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Abstract

This thesis investigates the dynamic correlation between the S&P 500 and Bit-

coin returns from 2018 to 2024. To capture potential regime-specific dynamics,

a Markov Switching Model is employed to segment each return data into two

distinct states characterized by high or low volatility, using a LASSO regression

to find the appropriate explanatory variables for the returns.

Univariate GARCH(1,1) models are initially fitted to each regime’s return se-

ries. Using the parameters from the univariate models, the multivariate models

are estimated for each combination of high and low volatility regimes for both

S&P 500 and Bitcoin, for a total of four different regimes. A DCC-GARCH(1,1)

framework is used for the multivariate model. The univariate model parameters

are fixed in the multivariate model, only estimating the remaining parameters

a and b for the correlation update equation. The parameter estimates are com-

pared to a GARCH(1,1) and a DCC-GARCH(1,1) estimated on the complete

dataset.

This approach gives us four different parameter sets, each corresponding to a

specific volatility regime combination. The parameter sets are run on the com-

plete dataset, giving us four different correlation and volatility estimates for

the investigated period. Finally, to get a smoother transition between regimes,

fuzzy clustering is applied to the volatility estimates.

The resulting model gives a correlation estimate that is similar to a standard

DCC-GARCH(1,1) on the dataset but is more responsive like a rolling correla-

tion measure. We note that the correlation is at an elevated level during and

after the COVID-19 pandemic, but has dropped to pre-pandemic levels during

the end of 2023.

Keywords: Bitcoin, S&P500, Markov Regime Switching, LASSO regression,

DCC-GARCH, Volatility, Fuzzy Clustering
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1 Introduction

The introduction of this master thesis report starts by giving a background of

the subject. Thereafter, past studies that have been done on this subject are

presented followed by the purpose of this thesis work.

1.1 Background

On 3 January 2009, Satoshi Nakamoto created the first BTC network. One year

later, the first commercial transaction with BTC was made when two pizzas were

purchased for 10 000 BTC. Those bitcoins would be worth approximately 700

million US dollars as of today (5 March 2024). However, the journey of bitcoin

has definitely not been a journey without major setbacks and bear markets.

For a long time, many investors thought BTC was an extremely volatile instru-

ment with no correlation to the biggest stock market indexes. Today, there are

still many people who don’t understand what BTC really is and the history of

BTC. Also, it is still not fully clear whether or not BTC is correlated to large

stock market indices such as the S&P 500. Therefore, this section will give an

introduction to both BTC and the S&P 500, along with an explanation of the

historical correlation between the two.

In short, BTC is a decentralized digital currency and worldwide payment sys-

tem with a market capitalization of over 1 trillion US dollars (CoinMarketCap,

2024). The idea behind BTC was to create a currency that, unlike other tra-

ditional currencies, such as US dollars or Euros, is not controlled by central

authority. This would make it nearly impossible for governments and others to

manipulate or intervene. Decentralization implies no single entity controls the

currency. Bitcoin transactions are confirmed by computers in the network using

cryptography and stored in a public ledger called a blockchain. BTC wallets

are used for storing and sending or receiving bitcoins. The main advantage of

BTC according to its supporters is that it provides a more efficient and secure

payment compared to traditional payments. On the other hand, critics of BTC

mean that the currency can be used in illegal activities. BTC has also been

criticized for its high energy consumption (Wikipedia, 2024).

While BTC is a unique and non-traditional investment, the S&P 500 is the

opposite. The S&P 500 is one of the most common stock market indices and

consists of 500 of the largest public companies in the United States of America.

The total market capitalization of the S&P 500 is approximately 43 trillion US

dollars as of 2024. The 500 companies included in the stock index account for
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80% of the total market cap of all public companies in the US. Some of these

companies are Apple, NVIDIA, Microsoft, JP Morgan, Meta, etc. Because of

the fact that the S&P 500 includes approximately 80% of the total US market,

it is seen as one of the most well-diversified portfolios for an investor to place

their money in. Because of this, it is common for people to refer to the S&P

500 and other large indexes such as the MSCI World Index as ”investing in the

market”.

BTC and the S&P 500 represent two ends of the investment spectrum. BTC has

become known as an asset with high volatility and potentially explosive returns.

On the other hand, the S&P 500 is known for its relative stability and consis-

tent, albeit often more modest, returns. This difference in risk and reward has

traditionally kept these asset classes separate in investor portfolios. However,

in recent years it has been an interesting topic about whether or not Bitcoin’s

relationship with the traditional market has matured. Historically, BTC’s price

movements have been weakly related to traditional assets, such as those in the

S&P 500. This made it an attractive diversification tool, and investors could

use BTC as a hedge against downturns in their stocks or bonds. However, some

recent data suggests a possible shift in this dynamic, particularly after COVID-

19. If this stronger correlation is not only a short-term phenomenon, it would

have significant implications for portfolio diversification. Investors may need to

re-evaluate BTC’s role in their strategies if it loses its role as an uncorrelated

asset.

1.2 Objective

In this thesis, we will examine if the change in correlation during COVID-19

is a temporary phenomenon or if it is a long-term trend. This will be done by

utilizing data extending to the beginning of 2024. The objective of this thesis is

to derive a dynamic model to estimate the correlation between the crypto asset

BTC with the stock market index S&P 500.

This will be done by splitting the historical data series into distinct regimes

based on specific characteristics. This allows for the identification of periods

with similar correlation dynamics. Within each identified regime for both BTC

and the S&P 500, separate DCC-GARCH models will be estimated. GARCH

models excel at capturing volatility patterns, leading to more accurate param-

eter estimates when applied to data with similar characteristics within each

regime. To avoid abrupt transitions between regimes with distinct parame-

ter sets, we will employ fuzzy clustering techniques. This allows for smoother

2



transitions between regimes, reflecting the possibility of data points exhibiting

characteristics of more than one regime to a certain degree.

1.3 Previous Work

The relationship between BTC and traditional asset classes like the S&P 500

has attracted significant research interest in the past. This section aims to re-

view existing studies on the correlation between BTC and traditional assets.

In particular, the focus will be on what correlation patterns previous studies

have identified. The focus will also be on past studies that have used similar

approaches as the one in this thesis, where the correlation will be modeled by a

DCC-GARCH model.

A new study by the IMF (2022) highlights a growing concern as cryptocurren-

cies gain wider adoption and their correlation with traditional assets has risen.

This reduces the diversification benefits of cryptocurrencies and raises the risk

of contagion across financial markets, meaning it increases the chance of prob-

lems in one market spreading to others. The research finds that the correlation

coefficient between daily movements of BTC and the S &P 500 was negligible,

0.01, between 2017 and 2019. However, this value increased to 0.36 between

2020 and 2021, which indicates a much stronger positive correlation between

the assets. The authors in that study calculated the correlation coefficient be-

tween BTC and S &P 500 by calculating a 60-day rolling correlation.

In the research done by Nguyen (2021), they examine the relationship between

the stock market and BTC during COVID-19 and other uncertainty periods.

This is done by using quantile regression to estimate BTC returns on the S&P

500 market during different levels of uncertainty periods. The researchers model

the conditional distribution of BTC by applying a VAR(1)-GARCH(1,1) which

is supposed to be advantageous for observing the spillover effect from the stock

market to BTC. The study shows a significant influence of past stock market

returns on BTC returns, especially during times of market stress and after the

emergence of COVID. This would mean that BTC becomes more sensitive to

stock market movements during higher uncertainty periods. The researchers

also identified volatility spillover effects from the stock market to Bitcoin. This

was especially seen during the COVID-19 pandemic and other periods of high

uncertainty. All of this suggests that the stock market and BTC are more cor-

related during periods of high uncertainty.

In a more recent study, Terraza et al. (2024) uses another approach, applying a

3



multivariate VAR-DCC-EGARCH to investigate the dependency between BTC,

gold, and the S&P 500, NASDAQ, and Dow Jones indices. They further divide

the dataset into two distinct time periods, 2018-2020 and 2020-2022, where they

find a significant increase in the correlation between BTC and the S&P 500 in

the latter period. The paper also discusses that this behavior of BTC is similar

to that of more traditional investment assets.

In another research made by Cortese et al. (2023), they examine which are

the key features that drive the return dynamics of the largest cryptocurrencies.

However, their approach focused on fitting a more tractable model by segment-

ing the data into different states or regimes, each with a common underlying

structure. This was done by applying a sparse jump model, and it was found

that a model with three states was most suitable. These states were interpreted

as bear, neutral, and bull markets. First of all, it can be seen in the research

that the major cryptocurrency log returns follow a similar pattern as the log

returns of BTC. Therefore, it might be reasonable to only look at Bitcoin when

analyzing the relationship between cryptocurrencies and traditional stock mar-

ket indices.

The study identified several key drivers of cryptocurrency returns: first mo-

ments of returns, trend and reversal signals from technical analysis, market

activity, and public attention. This can be used by investors to identify upward

and downward market trends, and when a switch between these states occurs.

Furthermore, the research revealed significant differences in cryptocurrency be-

havior across three distinct states. Notably, volatility was roughly twice as high

during bear markets compared to other states. Additionally, correlations be-

tween cryptocurrencies were also found to be stronger in bear markets. These

observations highlight the limitations of a single-state model and support the

benefits of a regime-switching approach, where model parameters are estimated

for each unique market state.

1.4 Structure

The rest of this thesis is structured as follows. Section 2 gives an introduction

to the theory of uni- and multivariate GARCH models, parameter optimization,

technical analysis, regression Markov Switching Models, and fuzzy clustering.

The methodology is described in Section 3, while Section 4 presents the results

from our empirical analysis. Section 5 concludes the thesis’ results, and a further

discussion of the results is provided in Section 6.
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2 Theory

2.1 Stylized facts

Financial data tends to show some properties that differ from other types of

data in nature. These properties can have an impact from a statistical point of

view, regarding the choice of model and distributions. Cont (2001) summarizes

these facts, citing exchange rate returns, S&P 500 returns, and returns on stocks

of large companies, while Lindström et al. (2015) confirms the stylized facts on

returns of the OMXS30 index.

2.1.1 Heavy tails

Financial returns exhibit fatter tails than the normal distribution, meaning

that large price movements, both positive and negative, are more common than

predicted by a standard bell-curve model. This signifies that the normal distri-

bution underestimates the risk of extreme events in financial markets.

