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Abstract
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Background: Within inventory control the distribution of spare parts poses
multiple challenges. Being a critical area from a business perspective this is
a field of great interest for Volvo Group. Currently the company utilizes a
single-node optimization approach for the multi stage distribution network
and they would like to investigate the potential value of using a holistic
multi-echelon approach.

Purpose: This thesis project aims to investigate the impact of applying a
recently developed service-differentiated multi-echelon omnichannel
inventory control model in Volvos Service Market Logistics (SML)
distribution network using discrete event simulation. More specifically, the
study is based on a representative sample of items for the Group Trucks
Operations (GTO) division from the Regional Distribution Center (RDC) in
Johannesburg, South Africa.

Methodology: The methodology used in this master thesis consists of two
main parts. Firstly, an exploratory research approach according to Höst et al.
(2006) is conducted. This includes holding open interviews with selected
Volvo employees, scrutinizing documentation and a literature review.
Following this the second part of the methodology includes applying the
four initial steps of an operational research framework presented by Hiller
and Lieberman (2010). These steps include defining the problem,
formulating and building an analytical model and testing the model through
a numerical study.
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Conclusions: The numerical study shows an average decrease of the
expected inventory in the system by approximately 25 percent for the
investigated items. This could be done while still on average maintaining
the same fill rate as the currently used single-echelon model for a majority
of the investigated items. In the cases where the fill rate is not met the
negative deviation is small and lower than one percentage point on average
in all cases.

Keywords: Service differentiation, multi echelon, omni channel, Inventory
control, Supply Chain Management.
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Chapter 1. Introduction
In this section a background for the master thesis is provided. This includes
an introduction to the field of Supply Chain Management and inventory
control as well as an introduction to Volvo Group and the current
distribution network and inventory control processes.

1.1 Background
For all organizations handling the flow of products or services within the
organization referred to as Supply Chain Management (SCM) in an efficient
way is an important issue. In a landscape where many organizations are
truly global, acting in different countries, this issue becomes even more
complex. The SCM concept encompasses all processes involved in
transforming raw materials into finished goods or services provided to a
customer (Axsäter, 2006). With a substantial impact on the financial output
of an organization, SCM is an area of great interest for top management and
if handled correctly this area could lead to a competitive advantage.

Inventory control systems are crucial tools in the field of supply chain
management. They ensure that sufficient inventory is available in different
parts of the organization to fulfill customer demands. These systems provide
decision rules on how to manage inventories across the distribution network
while minimizing the associated costs. The trade-off between the holding
cost and customer service should be carefully revised to ensure that it is
aligned with the aim of the organization.

Technological advancements have significantly impacted the field by
enabling access to more information. This, in turn, has enhanced forecasting
accuracy and provided comprehensive insights into supply chain operations.
As a result of these advancements, system optimization has evolved. What
was once primarily reliant on qualitative expertise and individual node
optimization has now become much more intricate. Advanced systems can
optimize the entire supply chain, offering a holistic approach.
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The spare part industry, characterized by sporadic and low-demand patterns
and a diverse array of articles, poses numerous challenges for inventory
control systems. Often constituting a substantial portion of total sales over a
product's lifecycle or as part of a contract, the distribution of spare parts
demands close attention and strategic planning.

This thesis will be conducted for Volvo Group focusing on the inventory
control of their spare parts. With a truly global organization active in nearly
200 markets the inventory control system for spare parts consists of many
nodes in a complex structure (Volo Group, 2024a). The existing
optimization of the system depends on single node optimization, focusing
on individual warehouses. In this thesis the effects of implementing a
holistic optimization of the inventory control system with service
differentiation is to be investigated.

1.2 Volvo Group
Established in 1927 in Gothenburg, Sweden, the Volvo Group has become a
prominent player in the global transportation industry. With a history
spanning over 90 years, the company is recognized for its contributions to
various sectors, including trucks, buses, construction equipment, and marine
and industrial engines. Volvo Group is dedicated to providing reliable and
sustainable transport solutions with a strong focus on safety (Volvo Group,
2024a). The group is divided into 13 divisions which is presented in Figure
1.

Figure 1: Volvo Group's corporate structure. (Volvo, 2024b)
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This thesis will focus on the distribution of spare parts within the Group
Trucks Operations (GTO) division of Volvo Group. Their inventory
distribution system is managed by an administrative function called Service
Market Logistics (SML).

1.3 The current distribution network and inventory
control process
With a large organization to support, SML accounts for about 700 000
different spare parts1. The current distribution networks consist of several
Central Distribution Centers (CDC), Regional Distribution Centers (RDC),
Support Distribution Centers (SDC) showcased in Figure 2. The distribution
network handles three main types of orders: stock orders, day orders, and
vehicle-off-road (VOR) orders. These different types of orders follow a
hierarchy of urgency. Stock orders refer to planned orders, day orders refer
to emergency orders when stock is urgently needed and are sent the day
after. Lastly, VOR refers to orders with severe urgency. These orders are
sent directly to the customer from the closest stocking point instead of being
treated as a day or stock order.

Figure 2: SMLs distribution network.

1 Interviewee 1: Supply Chain Data Modelling Expert, Volvo GTO, SML, Advanced
Analytics. Conducted February the 5th 2024.
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In the current structure the CDCs supply the RDCs, SDCs and stock orders
to the dealers which then serves the end customer. The distribution set-up
however is different depending on the continent. For example in Europe
where the dealer density is relatively high and homogeneous, the set up
includes CDCs for stock orders and SDCs for day orders2. In other
continents the set-up is normally less complex, consisting of a set of
different RDCs where dealers order from a designated RDC. Volvo controls
the inventory of several dealers through a Vendor Managed Inventory
(VMI) agreement called Logistics Partner Agreement (LPA).It is noteworthy
that some dealers with an LPA agreement are owned by Volvo, while others
are not. For dealers with an LPA agreement that are not owned by Volvo,
negotiations are required to establish inventory policies. Additionally, there
are dealers not owned by Volvo and without an LPA agreement, whose
inventory levels Volvo cannot dictate. These latter two categories of dealers
will in this thesis be referred to as non-controllable or independent retailers,
indicating that Volvo can not directly control their inventory decisions.

In the current inventory control system, Volvo uses a single-echelon
modeling approach to calculate and optimize the inventory control decision.
To be able to handle the great number of SKUs, products are segmented
based on customer criticality, frequency, price, and life-cycle. The standard
inventory policies used for replenishment decisions in the network are (R,
Q) - policies. Once the inventory position (stock on hand and outstanding
orders) reaches the reorder point (R), Q units are ordered. Q is determined
using the Economic Order Quantity (EOQ)-model taking minimum and
maximum order quantities and order handling costs into consideration. The
reorder point is set as the lowest integer fulfilling the target service level. In
chapter 2 Volvo's current inventory control system is explained in more
detail.

2 Interviewee 1: Supply Chain Data Modelling Expert, Volvo GTO, SML, Advanced
Analytics. Conducted February the 5th 2024.
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1.4 Problem formulation
The previously described distribution network and inventory control system
developed throughout Volvo's history reflect the goal of being a reliable
partner throughout the lifetime of the sold products. However, the
development of distribution networks and control systems is an ongoing
process to accurately represent the complex reality of distribution systems.
An improvement in the inventory management system could potentially
reduce the inventory levels while service levels are kept stable or even
improved.

Considering the current distribution and inventory control system at Volvo,
one promising area to analyze is whether a multi-echelon inventory
management system with service differentiation would be suitable. Thus,
this is the area where this master thesis will be conducted. One of the
limitations of established multi-chelon models is when the distribution
network also includes independent and non-controllable retailers.
Traditionally, multi-echelon optimization models tend to push stock
down-stream in order to achieve cost reduction and Target Service Levels
(TSL). For the independent dealers, this is not a viable option. The inability
to exert direct control over the stock levels requires a reevaluation of the
conventional wisdom governing multi-echelon models, demanding a
flexible framework to navigate the intricacies of service differentiation.

The lack of multi-echelon models accounting for service differentiation
across multiple distribution channels introduces a multifaceted challenge in
the formulation of effective inventory planning strategies. The problem
formulation, therefore, revolves around devising approaches that not only
acknowledge but actively accommodate for the variability of demand, meet
differentiated service levels, allocation of stock, and minimize cost
throughout the supply chain.

1.4.1 Purpose of the thesis
This thesis project aims to investigate the impact of applying a recently
developed service-differentiated multi-echelon omnichannel inventory
control model in Volvos Service Market Logistics (SML) distribution

5



network using discrete event simulation. More specifically, the study is
based on a representative sample of items for the Group Trucks Operations
(GTO) division from the Regional Distribution Center (RDC) in
Johannesburg, South Africa.

1.5 Delimitations
Due to being a large organization and the limited time of 20 weeks in which
the master thesis should be conducted some delimitations have to be made.
The thesis will focus on a smaller set of articles distributed from the
Johannesburg RDC to dealers. The distribution network in this market
consists of a number of different dealers replenishing from the RDC in
Johannesburg, which in turn replenishes from the CDC in Gent, Belgium3.
The scope is limited to the optimization of reorder points at the RDC and
dealers within the region and not the distribution network as whole.

1.6 Structure of the report
In this section, the structure and disposition of this master thesis is
described, providing a roadmap for the reader to navigate through the
various chapters and sections:

1. Introduction: In this section, a background to the topic of supply chain
management and inventory control system is provided together with a brief
introduction of the case company. Additionally, the problem formulation,
purpose of the thesis, and delimitations are stated.

2. Description of Volvo’s Inventory Control system: Following the
introduction, a more in-depth description of the current inventory control
system at SML is provided to the reader. Here, the currently used
segmentation processes and total cost model are described.

3. Methodology: This section presents the research framework used for
structuring the work project. The methodology consists of two parts. Firstly,

3 Interviewee 2: Dealer Inventory Management Analyst, Volvo GTO, SML, DIM.
Conducted February the 21th 2024.
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an explorative research approach was used. followed by a problem solving
approach following the framework for Operations Research studies.

4. Theory: In this section, relevant theoretical concepts are discussed to
provide the reader with a solid understanding of the inventory control
system's parameters. Moreover, the section ends with a literature review
examining the potential models satisfying the examined case company's
requirements.

5. Inventory control modeling for spare parts at Volvo: Within this section,
the chosen multi-echelon omnichannel inventory control model is described,
and the considered heuristics are explained in more detail.

6. Numerical study: This section describes the numerical study conducted as
part of this master thesis, including the data collection, analytical model,
and the discrete event simulation model.

7. Result and analysis: In this section, the results and analysis derived from
the numerical study are presented.

8. Conclusion: This section of the master thesis presents the conclusions of
the completed work together with suggestions for future research topics
within the field.

7
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Chapter 2. Volvos inventory control system
Volvo Group employs a variety of digital systems to manage its supply
chain across different divisions and markets. For the purposes of this
master's thesis, the focus is on examining the Dealer Stock Control Package
(DSP) system, used in the considered market. It is noteworthy that Volvo is
in the process of developing a unified system called PlanIT, intended to
merge all data systems. However, at present, PlanIT is only present at the
RDC in Johannesburg for the investigated distribution network.

The inventory optimization process is an approach aimed at minimizing the
expected costs within Volvo's spare parts distribution system. This process
begins with a segmentation of the Stock Keeping Units (SKUs).

2.1 Segmentation
The department within SML that works with the segmentation is Dealer
Inventory Management (DIM). The goal with the segmentation is to assign
a dedicated stock and pick table for each SKU at the different dealers which
in turn sets an reorder point and order quantity. In essence the process can
be described by Figure 3 below.

In the first stage of the process, the investigated part and dealer are
segmented separately. Here the dealer part file and dealer file contains data
for the investigated part and dealer respectively. In the second stage, based
on the outcome from step one, a stock and pick level version table is then
assigned. Here the dealer segment prescribes if a high, normal or low
stock/pick table version should be assigned. The SKU segment determines
the appropriate categorization of the investigated item within the current
version. In the final step, a stock/pick table is assigned which in turn sets the
reorder point and EOQ. These steps will be described more thoroughly in
the following sections.
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Figure 3: Segmentation within SML.

2.1.1 SKU and dealer segmentation
In the segmentation process, the SKUs are divided into different segments
based on customer criticality, price, frequency and life cycle stage4.
Additionally, heavy items, weighing over 30kg, are segmented into a
separate group. Depending on where within the distribution network the
segmentation is conducted the number of segments varies. For GTO the
number of segments is normally 12 at the dealers which increases to 25 and
100 at the RDC and CDC respectively. This increase can be explained by
the higher number of articles upstream in the distribution network. For the
scope of this master thesis the focus is on the dealer segmentation. In Figure
4 below the segmentation for dealers in GTO is exemplified.

4 Interviewee 1: Supply Chain Data Modelling Expert, Volvo GTO, SML, Advanced
Analytics. Conducted February the 5th 2024.
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Figure 4: The 12 segment based on customer criticality and life cycle stage.
(Volvo 2024c)

As stated in Figure 4, 70 percent of the SKUs belong to the PRIME
segment. The life cycle axis uses two abbreviations; I.Y and R.Y which
represents the introduction year and responsibility which represents the year
when the SKU is expected to be phased out of the system. SKUs are
segmented into the different stages according to Table 1 below.

For SKUs belonging to decline or phase out a second condition is
investigating how many picks per year the SKU generates at the dealer.
Here R12 denotes the rolling twelve pick which represents the number of
picks during the last twelve months and C.Y which is an abbreviation for
current year.
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Table 1: Conditions for the different life cycle phases

Life cycle phase Condition 1 Condition 2

Intitial I.Y current or last year

Prime SKUs not belonging to
another phase

Decline past R.Y <= C.Y +5 Hits R12 <= 15

Phase out past R.Y <= C.Y -1 Hits R12 <= 6

NLA past R.Y <= C.Y -6 Hits R12 <= 6

The dealers are segmented based on the size of the dealer and the business
cycle. Here the business cycle indicates if the sales trend is upwards, stable
or downwards and divides the dealers into high, normal or low respectively.
The size of the dealer is based on the total number of rolling twelve picks.

