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Abstract

The project aims to investigate ways of establishing a deep-learning-based
end-to-end pipeline from RGB-D and natural language instructions input to fea-
sible picking, and to apply and validate this pipeline on real robot picking tasks
on both causal tasks and specific tasks, identifying its feasibility and limitations.

The pipeline specifically employs the Grounded SAM model for open-set ob-
ject detection, the Segment Anything model for zero-shot object segmentation,
and using either Contact-GraspNet for generating feasible grasps on unknown
objects based on 2.5D point cloud inputs, or getting potential picking points by
estimating planes of the point cloud inputs

Through testing, it was found that the pipeline performs well in most sce-
narios, with limitations primarily attributed to the inconsistencies of the vision-
language model and the inherent limitations of 2.5D point cloud inputs in rep-
resenting global scene information.

Keywords: Robotic Grasping, intelligent robot, RGB-D, Vision-Language Model, ROS
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Chapter 1

Introduction

1.1 Background
Since the birth of robots, researchers have pursued the use of robots to assist human produc-
tion activities, aiming to enhance efficiency and alleviate the workload of humans. Thanks
to the rapid development of data-driven artificial intelligence, the goal of achieving much
more intelligent assistance from robots does not seem to be far. Specifically, if one can make
a robot "smart" enough to understand the natural language of human users, the old "program-
ming and debugging" way of driving a robot will not be necessary, making robot usage more
friendly to non-professional users, and unlocking the potential of natural language instruc-
tion.

In recent years, the Large Language Models(LLMs) that Transformers build [27] have
shown impressive ability in natural language tasks, such as machine translation and text
prediction. Later, Vision Transformer(VIT) [3] further pushed the ability of Transformers
into the computer vision field. Sharing similar architecture, the CLIP model (Contrastive
Language–Image Pre-training) [22] bridged the gap between text and vision. Following the
trend, people started to think of giving the image detection models the ability to classify
novel classes, with the assistance of large vocabulary knowledge from LLMs. This is how
the open vocabulary vision-language model steps on the stage. Soon, this new branch of
the Transformers family tree bore a series of fruits represented by GLIP [11], Dino [28], and
Grounding Dino [13].

By adopting open vocabulary model into robot vision systems, the robots can have the
potential to become intelligent assistants that can take natural language prompts such as
"Pick the cup on the right", and then automatically identify the cup on the right of the scene
and process to pick it. However, with the help of open vocabulary detection, the robot is able
to find "Which object to pick" by using RGB information. But the problem of "How to pick"
is more challenging, and requires extra information.

The depth information, which can be obtained easily along with the depth camera, can

3



1. Introduction

fill this gap with rich 3D information. Depending on the specific application scenarios, such
information can be processed flexibly, by either deep-learning style or point cloud processing.

In this project, using information from a pure vision source (RGB-D), we aim to dis-
cover how cutting-edge deep learning methods can be used to address really robotic or even
industrial problems and how robust and reliable they can be.

1.2 Objective
In this project, we aim to achieve automatic detection and picking on two scenarios: one
for ordinary household object picking, and one for specific Tetra Pak box picking. The first
focuses on a full deep-learning solution, while the latter tries to develop a more robust method
as the industrial task normally requires.

1.2.1 Normal Object Picking
To integrate object detection and grasp generation with a full deep learning solution, en-
abling more flexible and accurate grasping by the robot, this project establishes a pipeline
comprising three models:

• Grounding Dino [13]: A transformer-based model that is capable of zero-shot natural
language-guided object detection on RGB image.

• Segment Anything [8]: A transformer-based model generates fine segmentation based
on RGB image.

• Contact-GraspNet [26]: A PointNet++[21] based model that is able to generate poten-
tial grasps from 2.5D point could.

The ideal operation of this pipeline is as follows: given RGB-D input of the scene and
prompt natural language input (e.g., "grasp the blue cup") to one end, a feasible grasp set on
the desired object is obtained from the other end directly, as illustrated in Figure 1.1.

Figure 1.1: The pipeline for normal object picking
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1.3 Research Question

1.2.2 Tetra Pak Box Picking
The Tetra Pak box picking pipeline is similar to the previously introduced pipeline as they
use the same vision detection system, but differ in the use of depth information. This change
is mainly to achieve a more robust system compared to the full deep learning one, as we will
introduce more at the Part III. In short, this pipeline contains following part and can be
visualized in Figure 1.2:

• Grounding Dino [13] and Segment Anything [8] : Same as before.

• Plane Estimation : Instead of putting all the depth information into a deep learning
model, the point cloud is used to estimate all the potential planes of the scene, then
select the upper plane surfaces of all the actual Tetra Pak boxes, and pick up the center
point of the plane by suction cup.

Figure 1.2: The pipeline for Tetra Pak box picking

1.3 Research Question
Based on these two pipelines, in this research we aim to investigate the following questions:

For the vision detection system:

1. How reliable are the prompt-based detection and segmentation models in our tasks?

2. How reliable are the prompt-based detection and segmentation models when specific
to Tetra Pak boxes?

3. What form of natural language prompts can better enhance Grounded Dino’s accuracy
and the grasping process’s efficiency?

And for the usage of depth information:

1. How reliable are the grasp poses generated by data-driven methods in our tasks?

2. How reliable are the grasp poses generated by data-driven methods reliable when spe-
cific to Tetra Pak boxes?

3. Is the "plane estimation" method better than the deep-learning method when specific
to Tetra Pak boxes?
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Chapter 2

Related Work

To handle the complexity and uncertainty involved in visual perception, grasp estimation
approaches have increasingly turned to data-driven deep learning methods for their adapt-
ability [18]. Within this framework, recent major grasp methods can be sorted into different
categories based on how they’re trained and used: generative methods, reinforcement learn-
ing methods, and direct regression methods.

The generative methods aim to understand the underlying structure of data and recre-
ate similar samples. In work [15], PointNet++ is utilized as the backbone, employing the
Conditional Variational Autoencoder structure to encode and decode point clouds for grasp
generation. Furthermore, additional features are introduced to annotate the desired point
clouds for grasp generation within specified regions. The work of [14]trained a grasp classi-
fier using a generative adversarial network (GAN) and utilized a discriminator to assist in
grasping refinement.

Reinforcement learning methods, owing to their inherently task-oriented nature, have
been attempted for grasp generation. The work from [7] divided the grasping process into
three sub-steps: orienting, approaching, and closing the end-effector. Three reinforcement
learning models were separately trained for each step using on-policy learning.