2.1.2 Volatility clustering

Unlike the constant volatility observed in linear Gaussian time series, financial

data have time-varying volatility. This means that the level of how much the

prices fluctuate is not constant, but changes over time. Financial markets can

experience periods of relative calm followed by periods of high volatility. This

time-varying nature of volatility is a key factor contributing to the heavy tails

observed in financial return distributions.

2.1.3 No autocorrelation in returns

Financial returns exhibit minimal linear autocorrelation. This aligns with the

efficient market hypothesis. If investors could predict future asset values, they

would exploit these to generate profits. This would drive prices towards their fair

value, removing opportunities for abnormal returns based on past information.

However, there is still some autocorrelation in the first lags, due to trading

friction etc.

2.1.4 Significant autocorrelation for squared returns

Even though returns show little to no autocorrelation, which is also supported

by the fact that volatility clustering is present, clear dependency is visible when

investigating the absolute returns. This persistent autocorrelation is usually

long, ranging up to at least 150 days. Recent studies on the matter have been
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conducted, suggesting that this phenomenon is due to a lack of stationarity,

rather than actual dependence.

2.2 Time Series Modeling

Financial data is generated over time, and in many cases, stock prices, exchange

rates, and other economic indicators exhibit trends, seasonality, and varying

levels of volatility. For several financial tasks, such as portfolio optimization

and risk management, it is very important to understand the dynamics of these

time series. This is where time series analysis comes into play and can be very

useful. Time series analysis includes several different economic methods and

models used to analyze a time series of data. Some examples of these models

are the AR process, the MA process, and a combination of these two called the

ARMA process. In this section, the theory behind all of these models will be

presented and explained.

2.2.1 Moving Average processes

A Moving Average process yt is defined as per below (Jacobsson, 2021):

yt = et + c1et−1 + ...+ cqet−q = C(z)et (1)

where C(z) is a monic polynomial of order q:

C(z) = 1 + c1z
−1 + ...+ cqz

−q (2)

where cq ̸= 0 and et is a white noise process with zero mean and variance

σ2
e . The resulting MA(q)-process yt is always stable, and has the following

properties:

µy = E[y] = 0 (3)

σ2
y = V ar(y) = σ2

e(1 + c21 + ...+ c2q) (4)

2.2.2 Autoregressive processes

Another basic linear process is the AutoRegressive process, and as the name

suggests the process is a regression in itself. In an AR process, the current

value of the time series is influenced by its own past values. This means that

predictions of future values are made by looking at past behavior. We define an

autoregressive process of order p as the following (Jacobsson, 2021):

A(z)yt = yt + a1yt−1 + ...+ apyt−p = et (5)
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where A(z) is a monic polynomial of order p:

A(z) = 1 + a1z
−1 + ...+ apz

−p (6)

where ap ̸= 0 and et once again is a zero-mean white noise process with variance

σ2
e and is uncorrelated with yt−l for l > 0. The AR process has the following

properties:

µy = E[y] = 0 (7)

σ2
y = V ar(y) =

σ2
e

1− a1ρ1 − a2ρ2 − ...− aqρp
(8)

where ρ is the autocorrelation.

2.2.3 ARMA processes

The AR process and the MA process can be combined to form an ARMA pro-

cess. This process takes both the past errors and the past values of itself into

account. The ARMA process is defined as below (Jacobsson, 2021):

A(z)yt = C(z)et (9)

where C(z) and A(z) are defined as per Equation 2 and 6. Time series data

can be modeled using AR, MA, or ARMA processes to capture the underlying

structure and identify the residuals (errors) of the model. These residuals,

which represent the difference between the actual data and the fitted model, are

then used to estimate GARCH models. GARCH models specifically focus on

modeling the conditional variance, which is the volatility of the residuals over

time.

2.3 Technical Analysis

Multiple techniques in the realms of technical analysis have been shown to be

drivers of cryptocurrency returns (Cortese et al., 2023). We use this fact to

estimate the Markov Switching Model in Section 2.5.

2.3.1 Relative Strength Index

The RSI is a technical analysis indicator used to measure the momentum of price

changes in an asset. RSI is a momentum oscillator developed by Welles Wilder

Jr. (1978), designed to identify potential overbought or oversold conditions in

the market. RSI is a measure between 0 and 100 and is often plotted under the
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graph of the asset’s price, unlike many other technical analysis techniques such

as EMA. Calculating the RSI consists of two steps, where the first step uses the

following formula:

RSIStepOne = 100−

(
100

1 + Average Gain
Average Loss

)
(10)

The average gain or loss used in this calculation is the average percentage gain or

loss during a specific look-back period, for example, 7 or 14 days. The formula

uses a positive value for the average loss. The second part of the RSI calculation

can begin when there are n periods of data available for an RSI-n. Here, n is

the look-back period mentioned above. The formula for the second part of the

RSI calculation is presented below:

RSIStepTwo = 100−

 100

1 + Previous Average Gain·(n−1)+Current Gain
Previous Average Loss·(n−1)+Current Loss

 (11)

Traditionally, an RSI reading of 70 or above indicates an overbought situation.

This means the asset is trading at a higher price than its intrinsic value, and

should therefore be sold. A reading of 30 or below indicates an oversold con-

dition. This means that the asset is trading at a lower price than its intrinsic

value and should therefore be sold (Investopedia, 2024).

2.3.2 Exponential Moving Average

An exponential moving average, often referred to as EMA, is a type of moving

average that puts more weight on the most recent values. EMA can be calculated

for different lengths, but some of the most common ones are 5, 12, 50, and 200

days. The formula for calculating EMA for n number of days can be found

below:

EMAt =

(
Pt ·

SF

1 + n

)
+ EMAt−1 ·

(
1− SF

1 + n

)
(12)

where Pt is the closing price at time t. SF is a smoothing factor, often chosen

as 2 (Investopedia, 2024).

Calculating EMA requires calculating the Simple Moving Average (SMA) first.
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This is because you need to use the SMA as the first observation of EMAt−1

from the formula above. For example, for an EMA7 one needs to calculate the

SMA for the first 7 observations. The value of this SMA is then used when

calculating the EMA for the 8th day. SMA is easily obtained by using the

following formula, once again for a length of n number of days.

SMAt =

∑n
t=1 Pt

n
(13)

EMA is used by technical traders as a tool to help them identify when an asset

should be bought or sold. However, it is important to know that there are

limitations to the EMA. One of these limitations is that recent data can be

overweighted compared to older data. This could create a bias that leads to

false alarms. Another important limitation of the EMA is the so-called efficient

market hypothesis, which means all available information already is reflected in

the prices. If the EMH holds, it should not be possible to predict future asset

prices by using historical data. (Investopedia, 2024)

2.3.3 Exponentially Weighted Linear Correlation Measures

One way of calculating the exponentially weighted linear correlations is to use

an Exponentially Weighted Moving Average (EWMA) model (Hull, 2018). The

model shows similarities with the formula for EMA and is formulated as:

σ2
t = λσ2

t−1 + (1− λ)r2t−1 (14)

where λ is a constant between zero and one, and rt is the return on day t.

For simplicity, we identify λ in the same way as for the Exponential Moving

Average, meaning that SF
1+n = 1 − λ. The correlation parameter is calculated

with the standard formula

ρt,xy =
covt,xy
σt,xσt,y

(15)

where σt,x is the standard deviation of asset x at time t that is obtained from

Equation 14. In the bivariate case, the covariance between asset x and y is

calculated with the following formula:

covt,xy = λcovt−1,xy + (1− λ)rt−1,xrt−1,y (16)

9



2.4 Linear Regression

One common method for optimizing the parameters in a linear regression is

to use OLS. The principle is to minimize the sum of squares of the residual

between the observed dependent variable and the output of a linear function of

the independent variable. We suppose the linear model:

y = Xβ + ε (17)

where y and ε are n× 1 vectors of the response variables and error terms, and

X is an n × p matrix of regressors. If xij denotes the i, j:th element of the

matrix X and yi, βj denote the i:th and j:th element of y and β respectively,

the OLS estimate is given by:

β̂OLS = min
β

{
N∑
i=1

(
yi −

p∑
j=1

xijβj

)2
}

(18)

It is also possible to formulate the optimal solution in matrix form, solving the

so-called normal equations (Goldberger, 1964, p. 158), giving the solution:

β̂OLS = (XTX)−1XTy (19)

2.4.1 LASSO Regression

LASSO is a regression analysis technique that aims to improve the regular OLS

estimate for linear models by adding a penalty to the objective function. The

penalty is added to the absolute values of the coefficients in the regression,

effectively performing a variable selection and regularization by shrinking the

coefficients. The term LASSO was first coined by Tibshirani (1996) and has

been extended to account for more general regressions.

When using the LASSO method, we assume that the regression model like the

one in Equation 17 contains sparse coefficients, that is some of the covariates are

not relevant, βj = 0. By removing these, and only keeping relevant covariates,

we can improve the model. To achieve this, Tibshirani adds the ℓ1 penalty to

the OLS objective function, resulting in the following problem:

β̂LASSO = min
β0,β

{
N∑
i=1

(yi − β0 − xT
i β)

2

}
subject to

p∑
j=1

|βj | ≤ t (20)
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Here, x is the covariate vector, β0 is the constant coefficient, β is the coefficient

vector and t is a tuning parameter. Another way to formulate the problem is

to use the covariate matrix X, rewriting the problem in Lagrangian form:

β̂LASSO = min
β∈Rp

{
1

N
||y −Xβ||22 + λ||β||1

}
(21)

where the relationship between t and λ is data dependent. For greater values

of λ, the coefficients have a greater penalty, leading to more coefficients being

shrunken towards zero.

2.5 Markov Switching Model

The Markov Switching (MS) Model (Hamilton, 1989, 2005), also referred to as

the regime-switching model, is one of the most popular non-linear time-series

models. This model allows the underlying process to show distinct behaviors,

characterized by multiple structures. This corresponds to different regimes or

states of the time series. The MS Model is able to capture more complex dy-

namic patterns within the data thanks to it permitting transitions between the

different states.

A fundamental feature of the regime-switching model lies in its switching mech-

anism controlled by a hidden state variable. This variable follows a first-order

Markov chain, implying the Markovian property. The Markovian property says

that the current state only depends on its immediate past state, and not on the

entire history. Consequently, a particular regime can continue for a random du-

ration before a transition to another regime happens. This makes it possible for

the model to effectively capture the time-varying nature of the data by allowing

for shifts in its underlying structure.