2.1.2 Assigning a stock and pick table
Knowing the dealer segment it is possible to assign a stock and pick version
table, see Figure 5. Here the version is indicated by the vertical text and
divided into high, normal or low. The SKU segment then decides which
table to be assigned to within this version.

For example a SKU that belongs to EX_INIT segment in Figure 4 is
controlled with a high table if the dealer is assigned a high stock/pick
version. However in the case of the dealer being assigned a medium or low
stock/pick version the same SKU is assigned a normal table instead. Other
SKU segments, for example UPTIME_PRIM or NLA, are controlled the
same way regardless of the dealer type.
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Figure 5: Stock and pick table depending on segment and version. (Volvo
2024c)

The allocated stock and pick table then determines the order point and
safety stock levels for the SKU at the specified dealer. Here it is price and
forecast which decides on where in the table the parameters should be taken.

2.2 Total cost model
Knowing the associated stock and pick table it is now possible to optimize
the parameters for the distribution network. At Volvo this is done with the
total cost model, see Figure 6 below.

Figure 6: Overview of setting inventory parameters at SML. (Volvo 2024c)

In the total cost model the goal is to minimize the total cost under the given
constraints. Starting at the inventory model this is where the actual
distribution network is mimicked. Here input data comes from sales history,
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master data etc but also from the model itself including for example Reorder
Point (ROP), EOQ and system Lead Time (LT). As previously mentioned
there are different systems throughout the Volvo organization, we are
focusing on DSP which is one of the systems used at Group Trucks
Operations (GTO).

Within the DSP model, the distribution of demand for each segmented
category of products is determined. This step is particularly crucial in
determining the appropriate inventory management strategies for different
product categories. In instances where the number of annual picks falls
below a predefined threshold, the demand pattern is assumed to follow a
pure Poisson process. In simpler terms, customers are considered to arrive at
a certain rate (lambda) and are restricted to ordering only one product per
transaction. Conversely, for orders surpassing this threshold, a normal
distribution model is employed to predict the demand distribution. Notably,
this modeling approach does not account for the specific order quantities but
focuses on forecasting the overall customer arrival.

Subsequently, the DSP model utilizes the acquired parameters to compute
key inventory metrics, including inventory on hand and service levels.
These calculations are heavily influenced by the current settings of reorder
points, EOQ, and safety stock levels defined within the DSP system. By
leveraging these parameters, Volvo aims to strike a balance between
maintaining optimal inventory levels to meet customer demand while
minimizing expected total costs.

The output of the inventory model is then run through a total cost model. In
this step cost inputs need to be provided which breaks down where the cost
comes from. Here the cost is not only including direct holding and shortage
costs of SKUs but also for example the cost associated with badwill or lost
sales due to stockout. Volvo segment the cost inputs in different levels
including for example country, segment, weight and brand.

To achieve the minimal total cost an optimizer can be run where the
parameters are shifted, resulting in a situation with the lowest possible cost.
Planners may opt to manually adjust critical parameters such as EOQ, safety

13



stock levels, and reorder points to evaluate the potential impact on the
overall cost of inventory management. In response to these adjustments, the
DSP model recalculates service levels and total inventory, providing
valuable feedback for decision-making purposes.

The total cost model can also be used to provide for base-line cases. This
can be valuable when evaluating the impact of a change project. In this
master thesis the base-line for evaluation will be a newly made optimization
with the total cost model for the South African market.
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Chapter 3. Methodology
This section outlines the methodology adopted in this thesis and consists of
two studies. In section 3.1 an exploratory research approach study is
conducted to understand the case company and the requirements on the
inventory control system investigated in this thesis.

Section 3.2 presents a problem solving framework from operations research.
This framework is used for evaluating the potential of using a
multi-echelon/omni-channel inventory control model at Volvo. In this
section, the foundational framework consisting of a six step approach, is
firstly introduced as a whole. The initial four steps, chosen as methodology
for this thesis, is then described in more detail and how this is taken into
practice elaborated further.

3.1 Exploratory research approach
This segment of the research aligns with the framework of an exploratory
research approach, as exemplified in (Höst et al., 2006). In the context of an
exploratory study, they advocate for the utilization of a case study approach.
The subject of interest is on the inventory control system and distribution
network for a selected market within SML. Consistent with their
recommendations, our study employed three techniques for data gathering:

The first technique consists of conducting open interviews with selected
Volvo employees. The interviews will adopt a hybrid approach,
encompassing elements of both structured and open interviews. To ensure a
comprehensive exploration of the subject matter, a set of both open-ended
and specific questions has been prepared, see Appendix A. These questions
are designed to capture essential information while providing room for
in-depth responses and facilitating follow-up questions. Within this
framework, certain follow-up questions have been pre-established.
Additionally, the interview process allows for follow-up questions as the
conversation unfolds. This structure ensures a flexible and thorough
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examination of the subject, catering to the expertise and insights offered by
the interviewee.

The second technique includes scrutinizing documentation, including
technical documents, IT systems and process guides: Through a thorough
research of technical documents, valuable insights into the system's
architecture and design are obtained. Process guides provide an in-depth
exploration of operational procedures, enabling the identification and
definition of processes relevant to distribution and inventory control. The
research of the IT system focuses on acquiring essential data necessary for
the formulation of a mathematical model, encompassing factors like
transportation times, service requirements, and demand.

The third technique is analyzing the process steps: Conducting an analysis
of the information obtained in the two previous steps allows for a
comprehensive understanding of the distribution and inventory control
system at Volvo. The required information to establish a mathematical
model is presented in Table 2, and the output establishes the criteria that the
models investigated in the literature review must meet to accurately
represent the system at Volvo.
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Table 2: Important data for distribution system modeling.

Elements Description

Network specifications ● Number of echelons and
nodes in the network

● The flow of goods between
echelons and nodes

● relationship between nodes
(divergent or convergent
distribution)

Market specifications ● Which dealers and
inventory policies Volvo
can control

● Reaction to missed order
(back-ordering, lost sales,
partial deliveries)

● Service level target for each
product and dealer

● Capacity constraints

Detailed specifications ● Transportation times
between nodes

● Inventory policies
● Demand distribution for

each product
● Cost structure (holding

costs and backorder/lost
sales costs per product)

3.1.1 Literature review
The literature review aims to establish a comprehensive understanding of
the concepts and tailored applications relevant to the intended scope of the
study. For this study, Höst et al. recommends: search wide, select relevant
articles, and search deep. (Höst et al., 2006)
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Search Wide: To gather a collection of relevant articles, various strategies
were employed. These methods encompassed seeking recommendations
from our supervisor, particularly for articles focused on multi-echelon
models with service differentiation. Additionally, we conducted a thorough
examination of reference lists from previous related theses, utilized the
university database Lubsearch, and scrutinized reference lists from a range
of relevant articles.

To initially search wide, the keywords used were service differentiation
AND inventory Control. This search resulted in 249 publications on
LubSearch. The timespan was set from 1960 to 2024, after dialog with the
master thesis supervisor prof. Johan Marklund.

Select relevant articles: The choice of papers was determined by their
relevance to the master thesis and the quality of the content. The assessment
of relevance centered on whether the researcher proposed a mathematical
model to accommodate service differentiation and provided a numerical
study demonstrating its effect. Subsequently, the articles were evaluated
based on quality using the criteria suggested by Höst et al. (2006), which
include considerations such as the number of citations, if the paper has been
peer-reviewed, and the scientific soundness of the methodology.

Assessing the quality of the initial search and limiting the search to
academic journals and peer-reviewed publications, the initial search was
reduced to 201 articles.

Search Deep: Drawing insights from the examined papers, several key
areas emerge as significant for further investigation, serving as
supplementary knowledge and further alignment with the purpose of the
thesis. This resulted in an expanded search with keywords: Inventory
rationing AND inventory control, Service differentiation AND
multi-echelon, Stock allocation AND multi-echelon.
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3.2 An operations research framework
The framework employed in this study is rooted in the general six step
framework for operations research studies in Hiller and Lieberman (2010).
The general framework is presented below. For our thesis, a slightly
modified version of this approach is applied to better suit the purpose and
scope of the project.

Step 1: Define the problem of interest and gather relevant data: Establishes
the foundation for the project, encompassing essential actions such as
formulating a precise problem definition, identifying relevant objectives and
constraints, gathering relevant information, and establishing a timeline for
the project's execution.

Step 2: Formulate a mathematical model: The formulation process involves
translating the real-world problem into a system of equations and related
mathematical expressions. This includes setting relevant parameters,
decision variables, constraints, and objective functions.

Step 3: Learn how to derive solutions from the model: After formulating a
mathematical model, the subsequent phase involves developing a procedure
to find optimal solutions. It's crucial to recognize that these optimal
solutions are specific to the model and may not guarantee the best possible
outcome for the real-world problem, given the idealized nature of the model.
Post Optimality analysis, also known as what-if analysis, becomes
paramount in assessing the implications of different assumptions about
future conditions on the optimal solution. Sensitivity analysis helps identify
critical parameters in the model, whose values significantly impact the
solutions.

Step 4: Test the model: This process involves testing and improving the
model to increase its validity. Additional insights into the validity of the
model can be obtained by varying the values of the parameters and/or
decision variables and checking whether the output of the model behaves in
a plausible manner.

19



Step 5: Prepare to apply the model: This step entails the comprehensive
development of a computer-based system and the necessary business
processes essential for the effective implementation of the newly devised
model

Step 6: Implementation: The final phase is to execute this system in
accordance with the directives from management. This process encompasses
various steps, such as educating operational management and fostering
shared responsibility for formulating the necessary procedures to set the
system into operation.

For the scope of this master thesis, the focus is on step 1 - 4.

3.2.1 Step 1 - Define the problem of interest and gather relevant
data
The exploratory study lays the groundwork by gathering relevant
information about the case company's distribution and inventory system and
pinpointing the challenges that the model under investigation in this master
thesis should address. Following this, the literature review investigates
models capable of addressing these challenges. Consequently, a model
mirroring the real-world distribution system conditions is chosen for testing.
The primary objective is to evaluate this model's performance to attain
target service levels while minimizing stock

3.2.2 Step 2 and 3 - Formulate a mathematical model and
develop an analytical model
After establishing a theoretical foundation and confirming its applicability,
the next phase is constructing a mathematical model The mathematical
modeling process includes identifying system parameters, decision
variables, objective functions for optimization, and formulating
mathematical constraints (Hiller and Lieberman, 2010). Once the
mathematical model is established, the next step is to program the model in
Python according to Volvo’s specifications. The implementation of the
model proceeds incrementally, with continuous testing to ensure
verification. To validate the analytical model, a comparative analysis is
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conducted against a corresponding model built in Excel by Prof. Johan
Marklund for a scaled-down system. This comparison ensures that the
Python-based model produces identical results.

3.2.3 Step 4 - Test the model
To evaluate the analytical model and assess the effects, a discrete event
simulation will be developed in the software ExtendSim 10 used by Volvo.
The process of conducting a discrete event simulation study in ExtendSim
adheres to the framework proposed by Laguna and Marklund (2018). This
approach ensures a systematic and comprehensive examination of the
inventory management system's performance, allowing for a more accurate
understanding of its real-world implications.

3.2.3.1 Verification and validation

Model verification focuses on confirming that the model is implemented
correctly and functions as intended. This involves ensuring that the model's
algorithms and code are free from errors. Verification includes activities
such as inspecting the model’s code for logical errors or bugs, running tests
on individual components to ensure each part functions correctly,
confirming that the model produces consistent results when run under the
same conditions, and ensuring that the model's outputs match expected
results or results from previously validated models. (Laguna and Marklund
2018)

Model validation involves confirming that the model effectively achieves its
intended purpose. This typically entails verifying that the model accurately
predicts outcomes under the conditions for which it was designed.
Validation techniques include comparing the model's predictions with actual
outcomes, conducting sensitivity analysis to examine the model's
robustness, and applying statistical methods to evaluate the model’s
performance. (Laguna and Marklund 2018)

3.2.3.2 Analyze the output data and draw conclusions.

In this final step, a thorough analysis of the output data from the simulation
is conducted to derive meaningful insights and draw informed conclusions.
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By simulating a range of scenarios, this step offers a holistic understanding
of how the analytical model would function under diverse and dynamic
real-world conditions. The simulation serves as an important tool for
validating the robustness of the developed inventory management
framework.

22



Chapter 4. Theory
This section presents relevant theory, for understanding the optimization of
Volvo’s inventory system for Service Market Logistics (SML). Section 4.1
to 4.3 focus is put on exploring and evaluating the single-echelon inventory
control modeling area. This includes discussing fundamental concepts as
well as diving into important areas such as the demand distribution and the
lead-time approximation. A complete list of notations used in the formulas
presented in these sections can be found in Appendix B.

Sections 4.4 and 4.5 introduce multi-echelon inventory control models, and
the optimization of both single and multi-echelon is discussed. Here an
emphasis is put on how the models can handle service differentiation since
this is one model requirement from Volvo when investigating potential multi
echelon models.

4.1 Fundamental inventory control concepts
In this section fundamental inventory control concepts are discussed in
order to understand the currently adopted single node optimization at Volvo.
Furthermore this lays the theoretical foundation necessary for the following
sections of this master thesis.

4.1.1 Inventory control systems
Inventory control systems are crucial tools within supply chain
management, serving to guarantee the presence of adequate inventory to
meet customer demands. These systems not only establish decision-making
rules for managing inventory throughout the distribution network but also
aim to pinpoint strategies that optimize value while minimizing associated
costs. Essential for the success of inventory control systems is the utilization
of modeling techniques, which serve to accurately replicate real-world
scenarios and provide a solid foundation for decision-making.

The models fall into two main categories: deterministic and stochastic.
Deterministic models assume certainty, with fixed and constant values for
parameters like demand, lead times, and order quantities. In contrast,
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stochastic models explicitly consider uncertainty, treating parameters as
random variables with associated probability distributions.

4.1.2 Ordering systems
One fundamental aspect of inventory control systems is the ordering system,
which refers to systems that provide the decision maker with information
when and how much to order. Depending on what ordering and review
policies the ordering system adopts, the information will vary. However,
before delving into these policies, it is crucial to comprehend the
fundamental concepts of inventory position (IP) and inventory level (IL)
defined in (1) and (2) (Axsäter, 2006).