Generative models often require a high ability of the backbone model to capture the full
diversity of the data distribution. Additionally, extra grasping post-refinement is typically
necessary to filter out unrealistic grasps. Reinforcement learning methods are primarily con-
strained by their limited generalization capability. This calls for an end-to-end solution, like
direct regression methods. Such methods generally aim to achieve a mapping from input
information (typically RGB-D images) to one or multiple grasp poses using a single net-
work, that is trained with classical regression. Early work in this field was often inspired
by object detection tasks based on RGB images, employing convolutional neural networks
for the prediction of top-down view grasping in the image. For example, in the work by
[23], the blue channel of the RGB image was replaced with the depth map and AlexNet was
applied[9] to achieve a joint task of both object classification and grasping prediction. Re-
cent advancements have been influenced by the development of networks capable of effective
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2. Related Work

three-dimensional structure understanding, such as PointNet [20]. These advancements en-
able direct estimation of 3D grasping. However, direct regression of 6 degrees of freedom
grasping has been found to be a challenging problem [17]. Therefore, many works attempt
to reduce the dimensionality of grasping to alleviate the difficulty of network training. The
backbone network to be used in this project, Contact-GraspNet [26], belongs to this cate-
gory of networks. The model addresses the uncertainty issue regarding the three degrees of
freedom displacement by generating grasps based on contact points. Further explanation of
this model will be provided in chapter 3.

The use of language to assist visual tasks has long been a topic of interest, and the ad-
vent of transformers [27] has brought new advancements to this problem. The pioneering
breakthrough in this area is the CLIP model (Contrastive Language-Image pre-training) by
OpenAI [22]. This model encodes text and images separately using different models and
encourages the encodings from different modalities to be as close as possible, with the in-
tention of mapping the encodings of text and images into the same latent space. Benefiting
from the powerful encoding capabilities of transformer models and the extensive dataset
used for training CLIP, the model performs well on object classification tasks. However, its
performance on more advanced visual tasks, such as zero-shot object detection, is less satisfac-
tory. Following in the footsteps of CLIP, the GLIP (Grounded Language-Image Pre-training)
model [11] introduces additional text-visual fusion modules, enabling it to achieve good per-
formance on more advanced visual tasks, such as object detection. Building upon the strong
foundation laid by these two models, Grounding DINO [13] further enhances text-visual fu-
sion by introducing even more fusion modules and innovative text masking techniques. This
results in impressive performance on zero-shot object detection tasks guided by natural lan-
guage instructions.

By employing the Grounding DINO model, the bounding box of the desired target can be
acquired. Following this, grasps generated by the Contact-GraspNet can be filtered, retaining
only those within the regions of interest. However, the resulting outcomes may lack refine-
ment, as relying solely on bounding boxes is inadequate for addressing objects with complex
shapes or crowded scenes with overlapping objects. Hence, the integration of a segmenta-
tion model is necessary to further improve the accuracy of the target detection results. The
SAM (Segmentat Anything ) model [8] aptly fulfills this requirement. The model achieves
prompt-guided segmentation by innovatively encoding the image and the prompt separately,
and introducing the prompt into the decoding process. In this project, the combination of
Grounding DINO and SAM yields masks of higher precision, enabling refined filtration of
grasp results. The specific model fusion approach is informed by the methodology outlined
in the work of [24].

8



Chapter 3

Theoretical Background

The theoretical part comprises three main sections: data preprocessing, which focuses on
transforming the input depth image of the scene into point clouds suitable for processing
by Contact-GraspNet; the grasping estimation backbone, which delves into the principles
behind Contact-GraspNet itself; and mask generating, which explains how detection and
segmentation models based on the RGB image of the scene are utilized to generate the mask
and filter the output of the grasp model to obtain the desired output. The structure of the
theory chapter can be viewed as the red-colored terms denoted in figure 1.1.

3.1 Preprocess
The grasp generation network we employ only accepts input in the form of point clouds.
However, in the field of robotics, color and depth images are more common and readily
available inputs. Therefore, in our framework, the transformation from RGB-D to point
cloud is necessary. Generally, reconstructing point clouds from RGB alone is challenging and
requires the use of reconstruction algorithms such as structure from motion [19]. However,
this process can be greatly simplified when depth images are available. To explain the specific
process, let us begin with how projection is accomplished. The following section is mainly
inspired by [5].

3.1.1 Projection with Pinhole Camera Model
A point in the world (X = (X,Y,Z) ∈ R3) can be projected onto a two-dimensional image
plane by the camera. One of the fundamental camera models is known as the pinhole camera
model, and the process of projection is illustrated in Figure 3.1. It is noteworthy that the in-
tersection point between the principal axis and the image plane is referred to as the principal
point p, and the distance from the camera center C to the principal point is designated as
the focal length f [5].
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3. Theoretical Background

Figure 3.1: Projection via Pinhole Camera, Image from [5], page 154

The image plane, as shown in figure 3.2, includes both the image coordinate system and
the camera coordinate system, with an offset (x0, y0) from the principal point to the image
corner. In most cases the image coordinates are measured in pixels, this introduces the addi-
tional effect of unequal scale factors (sx, sy in each direction. In total, the projection can be
expressed in equation form as equation 3.1 [5], with fx = s−1

x f and fy = s−1
y f represents the

focal length scaled by the pixel width and height. The matrix K =

 fx 0 x0
0 fy y0
0 0 1

 is known as

the camera calibration matrix or the camera intrinsic matrix. Note the 4-vector [X,Y,Z, 1]T

is the homogeneous representation of the 3-vector world point [X,Y,Z]T .
X
Y
Z
1

 7→
s
−1
x f X + Zx0

s−1
y f Y + Zy0

Z

 =
 fx 0 x0 0
0 fy y0 0
0 0 1 0



X
Y
Z
1

 (3.1)

Figure 3.2: Image (x, y) and camera (xcam, ycam) coordinate systems,
Image from [5], page 155

The projection described in equation 3.1 occurs under the assumption that the world
point (X) is described in the camera coordinate system. However, this assumption may not
always hold true, as it is more common to express the point in the world coordinate system.
In such cases, before applying this projection, an additional transformation is necessary to
convert points from the world frame to the camera frame.
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3.1 Preprocess

Given C̃ as the coordinates of the camera in the world coordinate system, and R as a 3×3
rotation matrix representing the orientation of the camera coordinate frame, the transfor-
mation can be expressed as Equation 3.2, where Xworld is also in homogeneous coordinates.

X
Y
Z
1

 =
[
R −RC̃
0 1

]
Xworld (3.2)

3.1.2 Depth Image and Point Cloud
A depth image I ∈ Nn×m is a type of image where each pixel stores the distance from the point
to the camera, rather than color information, or, in another word, each pixel contains the Z
coordinate of the world point [X,Y,Z]T . The process of camera projection, as elucidated
in the previous section, involves first transferring world points to the camera coordinate
system and then projecting them onto the image plane. The process of reacquiring point
clouds using depth images is just to reverse the projecting to image plane part alone, which
consists of utilizing the camera intrinsic, restoring the x and y coordinates of each point on
the pixels to the camera coordinate system, and adding back the third coordinate z, which

is recorded by the depth image. Given the the camera intrinsic matrix as K =

 fx 0 x0
0 fy y0
0 0 1

,
the corresponding 3D point Xi, j of pixel I(I , j) can be computed as:

Z = I(I , j), X = (I − x0)
Z
fx
,Y = ( j − y0)

Z
fz

(3.3)

−→ Xi, j = (X,Y,Z)T
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3. Theoretical Background

3.2 Backbone
The backbone network, Contact-GraspNet [26], takes in the 2 1

2D point cloud of the whole
scene and generates grasp poses at all viable grasping locations. Figure 3.3 illustrates the
network’s input, output, and inference process. This section will focus on demonstrating the
operational principles of the network, as well as its architecture.