The MS Model can be represented in a generalized notation in the following

way (Perlin, 2014):

yt =

NnS∑
i=1

βix
nS
i,t +

NS∑
j=1

ϕj,St
xS
j,t + εt (22)

where NnS denotes the number of non-switching coefficients and NS the number

of switching coefficients. St is the unobservable state variable and the innova-

tions εt are assumed to have some distribution with corresponding parameters
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that also may or may not change depending on the state.

As an example, let’s assume St can take on the values 0 or 1 which symbolize

two different states. We observe a simple switching model for the variable yt:

yt =

{
α0 + βyt−1 + εt, if St = 0,

α0 + α1 + βyt−1 + εt, if St = 1.
(23)

where |β| < 1 and εt are iid random variables with zero mean and variance σ2
ε .

By noting that these specifications are stationary AR(1)-processes, the mean µ

of these processes is the following for the two states:

µ =

{
α0

1−β , if St = 0
α0+α1

1−β , if St = 1
(24)

Depending on what value St takes on and provided that α1 ̸= 0, the model

has two dynamic structures. The values of yt are determined by two different

probability distributions with two different mean values. The hidden variable

St controls which distribution governs yt at any given time.

In the MS model, one assumes that St follows a first-order Markov chain with

the following transition matrix P :

P =

(
P (St = 0|St−1 = 0) P (St = 1|St−1 = 0)

P (St = 0|St−1 = 1) P (St = 1|St−1 = 1)

)
=

(
p00 p01
p10 p11

)
(25)

Within the MS model, the behavior of yt is shaped by two key elements: the

random innovations εt and the hidden state variable St. Frequent and random

changes of model structures are yielded from the Markovian state variable, and

the persistence of each state is determined by the transition matrix P .

2.6 ARCH Model

Financial market studies frequently show non-constant variance in asset returns.

This means fluctuations in the variance, with periods of high and low volatility.

To capture this so-called ”volatility clustering,” Engle (1982) introduced the

ARCH model. The ARCH model assumes the return of an asset between times

t − 1 and t equals its conditional expectation plus a random error term as per

below:
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rt =

k∑
i=1

bixi,t + εt (26)

Here, an assumption is made that the error terms follow a Normal distribution

conditional on the information available at time t − 1, but other distributions

such as the Student’s t-distribution can also be considered. The information is

usually denoted Ft−1, and for the case of the Normal distribution, the errors

are defined as

εt|Ft−1 ∼ N(0, σ2) (27)

As per above, the conditional mean of the residuals is zero. Therefore, the

unconditional variance of ε can be obtained by taking the expectation of the

conditional variance as per below:

σ2 ≡ E[ε2] = E[Et−1[ε
2]] = E[σ2

t ] (28)

which is independent of the time t. Therefore, the unconditional variance is

constant over time. The unconditional distribution of εt has fatter tails than

the Normal distribution because of time-varying variances. In the original spec-

ification by Engle (1982), the preferred model for εt is given as

εt = σtzt (29)

where

zt ∼ IID and N(0, 1) (30)

As Equation 30 shows, zt has a unit variance, and therefore the conditional

variance depends on past values of squared errors:

σ2
t = ω + α1ε

2
t−1 + α2ε

2
t−2 + ...+ αqε

2
t−q (31)

The equation above shows an ARCH(q) model. One important constraint that

needs to be fulfilled for the ARCH model is that ω and αi have to be greater

than or equal to zero (ω, αi ≥ 0). In other words, they can not be negative.

This constraint makes sure the model gives non-negative variances at all times,

which is a fundamental requirement. The larger amount of α-parameters you
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have in the model, the longer memory can be captured by the model, meaning

it can capture the influence of past shocks for a longer period.

By considering the unconditional variance, we can easily see that if

|α1 + α2 + ...+ αq| < 1 (32)

the unconditional variance for an ARCH(q) is:

σ2 = E[σ2
t ] = E[ω + α1ε

2
t−1 + α2ε

2
t−2 + ...+ αqε

2
t−q] =

= ω + α1E[ε2t−1] + α2E[ε2t−2] + ...+ αqE[ε2t−q] ,
(33)

and because the unconditional variances are constant over time, we have:

σ2 = ω + α1σ
2 + α2σ

2 + ...+ αqσ
2. (34)

After simplifications, this gives the following equation:

σ2 =
ω

1− a1 − a2 − ...− aq
. (35)

2.6.1 GARCH Model

Numerous variants of the ARCH model have been proposed, but the most

common one is likely to be the Generalized Autoregressive Conditional Het-

eroskedastic (GARCH) model by Bollerslev (1986). In the GARCH(p, q) model,

the conditional variance depends not only on past squared errors ε, but also on

the past conditional variances σ:

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i. (36)

The parameters ω, α, and β in the GARCH model must be greater than or

equal to 0 in order to ensure positive variance. To ensure stationarity, the sum

of α and β has to be less than 1. The unconditional variance can be written in

a similar fashion as for the ARCH model, resulting in the expression:

σ2 =
ω

1−
∑q

i=1 αi −
∑p

i=1 βi
. (37)
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2.6.2 Multivariate Models

For financial applications such as portfolio optimization and risk management,

it is important to consider the correlation between assets. When modeling the

volatility of assets, it is possible to extend the GARCH framework to a multi-

variate setting, the so-called MGARCH, by assuming that there is a correlation

between the assets and then co-model the variances. Over the years, multi-

ple specifications of MGARCH models have been proposed, beginning with the

VEC-GARCH model by Bollerslev et al. (1988), which is a generalized version

of the univariate GARCH model. According to Silvennoinen and Teräsvirta

(2008), the specification of an MGARCH model should be flexible enough to

represent the conditional variances and covariances but also allow for easy es-

timation and interpretation of model parameters. As the parameters in an

MGARCH model often increase rapidly with the number of assets, this often

poses a problem.

In the same paper, Silvennoinen and Teräsvirta define the standard multivariate

GARCH framework by considering that returns follow a zero-mean stochastic

process {rt} ∈ S ⊆ RN with dimensions N × 1. They let Ft−1 denote the

information set available at time t − 1 and assume that {rt} is conditionally

heteroskedastic:

rt = H
1/2
t ηt (38)

Here, Ht = [hijt] is an N×N matrix of the conditional covariance matrix of the

returns, and ηt is an iid vector of errors, such that E[ηtη
′

t] = I. Silvennoinen

and Teräsvirta specifies four different categories of MGARCH models to model

the covariance matrix Ht. As our objective is to model the correlation, we have

chosen the Dynamic Conditional Correlation (DCC-) GARCH model, which is

in the category of models that decompose the conditional covariance matrix.

The DCC-GARCHmodel was introduced by Engle (2002), where the conditional

covariance matrix is defined as follows:

Ht = DtPtDt (39)

where Dt = diag(h
1/2
1t , . . . , h

1/2
Nt ) and P = [ρij ] is positive definite with ρii =

1, i = 1, . . . , N . The off-diagonal elements of Ht are defined in the same way as

for any covariance matrix:
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[Ht]ij = h
1/2
it h

1/2
jt ρij , i ̸= j (40)

where 1 ≤ i, j ≤ N . In this notation, hit is the variance for the process {rit},
which can be modeled with a GARCH(p, q) model, and ρij is the correlation

between process i and j. For simplicity, the conditional variance can be written

in a vector from:

ht = ω +

q∑
j=1

Ajr
(2)
t−j +

p∑
j=1

Bjht−j (41)

where ω is an N × 1 vector, Aj and Bj are diagonal N × N matrices, and

r
(2)
t = rt ⊙ rt. Engle further defined a dynamic process Qt used to update the

correlation matrix Pt as follows:

Qt = (1− a− b)S + aεt−1ε
′

t−1 + bQt−1 (42)

where a is positive and b is a non-negative scalar with the restriction that

a + b < 1 and S is the unconditional correlation matrix of the errors εt. To

ensure positive definiteness, Q0 is chosen as positive definite. Lastly, Qt is

rescaled to obtain a valid correlation matrix as follows:

Pt = (I ⊙Qt)
−1/2Qt(I ⊙Qt)

−1/2 (43)

2.7 Parameter optimization

In mathematical statistics, different parameter estimators are available, such

as OLS and its generalized version GLS, and the Maximum Likelihood estima-

tor. In the original specification of the ARCH framework by Engle (1982), he

proposes the use of Maximum Likelihood to estimate the parameters, which

is also used in this thesis. In Maximum Likelihood estimation, the objective

is to find the parameter set that maximizes the so-called likelihood function.

To achieve this, different optimization techniques such as Stochastic Gradient

Decent (SGD) and Quasi-Newton can be used.

2.7.1 Maximum Likelihood

Maximum Likelihood is a good estimation method when the distribution of the

underlying observation is known. Consider a sequence of observed variables,

(r1, . . . , rT ), where each sample has a probability density function f(rt; θ), θ
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being the parameters which characterize f(rt; θ). If the samples are not iid, the

joint density is given by the product of the conditional marginal densities as

f(r1, . . . , rT ; θ) = f(r1; θ) · . . . · f(rT |r1, . . . , rT−1; θ) =

=

T∏
t=1

f(rt|r1, . . . , rt−1; θ)
(44)

where the density function is conditioned on the information known at each

time t. Further, we define the likelihood function L(θ|r1, . . . , rT ) to be the joint

density function, treated as a function of the parameters given by θ. The MLE

is the parameters θ which maximize the likelihood function, i.e.

θ̂MLE = argmax
θ

L(θ|r1, . . . , rT ) = argmax
θ

T∏
t=1

f(rt|r1, . . . , rt−1; θ) (45)

The argument θ that maximizes this expression is not affected by a log trans-

formation, so the problem can be rewritten as a sum instead of a product:

θ̂MLE = argmax
θ

lnL(θ|r1, . . . , rT ) = argmax
θ

T∑
t=1

ln f(rt|r1, . . . , rt−1; θ) (46)

This log transform is referred to as the log-likelihood. Usually, the normal

distribution is used in Maximum Likelihood estimation for GARCH models,

as for the original specification (Bollerslev, 1986), but other distributions such

as student’s t-distribution can be used. We consider a simple model for asset

returns:

rt = µ+ εt (47)

where εt = σtzt. The variance σ2
t is assumed to follow a GARCH(1, 1) specifi-

cation from Equation 36 and zt follows a standardized Normal or Student’s t-

distribution. In the case of zt following a Normal distribution, the log-likelihood

function is written as:

lnL(θ|r1, . . . , rT ) =
T∑

t=1

ln
1

σt

√
2π

e−
1
2 (

rt−µ
σt

)
2

(48)
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This expression can easily be rewritten in the following way:

lnL(θ|r1, . . . , rT ) = −T

2
ln 2π − 1

2

T∑
t=1

lnσ2
t −

1

2

T∑
t=1

(rt − µ)2

σ2
t

(49)

Where the parameters θ are µ, ω, α and β. With the assumption of Student’s

t-distributed zt, the log-likelihood function is written in the following manner

(MathWorks, 2024):

lnL(θ|r1, . . . , rT ) =

= T ln
Γ
(
ν+1
2

)√
π(ν − 2)Γ

(
ν
2

) − 1

2

T∑
t=1

lnσ2
t −

ν + 1

2

T∑
t=1

ln

(
1 +

(rt − µ)2

σ2
t (ν − 2)

) (50)

where Γ(z) is the Gamma function evaluated in the point z.

