML neural
nets. From figure 4.4, the 3D convolution would have more repeated accesses as
an input value that could be used 3 times rather than 2 times. The performance
difference between 2D and 3D convolution in PR-SRAM would also be intriguing
to observe.

424 BACKPROP

Back-propagation is short for backward propagation of errors and is an algorithm
used in supervised ML to train NN using the gradient descent method. This op-
eration calculates the gradient of an error function with respect to neuron weights
and updates respective neuron weights (parameters) with the result. The result of
the operation is also used by previous layer neurons to calculate their respective
errors. This calculation propagates backward throughout the network and is re-
peated numerous times during the learning process. The algorithm was invented in
1962 by Frank Rosenblatt [30] but saw limited use due to the computational cost.
Back-propagation performs the same operation on a large amount of data repeat-
edly, therefore it is easily exploitable by the SIMD structure of GPGPUs. It is the
main ML algorithm in use to train AI. This benchmark performs backpropagation
of a face recognition benchmark[31].
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425 SRAD

Speckle reducing anisotropic diffusion is not particularly used in AI/ML. It was
added as image processing is another wide use case of GPUs. The results of SRAD
can be used with AI to perform medical diagnosis. A speckle is a locally correlated
noise that affects imaging applications such as medical ultrasound imaging[32].
SRAD utilises partial differential equations (PDEs) to remove speckles from images
without destroying important image features. SRAD is performed in several stages
with synchronisation requirements therefore each kernel operates on a single stage.
This benchmark performs the SRAD operation which includes: image extraction,
image processing, and image compression. This benchmark was chosen for this
project to observe PR-SRAM effects with an image processing algorithm.

4.3 SRAM Performance Model

The SRAM performance model is a python project that uses the cache addresses
output of the GPGPU-Sim to calculate the dynamic energy consumed over the
run of the benchmark. The cache addresses that are stored in a database are
accompanied with the address in the GPU DRAM, cache set number, cache bank
number, clock cycle, GPU core and more. A parser object is called to read the

—
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Figure 4.5: Overall SRAM performance model flowchart

database result from GPGPU-Sim and uses a specified GPU core number or L2
cache bank number to parse and sort all accesses. The level 1 cache database is
parsed with a GPU core number as level 1 caches are unique to GPU cores. The
result from the CsvParser is used by the Performance model to calculate energy
and conflict cycles for all accesses. A configuration file with information such as



18 Methodology

PR-SRAM pipeline length, clock frequency, and energy ratio is read by the model.
The energy ratio is the ratio of low-energy standard SRAM dynamic power con-
sumption to the PR-SRAM dynamic power consumption. It was extrapolated and
standardised from in-house energy datasheets for conventional low-power SRAM
and the PR-SRAM at Xenergic. The model implemented a pipeline to perform
PR-SRAM zone conflict detection. Accesses are loaded into the pipeline on its
specified clock cycle. If there is no cache access at a particular clock cycle then
no operation is inserted into the pipeline to continue SRAM operations already in
the pipeline. The zone conflict detection algorithm is also elaborated upon in the
appendix.

Results from the SRAM performance model showed a higher than expected num-
ber of zone conflicts. A hybrid SRAM model was proposed to reduce the number
of zone conflicts. It was implemented with a list of different conventional SRAM
placement models. A utility script was used to test and implement different PR-
SRAM zoning algorithms. The script also implements another write-after-read
(WAR) hazard detector as a write operation that takes a single clock cycle may
complete before a read operation finishes. The results of the model are stored
in a database listing the test configuration of each individual run as well as the
accumulated energy and penalty cycles. A separate results analyser is used to
standardise, summarise and plot the results required.



