
INVESTIGATING OBJECT

DETECTION AND SEMANTIC

SEGMENTATION USING

PREPROCESSED RADAR DATA

ALBIN ERLANDER, FELIX PERSSON

Master’s thesis
2024:E30

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

i

Abstract

While cameras are the most prevalent devices used in physical surveillance and monitoring,
there are situations where they are ineffective. In adverse weather conditions, darkness
or privacy-sensitive contexts, there are excellent opportunities to replace or complement
cameras with radar.

There are advanced and successful computer vision solutions for cameras, in areas such
as object detection or semantic segmentation. However, the equivalent solutions are po-
tentially underutilized for radar. As with cameras, computer vision applied on radar data
could be potentially very useful and have a variety of applications. Of interest to this the-
sis specifically is the possibility of using computer vision techniques for optimizing radar
signal processing. To this end, this thesis aims to investigate the potential of instantaneous
object detection and semantic segmentation on preprocessed radar data.

A novel annotation framework, which is automated and camera-assisted, is developed
to generate a custom data set. Three models are implemented and tested: AdaBoost
(classifier), YOLOv8 (state-of-the-art object detection) and an adapted U-Net (semantic
segmentation).

The results indicate that object detection and semantic segmentation based on single
frames of radar data generated early in the signal processing chain is not only feasible,
but promising.

Keywords
object detection, semantic segmentation, computer vision, U-Net, YOLO, AdaBoost,
FMCW radar, range-Doppler, radar data annotation

ii

Popular Science Summary

When thinking of physical security and surveillance, most people probably think of security
cameras. However, there are situations where cameras do not work well, as anyone who
has tried photographing in darkness or heavy rain knows. There are also situations where
cameras can be inappropriate because of privacy reasons, but where there is still a need
for security and monitoring.

In such cases, radar is a good alternative or complement to security cameras. Radars
work by transmitting radio waves out into the environment, where they reflect off objects
and then return to be received by the radar. How far away an object is can then be
determined from how long it takes a signal to return, and where it is can be determined
from the direction the signal returns from. This makes radars very good at finding where
objects are located. In addition, if multiple signals are sent and received, the velocity of
the object can be determined, which can be a big advantage over cameras.

There have been great advances made in machine learning and artificial intelligence over
the past couple of years. One specific area of machine learning with a lot of applications
is the field of computer vision. Put simply, this means teaching a machine learning model
to look at images and recognize objects. This can for example be used to look at traffic
camera photos and read license plates, or look at X-rays and help with diagnostics. While
computer vision has been used for radar images as well, this field has not received as much
attention. The aim of this thesis is to investigate some possibilities with using computer
vision techniques for looking at radar images.

A radar typically receives a lot of data, but not all of it is useful. The data is processed and
transformed in consecutive steps, called the ’signal processing chain’. For a very simplified
example, imagine an empty field with only one radar and a single person standing ten
meters in front of it. The radar transmits radio waves in many directions, some reflect off
the person and return to the radar, which gets to work. The raw returning signal is itself
hard to interpret, so the radar starts to transform it into something that is easier to work
with. It performs a lot of calculations to determine how long it took the signal to return,
from what angle it arrived, whether the object it bounced off is moving, and more. In a
more realistic scenario, the radar is continuously transmitting signals and receiving signals
which has to be interpreted, and the amount of processing required adds up quickly.

As mentioned, not all the information that is received and processed is useful. This is part
of the problem this thesis wants to address. What if, in the example presented above, a
machine learning model could tell the radar: ’Hey, the object ten meters in front of you
seems to be a person’. If the radar knew what type of object was being detected early
on, it could make it more precise and efficient by tailoring the processing of the signals.
However, it creates some challenges for the machine learning model. First off, this means
it has to be relatively quick itself. It also means the model has to act upon the data before
it is fully processed, which means the available information is somewhat limited. Secondly,
it has to be relatively light-weight so that it can be run on a radar unit, as opposed to a
large and powerful computer. In this thesis, we implement, train and test three models,
to investigate the possibilities and limitations for solving this problem.

iii

Acknowledgements

We want to thank our industry supervisors Anders Skoog and Joel Nilsson for their time
and support throughout all parts of this project. We also want to thank Santhosh Nadig
for his valuable inputs.

Finally, we would like to thank our supervisor from Lund University Anders Heyden for
his advice and help, as well as our examiner Carl Olsson.

Albin Erlander and Felix Persson

iv

CONTENTS

Contents

List of abbreviations 1

1 Introduction 2

1.1 Background . 2

1.2 Purpose . 2

1.3 Previous research . 3

1.3.1 Radar data as input to neural networks 3

1.3.2 Annotation of radar data . 4

1.3.3 Computer vision models for radar data 5

2 Theory 6

2.1 Machine learning and deep learning . 6

2.1.1 The components of a neural network 6

2.1.2 The multilayer perceptron and activation functions 7

2.2 Training a deep neural network . 9

2.2.1 Cost functions and optimization . 9

2.2.2 Weight initialization and batch normalization 10

2.2.3 Evaluation . 11

2.3 DBSCAN Clustering . 12

2.4 Ensamble learning . 14

2.4.1 AdaBoost . 14

2.4.2 AdaBoost classification and SAMME 15

2.5 Convolutional neural networks . 15

2.5.1 Convolutional layers . 16

2.5.2 Padding and stride . 17

2.5.3 Pooling layers . 18

2.6 Regularization . 18

2.6.1 Holdout and early stopping . 18

v

CONTENTS

2.6.2 Weight decay . 19

2.6.3 Data augmentation . 19

2.7 Computer vision . 19

2.7.1 YOLO . 19

2.7.2 U-Net . 20

2.7.3 Pinhole Camera Projection Model 21

2.8 FMCW Radar . 23

2.8.1 Range estimation . 25

2.8.2 Azimuth estimation . 26

2.8.3 Velocity and Doppler estimation . 27

2.8.4 Radar cross section (RCS) . 28

3 Method 29

3.1 Data set . 29

3.1.1 Data collection . 30

3.2 Data annotation . 31

3.2.1 Automatic annotation . 32

3.2.2 Filtering and reviewing . 34

3.3 Data augmentation . 35

3.3.1 Horizontal flipping . 36

3.3.2 Mixing . 36

3.4 AdaBoost (SAMME) . 36

3.5 YOLO . 39

3.6 U-Net . 39

4 Results 41

4.1 AdaBoost . 41

4.2 YOLO . 42

4.3 U-Net . 44

vi

CONTENTS

5 Discussion 47

5.1 Model selection and performance . 47

5.2 Limitations . 48

5.2.1 Data set . 48

5.3 Future work . 50

5.3.1 Possibilities for embedded use-cases 51

6 Conclusion 52

A Appendix 53

A.1 Full adapted U-Net architecture . 53

vii

LIST OF ABBREVIATIONS

List of abbreviations

Abbreviation Definition

AdaBoost Adaptive Boosting
Adam Adaptive moment estimation
ANN Artificial Neural Network
C2f Cross-stage partial bottleneck with 2 convolutions
CAE Convolutional Autoencoder
CNN Convolutional Neural Network
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DSP Digital Signal Processing
FCN Fully Convolutional Network
FMCW Frequency Modulated Continuous Wave
IoU Intersection over Union
MLP Multilayer Perceptron
RAD Range-Azimuth-Doppler
ReLU Rectified Linear Unit
RCS Radar Cross Section
SAMME Stagewise Additive Modeling using a Multi-class Exponential

loss function
SiLU Sigmoid Linear Unit
SPPF Spatial Pyramid Pooling Fast
SSD Single-Shot Detector
YOLO You Only Look Once
YOLOv8n YOLO version 8 nano

1

1 INTRODUCTION

1 Introduction

1.1 Background

Cameras are probably the technology most associated with physical surveillance and mon-
itoring. However, there are situations such as in darkness or adverse weather conditions
where cameras are ineffective. There can also be privacy considerations, and situations
where recording with a camera is inappropriate. Under these and other conditions, there
are good opportunities to replace or complement camera systems with radar. Radar tech-
nology generally provides good positional and radial velocity estimates, and the recorded
data is less sensitive in terms of privacy. The data also retains its accuracy under some
conditions where a camera might underperform, such as in darkness, fog, or rain.

There have been significant advances made in computer vision using cameras and machine
learning, such as facial recognition and object detection. The success can be linked to the
development of more sophisticated models and more computationally capable GPUs, as
well as the increase of publicly accessible large scale data sets [34]. However, similar
methods for radar data are potentially underutilized.

Computer vision using radar data could complement camera detection and classification
when it fails, but also has other applications. For example, if classification could be per-
formed early in the digital signal processing (DSP) chain, later stages could be focused on
and optimized for the detected object’s class. This would however present some signifi-
cant challenges. The radar output data must be formatted and annotated to work with
a suitable machine learning model, which has to be trained without the benefit of more
sophisticated methods performed later on in the DSP. If the detection and classification is
done in a surveillance setting, especially if it is to be done to benefit the DSP, the model
also has to be lightweight and able to run on an embedded system.

1.2 Purpose

The purpose of this thesis is to investigate the potential of instantaneous object detection
and segmentation based on preprocessed frequency modulated continuous wave (FMCW)
radar data. Instantaneous here refers to operating frame-by-frame, and not with a tempo-
ral dimension. Preprocessed data refers to radar data that is partially processed, but not
fully refined. The motivation is that such a computer vision framework, that is instanta-
neous and based on data from early stages in the DSP chain, can benefit the subsequent
DSP. While that is the primary motivation, and hence an important point for the reader
to be aware of, actual embedded implementation and testing is beyond the scope of this
thesis.

To achieve this goal, a secondary one arises: The creation of a custom data set and
annotation framework. Therefore, this study has produced its own data set, where the
data is in the form of range-Doppler maps. It is automatically annotated by clustering
and projecting radar targets onto synchronized camera images and mapping these clusters
to predictions made by YOLO, a state-of-the-art camera image object detection model.
In the context of this thesis, the primary classes of interest are: person, bicycle, and car.

2

1 INTRODUCTION 1.3 Previous research

Finally, the selection and testing of models naturally becomes another central area of this
study. Three models are tested in this thesis: a multiclass AdaBoost for classification and
feature extraction, YOLO for object detection, and a U-Net based model for semantic
segmentation.

1.3 Previous research

A comparatively small amount of research is directed towards deep learning models and
their application within the domain of radar. This stems from the deficit of publicly
available data sets and the representations of input and output data varying within the
field [1, 5, 44]. FMCW radars also have relatively high levels of noise and provide low
angle resolution as well as less intuitive output data than those of other sensors, all of
which are reasons behind other sensors being favored historically [24]. There are however
some inherent benefits with FMCW radars in comparison to the other sensors, where
their low cost, robustness towards weather and lighting conditions, and ability to capture
radial velocity stand out, and they have proven adequate for several tasks, such as object
detection [5, 24].

1.3.1 Radar data as input to neural networks

According to a 2021 review of deep learning applications on millimiter-wave radar signals,
one of the most challenging tasks on the topic is representing the radar signals to fit
as inputs to the variety of algorithms used [1]. This section brings up some ways of
representing radar data, and how these have been used as inputs to neural networks in
the previous research. Note that a more detailed explanation of radar signal processing
and output data from an FMCW radar is provided in Section 2.8. For the purposes of
this project, the data representations of most interest are range-azimuth-Doppler (RAD)
mappings (analogous to range, angle and velocity).

A complete representation of the RAD data comes in the form of a three-dimensional
cuboid, with discrete bins of range, azimuth and Doppler along each respective axis.
Extracting a two-dimensional matrix from this three-dimensional cuboid is sometimes
referred to as ’collapsing’ one of the dimensions, which can be done by for example sum-
ming all elements along the axis to be collapsed. Using two-dimensional ’slices’ of the RAD
cuboid yields two-dimensional matrices of spatial data, in some respects more resemblant
to the outputs from imaging sensors, on which many computer vision models are based.
This, in turn, implies that these data representations allow for greater use of, or greater
inspiration to be taken from, these models and other image processing methods.

The review in [1] includes 13 studies that trained models with only radar data as input.
The main radar signal representations were: Micro-Doppler signatures, point clouds (de-
tections in three-dimensional cartesian space), top-down representations (bird-eye views),
and maps of combinations of range, azimuth, Doppler and elevation data. Micro-Doppler
signatures are high resolution, detailed movements signatures, for example how a car wheel
moves distinctly from the rest of the car.

3

1 INTRODUCTION 1.3 Previous research

There are several examples of studies training computer vision models with different pro-
files from the RAD data cuboid. The choice of representation varies from intuitive range-
azimuth representations for example [25, 33] to using all pairwise combinations of the
three parameters, such as [5, 21]. Further, the authors of [25] point out that dynamic
objects with distinct Doppler spectra are easier to classify because of their micro-Doppler
signatures. They also observed that range-azimuth spectra were particularly beneficial
for classification in their study. Specifically they used the two-dimensional range-azimuth
slices, extracted from where the Doppler intensity was at maximum for each frame [25].

As stated, there are examples of studies utilizing all the data from the RAD cuboid.
One example is the input data used to train the RAMP-CNN (short for ’radar multiple-
perspectives convolutional neural network’) model, which uses three different two-dimensional
maps combining range, azimuth, and Doppler values [5]. Another similar approach was
taken by the authors of [21]. Their study includes two separate models, one trained only
on range-azimuth data (summed over Doppler dimension), and one trained on all two-
dimensional combinations of range-azimuth-Doppler. They also tried different models,
and different coordinate systems (cartesian, polar) for input and output data. The hy-
pothesis was that since their model worked by dividing the input image into uniform,
cartesian grid cells, a transformation from polar coordniates (range-azimuth) to cartesian
would be beneficial. Their results indictate that the hypotehsis was correct for their model.
While the results varied, they also concluded that including the Doppler dimension helped
with detection performance in the simpler models.