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑠𝑡𝑜𝑐𝑘 𝑜𝑛 ℎ𝑎𝑛𝑑 + 𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟𝑠  
- backorders (1)

(2)𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 =  𝑠𝑡𝑜𝑐𝑘 𝑜𝑛 ℎ𝑎𝑛𝑑 −  𝑏𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠 

In these functions, stock on hand is referred to as the physical stock in the
warehouse at the moment of review. Outstanding orders refers to orders that
have been placed with suppliers but which have not yet been delivered.
Backorders are the units demanded that have not yet been satisfied by the
stock point.

4.1.2.1 Ordering policies

Ordering policies refers to the standardized instructions of when and in
which quantity a item should be replenished. The ordering policy typically
relies on a specified order quantity triggered when the inventory position
drops below a predetermined reorder point. In this section two commonly
employed ordering policies: the (R,Q)-policy and the (s,S)-policy is
discussed.

Under the (R,Q)-policy, an order quantity of Q units is placed as soon as the
IP reaches or falls below the reorder point R. It may be necessary to order
several Q to increase the IP above R and therefore also sometimes denoted
to as (R,nQ) policy instead (Axsäter, 2006). This modified policy can also
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be used in the case of batchorders where Q is a fixed batch of units, e.g. a
pallet, and n is the number of batches ordered.

On the other hand, the (s,S) policy, also known as the order-up-to or
base-stock policy, triggers an order when the inventory reaches the reorder
point s, up to the stock level S, for continuous and unit demand. Unlike the
(R,Q)-policy, the order quantity fluctuates and cannot be predetermined. A
notable instance of this policy occurs when s equals S - 1, indicating that an
order is placed whenever demand is encountered (Axsäter, 2006).

4.1.2.2 Review policies

Review policies refer to the standardized instructions of how the system is
monitored. The inventory system may be monitored continuously or
periodically. If the system is monitored continuously the decided order
quantity will be ordered as soon as the IP reaches the reorder point. If an
(R,Q) policy is used, this can be formulated into an equation according to
(3) (Axsäter, 2006). In continuous review, the R,Q policy and the s,S policy
is equivalent if s = R and S = R + Q.

(3)𝐼𝑃 ≥  𝑅 +  1

In the case of a periodic review policy the inventory system is reviewed and
orders can be placed only at certain times, often with a fixed time interval T
between. As a direct consequence of this, the IP can fall below the reorder
point before an order is placed, and equation (3) no longer holds.

In order to determine cost efficient reorder points and order quantities the
lead time L to replenish stock from suppliers and the time interval T has to
be taken into consideration if a periodical review policy is used. A
continuous review policy normally leads to reduced need of safety stock
(SS) however the periodical policy makes pooling of orders easier which
can reduce transport costs especially for items with high demand. (Axsäter,
2006)
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4.1.3 Inventory position and inventory level in steady state
Steady state refers to a situation where the distribution of stochastic
variables do not change with time. Considering a system at the time t the IL
can be calculated for the system at the time t + L according to (4) (Axsäter,
2006). Here, D(t, t + L) is the stochastic demand in the interval t, t+L and L
is representing the replenishment lead time and is assumed to be constant.

(4)𝐼𝐿(𝑡 +  𝐿) =  𝐼𝑃(𝑡) −  𝐷(𝑡, 𝑡 + 𝐿)

In steady state, the relation must hold for every t and this time index can be
discarded. Hence, (4) can be formulated as IL = IP - D(L) instead.

When dealing with an inventory system subject to stochastic demand, both
the inventory position and the inventory level become stochastic (Axsäter,
2006). To determine the steady-state distribution of the inventory level, it is
necessary to consider the distributions of both the inventory position and the
lead time demand.

A system using a (R,Q) ordering policy with a discrete stochastic demand
has an IP that is uniformly distributed on the integers R+1, R+2 …, R+Q in
the steady state according to (5) (Axsäter, 2006).

(5)𝐼𝑃 ∈ 𝑈 𝑅 + 1,  𝑅 + 𝑄[ ]

4.1.4 Stock-on-hand and backorders
The concept of stock-on-hand and backorders was briefly discussed in
section 4.1.2 However since these concepts come with an associated cost
and thereby play a vital role in optimizing the inventory decisions this
section will discuss the concepts more in depth.

The cost associated with holding stock-on-hand is often referred to as
holding cost (h). These costs only occur when the IL is greater than zero
(Axsäter, 2006). On the other hand, cost associated with backorders referred
to as backorder costs ( ) only occurs if the IL is negative (Axsäter, 2006).𝑏

1

One way of describing the backorder cost is as a penalty cost per unit and
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time unit which the warehouse has to consider if the demand from the
customers is not fulfilled straight away.

Naturally these two costs are connected, and the cost optimal solution
involves balancing the two. If a continuous review (R,Q) policy is
considered, the optimal solution minimizing cost can be calculated
according to (9). Here it is convenient to use the notation in (6), (7) and (8).

In (9) denotes the expected holding cost and denotes theℎ𝐸[𝐼𝐿]+ 𝑏
1
𝐸[𝐼𝐿]−

expected backorder costs.

(6)(𝑥)+ =  𝑚𝑎𝑥(𝑥, 0)

(7)(𝑥)− =  𝑚𝑎𝑥(− 𝑥, 0)

(8)𝑥+ − 𝑥− = 𝑥

ℎ𝐸[𝐼𝐿]+ +  𝑏
1
𝐸[𝐼𝐿−] =  − 𝑏

1
𝐼𝐿  + (ℎ + 𝑏

1
)𝐸[𝐼𝐿]+  

(9)=  ℎ𝐼𝐿 +  (ℎ + 𝑏
1
)𝐸[𝐼𝐿]− 

4.1.4.1 Minimizing cost of (R,Q) - policies

Minimizing the cost of the (R,Q)-policy looking at holding and backorder
cost can be done according to (10). In this function the holding cost is linear
to the expected stock on hand and the expected backorder cost is linear to
expected backorders. To get the correct optimal solution it is of greatest
importance that these costs actually mimic reality. For example the
backorder cost should include the loss of goodwill and future sales it brings
if a customer can not be served straight away.

(10)𝑚𝑖𝑛
𝑅,𝑄

𝐶(𝑅, 𝑄) =  𝑚𝑖𝑛
𝑅,𝑄

(ℎ𝐸[𝐼𝐿]+ +  𝑏
1
𝐸[𝐼𝐿−])
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4.2 Demand during lead time
A cornerstone in the modeling process is understanding the demand;
therefore, it is important to find a suitable demand model that characterizes
the demand over a given time period (the replenishment lead time). In
practice, the demand during a certain time is nearly always a nonnegative
integer, i.e., it is a discrete stochastic variable (Axsäter, 2006). If the demand
is reasonably low, it makes sense to use a discrete demand model to describe
the real-world demand. In the case of relatively high demand, it makes more
sense to use a continuous demand model as an approximation (Axsäter,
2006).

Since demand frequently occurs in discrete quantities rather than
continuously, opting for a discrete demand distribution is a logical choice.
Nevertheless, for computational efficiency, one might consider using a
continuous distribution such as the Normal distribution. This section
elaborates on some common options for distributions in this context.

4.2.1 Discrete demand: Compound Poisson distribution
A compound Poisson distribution represents the likelihood of the
cumulative sum of independent and identically distributed incoming orders.
Assuming a system where customers arrive according to a Poisson process
with a mean arrival rate of customer per time unit. This means that theλ
number of customer arriving during a time unit t is Poisson distributed with
mean . The probability of customers will follow a Poisson distributionλ 𝑘
according to (11). Note here that the expected time between customer
arrivals is .1

λ

The probability that a single customer demands j units is denoted and the𝑓
𝑗

probability that customers having a total demand of is . This can be𝑘 𝑗 𝑓
𝑗
𝑘

calculated recursively knowing that and and is showcased in𝑓
0
0 = 1 𝑓

𝑗
1 = 𝑓

𝑗
 

(12).
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(11)𝑃(𝑘) =  (λ𝑡)𝑘

𝑘! 𝑒−λ𝑡 ,  𝑘 = 0, 1, 2...

(12)𝑓
𝑗
𝑘 =

𝑖=𝑘−1

𝑗−1

∑ 𝑓
𝑖
𝑘−1 · 𝑓

𝑗−𝑖
 ,  𝑘 = 2, 3, 4...  

Using (11) and (12), the stochastic demand in the time interval , , can𝑡 𝐷(𝑡)
be calculated according to (13). A specific scenario arises when employing
the compound distribution where equals 1, indicating that each𝑓

𝑗=1

customer consistently purchases only one item. In this case, the demand
during the lead time follows a Poisson distribution, offering an appealing𝑡
estimate primarily because of its computational efficiency (Axsäter, 2006).

(13)𝑃(𝐷(𝑡) = 𝑗) =  
𝑘=0

∞

∑ (λ𝑡)𝑘

𝑘! 𝑒−λ𝑡 · 𝑓
𝑗
𝑘

The average demand per time unit can be determined using the functionµ
(14) provided below. In this context, K represents the stochastic number of
arriving customers, Z denotes the overall demand, and J represents the
stochastic demand size within the time unit. The preceding assumption that
the arrivals follow a Poisson distribution enables the calculation of both the
variance and the mean arrival rate according to (15).

µ =  𝐸(𝑍) =  𝐸
𝐾

𝐸(𝑍|𝐾){ } =  𝐸
𝐾

𝐾 · 𝐸(𝐽){ } = 𝐸(𝐾) · 𝐸(𝐽) = λ
𝑗=1

∞

∑ 𝑗 · 𝑓
𝑗

(14)

(15)σ2 =  λ · 𝐸[𝐽2] → λ = σ2

𝐸[𝐽2]
 = σ2

𝑗=1

∞

∑ 𝑗2 ·𝑓
𝑗

  

From (14) and (15) it is notable that the variance-to-mean rates with≥ 1,  
equality only in the case of pure Poisson demand (Axsäter, 2006).
Consequently, it is not possible to model the demand as compound Poisson
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demand if . This constraint for using compound Poissonσ2/µ < 1
distribution can be expressed and evaluated numerically according to (16).

(16)σ2

µ = λ·𝐸[𝐽2]
λ·𝐸[𝐽] = 𝐸[𝐽2]

𝐸[𝐽]  ≥ 1

4.2.2 Discrete demand: Logarithmic compounding distributions
In practical scenarios, the shape of the demand distribution is often
unknown and the distribution data limited. Nevertheless, when dealing with
discrete, stochastic, and independent demand, a commonly employed
assumption is that the demand size adheres to a logarithmic compound
distribution according to (17). This choice is primarily made for
computational simplicity.

(17)𝑓
𝑗

=− α𝑗

𝑙𝑛(1−α)·𝑗

The parameters , λ is computed according to (18) and (19), here is aα µ'
estimation of the mean value of the demand during the lead time (L), and σ'
the estimated standard deviation of the demand during the lead time σ'
(Axsäter, 2006).

(18)α = 1 − µ'

σ'2
,  0 < α < 1 

(19)λ =− µ'
𝐿

(1−α)·𝑙𝑛(1−α)
α

Theory shows that the demand during the lead time for a logarithmic
compounding distribution follows a negative binomial distribution
according to (20) (Axsäter, 2006). If and is given the parameter isµ' σ' 𝑝
equal to and therefore calculated according to (18) and is computedα 𝑟
according to (21).

(20)𝑃(𝐷(𝑡) = 𝑘) =  𝑟(𝑟+1)... (𝑟+𝑘−1)
𝑘! (1 − 𝑝)𝑟𝑝𝑘,  𝑘 = 1, 2, 3...
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(21)𝑟 = µ' (1−𝑝)
𝑝 ,  𝑟 > 0 

4.2.3 Continuous demand: Normal distribution
In the case of high demand, regardless of the real distribution, a normal
distribution approximation for the lead time demand is often a suitable
option according to the central limit theorem, presuming the lead-time is
sufficiently long. However a drawback of this approximation is the
probability of negative lead time demand when the standard deviation is
relatively high compared to the mean. (Axsäter, 2006)

For the normal distribution representing demand during the lead time, two
parameters are necessary: the mean value during the lead time and theµ'
standard deviation during the lead time . These parameters are calculatedσ'
according to equations (22) and (23), where L represents the lead time.

(22)µ' = µ · 𝐿

(23)σ' = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ·  𝐿 =  σ2 · 𝐿 

The lead time demand can be calculated using the density function and
distribution function according to (24) and (25) (Axsäter, 2006).

(24)𝑓(𝑑)
𝐷(𝐿)

=  1
σ' 2π

·  𝑒
− 1

2 ·( 𝑑−µ'
σ' )

(25)𝐹(𝑑)
𝐷(𝐿)

=
−∞

𝑑

∫ 𝑓(𝑥)
𝐷(𝐿)

𝑑𝑥
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4.2.4 Continuous demand: Gamma distribution

In case the standard deviation-to-mean ratio , , is high there is a chance ofσ'
µ'

having negative demand if normal distribution approximation is made. An
alternative to the normal distribution approximation is therefore to use a
gamma distribution approximation which does not allow negative demand.
This distribution has a density according to (26) where denotes theΓ(𝑟)
gamma function and is computed according to (27) see, for example
(Axsäter, 2006).

