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Abstract

This master thesis is carried out at Sony Nordic which aims to investigate state-of-
the-art methods on 3D Scene reconstruction and explores the potential utilization in
the industry. The project addresses challenges in reconstructing complex scenes us-
ing both static camera setups which consider scenarios with freely moving rigid ob-
jects and freely moving cameras. Throughout the research, several key questions were
answered, resulting in a robust pipeline including image capture, camera calibration,
foreground segmentation, camera estimation, and model training. The reconstruction
utilizes technologies such as Neural Radiance Fields (NeRF) and 3D Gaussian Splat-
ting. The result of this work demonstrates the feasibility and highlights the potential
challenges of 3D reconstruction under various camera settings. Additionally, we pro-
pose several applications that could benefit from these advancements, depending on
the scenarios.

Keywords: 3D reconstruction, Computer Vision, Neural Radiance Fields, Gaussian Splatting,
Rendering, Deep Learning
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Chapter 1

Introduction

This master thesis is carried out at Sony Nordic which aims to investigate state-of-the-art
(SOTA) methods on 3D Scene reconstruction and explore the potential utilization in the
industry. The project addresses challenges in reconstructing complex scenes using both static
camera setups which consider scenarios with freely moving rigid objects and freely moving
cameras. During this process, several key research questions were answered and a robust
pipeline from image capture to final result was built. The findings of this work aim to enhance
the understanding and application of 3D scene reconstruction in different scenarios.

1.1 Background
In recent years, the field of computer vision has made significant strides in understanding
and interpreting the rich visual information present in images [30, 7] and videos [15, 22]. One
of the fundamental goals of computer vision is to endow machines with the ability to per-
ceive and comprehend implicit and explicit information from complex scenes in the way of
human vision. 3D Scene Reconstruction is one of the exciting and challenging research areas.
Compared to the discrete grids on 2D images, 3D representations of objects such as points
cloud or mesh are able to provide more spatial and semantic information that infers the 3D
structure, depth, and relationships within a scene.

At the same time, the high demand of Extended Reality (XR), encompassing Virtual Reality
(VR) and Augmented Reality (AR), even makes this area catch more attention. It has seen
rapid growth in XR applications spanning from entertainment to education and industry,
which raises a need for highly accurate 3D environment understanding. The high demand
for robust VR/AR applications such as XR training systems, for example, holds immense
promise for enhancing learning and skill development in various domains. Central to the
effectiveness of these systems is the ability to reconstruct complex 3D scenes and accurately
track objects with seamless interaction.
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1. Introduction

1.2 Motivation
AI technology has made significant progress in robotics, auto-driving, and decision-making.
Each one of these areas requires AI with an extraordinary understanding of the surroundings.
Therefore, accurately reconstructing the 3D world from the receiving information becomes
a very important standard to assess this capability of AI.

The traditional 3D reconstruction always perform under the ideal assumption that the cam-
era will freely move around a single object[37] or the entire scene[12]. However, due to the
complexity and occlusion during the capture, the 3D reconstruction in an industrial appli-
cation becomes much more challenging. Starting from this point, this research provides us
with a better image of which is the most challenging part of the 3D scene reconstruction
workflow. During the experiment, we utilized both static and dynamic camera setups which
offer distinct advantages that can complement each other in practical applications.

Dynamic cameras, which we define as camera that moves around the object to capture multi-
view images, have the capability to capture the environment from multiple angles. This mo-
bility allows for comprehensive scanning of objects, providing detailed and complete 3D
models. The ability to capture different perspectives is particularly beneficial in understand-
ing the geometry and spatial relationships within a scene.

Conversely, we define static cameras as those fixed on specific position. This type of camera
offers precise tracking and monitoring capabilities. When positioned strategically, they can
provide continuous, stable, and high-resolution data from a fixed viewpoint. This stability
is advantageous for zero-shot level applications where initial or sporadic tracking without
prior information is necessary. Static cameras excel in environments where the focused ob-
jects are moving, such as in motion capture for animation, real-time tracking in augmented
reality (AR), and surveillance systems. They ensure consistent data capture without the need
for recalibration, which is essential for accurate and reliable tracking over time.

The integration of both static and dynamic camera systems can significantly enhance 3D
object reconstruction in real-world scenario. For instance, in an XR training system, com-
bining both setups allows for robust and flexible data acquisition. In a training simulation
for industrial maintenance, static cameras can track the trainee’s movements and tools, while
dynamic cameras can capture the environment’s details, creating an immersive and accurate
virtual model. This dual approach ensures comprehensive coverage and accurate data, en-
hancing the overall effectiveness and realism of the simulation.

1.3 Aim and Scope
This project will be carried out with the perspective of developing a whole working pipeline
from capturing the video from single camera to reconstructing the 3D structure of target
objects. It will be assumed there are two different camera setups. In one circumstance, there
will be a static camera with known intrinsic parameters and the target object will keep free
moving within the field of view to simulate the context under a multi-cam system. In the
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1.4 Contribution to the State of Knowledge

second setup, like traditional 3D scanning, the objects will be placed on the plane instead
and captured by the camera from different angles

By the proposed experiment setup and target application scenario, the following research
questions will be answered:

• How can arbitrary rigid objects be reconstructed from static cameras, and what are
the primary challenges involved in this process?

• What are the necessary components in the pipeline from captured images to the final
reconstructed object?

• Which reconstruction method is considered most effective among existing algorithms?

• What are the potential uses of this technique?

1.4 Contribution to the State of Knowledge
The first question aims to investigate the methodologies and difficulties associated with re-
constructing 3D models of arbitrary rigid objects using static camera setups. It will explore
challenges such as camera extrinsic estimation, feature detection and matching, and han-
dling occlusions or complex object geometries. The second question seeks to identify and
outline the essential stages and components involved in the reconstruction pipeline, starting
from capturing images to generating a final 3D model. Key components may include camera
calibration, preprocessing, feature extraction, structure-from-motion (SfM) for camera pose
estimation, and mesh reconstruction techniques.

The third question focuses on evaluating and comparing different reconstruction algorithms
including novel-view-synthetic based methods like NeRF, 3D Gaussian Splatting, and Pho-
togrammetry based methods to determine the most suitable approach for generating accurate
and detailed 3D meshes from reconstructed point clouds or from the images. For the fourth
question, we will explore the practical uses and benefits of using reconstructed 3D scenes in
various areas.

In the last problem, we will focus on developing methodologies and metrics to assess the
quality and suitability of reconstructed scenes for XR training. Evaluation criteria may in-
clude the fidelity of the synthetic novel view images compared to the real-world objects, time
cost, and stability of the reconstruction quality under different capture trajectories.

1.5 Sustainable Development Goals
The Sustainable Development Goals (SDGs), known as the Global Goals, were adopted by
all United Nations members in 2015, aiming to create peace and prosperity for people and
the planet [28]. The 17 SDG goals cover a wide range from climate change to public health,
education, economics, etc. The contributions of our project align with the following goals

11



1. Introduction

Quality Education

XR and AI technologies have shaped education with new digital experiences. Some insti-
tutions that adopted these technologies acknowledge that XR and AI applications have sig-
nificantly boosted the quality of their education [43]. Our project allows for the creation of
highly detailed and accurate models of real-world objects, environments, or historical arti-
facts. In an educational XR setting, students can interact with these models in virtual or
augmented reality, exploring details that are either too small, too distant, or too fragile to
engage with physically.