1.3.2 Annotation of radar data

Another major problem for deep learning applications on radar data is the lack of publicly
accessible and annotated data sets [1, 5, 44]. Gao et al. also bring forward how manual
labelling is more difficult for radar data than for camera images [5]. This implies that
the design of a model would benefit from either adapting to a public data set or a robust
annotation methodology. The previously discussed review [1] includes a summary of some
publicly available data sets with varying methods for data annotation. One important
aspect that varies between methodologies is the degree of automation, here referred to as
manual, semi- and fully automatic. This section will focus on semi- and fully automatic
methods aided by camera images.

First off, there are examples of semi-automatically annotated data sets, such as [22]. This
study automatically labels the radar data through an object detection model, that uses
both camera and radar data. After this, a fixed number of frames are manually corrected
prioritizing the ones with the highest uncertainty, before the next round of training and
prelabelling takes place. Another research paper [24] provides a semi-automatic annotation
algorithm, were the authors use a stationary setup containing a FMCW radar together
with a synchronized camera. Here, annotation is performed through usage of a Mask R-
CNN in combination with a tracking algorithm, thus using information from consecutive
frames.

Secondly, there are the fully automatic annotation methods (allowing for minor manual
corrections). Of particular relevance to this study are camera-assisted automatic anno-
tations, such as the data set used to train the RAMP-CNN model [5]. For this data
set, binocular cameras were used alongside camera image detection and depth estimation

4

1 INTRODUCTION 1.3 Previous research

algorithms to provide the ground truths for the radar data. The annotations were pro-
vided as midpoints (range and azimuth), class and frame number, to account for time
sequences of data. The choice to use points rather than bounding boxes, segmentation
masks or other labels was made to ease the training burden. Another example of auto-
matic camera annotation is performed by the RODnet family of models (three variations)
[42]. The annotation first uses a monocular camera and a 3D object detection model to
establish objects and classes present in the camera’s field of view. These predictions are
then projected onto a range-azimuth map, which is to be used as input to the model.

1.3.3 Computer vision models for radar data

The previously mentioned RAMP-CNN model [5] processes all pairwise combinations of
RAD separately. By having three parallel processing stages consisting of convolutional
autoencoders (CAEs), each input slice results in a corresponding feature map. The CAEs
include batch normalization and uses ReLU activation functions.

The output from the CAEs are used as input in a fusion module, which compresses all
feature maps into a single new range-azimuth feature map. Two convolutional layers
take the fused features as inputs and perform RAMP-CNNs final recognition decisions,
an inception layer followed by a normal 3D convolutional layer. The inception layer was
originally proposed as part of GoogLeNet [35].

The three RODnet models [42] are structurally similar to CAEs. The main differences
between the three are whether skip connections are implemented, and if inception layers
are included in addition to normal convolutions. For the final detection decision, the
authors derived a novel form of non-max suppression based on object overlap, to suit their
model’s output [42].

The model used in [21] is an adapted Single-shot detector for radar data. The backbone
used for this model is inspired by, and uses the focal loss function from RetinaNet [18].
As mentioned in Section 1.3.1, they used two different models: one with range-azimuth
input, and one with all three pairwise RAD combinations inputs. For the latter, feature
maps are repeated along its missing dimension and then all feature maps are concatenated
along the channel dimension. The features extracted by the backbone network go through
additional convolutional layers, predicting confidence of detection for different classes with
sizes close to a predefined size, at each feature location. Several of these pre-defined sizes
can be used at each feature location. From the standard SSD, they also use bounding
box regression to adapt the pre-defined sizes to better match the actual detections, and
non-maximum suppression to remove detections deemed likely to be from the same object.

5

2 THEORY

2 Theory

2.1 Machine learning and deep learning

The aim of this section is to introduce the reader to common machine learning and deep
learning concepts and go into more depth in aspects which are of specific relevance to this
thesis. The primary sources for this section are Géron’s book [6] and Goodfellow et al.’s
book [8].

2.1.1 The components of a neural network

Neural networks, or ’artificial neural networks’ (ANNs), are learning models heavily in-
spired by the architecture of neurons. Here, one of the pioneering, and among the simplest,
ANN architectures is the ’perceptron’ which consists of a numeric input layer, a numeric
output layer and weights connecting them [6, pp. 299–304]. For an example, see Figure
1. The perceptron will here be used to lay a foundation for the architectures and machine
learning concepts presented in this report.

More specifically, the perceptron has an input layer consisting of a positive number of
nodes, n ∈ Z+ and an output layer consisting of a positive number of nodes, m ∈ Z+.
Moreover, each node holds a particular value, such that the input layer can be represented
by a vector x = (x1, . . . , xn) ∈ Rn and the output layer as a vector h = (h1, . . . , hm) ∈
Rm. Each input node is then connected to all output nodes through real-valued weights
wi = (w1i, . . . , wni), where i ∈ {1, . . . , m} denotes the index of the output node. The
value of each output node, hi can then be evaluated as a transformation of the result from
the affine mapping zi = w⊤

i x+ bi such that

hi = ϕ(zi) = ϕ
(
w⊤

i x+ bi
)
, (1)

where bi ∈ R denotes the node’s bias and where ϕ : R → R denotes the output layer’s
common activation function. In the case of the perceptron, the activation is traditionally
some form of step function [6, pp. 299–304]. More details regarding activation functions
are given in Section 2.1.2.

6

2 THEORY 2.1 Machine learning and deep learning

x1 x2 xn Input layer

ϕ(z1)b1 ϕ(zm)bm Output layer

h1 hm

w11

Figure 1: A perceptron consisting of n input nodes and m output nodes. Each node in
the input layer is connected to each node in the output layer through weights indicated
by the solid black lines. The figure is made with inspiration from [6, p. 304].

The notion of a perceptron can be extended, such that one or many layers are put between
the input and output layer. These intermediate layers are often referred to as ’hidden
layers’, and whenever ANNs contain a large amount of hidden layers, the networks are
referred to as ’deep neural networks’ [6, p. 309].

2.1.2 The multilayer perceptron and activation functions

One common example of an ANN which contains one or more hidden layers is the ’multi-
layer perceptron’ (MLP), where all layers are fully connected. If another layer is appended
to the perceptron’s output layer, such that its output layer becomes a hidden layer, the
perceptron becomes an MLP, see Figure 2. In other words, the value of a single hidden
node, given by (1), is now part of the input to the output layer. Let the new output layer
consists of k ∈ Z+ nodes. Recall that the output layer in (1) consisted of m nodes, and
by letting j ∈ {1, . . . , k} an element yj in the output of the network y = (y1, . . . , yk) can
be computed as

yj = ψ
(
w⊤

j h+ bj
)
,

where h = (h1, . . . , hm)⊤ ∈ Rm denotes a vector containing the outputs of the hidden
layer. Moreover, wj ∈ Rm is the weights between output node j, and all nodes in the
hidden layer and bj ∈ R the bias of output node j. Lastly, ψ : R → R denotes the common
activation function of the output layer.

7

2 THEORY 2.1 Machine learning and deep learning

x1 x2 xnxn Input layer

Hidden layer

y1 y2 yk

Output layer

Figure 2: An example of an MLP consisting of three layers. The input layer here consists
of n nodes, followed by a hidden layer consisting of m nodes. The hidden layer is, in turn,
followed by an output layer consisting of k nodes.

Note that the MLPs (or single perceptrons) do not necessarily have to use step functions
for activation. Here follows a few commonly adopted activation functions f : R → R in
case of the MLP [6, pp. 312, 366],

Recitified linear unit : ReLU(z) = max(0, z) (2)

Sigmoid : σ(z) =
1

1 + exp (−z)

Sigmoid linear unit (a.k.a. Swish) : SiLU(z) = z · σ(z). (3)

In the case of multiclass (or ’multinomial’) classification, where the number of classes
C ∈ Z+ is greater than two, it is common to adopt ’softmax regression’. This implies that
the activation function for the output layer is given by the softmax function. To explain
the function, let s(x) = (s1(x), . . . , sm(x)) ∈ Rm denote the model output given input
x ∈ Rn, where the number of nodes in the output layer m = C. The softmax function is
then given by

Softmax : σ(s(x))q =
exp(sq(x))∑m
j=1 exp(sj(x))

for each output node index q ∈ {1, . . . , m}. Consequently, the softmax function performs
a normalization of the network’s ouput vector s(x), and it is common to interpret the
resulting vector as class probabilities [6, p. 170].

8

2 THEORY 2.2 Training a deep neural network

2.2 Training a deep neural network

Let fθ : Rn → Rm denote a feed forward neural network with network parameters θ such
that θ is a parameterization of the network’s weights and biases. Moreover let X ∈ RN×n

be some training data set with targets Y ∈ RN×m, such that each input sample xi ∈ X,
i ∈ {1, . . . , N}, has a measured target value associated with it yi ∈ Y. The purpose of
such a network is then to mimic the true underlying mapping f∗ : Rn → Rm such that

f∗(xi) = ỹi ≈ yi ∀i ∈ {1, . . . , N},

where ỹi ∈ Rm is the corresponding true value for the given sample [8, p. 164]. In other
words, yi constitutes a potentially noisy measurement of the actual truth ỹi, which is
f∗ evaluated at xi. If f consists of many layers, e.g., two hidden layers and one output
layer with respective activations f1, f2, f3, it can for a given sample xi be viewed as the
composite functional mapping

fθ(xi) =
(
f3 ◦ f2 ◦ f1

)
(xi).

Since the training data solely provides an approximate evaluation of f∗ for the samples
contained in the training data set, fitting f with respect toX andY implies approximating
the true underlying relationship f∗ [8, pp. 164–165].

2.2.1 Cost functions and optimization

Now, given a model fθ, there are many ways to tackle the problem of finding good values
of θ with respect to the training data set and the model itself. Typically, by letting Θ
denote the parameter space such that θ ∈ Θ, one would define a real-valued cost function
(or ’objective’) J : Θ → R and try to find its minimizing argument θ∗ [8, p. 151],

J(θ;X,Y) =
1

N

N∑
i=1

L(θ;xi,yi), (4)

where L constitutes a real-valued loss function applied on each sample.

In the case of softmax regression, it is often combined with the cross entropy cost function.
To explain cross entropy error, let X ∈ RN×n and Y ∈ RN×m comprise a data set, and
denote an input sample x(i) ∈ X for each i ∈ {1, . . . , N}. Moreover, let fθ : Rn×Θ → Rm

denote a feed forward neural network which uses softmax as the activation function on
the output layer. One can then form a class probability prediction p̂(i) = (p̂

(i)
1 , . . . , p̂

(i)
m),

given a sample x(i). Lastly, let y(i) = (y
(i)
1 , . . . , y

(i)
m) ∈ Y denote the corresponding target

probability, such that y
(i)
k ∈ {0, 1} for each k ∈ {1, . . . , m}. The cross entropy error is

then given by [6, p. 171]

9

2 THEORY 2.2 Training a deep neural network

Cross entropy error : J(θ;X,Y) = − 1

N

N∑
i=1

m∑
k=1

y
(i)
k log

(
p̂
(i)
k

)
.

Now, minimization of costs functions are typically done with help from an optimizer,
e.g., Adam (short for ’Adaptive Moment Estimation’). Briefly, it can be said that Adam
utilizes exponential moving averages of the first and second moment of historical gradients
to update the network parameters. These moments are, in turn, refering to the estimated
mean and uncentered variance of the gradient of the cost function [16]. The method has
shown great success, but one of its drawbacks is that it can yield solutions which do not
generalize as well as solutions obtained from other methods [14].

2.2.2 Weight initialization and batch normalization

To reduce risks related to vanishing gradients and training being slow, it is common to
strategically initialize weights in a layer depending on the choice of activation function,
such that the variance of the input to a layer is approximately of the same size as the
variance of the layer’s output [6, pp. 359–360]. In the case of softmax activation it is then
common to adopt Glorot uniform weight intialization.

The method can be explained by letting nj and nj+1 denote the number of nodes in the
j:th layer and (j+1):th layer, respectively. Moreover, let W(j+1) ∈ Rnj×nj+1 denote the
weight matrix containing all weights between the two layers, such that one of its elements

w
(j+1)
ik comprises the weight connecting node i in the n:th layer with the k:th node in the

(n+1):th layer. Glorot uniform initialization then takes the form [7]

W(j+1) ∼ U
[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
,

where U denotes the uniform distribution. The corresponding bias vector b(j+1) =

(b
(j+1)
1 , . . . b

(n+1)
n+1) such that b(j+1) = 0.

In the case of ReLU it is common to use He weight initialization [6, p. 360]. The initial-
ization then becomes

W(j+1) ∼ N
[
0,

√
2/nj

]
,

where N denotes the normal distribution and
√
2/nj its standard deviation [11]. In the

case of He initialization the bias vector is set to b(j+1) = 0.

Even though clever choices of network initialization mitigate the risk of obtaining vanishing
or exploding gradients, there is still a risk that the problem arises during the training
phase. One way of further reducing the risk is to adopt a technique referred to as ’batch
normalization’, which implies zero centering and normalizing the input to a given layer [6,
p. 367]. Here follows an explanation of the technique, in line with [6, pp. 367–368].

10

2 THEORY 2.2 Training a deep neural network

Let mB denote the size of a subset B, often referred to as ’mini-batch’, of some training
data set X ∈ RN×n, such that B ⊆ X. Moreover, let x(i) ∈ Rn denote a sample from the
mini-batch which is fed as input to a layer adopting batch normalization. The algorithm
then starts by evaluating the input mean vector for the current mini-batch according to

µB =
1

mB

mb∑
i=1

x(i)

and the variance of the input according to

σ2
B =

1

mB

mb∑
i=1

(
x(i) − µB

)2
.

Thereafter the zero-centered and normalized input is computed as

x̂(i) =
x(i) − µB√

σ2
B + ε

,

where ε, normally set to 10−5, is a smoothing term to avoid division by zero. Lastly, the
output from the batch normalization is computed as

z(i) = γ ⊗ x̂(i) + β,

where γ ∈ Rn denotes an output scaling vector, ⊗ the element-wise product (or ’tensor’
product), and β ∈ Rn an output shift parameter. In some cases, by adding a batch
normalization at the very start of the neural network, no data set normalization or rescaling
may be needed beforehand [6, p. 367].