(26)𝑔(𝑥) =  λ(λ𝑥)𝑟−1𝑒−λ𝑥

Γ(𝑟) ,  𝑥 ≥ 0,   λ, 𝑟 > 0 

(27)Γ(𝑟) =  
0

∞

∫ 𝑥𝑟−1𝑒−𝑥𝑑𝑥

The gamma distribution has a mean of and a variance of . If and𝑟
λ

𝑟

λ2 µ' σ'

is given, and can be computed according to (28) and (29).𝑟 λ

(28)𝑟 =  ( µ'
σ' )2

(29)λ =  µ'

σ' 2

4.2.5 Stochastic lead times
The lead time is defined as the time between placing an order and receiving
it. To achieve computational simplicity it is common to use a constant lead
time. However in reality the lead time is more likely to be stochastic. The
processes included in delivering an order depend on several factors, for
example, the inventory level at the upstream warehouse satisfying the order
and the time transporting the specific order. Axsäter (2006) describes two
types of stochastic lead times: independent lead times and sequential
deliveries independent of lead time demand.
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In the case of sequential deliveries independent of lead time demand, orders
cannot cross each other in time. This type of stochastic lead time is the most
commonly used in practice. In a model using this definition of lead times, a
first-come, first-served policy is employed, implying that the customer
ordering first is also the one being served first. The stochastic lead time for a
certain order is thereby dependent on previously made orders; however, it is
not affected by orders made after the considered order. When calculating the
demand during the stochastic lead time it is often practical to use a simple
approximation. The requirements are that the demand per time unit is
independent and non overlapping. Non overlapping means that orders can’t
pass each other during the transportation. If the lead time mean and variance
is known the mean and variance of the demand during the lead time can
then be calculated according to (30) and (31). (Axsäter, 2006)

(30)𝐸(𝐷) =  µ𝐸(𝐿)

(31)𝑉𝑎𝑟(𝐷) = σ2𝐸(𝐿) + µ2𝑉𝑎𝑟(𝐿)

For independent lead times, orders can cross each other in time, which
reflects situations where orders are processed by multiple independent
servers. In a system with independent stochastic lead times, it's possible for
a specific order with a longer lead time to be delivered after another order
that was placed earlier.

4.3 Service levels
Another cornerstone in the modeling process is to understand the service
levels. Companies frequently utilize service levels as a key performance
indicator (KPI) to assess their performance when implementing inventory
policies. It is common practice to establish service level constraints to
determine the suitable reorder point.

4.3.1 Definition of service levels
Axsäter (2006) defines three different types of service levels denoted ,𝑆

1
 𝑆

2

and which are stated in (32) , (33) and (34).𝑆
3
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(32)𝑆
1

= 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑛𝑜 𝑠𝑡𝑜𝑐𝑘𝑜𝑢𝑡 𝑝𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑐𝑦𝑐𝑙𝑒

𝑆
2

= "𝑓𝑖𝑙𝑙 𝑟𝑎𝑡𝑒" − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑚𝑎𝑛𝑑 𝑡ℎ𝑎𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

(33)𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑙𝑦 𝑓𝑟𝑜𝑚 𝑠𝑡𝑜𝑐𝑘 𝑜𝑛 ℎ𝑎𝑛𝑑

𝑆
3

= "𝑟𝑒𝑎𝑑𝑦 𝑟𝑎𝑡𝑒" − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑡𝑜𝑐𝑘 𝑜𝑛 ℎ𝑎𝑛𝑑

(34)

The first definition, is easy to use but poses challenges primarily𝑆
1
,  

because it neglects batch sizes, making it potentially challenging for
analyzing service levels. If is low but the batch size is big, there can still𝑆

1

be a large available stock. Because of this shortcoming this definition of the
service levels is not recommended to use in inventory control in practice
(Axsäter, 2006).

The fill rate, , and the ready rate, definitions offer a more𝑆
2

𝑆
3
 

comprehensive understanding of the service level, but their computations
can be intricate. In scenarios where demand is continuous or follows a pure
Poisson distribution, the fill rate and ready rate are identical. However if a
customer can order several units at the same time they will no longer be
identical. The reason is that it is not sure that the stock will be adequate to
fulfill demand even if the existing stock is positive.

In practice using the same service level definition throughout the company
which can be followed up using real data is very important in decision
making (Axsäter, 2006). Taking a practical point of view it is normally not
suitable to set a desired service level for all Stock Keeping Units (SKUs)
separately. Instead it is common that SKUs with similar characteristics are
segmented into groups on product level (Axsäter, 2006).

4.3.2 Optimizing continuous (R,Q) - policies
Given that a minimum service level is set for a given SKU this can be used
as a constraint when optimizing the (R,Q)-policy according to (35)
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excluding the shortage cost. This approach is commonly used since the
shortage cost is more difficult to estimate compared to a service level in
general (Axsäter, 2006).

(35)𝑚𝑖𝑛
𝑅,𝑄

𝐶(𝑅, 𝑄) =  𝑚𝑖𝑛
𝑅,𝑄

(ℎ(𝐼𝐿)+ 

𝑠. 𝑡    𝑆𝐿 ≥ 𝑆𝐿
𝑇𝑎𝑟𝑔𝑒𝑡

Considering a continuous review (R,Q)-policy with a given batch quantity Q
it is possible to determine the R that satisfies the given service level for
different types of demands. In this section only the fill rate, , and the𝑆

2

ready rate, will be considered.𝑆
3
,

4.3.2.1 Compound Poisson demand

For compound Poisson demand the probability that the inventory is equal to
j is formulated in equation (36). This could be done knowing that the
demand during the lead time for a compound poisson distribution follows
(13) and the maximum inventory level is in steady state discussed in𝑅 + 𝑄
section 4.1.3.

𝑃(𝐼𝐿 = 𝑗) = 1
𝑄

𝑘=𝑚𝑎𝑥{𝑅+1,𝑗}

𝑅+𝑄

∑ 𝑃(𝐷(𝐿) = 𝑘 − 𝑗)            𝑗 ≤ 𝑅 + 𝑄

(36)

By definition the ready rate is the probability that the inventory level is
positive, see (37).

(37)𝑆
3

= 𝑃(𝐼𝐿 > 0)

However, for compound Poisson demand the ready rate and the fill rate are
not the same. Calculating the fill rate becomes more challenging due to the
variable customer demand quantity. Consequently, the fill rate is determined
by considering the expected satisfied quantity for a customer in relation to
the expected total demand quantity for a customer, as indicated in equation
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(38). Recall that is the probability of demand size k. The fill rate is𝑓
𝑘

calculated as the ratio between the expected satisfied quantity and the
expected total demand quantity. If the system has a positive inventory level
of j and experiences a positive demand size of k units, the delivered quantity
is either k units if stock is sufficient, or j units if k > j.

(38)𝑆
2

= 𝐸[𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦]
𝐸[𝐷𝑒𝑚𝑎𝑛𝑑𝑒𝑑 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦] = 𝑘=1

∞

∑
𝑗=1

∞

∑ 𝑚𝑖𝑛(𝑗,𝑘)·𝑓
𝑘
·𝑃(𝐼𝐿=𝑗)

𝑘=1

∞

∑ 𝑘𝑓
𝑘

4.3.2.2 Normally distributed demand

When the system faces continuous demand that follows a normal
distribution, it becomes clear that the fill rate and ready rate are identical.
These are calculated as the probability of positive stock on hand according
to (39). (Axsäter, 2006)

𝑆
2

= 𝑆
3

= 1 − 𝑃(𝐼𝐿 ≤ 0) = 1 − 𝐹(0) = 1 − σ'
𝑄 𝐺( 𝑅−µ'

σ' ) − 𝐺( 𝑅+𝑄−µ'
σ' )⎡⎣ ⎤⎦

(39)

In (39), F(x) represents the cumulative cdf for the inventory level x, while
G(x) refers to the loss function, defined in accordance with (40) and (41),
respectively. In (41), and refers to the density and cdf of the standardφ Φ
normal distribution, with a mean of zero and a standard deviation of one,

which are calculated according to (42) and (43), respectively.𝑁(0, 1)

(40)𝑃(𝐼𝐿 ≤ 0) = σ'
𝑄 𝐺( 𝑅−µ'

σ' ) − 𝐺( 𝑅+𝑄−µ'
σ' )⎡⎣ ⎤⎦

(41)𝐺(𝑥) =  
𝑥

∞

∫(𝑣 − 𝑥)φ(𝑣)𝑑𝑣 =  φ − 𝑥(1 − Φ(𝑥))

(42)φ(𝑥) =  1
2π

𝑒𝑥𝑝(− 𝑥2

2 ) 
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(43)Φ(𝑥) =  
−𝑥

∞

∫ 𝑢φ(𝑢)𝑑𝑢

4.3.3 Shortage cost
As previously mentioned it is usually perceived as simpler to determine the
appropriate service level than estimating a shortage cost ( ). If the fill rate𝑏

1

or ready rate is given it is possible to translate this into an associated
shortage cost. This is done according to (44) for Compound Poisson demand
and for Normal demand (45). (Axsäter, 2006)

(44)𝑆
3
(𝑅*) ≤  

𝑏
1

ℎ+𝑏
1

≤ 𝑆
3
(𝑅* + 1)

(45)𝑆
2
(𝑅*) = 𝑆

3
(𝑅*) =

𝑏
1

ℎ+𝑏
1

 

Here denotes the optimal reorder point. In case of pure Poisson demand𝑅*

= and (44) is also true for the fill rate (Axsäter, 2006).𝑆
2
(𝑅*) 𝑆

3
(𝑅*)

4.3.4 Finding the optimal policy parameters with EOQ
When optimizing the (R,Q)-policy discussed in section 4.1.4.1 there are two
different possible approaches. The function can be optimized by adjusting
the R and Q simultaneously or fixing one of the parameters and then the
other. For the second option the approach does not ensure a global optimum
however it is a computationally more efficient option.

Mentioned for the first time in 1913 by Ford Whitman Harris, the
EOQ-formula has been used for more than a hundred years by decision
makers (Harris, 1913). In this formula the economic order quantity is
decided according to (46).

(46)𝑄
𝐸𝑂𝑄

=  2 ·µ·𝐴
ℎ
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Here A denotes the fixed cost associated with planning or producing per
order. The EOQ model assumes deterministic constant demand, zero lead
time, and that the whole batch is delivered at the same time together with
constant ordering and holding cost. With the Q decided the optimal reorder
point can be determined according to section 4.1.4.1.

4.4 Inventory control modeling
When modeling an inventory control system the distribution network needs
to be constructed. So far in this chapter the focus has been on a single
installation, referred to as a single-echelon system. In a single echelon
model each installation is modeled in isolation according to Figure 7.

Figure 7: A single echelon inventory system.

However in reality most inventory systems do not consist of independent
single echelon systems. In reality inventory systems are often complex
consisting of several different installations which are dependent on each
other. Stock is transferred between different stocking locations throughout
the organization before reaching the final destination, the end customer. A
system with multiple stages is called a multi-echelon system.
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A multi-echelon system can be constructed in various ways, making it
challenging to visualize without additional information. To address this
issue, it is beneficial to specify the number of stages and describe the
characteristics of the system. Here, the number of vertical stages is
emphasized instead of the prefix multi. In Figures 8 and 9, two different
types of multi-echelon systems are presented. However, even with this
information, understanding the inventory system completely can be difficult.
The system in Figure 8 can also be called an One Warehouse Multiple
Retailers (OWMR) system.

Figure 8: A divergent 2-echelon system with one-warehouse and three
dealers.

Figure 9: A divergent 3-echelon system.
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Two systems that may differ significantly physically can be very similar
from an inventory control perspective. For instance, Figure 8 could
represent a distribution system where a central warehouse supplies goods to
three regional warehouses. Alternatively, it could depict stock positions
within a production facility where a subcomponent, used in many products,
is stocked at one location, and final goods containing this subcomponent are
stored at three different positions.

4.5 Optimization of inventory control systems
Multi-echelon inventory optimization presents tough challenges due to the
inherent complexity of real-world systems. Figures 8 and 9 depict two types
of multi-echelon systems. In practice, the number of nodes and echelons
increase, rendering very complex stochastic systems. In the literature of
multi-echelon inventory optimization, there exist exact methods to derive
optimal parameters to meet service levels and minimize the expected costs
of the system. While exact models offer precision by not incorporating
mathematical approximations, they often prove computationally
burdensome and applicable only for small systems with specific structures.

The determination of optimal inventory policies for exact models encounters
intractability even within rudimentary multi-echelon structures. Despite
their ability to mathematically represent the system with high detail, exact
models become increasingly cumbersome as system complexity mounts.

In response to these challenges, researchers have embraced approximation
techniques and heuristics to facilitate practical implementation. One
approach involves decomposing the multi-echelon system into several
single-echelon systems, which can then be optimized individually, as
discussed in sections 4.1.4.1 and 4.3.2. The objective with these simplified
optimization problems is to look for a near-optimal rather than optimal
solution for the original multi-echelon problem. When conducting this
optimization, it is crucial to appropriately capture the dynamics of the entire
system.
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Further complexity arises in the optimization problems when considering
additional factors such as service differentiation. The ability to provide
customers at the same stock point with different service levels is one
common requirement by industry. These additional complexities contribute
to the challenge of finding optimal inventory policies. In the following
sections service differentiation is discussed further.

4.5.1 Reasons for service differentiation
Service differentiation in inventory management involves customizing
inventory policies and service levels to accommodate distinct requirements
and preferences of different customer segments, distribution channels or
product categories. Segmentation is crucial in inventory control, this is
illustrated in the following scenarios:

The criticality of spare parts may vary across different locations or plants.
While a part could be deemed critical in one facility, it might be considered
non-critical in another. In instances where backorders occur, the costs
associated with critical parts are typically significantly higher than those of
non-critical parts. (Dekker et al., 1998)

Parts may be ordered for regular restocking purposes or due to emergency
requirements. Emergency orders often entail higher costs, especially when
utilizing expensive transportation modes such as airline distribution.
Consequently, the cost of backorders for emergency orders tends to be
higher compared to regular orders. (Nahmias and Demmy, 1981)

Certain customers may hold greater importance to the business than others.
Therefore, prioritization within inventory management based on customer
importance ensures that critical customers receive adequate attention and
service levels. (Shulte and Pibernik 2017) (Teunter and Hanevald 2007)

There is a growing trend where customers are offered various service level
agreement contracts to choose from. This trend emphasizes the need for
companies to tailor their inventory management practices to meet the
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diverse service expectations of different customer segments. (Shulte and
Pibernik 2017) (Teunter and Hanevald 2007)

4.5.2 Service differentiation modeling
Acknowledging and effectively managing the intricacies of segmentation in
inventory management empowers businesses to streamline resource
allocation, reduce expenses and elevate customer satisfaction. While it is
evident that a priority clearing mechanism, prioritizing backorders for
high-priority customers is practical, implementing such a policy poses
analytical and tractability challenges, as noted in Berling et al. (2023).