Figure 1.1: Ensure inclusive and equitable quality education and pro-
mote lifelong learning opportunities for all

Decent Work and Economic Growth

A fast-growing economy requires a large number of skilled industrial workers. Our works
make highly detailed and interactive models of machinery, equipment, or work environments
used in XR training scenarios become possible. This can dramatically enhance the training
process for employees, especially in sectors like manufacturing, healthcare, and construction
with faster learning curves, reduced training costs, and fewer workplace accidents.

12



1.6 Ethics

Figure 1.2: Promote sustained, inclusive and sustainable economic
growth, full and productive employment and decent work for all

1.6 Ethics
The usage of a single-camera or multi-camera system for 3D reconstruction also raises several
ethical questions that we should consider.

Privacy and Copyright Concerns
One of the biggest concerns of our work is the privacy issue. As this technology will capture
and store large amounts of videos and reconstruct highly accurate models of private proper-
ties and public areas, there is a risk of infringing on individuals’ privacy. On the other hand,
the 3D objects reconstructed from real commercial objects may raise the copyright issue when
utilized in the applications.

Impact on Employment
As 3D scene reconstruction technologies become more advanced, there could be implications
for employment, particularly in fields like surveying, construction, and architecture. While
these technologies can enhance productivity and create new opportunities, they might also
lead to job displacement. Addressing these changes responsibly, such as through workforce
retraining and education, is important.

13



1. Introduction

14



Chapter 2

Theory

This chapter serves as an overview of theoretical frameworks that have been applied in this
thesis project. Structure from Motion (SfM) is the most critical part of the entire workflow,
offering an explicit estimation of the camera position and orientation. A correct SfM result is
the prerequisite for the subsequent tasks. Following this, we will explain the basic mechanism
of Neural Radiance Field (NeRF) and the rendering technology it relies on. To retrieve an ex-
plicit 3D object representation, we will also present a novel surface reconstruction algorithm
alongside its associated

2.1 Structure from Motion
2.1.1 Camera Model
The pinhole model represents a fundamental camera model that simplifies the process of
light projection from a 3D object onto an image plane. As can be seen from the right side
of Figure 2.1, we refer to this system as a camera coordinate system since the origin of this
coordinate system is located at the camera center (the pinhole) C = (0, 0, 0). The image
plane is typically positioned at z = 1, with its normal vector aligned parallel to the z-axis.
Consider a point X located at (X1, X2, X3) in 3D space. The corresponding projection point
x on the image plane can be determined by inferring that x = (X1/X3, X2/X3, 1) [16].

2.1.2 Camera Parameter
In general, the camera parameter can be classified into intrinsic parameter and extrinsic pa-
rameter [16]. The intrinsic parameters of a camera define its internal characteristics and how
it projects a 3D scene onto a 2D image. These parameters are specific to the camera itself
and remain constant as long as the camera’s internal configuration does not change. For ex-
ample, maintaining consistent settings on the zoom lens and aperture. Usually, the intrinsic

15



2. Theory

Figure 2.1: Pinhole camera geometry. C is the camera centre and p
the principal point[16]

parameter can be represented as a matrix K :

K =

 fx s cx
0 fy cy
0 0 0

 (2.1)

where fx, fy are the focal lengths, cx and cy are refer as the coordinates of the principal point
or optical center. s is represented as pixel skew which is used to correct for tiled pixels.

The extrinsic parameter describes the position and orientation of the camera coordinate
relative to the world coordinate system. In another word, these parameters will be changed
whenever the camera is moved. In general, the extrinsic parameters are made up of a 3 × 3
rotation matrix R and a 3 × 1 transition vector t

[R t] =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

 (2.2)

In a pinhole camera model, a 3D point in space will be simply projected onto the image plane
via a projective transformation, preserving straight lines in both 3D space and the resulting
2D image [16]. However, modern consumer cameras normally equip multiple lenses to achieve
desired photographic effects, leading to inevitable distortion in the captured images. To
accurately model a camera in real life, it is vital to consider the distortion parameter.

Figure 2.2: Example of different types of radial distortion. Radial
distortion occurs when light rays bend more near the edges of a lens
than they do at its optical center [17].

Using radial distortion as an example, which follows a non-linear function whereby straight
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2.2 Neural Radiance Fields

lines positioned closer to the lens periphery exhibit a greater degree of bending. This results
in two distinct types of radial distortion, each associated with specific signs of displacement,
as depicted in figure 2.2. The process of undistorting the image can be modeled as:

xu =

d(rd)xd
d(rd)yd

1

 (2.3)

where xd = (xd , yd , 1) is the distorted point and rd =

√
x2

d + y2
d is the distance to the principal

point. d is usually a polynomial function where the coefficients k1, k2, k3.... are considered as
distortion parameter.

2.1.3 Triangulation
Triangulation is one of the most crucial processes that aim to find the unknown 3D point X
under the assumption that the correspondence between image pairs and the camera param-
eter is known. The core of this question is finding the solution of the equation:

λixi = PiXi, i = 1, ...., n (2.4)

where P = K[R t] is the known camera parameter that we explained in the last subsection.
λ is the unknown scale or depth. At least two matching image points that are projected from
the same 3D point are needed to solve this problem by Direct Linear Transformation (DLT).
In most cases, there is no exact solution due to the noise from computation and measurement
but searching for the optimal solution with homogeneous least squares. Many optimization
strategies can be chosen for this homogeneous least squares question such as Singular Value
Decomposition (SVD) and lower–upper (LU) decomposition [33].

2.2 Neural Radiance Fields
Neural Radiance Fields (NeRF) was published in 2020 [26] and has become the game-changer
in the novel-view-synthesis area by its outstanding performance in tackling the complex scene
and innovative concept of neural radiance field. Compared to the mesh-based representation
of the scene [3, 8], NeRF has more flexibility and is even more desirable for rendering specific
objects like volumetric cloud. Compared to other volumetric-based methods, NeRF performs
impressively with higher quality and less time and space complexity on high-resolution im-
ages.

The key contribution of NeRF can be summarized as designing an approach that uses Multi-
Layer Perceptron (MLP) networks as a 5D neural radiance field to represent static scenes. The
MLP takes 5D coordinate (x, y, z, θ, ϕ) as input where (x, y, z) represent a spatial point in 3D
space and (θ, ϕ) represent the viewing direction. The output is an emitted color c = (r, g, b)
and volume density σ. The overview of the method can be seen in Figure 2.3. During the
rendering for a specific viewpoint, sets of points will be sampled in a march along the ray
from each pixel of the image. Those points will be concatenated with their respective 2d
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2. Theory

view directions and forwarded to the neural network as input. The final pixel color is com-
posed by accumulating the RGB color and densities by volume rendering techniques. The
rendering loss for this training is based on the discrepancy between the reconstructed pixel
and the ground truth pixel [26].