2.2.3 Evaluation

This section will present some metrics used to evaluate classifying machine learning models,
starting with precision, recall, and F1 score. These are all based on the true positives (TP),
false positives (FP), true negatives (TN) and false negatives (FN) observed in the results.

Precision (P) is defined as the fraction of positive predictions that were correct [6, p. 109],

P =
TP

TP + FP
.

Recall (R) is defined as the fraction of positives that were detected [6, p. 110],

11

2 THEORY 2.3 DBSCAN Clustering

R =
TP

TP + FN
.

The F1 score is the harmonic mean of precision and recall, useful when both metrics are
to be considered [6, p. 111],

F1 = 2 · P ·R
P +R

.

Mean precision is furthermore not to be confused with average precision. There is typically
a trade-off between precision and recall in a machine learning model. Average precision
refers to combined value of precision over different values for recall. More specifically, when
plotting precision against recall in a ’precision-recall curve’, average precision corresponds
to the area under the curve. Average precision is calculated for each class and similarly
to regular precision, when these values are combined, it is referred to as mean average
precision (mAP) [6, p. 529].

Intersection over union (IoU) is a common metric for computer vision models. To explain
the metric, let A and B denote two sets. The IoU can then be evaluated as [37],

IoU =
A ∩B
A ∪B

. (5)

In the case of computer vision, the sets A and B in (5) above refers to the geometric area
of predictions, for example bounding boxes or segmented areas.

When discussing object detection IoU is considered when determining mAP, and the IoU
is typically considered in terms of thresholds. For example mAP50 refers to the mean
average precision where IoU has to be at least 50%. Further, this can be calculated as
averages for different IoU thresholds. For example, mAP50-95 refers to the average mAP
at different thresholds, ranging from 50% to 95% at intervals of 5%.

When comparing models’ proficiencies at detecting and classifying different classes another
useful metric is the ’confusion matrix’ [6, pp. 108–110]. A confusion matrix displays how
often a particular class is classified correctly and how often it is classified as the other
classes. One of the matrix axes displays the predicted labels and the other the true labels,
while the cells hold the number of times a particular predicted-true label pair occurred
during testing. Confusion matrices are often normalized over their rows or columns. If
normalized over the true label axis, the diagonal where labels correspond to each other will
show recall. If normalized over the predicted label axis, this diagonal will show precision.

2.3 DBSCAN Clustering

Clustering comprises unsupervised learning methods used for grouping more similar data
points in a data set together. Thus, it concerns algorithms which establish linkage between
more similar points and differentiates these points from the remainder of the data set [20].

12

2 THEORY 2.3 DBSCAN Clustering

One method commonly considered when the number of clusters can not be established
beforehand is DBSCAN (short for ’Density-based spatial clustering of applications with
noise’). The algorithm was presented in 1996 by Ester et al. in [4] and has the benefit
of being able to distinguish clusters of any shape and is robust towards outliers. The
clustering algorithm is in itself deterministic, but the data labels depend on the order
of which data points are presented [15, 32]. DBSCAN, as with many other clustering
methods, requires a metric for distance, such as Euclidian or Manhattan distance [4]. An
example of DBSCAN clustering is shown in Figure 3.

DBSCAN requires two parameters, minPts and ε. The former refers to the minimal
total density in the neighbourhood of a point, for it to be considered a core-point. It
is possible to weight each sample, but if no sample weights are specified, computing the
neighbourhood density simply amounts to the total number of points. Each region which
then contains one or more neighbouring core-points is deemed a ’cluster’. The second
parameter, ε, refers to the distance within which two points are considered neighbouring
points (referred to as ’directly reachable’). Points which are directly reachable from other
core-points are called ’direct density reachable’ and are part of the same cluster. If these
points happen to not contain at least minPts within the radius ε, they are referred to as
’border-points’. Lastly, points which are not core-points and not direct density reachable
from any cluster, are considered noise [32].

ε

Core point

Border point

Noise

DBSCAN, minPts = 3, ε = 1.5

x

y

Figure 3: An illustration of the DBSCAN algorithm. In this particular example, the
distance metric used is euclidean (as indicated by the circular radii), minPts = 3 and
ε = 1.5. Two radii are illustrated in the figure, one for a purple core point, and a second
for a blue border point. As can be seen from the figure, the established cluster contains
four core points and two edge points. The core points are established through counting
the number of direct neighbours within the radius of ε. If the number of neighbours is
larger or equal to minPts, the point is deemed a core point.

13

2 THEORY 2.4 Ensamble learning

2.4 Ensamble learning

Ensamble learning refers to methods which make use of the predictions from multiple
predictors and then aggregates a single prediction by either averaging or counting the
predictions (essentially voting) from the individual learners [6, p. 211]. As the methods
are fairly easy to implement they are easy to try out without any extensive data set
preprocessing [6, p. 235].

2.4.1 AdaBoost

AdaBoost (short for ’Adaptive boosting’) is an ensamble learning algorithm, which utilizes
information from many individual weak learners to make predictions [6, p. 222]. A ’weak
learner’ refers to an algorithm which achieves slightly better results than by predicting
randomly, whereas a ’strong learner’ is a high performing algorithm [6, p. 213]. A learner
selecting the average of many weak learners can in practice be a strong learner and this is
the desired result of training an AdaBoost model [6, pp. 213, 222].

In practice, AdaBoost follows an iterative scheme, where learners are incrementally added
to the model. Here, the first step is to train a single learner and evaluate it on the train-
ing data. Thereafter, the sample weights are modified, such that missclassified samples
contribute more to a consecutive learner. Thus, after the weights are updated, a second
learner is trained and evaluated on the training data, after which the weights are updated
again and a third learner is trained, and so on [6, p. 223]. The individual learners in
AdaBoost can vary, but it is common to adopt so-called ’decision trees’ [6, pp. 224–225].
Decision trees are, as the name suggests, learners which works by propagating a sample
through a tree, starting at the top node iterating until it reaches a leaf node where a
prediction is obtained. Each iteration is then analogous to deciding on which path to take
next to propagate through the tree [6, pp. 195–196].

The AdaBoost algorithm can be explained by letting X ∈ RN×n denote a data set with
corresponding ground truth labels y ∈ RN×1. Also, let w = (w(1), . . . , w(N)) ∈ RN denote
a weight vector containing weights for each sample in the training data, and initialize this
vector to w(i) = 1/N for each i ∈ {1, . . . , N}. Lastly, let m denote the number of
predictors. Then each predictor has a corresponding error rate rj , j ∈ {1, . . . , m}, which
can be evaluted as

rj =

N∑
i=1

ŷ
(i)
j

̸=y(i)

w(i),

where ŷ
(i)
j denotes the j:th predictor’s inference on sample x(i) ∈ X, and where y(i) ∈ y is

the corresponding ground truth. Each predictor is then assigned a weight αj according to

αj = η log
1− rj
rj

, (6)

14

2 THEORY 2.5 Convolutional neural networks

where η ∈ R>0 is the learning rate, typically set to η = 1. Next, before another predictor
j + 1 is added, the weights are adjusted according to

w(i) = w(i) exp
(
αj

)
, ∀ ŷ(i)j ̸= y(i)

and the weights remain unchanged for all samples where ŷ
(i)
j = y(i). To form a prediction

for sample x(i), the AdaBoost algorithm simply computes the weighted average of all
predictors’ outputs according to

ŷ(i) =
m∑
j=1

αj ŷ
(i)
j .

2.4.2 AdaBoost classification and SAMME

To elaborate in the case of multiclass classification, let K ∈ Z+ such that K ≥ 2 denote
the number of classes. Moreover, let

p(j) = (p
(j)
1 , . . . , p

(j)
K)

denote the normalized softmax output for a given sample and predictor j ∈ {1, . . . , m}.
The ensemble prediction ŷ can then be computed as

ŷ = argmax
k∈{1, ...,K}

m∑
j=1

αjp
(j)
k .

In the case where K > 2, it is common to adopt SAMME (short for ’Stagewise Additive
Modeling using a Multi-class Exponential loss function’), which is a method proposed by
Zhu et al. in [10], where a slight modification is made to (6) such that

αj = η log
1− rj
rj

+ log(K − 1). (7)

In the case where K = 2 the expression in (7) is equal to the one (6), and the algorithm
reduces to AdaBoost.

2.5 Convolutional neural networks

Convolutional Neural Networks (CNNs) are commonly applied for image recognition tasks
and are artificial neural networks based on the layout of the human visual cortex [6,
pp. 479–480].

15

2 THEORY 2.5 Convolutional neural networks

2.5.1 Convolutional layers

What mainly differentiates CNNs from other networks is that they contain so-called ’con-
volutional layers’, which refer to a special type of layer related to the mathematical opera-
tion of convolution [8, p. 326]. An example of a convolutional layer is illustrated in Figure
4. In the discrete case, the convolution operator ∗ takes two functions, x : Z → R and
w : Z → R, and produces a third function s : Z → R. By letting t ∈ Z one can formulate
a discrete convolution as

s(t) =
(
x ∗ w

)
(t) =

∞∑
τ=−∞

x(τ)w(t− τ). (8)

In relation to CNNs, x is generally referred to as ’input’ and w the ’kernel’. The operation
then produces output s, commonly referred to as ’feature map’ [8, pp. 326–327].

An image channel comes in the form of a matrix, I ∈ Rh×w such that each element
I(i, j) = Ii,j ∈ R for i ∈ {1, . . . , h} and j ∈ {1, . . . , w}. Since the input data is two
dimensional, it makes sense to talk about a two dimensional convolution, where the kernel
K ∈ Rm×n also is of two dimensions. One possible representation of (8) then becomes [8,
pp. 326–329]

S(i, j) =
(
K ∗ I

)
(i, j) =

∑
m

∑
n

I(i+m, j + n)K(m,n),

such that the value of each cell in the successive feature map then can be computed
according to Yi,j = S(i, j) + b, where b ∈ R denotes the kernel bias.

The kernel K determines the ’receptive field’ of nodes in the output of the convolutional
layer. The labelled nodes in the input image in Figure 4 constitute the receptive field
of the labelled node in the feature map. Each kernel has the same number of trainable
parameters as the size of the kernel plus bias [6, pp. 481–482].

CNN is used here to refer to all ANNs with so called convolutional layers as a major part
of its architectures. Often these are combined with other modules such as an MLP tail for
final decision making. However, it is possible to construct a model with only convolutional
layers, called a fully convolutional network (FCN), for an example see U-Net described in
Section 2.7.2.

16

2 THEORY 2.5 Convolutional neural networks

Input image Feature map

K1,1

K1,2

K1,3

K2,1

K2,2

K2,3

K3,1

K3,2

K3,3

I1,1

I1,2

I1,3

I2,1

I2,2

I2,3

I3,1

I3,2

I3,3

Y1,1

Kernel

Figure 4: A forward pass through a convolutional layer in a CNN consisting of a single
kernel K ∈ R3×3. The number of kernels used will determine the feature depth of the
output (i.e., the number of feature maps).

2.5.2 Padding and stride

In order to manipulate the sizes of input and output layers of a convolution ’zero padding’
and ’stride’ are often used. The former refers to adding zero-valued pixels around the
input image, such that edge pixels can be treated as inner pixels. Stride, on the other
hand, refers to the step size of the kernel before a forward pass of the cells in the receptive
field is made, see Figure 5. In this way, the resulting feature map can be given a smaller
dimensionality [6, p. 482].

Input imageInput image

Kernel Kernel

Figure 5: Illustration of stride of two. This implies that the kernel moves two cells before
performing a forward pass of the cells in its receptive field. In this case, given that the
both the horizontal and vertical stride is two and input is of size 5×5, the resulting feature
map would be of size 2× 2.

17

2 THEORY 2.6 Regularization

2.5.3 Pooling layers

Another layer type which is common in CNNs is the pooling layer. The aim of using a
pooling layer is to downsample the input and make subsequent operations lighter. Like in
convolutional layers, a neuron of a pooling layer is connected to a subset of the previous
layer’s output, within a receptive field. They are also similar to convolutional layers in that
a pooling layer has a kernel size, a stride and potentially a padding. A common example of
pooling is max pooling, which means that an output node simply assumes the max value
of its receptive field. Another example of a pooling layer is average pooling, which as the
name suggests averages the receptive field. The fact that the operation of a pooling layer is
specified beforehand implies that such a layer does not contain any trainable parameters in
contrast to regular convolutional layers. Apart from downsampling, max pooling can also
give a CNN some degree of translational invariance, meaning it aids in keeping performance
the same even with inputs shifted or translated in some way. However, like all pooling the
downside is that a lot of data is neglected, which could potentially be useful in detection
and classification tasks [6, pp. 491–493].

2.6 Regularization

Regularization refers to a set of methods which are used to avoid overfitting to a model’s
data set [6, pp. 392–393]. Overfitting, in turn, is when a model overgeneralizes based on
its data set, such that the model performs well on its training data, but fails to generalize
and perform when inferring on new data [6, pp. 30–31]. This is especially problematic
for deep learning models since they are typically very large and contain many trainable
parameters [6, p. 393], which makes them prone to overfitting. Simple solutions for the
overfitting problem includes simplifying and shrinking the model, increasing the size of
the training data set, or reducing the noise in the data [6, p. 31], but other methods will
also be presented in this section.

2.6.1 Holdout and early stopping

One easy way to allow for regularization methods (and testing or validation more generally)
to be implemented is to use data set holdout. This simply refers to splitting the data set
into at least two, but often more, segments to be used for different purposes. For example,
a common approach is splitting a data set into one training set containing about 80% of
the data and a testing or validation set containing 20% [6, p. 34].