2.8 Fuzzy Clustering

Fuzzy c-means clustering, also known as soft clustering, was developed by Dunn

(1973) and later improved by Bezdek (1981) and is a data clustering technique

used to group data points into different clusters. However, unlike traditional K-

means clustering, which assigns each data point to a single cluster with a sharp

boundary, fuzzy c-means allows a data point to belong to multiple clusters with

varying degrees of membership. For example, if there are 4 different clusters to

which the data points can belong, the K-means clustering assigns a data point

to only one of the clusters. In c-means clustering, each data point is assigned a

membership degree between 0 and 1 for each cluster. A value closer to 1 means

stronger membership in that cluster. The sum of the membership degrees for a

data point must be equal to 1.

Given a data set

X = {x1, x2, ..., xn} ⊆ Rn (51)

where c ⩽ n and the mean of the partition of X is larger than 1. The aim is to

find fuzzy sets on X that fulfill the following property:
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c∑
i=1

uik = 1, uik = ui(xk) (52)

such that the functional

J(u, v) =

c∑
i=1

n∑
k=1

(uik)
m||xk − vi||2 (53)

is minimized, where vi is the center of the i:th cluster:

vi =

∑n
k=1(uik)

mxk∑n
k=1(uik)m

(54)

A simple representation of the differences between K-means clustering and fuzzy

clustering can be seen in Figure 1. K-means clustering divides the data into dis-

tinct clusters without overlap between them, while fuzzy clustering allows data

points to belong to multiple clusters, determined by the calculated membership

degree.

Figure 1: A simple representation of the differences between K-means clustering
and fuzzy clustering. In the case of fuzzy clustering, we can see that a single
data point can belong to multiple clusters.
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3 Methodology

To get a clear overview of the methodology and the steps taken, a short sum-

mary is provided. The first step to building the model is to gather all the

data needed. The data that is collected are data on returns of BTC, the S&P

500 index, gold and oil prices, and the VIX and Google Trends indices. The

next step in the process is to divide the BTC and S&P 500 returns into two

distinct states, where some of the other mentioned data sets are used as ad-

ditional explanatory variables. To decide what data sets are relevant for this

step, a LASSO regression is conducted. The states themselves are estimated by

utilizing a Markov Switching Model. With the estimated states, four different

regimes can be extracted. The third step is to estimate the correlation using

a multivariate GARCH framework, namely the so-called DCC-GARCH model.

To get sound parameter estimates, we start by estimating standard univariate

GARCH models to the states that were first extracted from the Markov Switch-

ing Model. We later use these univariate estimates in the multivariate setting

to get four different models, one for every regime. The last step is to weigh

the four regimes together to get the final model. This is done by using a Fuzzy

Clustering algorithm.

3.1 Software

In this thesis, most data treatment, processing, modeling, and visualization

are conducted using a mix of MATLAB and R. MATLAB is used for the

calculations of the technical analysis, regime estimation, and fuzzy clustering,

while R is used in the GARCH modeling. To improve the management and

execution of the R code, RStudio is used to write said code.

3.2 Datasets

The full dataset contains daily closing values and volumes denoted in USD of the

cryptocurrency BTC and the S&P 500 stock market index from Yahoo Finance

(2024). The data spans from 1 November 2017 until 31 January 2024, giving

a total of 2283 and 1571 observations of BTC and the S&P 500 respectively.

Data on gold and crude oil prices, as well as the VIX index, was also acquired

from Yahoo Finance. We use the logarithmic daily returns, or log-difference, of

the datasets, defined as

rt = ln

(
Pt

Pt−1

)
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where Pt is the closing price on day t and rt is the return for day t. Of the re-

sulting series of returns, observations between 1 January 2018 and 31 December

2023 are used for GARCH modeling, while the full dataset is utilized for the

technical analysis, exponentially weighted correlation, and rolling correlation.

Daily Google Trends index data of the search term ”bitcoin” between 1 De-

cember 2017 and 31 January 2024 is extracted using the R package gtrendsR

(Massicotte and Eddelbuettel, 2022). Daily trends index data is extracted on

a monthly basis, as Google Trends only shows daily observations for periods of

one month or less. This gives a trend index from 0− 100 for every month. For

longer time periods, Google Trends gives a monthly trend index, and the infor-

mation on a daily basis disappears. As such, the trend index for the entirety of

the time period can be extracted without any special methods but gives a trend

index on a monthly basis from 0− 100.

To calculate the RSI, MATLAB’s Financial Toolbox is utilized, while EMA

is calculated using Equation 12. The RSI index is calculated on the closing

prices of BTC, with a window size d = 14, while the EMA is calculated on the

returns of BTC with window sizes d = 7, 14. The exponentially weighted linear

correlations of the BTC returns and gold, oil, and VIX index returns, as well as

the log differences of Google Trends index and trading volume, are calculated

with half-lives d = 7, 14.

3.2.1 Data Preprocessing

As commodities such as gold and oil, and the S&P 500 companies are only traded

on weekdays, there is a significant discrepancy in the number of observations

between the datasets. To account for this, we use linearly interpolated values

for days where the closing price is missing, using the R package zoo (Zeileis

et al., 2023). This yields equal numbers of observations between the series and

is used to calculate the logarithmic daily returns. As a result, 2191 observations

can be used for the modeling set. The returns of BTC and the S&P 500 after

preprocessing are shown in Figure 2.
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Figure 2: Daily log-returns of Bitcoin and S&P500 respectively. Note the dif-
ference in scale.

On 20 April 2020, crude oil futures contracts fell rapidly in price, resulting in

negative pricing of this asset (U.S. Energy Information Agency, 2021). As this

date is in the modeling set, the negative pricing causes a problem when using

the log difference on the price. To solve this issue, we take the log difference

between the closest positive closing prices of the affected days, 17 April and 21

April 2020, and average the return over those days.

In order to get a Google Trends index of daily observations over the entirety of

the time period, the daily index data is normalized with respect to the monthly

index data. The following formula is used to normalize the observations:

Adjusted index =
Daily index ·Monthly index

100

where the monthly index is fixed for every observation of the daily index for

each month. The resulting adjusted index is shown in Figure 3.
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Figure 3: The adjusted Google Trends index which shows the daily trend index
between 2017-12-01 and 2024-01-31.

3.2.2 Data Limitations

As previously mentioned, interpolated values are used for days on which no

trades occur in the traditional markets. The choice of using interpolated values

is made to get more usable data to build the models upon, but also to capture

potential weekend effects (Keim, 1984). It is also tested to only use the obser-

vations that are available for both datasets, resulting in an approximately 30 %

decrease in the number of usable observations. This, however, leads to a multi-

variate regime division where some of the regimes contain very few observations,

making it more difficult to estimate GARCH models on said regimes. Hence,

in the rest of the thesis, the models presented are based on datasets containing

interpolated values.

3.3 Regime Estimation

Once all the data is preprocessed, we attempt to estimate regimes for the two

assets. As Cortese et al. (2023) points out, returns on cryptocurrencies can be

explained by external explanatory variables, so the first step in order to estimate

the regimes is to find what variables can explain the returns of BTC.

23



3.3.1 LASSO Regression

We use the LASSO regression analysis method to make a variable selection

and regularization. We pick the external explanatory variables that Cortese

et al. found to be relevant to BTC returns, as well as other variables that

can be thought to have an impact on investors’ attitudes towards BTC. The

variables that are chosen are returns on gold, oil, the S&P 500 itself, and the

VIX index, with a more detailed description in Table 1. The relationship to

the general market for the first two has been thoroughly investigated, while the

latter two could indicate the state of the general market. These variables were

also considered by Cortese et al. but were shown to have no significant effect

on BTC returns, as per the assumptions of the LASSO regression.

Table 1: The chosen explanatory variables used for the LASSO regression.

Variable(s) Code Description
rBTC EMA7 7-day EMA
rBTC EMA14 14-day EMA
rBTC RSI14 14-day RSI

rBTC , volume BTC BTCVol7 7-day Exponential Linear Correlation
rBTC , volume BTC BTCVol14 14-day Exponential Linear Correlation
rBTC ,Google Trends BTCGT7 7-day Exponential Linear Correlation
rBTC ,Google Trends BTCGT14 14-day Exponential Linear Correlation

rBTC , rS&P500 BTCS&P5007 7-day Exponential Linear Correlation
rBTC , rS&P500 BTCS&P50014 14-day Exponential Linear Correlation
rBTC , rGold BTCGold7 7-day Exponential Linear Correlation
rBTC , rGold BTCGold14 14-day Exponential Linear Correlation
rBTC , rOil BTCOil7 7-day Exponential Linear Correlation
rBTC , rOil BTCOil14 14-day Exponential Linear Correlation
rBTC ,VIX BTCVIX7 7-day Exponential Linear Correlation
rBTC ,VIX BTCVIX14 14-day Exponential Linear Correlation

The Statistics and Machine Learning Toolbox in MATLAB is used to run the

LASSO regression. The explanatory variables are normalized, and the regression

is done for multiple values of λ on the log scale 10−5 to 100.

3.3.2 Markov Regime Switching Model

To estimate the regimes, the MATLAB package MS Regress by Perlin (2014)

is used, which is an implementation of the Markov Regime Switching model

(Hamilton, 1989). As with the traditional classification of bull- and bear mar-

kets, we make the assumption that both assets can be divided into two different

regimes. The returns of BTC are set up to be explained by the trend, residu-
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als, and explanatory variables that were found to be relevant from the LASSO

regression previously done, according to Equation 22. We make the assumption

that all of the variables have the feature of having regime-switching coefficients.

The returns of the S&P 500, on the other hand, are set up to be explained by

only the trend and the residuals, both having regime-switching coefficients. We

estimate the regimes for the assets one by one, with the assumption that the

residuals follow both a Normal and a Student’s t-distribution.