Figure 3.3: Inference process of Contact-GraspNet, picture from
[26]

3.2.1 Grasping Estimation

Figure 3.4: Example of transforming a set of points

Before delving into the formal discussion of the network, there is a concept that needs
to be clarified: what exactly do we mean when we refer to "grasping." This necessitates an
exploration starting from the perspective of similarity transformation matrices.

In three-dimensional Euclidean space, a set of points P ∈ R3×N are described with respect
to relatively coordinate systems. The process of describing the changes in the location of a
point set is typically referred to as transformation. Among transformations, similarity trans-
formation is a type of transformation that incorporates translation, rotation, or reflection to
the point set while maintaining the relative positions between points. Let the rotation matrix
be denoted as R3×3 and the translation matrix as t3×1. A topical way of transforming a set of
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3.2 Backbone

points in 3D is as equation 3.4 in homogeneous coordinate, and the idea is demonstrated in
figure 3.4. [

P̂3×N
1

]
=

[
R3×3 t3×1

0 1

] [
P3×N

0

]
(3.4)

This is a SE(3) transformation, short for the Special Euclidean group in three dimen-
sions. Expanding on the notion of SE(3) transformation, considering that a set of points can
delineate the shape of a gripper, the objective of estimating the grasping can be envisioned as
the quest for a series of 6 DoF transformations, which facilitate the adjustment of the gripper
by transforming the points to achieve the "appropriate" grasping postures.

3.2.2 Degree of Freedom Reduction
Expanding upon the preceding discussion, in the context of integrating grasp scoring within
the same network, traditional grasping endeavors seek to establish a mapping from a point
cloud to 6-degree-of-freedom grasp poses alongside their associated scores. This mapping is
denoted as (G, S) = f (P), where G denotes the set of potential grasps and S represents the
corresponding score. However, direct regression of 6-DoF grasping poses is recognized to be
challenging [18], leading many researchers to explore approaches that reduce the dimension-
ality of the regression problem. In Contact-GraspNet [26], a novel grasp representation was
introduced to address this dimensionality reduction task.

Figure 3.5: Grasp Representation, picture from [26]

Mark the contact point between the object and the gripper as c ∈ R3, the grasp can take
a new form of representation based on the contact point, as illustrated in Figure 3.5. Herein,
a ∈ R3 with ||a|| = 1 denotes the approach vector, signifying the vector from the grip baseline
to the object, and b ∈ R3 with ||b|| = 1 represents the grasp baseline vector, indicating the
vector from the gripper edge to the contact point. Additionally, d ∈ R is the fixed distance
from the baseline to the gripper edge, and w ∈ R is the unknown grasp width. With these
components, a 6-DoF grasp pose g ∈ G can be expressed using Equations (3.5) and (3.6).
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3. Theoretical Background

tg = c +
w
2

b + da (3.5)

Rg =

 | | |

b a × b a
| | |

 (3.6)

Equation (3.5) represents the displacement vector reconstructed from the contact point.
This formula can be interpreted as a relocation of the origin point from the contact point to
the gripper baseline origin point, since the grip serves as the starting frame system for the
pose transformation.

Equation (3.6) signifies the reconstructed rotation matrix. Since both a and b are unit
vectors and mutually orthogonal, their cross product yields a vector perpendicular to both a
and b, thereby enabling the computation of the rotation of the second coordinate as a × b.
Furthermore, the network utilizes the in-network Gram-Schmidt orthonormalization when
estimating the prediction of a and b (mark as â and b̂), as depicted in Equation (3.7).

b̂ =
z1

||z1||
â =

z2− < b̂, z2 > b̂
||z2||

(3.7)

The Gram-Schmidt orthonormalization process, originally developed for finding an or-
thonormal basis of a space [1], has been found to be useful in estimating rotations using deep
learning. This technique reduces the complexity associated with regressing 3D rotations [29].

The advantage of this novel representation lies in the fact that, in the case of the contact
point being known, the remaining unknowns in the equation are the grip width w, the ap-
proach vector a, and the grasp baseline vector b. Considering w as a scalar and a and b as part
of the rotation matrix, the original 6-DoF search space can be reduced to a more manageable
4-DoF space: 1-DoF for w and 3-DoF for rotation. Considering an extra score added to eval-
uate the score for grasping, the total degree of freedom is 5. This reduction in dimensionality
proves more beneficial to the learning process than approaches that estimate grasping poses
in an unconstrained SE(3) space.

However, while the methods described above for representing translation and rotation
alleviate the difficulty of grasping regression tasks and are key to the model’s convergence and
performance, they also become bottlenecks limiting the model’s performance. For example,
the approach of estimating the second rotation without prior knowledge during rotation
matrix reconstruction was found to be unfriendly to the robotic arm with the camera placed
on it. Additionally, the assumption that the contact point must be visible and generate grasps
solely based on the contact point was found to be easily influenced by the quality of the depth
camera. We will discuss these issues in detail in Chapter 5.

Nevertheless, validating this new grasp representation requires a model capable of ex-
tracting features from point clouds. Contact-GraspNet employed components of the Point-
Net++ model [21] to construct such a backbone model. The next chapter will focus on intro-
ducing the PointNet++ model.

3.2.3 PointNet++
The Contact GraspNet [26] formed up a feature extraction network that similar to U-Net[25],
with its pivotal components drawn from the set abstraction and feature propagation layers
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3.2 Backbone

introduced in PointNet++ [21].
PointNet++ is a network invented to have a better understanding of the point set that

contains points in Euclidean space with the format of (x, y, z) coordinate. In essence, Point-
Net++’s role in handling point clouds can be likened to the role of convolutional neural net-
works in image processing. It is a follow-up work of the PointNet [20] network which was
designed for the same purpose. To understand what is specific about PointNet++ that makes
it a popular backbone for the point set processing task, as PointNet++ is built on top of the
previous work PointNet, we begin by introducing how PointNet was designed to address the
point cloud feature extraction task.

The points in a point cloud from a Euclidean space usually have such main properties
that make it hard to be process like images:

• They are unordered. Unlike pixels of color images or voxels in volumetric grids that
are naturally ordered with fixed positions, a point cloud contains points that have no
specific order. In this case, the network that extracts features from N points of a point
set should be robust and invariant to the order of the data being put into the network,
which potentially has about N! different orders.

• There exist interactions between points. All these points are projected from the real
world and together they form meaningful objects, this means none of the points are
isolated, each point with its neighbors also forms meaningful subsets. These require
the model to capture not only global features but also local structures from nearby
points, along with the interactions between local structures.