One way in which this can be utilized is through early stopping. This refers to training a
model using a training set, evaluating it against a validation set, and deciding what model
to keep based on the loss calculated from the validation set. Sometimes, early stopping
also includes a maximum allowed number of epochs without any improvement. If a model
for example does not improve its validation loss for five consecutive epochs, training is
terminated and the last saved model is kept [6, p. 162].

18

2 THEORY 2.7 Computer vision

2.6.2 Weight decay

One common approach for reducing overfitting is the incorporation of what is referred
to as ’weight decay’. This simply implies that all weights are multiplied with a scalar
α ∈ (0, 1) for each iteration, where e.g., α = 0.99 can be used. In this way, the size of the
network parameters can be regularized during training [6, p. 386].

2.6.3 Data augmentation

Data set augmentation refers to artificially increasing the size of the training data set by
generating realistic variations on the existing training data. It helps avoid overfitting, such
that if the training set is larger and more varied, it is more difficult to overgeneralize based
on it. In the case of image classification or detection, common methods include randomly
cropping and rotating the images used for training, to make the model better at detecting
the objects in a bigger range of positions [6, p. 500].

2.7 Computer vision

Computer vision is a broad field of study within machine learning. For this study, three
key ideas are of interest. The first is ’classification’, meaning assigning a class to an object.

The second is ’object detection’, the computer vision task of detecting instances of pre-
defined classes of objects in digital images [45]. The goal of object detection is simply
put to teach a model to answer the question of what objects are where. For the purposes
of this report, object detection refers, as just suggested, to both object localization and
classification, which can be done as individual processes or simultaneously. Localization
can take different forms, such as placing bounding boxes around detections or marking
midpoints.

Finally, there is ’semantic segmentation’, which refers to classifying each individual pixel
in an image. This can allow for more exact predictions, but does not equal object detection
as described above, since two overlapping objects are not distinguished when classification
is pixel-wise.

2.7.1 YOLO

The YOLO (short for ’You Only Look Once’) suite of models was first introduced in 2016,
when Redmon et al. tried to tackle the issue of other object detectors models being too
slow to run on real-time systems. The model takes an entire image as input and produces
bounding boxes and class predictions for objects it detects simultaneously, hence the name
[28].

The original model consists of 24 convolutional layers and a two-layer MLP for final
decisions [28]. Since then, the YOLO family of models have been through several iterations
and improvements, and when selecting models for this study the latest iteration was
YOLOv8 from Ultralytics [39]. It is a state-of-the-art model that builds and improves on

19

2 THEORY 2.7 Computer vision

its predecessors. The YOLOv8 model itself consists of five variations with increasing size
and this study utilized the smallest one, YOLOv8n [38]. It has 3.2 million parameters and
require 8.7 billion floating point operations (FLOPs).

At the time of writing, no official paper has been published on YOLOv8. The authors of
[2] included a figure of the YOLOv8n architecture in their study shown in Figure 6 below.

Figure 6: The YOLOv8n architecture, taken from [2].

The backbone (consisting of convolutional, C2f and SPPF modules) is used for feature
extraction. Every convolutional layer is followed by a batch normalization layer and a SiLU
activation function, see (3) [2]. The C2f module (’cross-stage partial bottleneck with two
convolutions’) combines high-level features with contextual information [37]. The SPPF
module (’spatial pyramid pooling fast’) lightens computational load by pooling features to
a fixed-size map [2]. The neck of the model is mainly used to fuse differently dimensioned
features. Finally, YOLOv8 uses three decoupled heads to predict objectness, classification,
and bounding box placement tasks separately, allowing each branch to specialize. Each
one uses a combination of CIoU (an IoU based loss function) and distributed focal loss for
determining bounding box losses and binary cross entropy for classification loss [2].

2.7.2 U-Net

U-Net is a computer vision model that performs semantic segmentation, originally de-
veloped for medical imaging applications [30]. The model is described by the authors
as consisting of two paths, a contracting path and an expansive path. The model first
performs a series of 3× 3 non-padded convolutional operations, all followed by ReLU ac-
tivation functions, see (2), and every third feature map is followed by a 2× 2 max pooling
with a stride of two for downsampling. This contracting path corresponds to a quite typi-
cal module of convolutional architectures meant to extract features and their context from
the image. A step in the expansive path starts with a convolution halving the number of
feature channels (what the authors refer to as ’up-convolutions’) and concatenating the

20

2 THEORY 2.7 Computer vision

output of this operation with the feature map from the corresponding skip connection.
A skip connection passes higher dimension, more shallow outputs to later parts of the
network, illustrated by the gray arrows in Figure 7. Skip connections allow data to be
passed between earlier convolutional layers and later transposed convolutional layers. For
example, the output from the first encoding block is passed to both the second encoding
block, and the final decoding block. Afterwards the operation is similar to the contracting
path with 3 × 3 convolutions followed by ReLU activation functions. The final detection
is done with a 1× 1 convolutional layer, making the U-net a FCN [30].

Figure 7: The original U-Net architecture from [30].

The U-Net architecture is shown in Figure 7. The blue boxes in the figure correspond to
feature maps, with the number of channels written on top and the size in the lower left
corner. White boxes represent feature maps passed through skip connections, and arrows
the different operations performed by U-Net. U-Net adopts a pixel-wise softmax function
for activation and a cross entropy cost function [30].

2.7.3 Pinhole Camera Projection Model

There are many ways of representing 3D world objects in a 2D image [36, pp. 51–52].
When objects are captured by a camera, the incoming rays are scaled and contingent on
perspective distortion. This implies that some geometries in the real world may be subject
to changes, e.g., parallel lines no longer being parallel, but rather converging towards each
other in a vanishing point. The transformation of the 3D world onto a camera sensor is
called ’perspective projection’ [3, p. 500].

A commonly applied approximation of the perspective projection, is the ’pinhole camera
projection model’, which takes two factors into account, i.e., the intrinsic parameters of
the sensor and the extrinsic parameters of the environment [3, 26, pp. 585–586, 515–516].
The former refers to the specifics related to the camera itself and includes parameters
such as focal length, skew and image center location [36, p. 57]. The extrinsic parameters

21

2 THEORY 2.7 Computer vision

instead refer to the camera sensor position and orientation in relation to the global frame,
e.g., where the camera is located in a room [3, pp. 585–586]. The entire transformation
can then be broken down into a combination of an external and an internal transform
[26, pp. 518–519]. Here, the external transform can be viewed as a transformation of an
arbitrary point in the global frame,

PW =
(
XW , YW , ZW

)
to a point in the coordinate system of the camera,

PC =
(
XC , YC , ZC

)
.

Note that this transformation can be decomposed into a rotational component R, as well
as a translational component t, [26, p. 518]

PC = R(PW − t)

By introducing homogeneous coordinates, the expression can be represented as a single
matrix multiplication,

PC =

[
R −Rt
0 1

]
PW .

Thereafter, the coordinates of the camera PC can be converted to corresponding image
plane coordinates, xI = [ui, vi], where f denotes the focal length,

ui =
fXC

ZC
, vi =

fYC
ZC

which, in turn, can be expressed as pixels via knowledge of the sensor’s principle point
x0 = [u0, v0] and the distance between two pixel centers as µ = [µx, µy],

u =
f

µx
ui + u0, v =

f

µy
vi + v0.

This expression can be rewritten using homogeneous coordinates, according to

uv
1

 =

f/µx γ u0
0 f/µy v0
0 0 1

uivi
1

 = K

[
xI

1

]

where γ constitutes the skewness between x and y axis. The entire transform can then be
defined as,

22

2 THEORY 2.8 FMCW Radar

uv
1

 = K

1 0 0 0
0 1 0 0
0 0 1 0

[
R −Rt
0 1

]
PW .

2.8 FMCW Radar

The foundational functionality of a radar is the transmission and reception of an elec-
tromagnetic signal which reflects off of the radar’s surroundings, thereby providing infor-
mation on the position and velocity of targets in the field of view. FMCW (frequency
modulated continuous wave) radars use signals with frequencies increasing linearly with
time, called chirps [23]. A chirp is defined by its starting frequency f0, bandwidth B,
and duration Tc, sometimes called modulation time. These parameters are illustrated in
Figure 8 below. The slope

S =
B

Tc

describes the rate of change of the frequency. Having a starting frequency linearly increas-
ing with time over a certain bandwidth essentially gives the signal reference points with
which a returning signal can be compared. The instantaneous frequency f(t) for a chirp
varies in time t ≥ t0 ≥ 0 according to,

f(t) = f0 + S(t− t0).

The phase of the signal over time ϕ(t) for a chirp can then be calculated by integrating
ϕ′(t) = 2πf(t) according to

ϕ(t) = ϕ0 + 2π

∫ t

t0

f(τ)dτ = ϕ0 + 2π
(
(f0 − St0)(t− t0) +

S

2
(t2 − t20)

)
,

where ϕ0 is the initial phase [23]. Finally, this allows the definition of the chirp transmission
signal xTX .

This signal depends on the phase according to xTX = A sin(ϕ(t)), where A is an amplitude
constant [23], such that

xTX(t) = A sin
(
ϕ0 + 2π

(
(f0 − St0)(t− t0) +

S

2
(t2 − t20)

))
.

The chirps are transmitted, reflected by surfaces in the radar’s field of view, and then
received again. Note that all objects detected by the FMCW radar will generate a received
signal, so one transmission can have multiple receptions, and these received signals are
delayed close replications of the transmitted signal [23]. Figure 9 below illustrates the
frequencies of a transmitted and received chirp (one target). The approximately constant

23

2 THEORY 2.8 FMCW Radar

Figure 8: An example of FMCW chirps illustrating amplitude A(t) and frequency f(t) in
relation to time t in the upper and lower subplots, respectively. The graphs also illustrates
the relationships between the chirp parameters; starting frequency f0, bandwidth B, and
duration Tc. The slope of the frequency diagram during a chirp is S.

difference in frequency is called the ’beat frequency’, denoted fb, which also can be referred
to as the ’intermittent frequency’ (or IF-signal) [23].

Since the received chirp xRX is a delayed replica of the transmitted chirp xTX , it can be
defined as xRX(t) = xTX(t − ∆t). Note that this is only an exact equality if the target
is not moving, and is otherwise only approximately true. The transmitted and received
signals then get combined into a mixed signal xm(t) according to

xm(t) = xTX(t)xRX(t).

Because xm is a product of two trigonometric functions, it will have a component based
on the combined frequencies of the transmitted and received signals, and one based on
their difference, according to

sin(a) sin(b) =
1

2
(cos(a− b)− cos(a+ b)).

It is the latter that will have a constant frequency called the beat frequency fb. The former

24

2 THEORY 2.8 FMCW Radar

Figure 9: Instantaneous frequency f(t) over time for a transmitted and received chirp with
one target. Here, ∆t denotes the time of travel and fb the beat frequency.

is of very high frequency and can therefore be removed through filtering. Thus, it is not
considered when referring to interpreting frequencies of xm.

The mixed signal of multiple chirps are sampled using multiple antennae, resulting in a
three-dimensional data structure, consisting of sample number, chirp number and antenna
number, respectively [13]. See Figure 10 for reference.

Fourier transformations are used to convert functions in the time dimension to frequencies,
and is therefore a popular method of processing the mixed signal xm [23]. Since xm is
sampled and therefore discrete, the transformation used is a discrete Fourier transform
(DFT), and more specifically, it is often a fast Fourier transform (FFT) [23]. The radar
output data illustrated in Figure 10 is preprocessed into range, azimuth, and Doppler
data, i.e., information on targets’ distance to the radar, relative angular position, and
radial velocity. How these are processed and calculated are the topics for the following
sections.

2.8.1 Range estimation

Performing an FFT along the time sampling axis of the data will yield information about
target distances [13]. The mixed signal xm is as mentioned the difference between the
frequencies of the transmitted and received chirps. Assuming the received signal xRX

25

2 THEORY 2.8 FMCW Radar

Figure 10: Three dimensional radar output data. The mixed signal is sampled by multiple
antennae, multiple times per chirp to create measurements over all three axes.

is an exact, but time delayed, replica of the transmitted signal xTX , the mixed signal’s
frequency or the beat frequency fb will be directly proportional to this time delay [23]. The
time delay ∆t can be expressed as the time it takes a radar signal to travel the distance
r twice, divided by the speed of light c, according to

∆t =
2r

c
.

As can be seen in Figure 9, the beat frequency fb will depend not only on the time delay
∆t, but the slope S, which gives the final formula [23],

fb =
2Sr

c
⇐⇒ r =

fbc

2S

To conclude, when sampling over a single chirp’s duration Tc, the FFT along the sampling
dimension will yield a spectrum whose main component is the beat frequency fb, from
which the range r can be calculated.

2.8.2 Azimuth estimation

Azimuth is the horizontal angular position of a target relative to radar’s boresight, meaning
the center of its field of view, see Figure 11 a). To estimate the azimuth angle, at least

26

2 THEORY 2.8 FMCW Radar

two receiving antennas are required [27]. The angular position of the target is dependent
on the distances between it and different antennae, and the distance between antennae.
[12]. See Figure 11 b) for an illustration of these concepts.

Figure 11: a) Top-down view of a radar with boresight marked, a single target and its
azimuth angle α. b) Two receiving antennae (RX) and the distance between them d.

Similarly to determining fb from a FFT along the sampling axis, the phase difference ∆Φ
between antennae is the basis for azimuth estimations, determined by performing the FFT
along the antenna number axis of the three-dimensional radar output. Since the returning
signal has to travel further to reach the left antenna in Figure 11 b) and therefore has a
slightly shifted phase, the azimuth angle α can be obtained from [27],

∆Φ =
2πd sinα

λ
⇐⇒ α = sin−1

(λ∆Φ

2πd

)
where λ is the wave length and d sinα describes the difference in range. Note that the
term d sinα equals the additional distance a signal has to travel to reach the further of
the two antennas, separated by the distance d. The more antennae that are available,
the better the angular resolution will be [13]. If the antennae are separated vertically,
elevation angles of targets can be estimated in the same way, i.e., the vertical angular
positions.