3.4 GARCH Modeling

Once the regimes are estimated, we extract the data belonging to each regime.

This gives us four different series of returns, high and low volatility of BTC

and S&P 500 respectively. The data is also categorized in the multivariate

volatility setting according to high/high, high/low, low/high, and low/low,

where high/high means high volatility for BTC/high volatility for S&P 500,

etc. GARCH models are fitted to each of these series, four univariate models

and four multivariate models. To compare the model parameters to a bench-

mark, univariate GARCH(1,1) models and a multivariate DCC-GARCH(1,1)

model for the complete dataset of BTC and S&P 500 are also estimated.

3.4.1 Univariate GARCH

To get parameter values for the multivariate model, univariate GARCH(1,1)

models are fitted to each regime, with high and low volatility, for both assets.

We use the R package rugarch (Galanos and Kley, 2023) for this purpose, se-

lecting the optimization method ”nlminb”. As this optimization routine may

find a local minimum, even when a better minima is present (Gay, 1990), mul-

tiple starting values for the GARCH models are tested. We compare the log-

likelihood for each set of starting values for every regime and choose the set

of stating values that yield the highest log-likelihood. In one of the states for

the S&P 500, the optimal solution found yielded parameters that were far from

the optimal parameters of the benchmark model, giving a volatility estimate

not commonly seen for assets. In this case, a solution with parameters more

similar to the benchmark model was used, together with a visual comparison.

The resulting optimized parameters are saved to be used as fixed parameters

for the multivariate GARCH models. For the benchmark model, the same pro-

cedure is followed, giving a univariate model for both assets, which is used for

the multivariate model.
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3.4.2 Multivariate GARCH

To estimate a DCC-GARCH for every multivariate regime, the R package

rmgarch (Galanos, 2022) is used. We use the same assumption that the un-

derlying GARCH processes are of the order p = q = 1 and use the resulting

parameters from the univariate regimes as fixed values. Only the parameters a

and b in Equation 42 are estimated, as the parameter estimation tends to be

problematic when dividing the regimes even further. This means that in the

regime high/high, the parameters from BTC high volatility and S&P500 high

volatility are used, etc. As for the univariate case, we choose the optimiza-

tion method ”nlminb”. Once the multivariate models are estimated, we use the

optimized parameters and run the models on the complete dataset using the

”dccfilter” function. This gives us four realizations of the correlation between

the assets, as well as four sets of volatility for the assets for all days t in the

complete dataset.

3.5 Fuzzy Clustering

To get a smoother transition between the models, we run a fuzzy clustering

algorithm on the volatility, trying to divide the volatility estimates into four

clusters, each representing the four different multivariate regimes. We use the

implementation of this algorithm in the Fuzzy Logic Toolbox in MATLAB,

using the random number generator seed 1. We achieve this by setting up a

time series of daily volatilities, where the volatility on the day t is derived from

the model that corresponds to the specific regime that was present on that day.

In other words, if day t is in the regime high/high, we use the volatility estimate

from day t that is estimated from the MGARCH model based on the regime

high/high, etc. Once the time series is set up, we run the algorithm to get

probability estimates of each volatility observation belonging to each cluster, as

well as the centroids of the clusters.

The final weighted DCC-GARCH model is calculated by using the probabilities

that are obtained from the clustering algorithm. A weighted sum is utilized to

calculate the final model for each day t. This is done for both the variance and

the correlation like below:

σ2
WDG,t =

∑
k∈D

= pk,tσ
2
k,t

ρWDG,t =
∑
k∈D

= pk,tρk,t
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whereWDG stands for weighted DCC-GARCH andD = {L/L,L/H,H/L,H/H}.
D is a representation of the different multivariate regimes that are estimated,

where H stands for High and L stands for Low regime. To ensure that the

correct probability p is used, we compare the centroids of the clusters, which

are marked in Figure 4, to figure out which centroid belong to what regime.

The probabilities p are also plotted and compared with the estimated regimes

to facilitate the categorization. They are presented in the results.

Figure 4: Centers from the Fuzzy Clustering algorithm in relation to the result-
ing volatilities from the final model.
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4 Empirical Results

4.1 Data

Analysis of the returns in Figure 2 reveals that both series exhibit negative

skewness, as well as excessive kurtosis compared to what is expected from data

following a normal distribution. To verify if the data follows a normal distri-

bution or not, a Jarque-Bera test is conducted, both on all data, but also with

outliers outside three standard deviations removed. The MATLAB function

”jbtest” in the Statistics and Machine Learning Toolbox is used for this purpose.

The resulting statistics are presented in Table 2, where numbers in parenthesis

denote data with outliers removed. As Table 2 also shows, the hypothesis that

the data follows a normal distribution is rejected in both cases. The critical

value is determined from Monte-Carlo simulation, as the datasets contain more

than 2000 observations.

Table 2: Descriptive statistics of the return series of BTC and S&P 500. Jarque-
Bera test is rejected at a 5% significance level, as the critical value is 5.9656.

BTC S&P 500

Mean
4.9922e-04 2.6102e-04
(0.0011) (5.0835e-04)

Standard Deviation
0.0368 0.0099
(0.0319) (0.0076)

Skewness
-1.0541 -0.2378
(0.0343) (-0.1174)

Kurtosis
17.2405 18.8866
(4.7455) (5.2494)

Jarque-Bera Test Statistic
1.8919e+04 2.3061e+04
(274.9019) (458.2050)

We note that the Jarque-Bera test statistic is remarkably high, but normal-

ization of the data does not significantly change this score. The skewness and

kurtosis seems to be highly influenced by the outliers that are present in the

data above three standard deviations. Removing these has a great impact on

the Jarque-Bera test statistic as well, but the hypothesis of normally distributed

data is still rejected.

The parameters from a distribution fitting with the MATLAB function ”fit-

dist” for a Normal- and a location-scale Student’s t-distribution are presented in

Table 3. A visual comparison of the empirical distribution and the two fitted dis-

tributions is shown in Figure 5, where the location-scale Student’s t-distribution

gives a better fit.
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Table 3: Resulting parameters from the distribution fitting of the returns series.

BTC S&P 500
Parameter Normal Student’s t Normal Student’s t

µ 0.000499 0.000930 0.000261 0.000443
σ 0.036816 0.020021 0.009857 0.003934
ν - 2.295800 - 1.660570

Figure 5: Fitted Normal- and Student’s t-distributions to the returns.

The autocorrelation function for BTC shows no dependence in the returns,

and a weak dependence in the absolute returns, visualized in Figure 6. The

autocorrelation function for the S&P 500 shows some dependence in the returns,

and a strong decaying dependency in the absolute returns, visualized in Figure 7.

The results are generally in line with the stylized facts, even if some dependency

is shown for the weak decaying dependency for the absolute BTC returns and

the sprawling dependency in the S&P 500 returns. One thing worth noting is

the apparent seven-day dependence for the absolute returns, mostly visible for

the S%P 500.
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Figure 6: Auto-correlation function of BTC.

Figure 7: Auto-correlation function of S&P 500.
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4.2 Regime Estimation

The resulting LASSO regression can be seen in Figure 8. We choose to include

the first seven significant variables, which are EMA7, EMA14, RSI14, BTCVol14,

BTCGT7, BTCOil7 and BTCVIX14, to use as explanatory variables for BTC

returns.

Figure 8: LASSO Regression of explanatory variables for BTC returns, when
varying the penalizing parameter λ.

The coefficients in the plot represent the weight or influence of each of the 15

parameters on the target variable, i.e. BTC. In lasso regression, some of these

coefficients may be driven to zero, effectively removing those variables from the

model. In the figure above, we can see that the first two coefficients differ from

zero before any of the others. The last five coefficients that were chosen differ

from zero a little bit later, but still clearly before the next coefficient. Therefore,

the first seven coefficients are chosen as explanatory variables for BTC returns.

Using the assumption that the returns follow a student’s t-distribution from the

previous section gives us the following models for the returns:
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rBTC,t = µSt +

7∑
i=1

βi,Stxi,t + εt

and

rS&P500,t = µSt
+ εt

where i denotes the i:th explanatory variable. The errors εt are set up to follow

a student’s t-distribution with two distinct regimes. Using the MS Regress

package, the following regimes are estimated, as seen in Figure 9. An in-depth

analysis of the probabilities of each regime can be found in Figures A.1 and

A.2 in the Appendix. An attempt to estimate Markov Switching Models with

normally distributed innovations is also made. The resulting regimes can be

seen in Figure A.3 in the Appendix. We reject this model due to unreasonably

rapid regime switching, in favor of the above-presented student’s t-distributed

model.

Figure 9: The estimated regimes from the MATLAB package MS Regress.
Green indicates a low volatility period, while red indicates a high volatility
period.

The results from the MS Regress package are presented in Tables 4 and 5. As

seen by the p-values, no variable except the variance and degrees of freedom are
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significant in both regimes for both assets.

Table 4: The estimated parameters for the BTC Markov Switching Model from
the MS Regress package for.

BTC Regime 1 Regime 2
Variable Estimate P-value Estimate P-value

σ2 0.000160 0.000000 0.001223 0.000000
ν 2.091605 0.000000 4.710794 0.000011
µ -0.006474 0.050397 0.003818 0.662142

EMA7 0.033563 0.865363 -0.417033 0.142283
EMA14 -0.714545 0.060177 0.467384 0.393693
RSI14 0.000139 0.023986 -0.000018 0.910576

BTCVol14 -0.144250 0.634354 0.827640 0.138878
BTCGT7 1.257455 7.1758e-08 -0.322392 0.412766
BTCOil7 0.124794 0.004923 -0.134807 0.366555
BTCVIX14 -0.040814 0.048251 -0.004323 0.967530

The expected duration of Regime 1 is 95.09 days and Regime 2 is 75.54 days,

with the following transition matrix:

P =

(
0.9895 0.0132

0.0105 0.9868

)

Table 5: The estimated parameters for the S&P 500 Markov Switching Model
from the MS Regress package.

S&P 500 Regime 1 Regime 2
Variable Estimate P-value Estimate P-value

σ2 0.000006 0.000000 0.000072 0.000000
ν 1.966624 0.000000 2.949946 3.4417e-14
µ 0.000607 1.7186e-11 -0.000209 0.562328

The expected duration of Regime 1 is 26.61 days and Regime 2 is 20.53 days,

with the following transition matrix:

P =

(
0.9624 0.0487

0.0376 0.9513

)

By comparing the two models, we can see that the regimes are longer for BTC,

supported by the higher probabilities of staying in the same state in the transi-

tion matrix. By observing the variance in the regimes, we notice that in Regime

1, the variance is lower than in Regime 2 for both assets, leading us to classify the
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regimes as low- and high-volatility regimes, respectively. After the data is sorted

by regime, we get a return series for each regime and asset, shown in Figures 10

and 11. These return series are used to estimate four different GARCH models.