• The geometric features of the point set are invariant against transformations. For
example, a point cloud that represents a "chair" should always be a "chair" no matter
how the points are rotated and translated together. This required the model to be able
to learn the invariant features of the point cloud.

To address such properties of the point cloud, PointNet came up with 3 structures:

• Symmetry Function Module: For unordered input, PointNet applied a symmetric
function to aggregate the information out of each point. The idea is that the out-
put of the function would not be affected by the order of input points as the function
is symmetric. The implementation of such a function is rather simple: this function is
approximated by a combination of a multi-layer perceptron network, a single variable
function, and a max pooling function, where the symmetry is accomplished by the max
pooling function.

• A local and global information combination Module: The output from the symmetric
function are the global features of the input point cloud. The model has to, as we men-
tioned before, also be aware of the local structures. PointNet achieved it by a simple
process: after the global feature vectors are computed, they are concatenated back to
the pre-point feature vectors, and new per-point features are extracted based on such
combined features so that the new feature contains both local and global information.

• Joint alignment network: To make the network predictions invariant even if some
geometric transformations are applied to the point cloud, Pointnet aligns all the input
sets to a canonical space before feature extraction, which is done by leaning an affine
transformation matrix in the network and applying it directly to the point sets.
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3. Theoretical Background

Given these three modules, PointNet reached state-of-art on tasks like 3D object recogni-
tion or segmentation, but later it was also found that it is not good at learning fine localized
details of point cloud. To improve its capability, PointNet++ was designed on top of PointNet
and reached even better performance. In PointNet++, the original PointNet was employed
as a plug-in module, and two main new structures as well as the two components utilized
within the Contact-GraspNet [26] model are the set abstraction and the feature propagation
layers.

Set abstraction

Figure 3.6: The set abstraction of PointNet++, picture from [21]

The Set Abstraction section, as shown in Figure 3.6, plays a crucial role in sampling the
input point cloud and effectively capturing local features. This layer significantly contributes
to hierarchical feature learning by carefully selecting a subset of representative points and
aggregating pertinent information within their local neighborhoods. The following provides
a detailed description of the layers within the set abstraction section and their functions,
along with figure 3.6 indicate how set abstraction works:

• Sample Layer: The initial step of the Set Abstraction layer involves selecting a repre-
sentative subset of points from the input point cloud. Farthest point sampling (FPS)
is commonly employed, where points are iteratively chosen based on their maximal
distance from those already selected. These chosen points act as centroids, delineating
local regions.

• Grouping Layer: The Grouping layer takes the sampled representative points obtained
through farthest point sampling (FPS). For each representative point, a local region is
defined by considering neighboring points within a specified radius. The grouping
operation aggregates points within these local regions, effectively creating clusters of

16



3.2 Backbone

points around each representative point. This grouping enables the network to capture
fine-grained spatial relationships and local features. The output of this layer is mini
groups of point sets, with each group corresponding to a local region containing a
certain number of points in the neighborhood of centroid points.

• PointNet Layer[20]: In the final step, a lightweight version of the PointNet network
is applied to the local point sets, functioning as a local feature learner. The layer em-
ploys shared multi-layer perceptrons (MLPs) to learn point-wise features, capturing
local geometric details. These point-wise features are then aggregated across all points
using symmetric functions like max pooling, ensuring permutation invariance to the
order of points. This permutation invariance is crucial for handling unordered point
clouds. The result is a feature vector representing the entire set of points. This layer is
applied hierarchically to capture features at different scales, contributing to the overall
hierarchical feature learning process.

Within the framework of PointNet++, the Set Abstraction layer operates hierarchically and
is iteratively applied at various levels of the network. This hierarchical structure enables
the model to capture features across multiple scales, from nuanced fine-grained details to
broader global structures. The iterative downsampling and local feature aggregation at each
level contribute synergistically to the network’s proficiency in comprehending complex 3D
scenes.

The Set Abstraction plays a role analogous to the downsampling segment in U-Net [25],
acquiring information-rich features through sampling. Similar to U-Net, once features are
sampled, they need to be restored to the original scale through upsampling, elucidating the
necessity of the Feature Propagation section.

Feature Propagation
The Feature Propagation layers within PointNet++ play a crucial role in upsampling and prop-
agating features back to the original scale of the input point cloud after downsampling in the
Set Abstraction layers. These layers receive downsampled features associated with sampled
representative points and their respective local regions. Through interpolation techniques
like nearest-neighbor interpolation, the features are distributed back to the original points.
This process ensures the preservation and integration of hierarchical information learned at
different scales into the final feature representation. By concatenating these features with
the original point features, the Feature Propagation layers facilitate the combination of fine-
grained details captured by Set Abstraction with the global context. This allows the network
to comprehend both local structures and larger global patterns within the point cloud. The
hierarchical application of Set Abstraction and Feature Propagation layers contributes to the
overall effectiveness of PointNet++ in capturing intricate 3D spatial information.

By leveraging the two PointNet++ components introduced above, Contact-GraspNet con-
structs the network architecture as depicted in Figure 3.7. As previously mentioned, it is an
architecture that performs downsampling and upsampling of point clouds to extract features.
The feature vectors are then processed by four feedforward neural network heads, with each
generating one of the four predictions: grasp score ŝ, approach vector â, grasp baseline vector
b̂, and grasp width ŵ. The network is trained using supervised learning, and the loss function
employed will be introduced in the next section.
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3. Theoretical Background

Figure 3.7: The brief overview of Contact-GraspNet

3.2.4 Supervised Learning of Grasp
Assuming at least one visible contact point for all feasible grasp poses, simplifying the pose
estimation problem hinges on initially identifying the contact point. Consequently, the total
objective of generating grasping can be delineated into two distinct tasks and trained to-
gether: contact point classification and pose regression. But before diving into the details,
the dataset used for training is worth mentioning.

Dataset

Contact-GraspNet was trained on the Acronym dataset [4], which comprises 1.7 million
grasps for 8,872 everyday objects represented in 3D mesh format. During training, objects
along with their corresponding ground truth grasps were placed on a plane in simulation,
followed by sampling of different camera viewpoints to generate RGB-D information for the
objects. Furthermore, the RGB-D images were rendered into 2.5D point clouds. Denote the
points P = {p1, . . . ,pn} ∈ R3, each point in the point cloud was labeled using Equation 3.8.

si

1 min
j
||pi − c j ||2 < r

0 otherwise
∀i = 1, 2, . . . , n (3.8)

With c j ∈ P are the mesh contact points of non-colliding ground truth grasp, and r
represents the maximum propagation radius. The primary purpose of this equation is to
assess, within a radius r around each point, the presence of viable ground truth contact points.
If such points are found, a score of 1 is assigned to the respective point. Following this process,
the original point cloud is segregated into two subsets: P− := {pi |si = 0} and P+ := {pi |si =

1}.
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Point Classification
As discussed in the previous section, in the ground truth 2.5D point cloud, each point is as-
signed a label indicating whether the point is a potential contact point for generating grasps.
To learn this label, a binary cross-entropy loss is established as shown in Equation 3.9.

lbce = −
1
n+

n+∑
i

si log(ŝi) + (1 − si) log(1 − ŝi) (3.9)

Where n+ = |P+| represents the size of P+, ŝi is obtained by applying the softmax activation
function over the output of the feed-forward network, as shown in Figure 3.7. The funda-
mental concept underlying this approach is that by learning the distribution of scores, the
model becomes adept at effectively assigning scores to contact points, facilitating contact
point classification.