2.8.3 Velocity and Doppler estimation

Finally, from the FMCW radar data targets’ radial velocity can be estimated. Sometimes
these calculations are referred to as describing a target’s ’Doppler’, which will at times be
used in this report as well. In this context, Doppler refers to the phase shift caused by a
target’s movements, which as will be shown is directly related to their radial velocity.

27

2 THEORY 2.8 FMCW Radar

To determine radial velocity, at least two chirps separated by ∆t have to be measured
[12]. If the object is moving towards or away from the radar, this will cause the phase of
the received signal to shift slightly between chirps. The phase difference corresponds to a
motion in the target of v ·∆t. Each chirp is processed through a range-FFT according to
Section 2.8.1 to determine its range. The range-FFTs for different chirps will have peaks
in the same locations, but with shifted phases corresponding to their movements according
to,

∆Φ =
4πv∆t

λ
⇐⇒ v =

λ∆Φ

4π∆t

where v is the radial velocity [12].

2.8.4 Radar cross section (RCS)

A measurement that will be of interest in this study is referred to as radar cross section
(RCS). RCS is meant to describe reflectivity and not take into account the power of the
transmitter, sensitivity of the receiver, or distance between the radar or the target. In
other words, it is a measure of the ineherent reflective strength of a target. RCS can be
defined as [29],

RCS = lim
r→∞

4πr2
P scat

P inc

where P inc and P scat are the power densities of the radar signal before and after reflecting
the target (incident and scatter, respectively) and r is the range.

28

3 METHOD

3 Method

3.1 Data set

The data for this study consists of radar data in the form of range-Doppler images, and
synchronized camera images, together referred to as a frame (or a radar frame and camera
frame, respectively). A range-Doppler image will at times be referred to as a range-
Doppler map, if a mathematical matrix representation is emphasized. Finally, a frame
(whether camera or range-Doppler) refers to an image and the corresponding metadata,
such as timestamps. The frames are synchronized simply by comparing timestamps in the
metadata of both the camera images and radar images. The radar data is what is used to
train the models, while the corresponding camera images are only used in the annotation
process, explained further in Section 3.2. There is another important distinction to make
between the data used for the annotation process and the training process. The radar used
in this thesis outputs data that is more processed than needed for the purpose, including
range-Doppler data, angular positions (both azimuth and elevation), and more that is not
considered simply preprocessed within the context of this thesis. During the annotation
process, the fully refined radar data is used, but when training the models much of this
data is withheld, to mimic preprocessed radar data.

The range-Doppler maps in this study are n × n × 3 tensors with discrete range and
Doppler bins along the two first axes, with the last axis of size three corresponding to
channel. The three channels are signal strength, RCS and detection mask. A detection
mask is simply an n×n range-Doppler image with only 0’s indicating background and 1’s
indicating detections. The detection mask is created from the signal strength channel of
the range-Doppler map, which is processed such so that values below a certain threshold
are reduced to 0, and all values above it are set to 1. An example of a range-Doppler
image showing only signal strength (the first channel) can be found in Figure 17.

Using signal strength and RCS was motivated by a feature importance analysis which will
be presented in Section 3.4. Including the detection mask as a channel was motivated by a
speculation that this could aid in the models learning the unique shapes, or micro-Doppler
signatures, of the classes. No formal results comparing the usage of different channels and
representations will be presented in this thesis, but all three data channels seems to have
improved the results.

The data is labelled differently depending on the model. The different models used either
expect bounding boxes (in terms of pixel coordinates) or segmentations. When train-
ing YOLO, the only model used that expects bounding boxes, the range-Doppler maps
are saved as three channel PNG-files (n × n × 3), rather than two-dimensional arrays,
and the annotations are saved as separate text files containing bounding box classes and
coordinates. This is the data set form expected by Ultralytics when training YOLOv8
[41].

U-Net which performs semantic segmentation and AdaBoost which classifies clusters of
detections, requires a different labelling. For both a down-sampled and one-hot encoded
range-Doppler map is provided as ground truth with the dimensions m × m × c, where
m < n and c = 4 is the number of classes including background.

29

3 METHOD 3.1 Data set

Two different data sets were collected for this study, one for training and one for testing,
consisting of 5097 and 855 frames, respectively. These data set sizes refers to the annotated
and filtered but not augmented data sets. 20% (1019 frames) of the training data was
withheld as a validation data set. After augmentation, described later in Section 3.3, the
training split consisted of a total of 12234 frames. The class distributions, both instance-
and pixel-wise, are displayed in Figure 12.

Figure 12: The class distributions of the data sets. Note that these data sets refer to the
data after annotation (including filtering), but before augmentation. a) and b) shows the
object occurrences in the training and test data sets. These distributions show the number
of object instances, i.e., the number of bounding boxes in terms of ground truth labels. c)
and d) shows the corresponding pixel-wise occurrences, i.e., the number of labelled pixels
in the m×m ground truth masks. Underneath both c) and d) the number of background
pixels are also stated for each data set.

3.1.1 Data collection

When collecting the data, the radar and camera were both mounted on a height of ap-
proximately two meters. Both were mounted with a very slight downward tilt. Some
specifications of the radar used for recording are shown in Table 1.

The data for this study was recorded at three different locations, and several scenes were
recorded at each location. Scene here refers to the specific position and field of view of the
recording. In total, there were 38 recordings for the training data set, and 8 recordings
for the testing data set. The recordings varied in length, but were generally around 1000

30

3 METHOD 3.2 Data annotation

frames before annotation and filtering. As mentioned in the previous section, the final
data sets contained 5097 and 855 frames of training and testing data, respectively. This
means each recording contributed on average approximately 130 frames to the data sets.

During the recordings, data of the various classes were recorded at different ranges and
velocities. The person class was recorded and annotated up to 43 m range and with
varying states such as: standing almost still, walking slowly, walking faster and running.
The bicycle class was recorded and annotated up to 44 m, and this class also at varying
paces, e.g., biking slowly (almost not moving) and biking at a high speed. Finally, the
car class was recorded and annotated up to 62 meters range, with a maximum velocity
around 40 km/h.

Table 1: The specifications of the FMCW radar used.
Parameter Value

Range resolution 0.841 [m]
Maximum range 121.153 [m]

Velocity resolution 0.098 [m/s]
Maximum velocity 16.084 [m/s]

3.2 Data annotation

This section will outline and describe the annotation method used for this study. The aim
was to develop an annotation framework that is automated to the highest degree possible.
The framework is outlined in Figure 13 below.

Radar frame

Camera image

Synchronized

Annotated
image

YOLO prediction

Combined image

Clustered
detections

DBSCAN clustering
Camera projection

Annotated
clusters

Class extraction

Range-
Doppler

annotation

Range-Doppler

transformation

Automated
filtering

Manual review

Figure 13: Overview of the annotation framework. The first step involves collecting syn-
chronized camera and radar data. The camera image then goes through a YOLO pre-
diction stage, where objects contained in the image are labeled. Separately, the obtained
radar detections are clustered in three-dimensional cartesian space. After this stage, the
radar clusters are projected onto the annotated camera image and mapped to YOLO’s
predictions, such that they either obtain a class or not. After this step, all radar clusters
are projected onto the range-Doppler space. Thereafter, a filtering algorithm determines if
the frame should be kept or not. Finally, all frames from a recording go through a manual
review.

31

3 METHOD 3.2 Data annotation

3.2.1 Automatic annotation

The annotation starts with letting a pretrained YOLOv8 model make predictions on all
the camera images in the data set, see Figure 14. For a more detailed description of
YOLO, see Section 2.7.1. The relevant classes are all available for YOLO predictions, and
all other classes predicted by the model are ignored. One complication arose in that YOLO
predicts bicycles as objects separate from the people riding them, while the class ’bicycle’
for the purposes of this study represents a moving cyclist. Therefore, YOLO predicts
both a person and a bicycle overlapping with each other, these predictions are merged,
and labelled as a single bicycle. At certain ranges, YOLO quite consistently detects the
person riding the bicycle and not the bicycle itself. For these cases, all detected persons
were labelled as bicycles, and it was ensured that no pedestrians were present in the same
recording.

Since the models used in this study are based on range-Doppler images, completely sta-
tionary objects were not of interest. However, YOLO still detects them. For this reason,
a blurring function was developed to mask for example stationary cars, that would be
detected by YOLO, but not be represented in a range-Doppler image the same scene.
While blurring an object makes YOLO unable to detect objects moving directly in front
of them, these exceptions are handled during the automated filtering, described later in
this section.

Figure 14: An example of a camera image from the data set, before and after YOLO-
predictions are applied.

When the images are annotated by YOLO, the next step is clustering the radar detections.
For this step the radar detections are represented in three-dimensional cartesian space.
The clustering is done by the DBSCAN algorithm, described in Section 2.3. The distance
metric used was euclidean, with minPts = 15 and ε = 0.75. Whenever cars were present
in the recording these values were adjusted to minPts = 20 and ε = 0.6, to adapt to
the larger number of detections. These particular values were chosen through manual
evaluation. A two-dimensional example of DBSCAN clustering is shown in Figure 15.

By clustering, whether radar detections were considered part of the same object (or no
object) are determined. In the second plot of Figure 15 two clusters are highlighted in
individual colors, and the rest of the detections remain gray, illustrating that they are
categorized as noise.

32

3 METHOD 3.2 Data annotation

Figure 15: Radar detections in two-dimensional cartesian coordinates, top-down view.
The figures show the same scene and frame as in Figure 14, before and after DBSCAN
clustering. The radar is positioned at (0, 0).

So far, it has been described how the annotation framework detects objects in view of the
camera, as well as what radar detections are considered to belong to the same object. The
next step is projecting the clustered radar detections onto the camera image, as shown in
Figure 16. See Section 2.7.3 for a more detailed description of how these projections were
made. Now, clustered radar detections and YOLO detections are present in the same
space, and they can be mapped to each other. The mapping is based on the shortest
distance between the center of a cluster and the midpoint of a YOLO bounding-box,
simply measured in the euclidean pixel distance. To remove the most extreme outliers
immediately, a threshold of 200 pixels was set for the mapping, meaning clusters and
bounding boxes further apart are not mapped. In the example in Figure 16, it is quite
clear that the green points (cluster 2) corresponds to the bicycle, and that the yellow
points (cluster 1) corresponds to the person. However, the mapping is not always this
straight forward, which will be discussed more in the next section. The important thing is
that the clusters, which are considered as part of the same object, are mapped to a YOLO
detection, whose class can be extracted.

Figure 16: Combined image consisting of the YOLO annotation in Figure 14 and the
projected clusters from Figure 15.

33

3 METHOD 3.2 Data annotation

Now that a class for each radar cluster has been extracted, the final step is transform-
ing these radar detections from being represented in three-dimensional space to a range-
Doppler data representation. If the annotation is being performed for a bounding boxing
model such as YOLO, a bounding box is determined from the minima and maxima of the
clusters’ range and Doppler values.

When the annotation is for a semantic segmentation model like U-Net, the individual
range-Doppler bins are labelled with their corresponding class. In this case, a ’flood-
filling’ algorithm is also used. Flood-filling starts by comparing the range-Doppler bins
labelled by a cluster with a detection mask. If there exists bins that are not labelled,
included in the detection mask, and adjacent to labelled bins, they are also labelled as
part of the same class. This process is repeated until no such bins are present. This
process ensures that the full detection masks are labelled, and acts as a complement to
the clustering.

Figure 17 shows the regular range-Doppler image, the bounding boxed range-Doppler
image, and the segmented range-Doppler image (including YOLO’s confidence score for
the two latter) for the same frame as the previous few figures.

Figure 17: A pre-annotation range-Doppler image, a bounding boxed range-Doppler image,
and a segmented range-Doppler image, all from the same frame as Figure 14 - 16. The
annotations in this figure have been extracted from the YOLO predictions according to
the methodology described in this section. The vertical axis corresponds to range, and the
horizontal to Doppler. The further up in the image, the further away a target is. The center
of the image horizontally corresponds to a radial velocity of zero, and detections to the
right and left correspond to targets moving away from or towards the radar, respectively.

3.2.2 Filtering and reviewing

When all frames are annotated, an automatic filtering function is used. During the previ-
ous annotation steps, there are a couple of common pitfalls, only some of which (and how
they are handled) have been discussed so far. For the rest, no simple work-around could
be implemented, and these frames are marked for deletion and then removed during the
filtering stage.

34

3 METHOD 3.3 Data augmentation

During the mapping between projected clusters and YOLO detections, two projected
clusters can be mapped to the same bounding box. In this case, the distance between their
midpoints in cartesian space is calculated and compared to a threshold of two meters. If
they are further apart, it is deemed highly unlikely that both represent the same object,
and it becomes impossible to automatically determine which is correctly mapped to the
YOLO prediction. Put differently, two clusters are then simultaneously considered as
different objects in the radar frame but are mapped to the same object in the camera
frame. While potential solutions to this conflict exist, it significantly raises the risk for
errors, and in such cases the whole frame gets marked for deletion.

The radar and the camera used in the recording setup have different fields of view. This
has two implications for filtering data. Firstly, it is possible that the radar detects objects
which are not contained in the camera image. In this case, their class cannot be extracted,
and hence the frame is removed. Secondly, it is possible that projected radar clusters end
up outside the field of view of the camera, even when projected to the same plane. In this
case, the possible mappings where deemed to have a higher risk of error, and these frames
where also omitted.

The previously two mentioned edge cases are connected to a broader one, the case where
the number of projected clusters in the camera image does not match the number of
objects detected by YOLO. This can however also have other causes, such as YOLO
failing to detect an object that was detected and clustered by the radar, or mistaking
some stationary part of the image as an object of interest.

As mentioned earlier in this section, a distance threshold in pixels was used to exclude
more extreme edge cases early in the mapping stage. This means that it is possible
for the radar to detect objects that can not be mapped, and therefore not classified and
annotated. Effectively this means that the number of projected clusters are also compared
to the number of clusters that are actually mapped. If they differ, the frame is also marked
for deletion.