In the figures, the volatility clustering pattern is not as visible for BTC high

volatility and S&P 500 low volatility as it is for the complete dataset. More

clear patterns of volatility clustering can be seen for the other return series.

One common observation between the assets is that returns in the low-volatility

regimes are generally of lower magnitude than in the high-volatility regimes.

Figure 10: Returns of BTC in the respective regimes.
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Figure 11: Returns of the S&P 500 in the respective regimes.

4.3 GARCH Modeling

4.3.1 Univariate

We use the result from the previous section that no external explanatory vari-

ables were significant in both regimes when estimating the GARCH models. As

such, we make a simplifying assumption that the returns only depend on a drift

term and an innovation term. The drift term µ is considered to make the return

series zero-mean and to compare it with the estimates from the MS Regress

package. The resulting parameters for both Normal and Student’s t-distributed

innovations are presented in Tables 6 - 9.

Table 6: GARCH parameter estimates from the BTC low volatility regime.

Normal Student-t
Parameter Estimate P-value Estimate P-value

µ 0.001274 0.128316 0.000374 0.390149
ω 0.000115 0.005598 0.000460 0.128475
α 0.156039 0.206355 0.186374 0.005283
β 0.738313 0.000000 0.813626 0.000000
ν - - 2.112606 0.000000

Log-likelihood 2613.961 2921.102
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Table 7: GARCH parameter estimates from the BTC high volatility regime.

Normal Student-t
Parameter Estimate P-value Estimate P-value

µ 0.001080 0.457632 0.001346 0.279432
ω 0.000106 0.036816 0.000081 0.095858
α 0.038664 0.006604 0.040373 0.010011
β 0.907228 0.000000 0.920498 0.000000
ν - - 5.448768 0.000000

Log-likelihood 2776.811 1701.126

For BTC, we can see that the estimates for µ are not significant in either regime

or choice of distribution. The estimates are also different from the Markov

Switching Model, suggesting a high uncertainty in the parameter. We can also

see that ω is not significant when considering a student’s t-distribution, imply-

ing that the long-term unconditional volatility would tend towards zero. This

implication would not make sense for financial returns, and we are as such scep-

tical of a rejection of this parameter. In Table 6, we notice a rejection of the

α parameter when considering normally distributed innovations, but not in the

case of student’s t-distributed innovations. The estimates are, however, similar,

leading us to speculate that the estimate is correct.

Table 8: GARCH parameter estimates from the S&P 500 low volatility regime.

Normal Student-t
Parameter Estimate P-value Estimate P-value

µ 0.000926 0.000000 0.000603 0.000000
ω 0.000001 0.000000 0.000003 0.000000
α 0.013780 0.021064 0.038681 0.000000
β 0.948049 0.000000 0.952273 0.000000
ν - - 2.142758 0.000000

Log-likelihood 4959.747 5134.75

Table 9: GARCH parameter estimates from the S&P 500 high volatility regime.

Normal Student-t
Parameter Estimate P-value Estimate P-value

µ -0.000541 0.139060 -0.000314 0.374470
ω 0.000009 0.000000 0.000008 0.000000
α 0.062370 0.000000 0.057006 0.000000
β 0.884572 0.000000 0.893516 0.000000
ν - - 4.825818 0.000000

Log-likelihood 2776.811 2808.071
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For S&P 500, we notice that µ is not significant in the high-volatility regime.

The estimates are, however, similar to those of the Markov Switching Model.

The resulting parameters in Table 8 do not give the optimal log-likelihood but

are chosen to give a more familiar GARCH structure. The optimal solution

yields an estimated β of zero, with a p-value of one, suggesting that the esti-

mate should be rejected. The optimal parameters and the respective volatility

plot of the modeling data can be found in the Appendix in Table A.2 and Figure

A.4. One interesting observation from the chosen GARCH parameters is that

a majority of the p-values are exactly 0, sparking a debate of how robust these

estimates are.

By comparing the parameters for both Normal- and Student’s t-distributed

innovations, we see that the estimates are similar for the two distributions are

in large similar, the only exception being the β parameter for the BTC low

volatility regime. We also notice that the degree of freedom, denoted ν, is

higher for the high-volatility regime for both assets.

4.3.2 Multivariate

When estimating a DCC-GARCH model in each multivariate regime, we fix

the parameters from the univariate models and only estimate the a and b pa-

rameters. For two of the multivariate regimes, a model could not be estimated

when considering a Student’s t-distribution, and we have as such resorted to

only presenting the Normal model for consistency purposes. The solver failed

to converge, even when considering non-fixed parameters and change of starting

parameters. The resulting a and b parameter estimates are presented in Table

10 - 13.

Table 10: The a and b parameters of the DCC-GARCH estimated for the
Low/Low regime.

Normal
Parameter Estimate P-value

a 0.049362 0.005432
b 0.918722 0.000000

Log-likelihood 4607.917
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Table 11: The a and b parameters of the DCC-GARCH estimated for the
Low/High regime.

Normal
Parameter Estimate P-value

a 0.026138 0.019928
b 0.967250 0.000000

Log-likelihood 2385.13

Table 12: The a and b parameters of the DCC-GARCH estimated for the
High/Low regime.

Normal
Parameter Estimate P-value

a 0.000895 0.907320
b 0.988993 0.000000

Log-likelihood 2927.574

Table 13: The a and b parameters of the DCC-GARCH estimated for the
High/High regime.

Normal
Parameter Estimate P-value

a 0.019571 0.029622
b 0.970640 0.000000

Log-likelihood 2178.072

We observe that a and b differ between the multivariate regimes, giving each

regime its own characteristics when it comes to updating the correlation. In

the High/Low regime, the starting value of b must be set to at least 0.975 in

order to get the presented estimates. If not, the b parameter will be estimated

to be around 0.55, as presented in Table A.1 in the Appendix, resulting in a

correlation estimate that tends to be noisy. It is in this regime that the only

insignificant parameter can be found, a.

In Figures 12 - 15, the resulting volatilities and correlation between the assets are

plotted. For the volatility, we can notice a slight difference in magnitude and

responsiveness between the low and high volatility regimes. As the GARCH

parameters are fixed, the same volatility plot is given for both multivariate

regimes that contain the same univariate regime. This means, for example,

that both regimes that contain the low volatility state for BTC give the same

volatility plot.
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Figure 12: Volatility and correlation estimated for the Low/Low regime when
the resulting parameters are used for the complete dataset.
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Figure 13: Volatility and correlation estimated for the Low/High regime when
the resulting parameters are used for the complete dataset.
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Figure 14: Volatility and correlation estimated for the High/Low regime when
the resulting parameters are used for the complete dataset.
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Figure 15: Volatility and correlation estimated for the High/High regime when
the resulting parameters are used for the complete dataset.

All but one regime gives a similar correlation estimate over the period. The

High/Low state seems to give an estimate which is almost constant over the

period, which is seen in Figure 14. If we zoom in on the correlation plot, we

can, however, see that it has the same structure as the other regimes. This plot

can be seen in Figure A.5 in the Appendix. The behavior of the correlation

for this regime can be explained by the estimated parameters for that regime

previously presented. The other regimes tend to only differ in how reactive they

are to new innovations.

4.3.3 Benchmark Model

A benchmark model is estimated on the complete data set without regime classi-

fication. The resulting parameters for the univariate GARCH models are found
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in Tables 14 and 15, while the DCC-GARCH parameters are found in Table 16.

Table 14: GARCH parameters for BTC estimated for the complete dataset.

Normal Student-t
Parameter Estimate P-value Estimate P-value

µ 0.001268 0.098987 0.000638 0.172110
ω 0.000076 0.009178 0.000011 0.477870
α 0.102600 0.019393 0.075159 0.000000
β 0.848816 0.000000 0.924841 0.000000
ν - - 3.132831 0.000000

Log-likelihood 4251.597 4561.014

Table 15: GARCH parameters for S&P 500 estimated for the complete dataset.

Normal Student-t
Parameter Estimate P-value Estimate P-value

µ 0.000643 0.000045 0.000570 0.000000
ω 0.000002 0.856532 0.000002 0.863510
α 0.111168 0.138795 0.123909 0.312790
β 0.876391 0.000000 0.876091 0.000000
ν - - 2.868181 0.000000

Log-likelihood 7520.001 7743.631

For BTC, we notice the same phenomenon where the µ parameter is rejected

and the ω parameter is rejected in the case of Student’s t-distributed innovations

as for the regime case. With the same argument, we are skeptical of the latter

rejection, as ω should be positive. For the S&P 500, we notice a rejection of

the ω parameter for both distributions, contrary to the previous results for the

regimes. We are, once again, skeptical of this rejection. We can also observe

that the α parameter is not significant for either distribution, which is also

something not observed for the regime models. The estimates are, however,

similar for both distributions, leading us to trust the estimates.

Table 16: DCC-GARCH parameters for the benchmark model.

Normal
Parameter Estimate P-value

a 0.012879 0.019148
b 0.983257 0.000000

Log-likelihood 11850.06

As for some of the regime models, the benchmark model failed to converge when
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considering Student’s t-distributed innovations. The model is, as such, only

presented for normally distributed innovations. The parameter estimates for a

and b are both significant, where the relatively large b gives the most weight to

the previous observation of the correlation matrix. The resulting volatility and

the corresponding correlation over the period between the assets are visualized

in Figure 16.

Figure 16: Volatility and correlation estimated for complete dataset.

4.4 Fuzzy Clustering

After running the fuzzy clustering algorithm with four clusters, we get the prob-

ability of every observation belonging to each cluster at each time point and the

respective cluster center. The probabilities are shown in Figure 17 and the

centers are found in Table 4.
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Figure 17: The estimated regimes from the MATLAB package MS Regress.
Green indicates a low volatility period, while red indicates a high volatility
period.

Table 17: Centers of the clusters from the fuzzy clustering algorithm.