Chapter 5

Results and Analysis

5.1 GPGPU-Sim

GPGPU-Sim[1] is one of many research-backed open-source GPU simulators avail-
able. It was used for this thesis as it was a popular homogeneous GPU simula-
tor that produced cycle-accurate results with a high correlation to actual GPUs.
Homogeneous simulators simulate only a GPU, while heterogeneous simulators
simulate CPU and GPU which isn’t necessary for this project.
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Figure 5.1: GPGPU-Sim overall architecture

The overall architecture of the GPU model used in the simulator is shown
in 5.1. It is composed of multiple single instruction multiple thread clusters, an
interconnect network, and a memory partition. The simulator features a fetch-
decode and instruction issue in the front end and uses a per-warp SIMT stack
to perform execution. The simulator uses a scoreboard algorithm to perform
write-after-write(WAW) and read-after-write(RAW) hazards on a per-warp basis.
Register access in GPGPU-Sim is implemented with an operand collector which
is based on Nvidia patents [33]. The GV100 was simulated as it was the most
up-to-date and tested GPGPU available on the simulator. Utilised the findings
from [27] and the GV100 configuration file, to determine the cache organisation as
shown in figure 5.2. The GV100 has a 6 MB L2 cache as was summarised in table
2.1. Tt is divided into 64, single-port cache banks. Each L2 cache bank is a 24-way
set associative cache with 768 words of 128B. The cache banks are individually
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managed by a memory controller that also controls a specific partition of the
DRAM. The L1 cache in each SM is a 256-way set associative cache of 1024, 128B
words. The cache replacement and set policies were already found by previous
researchers and implemented into the simulator. The set placement in the L2
cache is assigned through a hashing algorithm applied to the physical address of
data requested from DRAM. Figure 5.3 shows how the data fetched from DRAM
is assigned to the L2 cache.

5.2 Performance model

The performance simulator was used to test a conventional SRAM against a PR-
SRAM with the retrieved access sequences from GPGPU-Sim. Cache requests to
cache bank number 2 in the GV100 L2 cache were used for the performance model
in figure 5.4a, to compare 5 different benchmarks with and without the PR-SRAM.
An explanation of the benchmarks is written in the methodology. There is also a
summary which lists their explanations in the appendix.

There was a greater than 60% energy reduction using PR-SRAM for all bench-

marks with a pipeline factor of 4. Figure 5.4a shows a constant value for PR-SRAM
energy consumption because, for each benchmark, a ratio was calculated between
the 2 SRAM types.
The effect of pipelining can be seen in figure 5.4b where the number of penalty
cycles is shown for each benchmark. A deeper PR-SRAM pipeline architecture
results in greater energy efficiency than a smaller PR-SRAM pipeline. However,
a deeper pipeline increased the chances of a zone conflict as there would be more
accesses in flight. The deeper pipeline also increased the number of penalty cycles
when a zone conflict inevitably occurred. From figure 5.4b, the 16-cycle pipeline re-
sulted in orders of magnitude higher penalty cycles compared to a 2-cycle pipeline.
The number of penalty cycles is also quite dependent on the code being run on the
GPGPU which could impact performance if the number of penalty cycles is high.
To counteract this effect, this thesis also proposes a hybrid SRAM architecture that
can be used to save energy with non-conflicting reads and reduce penalty cycles
accumulated by servicing repeated cache accesses with a conventional SRAM.

5.2.1 Hybrid SRAM

The hybrid SRAM model created in this section used the higher capacity PR-
SRAM to perform all SRAM accesses. The conventional SRAM will be used with
accesses that lead to zone conflicts. During a zone conflict, the zone conflict is
checked and if the zone conflict is due to a re-access of the same address already
being read, it is redirected to the conventional SRAM which will perform all sub-
sequent operations for that specific operation. This procedure is illustrated in the
waveform in the figure 5.5.