Finally, when all the frames are annotated and filtered, a final manual review was always
performed of the recordings, to ensure that no faulty annotations not caught by the defined
edge cases were undetected. During this process a small amount of frames where filtered
out manually.

3.3 Data augmentation

As mentioned in Section 2.6.3, data augmentation is a regularization technique where
realistic variations of the training data is generated. The following sections will intro-
duce the augmentation methods developed for this study: Horizontal flipping and mixing.
YOLOs configuration will be presented in Section 3.5, but briefly YOLOv8 has a wide se-
lection of augmentation methods built-in. A full list of these is available in the Ultralytics
documentation [40].

35

3 METHOD 3.4 AdaBoost (SAMME)

3.3.1 Horizontal flipping

Horizontal flipping, as the name suggests, refers to simply flipping the training data and
annotation along the range axis. This implies that the objects in the frame are still
present at the same range in the augmented frame, but all velocities change sign (e.g., a
radial velocity of 10 m/s is transformed to −10 m/s). Horizontal flipping is used in other
radar-based computer vision research, such as by [5].

3.3.2 Mixing

Mixing refers to augmenting a frame by adding in the objects of another. Again, this
method was used by [5] among others. For mixing to create a realistic augmented frame,
the detections of the two frames being mixed must not overlap. The method therefore
compares the detection masks of two frames. If the frames are compatible, the detections
from the range-Doppler image of the second frame are added into the range-Doppler image
of the first frame. See Figure 18 for an example of mixing frames.

Figure 18: Example of mixing two frames for data augmentation. Note that the images
are merely meant to illustrate the operation, in practice no mixing of camera images are
performed.

3.4 AdaBoost (SAMME)

Due to their comparatively simple implementation, see Section 2.4, a SAMME classifier
was implemented. One benefit of some ensemble learning methods (e.g., AdaBoost, gra-
dient boosting and random forests) is that they can be used for feature selection. There
are in practice many ways of performing feature selection, where the aim generally is to
collect a subset of features which to a large extent explain the variance in the targets.

36

3 METHOD 3.4 AdaBoost (SAMME)

Before the classifier performs classification, the range-Doppler image is processed through
additional steps, illustrated in Figure 19. When viewed as one cohesive process, the model
used for prediction is a semantic classifier. However, rather than taking the entire image as
input, the classifier takes a cluster of points and classifies it, which is then projected back
onto the range-Doppler image. Thus, every pixel in the image is classified, either by the
AdaBoost model, or classified as background through the threshold and clustering. Since
objects tend to be more spread out in the Doppler dimension than in the range dimension,
the former was divided by 5 before clustering. This value was determined through trial
and error, and the clustering used was DBSCAN.

The number of estimators used were 140, which was determined through usage of grid
search from scikit-learn. These estimators are by default decision tree classifiers. See
Table 2 for the complete AdaBoost configuration.

Table 2: AdaBoost training parameters.
Parameter Value

Estimator Decision tree classifier
No. estimators 140
Learning rate 1

Boosting algorithm SAMME

Range-Doppler image Detection mask

Apply threshold

Clustered mask

DBSCAN

Model

Collect cluster metrics
Prediction maskGround truth

Infer on clustersCompare

Figure 19: The steps included in the SAMME classifier. Firstly, a threshold is applied to
the range-Doppler image, such that only sufficiently large values are kept and set to one.
Contrary, all filtered bins are set to 0. This implies that the detection mask (top-middle
picture) merely contains zeros and ones. After this step, DBSCAN performs clustering on
the detection mask, based on Manhattan distance, with minPts = 10 and ε = 8. Finally,
each cluster is passed through the model, which based on the values of the metrics make
a prediction. In this very example, we can see that the model correctly labels the person
closest to the radar, but missclassifies the bicycle which is present at a longer range.

37

3 METHOD 3.4 AdaBoost (SAMME)

With the implementation used, feature selection is based on something referred to as
’feature importance’. Since the base classifier used is a decision tree, the measure is
computed as a mean of the provided feature importance from each individual classifier.
For each classifier and input variable, this value is derived from the decrease in Gini index,
when an input variable is introduced [9]. It ranges from zero to one and when the index
is zero a class is entirely separable from the other classes in the training data [17].

For the purposes of this thesis, the features selected for analysis were based on the dis-
tribution of RCS, velocity and range in the different classes. For each of these, different
features were calculated with respect to clusters in the data, see Table 3. More particu-
larly, for each cluster in the range-Doppler image, the minimum, median, mean, maximum
and span (i.e., difference between minimum and maximum) were taken into account.

Table 3: Feature importance for the various features. The columns show the metric
being calculated for each attribute in the rows. Note that these were calculated per
cluster found in the data. ’Span’ here refers to the maximum minus the minimum value
of the measure for a given cluster. The importance values written in bold are the most
significant features for classification for each attribute.

Attribute Minimum Mean Median Maximum Span

RCS 0.000 0.028 0.030 0.213 0.000
Range 0.000 0.023 0.000 0.128 0.200
Velocity 0.097 0.019 0.210 0.031 0.021

As can be seen from Table 3, one feature per attribute of particular importance were
found. These are,

• Maximum RCS

• Range span

• Velocity median

38

3 METHOD 3.5 YOLO

3.5 YOLO

Since YOLOv8 was already implemented and used for the annotation, it was natural to
use it again as a model for this project. As mentioned earlier in Section 2.7.1, YOLOv8
has five variations of different sizes, of which the smallest one called YOLOv8n (nano) was
used. The architecture of this model is shown in Figure 6.

Apart from different sizes, YOLOv8 comes ready with several other configuration options
and some relevant parameters are presented in Table 4. As mentioned in Section 3.3,
YOLOv8 has a range of built-in data augmentation methods (full list available at [40]),
which were left as default.

Table 4: YOLO training parameters
Parameter Value

Optimizer Adam
Learning rate 0.01
Weight decay 0.0005

Loss function(s) CIoU, distributed focal loss, binary cross entropy
Epochs 100

3.6 U-Net

The original version of U-Net described in Section 2.7.2 was not directly implemented for
this study. The model used in this study was built from the ground up, but was heavily
inspired by U-Net. The general structure, with convolutions and skip connections followed
by transposed convolutions is the same.

It is a smaller version, with fewer parameters and less feature depth, and has been trained
directly on the study’s radar data set. This study’s version replaced the cropping layers
with resizing layers, since they were more effective. Batch normalization layers has also
been added to the model. The final convolutional layer has a softmax activation function
and Glorot weight initialization, and all previous convolutional layers have ReLU activation
functions and He weight initialization. Finally, this version of U-Net is a multi-class
classifier, supporting a total of four classes.

Figure 20 shows the architecture of the adapted U-Net model. The full architecture is also
outlined in appendix A.1.

39

3 METHOD 3.6 U-Net

In
p
u
t

3

n× n

B
at
ch

n
or
m
al
iz
at
io
n

3

C
on

vo
lu
ti
on

8

B
at
ch

n
or
m
al
iz
at
io
n

8

C
on

vo
lu
ti
on

8

M
ax

p
o
ol
in
g

8

C
on

vo
lu
ti
on

16

B
at
ch

n
o
rm

al
iz
at
io
n

16

C
on

vo
lu
ti
on

16

M
ax

p
o
ol
in
g

16

C
on

vo
lu
ti
on

32
B
a
tc
h
n
o
rm

al
iz
at
io
n

32

C
on

vo
lu
ti
on

32

M
ax

p
o
ol
in
g

32

C
o
n
v
.
a
n
d
R
eL

U

64

B
at
ch

n
or
m
al
iz
at
io
n

64

C
o
n
v
.
a
n
d
R
eL

U

64

M
ax

p
o
ol
in
g

64

C
on

v
.

64

B
.
n
or
m
.

64

C
on

v
.

64

B
.
n
or
m
.

64

R
es
iz
e

T
.c
on

v
.

64

C
on

ca
te
n
at
e

128

C
on

v
.

64

B
at
ch

n
or
m
.

64

C
on

v
.

64

B
at
ch

n
or
m
.

64

R
es
iz
e

T
ra
n
sp
.
co
n
v
.

32

C
on

ca
te
n
at
e

64

C
on

vo
lu
ti
o
n

32

B
at
ch

n
or
m
a
li
za
ti
on

32

C
on

vo
lu
ti
on

32

B
at
ch

n
or
m
a
li
za
ti
on

32

R
es
iz
e

T
ra
n
sp
os
e
co
n
v
.

16

C
on

ca
te
n
at
e

32

C
on

vo
lu
ti
o
n

16

B
at
ch

n
or
m
al
iz
at
io
n

16

C
on

vo
lu
ti
on

16

B
at
ch

n
or
m
al
iz
at
io
n

16

R
es
iz
e

T
ra
n
sp
os
e
co
n
vo
lu
ti
o
n

8

C
on

ca
te
n
at
e

16

C
on

vo
lu
ti
o
n

8

B
at
ch

n
or
m
al
iz
a
ti
o
n

8

C
on

vo
lu
ti
o
n

8

B
at
ch

n
o
rm

al
iz
at
io
n

8

C
on

vo
lu
ti
on

4

O
u
tp
u
t

4

m×m

Elements Layer types

Layer type
Feature detph

Width×Height

Forward pass

Skip connection

Input

Convolution

Batch normalization

Max pooling

Resize

Transpose convolution

Concatenate

Output

Figure 20: Illustration of the adapted U-Net Architecture. Forward passes are of course
performed between all layers, but only illustrated between blocks here. Note that layer
height is meant to illustrate layer dimensionality, but is approximate, and in practice
changes slightly between blocks as well. Layers of the same color are of the same type,
but the full names do not fit for all layers.

Table 5 below shows the training parameters used when training U-Net.

Table 5: U-Net training parameters.

Parameter Value

Optimizer Adam
Learning rate 0.001
Weight decay 0.0003
Loss function Categorical cross entropy

Epochs 100

40

4 RESULTS

4 Results

4.1 AdaBoost

Below follows the performance of the AdaBoost classifier. Unless otherwise stated, the
results are generated based on the testing data. Figures 21 and 22 shows AdaBoost
confusion matrices on training and testing data, respectively.

Figure 21: AdaBoost confusion matrix on training data.

AdaBoost scored a mAP of 0.708. Table 6 shows the other precision, recall and F1 results.

Table 6: AdaBoost precision, recall and F1 score on the test data set. Meanobject here
refers to the mean excluding background.

Class Precision Recall F1

Background 1.000 1.000 1.000
Person 0.814 0.752 0.782
Bicycle 0.706 0.800 0.750
Car 0.839 0.774 0.810

Mean 0.840 0.832 0.834
Meanobject 0.786 0.775 0.781

41

4 RESULTS 4.2 YOLO

Figure 22: AdaBoost confusion matrix on testing data.

4.2 YOLO

This section will present the results training YOLOv8n on the range-Doppler data. As
with the previous section, results are from test data if nothing else is indicated. Figure 23
displays YOLO’s logarithmic losses during training.

Figure 23: Logarithms of YOLO training and validation losses during training.

42

4 RESULTS 4.2 YOLO

Figures 24 and 25 shows YOLO confusion matrices on training and testing data, re-
spectively. Note that YOLO calculates these results based on a confidence threshold for
detections of 0.25 and an IoU threshold of 0.45. The rows and columns for background
should be considered with care, as YOLO does not predict background as a class. Instead,
these indicate if an object was predicted were one did not exist, or if an existing object
went undetected. This means that the normalization can be a bit misleading at first glance
as well, especially on the row corresponding to true background.

Figure 24: Normalized YOLO confusion matrix training data.

YOLO scored a mAP50 of 0.61 and a mAP50-95 of 0.271. Table 7 displays the precision,
recall and F1 results of YOLO.

Table 7: YOLO precision, recall and F1 score.
Class Precision Recall F1

Person 0.596 0.553 0.574
Bicycle 0.546 0.87 0.671
Car 0.719 0.537 0.615

Mean 0.62 0.653 0.636

43

4 RESULTS 4.3 U-Net

Figure 25: Normalized YOLO confusion matrix on testing data.

4.3 U-Net

Finally, this section will present the results of the adapted U-net. Again, the results are
generated from test data, unless generation from training data is explicitly stated. Figure
26 below shows the logarithmic training and validation losses for U-Net during training.
The final model represents the training when validation loss is at its lowest.

Figure 26: Logarithms of U-Net training and validation losses during training.

44

4 RESULTS 4.3 U-Net

Figure 27 illustrates U-Net’s confusion matrix from the training data, and Figure 28 shows
U-Net’s confusion matrix from the test data set.

Figure 27: Normalized U-Net confusion matrix on training data.

U-Net scored a mAP of 0.860. Table 8 shows the U-Net precision, recall and F1 results.

Table 8: U-Net precision, recall and F1 score on the test data set. Meanobject here refers
to the mean excluding background.

Class Precision Recall F1

Background 1.000 1.000 1.000
Person 0.918 0.815 0.863
Bicycle 0.650 0.765 0.703
Car 0.865 0.741 0.798

Mean 0.858 0.830 0.841
Meanobject 0.811 0.773 0.788

45

4 RESULTS 4.3 U-Net

Figure 28: Normalized U-Net confusion matrix on test data.

46

5 DISCUSSION

5 Discussion

5.1 Model selection and performance

The model selection performed for this thesis was partially based on wanting to test dif-
ferent types of models, starting of with a simple classifier, AdaBoost. Firstly, by selecting
an ensemble learning method, feature importance could be investigated early on. By an-
alyzing these features, the process of finding appropriate input data representations for
YOLOv8n and U-Net could be narrowed down. Keep in mind that this process was also
inherently limited in the first place, since the purpose was to utilize preprocessed data
present early in the DSP chain. Another benefit of using the AdaBoost classifier is its
comparatively simple integration, and the fact that it performed well can motivate the
use of relatively simple solutions to the problem. AdaBoost interestingly performed sig-
nificantly better on the test data than on the training data, which is not very typical for
a machine learning model. Specifically, the model mistakes bicycles for people and cars in
the training data, but more successfully distinguishes the class in the test data.