Figure 2.3: Overview of NeRF scene representation and differen-
tiable rendering procedure [26]

2.2.1 Volume Rendering
Volume rendering plays a crucial role in the implementation of NeRF by modeling how rays
behave as they traverse through particles and culminate in the final color. Generally, four
types of interactions happen between the photons and particles. Photons may either be ab-
sorbed by the particle or scattered outwards from the previous path, according to the light
scattering theory [1], which leads to a reduction in the radiance intensity. Conversely, the par-
ticles themselves may emit light and the in-scattering happens where the photons in other
directions may coincide with photons in the current direction, thereby augmenting the ra-
diation intensity along the current light path. The following equation was introduced in the
original paper of NeRF [26]:

C(r) =
∫ tn

t f

T (t)σ(r(t))c(r(t), d) dt,

where T (t) = exp
(
−

∫ t

tn
σ(r(s)) ds

) (2.5)

In this equation, r(t) = o + td denotes the camera ray. The light scattering is all sim-
plified into σ(x) and interpreted as the differential probability of a ray terminating at an
infinitesimal particle at location x. T (t) denotes the accumulated transmittance along the
ray from near bound to position t, which can be interpreted as the probability the ray travels
from tn to t without hitting any other particles.

To efficiently estimate the integral, a stratified sampling from each interval was also applied.

18



2.3 Neural Surface Reconstruction

The following equation describes the estimation from N discrete samples:

Ĉ(r) =
N∑

i=1

Ti
(
1 − exp (−σiδi)

)
ci,

where Ti = exp

− i−1∑
j=1

σ jδ j


(2.6)

In the equation, δi = ti+1 − ti is the distance between adjacent samples

2.3 Neural Surface Reconstruction
NeRF gave us a novel approach to implicitly representing 3D scenes. Nevertheless, explicit
representation is still indispensable for most of the practical application. While some varia-
tions [27, 9, 29] of NeRF have made strides in surface reconstruction, it remains challenging
due to the absence of surface constraints in the representation. Inspired by both volume ren-
dering and Signed Distance Function (SDF), Neural Surface Reconstruction (NeuS) outper-
forms the state-of-the-art in high-quality surface reconstruction and receives an impressive
result on objects and scenes with complex structures and self-occlusion [38].

Building upon prior research, NeuS2[39] was introduced in 2022, which overcomes the slow
training speed of NeuS and brings in support for multi-view dynamic objects. Inspired by
Instant-NGP [27], Neu2 implements multi-resolution hash tables to accelerate the training
process of the neural surface representation. Additionally, to reduce computational complex-
ity further, a novel second-order derivative is also presented to leverage CUDA parallelism.

Figure 2.4: Comparison on surface reconstruction [38] among NeuS,
IDR [42] and NeRF

2.3.1 Signed Distance Function
Signed Distance Function (SDF) is a function that accepts a position as input and returns
the distance to the nearest point on an object’s surface. Usually, if the position lies inside
the shape, the distance will be positive. If outside, it’s negative. SDF has been widely used in
computer graphics and geometry processing to represent geometric shapes implicitly. One
of the key advantages of it is the ability to describe complex scenes with mathematical ex-
pression and it is differentiable. For example, the zero level of SDF f (x) = 0 represents the
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2. Theory

surface of the geometric object. Many surface reconstruction algorithms including NeuS2
are built based on this theory.

Figure 2.5: The 2d signed distance field to the Stanford bunny[32]

2.4 Related work
COLMAP
COLMAP [34] is a robust end-to-end pipeline implementation for Structure-from-Motion
(SfM) and Multi-View Stereo (MVS), which integrates a wide range of control options during
the reconstruction based on both GUI and command-line. Meanwhile, the paper behind this
work also contributes a novel geometric verification strategy and innovation on the incre-
mental reconstruction process.

Instant-NGP
As one of the most successful variants of NeRF, Instant-NGP proposed a multi-resolution
hash encoding that splits one MLPs for representing Neural Graphic primitives into smaller,
more efficient MLPs [27]. This multiresolution structure also allows for an excellent paral-
lelism on modern GPUs. By implementing the whole system with the CUDA kernel, Instant-
NGP accelerates the reconstruction speed for hours to seconds.

3D Gaussian Splatting
Different from treating the whole scene as a neural radiance field, 3D Gaussian Splatting
(3DGS) represents the scene as a set of 3D Gaussians initialized from the points cloud [20].
The Gaussians are then projected onto 2D, which is known as Splatting, and rendered using
a fast, differentiable rasterizer. This approach allows for real-time rendering of high-quality
novel views of the scene, even on consumer-grade GPUs. The method is evaluated on several
established datasets and is shown to achieve state-of-the-art results in terms of both quality
and speed. While it excels at rendering, extracting the scene’s surface from these Gaussians
for further editing and manipulation has been a challenge.
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Surface-Aligned Gaussian Splatting
Surface-Aligned Gaussian Splatting (SuGaR) addresses the challenge of surface extraction
from 3D Gaussian by introducing a regularization term during optimization [14]. This regu-
larization term encourages the Gaussians to align with the scene’s surface, making subsequent
mesh extraction easier. The method then efficiently samples points on the visible surface and
employs Poisson reconstruction to generate a detailed mesh within minutes on a single GPU.
Additionally, SuGaR offers an optional refinement step to bind Gaussians to the mesh, en-
abling high-quality rendering and editing capabilities.

OpenCV
OpenCV (Open Source Computer Vision Library) is a free, open-source library widely used
for computer vision and machine learning tasks. It provides a comprehensive set of tools
and algorithms for camera calibration, real-time image and video processing, analysis, and
manipulation [2].
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Chapter 3

Methods

In this chapter, we will give a brief overview of the structure of our pipeline and the experi-
ment setup. Then, the details of each component will be explained.

3.1 Data Overview
Static Camera with Arbitrary Rigid Objects
At the beginning of this project, the videos for single rigid objects were collected for testing.
From easy to hard, three different objects with clear features on their appearance were chosen,
as shown in Figure 3.1. The first object we picked is a soccer ball because of the simple
geometry, clear appearance such as stripes and conspicuous logo on its surface. The second
object is a keyboard which has more complex geometry but still hold the clear features on
each keys. The last one we chose is a helmet which has more complexity in geometry shape
and features compared to the soccer or the keyboard.

Figure 3.1: Several Objects we selected for reconstruction

All videos were captured by an iPhone 12 mounted on a tripod with the fixed 1× focal
length. The assistant flipped the objects in front of the camera to expose as many facets of
the object as possible and tried to avoid occlusion caused by the hands.

23
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Static Objects with Moving Camera

Following the aforementioned experiment, we proceeded to capture the videos with objects
positioned in the center while the camera moved around them. Since we lack stabilization
equipment, in this scenario, the camera should be held at a slow pace to avoid motion blur.
Furthermore, we varied the height and angle of movement around the objects to enhance the
comprehensiveness of the captured trajectory 3.2.

Figure 3.2: The video capture with the moving camera

Static Complex Scene with Moving Camera—Taking Medical Train-
ing as an Example

In most industrial scenarios we are faced with the whole scene instead of a single rigid object.
To increase the robustness and adaptability of our system, We recreated a medical training
scenario to increase the complexity of the reconstruction. In this task, an operation table was
placed with different varieties of medical instruments. To mitigate potential reflections, the
table is covered by a white tablecloth. For better control of the camera intrinsic parameter,
we use a Sony Alpha 7C mark II camera with 24-70mm zooming lens. To keep the intrinsic
parameter unchanged, we chose the manual focus and fixed focus length, as depicted in Figure
3.3.
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Figure 3.3: The medical operation table we set to simulate the
venipuncture

3.2 Pipeline Overview
In this section, we will give an overview of our pipeline developed for 3D scene understand-
ing and reconstruction, which integrates advanced computational techniques at each stage of
the data processing and equips the ability to manage both static and dynamic objects under
varying camera conditions (see Figure 3.4).