Normal zone conflict

This section expounds on the first zone conflict indicated in figure 5.5. The hybrid
PR-SRAM in figure 5.6 has 4 zones which hold 2 data blocks each. The conven-
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Hybrid SRAM implementation waveform
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Figure 5.5: Hybrid SRAM waveform

tional SRAM in this example is fully associative and can store 4 data blocks. The
PR-SRAM already has data in all locations while the conventional SRAM is empty.
Figure 5.6, follows the instructions shown in figure 5.5. The first 3 read operations
to addresses 3, 6 and 1 were initiated without causing any zone conflicts. The
next operation, a read to address 2, however resulted in a zone conflict. Zone 2
was already occupied by a read operation on address 3, therefore the pipeline was
stalled for 1 additional penalty cycle as shown in figure 5.5. Since the requested
address, 2 is different from the address already in the pipeline, 3, there was no
utilisation of the conventional SRAM.

SRAM migrating zone conflict

This section details which zone conflicts result in migrating data to the conven-
tional SRAM. Rather than migrating the data of all zone conflicts to the con-
ventional SRAM, only the same access conflicts were moved to the conventional
SRAM. This prevented unnecessary transfers to the conventional SRAM, which
would have occurred during every zone conflict and wasted resources. Figure 5.7
depicts the zone conflict that causes the requested data to be moved to the con-
ventional SRAM. The read operation to address 7 is started then in the next clock
cycle, the read instruction to address 2 causes a zone conflict. After zone conflict
has been detected the conflicting addresses are checked. In this case, since they
are the same address, the result from the preceding access will be forwarded to
the conventional SRAM. The conflicting request will be completed with the data
in conventional SRAM which will fulfill all subsequent requests to the data block
that was stored in address 2. As shown in the waveform in figure 5.5 the next
request to address 2, is completed in a single clock by the conventional SRAM
storing the data in address 1 (in the conventional SRAM).
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Hybrid SRAM zone conflict
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SRAM migrating zone conflict
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Conventional SRAM analysis

The following section investigates different caching policies and SRAM sizes to
find the configuration’s effect on energy and performance.

Several benchmarks were performed with different conventional SRAM capacities
to analyze the effect of its capacity. The disjoint in figures 5.8b and 5.8a is because
the graphs start with the results of a pure PR-SRAM instead of the smallest
possible hybrid SRAM design. Figure 5.8a shows the effect of varying the size of
the conventional SRAM on the number of penalty cycles, while figure 5.8b shows
its effect on energy. The pure PR-SRAM with 0Kb conventional SRAM had about
55 penalty cycles for every 100 SRAM accesses while a 2Kb conventional SRAM
reduced the penalty rate to 30 cycles. For the same reduction in penalty cycles,
the energy consumption increased by about 1.3 times as shown in figure 5.8b. As
the conventional SRAM is increased, more accesses are performed by it and the
energy consumption increases as a result. A hybrid SRAM could be configured
to use just the PR-SRAM to provide greater energy efficiency when running a
latency-insensitive program on the GPGPU.

The limited capacity of the conventional SRAM used in this hybrid solution
cannot store all the required conflicting addresses. The SRAM was configured with
different replacement policies to assess each policy with each benchmark. The ob-
tained results are listed in the table 5.1. A summary analysis of the hardware

NN CONV2D | CONV3D | SRAD | BACKPROP
LRU 3.23 | 36.82 20.29 33.25 | 18.55
LFU 11.92 | 37.36 20.88 3441 | 18.24
RAND 3.73 | 36.96 20.43 33.60 | 18.55
PR-SRAM | 54.87 | 92.3 38.01 39.3 33.23

Table 5.1: Penalty rate for different replacement policies

requirements and processing required for implementation of the different policies
is shown in table 5.2. The hardware requirements to implement a random re-

LFU LRU Random
Hardware Requirement | High High Low
Processing Overhead High Medium | Low
Miss rate (averaged) 24.562 | 22.428 | 22.654