It is possible that this is caused by class imbalance, since the inconsistency in performance
regards primarily classifying bicycles. While it is true that bicycle is the least pixel-wise
occurring class, the difference to the other classes, person in particular, does not seem
significant enough to explain this result independently. Another possible explanation of
this inconsistency concerns the noise. If the training data is noisier than the test data, but
AdaBoost does not fit to the extra noise, it could cause this difference in performance. In
that case the deficiency would be caused by the dataset, rather than by some flaw in the
model.

A potential downside of using AdaBoost in a practical and embedded setting is the fact
that it needs to process the data (clustering, calculating features, etc.) before inferring on
it. To this end, a more unified approach was investigated.

Since the data is spatial and the tasks align well with computer vision tasks in cameras,
CNNs were a natural choice. Furthermore, since YOLOv8n was already implemented as
part of the annotation framework, it was an easy option to test as a next model. YOLOv8n
was used out-of-the-box, not pre-trained but not modified either. This choice was made as
a trade-off between YOLOv8n’s performance and allowing greater focus on a third model.
YOLOv8n’s results were not as good as hoped and seems to indicate that the data was
learned, but that it overfitted to the data set. This does not imply that models based
on the YOLO architecture are unsuitable for such purposes, but rather that they would
require major adaptations and changes, or a significantly larger training data set. Still,
testing YOLOv8n yielded two important conclusions. The first is that a CNN-based and
single-stage approach is feasible, and secondly that a smaller model is likely better.

This leads to the final model, U-Net, which performs semantic segmentation. This model
was implemented from the ground up, meaning it is a lot more controllable and flexible
than the previous models. It should however be stressed that this model is very much an
adaptation of the original U-Net architecture from [30] to this thesis’s specific goals, not
a truly novel approach. U-Net was chosen as a basis because of its track record, relative
simplicity and flexibility. This approach also allowed the lessons learned from AdaBoost
and YOLOv8n to be fully utilized.

47

5 DISCUSSION 5.2 Limitations

Even though the performance on the test data is promising, the highly variable validation
loss, illustrated in Figure 26, combined with the high performance on the training data,
illustrated in Figure 27, indicates that the model is overfitted. During development smaller
architectures, e.g., 80,000 parameters and fewer, and stricter regularization were tested
such as higher weight decay or adding dropout layers. In addition, various loss functions
were tested as well. While some of these measures seemed to reduce the overfitting, they
simultaneously reduced the performance of the model, and no good balance was found.
Since these regularization efforts were not of primary importance to this thesis, these
results were not presented, and only the best performing U-net is included in the results.
While AdaBoost performs similarly or better in certain respects, U-Net is the model that
scored the best in terms of mAP, and will therefore form the basis of comparison with a
small selection of models from the previous research.

To anchor our results, and U-Net’s mAP of 0.860 in particular, some results found in the
previous research will be presented here. Note that these models were all discussed in Sec-
tion 1.3.3. RAMP-CNN [5] reported an average precision of 0.792 for moving objects, and
0.812 overall. Note that this model used the full RAD cuboid and a temporal dimension,
and the model was significantly larger, with over 100 million parameters. RAMP-CNN
also had the same classes as this thesis, excluding background, since it is not a segmenta-
tion model. RODnet [42] which has a more similar architecture to our version of U-Net,
but works on range-azimuth data, reported an average precision of 0.837. Similarly to
RAMP-CNN, RODnet has the same classes as this study, excluding background since it
performs object detection [42]. Finally, the SSD from [21] reported a mAP of between
0.862 and 0.88, and used either range-azimuth data or the full RAD data. The classes
used are not explicitly given, but the study seems to be focused on cars, with some human
detection. Without going into a very close comparison in the models, we think it is fair to
conclude that our version of U-Net performs at a respectable level of precision considering
the data used, the model size and the classes used.

5.2 Limitations

5.2.1 Data set

One possible limitation placed on our results, which is a common limitation within the
field of deep learning, is related to the data set. There are a number of factors that
influence how well a data set supports the training of a model, and hence its trained
variants’ generalization abilities. Firstly and perhaps most obviously is the size of the
data set. As mentioned earlier in Section 3.1, the data sets in this study comprised a
total of scarcely 6000 frames of data. While the amount of data was deemed sufficient
to establish a proof-of-concept, it is by no means an exhaustive data set for covering the
movements and ranges of people, bicycles and cars. In comparisons to much, but not all,
of the related previous research, this data set is on the smaller side. CRUW, the data
set created as part of the research for RODnet, contans 396,000 frames. The data set in
[21] contained 106,000 of training data and 5200 frames of testing data. However, not
all studies rely on such extensive data sets. The data set used to train RAMP-CNN [5]
(called UWCR and in essence a predecessor to CRUW) contained two subsets of data for
different scenarios consisting of 3600 and 7200 frames, respectively. To conclude, while the
data used in this study seems to be sufficient to train the models to a point, the amount of

48

5 DISCUSSION 5.2 Limitations

training data is definitely a possible limitation to better results and less overfitted models.

Another potential factor making the data set a limiting factor is the variation in the
data. All the data was recorded with the same hardware, using only one car, two different
bicycles, and the same handful of people. While separate test recordings were used, that
recorded unique scenes, these were in the same general locations and recorded the same
targets as the training data. This could not be easily addressed within the scope of the
project, and creates some risk of too high correlation within and between the data sets.
It would also have been beneficial to use completely separate recordings for the validation
data.

There are aspects of the annotation framework that limits this projects ability to generate
an effective data set, which by extension becomes limitations for the full project. When
the data was being recorded, all classes where dedicated the same number of recordings
(sometimes combined) and recordings were of similar lengths. However, as could be seen
in Figure 12, some class imbalances arose. It is likely that some of this imbalance is
random, but there are possible systematic factors that might have contributed to this as
well. A majority of the recorded data was removed as part of the annotation process (as
a rough estimate, somewhere in the neighborhood of 90%), typically because of a failure
in the annotation process. It is possible that the different classes are inherently easier or
more difficult for the annotation framework to handle, contributing to the observed class
imbalance. Further, a potential difference in how difficult an object is to annotate could
be caused by YOLO’s performance with different classes, or how easy they are to detect
and cluster as radar targets. As mentioned in Section 3.2, it was quite easily observed
that YOLO performed worse at greater ranges, while radars generally can detect object at
significantly larger ranges than this. This implies that while radar data can be captured
at longer ranges, the models might perform significantly worse in these cases. The camera
unit itself as well as image compression and format can also be relevant factors here. It
is possible that a camera with higher resolution could have aided YOLO detections at
greater ranges, and a binocular camera could have aided in depth perception, which in
turn would have aided the mapping between camera and radar detections. The fact that
a lot of data is lost during the annotation process is inherently limiting, since a larger
data set would be beneficial. However, it is also possible that it skews the final data
set, since there is a possibility that ’harder’ frames are being filtered out to a greater
extent. This speculation is based on the assumption that objects that are close in the
range-Doppler image are harder to detect and classify for both the models and for the
annotation framework. However, this is hard to substantiate without a more thorough
investigation.

While the use of a flood filling algorithm presumably helped the annotation over all, it
is possible that it contributes to some erroneous annotations when targets are close to
each other in the range-Doppler map. However, even for manual annotators these cases
can contribute with ambiguous class assignment to clusters. While many of instances of
overlapping objects were likely filtered out, it is not an unrealistic phenomenon, and such
cases were preserved as much as possible.

In summary, while the annotation framework seems to have produced quite good and
usable data, it is not particularly efficient, and a lot of potentially viable data was deleted.
An improved and tuned annotation framework would definitely have aided the results. It
is worth mentioning that this was in part a deliberate choice. Better labelling was deemed

49

5 DISCUSSION 5.3 Future work

a good enough trade-off for losing a lot of data, because this could be counteracted by
simply spending more time recording. However, this placed a major limitation on the
amount of annotated data that could be produced within the scope of this project.

A final factor of interest to the limitations in the data sets is the augmentations. Fol-
lowing the discussion of class imbalance earlier, augmentation could have been used more
selectively to decrease the imbalance in the data set. However, if augmentation was used
in inverse proportion to a class’s prevalence in the data set, less augmentation would have
been performed in total. Instead, the total amount of additional frames generated was pri-
oritized. In addition, for the two of the three models that perform semantic segmentation,
which includes background, significant class imbalance was unavoidable.

Further, there exists a plethora of image augmentation techniques in the broader field of
computer vision. However, many of these techniques, for example rotating an image, does
not produce realistic variations when applied to the range-Doppler domain. The built-in,
standard augmentation techniques used by YOLO contains such techniques, that should
seemingly create range-Doppler images that are impossible to observe in reality. However,
when YOLO was trained using only the augmentation developed for this study (flipping
and mixing), it performed significantly worse. Note that these results were not of interest in
any other respect, and were therefore not presented in Section 4. The question then arises,
if YOLO performs augmentation that for many of the techniques produces variations that
have no similarities with the real training data, why do they increase performance? One
possible answer is that it is a large model, that inherently needs a much larger data set than
provided in this study. It is also possible that such augmentations still aids in teaching the
model the micro-Doppler signatures of the different classes. The shape of the cluster in the
radar data remains the same, even if it is presented in an orientation that could never be
observed in reality, which possibly helps the training more than it hurts it. In extension,
it is possible that further augmentation, even if it is deemed to create unrealistic data,
could aid in training the other models as well.

5.3 Future work

Perhaps the most obvious avenue for further research is simply increasing the scope. The
selection of models or the types of models in this thesis is by no means exhaustive, and
neither is the selection of classes.

A bigger data set would also be beneficial. As suggested by the comparison in Section
5.2.1, the data set developed for this project is on the smaller side. The annotation
framework could also be furthered developed to be more efficient. In particular, there is a
lot of potential for reducing the amount of data that is discarded in the process.

A final avenue of possible development is the radar data used and its representation. It is
possible to extract more data from radar signals than used in the data sets generated for
this study. The most obvious example that comes to mind is the azimuth angle of targets,
which has been used for computer vision tasks in previous research (see Section 1.3.1).
However, if future work wants to keep the emphasis on preprocessed data, what data is
used and how much processing it requires must be considered carefully. If other data is
incorporated, it is possible that other representations than range-Doppler images makes
sense or perform better, which is another aspect that can be explored.

50

5 DISCUSSION 5.3 Future work

5.3.1 Possibilities for embedded use-cases

If object detection or semantic segmentation is performed to optimize radar signal pro-
cessing, it has to not only work with preprocessed data, but be small and efficient enough
to run on an embedded system. This discussion will be grounded in the size of models
in terms of number of parameters. While this is not the only aspect of interest when
considering how light-weight a model is or can be, it serves as a good starting point for
future research and discussion.

The first point of interest is that a massive model is likely not needed to get adequate per-
formance. The version of YOLO used has about three million parameters, and performed
worse than the adapted U-Net model, which has about 300,000 parameters. Keep in mind
that the fact that YOLO seems to overfit more is likely aided by the fact that the data
set is quite small. Still, this is an indication that a smaller model is not only feasible, but
preferable, which is favorable for possible embedded implementations.

To give some perspective on these sizes, some quick examples of models intended for
embedded use will be presented here. An adapted YOLO model for detecting trees was
published in 2022 which contains 1.78 million parameters [19]. While this is a significant
improvement to official YOLOmodels in terms of size, it is still a large model in comparison
to the U-Net model suggested in this thesis. Tiny SSD, a SSD (single shot detector)
performing object detection through the placing of bounding boxes, intended for embedded
systems, contained 1.13 million parameters [43]. Finally, as an example for embedded
semantic segmentation, another SSD called FASSD-Net contains (in its smallest version)
1.9 million parameters [31].

In terms of number of parameters, the adapted U-Net model proposed in this thesis seems
adequately small to run on embedded systems, and further testing and research into these
possibilities looks promising.

51

6 CONCLUSION

6 Conclusion

As stated in Section 1.2, the purpose of this thesis is to investigate the potential of instan-
taneous object detection and semantic segmentation on preprocessed FMCW radar data.
To achieve this, two secondary goals arose: Creating a custom annotation framework and
data sets, as well as selecting and testing models using these data sets.

A custom annotation framework was developed, based on the projection of clustered radar
detections onto camera images annotated by YOLOv8n, where they can be mapped to
detected objects. The annotation framework generates high quality labels, and requires
only minor manual filtering. However, a lot of recorded data is lost in the process.

Three models were selected and tested: AdaBoost, YOLOv8n, and an adapted U-Net. Ad-
aBoost, being a quite simple classifier, required the development of an extended pipeline
to be used in the same manner as the other models. The result was a semantic classifier,
combining AdaBoost’s cluster-wise classification with DBSCAN clustering. The develop-
ment of AdaBoost also allowed for feature extraction, and the conclusion that the data
used is in fact pertinent to the classification of FMCW data. The expanded AdaBoost
model performs well, with a mean F1 score of 0.834 and a mAP of 0.708.

Since YOLOv8n was implemented as part of the annotation framework, it was natural to
retrain and test it on FMCW data. While YOLOv8n did work in this application, it is
not optimal for this particular data set. Even though the smallest variant of YOLOv8 was
used, it is a comparatively large model, and seems to have overfitted to the data set. It
is likely that the general YOLO architecture could be much better suited to the task, if
it was further scaled down and/or was trained using a much larger data set. YOLOv8n
scored a mean F1 score of 0.636, a mAP50 of 0.61, and a mAP50-95 of 0.271.

Finally, a model heavily inspired by U-Net was developed. It was also implemented from
the ground up, giving us much more control and flexibility. For one, this allowed for
broader experimentation with different parameters such as loss functions and optimizers.
Perhaps more importantly, it gives direct control over the size of the model, which helped
reduce the risk of overfitting. U-Net scored a mean F1 score of 0.841 and a mAP of
0.860. While both CNNs seems to have overfitted, the results quite clearly indicate that
U-Net is the better performing CNN in this thesis. U-Net has a slightly better precision
in general than AdaBoost, but performs similarly over all metrics. The higher precision
and comparable recall result in a slightly higher F1 score than AdaBoost, and U-Net is
the best performing model in terms of mAP.