Having classified the contact points, the next objective is to map the pose distribution
to these identified contact points through pose regression.

Pose Regression

Recall equation 3.5 and 3.6, the grasping is re-estalished from vector â and b̂, which is esti-
mated by the network, as Figure 3.7. Another loss is essential to measure the distance be-
tween correct grasping and predicted grasping to regress this learned transformation to the
contact points. Denoting the resulting estimated rotation and displacement corresponding
to point pi as R̂g,i and t̂g,i (alongside the ground truth Rg,i and tg,i), and defining five 3D points
v ∈ R5×3 to represent the 6-DoF gripper pose, as illustrated in Figure 3.5, the transformed
pose with both predicted and ground truth transformations is defined as shown in Equation
(3.10).

vgt
i = vRT

g,i + tg,i vpred
i = vR̂T

g,i + t̂g,i (3.10)

To facilitate the regression of vpred
i toward vgt

i , a weighted average distance loss is defined,
as shown in Equation (3.11).

ladd−s = −
1
n+

n+∑
i

ŝi min
u
||vpred

i − vgt
u ||2 (3.11)

Here, the variable u signifies that the ground truth vgt
u is selected among all possible

ground truths within the maximum propagation radius r of a given point. The selected
ground truth is the one minimizing the distance the most.

Additionally, the grip width w is a parameter that also requires prediction, as shown
in Figure 3.7. Contact-GraspNet chose to bin the continuous width and learn it as a label
regression task. The loss function, as in Equation 3.12, is a multi-label cross-entropy loss,
with M is the number of label, wic is the symbolic label (1 for sample i belongs to class c, 0
otherwise), ŵic is the predicted probabilities based on observations obtained by the model
through the softmax function.
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lwidth = −
1
n+

n+∑
i

M∑
c=1

wic log(ŵic) (3.12)

Finally, the overall loss function for training the model is defined as illustrated in Equa-
tion (3.13).

l = αlbce + βladd−s + γlwdith α = 1, β = 10, γ = 1 (3.13)

3.3 Object Detection and Segmentation
This section introduces the detection and segmentation models used in the pipeline. We
utilize Grounding DINO [13] an open-set detection model to generate bounding boxes and
extract labels for each object. Then we use Segment Anything Model (SAM) [8] to generate
segmentation masks for the detected objects. We first introduce the mechanism of Ground-
ing Dino: a model inspired by GLIP’s feature fusion block, and DETR’s decoder method.

3.3.1 Detection Transformers (DETR)
DETR [2] is an end-to-end object detection model with an encoder-decoder architecture
based on transformers. It uses standard implementations of Transformers [27] and ResNet
[6] backbones from standard deep learning libraries.

The original DETR model adopts a simple architecture as shown in figure 3.8. It con-
tains three main components: a standard Convolutional Neural network (CNN) backbone
to extract a compact feature representation, an encoder-decoder transformer, and a simple
feed forward network (FFN).

CNN

set of image features

transformer 
encoder

…

…

positional encoding

+ transformer 
decoder

class,
box

class,
box

no 
object

no 
object

FFN

FFN

FFN

FFN
object queries

backbone encoder decoder prediction heads

Figure 3.8: DETR Architecture, figure from [2]

DETR decoder outputs a fixed-size N set of predictions in a single pass where N is sig-
nificantly larger than the number of objects in the input image. The decoder follows the
standard transformer decoder architecture by Vaswani [27] with the difference being that
DETR decodes the N objects in parallel at each decoder layer, while the original architecture
uses an autoregressive model that predicts the output sequence one element at a time.
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3.3 Object Detection and Segmentation

DETR with Improved DeNoising Anchor (DINO)
Inspired by many follow-up papers that improve on the original DETR architecture, most
notably DAB-DETR [12] and DN-DETR [10], the DINO [28] model was introduced. DINO
is a DETR-like model that contains a backbone, a multi-layer Transformer encoder, a multi-
layer Transformer decoder, and multiple prediction heads. Like DETR, the model extracts
multi-scale features with backbones like ResNet or ViT and feeds them into a Transformer
encoder with corresponding positional embeddings. In the decoder layer it introduces de-
noising training as in DN-DETR by feeding noise-added ground-truth labels and boxes into
the decoder and training the model to reconstruct them. DINO also improves on query se-
lection in the decoder by selecting the top K encoder features from the last encoder layers as
priors to enhance decoder queries.

3.3.2 Grounded Language-Image Pre-training (GLIP)
In the natural language area, the phrase "Ground" is to the process of connecting the model’s
output to verifiable sources of information, which is what the GLIP model is trying to do:
find an efficient way of connecting image information to verified language. Based on CLIP’s
[22](CLIP (Contrastive Language-Image Pretraining) attempt of grounding image to text by
contrastive learning and only fuse the features at the decoder part, GLIP builds their model
upon one trial idea: contrastive learning and also fusing the feature before the decoder block.

Figure 3.9 shows their architecture, in the deep fusion part, the feature that comes from
text and image are fused three times, with each time the features are encoded again. GLIP’s
improvement compared to CLIP proves this "Deep feature fusion" is useful for the quality
of the language-image pre-training model, and greatly inspires the feature fusion block of
Grounding Dino.

A	woman	holds	a	blow	dryer,
wearing	protective	goggles

A wom
an ... prote

ctive
gogg
le

Pers
on

Bicyc
le ... Hair #dry

er.
Person.	Bicycle	… Hairdryer.

Deep	Fusion
Object	Features

Word-Region	
Alignment	Score

Visual	
Encoder

Text
Encoder

DyHead	
Module

Fusion

BERT
Layer

DyHead	
Module

Fusion

BERT
Layer

DyHead	
Module

Fusion

BERT
Layer

...

... ...

O1

O2

O3

On

Prompt
P1 P2 PM-1 PM

Alignment
Loss

Localization	
Loss

Figure 3.9: GLIP Architecture, figure from [13]

3.3.3 Object Detection With Prompt: Grounding DINO
Grounding DINO [13], inspired by DINO [28] and GLIP [11], intent to achieve language-
guided object detection on RGB image. Grounding DINO not only excels in natural language-
guided object detection but also possesses two critical capabilities that make it particularly
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suitable for application in robotic grasping tasks: open-set object detection and referring
object detection. An example of both is shown in Figure 3.10.