Figure 3.4: The end-to-end pipeline of our works

The first stage of the pipeline involves preprocessing, where relevant frames are selected from
video streams or multiple images and cleaned to remove noise and other visual artifacts like
motion blur which could impair accuracy for the following task.

Camera calibration is performed to retrieve intrinsic parameters which are essential for cor-
recting the image distortion from the camera model and recovering the real-world dimension.
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This involves using either incremental approaches to refine camera parameters over succes-
sive iterations or using a chessboard mark to track the feature with OpenCV.

Camera estimation varies depending on whether the scene objects are static or dynamic and
whether the camera is moving or static. For static objects with a moving camera, COLMAP
is used for photogrammetric reconstructions to capture diverse data points, which aid in ac-
curate structural mapping. When dealing with dynamic objects and a static camera, initial
segmentation is employed to effectively isolate and track object movements. Subsequent ad-
justments in the scene’s reconstruction are made based on observed movements.

The model training component utilizes cutting-edge neural network techniques for scene
representation and rendering. Instant-NGP employs neural graphics primitives for rapid
scene representation, allowing real-time rendering. NeuS2, a surface reconstruction model,
enables an effective explicit representation of the scene.

During each stage of the pipeline, validated metrics will be given to assess the quality of
the intermediate results. In preprocessing, sharpness histograms evaluate image quality. Cal-
ibration accuracy is gauged by reprojection RMS. For camera estimation, detection confi-
dence and reprojection error measure precision. Finally, the fidelity of the rendered results is
evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
between the synthesized novel view and the ground truth.

3.3 Pre-processing
Image pre-processing is a set of operations to enhance the quality of images for the follow-
ing processing purposes [13]. This typically includes Noise Filtering, Color Balance, and
Grayscale Conversion. In our pipeline, the captured video is processed to extract images,
eliminating motion blur and removing the repeated frames as part of the pre-processing
phase.

3.3.1 Motion Blur Removal
The motion blur is usually caused by abrupt movement or vibration of the camera during
the exposure time. In the domain of image processing, the precision of feature extraction
techniques, particularly the Scale-Invariant Feature Transform (SIFT)[24], is pivotal for suc-
cessful calibration and camera pose estimation. Removing motion blur is therefore crucial
for the SIFT algorithm to accurately detect and describe local features across varying scales.

In this work, the sharpness of each frame is computed by the variance of the result obtained
from Laplacian operator and visualized in the histogram. Laplacian operator is defined as the
second derivative of the pixel intensity, which reflects the edges in an image[2]. As expressed
in formula 3.1, where∇2I denotes the Laplacian of the image I , µ is the mean of the Laplacian
values, and N is the total number of pixels in the image. This gives an overview of motion
blur throughout the whole video clip and a threshold for filtering can be assigned by clicking
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on the histogram.

Var(∇2I) =
1
N

N∑
i=1

(
∇2I(xi) − µ

)2
, (3.1)

Figure 3.5: Statistic of the sharpness of the recorded helmet

3.4 Camera Calibration
An accurate camera intrinsic estimation is the prerequisite of a correct camera pose estima-
tion. During most of the time of the experiment, we kept using the same camera with the
same focal length so that the camera parameters could be utilized repeatedly. Here we present
several methods that we used for camera calibration and validate metrics.

3.4.1 Intrinsic Parameter Estimation
During image registration, solving the PnP problemn[10] enables estimation of the camera
pose Pc and intrinsic parameters K . However, these initial intrinsic parameters are often
imprecise, and the local minimum has not yet been reached. Benefiting from the Bundle Ad-
justment [36] in COLMAP, as shown in Figure 3.11, parameters can be further refined using
additional registered images. In this context, whenever camera recalibration is necessary, a
dedicated video with features-rich surroundings is captured for parameter extraction.

Figure 3.6: Incremental SfM pipeline implemented in COLMAP
[34].

3.4.2 Intrinsic Parameter Validations
To assess the accuracy of the intrinsic parameter, we calculated the reprojection with intrin-
sic parameters from different calibration methods. We proceeded with feature extraction
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from the validation images utilizing the SIFT algorithm. These extracted features were used
to triangulate sparse 3D points, which were then projected onto the image plane using the
iteratively refined camera parameters. By comparing the resulting projections with the cor-
responding 2D feature coordinates, we calculated reprojection errors, including Root Mean
Square Error (RMSE) and Mean Square Error (MSE). This approach effectively validates cal-
ibration accuracy, particularly in scenarios where ground truth data is unavailable.

3.5 Object Detection and Segmentation
Segment Anything (SAM) is a powerful zero-shot image segmentation model published by
Meta. It was trained over 1 billion masks on 11M images [21] with an impressive performance
on segmenting any unfamiliar objects. Compared to the traditional segmentation model, no
fine-tuning is needed for SAM. Additionally, SAM accepts using bounding boxes or anchor
points as prompts for accurate segmentation, which provides more solutions for our task.
By using SAM as the segmentation baseline, we designed two strategies to apply accurate
single-object segmentation for our task.

3.5.1 Segment Anything and Adjacent Searching
In the first method, we generated masks for the entire image along all the video frames with-
out using any prompt and then started an adjacent searching after annotating one of the
frames manually. In figure 3.7, we show the pipeline of this method.
There are three model checkpoints that can be chosen from. Considering the performance
cost, we chose the smallest one vit_b as the checkpoint. The first 64 objects’ masks will be
saved into a bitmap by bitwise OR operation on each image. Then, an annotation function
will be executed and the annotation window will be rendered by OpenCV GUI library. By
collecting the mouse and keyboard events from the callback function, the user can scroll to
a desired image with less occlusion and select the target objects. The highlighted outline is
done by bitwise XOR between the object mask and the eroded mask, which is represented
in Figure 3.8. Once the target object has been selected, the corresponding mask will be saved
and passed to the adjacent searching function.

In the adjacent searching function, we use the annotated mask as the starting point Mi and
search for the best matching mask from i − n to i + n with the highest Intersection over
Union (IoU) and inclusion score. To account for scenarios where a single object might be
fragmented into multiple smaller regions, we have developed a multi-mask matching mech-
anism. This feature facilitates the computation of IoU and inclusion across several bitmap
representations. Throughout the process, an index queue and a mask list were maintained.
Once the highest IoU and inclusion score have been computed, we add the corresponding
frame index to the queue and mask list if it hasn’t already been recorded. The detailed algo-
rithm will be explained in Algorithm 1.