In research on service differentiation within inventory management,
considerable attention is devoted to inventory rationing, also known as stock
reservation. A majority of academic journals identified through a search for
"service differentiation AND inventory management/control" on LubSearch
focus on this approach. Further searches using "stock rationing/inventory
rationing AND inventory management/control" yield numerous additional
research articles. Among the proposed strategies, a significant portion
emphasizes the critical-level policy, first introduced by (Veinott, 1965),
which involves allocating a buffer stock to meet the demands of customers
with higher target service levels.

Research on inventory rationing is broadly categorized into two main
approaches: cost-based and service level-based. The cost-based approach
focuses on minimizing expenses associated with inventory management,
while the service-level approach aims to meet or exceed customer service
objectives. These two approaches can further be delineated into four
dimensions.

The first dimension involves static versus dynamic rationing. Dynamic
rationing methods are notably more computationally complex, considering
factors such as the expected remaining time until the next inventory review
or the remaining lead time until the next order arrives. The second
dimension pertains to the number of service classes, which can be classified
into two options: either two classes or an arbitrary number of classes. This
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dimension correlates directly with the number of distinct service levels. The
third dimension considers periodicity, distinguishing between single-period
and multiple-period inventory rationing. In single-period inventory
rationing, decisions are made for a single time period, often representing a
single outstanding order. Conversely, multiple-period inventory rationing
spans over multiple periods, accommodating several outstanding orders.
The fourth dimension addresses the treatment of shortages as either
backordered or modeled as lost sales. (Alvarez et al., 2013)

4.5.2.1 Service differentiation in single-echelon models
In their comprehensive literature review, Teunter and Hanevald (2007) delve
into multiple models proposed by researchers aimed at integrating service
differentiation into stock rationing strategies. A recurring theme across these
models is the notable computational complexity and time-intensive
optimization processes. Addressing these challenges, they present a
single-period model designed to establish a critical order policy
accommodating two demand classes (critical and non-critical), operating
under the assumption of Poisson demand and backordering. Conversely,
Schulte and Pibernik introduce another model capable of handling an
arbitrary number of classes. They develop a closed-form expression to
determine service levels for N service classes, an advancement previously
limited to scenarios with only two classes (Schulte and Pibernik 2016).

Similar to the two models presented above, under assumption of poisson
demand, Arlsan et al. (2007) have developed a model for an arbitrary
number of service classes with a clearing mechanism for backorders, which
treats a backorder from a lower-priority class equivalent to a first come first
served (FCFS) policy. This means that when the inventory position falls
below certain thresholds, only higher priority demand gets served. The
aggregate inventory stock for each service class can be represented by a
serial system, illustrated in Figure 10, wherein the various service classes
are divided across N installations. This approach effectively divides the
on-hand inventory of different demand classes into N distinct stockpiles,
where i = 1 has the highest service level requirement. (Arslan et al., 2007)
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Figure 10: A serial inventory system with demand at each installation.

Moreover, each installation adopts a continuous review base-stock policy
with Poisson distributed demand, a nonnegative base-stock level si, and is
replenished directly by the preceding installation with zero lead time. The
base-stock level si is derived as the difference between the critical level, ci,
and the preceding critical level ci−1, where ci−1 ≤ ci and c0 = 0. This
base-stock level si serves as a reservation stock for class i, representing the
inventory available to fulfill class-i demand and replenish the reserve stocks
for any higher-priority demand classes. Stage N replenishes from an outside
supplier with lead time greater than zero, and uses an (R,Q) policy. Given
the system set up, the reorder point R at stage N can be according to (47).

(47)𝑅 =  
𝑖 = 1

𝑁

∑ 𝑠
𝑖

Thus, R can be interpreted as the reorder point of the total inventory to serve
the different service classes. They later present an exact method for
determining optimal parameters which yields promising results. They also
suggest how the model can be extended to a multi-echelon setting and
handle general demand distributions, but refer to this as future studies.
(Arslan et al., 2007)

4.5.2.2 Service differentiation in multi-echelon models
Transitioning to the exploration of service differentiation within
multi-echelon environments, Axsäter et al. (2004) introduced a tailored
multi-echelon service differentiation model specifically designed for an
One-Warehouse-Multiple-Retailers (OWMR) system. Their model places
significant emphasis on managing backorders resulting from direct demand
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at the central warehouse. Central to their framework is the establishment of
critical stock levels for each retailer, defining the threshold at which a
replenishment order is fulfilled from the warehouse inventory. This means
that a retailer's order is processed from the warehouse stock only when the
stock level exceeds this critical threshold. Additionally, it is assumed that if
a retailer's replenishment order cannot be fulfilled from the warehouse
stock, it can always be sourced, as an emergency order, at a higher cost from
an external supplier, rather than being backlogged. (Axsäter et al., 2004)

Although the results are promising, the model's applicability is restricted by
its fundamental assumptions. Limitations such as the uniform adoption of an
(S-1, S) inventory policy across all locations, the assumption of
Poisson-distributed demand, and the absence of backlogging for retailer
orders impede its broader applicability.

In a subsequent article, Axsäter et al. (2007) presents another method
investigating service differentiation within a two-echelon distribution
system. Departing from the utilization of critical policies, they advocate for
a strategy involving the reservation of separate stock to manage direct
upstream demand at the central warehouse (Axsäter et al., 2007). This
method introduces an artificial retailer at the central warehouse with zero
transportation time, offering an attractive approach due to its compatibility
with established models for OWMR-systems. However, as highlighted in
(Berling et al., 2023), the performance of this separate stock approach
deteriorates in systems characterized by fill rate constraints and significant
variations in customer order sizes. In such scenarios, the order-up-to levels
at the artificial retailer are often overestimated when treated in the same way
as regular retailers with a positive lead-time.

4.5.2.2.1 Controlling inventories in omni/multi-channel distribution systems
with variable customer order-sizes

Driven by gaps in the research literature, and industry collaboration,
(Berling et al., 2023) have devised a combined stock approach to manage
inventory systems in one-warehouse-multiple-retailer setups, where the
central warehouse faces direct customer demand. This combined stock
method for service differentiation at the central warehouse, can be
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conceptualized as a critical level policy. Their computationally efficient
heuristics address the complexities of real-world one warehouse multiple
retailer inventory systems, which are characterized by highly variable
customer order sizes, (R, Q) policies implemented across all stock points,
and fill rate constraints. All unsatisfied demand is backordered and satisfied
in a first come first served (FCFS) manner.

Similar to (Axsäter et al., 2007), they introduce an artificial retailer at the
central warehouse to serve direct upstream demand. The stock at the central
warehouse can then be divided into two parts: reservation stock dedicated to
serve the direct upstream demand, and the general warehouse stock which is
used to replenish all retailers including the artificial retailer. The artificial
retailer replenishes from the general stock according to a continuous review
(S-1, S) policy, where the order up to level, S, can be interpreted as the
critical reservation level for the combined stock at the central warehouse. A
representation of the system can be seen in Figure 11.

Figure 11: A representation of a system with general and reservation stock.

The combined stock heuristic takes into account the entirety of available
inventory within the central warehouse when establishing the critical
reservation level, thereby not overestimating the order-up-to level S at the
artificial retailer. This heuristic is structured into two distinct steps. Initially,
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the focus is on determining the critical reservation level. The goal here is to
identify the smallest S value that fulfills the fill rate constraint for direct
upstream demand, given a reorder point R0 for the general warehouse stock.
Subsequently, the second step involves integrating the combined stock
heuristic into an efficient inventory control method for the entire OWMR
system. This entails optimizing the reorder point R0 and Ri for i = 1, 2... N.

Drawing upon the findings in previous articles (Berling and Marklund 2013)
and (Berling and Marklund 2014) the authors propose integrating the
combined stock heuristic with the inventory optimization model tailored for
scenarios involving compound Poisson and normally distributed demand. A
comprehensive numerical study demonstrates that this integrated approach
yields near optimal solutions with respect to target fill rates, while
simultaneously offering substantial potential for minimizing inventory costs.

Since the article from 2023 was published (Berling et al, 2023), Prof Johan
Marklund has continued his research on service differentiation within multi
echelon settings. The method proposed above can handle two demand
channels, direct demand at the central warehouse, and demand at the central
warehouse triggered by retailers. In an unpublished article (work in
progress) he has proposed a method for further service differentiation for an
arbitrary number of distribution channels, introducing additional direct
demand channels at the central warehouse. The model will be explained in
the next chapter. For the special case of three distribution channels
applicable to Volvo’s system, this will be referred to as the EM-model
(Extended Model).
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Chapter 5. Inventory control of spare parts at
Volvo
In the context of Volvo's Spare Parts distribution network and inventory
policies described in section 1.3, the existing models in the field quickly
reveal their limitations. Volvo operates with a continuous review
(R,Q)-policy for inventory management, serving a diverse network of
non-identical dealers with varied demand patterns. Much of the research on
multi-echelon models assumes centralized control over all installations, a
condition not applicable to Volvo's distribution network where independent
dealers operate. With reference to the preceding literature review, it
becomes evident that a model accommodating a multi-echelon setup while
addressing service differentiation across multiple distribution channels
without model-restrictive assumptions is essential.

Considering the existing distribution network, the EM-model emerges as the
best fit for the Volvo Spare Parts organization's inventory control system.
This model aligns with Volvo's structure and requirements. The EM-model
accounts for (R,Q) policy and is compatible with demand distributions such
as normal and compound Poisson. Independent dealers, whose inventory
policies Volvo cannot directly dictate, are modeled as direct upstream
demand at the central warehouse. The direct demand stemming from
non-controllable retailers can be divided into two separate distribution
channels, depending on the service level requirement. As for Volvo-owned
and LPA-dealers (i.e. controllable retailers), they will integrate into the
multi-echelon system, allowing for the derivation of optimal inventory
policies for each dealer.

In the following sections, a conceptual description of the EM-model will be
provided, followed by a detailed, step-by-step approach to derive optimal
inventory parameters within the system. But before delving into the model
description, it is crucial to understand the method for estimating stochastic
lead time, as this is essential for grasping the processes within the model.
The next section offers the necessary background to comprehend the lead
time approximation.
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5.1 METRIC inspired approximation of lead times
The so called METRIC approximation stems from the seminal paper by
Sherbrooke (1968). This paper studies a system with base-stock policies and
Poisson demand at all installations. The idea is to replace the stochastic lead
times by their averages, In this approximation, the lead time comprises of a
constant transportation time between stocking locations and a stochastic
waiting time caused by stock-outs at the warehouse, resulting in delays. This
is calculated according to (48).

(48)𝐿
𝑖

= 𝐿 + 𝐸(𝑊
0
)

In this model, the stochastic waiting time is represented as the mean of the
stochastic waiting time, , at the warehouse. This approximation works𝑊

0

well also under different model assumptions (Andersson et al., 1998). For
Poisson demand and base-stock policies at all the retailers, or if all retailers
use the same order quantity, a direct application of Little’s law, see (49),

renders the correct mean of . Where denotes the mean subbatch𝐿
𝑖
(𝑅

0
*) µ

0

demand at the central warehouse during L0. is the expected𝐸[𝐵
0
(𝑅

0
*)]

number of backorders.
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In the case of retailers with different order quantities and/or more general
compound Poisson demand, (49) does not represent the correct mean.
However, the result serves as an approximation (Berling and Marklund
2013).

5.2 The multi-echelon EM-model
The EM-model, as previously mentioned, is a special case of a more general
model developed by Prof. Johan Marklund, based on prior work with Peter
Berling and Lina Johansson (Berling et al., 2023). This
OWMR/omni-channel model features a serial system consisting of two
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virtual retailers and one distribution channel dedicated to serving demand
from controllable retailers.

This omni/multi-echelon One-Warehouse-Multi-Retailer (OWMR)
inventory system accommodates end customer demand originating from
both the central warehouse (CW) and multiple non-identical retailers.
Demand from non-controllable retailers is represented as direct demand to
the central warehouse, channeled through either VR1 or VR2 based on the
prescribed service level requirement. The model manages two distinct
service channels for processing direct demand, where demand entering VR2

has a higher target service level than VR1. The total stock at the CW is
divided into reservation stock, dedicated to serving direct upstream demand
(supplying demand entering the virtual retailers), and general warehouse
stock, used to replenish all retailers, including the virtual retailers. For a
visual representation of the model, see Figure 12.

Figure 12. A representation of the EM-model.

Lead time to the CW, L0, and transportation times from the CW to regular
retailers, li, are assumed to be positive and constant, which is standard in
inventory control modeling. The transportation time may be subject to
uncertainties; however, the model can accommodate this by applying
standard approximation techniques, as briefed in section 5.1, for dealing
with stochastic lead times, replacing the stochastic lead time with its mean.
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In the model, transportation times between the CW and virtual retailers are
zero since virtual retailers model the reservation stock at the CW, which is
part of the total CW stock. Despite the zero transportation time, there may
be a positive lead time to the virtual retailers caused by stockouts. Similarly,
for regular retailers, the lead times are stochastic due to stockout
probabilities at the CW.

All inventory locations are assumed to apply continuous review installation
stock (R,nQ) policies to replenish inventory. Thus, an order size of Q is
placed when the inventory position falls to or below the reorder point R.
The virtual retailers are integrated with the CW and are replenished from the
general stock according to a continuous review (S−1, S) policy, equivalently
an (R, 1) policy. The order-up-to levels (R+1), in this model denoted S1 and
S2 for each virtual retailer, can be interpreted as the critical reservation
levels for the combined stock at the CW.

All unsatisfied demand is backordered and satisfied on a
first-come-first-serve (FCFS) basis. This means there is no difference in
priority between regular and virtual retailers when clearing backorders. This
is a common assumption in the literature and used for example in Arslan et
al. (2007), Axsäter et al. (2007) and Berling et al. (2023).

The considered costs include holding costs per unit and time unit at each
inventory location. All retailers, including the virtual retailers, operate under

fill rate constraints with specified fill rate targets, . The fill rate is definedγ
𝑖
*

as the fraction of demand that can be satisfied directly from stock on hand.