(a) ’Worldcup’ (b) ’The bottom man
with his head up’

Figure 3.10: Left: Openset Detection, Right: Referring Detection,
Figures from [13]

These functionalities of the model, especially referring object detection, are well-suited
for applications in robotic settings. This is because the workspaces of robotic arms are typ-
ically confined, and when faced with unknown objects, the use of descriptive language for
recognition has the potential to improve grasping efficiency.

However, the model’s output is only accurate up to the bounding box of the object, which
may not suffice for robotic grasping tasks that require precision, especially when dealing with
objects of complex shapes. In this project, the Segment Anything model is introduced to
enhance the results of object detection and obtain accurate masks for the objects.

Grounding DINO consists of a dual-encoder-single-decoder architecture. The model ar-
chitecture is shown in figure 3.11. First, the vanilla features are extracted from each image
and text prompt pairs separately by an image backbone and a text backbone. Then a feature
enhancer is used to update both vanilla features using cross-modality feature fusion. Cross-
modality queries are selected from image features using language-guided query selection and
fed into a cross-modality decoder to generate desired features from the two modal features.
The output queries are used to predict object bounding boxes and extract corresponding
labels.

Feature Enhancer

To generate the vanilla features, image features are extracted using a ViT image backbone,
and text features are extracted using a transformer encoder. These features are then fed into
the feature enhancer, as Figure 3.11 shows.

As described in section 3.3.2, Grounding Dino’s feature enhancer is built based on GLIP’s
feature fusion mechanisms. To achieve deep feature fusing, the dual-direction cross-attention
is applied to vanilla features after self-attention of both the text features and the image fea-
tures.
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Figure 3.11: Grounding DINO Architecture, figure from [13]

Cross-Modality Decoder
Finally, image and text modality features are combined in the cross=modality decoder as
shown in figure 3.11 block 3. Each query goes through a self-attention layer, an image cross-
attention layer to combine image features, a text cross-attention layer to combine text fea-
tures, and an FFN layer in each cross-modality decoder layer. Compared to the original DINO
model mentioned in 3.3.1, each decoder layer has an extra text cross-attention layer to inject
text information into queries for better modality alignment.

3.3.4 Semantic Segmentation: Segmentation Any-
thing

The Segment Anything model [8], leveraging its powerful zero-shot segmentation capability,
excels at segmenting objects that have not appeared in the training dataset [8]. The overview
of the model is as Figure 3.12, which contains three blocks:

• Image encoder: A pre-trained Vision Transformer (ViT) [3] is adapted to encodes input
with even high resolution.

• Prompt encoder: Box prompt(as bounding boxes given by DINO) is encoded as posi-
tion encoding that is transformed and represented by learned embeddings.

• Mask decoder: A Transformer decoder block is applied to decode both image embed-
dings and prompt embeddings by dul-direction cross-attention (image-to-prompt and
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prompt-to-image).

Figure 3.12: Segment Anything Model (SAM) overview, figure from
[8]

By combining SAM and Grounding Dino, passing the detection result of Dino as a box
prompt and passing it in SAM, a powerful prompt-to-segmentation tool for unknown objects
can be achieved, as shown in Figure 3.13.

Figure 3.13: Detection and Segmentation with Grounding DINO
and Segment Anything together, picture from [24]

The implementation of Grounding DINO and Segment Anything together is mainly in-
spired by the work of [24].
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Part II

Implementation on Normal Object Picking
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Chapter 4

Experimental Setup

This chapter focuses on presenting the application of our workflow in robotics, as well as the
methods used to drive the robot accordingly.

4.1 The workspace

Figure 4.1: Our Workspace

The workspace, depicted in Figure 4.1, comprises the robot arm, a table for staging objects
to be picked, and a container situated adjacent to depositing picked objects.
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4.2 The Robot

Figure 4.2: The Heron robot

The robot itself (we name it Heron), comprises the following components:

• Intel® RealSense™ D400 camera

• ROBOTIQ® 2F-85 adaptive gripper

• UR5e collaborative robot arm

• MiR100 mobile base

To enable the Heron robot to execute various commands, we utilized the SkiROS2 [16]
platform within the Robot Operating System (ROS) to drive its operations.

4.3 SkiROS2: Skill-based Robot Operating
Platform

The SkiROS2 framework, deeply interwoven with ROS, is meticulously engineered to man-
age robot behaviors through modular components [16]. Based on this platform, all robot
behaviors are abstracted into individual instructions called "skills." These skills can then be
compiled sequentially to drive the robot, facilitating its operation in a structured and orga-
nized manner. This tool proves particularly advantageous in environments with a substantial
foundational understanding, and it boasts several notable characteristics:

• Global model: Presented as a resource description framework (RDF) database, this
structure serves as a universal model for data interchange across the Web. It holds
valuable environmental insights that the robot can leverage.
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• Robot behavior designer: SkiROS streamlines behavior design via Python program-
ming, empowering the robot to adapt to changes seamlessly during execution.

• Skill system: This system facilitates the organization of programmed behaviors, foster-
ing modularity and reusability. Within SkiROS2, behavior trees are aggregated into
entities known as skills, incorporating single or multiple nodes. Each skill integrates
pre- and post-conditions that validate execution status at any given moment. The im-
plementation of skills can be structured into Python packages, which can be deployed
and imported into other robots, functioning akin to plugins.

4.4 Essential Skills
Built upon SkiROS2, there are several skills crucial for ensuring the proper functioning of
the robot and preventing errors during experiments, despite not being included in the global
blueprint of our workflow. Specifically, these skills encompass camera calibration, hand-eye
calibration, and robotic arm motion planning.

• Camera calibration: This skill ensures that the camera’s intrinsic and extrinsic param-
eters, as mentioned at 3.1.1, are accurately calibrated, enabling precise perception of
the environment.

• Hand-Eye Calibration: This skill aligns the robot’s hand with its vision system, thereby
ensuring precise coordination between perception and manipulation tasks by accu-
rately transforming between the gripper frame and the camera frame.

• Motion Planning: Once the grasping position is determined, this skill plans feasible
trajectories for the robot arm to safely and efficiently navigate to the desired grasping
location within the workspace.
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Chapter 5

Result and Discussion

In this chapter, we carry out picking and placing experiments on the robot to evaluate the
process pipeline. Then we discuss the results and outline our findings. The entire evaluation
section attempts to assess the capabilities of the pipeline in three different tasks:

1. Single-object grasping : Aimed at evaluating the fundamental grasping ability.

2. Multi-object unguided grasping: Intended to assess the pipeline’s ability to filter back-
ground information through segmentation and accomplish grasping in multi-object
scenarios without specific guidance.

3. Multi-object guided grasping: Testing the overall performance of the pipeline when
presented with multi-object scenarios and directional prompts.

The whole process is evaluated on the Heron robot (as described in the last chapter). In all
experiments, we execute the highest-scored grasp pose out of the generated grasps. Before,
the prompt-guided part, We chose the object with the highest confidence score out of the
detected objects using the Grounded SAM model.