The adjacent searching function works based on the assumption that neighboring frames
will typically feature masks with similar spatial positions, thereby giving a high IoU value.
However, this solution met the problem in the scenario with the dynamic camera. As shown
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Algorithm 1 Adjacent Search

1: function AdjacentSearch(queue,masks,mask_bitmaps, imgs,Ns, θinc, θiou, θmulti)
2: curr_round← 0
3: while queue is not empty do
4: Sort(queue)
5: curr← queue.pop(0)
6: curr_round← curr_round + 1
7: masks[curr][’final’]← True
8: ref_mask← GetMask(mask_bitmaps[curr])
9: img← ReadImage(imgs[curr])

10: result← CalculateMaskedImage(img, ref_mask)
11: for i ∈ {curr − Ns, curr + Ns + 1} do
12: if i == curr or i < 0 or i ≥ mask_bitmaps.shape[0] then
13: continue
14: end if
15: if masks[i] is not None and masks[i][’final’] then
16: continue
17: end if
18: ibest, sincl, siou ← FindBestMatch(mask_bitmaps[i], ref_mask)
19: imbest, smincl, smiou ← FindMultiMatch(mask_bitmaps[i], ref_mask, θmulti)
20: if smincl > sincl and smiou > siou then
21: ibest, sincl, siou ← imbest, smincl, smiou
22: end if
23: if ibest is not None and (sincl > θinc or siou > θiou) then
24: if masks[i] is None then
25: masks[i]← CreateMaskEntry(ibest, curr_round, siou, sincl)
26: queue.append(i)
27: else
28: if masks[i][’score’] < siou then
29: UpdateMaskEntry(masks[i], ibest, curr_round, siou, sincl)
30: end if
31: end if
32: end if
33: end for
34: end while
35: end function
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Figure 3.7: Annotation window from the segmentation result

Figure 3.8: Annotation window from the segmentation result

in Figure 3.9, the dramatic camera movement caused by video shooting can cause the object
to deviate from the frame’s center, which leads to the mismatching between foreground and
background.

To address this issue and enhance the robustness and flexibility of the system, we raise an-
other solution: integrating bounding box prompts by YOLO-World [4] into the Segment
Anything (SAM).
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3.5 Object Detection and Segmentation

Figure 3.9: Annotation and the wrong matching result

3.5.2 Segment Anything with Annotated Bounding
Box Prompt

The YOLO-World model is a YOLOv8-based[31] approach for Open-Vocabulary Detection
tasks. It means that the model can even detect objects that have never appeared during the
train period. This enables straightforward object detection with simple descriptive texts [5].
With a pre-trained model on larger-scale datasets, this method can detect a wide range of
objects which will help us skip the process of manual data labeling.

In our case, "syringe" is set as the text prompt. After inference from YOLO-World model,
several bounding boxes will be given. To retrieve the bound box prompt with a clear defini-
tion, we added a filter to keep the bounding box with the highest confidence. In most cases,
this will accurately annotate the target object, and provide a desirable prompt from SAM.

Figure 3.10: Segmentation Result from SAM by YOLO-World gen-
erated bounding box

The detail of this segmentation method is given in Figure 3.10. We used the bounding
box predicted by YOLO-World as the prompt for the SAM model. In this case, we avoid the
time cost of segmenting the unrelated objects. From table 4.2, we can see this strategy results
in nearly four times faster than segmenting the whole image and searching the target object
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Methods YOLO-World SAM AS Total Time(s/it)
SAM+AS · · · 1.03 0.78 1.81
YOLO-World+SAM 0.02 0.46 · · · 0.48

Table 3.1: Time cost on each segmentation module

3.6 Incremental SfM Reconstruction

3.6.1 Feature Detection and Extraction
The first step of SfM always starts with feature extraction. Similar to the camera calibration
phase, a new image registration database is appointed and the path for the input is assigned
as the undistorted images. Given that distortion has been removed, a simple pinhole model,
requiring only the focal length and principal point, will be used instead of a complex camera
model. The focal length will be the one we got from calibration, and the principal point will
be the center coordinate of the sensor. To increase the number of matches detected by SIFT,
we also estimate the affine feature shape with option estimate_affine_shape=true

3.6.2 Feature matching
As shown in Figure 3.7, the second step of COLMAP’s SfM is feature matching and geometric
verification. The feature matching matches the image pairs with their appearance description
and cannot guarantee a precise correspondence between images to the scene point. Geomet-
ric verification verifies this process by estimating a valid transformation mapping between
the feature points and scene points[34].

There are several pre-defined matching modes that can be chosen from COLMAP library.
During the experiment, we mainly focus on Sequential Matching and Exhaustive Matching.
Sequential Matching only matches image pairs along N consecutive frames since the higher
possibility of visual overlapping, which is suitable when images are captured in sequential
order, for instance, video frames in our case. On the other hand, exhaustive matching, some-
times referred as global matching, involves comparing features across all possible image pairs
and not only consecutive ones. This method is more computationally intensive but techni-
cally provides more accurate and robust results, especially in a small-scale dataset or dataset
where the camera motion is not well-ordered.

3.6.3 Sparse Reconstruction
After producing the scene graph in the previous two steps, the incremental reconstruction
process can be started by colmap mapper. COLMAP will first seed an initial image pair
among all the extracted data from the database. The quality of the initial pair is significant
for the whole sparse reconstruction process. Then, the scene is incrementally extended by
registering new images and triangulating new points. The result after sparse reconstruction
can be visual by COLMAP GUI, as shown in Figure ??
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Figure 3.11: SfM Reconstruction Result with a helmet

3.7 Objects 3D Reconstruction
In this section, we examine several applications of advanced reconstruction methods — In-
stant Neural Graphics Primitives (Instant-NGP) [27], 3D Gaussian Splatting [20], Neural Im-
plicit Surfaces (NeuS) [38], Surface-Aligned Gaussian Splatting [14] for Neural Field Render-
ing and surface reconstruction. variety of objects captured under different conditions using
static and dynamic camera setups to evaluate the performance of each technique. Instant-
NGP was known for its rapid training and inference capabilities, making it ideal for inter-
active applications. 3D Gaussian Splatting proved effective in handling sparse datasets with
high-qualified novel view synthesis, while NeuS excelled in producing high-quality surface
reconstructions with fine geometric details. Through comparative analysis using both sub-
jective and objective metrics, we identified the strengths and limitations of each method in
handling complex object geometries and motion dynamics. The findings from these tests
lead to practical insights into the selection of appropriate methods for specific applications
in 3D reconstruction, providing a foundation for future research.

3.7.1 Novel View Rendering
Instant Neural Graphics Primitives(Instant-NGP)[27] is one of the variations of the NeRF.
Compared to NeRF, Instant-NGP still replies on volume rendering for the final output but
with a smaller neural network with the help of Multiresolution Hash Encoding. The excel-
lent training pipeline and full implementation on CUDA make this method accelerated by
several orders of magnitude.
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To start the training with Instant-NGP, an input JSON file needs to be prepared, using the
camera parameters obtained from the prior step. The camera angle measures the angle of
Field of View (FoV) which is straightforward to calculate along with the image size and focal
length. For Instant-NGP, camera poses are required in the form of a transformation matrix.
Therefore, the quaternion vectors given by COLMAP need to be converted into a rotation
matrix. The training detail is presented in Figure A.2

Figure 3.12: Ongoing training in Instant-NGP

3D Gaussian Splatting (3DGS) is a novel real-time radiance field rendering technique. Differ-
ent from NeRF-based methods which represent the scene with volume density and RGB color
generated by Multi-Layer Perceptron (MLP), 3DGS represents the scene with volumetric 3D
Gaussian and renders the final images with a differentiable tile rasterizer. This fusion grants
3DGS the advantage from both worlds: competitive training efficiency and state-of-the-art
visual quality [20]. As part of this thesis work, we also conducted tests on various objects us-
ing 3DGS to facilitate comparison. 3DGS accepts either NeRF synthetic data or COLMAP
data as input. We can directly use the previous results without data transformation. The
rendering result for a recorded status is shown in Figure 3.13.