Table 5.2: Summary of replacement policies

placement cache are quite low. The random number generator (RNG) is the most
important component for the random placement and it is an uncomplicated cir-
cuit. There are numerous methods of implementing an RNG in hardware such as
through a pair of cross-coupled inverters|34], a free running oscillator[35] or ther-
mal noise sampler[36]. This can be achieved with a couple dozen NAND gates.
However, a combination of different methods is usually used to generate a random
number depending on the requirements of randomness the circuit requires[37]. The
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Effect of conventional SRAM capacity on penalty cycles
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Figure 5.8: Analysis of conventional SRAM capacity effects on
penalty cycle rate and energy consumption

hardware requirements to implement LFU and LRU are much higher than that of
random placement cache as it requires SRAM access history. Shift registers and
other storage circuitry are required for the implementation of these replacement
algorithms. LFU has the highest processing overhead as it requires a history of
every location in SRAM and has to update every time a location is accessed. LRU
could be implemented with a shift register always shifting out the least recently
used address. This would require less processing as compared to LEU. The level of
processing required to implement the different replacement policies was obtained
from another research paper [38].

The overall impact of PR-SRAM latency on the performance of the GPGPU cache
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is minimal due to the amount of idle time between bursts of cache usage. The ratio
of total cycles to the number of accesses is shown in table 5.3

Benchmark | NN CONV2D | CONV3D | SRAD | BACKPROP
Access rate | 0.027 | 0.080 0.095 0.099 0.059

Table 5.3: The ratio of total accesses to total number of clock cycles
required by each benchmark

5.3 Analysis on level 1 GPGPU cache

Results analysed in the previous section were obtained from analysis of the level 2
GPGPU cache which was zoned according to the sets already implemented. Align-
ing the PR-SRAM zoning with sets in the cache produced better results with fewer
zone conflicts and the number of cache sets allowed for easier PR-SRAM zoning.
The level 1 cache of the GV100 has 4 sets with an associativity of 256. Four zones
would almost always result in a zone conflict so the PR-SRAM had to be imple-
mented with more than 4 zones.

The different zoning methods were investigated to prevent the excessive penalty
rate, they are visually represented in figure 5.9. PR-SRAM Zoning 1 in table
5.4 represents the set defined zoning, whereby PR-SRAM zones are aligned with
the 4 sets in the level 1 cache as depicted in figure 5.9a. Zoning methods 2 and
3 reduce the number of penalty cycles by increasing the number of zones to 32.
Their implementation is shown in figures 5.9b and 5.9c respectively. Zone method
2 implements 32 zones with each zone made of 32 contiguous locations while zone
method 3 implements zones by zoning locations over strides of 32. The sets are
used by the GPU during use to quickly locate data within a cache, while the PR-
SRAM zones are used by the PR-SRAM memory controller to perform pipelined
SRAM accesses. The high level 1 cache associativity of 256 creates a high cache
with high utilisation. This can be used in conjunction with smaller PR-SRAM
zones to improve cache utilisation and reduce the penalty cycle rate.

Table 5.4 summarises the results from running the same benchmarks for a set-
defined implementation and for two different 32 zone implementations. The fol-

PR-SRAM Zoning Set-defined | Contiguous | Non-contiguous
Average Penalty Rate | 106.56 99.94 38.40

Table 5.4: Summary of penalty cycles for different zoning imple-
mentations

lowing data shown in the plots were obtained for a PR-SRAM using the non-
contiguous zoning method in the hybrid SRAM design in the level 1 cache. The
penalty rate of the PR-SRAM implementation in the level 1 cache is shown in fig-
ure 5.10a. The first point of the different benchmarks shows the penalty rate of the
pure PR-SRAM. The trend of increasing the conventional SRAM The PR-SRAM
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energy saving is shown in figure 5.10b. The first point for each of the benchmarks
is the energy saving of a pure PR-SRAM. The subsequent points of the graphs
show the effect of increasing the conventional SRAM capacity.
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Eftect of conventional SRAM capacity on penalty cycles
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Conclusion