5.1 Single Object grasping
In this experiment, we execute the picking task 10 times on each of 14 different objects and
mainly show some of the representative results. We aim to test the Contact GraspNet model’s
ability to consistently and repetitively pick a single object, for objects with both simple and
complex shapes. Note all the results are presented in image format. The left side of each
image depicts the object to be tested for grasping along with its mask. The right side displays
all feasible grasps generated by the model in point cloud form, with grasps marked in green
representing those with the highest scores generated by the model. The successful rate can
be shown in table 5.1.
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Number of Trials Fail on Detection Fail on Grasping Estimation Success
140 2 24 114

Table 5.1: Result of single object grasping

The results for simple-shaped objects include symmetric rectangular and cylinder-shaped
objects, as shown in Figure 5.1, as well as long objects and cube-shaped objects depicted in
Figure 5.2. For complex objects, we tested non-uniform and non-symmetric shapes, as shown
in Figure 5.3, and household objects such as a cup or even a broken cup piece, illustrated in
Figure 5.4.

Figure 5.1: Single object grasping for objects 1 and 2

For the results of single-object grasping, we have the following observations, which mainly
include one advantage of Contact-GraspNet and two limitations:

• Advantage: Contact-GraspNet demonstrates robustness and flexibility in generating
feasible grasps for various shapes and sizes of objects, as shown in Figure 5.1 to 5.4,
showcasing its versatility in handling unknown objects.

• Limitation 1: The model only learns to generate grasps based on the shape represented
by the point cloud, without considering physical characteristics such as gravity or the
center of mass of the objects. As a result, it may generate "feasible but impractical"
grasps, particularly when dealing with heavy objects, as shown in Figure 5.3, the model
generates possible grasps all over the body of the object, but the highest-scored grasp
is not close to the center of mass of the object.

• Limitation 2: The grasps generated by Contact-GraspNet may be constrained by the
resolution and quality of the partial point cloud data. As discussed in the previous
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Figure 5.2: Single object grasping for objects 3 and 4

Figure 5.3: Single object grasping for objects 5 and 6
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Figure 5.4: Single object grasping for objects 7 and 8

chapter, the model samples points from the given point cloud to generate possible
grasps. The partial point cloud consists only of the points the camera can see. There-
fore, sometimes when certain areas of the object are not visible to the depth camera,
the model can only generate grasps within the visible regions, thus leading to subopti-
mal grasping. This can be observed initially in Figure 5.4. An example shown in Figure
5.5 illustrates this more clearly. In this Figure, the object is placed in this orientation
where the camera can see only the top and front faces of the object, all the points on
the side view of the object are not visible in the partial point cloud. The model is then
forced to sample a point from either the top or front view of the object. Due to the
contact points on the top view resulting in grasps that collide with the table, those
samples are rejected. The only contact points left are the ones in the front view. Due
to the object being too long for the gripper’s width, the only grasps that do not result in
a collision will lead to an unsuitable angle for grasping as predicted by the model and
seen in figure 5.5c showing the grasp on the object and the contact point highlighted
as a green dot.

In our 140 grasp experiments conducted on the robot, 26 grasps were unsuccessful in
being executed by the robotic arm. The majority of these failures occurred during the grasp-
ing of objects with complex shapes, and the primary reasons for failure were attributed to
Limitation 1 and Limitation 2, as discussed above.

5.2 Multi-Object unguided grasping
In the multi-object unguided grasping experiments, a total of five attempts were conducted,
with the criterion for completion being whether all objects in the scene were successfully
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(a) Scene in Camera
View

(b) Predicted grasp

(c) Side view

Figure 5.5: Case where no suitable grasps are generated due to Point
Cloud

grasped (i.e., whether the scene was cleared). Among the 5 scenarios, 2 were not successfully
completed. Here, only the results of these two instances are presented and discussed. It is
noteworthy that the prompt of the detection model (Grounding DINO) was given as "object"
solely to filter out the background.

The images corresponding to these two scenarios are depicted in the left and right panels
of Figure 5.6, while their corresponding sequentially generated grasping processes are delin-
eated in Figures 5.7 and 5.8. It is noteworthy that the final step highlighted with a red border
in both Figure 5.7 and 5.8 represents the specific step where the grasping attempt failed.

Based on the experimental results on this topic, one advantage and one limitation of the
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pipeline can be summarized as follows:

• Advantage: The grasping model consistently succeeds in generating collision-free grasps
in multi-object scenes, while the detection model and the segmentation model reliably
separate graspable objects from the background.

(a) Scene 1 (b) Scene 2

Figure 5.6: Multi-object picking experiment

Figure 5.7: The sequential grasping of objects of Scene 1
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Figure 5.8: The sequential grasping of objects of Scene 2

• Limitation: The grasping model tends to treat closely spaced or physically adjacent
objects as a single entity for grasp generation. This tendency is evident in the failure
steps in Figure 5.7 and in almost every step in Figure 5.8. This characteristic primarily
arises because grasping is based on the 2.5D point cloud of the entire scene, making it
difficult to distinguish stacked objects without color information, particularly when
the shapes of the objects physically coincide, as illustrated in the example in Figure 5.7.

5.3 Multi-object guided grasping
This experiment investigates object detection using the Grounded SAM model (Grounding
DINO + Segment Anything). But we mainly evaluate Grounded DINO in this experiment
rather than Grounding SAM given that the former is the part of Grounding SAM concerned
with object detection. By placing multiple objects on the table the objective is to identify
the correct object and assign it the highest confidence score out of the detected objects. We
evaluate how sensitive the model is to changes in the input prompt, objects in the scenes, or
the background.

Number of Trials Fail on Detection Fail on Grasping Estimation Success
50 8 6 36

Table 5.2: Result of Multi-object guided grasping

50 experiments were carried out with guided grasping tasks, some examples are shown
in Figure 5.9, 5.10, 5.11, 5.12, 5.13, 5.14 and 5.15. In the experiments, we found that Ground-
ing DINO performs well in directional object recognition tasks when provided with precise
object names. When combined with SAM and Contact GraspNet, the pipeline can effec-
tively accomplish directional object-grasping tasks, as evidenced by the grasps generated in
Figures 5.9 to 4. However, we also noted that the results generated by the Grounding DINO
model when faced with descriptive prompts are not always reliable. Figures 5.13 to 5.15 depict

37



5. Result and Discussion

several examples of directional prompts, which were successful in these cases, yet in actual
experiments, attempts involving directional prompts have proven to be relatively unsuccess-
ful.

Furthermore, the Grounding DINO model also suffers from the typical low interpretabil-
ity issue inherent in visual-language deep learning models. In our experiments, we encoun-
tered instances where the model could detect screws but not screwdrivers, or failed to rec-
ognize a broken cup placed separately; however, when another intact cup was present in the
scene, the model identified the broken cup as a cup. The reasons behind these occurrences
remain unclear.