3.7.2 Surface Reconstruction
The motivation to use NeuS as well as SuGaR stems from their capacity to represent and
reconstruct 3D mesh. This explicit representation is not only more conducive to editing but
also enhances performance when using traditional rendering pipelines such as rasterization
or ray tracing.

As described in Section 2.3, given the help of Signed Distance Function and multi-resolution
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Figure 3.13: Training result from 3D Gaussian Splatting

hash tables, NeuS2 equips both efficiency and quality on surface reconstruction even for dy-
namic scenes. NeuS2 supports the same form of input as Instant-NGP, so there is no need
for transform data. The rendered result with 20 000 iterations training is shown in Figure
3.14, more results can be found in Chapter 4.4.

Figure 3.14: Training result from 3D Gaussian Splatting

The result indicates that the surface reconstruction in NeuS2 significantly outperforms
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texture reconstruction. Although the predicted images appeared reasonable compared to the
ground truth, they did not accurately reflect the same on the textures. Additionally, we also
noticed that despite the acceptable appearance of the predicted images, the mesh shapes were
often severely distorted. Several strategies for enhancing performance were tested including
adjusting the number of iterations and modifying the learning rate. However, these did not
yield significant improvements.

The previous experiment of rendering novel view from 3DGS has demonstrated its outstand-
ing performance, this makes us wonder how the mesh extracted from 3DGS will look like.
Extracting a mesh from millions of 3D Gaussian is a significant challenge. However, Surface-
Aligned Gaussian Splatting(SuGaR) gives a solution [14]. In this model, a method that aligns
3D Gaussian to sample points on the real surface of the scene is proposed and Poisson re-
construction is utilized to extract the surface. In Figure 3.15, we demonstrate the result from
3DGS to SuGaR. The holes lying on the objects show that the 3D Gaussian were not com-
pletely aligned with the surface. Also some outlines still exist around the object.

Figure 3.15: Training result from 3D Gaussian Splatting and SuGaR
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Results

In this chapter, we present the results of our 3D reconstruction pipeline, detailing the out-
comes and interdependencies of each step, from preprocessing and camera calibration to im-
age segmentation, camera extrinsic estimation, and model training. We evaluate the pipeline’s
effectiveness through comparative analysis of different experimental methods and captured
data, assessed by both visual quality and quantitative metrics. This comprehensive evalua-
tion not only demonstrates the pipeline’s overall performance but also identifies areas for
future improvement, providing insights into the practical implications of our approach in
real-world scenarios.

4.1 Evaluation Metrics

4.1.1 Reprojection Error
The reprojection error is a common measure used in computer vision to quantify the accu-
racy of a 3D reconstruction or camera calibration. It represents the discrepancy between the
projected points, where the points are projected from the 3D object space into the image
plane using the camera’s parameters, and the actual observed points in the image.

Usually, the formula for reprojection error is given by:

e =
√

(x − x̂)2 + (y − ŷ)2 (4.1)

where (x, y) are the coordinates of the observed point in the image, and (x̂, ŷ) are the
coordinates of the projected point using the estimated camera parameters.
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4.1.2 Structural Similarity Index (SSIM) and Peak
Signal-to-Noise Ratio (PSNR)

To have a quantizable criterion for evaluating the reconstruction result and assess the effec-
tiveness of the different 3D reconstruction algorithms, here we applied two widely used met-
rics, which are Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM).
PSNR provides a quantitative measure of the difference between two images based on their
pixel-wise intensity differences which makes it particularly sensitive to any small discrep-
ancies between the target and the reconstructed images. A higher value indicates supe-
rior performance. SSIM quantifies the discrepancy between the original and reconstructed
images[40], considering factors like luminance, contrast, and structure through local patches.
Since SSIM was computed by each local patch, it provides a more perceptually relevant mea-
sure of image quality. A higher SSIM value signifies better performance.

4.2 Calibration and Distortion Correction Re-
sults

Here in Figure 4.2, we present the visual undistortion result got from two different camera
calibration strategies. The first setup is calibration by recognizing the patterns on ChArUco
board with the help of OpenCV functions. The ChArUco board is shown in Figure 4.1 which
is a combination of a chess board and an ArUco board that includes many synthetic square
markers composed of a wide black border and an inner binary matrix that determines its
identity. The ChArUco board has proven to have strong robustness against occlusions. The
other method rely on the sparse reconstruction process in COLMAP, which estimates both
the camera transformation matrix and camera intrinsic through solving the PnP problem.
Here we tried one situation the ChArUco board was kept in the scene but the other only
extracted the features from the surroundings.

Figure 4.1: Definition of ChArUco board [2]

Since we used the 0.5x zoom lens on an iPhone 12 instead of the fisheye camera, the
bending effect is not very clear in our examples also in our undistortion result so we showed
the re-projection error in Table 4.1 by applying the undistortion with calibrated parameters
on a test scene. As shown in Figure 4.3
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Figure 4.2: Undistortion result by using COLMAP

Figure 4.3: Testing scene for computing reprojection error

The results from three different calibrations are really beyond our expectations. It indi-
cates the sparse construction is as good as calibration with marks, or even better. It’s also a
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Table 4.1: The re-projection error by different calibration solutions
on the test scene

Methods RMS [px]
COLMAP calibration w ChAruCo 0.765476

COLMAP calibration w/o ChAruCo 0.770751
ChAruCo-based calibration (OpenCV) 0.780637

possible reason that, in COLMAP, the camera intrinsics are refined by Bundle Adjustment,
where re-projection error has already been used as part of the loss function.

4.3 Camera Extrinics Estimation Results
In this section, we present the results which show the effective extrinsic estimation under a
static camera.

Figure 4.4 presents the camera trajectories estimated by COLMAP. The first row shows the
objects and the second and third rows show the close shot and long shot view. The result
from the keyboard is not satisfactory because the trajectories are fragmented into multiple
segments. This issue occurred because the keyboard, when oriented horizontally to the cam-
era, did not present enough distinct features to track effectively. So we here only show the
segment that keeps the most of the camera trajectories. In general, it can still prove that
estimating camera pose from a fixed view camera is feasible, and reliable.

Figure 4.4: Relative camera trajectory for moving rigid objects

Here in Figure 4.6, 4.7, 4.8, we present how different objects perform with two different
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camera setups. We controlled each object with the same calibration, the same feature match-
ing method, and very close number of frames for training. The SSIM and PSNR are computed
between the testing ground truth image and the synthesized image from Instant-NGP.

Figure 4.5: The objects that we picked

Figure 4.6: Comparison of four different objects on SSIM by camera
type
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Figure 4.7: Comparison of four different objects on PSNR by camera
type

Figure 4.8: Comparison of four different objects on re-projection
error by camera type

The results show that with all other conditions the same, the camera pose extracted from
the static camera is almost similar to that from the moving camera and is highly competitive.
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4.4 Reconstruction results
We have previously discussed the surface reconstruction results by using SuGaR in section
3.7.2. Here in Figure 4.9 we present the mesh generated by Instant-NGP. The second row il-
lustrates the normal map of the surface. It is evident from the mesh that, although the results
from this method are reasonably good, noticeable outlines remain around the objects.

Figure 4.9: Meshed result from Instant-NGP

In Figure 4.10, the ground truth, predicted image and the mesh result are shown. In
general, NeuS2 has better surface reconstruction performance. However, the texture recon-
struction is not very ideal sometimes. We also found that for transparent objects like syringes,
both surface reconstruction and texture reconstruction became more difficult.