To conclude on the primary purpose of this thesis, instantaneous object detection and se-
mantic segmentation on preprocessed FMCW data is not only feasible, but quite promis-
ing. We have demonstrated that there are sufficiently accurate models, that can certainly
be improved further by for example reducing overfitting. We have also demonstrated some
possibilities of automatic data annotation, which can be used to generate larger data sets.
However, the ultimate motivation of this thesis was the possibility of using models such
as these to optimize the DSP of the radar. If the models used are sufficiently efficient and
light-weight to run embedded in a radar unit and directly influence the processing is still
uncertain.

52

A APPENDIX

A Appendix

A.1 Full adapted U-Net architecture

Layer name Feature depth No. parameters Input(s)

input 2 3 0
conv2d 8 224 input 2
activation 8 0 conv2d
batch normalization 2 8 32 activation
conv2d 1 8 584 batch normalization 2
activation 1 8 0 conv2d 1
max pooling2d 8 0 activation 1
conv2d 2 16 1168 max pooling2d
activation 2 16 0 conv2d 2
batch normalization 3 16 64 activation 2
conv2d 3 16 2320 batch normalization 3
activation 3 16 0 conv2d 3
max pooling2d 1 16 0 activation 3
conv2d 4 32 4640 max pooling2d 1
activation 4 32 0 conv2d 4
batch normalization 4 32 128 activation 4
conv2d 5 32 9248 batch normalization 4
activation 5 32 0 conv2d 5
max pooling2d 2 32 0 activation 5
conv2d 6 64 18496 max pooling2d 2
activation 6 64 0 conv2d 6
batch normalization 5 64 256 activation 6
conv2d 7 64 36928 batch normalization 5
activation 7 64 0 conv2d 7
max pooling2d 3 64 0 activation 7
conv2d 8 64 36928 max pooling2d 3
activation 8 64 0 conv2d 8
batch normalization 6 64 256 activation 8
conv2d 9 64 36928 batch normalization 6
activation 9 64 0 conv2d 9
batch normalization 7 64 256 activation 9
conv2d transpose 64 16448 batch normalization 7
tf.image.resize 64 0 activation 7
concatenate 128 0 conv2d transpose,

tf.image.resize
conv2d 10 64 73792 concatenate
activation 10 64 0 conv2d 10
batch normalization 8 64 256 activation 10
conv2d 11 64 36928 batch normalization 8
activation 11 64 0 conv2d 11
batch normalization 9 64 256 activation 11
conv2d transpose 1 32 8224 batch normalization 9
tf.image.resize 1 32 0 activation 5

53

A APPENDIX A.1 Full adapted U-Net architecture

concatenate 1 64 0 conv2d transpose 1,
tf.image.resize 1

conv2d 12 32 18464 concatenate 1
activation 12 32 0 conv2d 12
batch normalization 10 32 128 activation 12
conv2d 13 32 9248 batch normalization 10
activation 13 32 0 conv2d 13
batch normalization 11 32 128 activation 13
conv2d transpose 2 16 2064 batch normalization 11
tf.image.resize 2 16 0 activation 3
concatenate 2 32 0 conv2d transpose 2,

tf.image.resize 2
conv2d 14 16 4624 concatenate 2
activation 14 16 0 conv2d 14
batch normalization 12 16 64 activation 14
conv2d 15 16 2320 batch normalization 12
activation 15 16 0 conv2d 15
batch normalization 13 16 64 activation 15
conv2d transpose 3 8 520 batch normalization 13
tf.image.resize 3 8 0 activation 1
concatenate 3 16 0 conv2d transpose 3,

tf.image.resize 3
conv2d 16 8 1160 concatenate 3
activation 16 8 0 conv2d 16
batch normalization 14 8 32 activation 16
conv2d 17 8 584 batch normalization 14
activation 17 8 0 conv2d 17
batch normalization 15 8 32 activation 17
conv2d 18 4 36 batch normalization 15

Total params: 323828 (1.24 MB)
Trainable params: 322852 (1.23 MB)
Non-trainable params: 976 (3.81 KB)

54

REFERENCES REFERENCES

References

[1] Fahad Jibrin Abdu et al. “Application of deep learning on millimeter-wave radar
signals: A review”. In: Sensors 21.6 (2021), p. 1951.

[2] Tingting Chen and Qingzhu Zeng. “Research on Bubble Detection Based on Im-
proved YOLOv8n”. In: IEEE Access (2024).

[3] E Roy Davies. Computer vision: principles, algorithms, applications, learning. Aca-
demic Press, 2017.

[4] Martin Ester et al. “A density-based algorithm for discovering clusters in large spatial
databases with noise”. In: kdd. Vol. 96. 34. 1996, pp. 226–231.

[5] Xiangyu Gao et al. “RAMP-CNN: A Novel Neural Network for Enhanced Automo-
tive Radar Object Recognition”. In: IEEE Sensors Journal 21.4 (2021), pp. 5119–
5132. doi: 10.1109/JSEN.2020.3036047.

[6] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and Tensor-
Flow. ” O’Reilly Media, Inc.”, 2022.

[7] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In: Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics. JMLR Workshop and Conference
Proceedings. 2010, pp. 249–256.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[9] Hong Han, Xiaoling Guo, and Hua Yu. “Variable selection using mean decrease
accuracy and mean decrease gini based on random forest”. In: 2016 7th ieee interna-
tional conference on software engineering and service science (icsess). IEEE. 2016,
pp. 219–224.

[10] Trevor Hastie et al. “Multi-class adaboost”. In: Statistics and its Interface 2.3 (2009),
pp. 349–360.

[11] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 1026–1034.

[12] Cesar Iovescu and Sandeep Rao. “The fundamentals of millimeter wave sensors”. In:
Texas Instruments (2017), pp. 1–8.

[13] Sung-wook Kang, Min-ho Jang, and Seongwook Lee. “Autoencoder-Based Target
Detection in Automotive MIMO FMCW Radar System”. In: Sensors 22 (July 2022),
p. 5552. doi: 10.3390/s22155552.

[14] Nitish Shirish Keskar and Richard Socher. “Improving generalization performance
by switching from adam to sgd”. In: arXiv preprint arXiv:1712.07628 (2017).

[15] Kamran Khan et al. “DBSCAN: Past, present and future”. In: The fifth interna-
tional conference on the applications of digital information and web technologies
(ICADIWT 2014). IEEE. 2014, pp. 232–238.

[16] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[17] Carl Kingsford and Steven L Salzberg. “What are decision trees?” In: Nature biotech-
nology 26.9 (2008), pp. 1011–1013.

55

https://doi.org/10.1109/JSEN.2020.3036047
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.3390/s22155552

REFERENCES REFERENCES

[18] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: Proceedings of the
IEEE international conference on computer vision. 2017, pp. 2980–2988.

[19] Feng Lü et al. “Tree Detection Algorithm Based on Embedded YOLO Lightweight
Network”. In: Journal of Shanghai Jiaotong University (Science) (2022), pp. 1–10.

[20] T. Soni Madhulatha. An Overview on Clustering Methods. 2012. arXiv: 1205.1117
[cs.DS].

[21] Bence Major et al. “Vehicle detection with automotive radar using deep learning
on range-azimuth-doppler tensors”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops. 2019, pp. 0–0.

[22] Michael Meyer and Georg Kuschk. “Automotive radar dataset for deep learning
based 3d object detection”. In: 2019 16th european radar conference (EuRAD).
IEEE. 2019, pp. 129–132.

[23] Vladimir Milovanović. “On fundamental operating principles and range-doppler esti-
mation in monolithic frequency-modulated continuous-wave radar sensors”. In: Facta
Universitatis, Series: Electronics and Energetics 31.4 (2018), pp. 547–570.

[24] Arthur Ouaknine et al. “Carrada dataset: Camera and automotive radar with range-
angle-doppler annotations”. In: 2020 25th International Conference on Pattern Recog-
nition (ICPR). IEEE. 2021, pp. 5068–5075.

[25] Kanil Patel et al. “Deep learning-based object classification on automotive radar
spectra”. In: 2019 IEEE Radar Conference (RadarConf). IEEE. 2019, pp. 1–6.

[26] Vincenzo Pesce, Andrea Colagrossi, and Stefano Silvestrini.Modern Spacecraft Guid-
ance, Navigation, and Control: From System Modeling to AI and Innovative Appli-
cations. Elsevier, 2022.

[27] Sandeep Rao. White paper: MIMO radar. 2017. url: https://www.ti.com/lit/
an/swra554a/swra554a.pdf.

[28] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.
2016. arXiv: 1506.02640 [cs.CV].

[29] Mark A Richards et al. Principles of modern radar. Citeseer, 2010.

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In:Medical image computing and computer-
assisted intervention–MICCAI 2015: 18th international conference, Munich, Ger-
many, October 5-9, 2015, proceedings, part III 18. Springer. 2015, pp. 234–241.

[31] Leonel Rosas-Arias et al. “FASSD-Net: Fast and accurate real-time semantic segmen-
tation for embedded systems”. In: IEEE Transactions on Intelligent Transportation
Systems 23.9 (2021), pp. 14349–14360.

[32] Erich Schubert et al. “DBSCAN revisited, revisited: why and how you should (still)
use DBSCAN”. In: ACM Transactions on Database Systems (TODS) 42.3 (2017),
pp. 1–21.

[33] Marcel Sheeny, Andrew Wallace, and Sen Wang. “300 GHz radar object recognition
based on deep neural networks and transfer learning”. In: IET Radar, Sonar &
Navigation 14.10 (2020), pp. 1483–1493.

[34] Chen Sun et al. “Revisiting unreasonable effectiveness of data in deep learning
era”. In: Proceedings of the IEEE international conference on computer vision. 2017,
pp. 843–852.

56

https://arxiv.org/abs/1205.1117
https://arxiv.org/abs/1205.1117
https://www.ti.com/lit/an/swra554a/swra554a.pdf
https://www.ti.com/lit/an/swra554a/swra554a.pdf
https://arxiv.org/abs/1506.02640

REFERENCES REFERENCES

[35] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[36] Richard Szeliski. Computer vision: algorithms and applications. Springer Nature,
2022.

[37] Juan Terven, Diana-Margarita Córdova-Esparza, and Julio-Alejandro Romero-González.
“A comprehensive review of yolo architectures in computer vision: From yolov1 to
yolov8 and yolo-nas”. In: Machine Learning and Knowledge Extraction 5.4 (2023),
pp. 1680–1716.

[38] Ultralytics. Detect - Ultralytics YOLOv8 Docs. url: https://docs.ultralytics.
com/tasks/detect/.

[39] Ultralytics. Home - Ultralytics YOLOv8 Docs. url: https://docs.ultralytics.
com/.

[40] Ultralytics. Model Training with Ultralytics YOLO- Augmentation Settings and Hy-
perparameters. url: https://docs.ultralytics.com/modes/train/#augmentation-
settings-and-hyperparameters.

[41] Ultralytics. Object Detection Datasets Overview. url: https://docs.ultralytics.
com/datasets/detect/.

[42] Yizhou Wang et al. “Rodnet: Radar object detection using cross-modal supervision”.
In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision. 2021, pp. 504–513.

[43] Alexander Womg et al. “Tiny SSD: A tiny single-shot detection deep convolutional
neural network for real-time embedded object detection”. In: 2018 15th Conference
on computer and robot vision (CRV). IEEE. 2018, pp. 95–101.

[44] Ao Zhang, Farzan Erlik Nowruzi, and Robert Laganiere. “Raddet: Range-azimuth-
doppler based radar object detection for dynamic road users”. In: 2021 18th Con-
ference on Robots and Vision (CRV). IEEE. 2021, pp. 95–102.

[45] Zhengxia Zou et al. “Object detection in 20 years: A survey”. In: Proceedings of the
IEEE (2023).

57

https://docs.ultralytics.com/tasks/detect/
https://docs.ultralytics.com/tasks/detect/
https://docs.ultralytics.com/
https://docs.ultralytics.com/
https://docs.ultralytics.com/modes/train/#augmentation-settings-and-hyperparameters
https://docs.ultralytics.com/modes/train/#augmentation-settings-and-hyperparameters
https://docs.ultralytics.com/datasets/detect/
https://docs.ultralytics.com/datasets/detect/

Master’s Theses in Mathematical Sciences 2024:E30
ISSN 1404-6342

LUTFMA-3538-2024

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	List of abbreviations
	Introduction
	Background
	Purpose
	Previous research
	Radar data as input to neural networks
	Annotation of radar data
	Computer vision models for radar data

	Theory
	Machine learning and deep learning
	The components of a neural network
	The multilayer perceptron and activation functions

	Training a deep neural network
	Cost functions and optimization
	Weight initialization and batch normalization
	Evaluation

	DBSCAN Clustering
	Ensamble learning
	AdaBoost
	AdaBoost classification and SAMME

	Convolutional neural networks
	Convolutional layers
	Padding and stride
	Pooling layers

	Regularization
	Holdout and early stopping
	Weight decay
	Data augmentation

	Computer vision
	YOLO
	U-Net
	Pinhole Camera Projection Model

	FMCW Radar
	Range estimation
	Azimuth estimation
	Velocity and Doppler estimation
	Radar cross section (RCS)

	Method
	Data set
	Data collection

	Data annotation
	Automatic annotation
	Filtering and reviewing

	Data augmentation
	Horizontal flipping
	Mixing

	AdaBoost (SAMME)
	YOLO
	U-Net

	Results
	AdaBoost
	YOLO
	U-Net

	Discussion
	Model selection and performance
	Limitations
	Data set

	Future work
	Possibilities for embedded use-cases

	Conclusion
	Appendix
	Full adapted U-Net architecture