Figure 5.9: Prompt:"The Yellow Cylinder"

Figure 5.10: Prompt:"The Red Block"

Figure 5.11: Prompt:"The Wooden Block"
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Figure 5.12: Prompt:"The Rubik’s cube"

Figure 5.13: Prompt:"The Object on the back"

Figure 5.14: Prompt:"The object on the right"

Figure 5.15: Prompt:"The object on the top"
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Part III

Implementation on Tetra-Pak Box Picking
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Chapter 6

Tetra Pak Box Picking

The Tetra Pak box that this project specified to pick is shaped as Figures 6.1, with fake labels
that shown in Figure 6.2.

Figure 6.1:
Tetra Pak
Box to pick

Figure 6.2:
The label
on the box

Again, the purpose of the new pipeline is to adopt the existing methods on the specific
Tetra Pak box and make the process more robust. As discussed in section 5.1 of Chapter 5, the
Contact-Graspnet is not good at generating picking poses for objects that the depth camera
can not fully capture, as both boxes are too big for the camera to capture the depth informa-
tion of the full body, this model can not really perform well Tetra Pak Boxes. Further, given
the size and the weight of Tetra Pak boxes compared to the normal object of the previous
part, it is believed that such tasks are better handed over to the gripper with suction cups, as
shown in Figure 6.3.

With the change of the gripper, also considering this picking task is to a specific industrial
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Figure 6.3: Heron Robot and Suction Cup

product, there is a need to propose new methods for generating picking poses and to make
the results of visual inspection more robust, making the entire grasping process more robust.
The new pipeline, as shown on Figure 1.2, will be explained in the next section.

6.1 Theory
Due to the size of the boxes, it is found that the depth image usually can only capture the
upper plane and a little bit of the side shape of the box, making it difficult to estimate a
picking pose out of the whole box. However, given that now the gripper is switched to the
suction cup, and the Tetra Pak box can be seen as a box with evenly distributed weight,
the box can be picked by the suction from the center point of the upper surface plane with
the gripper standing top-down straight, therefore the center point of the plane is all that
is needed to pick the box. But to do this, the first step is actually find where the boxes are
located in the scene.

6.1.1 Tetra Pak Box Detection
The Open-Vocabulary Detection and Segmentation Model that this project adopted, Grounded
SAM, is powerful and flexible for detecting unknown objects but does not necessarily give
consistent results with the same prompt. To detect the Tetra Pak, the initial usage of the
prompt was "Box with label", this gives all the boxes with label in one single bounding box
(as Figure 6.4), which is not ideal as the separate boxes remain hard to find.

After several attempts, it is found that the most suitable prompt to use to detect Tetra
Pak boxes is "box.label" with both "box" and "label" passed in as in name of classes, in other
words, this prompt asks the model to detect objects that can be considered as boxes and
objects that can be considered as labels at the same time, given well clear and well-separated
detection results as in Figure (6.5).

It is interesting that with the "box with label" along, none of the labels were detected, and
individual boxes were not indicated, while when "box" and "label" were detected together but
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Figure 6.4: Detection result with the prompt "Box with Label"

Figure 6.5: Detection result with the prompt "Box.Label"
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separately, both were marked clearly. The reason for this phenomenon might be due to two
possible hypotheses:

1. The model has a sort of associative ability, making it easier to identify the boxes after
the labels were detected as these two classes can be related.

2. "labels" are more recognizable than "boxes" for the model.

Proving the first hypothesis is not straightforward, but this is a way to show if the second
one somewhat makes sense. One way of showing this is to compare the "confidence" of bound-
ing boxes. The confidence values (also called logits) are the values on the upper left corner
of each bounding box, showing how confident the model thinks this is a "box" or "label". By
using the prompt "box . label" on 3000 images that contain 4 true Tetra Pak boxes and corre-
sponding labels, like Figure 6.5 (meaning ground truth is known), and taking the confidence
of the bounding boxes of the detected objects, the joint histogram of the confidence of "box"
and "label" can be shown as Figure (6.6)

Figure 6.6: Joint histogram of two classes

This joint history tells the histogram of "label" comes with a lower standard deviation and
higher mean compared to the histogram of "box", also, the peak of the histogram of "label" is
higher than the peak of the other histogram, all of these indicating that the model tends to
have higher confidence in detecting labels, which in turns helps in the detection of the boxes,
thanks to the associative ability of the detection model.

46



6.1 Theory

6.1.2 Plane Estimation
Once the boxes are detected, estimating the normal, and center of the upper plane is the next
step. Given the input as a point cloud of (x, y, z) points, a plane can be estimated by using a
plane equation combined with RANSAC, as described in algorithm 1.

Algorithm 1: Plane Estimation with RANSAC

pts, th,mi ← points, threshold,maximum iteration;
N ← 1;
optimal_norm, optimal_inlier ← (0, 0, 0), 0;
while N ≤ mi do

pts_sample← Random(pts, 3) % Randomly sample 3 points ;
norm← Plane(pts_sample) % Find the plane that is defined by three points

and get the normal ;
count ← 0;
for pt ∈ pts do

l ← Distance(pt, norm) % Compute the distance from point to plane;
if l ≤ th then

count ← count + 1;
end

end
if count > optimal_inlier then

optimal_inlier ← count;
optimal_norm← norm;

end
end
return optimal_norm

Figure 6.7: Plane estimation for boxes

The plane estimation is done on the point cloud that is cropped by the segmentation
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mask within the detection result as described last section. This process can be visualized as
Figure 6.7.

Once the plane points are found, the center of the plane can then be found by taking the
mean of the points.

6.2 Result
To evaluate this new picking method, 100 trials were carried, and the result is as table 6.1

Number of Picks Fail on Detection Fail on Plane Estimation Success
100 17 4 79

Table 6.1: Result

It is found that the main obstacle to achieving good robustness is the detection system, it
is easy to detect something else in the scene as a Tetra Pak box. Other than that, our pipeline
gets fine results for a vanilla method.
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Chapter 7

Conclusion

We can summarize our findings in the following aspects:

• For the Grasping generation model:

– Except for the discussed edge cases, the Contact-GraspNet model performs very
well as it did not fail in any single object-picking test.

– The partial point cloud presents a big limitation due to the missing point on the
invisible views to the camera. Sometimes these invisible views include the only
contact points that can generate a suitable grasp. Enhancing the partial point
cloud to reconstruct and fill in those points as a preprocessing step could be a
viable solution.

– The scoring of the grasps does not take into account the weight distribution of
the object which could lead to weird grasps. One possible solution is to consider
how far the grasp is to the center of mass of the object.

• For the Grounded-Segment-Anything model

– Using only the segmentation as a filter in a cluttered scene does not guarantee
grasping only the required object.

– While this open-vocabulary model works very well with common objects, it strug-
gles with consistency. Variations in prompts, scenes, and background often yield
different results.

– The lack of consistency makes it challenging to apply tasks that require high
robustness, though certain levels of certainty can still be guartened when used
with designed methods.

Overall, our pipeline demonstrates fine performance for both normal object picking and
Tetra Pak box picking. The limitations existing in the current models can serve as directions
for further improvements in the pipeline’s development in the future.
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