Figure 4.10: Reconstruction and rendering result on four objects.
The football and helmet are captured by a static camera. The syringe
and the statues are captured by the moving camera

In table 4.2, we show the evaluation metrics we got from reconstruction the video of the
statues with four different methods that we tested. The higher SSIM and PSNR indicate
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better image quality which means better novel-view-synthesis performance. Here we can
see Instant-NGP, 3DGS, and NeuS2 have similar results. SuGaR have relatively worse result
compare three other methods.

Table 4.2: Evaluation metrics with different methods on the
recorded statues, as shown in the last volume of Figure 4.10

Methods SSIM↑ PSNR↑
INGP-Base 0.989 33.91
3DGS 0.982 28.61
NeuS2 0.983 31.52
SuGaR 0.975 27.90
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Discussion

In this chapter, we explore the difficulties we faced during our research and discuss possible
explanations for these issues. Despite these challenges, the chapter also explores promis-
ing potential uses of 3D scene reconstruction, including generating digital assets for enter-
tainment and XR experiences, creating datasets for training machine learning models, and
enhancing XR-assisted training with immersive simulations. Finally, we suggest potential
directions for future research in this field.

5.1 Challenges on 3D Reconstruction

5.1.1 Trade-off of Static and Dynamic Camera Se-
tups

During the experiment, we found that static cameras heavily rely on extracting high-quality
features from the objects to estimate relative camera poses accurately. Objects lacking dis-
tinct features often lead to catastrophic failure during the reconstruction. For such objects,
capturing images around them, and using background features for assistance, allowed to reach
significantly better results. However, static cameras still offer significant advantages, such as
consistent lighting conditions and ease of calibration, which contribute to their robustness
in controlled environments. More importantly, this setup can be easily extended to multi-
camera systems to resolve the depth ambiguity and occlusion in various tracking tasks [42].

On the other hand, dynamic cameras, with their ability to capture objects from multiple
angles, provide comprehensive coverage and detailed reconstructions. It has been indicated
by our experiment that for certain objects, such as syringes with transparent surfaces, cap-
turing video around is still the only solution. However, we observed that the motion blur
becomes more pronounced with a dynamic camera, which can potentially affect the accuracy
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of the reconstructions.

5.1.2 Impact on Inaccurate Camera Pose and Com-
plex Illumination

Another finding we got from the experiment is that the inaccurate camera extrinsic parame-
ters and lighting conditions are still big challenges for most of the current 3D reconstruction
algorithms.

For instance, the Synthetic Lego and DTU dataset[19] are the two most well-known datasets
for evaluating surface reconstruction. In NeuS2, they have also been adopted for visual com-
parisons. However, the Synthetic Logo is generated from Blender with error-free camera
poses. DTU dataset, as shown in Figure 5.1, is engaged with a robot arm and controlled light
source, which is qualified for a training dataset but not representative enough for the custom
data, which leads to difficulties in reproducing reconstruction effects close to those in the
papers.

Figure 5.1: The data capture setup for DTU dataset[19]

5.1.3 Limitations on Sequential Matching and Ex-
hausting Matching

As described in Section 3.6.2, we tested both sequential feature matching and exhaustive fea-
ture matching. However, we notice some artifacts from the results with dynamic asymmetric
objects. As shown in Figure 5.2, some ghosting point clouds are located on the edges of the
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5.1 Challenges on 3D Reconstruction

helmet which are indicated with the red line. We assume this is caused by offset on triangu-
lation with repeat frames, which means the repeated frames will be triangulated individually
generated 3D points with accumulated error.

Figure 5.2: Artifact on the points cloud caused by inaccurate camera
pose

Controlling the object’s motion to ensure that every surface is uniquely captured by the cam-
era is challenging. After attempting exhaustive matching on the same object, the ghosting
effect on the edge of the helmet became much better but some new artifacts as the two point
clouds of the helmet overlapped in opposite directions. We suspect this issue stems from
the incorrect feature correspondences between images, more specifically by the mismatching
between frames with symmetry. With the use of sequential matching, even if the repeated
frames across a long span will not be matched together, they still eventually result in ghosting
because of the accumulated estimation error. Although exhaustive matching addresses the
issue of repeated frames, it will still face the challenge of mismatching image pairs.

5.1.4 Shortcomings of 3D Gaussian Splatting (3DGS)
in Surface Reconstruction

While the anticipated outcome of the SuGaR was high-quality 3D mesh for the captured
objects, the results obtained were significantly lower than expected. This divergence comes
with the following possible reasons.
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Figure 5.3: Artifact on the points cloud caused by inaccurate camera
pose

The inherent limitation from 3DGS
Despite that we have masked the input image with Alpha channel masking, there will still
be outlines that are generated in the masked area during SfM. Naturally, the 3D Gaussians
are initialized from the existing points cloud even if the masking exists, which will finally
produce artifacts on the rendering result.

The lack of masking supportion
The core contribution of SuGaR is to align the 3D Gaussian with the surface of the scene.
Essentially, SuGaR serves as a post-processing step that refines the results from 3DGS. We
found that due to the fact SuGaR still does not support masking at the moment, the artifacts
from 3DGS will continue to affect the surface reconstruction result.

5.2 Potential Usages
5.2.1 Digital Assets Generation
The booming market growth in the entertainment industry has raised a strong need for high-
quality 3D models for content creation. The ability to generate realistic 3D scenes from
the real world helps developers put more focus on the game logic design without spending
too much time on extensive 3D models. In another aspect, the detailed reconstruction of
real-world environments facilitates more realistic interactions between the virtual and real
elements. Especially in AR and MR, where blending the virtual and real seamlessly is key.
The user would use their MR device with multi-cameras to scan the surrounding objects into
digital assets and simulate the interaction in real-time. Seeing Figure 5.4 where Unreal 5 has
published a powerful plugin [18] that allows users to import 3DGS rendering results into the
editor

5.2.2 Dataset Generation
Both 3DGS and instant-ngp ultimately serve as methods for synthesizing the novel view from
a given viewing direction. We can naturally expect that this feature can be utilized to gen-
erate datasets with ground truth camera pose. Related research has already been conducted.
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Figure 5.4: Editable 3DGS rendering result in Unreal 5 [18]

For example, Neural-Sim proposed a differentiable synthetic data pipeline that uses NeRF
in a closed-loop and also proved the effectiveness on object detection tasks [11]. Zhong et
al.[44] also proposed a tactile sensory data generation strategy with significant improvement
in tactile classification task.

As presented in Figure 5.5, we render a result with the generated cameras that are arranged
along the hemispherical trajectory over the object. Each camera is also aimed at the center of
the object and is able to render an image out of the object. The blue triangles are the camera
trajectory from the captured video. This setup allows us to obtain images of the object from
any distance and field of view without needing to capture every aspect physically. Such an
approach is greatly beneficial for tracking tasks such as 6 DoF pose estimation, where acquir-
ing the ground truth data is usually challenging.

5.2.3 XR Assisted Training

As the XR market has been undergoing rapid growth in recent years, there is a critical need
to enable immersive and interactive XR training experiences that simulate real-world sce-
narios. Traditional professional training methods cannot often provide realistic, hands-on
experiences that are crucial for skill acquisition in fields such as industrial maintenance,
healthcare, and engineering. By harnessing advancements in 3D scene understanding and
tracking technologies, XR training systems can bridge this gap by offering dynamic, person-
alized learning environments.