The objective is to minimize the expected holding cost per time unit, TC, by
optimizing R0 for the general stock, the critical reservation levels, S1 and S2
for the virtual retailers, and Ri for the regular retailers, subject to fill rate
constraints. This can be modulated according to (50).
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In order to solve the reservation levels for the virtual retailer, the combined
stock on hand, i.e. reservation stock and the general stock, need to be
considered since both sources can supply the virtual retailers. In the next
section, the combined stock heuristic originating from Berling et al. (2023)
is presented.

5.2.1 The combined stock heuristic
We assume a central warehouse where the total stock is divided into two
parts: a general stock supplying both regular retailers and virtual retailers
and a separate stock only satisfying demand from virtual retailers. The aim
is to obtain a base stock level for VR1 and VR2 such that the combined stock
at the CW and the virtual retailers, together achieve the target fill rates in the
three distribution channels. The reorder point for the combined stock RCW is
defined according to (51).

(51)𝑅
𝐶𝑊 

=  𝑅
0

+
𝑗 = 1

2

∑ 𝑆
𝑗

The base stock level Sj can be interpreted as the critical level or reservation
stock associated with channels i ≤ j. When the combined stock on hand
drops below this threshold, only demand from the associated channels are
supplied. If j = 1, customers from channel VR1 and VR2 are supplied. If j =
2, only customers in channel VR2 are supplied, see Figure 13.
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Figure 13: Illustration of the reservation stock with two virtual retailers.

The approach is based on approximating the probability mass function
(pmf) for the combined inventory level of the general stock and the
reservation stock at the central warehouse, given the reservation levels for
the virtual retailers and the reorder point at the

central warehouse, R0. The combined stock policy prescribes that when a
customer arrives and demands d units, it will be satisfied by the combined

stock on hand at the central warehouse . is the sum of the𝐼𝐿
𝐶𝑊
+ 𝐼𝐿

𝐶𝑊
+

available stock on hand at the artificial retailers (≤ S1+S2) and the available
general warehouse stock. Thus, even if d > S1 + S2 the demand may be fully
satisfied if d - S1 - S2 units are available in the general warehouse stock.

The challenge using the combined stock is to determine the probability

distribution of the combined stock on hand . The exact distribution is𝐼𝐿
𝐶𝑊
+

unknown and inherently complex, and for computational reasons most
likely infeasible to use in the real system. Therefore, the focus is on
obtaining an efficient approximation.

The approach and determination of the reservation levels for the virtual
retailers are determined by sequential computation. First, the reservation
level for VR1 is computed. Essentially, the inventory level distribution of the
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general stock and reservation stock for the first virtual retailer, , is𝐼𝐿
0,1
𝑡𝑜𝑡

determined. Given the distribution of the inventory level, the reservation
level can be computed. S1 should be set as low as possible while still

fulfilling the target fill rate, . It is straightforward to determine theγ
1
*

smallest S1 that satisfies the target fill rate by increasing S1 from zero until

γ1(R0, S1) ≥ . When the reservation level for VR1 is set, the reservationγ
1
*

level for VR2 can be computed in a similar manner.

The probability distributions of the inventory levels for the virtual retailers
are difficult to determine, as the replenishment lead-time is stochastic
because the general stock may be depleted. The approximation for this
stochasticity is determining a mean value of the delay to virtual retailers
caused by stock outs at the general stock. Focusing only on these situations,
i.e. when IL0 ≤ 0, an estimate of the inventory distribution can be
determined, and the reservation levels can be calculated.

It is worth mentioning that the method of determining the inventory level
for the combined stock assumes independence between the inventory level
for the general stock, IL0, and the inventory levels for the virtual retailers.
Even if this is not the case, it is assumed as an approximation for the
problem to be computationally feasible.

5.3 Solving optimal inventory policies using the
EM-model
The overall approach for obtaining optimal policies using the EM-model
can be divided in four steps. The first step revolves around determining the
lead time demand at the central warehouse, setting the foundation for
determining the optimal reorder point in the subsequent step. The second
step is to determine a near optimal reorder point for the general stock at the
central warehouse, R0. This general stock is used for serving all channels,
but it is also the only stock used for replenishing the regular retailers in the
original OWMR system. In the chosen approximation model based on
(Berling and Marklund 2013, 2014), this means estimating near optimal
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induced backorder costs for the different channels. The third step concerns
finding optimal reorder points for the regular (Volvo owned and LPA)
retailers. Lastly, the fourth step is concerned with determining the
base-stock levels at the virtual retailers (supplying independent retailers) to
achieve the specified target fill rates for the virtual retailers with
successively higher target fill rates.

The solution is essentially broken down into a series of single-echelon
problems. The decomposition of the system is achieved by introducing an
induced backorder cost, β, at the central warehouse, that captures how the
retailers are affected by the reorder point R0 for the general stock at the
central warehouse. Once the optimal reorder point at the central warehouse
is set, the reservation levels for virtual retailers and regular retailers can be
optimized independently to meet the specified service level targets.

Step 1: The distribution of the lead-time demand at the central warehouse,
D0(L0), is determined by treating the virtual retailers as any other retailer.
D0(L0) incorporates the impact of retailer order quantities and customer
order-sizes.

Step 2: In order to determine the reorder point for the general stock, the
induced backorder cost for the central warehouse is calculated. The induced
backorder cost is estimated as a demand weighted average of the induced
backorder costs associated with each retailer. In our case, this includes both
the regular and virtual retailers. The induced backorder cost should capture
the effect of how changes in lead-time (i.e. a new reorder point at the central
warehouse) impact the retailers. When the induced backorder costs have
been estimated, a near optimal reorder point at the general warehouse stock,
R0, is calculated. That is, by minimizing the expected holding and induced
backorder cost per time unit at the central warehouse, according to (52).
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It is easy to show that C0(R0) is convex in R0 and that the optimal reorder

point that minimizes C0(R0) can be found through a simple search using𝑅
0
*

the optimality condition according to (53).
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0
− 1) ≤ 0{ }

Step 3: A near optimal reorder point at each regular retailer is determined
by solving the fill rate constrained singe-echelon problem according to (54),
where is the demand at retailer i during time period .𝐷

𝑖
(𝐿

𝑖
) 𝐿

𝑖
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Step 4: The critical reservation levels for the virtual retailers is determined
using the combined stock heuristic. The inventory level distribution of the
combined stock is calculated and used for determining the critical
reservation levels necessary to achieve the target fill rates for the virtual
retailers.

5.3.1 Step 1. Lead time demand at the central warehouse
The lead time demand at the central warehouse, D0(L0) is expressed in
“subbatch” demand rather than in unit demand. The batch quantity at
retailer i, qi, is expressed as the subbatch quantities of Q, where Q is the
largest common divisor of all order quantities. Because the batch quantity
for all virtual retailers equals one, the largest common divisor of all order
quantities equals one in the system, and the “subbatch” demand can be
interpreted as unit demand.

The demand from retailers is assumed to follow a compound poisson
distribution, see (11)-(13). Furthermore, an assumption of the EM-model is
that the lead time for an order to arrive at the central warehouse from an
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outside supplier, L0, is constant. The derivation of the lead-time demand can
then be determined according to the process below.

Firsty, the probability distribution of the lead time demand associated for
each retailer need to be computed. This is done according to equation (55),
where is the probability that at most n orders from retailer i have beenδ

𝑖
(𝑛)

placed during L0 time units. For the specified retailer model, the inventory
position at retailer i, IPi, is uniformly distributed over [Ri +1, Ri + Qi] as
long as all demands are not multiples of an integer greater than one. Thus, if
we consider retailer i at an arbitrary time and let x = IPi - Ri, it follows that x
is uniformly distributed over [1, Qi].

δ
𝑖
(𝑛) =  1

𝑄
𝑖 𝑥 = 1

𝑄
𝑖
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(𝐿

0
) ≤ 𝑛𝑄

𝑖
+ 𝑥 − 1)      𝑓𝑜𝑟 𝑛 =  1, 2, 3...

(55)

Defining as the subbatch demand from retailer i during L0 time units,𝐷
𝑜
𝑖 (𝐿

0
) 

with a probability mass function (pmf) , the subbatch demand for𝑔
0
𝑖 (𝑢)

retailer i can be determined according to (56).

(56)

Once is determined for every retailer, it is straightforward to calculate𝑔
0
𝑖 (𝑢)

the mean and standard deviation of the lead-time demand at the central
warehouse according to (57) and (58).
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(58)

Knowing the mean and standard deviation for the demand during the lead
time at the central warehouse, this can be used to fit either a normal
distribution, gamma distribution or a negative binomial distribution to
approximate the lead time demand.

When ≥ 1 the negative binomial distribution is used, if < 0,2, the
σ

0
2 

µ
0

σ
0

µ
0

normal distribution is used, and if neither of the two conditions are met, the
gamma distribution is used.

For the negative binomial distribution, the parameters r and p can be
determined according to (18) and (21). Given r and p, the demand during the
lead-time L0 can be determined according to (59).

(59)

If the normal distribution or gamma distribution is used, the demand during
the lead time is determined according to (60), where F(x) is the cumulative
distribution function (CDF) of the distributions.

(60)

When the central warehouse demand distribution is determined, we can
proceed to determine the induced backorder cost.
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5.3.2 Step 2. Determine the induced backorder costs and
calculate R0

In this section, we first introduce the concept of induced backorder cost to
provide a foundational understanding of this critical step. Next, we present
two distinct approaches for determining the induced backorder cost at
virtual retailers. Finally, we delve into the iterative procedure used in our
analytical model for calculating the induced backorder cost for virtual
retailers, offering a detailed explanation of the process. In the process of
finding estimates of the induced backorder cost for the virtual retailers, the
optimal R0 is determined. Readers who require no background are referred
to section 5.3.2.4 for the algorithmic derivation of the induced backorder
cost and the reorder point at the central warehouse.

5.3.2.1 Induced backorder cost

To enhance the efficiency of the decomposition model described in
Andersson et al. (1998), Berling and Marklund (2006) provide a
closed-form estimate of the optimal penalty cost, referred to as the induced
backorder cost, denoted 𝛽i. This cost reflects the impact of the reorder point
R0 has on retailers and is derived as a scaled derivative of the optimal
retailer costs with respect to the average lead time (Berling and Marklund,
2006). The closed form expression of the induced backorder cost 𝛽i is
determined according to (61). See Appendix C for all equations to
determine 𝛽i.
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,   𝐹𝑜𝑟 𝑖 =  1, 2... 𝑁 

The calculations for the induced backorder costs are based on a normalized
system where a unit of demand equals 100, the holding cost per unit and
time unit equals 1, and the transport time from warehouse to retailer equals
1 time unit. Parameters from any system can be scaled to this normalized
model using the conversion formulas provided in the Appendix C. The
system needs to be normalized before one can use the closed form
expressions.
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The induced backorder costs may vary among non-identical retailers.
Therefore, the induced backorder cost at the central warehouse is calculated
using a weighting scheme. Berling and Marklund (2006) examined several
weighting schemes and found no significant differences. Consequently, in
their later works (Berling and Marklund, 2013; 2014), they adopted a simple
weighting scheme based on the proportion of total expected customer
demand , see (62).

(62)β* =  
𝑖 = 1

𝑁

∑
µ

𝑖
·𝐿

𝑜

µ
0
·𝑄 · β

𝑖

5.3.2.2 Two approaches for estimating the induced backorder cost for virtual
retailers

Since the virtual retailers in the model are integrated in the central
warehouse, the transportation time is zero. Therefore, the closed form
induced backorder cost approximation presented by Berling and Marklund
(2006) cannot be used for determining the induced backorder cost for virtual
retailers. To tackle this Berling et al., (2023) proposes a naïve approximation
where the induced backorder cost, βVR, is equal to the backorder cost

associated with the direct customer demand, . Here it is proposed that this 𝑝 
can be estimated according to (63) if not provided as an input variable. In
this estimate the target service level, FRVR, and the holding cost, h, is
expected to be known.

(63)𝐹𝑅
𝑉𝑅

= 𝑝
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1 − 𝐹𝑅
𝑉𝑅

 

The naïve approximation tends to overestimate the optimal induced
backorder cost. This leads to higher inventory levels at the central
warehouse due to setting the reorder point at the central warehouse too high.
(Berling et al., 2023)

An alternative approach involves utilizing an iterative procedure for
establishing the induced backorder cost, as outlined in the paper presented
by Andersson et al. (1998). This method typically yields a lower value for
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the induced backorder cost at the virtual retailers (Berling et al., 2023)
resulting in lower inventory at the central warehouse. While the original
paper was derived for normally distributed demand, Berling et al. (2023)
suggest and evaluate its application also for compound Poisson distributed
demand.

5.3.2.3 Iterative procedure for determining the induced backorder cost and
R0

Since this is a computational heavy method, this section will first provide a
conceptual description of the iterative procedure. The later part provides a
stepwise approach in order to compute the induced backorder costs and an
optimal R0 at the central warehouse.

The method iteratively updates the induced backorder costs for VR1 and
VR2 for new values of R0 until an equilibrium is reached. Throughout this
iterative procedure, the estimates of the induced backorder costs for VR1

and VR2 are continuously updated, feeding back into recalculating the
reorder point at the central warehouse. The cycle of adjustments and repeats
until the new set of calculated induced backorder costs for VR1 and VR2

results in an R0 equal to the previous iteration, ensuring the reorder point at
the central warehouse reaches a stable value. For an illustrative flow chart of
the process, see Figure 14.
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Figure 14: Flow chart of the iterative procedure for determining R0.

Step 2.1: Calculate the reorder point at the central warehouse based on the
naïve approximation of the induced backorder costs for virtual retailers, and
use closed form expression for regular retailers.

Step 2.2: Use the expected number of backorders at the central warehouse
to calculate the lead time to VR1.

Step 2.3: Treat VR1 as an artificial central warehouse supplying direct
demand entering VR1 and indirect demand entering VR2. Determine the
reorder point which minimizes the expected holding and induced backorder
costs.

Step 2.4: Given the reorder point for VR1, determine the expected number
of backorders and calculate the expected lead time to VR2.