To investigate the suitability of PR-SRAM in GPGPU caches, GPGPU cache ac-
cess patterns were obtained from a GPU simulator running code. The L1 and
L2 GPGPU cache accesses were used in a software model to obtain energy and
cycle readings for different AI/ML focused benchmarks. The benchmarks used
were neural-net, convolution, back-propagation, and SRAD. This project found
greater than 60% reduction in dynamic energy consumption when a PR-SRAM
was utilised over a conventional SRAM. The drawback found was an increase in
latency (55 more cycles(penalty cycles), every 100 cache accesses) in PR-SRAM
which did not significantly impact performance as GPGPU caches are not in con-
tinuous use in every cycle. This project also proposed several implementations
of a hybrid SRAM design that could be used to balance penalty cycles and dy-
namic energy consumption. Hybrid designs incorporating 2kB, 4kB, 8kB, and
16kB standard SRAM were used to investigate its effect on penalty cycles and en-
ergy consumption. The hybrid design also implemented LRU, LFU, and random
replacement standard SRAM to probe its effect on penalty cycles.
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Chapter 7

Future Work

This project focused on the caches of GPGPUs specifically the Nvidia GV100.
GPGPUs caches are not accessed as frequently as caches in CPUs as a result the
effect on performance of implementing PR-SRAM is negligible. GPGPUs have
large register files which are implemented with SRAM [39]. Further work can be
done to investigate:

the energy and performance effect of implementing register files with PR-
SRAM rather than conventional SRAM

the leakage power which would be affected by the additional complexity of
the hybrid designs

incorporating an accurate model of the PR-SRAM into a GPU simulator

AI/ML cache accesses to obtain a discernible access sequence that can be
used to reduce penalty cycles

theoretical gains with a GPU compiler and architecture suited for PR-SRAM
caches

The final work that could be done is a real-world implementation and comparison
of a GPU with the PR-SRAM and another with the conventional SRAM.
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Appendix A

Benchmarks

This thesis initially focused on AI/ML workloads, however the versatility of GPG-
PUs requires benchmarking the caches with a variety of algorithms. A brief ex-
planation of the algorithms used for GPGPU benchmarking is as follows:

NN This is a neural net benchmark created by [40]. It performs number recogni-
tion on a set of 28%28 images with an already trained neural network.

CONV2D This a 2 dimensional convolution benchmark used from [41].
CONV3D This is a 3 dimensional convolution benchmark used from [41].

SRAD This stands for Speckle Reducing Anisotropic Diffusion, it is used in radar
imagining applications to remove locally correlated noise without destroying
important image features [31].

BACKBPROP This is a back propagation benchmark used for machine learning
applications. [31]
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Appendix B

Cache placement policies

The limited size of caches means that a cache word would be requested while the
cache is full, therefore a cache word would have to be replaced. The conventional
SRAM used in the hybrid design makes use of these cache placement policies to
determine which cache word should be replaced.

RAND This is the random cache placement policy which places and replaces re-
quested cache words randomly within a cache.

LRU Least Recently Used is a cache placement policy that always replaces the
least recently used cache word with the requested cache word

LFU Least Frequently Used is another placement policy that keeps track of ac-
cesses to every cache location to determine and replace the least frequently
used word with
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Appendix C

Conflict detector

The zone conflict detection algorithm is illustrated in the pseudo-code shown be-
low. The conflict detector was implemented as a class and called upon when
running the performance on PR-SRAM.

Algorithm 1 Class Definition: Conflict detector

1:
2:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

procedure INITIALIZE(Size)

Constructor method to initialize the conflict detector with
attributes and to implement dual cache

self.size < size

sel f.register < [placeholder]  size

sel f.standard__cache < self.cache _dict[sel f.cachename](size)
end procedure
procedure SLIDE(value)
Method called to slide next value into the pipleine
self.register < sel f.registe + [value]
return CONFLICT _DETECTION()
end procedure
procedure RUN(access)
Method called every tick clock cycle to run the pipeline
if data is in the standard cache then
advance pipeline for a single cycle
else
return SLIDE(access)
end procedure
procedure CONFLICT DETECTION()
if there’s no bank conflict then
return 1 clock cycle
else
return required stalled cycles

43