Our work has shown the following benefits on XR assisted training scenario:
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Figure 5.5: Generated cameras with recording cameras

Seemless object highlighted without animated explicit 3D mesh
model

Most industrial XR applications highlighted the interacted object with overlayed pre-build
3D model. However, the latency and occlusions always cause offset which significantly dam-
ages the immersive experience. Benefits from the on-the-fly training on 3DGS [35], the ren-
dering result can be directly combined with the received video stream and cast to Head
Mounted Display (HMD) without extra graphics rendering.

Accurate tracking with muti-camera collaboration

Typically, the camera system on HMD enables plane detection through the head motion.
However, as we mentioned before, this brings extra problems in object tracking. By integrat-
ing with a multi-camera system set at a fixed angle, occluded information can be captured,
significantly enhancing the system’s robustness.
In this thesis project, we conducted general research on 3D scene reconstruction from the
respective of both key components in the pipeline and potential usages. We answered key
questions by presenting several conclusions we got during the experiment. We have shown
that reconstructing objects from a fixed viewpoint is possible even if some challenges need to
be solved. We also point out several future works that can significantly benefit the industry
by applying this technology.
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5.3 Future works
5.3.1 High-fidelity neural surface reconstruction with

the help of the points cloud
Nowadays, both NeRF-based surface reconstruction methods like Neuralangelo [23] and SDF-
based surface reconstruction methods such as NeuS [38] accept the camera poses as model
input. As the by-products during camera pose estimation, the points cloud gives very rich
spatial information but not many methods think about utilizing them in a good way. 3DGS
is an excellent practice but still faces the challenge we mentioned above. How to use those
point clouds as a prompt for a high-fidelity neural surface reconstruction can be good work
in the future.

5.3.2 Inverting NeRF for 6-DoF pose estimation
NeRF is a model that takes view direction as input and synthesizes novel view images. But
what about doing it oppositely? Previous studies [41] have explored training a Neural Object
Field online along with pose graph optimization to robustly accumulate information into a
consistent 3D representation. It can handle challenging sequences with large pose changes,
occlusions, untextured surfaces, and specular highlights. Following this, PixTrack addresses
the limitations of previous methods by using a NeRF as the canonical representation of the
object [6], enabling graceful handling of in-plane rotations, producing photo-realistic refer-
ence frames, and accurately filtering 3D points for feature-metric alignment.
Inspired by these related studies, one of our future works would be adding a convolution
network for estimating pseudo pose as the prompt for a pre-trained NeRF model. By mini-
mizing the residual between the synthesized image from NeRF and the captured frame, this
model can be trained with both accuracy and efficiency in 6-DoF pose estimation.
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Chapter 6

Conclusion

6.1 Key Findings
The first key finding we have is the adaptation of two different camera setups in different
scenarios. We proved the possibility of adding masking to estimate the relative pose on static
camera. But at the same time, this is limited by the texture and shape of the objects during
to the amount of extracted features. Even so, static cameras still offer significant advantages,
such as consistent lighting conditions, ease of calibration, and ease of extend to muti-camera
systems, which contribute to the robustness of the system.

Additionally, we found that either the sequential features matching or exhausting features
have their limitation. Compared to exhausting matching, sequential matching is more effi-
cient by exploiting the temporal correlation between the neighboring frames of videos, but
the offset on triangulation and lack of spatial correlation on the existing points will lead
to ghosting points cloud occasionally. Similarly, exhausting matching matches the frame
with the closest feature distance but ignores the temporal correlation, which can also cause
mismatching on similar semantic features but opposite camera poses. Some other flexible
matching strategies have been provided in COLMAP such as Spatial Matching and Custom
Matching. This can be a future work for more improvement.

Furthermore, we find that the inaccurate camera pose and complex illumination are still
the biggest challenges on custom data in 3D reconstruction. Most of the testing results on
the Sota 3D reconstruction method stem from either a synthetic dataset or a dataset with a
controlled environment. This makes it difficult to reproduce similar results in the paper for
practical applications, but this also inspires us with a new question of how to compensate for
the discrepancy between actual and ideal data.

In the end, although 3DGS is a very innovative method that perfectly balances the quality
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and efficiency of novel view synthesis, the method is not as effective in surface reconstruction
as it should be. Triangles are still the most commonly used primitive for graphics rendering
due to their mathematical simplicity and stability. Therefore, it’s difficult for 3DGS which
uses 3D Gaussian as primitive to avoid the holes on the reconstructed surface. Some related
studies [14, 25] have been conducted in this aspect but there is still a long way to go.

6.2 Answer the research questions
Research Question 1: How can arbitrary rigid objects be reconstructed from static cameras,
and what are the primary challenges involved in this process?

We discovered that the crucial aspect of this question is to estimate the relative camera pose
within the local coordinates of objects. From this point, we found that reversing the order of
extrinsic estimation and segmentation within our pipeline is the simplest solution. By isolat-
ing the background through masking, triangulation is only conducted using paired features
derived directly from the objects. This approach allows for precise estimation of the relative
extrinsic parameters. Subsequent experiments validated the efficacy of this method. How-
ever, this solution is still facing limitation, particularly because it highly relies on the object’s
appearance. For instance, objects with a single color or made from glass often contain very
few features, which can hinder accurate extrinsic estimation.

Research Question 2: What are the necessary components in the pipeline from captured
images to the final reconstructed object?

In this study, we developed a comprehensive pipeline comprising several key stages: prepro-
cessing, camera calibration, image distortion correction, segmentation, extrinsic estimation,
and reconstruction model training. During the preprocessing phase, we effectively eliminate
issues such as motion blur. We evaluated two different camera calibration methods, discov-
ering that Structure-from-Motion (SfM)-based calibration and OpenCV-based calibration
exhibit comparable performance, but the former one has more flexibility. Depending on the
dynamics of the scene and the movement of the camera, our approach to camera estimation
alternates between prioritizing segmentation or using COLMAP initially.

Research Question 3: Which reconstruction method is considered the most effective among
existing algorithms?

During our project, we compared two novel view synthesis methods 3D Gaussian Splatting
(3DGS) and Instant Neural Graphics Primitives (Instant-NGP). While 3DGS provided supe-
rior rendering resolution compared to Instant-NGP, it required a longer training period. Ad-
ditionally, we evaluated two surface reconstruction methods derived from these algorithms.
Based on the visual quality of the reconstructed 3D meshes, we conclude that NeuS2 has bet-
ter surface reconstruction capabilities but bad at texture reconstruction. SuGaR presents a
viable approach to extract mesh from 3D Gaussian but struggles with handling masks effec-
tively.
Research Question 4: What are the potential uses of this technique?
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6. Conclusion

We propose that 3D scene reconstruction can be broadly used in generating digital assets for
the entertainment industry. Since both 3DGS and instant-NGP serve as methods for syn-
thesizing the novel view from a given viewing direction, we expect that this feature can be
utilized to generate datasets for deep learning model training. Finally, we present a potential
usage for object highlighting and accurate tracking under the XR training scenario.
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Appendix A

Reconstruction Results by Each Step

Figure A.1: Results from each steps of the pipeline with static cam-
era
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A. Reconstruction Results by Each Step

Figure A.2: Results from each steps of the pipeline with freely mov-
ing camera
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