Step 2.5: Assume demand at VR2 is normally distributed and estimate βVR2
as the derivative of the optimal expected holding and backorder costs with
respect to its lead time. Iteratively return to step 2.3 until equilibrium is
reached.
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Step 2.6: Use the new estimate of the induced backorder cost for VR1 and
VR2 to calculate a new reorder point at the central warehouse.

Step 2.7: Proceed from step 2.2 through step 2.6 until the reorder point, R0,
does not change from one iteration to the next, then the procedure stops.

5.3.2.4 Algorithmic derivation of the induced backorder cost and reorder
point R0

In this section, the index j refers to the virtual retailers, while the index i
refers to the regular retailers.

Step 2.1.1 Determine the induced backorder costs, βi for all regular retailers
i=1,2,….,N This is done using the closed form estimates presented in
section 5.3.2.1, where the system is first normalized and the induced
backorder cost calculated.

Step 2.1.2: Determine initial naïve estimates of the induced backorder costs
for the virtual retailers. Start from VR2 and use the naïve estimate β2 = p2.
Typically, the target fill rate FR2 is given rather than the backorder cost p2.
In this case one may use the standard estimate according to (64).
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Determine an estimate for the induced backorder cost for VR1 as demand
weighted averages of the induced backorder cost using (65)-(67).
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(67)β
𝑗
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𝑗

step 2.1.3: Optimize R0 for the given induced backorder costs. Use the
weighted induced backorder cost β to optimize the reorder point R0
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according to (68) Note that the induced backorder cost for VR1 comprises

estimates for VR2. Also note that .
µ
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To clarify the expression, j=1 refers to VR1.
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Given the induced backorder cost β, the expected cost of a given reorder
point can be computed according to equation (69). Since β is larger than
zero and - is increasing in R0 it is easy to show that this𝐶̃
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)

central warehouse can be found according to (70). Recall that g0(u) is
determined according to section 5.3.1 and that Q equals one for this model.
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If the naïve estimates are going to be used and no improvement using the
iterative procedure is desired the procedure ends here. Otherwise proceed. If

= , the reorder point corresponds to the previous set of induced𝑅
0
* 𝑅

0

backorder costs, and no further updating of the induced backorder costs and

R0 is needed. Otherwise if ≠ ⇒ set = and proceed to step 2.2.1.𝑅
0
* 𝑅

0
𝑅

0
𝑅

0
*

Step 2.2.1: Estimate the associated expected lead-time, for VR1𝐿
𝑗=1

(𝑅
0
)

according to the METRIC inspired approach in (71) where is𝐸[𝐵
0
(𝑅

0
)]

calculated according to (72).
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(71)𝐿
𝑗=1

(𝑅
0
*) =

𝐿
0

µ
0

· 𝐸[𝐵
0
(𝑅

0
)]

𝐸[𝐵
0
(𝑅

0
)] = 1

𝑄
0 𝑦=𝑅

0
+1

𝑅
0
+𝑄

0

∑ 𝐸
𝐷

0
(𝐿

0
)
[(𝐷

0
(𝐿

0
) − 𝑦)+] = 1

𝑄
0 𝑦=𝑅

0
+1

𝑅
0
+𝑄

0

∑ ·
𝑢=𝑦

∞

∑ (𝑢 − 𝑦)𝑔
0
(𝑢)

(72)

Step 2.3.1 Estimate new induced backorder costs for VR1 and optimize RJ=1.
The approach is to treat VR1 as a virtual central warehouse with lead time

satisfying direct customer demand and demand from VR2 with different𝐿
𝑗=1

shortage costs and applying the iterative procedure in (Andersson et al
1998).

Step 2.3.2 Optimize R1 for the backorder cost p1, which is a function of .β
1

First determine the induced backorder cost for VR1 according to (73). Note
that index 1 refers to VR1 and index 2 refers to VR2.

(73)𝑝
1
 =  β

2
(

µ
2
𝑡𝑜𝑡

µ
1
𝑡𝑜𝑡 ) +  𝑝

1
(

µ
1

µ
1
𝑡𝑜𝑡 )

Next is to determine the total lead time demand at VR1, , in𝐷
1
𝑡𝑜𝑡 =

𝑗=1

2

∑ 𝐷
𝑗

units of Q. Remember that Q=1 is the largest common divisor of all order
quantities. This can be done by exact convolution of the compound Poisson
processes or by approximating the total lead-time demand by a negative

binomial distribution with a mean of and a standard deviation ofµ
1
𝑡𝑜𝑡𝐿

1

according to (74). The lead time demand distribution for VR1 isσ
1
𝑡𝑜𝑡 𝐿

1

denoted g1(u).

Let (74)𝑃(𝐷
1
𝑡𝑜𝑡(𝐿

1
) =  𝑢) =  𝑔

1
(𝑢)      𝑓𝑜𝑟 𝑢 =  0, 1, 2...

The cost function for VR1 to minimize (75).
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(75)𝐶
1
(𝑅

1
) =  ℎ

1
𝑄𝐸[𝐼𝐿

1
+(𝑅

1
)] +  𝑝

1
𝑄𝐸[𝐵

1
(𝑅

1
)]

where 𝐸[𝐵
1
(𝑅

1
)] =  𝐸[𝐼𝐿

1
−(𝑅

1
)]

Simplifying the cost expression in (75), we get (76).

𝐶̃
1
(𝑅

1
) =  

(ℎ
1
+𝑝

1
)·𝑄

𝑄
1 𝑦=𝑅

1
+1

𝑅
1
+𝑄

𝑖

∑  
𝑢=0

𝑦

∑ (𝑦 − 𝑢)𝑔
1
(𝑢)

⎰
⎱

⎱
⎰ − 𝑝

1
𝑄(𝑅

1
+

𝑄
1
+1

2 − µ
1
𝑡𝑜𝑡𝐿

1
)

(76)

(77)𝑅
1
* = 𝑚𝑎𝑥 𝑅

1
: 𝐶̃

1
(𝑅

1
) − 𝐶̃

1
(𝑅

1
− 1) ≤ 0{ }

It is easy to show that, as p1 > 0, C1(R1) - C1(R1 - 1) is increasing in R1,

which implies that C1 is convex. An optimal that solves the problem and𝑅
1
*

satisfies the optimality condition can therefore be found through a simple
search according to (77).

If , the reorder point corresponds to the previous set of induced𝑅
1
* = 𝑅

1

backorder costs, and no further updating of the induced backorder costs and
R1 is needed.

Otherwise if set and proceed to step 2.4.1𝑅
1
* ≠ 𝑅

1
⇒ 𝑅

1
= 𝑅

1
*

Step 2.4.1 Estimate the associated expected lead-time, according to𝐿
2
(𝑅

1
)

the METRIC inspired approach according to (78).

(78)𝐿
2
(𝑅

1
) = 1

µ
1
𝑡𝑜𝑡 · 𝐸[𝐵

1
(𝑅

1
)]

Where is calculated according to (79).𝐸[𝐵
1
(𝑅

1
)]
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𝐸[𝐵
1
(𝑅

1
)] =  1

𝑄
1 𝑦=𝑅

1
+1

𝑅
1
+𝑄

1

∑ 𝐸
𝐷

1
𝑡𝑜𝑡(𝐿

1
)
[(𝐷

1
𝑡𝑜𝑡(𝐿

1
) − 𝑦)+] = 1

𝑄
1 𝑦=𝑅

1
+1

𝑅
1
+𝑄

1

∑ ·
𝑢=𝑦

∞

∑ (𝑢 − 𝑦)𝑔
1
(𝑢)

(79)

Step 2.5.1 Determine a new estimate for β2 based on R1 and . In𝐿
2
(𝑅

1
)

principle, the same overall approach is used as in Berling et al. (2023) based
on the iterative procedure in Andersson et al. (1998). That is, we assume
demand is normally distributed with correct mean and variance, and
estimate β2 as the derivative of this retailer’s expected holding and
backorder costs with respect to its lead time, , assuming R2 is chosen𝐿

2
(𝑅

1
)

optimally. It is shown that for normally distributed demand, an
iterative procedure can be used to find an optimal β value for the
approximation model (Berling and Marklund, 2006). For other demand
distributions like the compound Poisson, the method is a robust
approximation. An optimal R2 is determined for which (80) is minimized.
Here, is the CDF of the normal distribution.ϕ(𝑥) 

(80)β
2
(𝐿

2
) =  (ℎ

2
+ 𝑝

2
)

σ
2
2

µ
2
𝑄

2
[ϕ(

𝑅
2
*+𝑄

2
−µ

2
𝐿

2

σ
2

𝐿
2

) − ϕ(
𝑅

2
*−µ

2
𝐿

2

σ
2

𝐿
2

)]  

Once an optimal R2 has been found, this is used to estimate a new induced
backorder cost for VR2 according to (81).

β
2
𝑛𝑒𝑤 =

𝑑𝐶
2
𝐴(𝑅

2
*|𝐿

2
)

𝑑𝐿
2

· 1
µ

2
= (ℎ

2
+ 𝑝

2
) ·

σ
2
2

2𝑄
2
·µ

2
ϕ(

𝑅
2
*−µ

2
·𝐿

2
+𝑄

2

σ
2
· 𝐿

2

) − ϕ(
𝑅

2
*−µ

2
·𝐿

2

σ
2
· 𝐿

2

) 
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

(81)

If stop updating and proceed to step 2.6.1β
2
𝑛𝑒𝑤 =  β

2
𝑜𝑙𝑑 ⇒ β

2

If and proceed to step 2.3.2β
2
𝑛𝑒𝑤 ≠  β

2
𝑜𝑙𝑑 ⇒ β

2
= β

2
𝑛𝑒𝑤
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step 2.6.1 Once the induced backorder cost, β2, for VR2 stabilizes, use the
new induced backorder cost for VR1, VR2, and the regular retailers to
calculate the weighted induced backorder cost at the central warehouse.
Given the new induced backorder cost, calculate a new reorder point for the
central warehouse according to step 2.1.3.

Andersson et al. (1998) showed that for constant pi ≥ hi this iterative
procedure is guaranteed to converge. The key property, which assures

convergence of the procedure is the concavity of with respect to𝐶
𝑖
𝐴(𝑅

𝑖
*|𝐿

𝑖
)

. A necessary but not very restricting condition for this property to hold is𝐿
𝑖

that the unit costs at retailer i must satisfy; pi ≥ hi. A complete analysis of
the relationship between the stationary solutions and the optimal solution to
the problem in question, together with a thorough investigation of the
behavior of the coordination procedure, can be found in (Andersson et al.,
1998).

For the special cases when there are only two channels active, i.e. regular
retailers and one virtual retailer, the iterative procedure presented above can
be used with slight modification. By simply setting the demand for the VR2

equal to zero. Another approach requiring less computation is to follow the
steps presented in (Berling et al., 2023) for one virtual retailer. This
approach is conceptually similar and uses the results in (Andersson et al.,
1998) to find convergence.

5.3.3 Step 3. Determine the reorder points for regular retailers
Given the reorder point at the central warehouse, the reorder point for the
regular retailers, can be determined. Note that for a given R0 the reorder
points, R1,2,3…N can be optimized independently for each retailer. (Berling et
al., 2023). This is done by solving the fill rate constrained singe-echelon
problem (82). The objective is to find the lowest cost while fulfilling the

target fill rate, . Recall that index i refers to regular retailers.γ
𝑖
*
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(82)𝑚𝑖𝑛 𝐶
𝑖
(𝑅

𝑖
) =  ℎ

𝑖
𝐸[(𝐼𝐿

𝑖
)+] =  

ℎ
𝑖

𝑄
𝑖 𝑦 = 𝑅

𝑖
+1

𝑅
𝑖
+𝑄

𝑖

∑ 𝐸
𝐷

𝑖
(𝐿

𝑖
)
[(𝑦 −  𝐷

𝑖
(𝐿

𝑖
))+] 

𝑠. 𝑡.  γ
𝑖
(𝐿

𝑖
(𝑅

0
),  𝑅

𝑖
) ≥ γ

𝑖
* 

where is determined according to the METRIC inspired approach in𝐿
𝑖

(Berling et al., 2023), according to (83), where li is the transportation time
from the central warehouse to retailer i, μ0 is the demand at the central

warehouse during the lead time, L0, and is the expected number𝐸[𝐵
0
(𝑅

0
*)]

of backorders.

(83)𝐿
𝑖
 =  𝑙

𝑖
+

𝐿
0

µ
0

𝐸[𝐵
0
(𝑅

0
*)]

Under the assumption of compound distributed demand, the fill rate, , isγ
𝑖

computed according to (84), where fi(d) is the probability of a customer
ordering d units at retailer i.

(84)γ(𝑅
𝑖
,  𝑅

0
) =  𝑑=1

∞

∑
𝑗=1

∞

∑ 𝑚𝑖𝑛(𝑗,𝑑)·𝑓
𝑖
(𝑑)·𝑃(𝐼𝐿

𝑖
=𝑗| 𝑅

0
,𝑅

𝑖
)

𝑑=1 

∞

∑ 𝑑·𝑓
𝑖
(𝑑)

The inventory level probability distribution P(ILi = j | Ri) is determined
according to (85), where the distribution for the lead-time demand Di( ) can𝐿

𝑖

be computed by exact convolution of the compound poisson distribution or
by approximating the demand according to negative binomial distribution
with the correct mean, , and standard deviation, .µ

𝑖
σ

𝑖

𝑃(𝐼𝐿
𝑖

= 𝑗 | 𝑅
𝑖
) =  1

𝑄
𝑖 𝑘 = 𝑚𝑎𝑥(𝑅

𝑖
+1, 𝑗)

𝑅
𝑖
+𝑄

𝑖

∑ 𝑃(𝐷
𝑖
(𝐿

𝑖
) = 𝑘 −  𝑗)  𝑓𝑜𝑟 𝑗 ≤ 𝑅

𝑖
+ 𝑄

𝑖
 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                               (85)
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5.3.4 Step 4. Determine reservation levels for virtual retailers
The first section describes in detail how the reservation level for VR1 is
determined, followed by a section describing how the reservation level for
VR2 is set.