BTC S&P 500
Cluster Volatility Center Volatility Center

Low/High 0.041608 0.011676
Low/Low 0.025475 0.007215
High/Low 0.040426 0.005634
High/High 0.052246 0.008648

To be able to determine what probabilities belong to what regime, we use the

regime division obtained from the MS Model and compare it with the proba-

bility plot in Figure 17. We can generally link a high probability in the plot to

the obtained regime division, but we also take note of the cluster centers. The

centers for regime Low/Low and High/High in Table 17 are determined by being

the lowest and highest volatility for both assets simultaneously. The regimes
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Low/High and High/Low are more difficult to determine, as the volatility center

for BTC is similar in both cases. We make the decision based on the volatility

center of the S&P 500 for those regimes, as the difference is more noticeable. We

do notice, however, that the categorization of High and Low volatility regimes

is hard only based on the cluster centers, as some of the centers are close to each

other. For a visual comparison, we refer to Figure 4 in the Methodology Section.

The volatility and correlation from the GARCH models that were estimated on

the four different multivariate regimes in Section 4.3 are weighted according to

the probabilities visualized in Figure 17. The resulting volatilities and correla-

tion for both assets are shown in Figure 18. The correlation from the weighted

model is also shown in Figures 19 - 21, together with the benchmark, and rolling

30- and 60-day correlations between the returns.

Figure 18: Volatility and correlation estimated for the final weighted model.
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The obtained volatility over the period from the final weighted model seems to be

reasonable. It has a recognizable GARCH structure, which is also obtained from

the benchmark model, and it seems to be able to capture volatility clustering

in a good way. We also notice a slightly higher correlation from the beginning

of 2020 until the middle of 2023, compared to before 2020.

Figure 19: The weighted DCC-GARCH model compared with benchmark DCC-
GARCH correlation between the assets.
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Figure 20: The weighted DCC-GARCH model compared with the 30-day rolling
correlation between the assets.

Figure 21: The weighted DCC-GARCH model compared with the 60-day rolling
correlation between the assets.
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When comparing the obtained correlation over the period of the final weighted

model and the above-mentioned measures, there are two main observations to

be mentioned. When comparing to the benchmark DCC-GARCH model in

Figure 19, we notice that the final model follows the same structure of the

correlation throughout the period. As with the DCC-GARCH model, we notice

a downward trend in the correlation from 2023 onwards. The correlation from

the weighted model is, however, more reactive to changes in correlation than the

DCC-GARCH. When comparing with the 30- and 60-day rolling correlations in

Figures 20 and 21, we notice that the weighted model is not as reactive as the 30-

day correlation measure, but more similar to that of the 60-day correlation. We

do notice that the structure and shape of the correlation differs more between

these two measures and the weighted model than that of the DCC-GARCH

model. From the 30- and 60-day correlation it is relatively easy to notice the

30- and 60-day windows. As an example, at the beginning of 2020, we see a

spike in correlation, and after 30 and 60 days respectively, it drops, something

that is not present in the weighted model.

49



5 Discussion

5.1 Datasets

5.1.1 Data filtering

At the beginning of this thesis, we plotted the autocorrelation functions of both

assets and observed that the S&P 500 returns were not white noise, as there

seemed to be some dependency. For BTC returns, the autocorrelation function

did not show any dependency Therefore, we wanted to try using data filter-

ing techniques in order to capture the autocorrelation in S&P500 returns. We

specifically used AR(1) and ARMA(1,1) models as these models looked most

relevant when observing the autocorrelation functions.

However, after implementing these filtering techniques, we did not observe any

significant improvement in the final results of the DCC-GARCH model. In

other words, the parameters of the final model did not change significantly

after applying any data filtering techniques. This led us to opt for an unfil-

tered DCC-GARCH model in the final analysis. There were key reasons behind

this decision. We wanted to keep the final model as simple as possible. By

avoiding unnecessary filtering steps, we aimed to maintain a simpler and more

interpretable model structure. While filtering was not beneficial in this specific

case, future research could revisit its application by trying other filters than the

AR(1) and ARMA(1,1) that were tried in this research.

Although our final model did not include any filtering techniques, the autocor-

relation function of the S&P500 in Figures 7 and A.7 in the Appendix revealed

an interesting pattern. There seems to be a presence of a 7-day periodicity,

which aligns with the well-documented ”weekend effect” in stock markets. This

effect suggests that returns might be influenced by untraded weekend days, im-

pacting prices when markets reopen on Mondays. This potential dependency

in the S&P500 data aligns with the observed periodicity in the autocorrelation

function figures. Interested in the weekend effect, we explored relevant research.

In the paper written by Keim (1984), they found consistently negative Monday

returns, further suggesting the potential benefits of data filtering for capturing

periodicities. However, in our case, implementing weekend filtering did not sig-

nificantly improve the final model’s performance. This led us to maintain the

unfiltered approach.
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5.1.2 Interpolated values

As mentioned in Section 3.2.1, closing prices of the S&P 500 are missing on

weekends and on holidays. To address this, we used linear interpolation to es-

timate the missing values. Using interpolation comes with both benefits and

potential problems. While it can offer a practical solution for maintaining a

continuous dataset, it’s crucial to acknowledge its potential influence on the

analysis of the correlation between BTC and S&P 500.

On the one hand, interpolation offers some benefits. First and foremost, it

ensures a continuous time series, which makes it possible to apply statistical

methods that require a complete time series. Additionally, for short gaps like

weekends or holidays, interpolation may introduce minimal errors. This is par-

ticularly the case for major stock indices like the S&P 500, which are stable,

and daily price movements, in general, are smaller.

On the other hand, interpolation also has its limitations. Firstly, it introduces

artificial data points that may not reflect the true market movements. This

could potentially affect the accuracy of our correlation estimates, especially in

periods with higher volatility where the true price movements might be a lot

different than the interpolated values. Secondly, it might be the reason why we

observe the strong periodicity of the autocorrelation function in both Figure 7

and A.7 in the Appendix. Lastly, the interpolation method one uses might affect

the final results. In this thesis, we used a basic linear interpolation, which may

underestimate actual volatility. For future research on this topic, perhaps one

could try using other interpolation methods such as polynomial interpolation

and spline interpolation, and taking the average of these values.

5.2 Regime Estimation

We used a Markov-switching model to segment the return data for S&P 500

and Bitcoin into distinct states. This approach has several advantages. By

segmenting data into regimes with similar characteristics, the model can poten-

tially capture more nuanced relationships within each regime. This can lead

to a better overall fit compared to a single-regime model. Identifying distinct

regimes allows for a clearer understanding of how the relationship between S&P

500 and Bitcoin returns behaves under different market conditions, providing

valuable insights for investors.

However, the application of the Markov-switching model presented some chal-

lenges for Bitcoin data. Notably, the model seemed to prioritize volatility over
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return direction when segmenting regimes. This resulted in up-trends being

classified as ”bear” states (red) due to their high volatility, while down-trends

were classified as ”bull” states (green) due to lower volatility. Meanwhile, it

was the opposite for the S&P 500 data, where up-trends were classified as bull

states, and down-trends as bear states. This would normally be the general

interpretation, but this was not the case for the BTC data.

To address this issue, we attempted two different strategies. First, we incorpo-

rated technical analysis variables identified by LASSO regression to potentially

influence the regime classification beyond just volatility. These variables are

presented in Section 4.2 of this thesis. However, this did not affect the state

segmentation that much for the Bitcoin data, and the problem with up-trends

being classified as bear states remains. Second, we experimented with a three-

state model to potentially capture a wider range of market conditions. How-

ever, this increased model complexity and difficulty of interpretation, with some

states having limited data points, potentially leading to unreliable parameter

estimates when applying GARCH models.

5.3 GARCH Modeling

5.3.1 Choice of Model

Estimating the GARCH models on each respective regime tended to be more

difficult than initially anticipated. With a plethora of different types of GARCH

models to choose from, and with different types of distributions possible for the

innovations, selecting the correct one will be a trade-off between the model’s

ability to capture the volatility and ease of estimating the parameters. In the

multivariate case, the latter becomes harder due to the increase in the number

of parameters needed to be estimated. As previously mentioned, we have chosen

a standard DCC-GARCH(1, 1) model, and use the assumption that the inno-

vations are Normally distributed. With these assumptions, we ran into trouble

when trying to estimate the GARCH model for the S&P 500 low volatility

regime, as we needed to choose a suboptimal solution to avoid the parameters

of an ARCH model. We conclude that an ARCH model is not satisfying when

comparing the resulting volatility estimates from this model with that of the

other regimes. For the ARCH model, the estimates are spiky and do not show

the classical signs of volatility clustering, where the volatility keeps a higher

level for multiple consecutive days. As such, we reject this model in favor of a

GARCH model.

To combat the phenomena of estimating an ARCH model, we investigate the
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possibility of extreme outliers affecting the result. With outliers removed, we try

to re-estimate the model, without success. We also investigate the log-likelihood

function, examining which data point affects it the most, and remove those. This

yields the same results as before, only changing the original ARCH parameter

estimates by a few second decimal points. As previously mentioned, including

an AR(1) or ARMA(1,1) mean model does not change the result when removing

outliers either, leading us to believe that a GARCH approach for modeling the

variance in this regime might be wrong. We have not investigated the possibility

of other types of GARCH models and will be left for further research.

5.3.2 Student’s t-distribution

As expected from financial returns data, the data used exhibits heavy tails, even

after dividing the data into different regimes. With this in mind, we consider

GARCH models using the Student’s t-distribution. The resulting parameter

estimates are in large similar to those of using the Normal distribution, with

the exception of the BTC low volatility regime, where the β coefficient is signif-

icantly higher for the Student’s t-distribution. One key difference between the

two assumptions is that the parameters tend to go toward an IGARCH model

for the low volatility data when assuming a Student’s t-distribution. This could

be seen as problematic, as it could suggest persistence in the volatility, that the

data is not stationary, or that the volatility can not be adequately captured

by the simpler GARCH model. As seen from Equation 37, the long-term un-

conditional variance will also not be defined in the case of an IGARCH model.

By examining the autocorrelation function in Figure A.6 in the Appendix, we

can see a ringing pattern for the absolute returns of the S&P 500, rather than

a decaying one, suggesting either a seasonality or non-stationarity. The same

pattern is not shown for BTC, leaving us not able to draw any sound conclusions

as to why IGARCH-like parameter estimates are obtained.

A similar problem also arises when trying to estimate the parameters for the

S&P 500 low volatility regime when using the Student’s t-distribution, where

a suboptimal solution must be chosen to get reasonable values. Choosing the

solution with the highest log-likelihood gives a model that solely depends on

past shocks, giving a noisy and spiky volatility estimate that is not typically

seen for financial data, as per the stylized facts. The volatility can be at its

highest peak one day while being at its lowest for the dataset the other day,

leaving no room for volatility clustering.

A result that is consistent for both assets is that the degrees of freedom are es-
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timated to be significantly higher for the high-volatility regimes, suggesting less

heavy tails in those regimes. This is to be expected when examining the return

series of each regime, as the low-volatility regimes show some heavy outliers

which you would not expect from a low-volatility environment. These outliers

are then compensated by increasing the degrees of freedom such that they still

fit the data properly.

Using the Student’s t-distribution assumption proved to be problematic when

trying to estimate the multivariate models. When using the data for the multi-

variate regimes, the solver would not converge for two of the regimes, no matter

if the parameters were fixed or not. To combat this, one could try to estimate

the DCC-GARCH using multiple starting parameters directly, like previously

done for the univariate models. This would, however, be computationally heavy,

as one would have to optimize at least 12 parameters, trying different starting

values for every iteration. This is left for further research, as time would not

allow us to test this.

5.3.3 Difficulty of Estimating the Parameters

When reviewing the estimated parameters, we notice that some of the GARCH

parameters are not significant, namely ω and α. It is present both when estimat-

ing models for the regimes, seen by the BTC estimates, and for the benchmark

model, seen by the BTC and S&P 500 estimates, but also for both distribu-

tions considered. We know that from the specification of the standard GARCH

framework, these parameters should be significant and positive. The estimates

themselves seem reasonable, as similar results are found by e.g. Ardia et al.

(2019) and Alfaro and Inzunza (2023), so we speculate that the rejection of

these parameters is due to the estimated confidence intervals being too wide.

The selected optimization routine, ”nlminb”, use a quasi-Newton method (Nash,

2014), meaning that the Hessian matrix is approximated. As both ω and α are

relatively small, and should both be positive, we suspect that the log-likelihood

function could be skewed or steep around the optima. We speculate that the

approximation around this point could therefore lead to confidence intervals

that cover beyond the zero point for said parameter, even if the log-likelihood

in those points is low. We are unsure of how this problem could be handled,

but we suspect that the tolerance of the optimizer could play a role. In R, the

optimizer allows for the calibration of parameters regarding the convergence,

which could be further investigated.
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5.4 Final Model

Our final model takes a unique approach to capture dynamic correlations in

financial data. It uses a fuzzy clustering algorithm, which allows data points

to belong to multiple clusters with varying degrees of membership. The fuzzy

clustering process gives probabilities to each observation’s membership within

the different clusters. These probabilities then become the weights in a stan-

dard weighted sum. Essentially, the final model combines the outputs of multi-

ple models, each potentially representing distinct underlying market dynamics

identified by the clusters. The models that are weighted together resemble each

other, only differing by how much each observation should update the correla-

tion.

An interesting observation regarding the fuzzy clustering can be seen from Fig-

ure 4. In this figure, we can quite clearly see four distinct clusters, but the

centers which are marked with red crosses do not line up with them. The

volatilities that this figure is based on comes from a 100 % weight of the regime

that is estimated by the MS Model for each time point, and they clearly show

that the volatilities could easily be divided into four clusters. We do have a

hypothesis that this phenomenon is due to the random elements in the fuzzy

clustering algorithm, as we get slightly different cluster centers every time the

algorithm is run. This is also why we set a fixed random seed in MATLAB

before running the algorithm.

It’s worth noting that our final model shows some similarities to the bench-

mark DCC-GARCH model, especially in the overall shape of the correlation

that is estimated. This suggests that the ensemble approach captures the broad

trends that are present in the data. However, we believe that our model offers

a key advantage, namely that it is quicker to adapt to quick changes in corre-

lation than the DCC-GARCH model. This flexibility allows it to potentially

adapt faster to evolving market conditions than the benchmark DCC-GARCH

model. Additionally, the final model is shown to be more moderate compared

to the 30-day and 60-day rolling correlation. This makes our model good at

avoiding exaggerating volatility in the correlation estimates while still offering

responsiveness to changing market dynamics.

5.5 Increase in Correlation

As seen by the final model, the benchmark model, and to some extent the

rolling correlations, an increased correlation between BTC and the S&P 500

could be seen from 2020 to 2023. A large spike was seen when the COVID-19
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pandemic started in March 2020, but the correlation level seems to have been

elevated until well after the pandemic was no longer a global threat in May

2023 (World Health Organization, 2024). It is worth noting that this period in

general showed a higher volatility, especially for the S&P 500, which can also

be seen from the results. We speculate that this phenomenon of higher corre-

lation can be a result of the pandemic stimulus packages that were distributed

around the world. In the United States alone, almost $5 trillion was handed out

to boost the economy (United States Government, 2024). By introducing this

amount of money into the economy, both small and large investors could invest

in many types of assets, including cryptocurrency. This could therefore lead to

many different types of assets becoming correlated, as money could be invested

in everything.

We further speculate that when this money eventually ran out, a phenomenon

called flight-to-quality could be seen. This is when investors choose to rebalance

their portfolios to contain traditionally ”safer” investments (Beber et al., 2008),

usually in times of uncertainty. This uncertain time could just as well be that the

stimulus money had run out, but no conclusions are drawn in this thesis. Why

investors did not choose to only invest in ”safer” assets during the pandemic

could potentially be explained by the above-mentioned stimulus packages, which

relieved some of the economic uncertainty, or that cryptocurrencies were seen

as an investment that was decoupled from the traditional market. Most of these

explanations are speculative and are worth a further investigation.
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6 Conclusion

Our study found an interesting pattern in the connection between BTC and the

S&P 500. As mentioned in Section 1.2, the objective of this thesis was to exam-

ine if the change in correlation during COVID-19 was a temporary phenomenon

or if it was a long-term trend. Just like other research, we saw a stronger

correlation during COVID-19, which likely happened because investors wanted

diverse investments when the market was uncertain. However, what is interest-

ing is that this stronger correlation didn’t disappear completely after COVID.

Instead, it remained relatively high for a while, before it dipped in the beginning

of 2023. At the end of 2023, the correlation became higher once again, but since

then, our presented model suggests that the correlation is on its way down again.

If this weakening connection holds true, it could mean a change in how in-

vestors view BTC. When markets get shaky, like during COVID, investors tend

to put their money in things they deem ”safe”. This can make even unrelated

investments move together more. But the fact that the correlation seems to be

weakening since the end of 2023 might mean investors are starting to see BTC

differently again. This could make BTC a good option again for investors who

want to diversify their portfolios and potentially protect themselves from risk.

Our new approach proved to be successful. By dividing the data into distinct

regimes and estimating separate GARCH models for each, we achieved a more

nuanced understanding of the dynamic correlation. The weighted combination

of these GARCH models for each regime gave us a result that was both sensitive

to changes in correlation and retained the core structure of the benchmark DCC-

GARCH model. However, the S&P 500 low volatility regime consistently caused

estimation problems for us. Even after trying different techniques, including

outlier removal, exploration of AR and ARMA models, and consideration of

alternative distributions, this particular regime was still difficult for us to get

a clear picture of. This is an area for future research, where perhaps more

advanced methods or additional factors could be explored.

6.1 Further Research

During the concluding face of this thesis, multiple ideas for future research have

popped into existence. Some of them would try to solve the issues faced during

the thesis work, while others would attempt to use the model as an investment

tool. The ideas are not pursued, mainly due to time limitations, but also due

to limited knowledge of optimization routines.
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• Investigate if similar parameters are estimated when using a different

dataset that does not contain a financial downturn like the COVID-19

pandemic. This would help confirm that the volatility of different regimes

can be modeled with different GARCH parameters. It would be interest-

ing to see if this would help the issue faced in the S&P 500 low volatility

regime.

• One could investigate if different GARCH models are able to capture

and model the volatility and correlation in a better way. This would in-

clude GARCH models that capture the asymmetry, such as the EGARCH

model, which would be in line with the asymmetry specified in the styl-

ized facts (Cont, 2001). Another interesting approach could be to use a

stochastic volatility model instead.

• A full estimation of the parameters of the DCC-GARCH model, consid-

ering different starting values of all parameters simultaneously. With an

increasing number of assets, the model parameters quickly grow. Instead

of estimating univariate models, fixing these parameters and only estimat-

ing the parameters for the correlation updating, it would be possible to

estimate the complete model at once, given enough time.

• To test the performance of the model, one could compare it with a simple

buy-and-hold strategy. As the regime estimation is built upon a Markov

Chain, it could easily be forecasted, and the same can be said with the

GARCH framework. If we consider the simple Markowitz mean-variance

model (Markowitz, 1952), one could estimate the optimal weights of each

asset for every time period, given some transaction costs. The only strug-

gle as we see it is the estimation of the fuzzy clustering probabilities of

each state, but other methods might be considered for this.
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A Appendix

Figure A.1: In-depth analysis of the output from the MS Regress package for
BTC.

Figure A.2: In-depth analysis of the output from the MS Regress package for
the S&P 500.
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Figure A.3: The estimated regimes from the MATLAB package MS Regress
assuming the Normal distribution. Green indicates a low volatility period, while
red indicates a high volatility period.

Table A.1: Optimal a and b parameter estimate in the High/Low regime without
using starting values.

Normal
Parameter Estimate P-value

a 0.079174 0.092015
b 0.549524 0.000942

Log-likelihood 2928.9

Table A.2: Optimal GARCH parameter estimates from the S&P 500 low volatil-
ity regime.

Normal Student-t
Parameter Estimate P-value Estimate P-value

µ 0.000911 0.000000 0.000632 0.000000
ω 0.000018 0.000000 0.000062 0.000201
α 0.151524 0.013775 1.000000 0.255048
β 0.000000 1.000000 0.000000 1.000000
ν - - 2.166504 0.000000

Log-likelihood 4975.854 5142.754
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Figure A.4: Estimated volatility with the parameters that yield the highest log-
likelihood for the S&P 500 low volatility regime. The volatility is only on the
modeling data.

Figure A.5: Zoomed-in plot of the correlation in the High/Low regime. We can
observe a similar pattern to the other regimes.

64



(a) ACF of BTC in the low volatility regime.

(b) ACF of BTC in the high volatility regime.

Figure A.6: ACF of the returns and squared returns of BTC in the respective
regimes.
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(a) ACF of the S&P 500 in the low volatility regime.

(b) ACF of S&P 500 in the high volatility regime.

Figure A.7: ACF of the returns and squared returns of the S&P 500 in the
respective regimes.
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