5.3.4.1 Determine the reservation levels for VR1

The inventory level for the combined stock at the central warehouse and
VR1 is described in (86). Note that the inventory level of the combined
stock, IL0,1 is equal to IL0 + S1 when the inventory level at the general stock
is positive, i.e. IL0 > 0. When IL0 ≤ 0 the combined stock on hand is𝐼𝐿

0,1
+

equal to and all stock is reserved for the direct upstream demand, i.e.𝐼𝐿
1
+

demand entering the virtual channels. The probability distribution of the
combined stock on hand, ≥ 0, may then be determined according to𝐼𝐿

0,1

(87).

(86)

(87)

Once the probability distribution of the inventory level for the combined
stock is determined, equation (88) can be used to determine fill rate, given
S1 and R0.

(88)γ(𝑆
1
,  𝑅

0
) =  𝑑=1

𝑑
𝑚𝑎𝑥

∑
𝑗=1

𝑅
0
+𝑆

1
+𝑄

0

∑ 𝑚𝑖𝑛(𝑗,𝑑)·𝑓
1
(𝑑)·𝑃(𝐼𝐿

0,1
𝑡𝑜𝑡=𝑗| 𝑅

0
,𝑆

0
)

𝑑=1 

𝑑
𝑚𝑎𝑥

∑ 𝑑·𝑓
1
(𝑑)
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Where f1(d) is the probability distribution of customer order sizes at VR1

excluding demand occurring at VR2, and is determined according to (89),
where O1 is the size of customer order at VR1.

(89)𝑓
1
(𝑑) =  𝑃(𝑂

1
= 𝑑),  𝑑 =  1, 2,... 𝑑

𝑚𝑎𝑥

To determine the base stock S1 for a given R0, the process involves
incrementally raising this value from zero until the fill rate surpasses the
specified target fill rate. Alternatively, if ready rate, RR, is used instead of
fill rate, the calculation can be performed by assessing the probability
function associated with the combined stock at the central warehouse and
VR1 being greater than zero, according to (90).

𝑅𝑅(𝑅
0
, 𝑆

1
) = 𝑃(𝐼𝐿

0,1
𝑡𝑜𝑡 > 0 | 𝑅

0
, 𝑆

1
) =  

𝑗=1

𝑅
0
+𝑆

1
+𝑄

0

∑ 𝑃(𝐼𝐿
0,1
𝑡𝑜𝑡  =  𝑗 | 𝑅

0
, 𝑆

1
)  

(90)

In the preceding sections, the determination of the inventory level
distributions at the general stock and virtual retailers are explained.

5.3.4.1.1 Determining the inventory distribution for the general stock

The probability distribution of the central warehouse inventory can be
computed according to (91).

(91)𝑃(𝐼𝐿
0

= 𝑗) = 1
𝑄

0 𝑘=𝑚𝑎𝑥(𝑅
0
+1,𝑚)

𝑅
0
+𝑄

0

∑ 𝑃(𝐷
0
(𝐿

0
) =  𝑘 −  𝑗 

Here D0(L0) denotes the subbatch demand (in units of Q) at the central
warehouse during the lead-time L0, and is computed according to (59) or
(60) depending on distribution type. Recall that since the model assumes a
base-stock policy at the virtual retailers, the system subbatch, Q, will always
be equal to 1.
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5.3.4.1.2 Determining the inventory level distribution for the virtual retailer

As previously mentioned, the inventory level distribution for the virtual
retailer is inherently difficult to determine due to stochasticity in the delay
caused by stock-outs of the general stock.

To arrive at an efficient approximation, note that delays only occur when the

general stock is depleted, i.e. when IL0 ≤ 0. Let denote the expected𝐿
lead-time for units ordered by the artificial retailer that experience a delivery
delay. The probability of stock outs and the general warehouse is computed
according to (92).

(92)𝑃(𝐼𝐿
0

≤ 0) =  1 − 𝑃(𝐼𝐿
0

> 0) = 1 −
𝑘=1

𝑅
0
+𝑄

0

∑ 𝑃(𝐿
0

= 𝑘) 

Focusing only on these situations and assuming that the lead-time is
constant and equal to its mean, the inventory level for the virtual retailer can
be computed according to (93).

(93)𝐼𝐿
1

=  𝑆 −  𝐷
1
𝑡𝑜𝑡(𝐿)

where denotes the stochastic lead-time demand at VR1. In this case,𝐷
1
𝑡𝑜𝑡(𝐿)

the demand encompasses direct demand from customers supplied by VR1,
and also indirect demand from the proceeding virtual retailer, i.e. VR2.

is computed according to (94).𝐷
1
𝑡𝑜𝑡(𝐿)

(94)𝐷
1
𝑡𝑜𝑡(𝐿) =

𝑖=1

2

∑ 𝐷
𝑖
(𝐿)

The pmf of the lead-time demand can for the purpose of determining IL1 be
obtained by exact convolution or by a negative binomial approximation. If
negative binomial approximation is used, the total lead-time demand is

approximated with mean and a standard deviation of .µ
1
𝑡𝑜𝑡𝐿

1
σ

1
𝑡𝑜𝑡 𝐿

1
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The probability mass function (pmf) for the stock on hand at the virtual
retailer is then determined according to (95).

(95)𝑃(𝐼𝐿
1

= 𝑗) = 𝑃(𝐷
1

𝑡𝑜𝑡( 𝐿
1
) = 𝑆

1
− 𝑗)

To estimate , it is assumed that the lead-time L1 follows a two point𝐿
1

distribution such that it is zero when there is stock on hand at the general

stock, and when there is a delay. The probability that there is a delay is𝐿
1

denoted by α. Furthermore, it is assumed that the mean lead time E[L1] is
equal to the expected delay per unit delivered from the central warehouse

stock, , and is determined using Little's law, . Given these𝐿 𝐿 = 𝐸[𝐼𝐿
0
−]/µ

0

assumptions, can then be determined according to (96).𝐿
1

(96)𝐿
1

=
𝐿

1

α

Note that in the scenarios under consideration, may not represent the𝐿
1

precise average delay encountered by units distributed to a specific retailer.
Nevertheless, it typically serves as a robust approximation, as shown in
(Berling et al., 2023).

The probability α may be estimated in different ways. (Berling et al., 2023)
propose to set 1 − α equal to the ready rate for the general stock at the
central warehouse, RR0, which by definition is the probability that IL0 > 0.
Note that this corresponds to the proportion of time that at least some part of
an upstream demand order is satisfied

without a delay. This give the following estimation of according to (97).𝐿
1

(97)𝐿
1

=
𝐿

1

1− 𝑃(𝐼𝐿
0
>0)  
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5.3.4.2 Determine the reservation level for VR2

The methodology for establishing the base stock policy for the second
virtual retailer follows a similar process as that of VR1, with slight
modification.

When considering VR2, which is replenished from VR1, we can treat the
combined stock of the central warehouse and VR1 as a virtual central

warehouse, with the inventory level . We can then determine the𝐼𝐿
0,1
𝑡𝑜𝑡

combined stock level of VR2, , in the same way as for VR1. is𝐼𝐿
0,2
𝑡𝑜𝑡 𝐼𝐿

0,2
𝑡𝑜𝑡

determined according to (98), and the inventory level distribution
determined according to (99).

(98)

(99)

When is determined, the smallest S2 which fulfills the target fill rate𝐼𝐿
0,2
𝑡𝑜𝑡

according (100) is deemed optimal.
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Note that when the lead time is approximated to VR2, is approximated𝐿

with the total demand experienced at VR1, and the expected number of
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backorders for VR1, see (101). is the expected lead-time for units ordered𝐿
2

by VR2 that experience a delivery delay (i.e., a lead-time >0) because of

stockouts. can then be approximated according to (102).𝐿
2

(101)𝐿
2

= 1

µ
1
𝑡𝑜𝑡 𝐸[(𝐼𝐿

0,1
𝑡𝑜𝑡)−]

(102)𝐿
2

=  
𝐿

2

1 − 𝑃(𝐼𝐿
0,1

 > 0)
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Chapter 6. Numerical study
The objective of the numerical study is aligned with the purpose of the
master thesis stated in section 1.4.1 and revolves around examining the
impact of applying the EM-model instead of the SE-mode currently used by
Volvo. The study focus on Volvo's distribution system in South Africa.

The numerical study comprises two main sections. The first part examines
situations when there is no service differentiation between the virtual
retailers, i.e. the demand from VR1 and VR2 adhere to the same target
service level. The second part explores the model's performance under three
service differentiated channels, i.e. VR1 and VR2 have different target
service levels. The latter phase serves as an exploration, considering
potential benefits for Volvo in the future.

Volvo's distribution system requires a multi-echelon inventory control
system capable of managing dealers under Volvo´s direct control and those
outside their direct oversight. This setup is reflected in the model, with two
distinct distribution channels from the CW: one for controllable retailers and
another for non-controllable retailers integrated within the central
warehouse stock.

Given the operational context, service differentiation across
non-controllable retailers is not a primary concern, the necessity for an
additional channel isn't deemed essential for this thesis project. However,
Volvo is interested in exploring further service differentiation across
multiple channels. Hence, the latter part of the numerical study aims to
explore various scenarios where virtual retailers VR1 and VR2, serve
demand from independent retailers with different fill rate requirements. The
demand data for the system will be varied in order to test the model under
more dynamic circumstances. For detailed information about the test data,
see Appendix D.

The numerical study consists of two different discrete event simulation
models in ExtendSim 10 for each item. The first simulation, acting as a
base-line scenario, is henceforth denoted “SE-model”. Input for the
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SE-model consists of data including reorder point and order quantities
obtained from Volvo's system. The second simulation represents the
suggested EM-model. In this simulation, output from the first SE simulation
as well as output data from the analytical model was used as input data. In
the following section these two input sources and the ExtendSim 10 model
are described in more detail.

6.1 Data collection and analysis
The initial step of the data collection and analysis was an initial clean up of
the data. Mentioned in the delimitation in section 1.5 this master thesis will
focus on the optimization between the Regional Distribution Center (RDC)
in Johannesburg and dealers replenishing from this warehouse for a smaller
set of articles in the GTO division. The replenishment to Johannesburg from
the Central Distribution Center (CDC) in Gent is therefore from a modeling
perspective seen as a replenishment from an outside supplier in the
numerical study.

In collaboration with SML, a set of items were chosen and investigated in
the numerical study. These items are characterized by varying demand
dynamics, ranging from slow to fast movers exhibiting highly variable
customer order sizes. A condition for the studied items is that a compound
Poisson demand distribution is applicable. This facilitates a correct
comparison between the analytical model and the extendsim simulation.
Within this segment, different price classes were explored to encompass a
broad spectrum of the items under investigation, ensuring analysis and
representation of the current market dynamics. The choice of low and lumpy
items is supported by two main factors. Firstly, such products pose
significant control challenges compared to stable items with high demand
with relatively low standard deviation. Secondly, simulating normally
distributed demand, representing stable items, is problematic due to the
discrete nature of demand against continuous distribution, rendering the
solution difficult to validate in Extendsim. In Appendix E, the data for the
different items is presented. As mentioned earlier, the choice of items should
reflect the market dynamics, hence the selection of items ranging from
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lower demand to higher demand (from 0,76 units/day to 15,97 units/day).
The numerical study encompasses a total of 15 items.

In Table 3, the input data for the analytical model and the simulation model
is stated. This data was collected from DSP for dealers with LPA agreement
and from an internal SQL database for dealers without LPA on the 22th of
Mars 2024. The DSP contains data of customer orders, while the SQL
contains data from the RDC. The collected data in DSP was aggregated on a
monthly basis and represented data points for the previous year at the
dealers. The corresponding data for the same period in SQL was collected at
the RDC. Since the discrete event simulation in Extendsim is based on days,
much of the data had to be converted to this format, see column “Data
source” in Table 3 for conversion. Words in italic in Table 3 indicate that
data is collected from DSP or SQL from a field with a corresponding name.
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Table 3: Data source corresponding to the input data.

Input data Data source Used in

Transportation time
for retailer i, 𝑙

𝑖
Initial time unit:
weeks

Lead time / 7 SE-model
Analytical-m
odel

Mean demand per day
for retailer i, µ

𝑖
Initial time unit:
months

Average(

𝑖=−12

−1

∑ (𝑆𝑎𝑙𝑒𝑠 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖)/(4. 3 ・7)

)

SE-model
Analytical-m
odel

Standard deviation per
day for retailer i, σ

𝑖
Initial time unit:
months

Standard deviation(

/
𝑖=−12

−1

∑ (𝑆𝑎𝑙𝑒𝑠 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖)

( ))4. 3 ・7

SE-model
Analytical-m
odel

Order Quantity EOQ SE-model
Analytical-m
odel

Reorder point RDC Safety stock +(Forecast *
Planning lead time /(4.3 ・7))

SE-model

Reorder point retailers (Safety stock_new + Forecast /
4,3) /Lead time_Weeks

SE-model

While retailers have the option to order any item from the RDC, not all
items experience demand at every retailer. Consequently, for this study, we
assume non-existent demand for items not registered in the inventory
system at retailers where no sales have occurred. Retailers with existing
demand and a variance-to-mean over one are set as active, this is compiled
for the investigated items in Appendix E. The number of active retailers in
the network for the different items is ranging between 10 and 14 retailers.
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Returns registered in the inventory system are excluded from our
investigation. We assert that efficient inventory control obviates the need for
returns. In the case of returns in the inventory system, this is simply ignored.
Similarly, emergency shipments, which entail shorter transportation times
but higher costs, are disregarded based on the premise that a
well-functioning inventory and distribution system negates their necessity.
Notably, Volvo also currently lacks a fundamental logic for emergency
shipments, rendering the decision parameters of our analytical and
simulation models impractical in representing real-world scenarios.

6.1.1 Service differentiated channels
The implemented EM-model can handle three service differentiated
channels, as illustrated in Figure 15.

Figure 15: Service differentiated channels in the EM-model.

The customer demand originates from two distinct sources: the network of
retailers denoted as i = 1,2,... N, all under the control of Volvo, and the
capacitated retailers from channels virtual retailer 1 and 2, with increasing
target service levels. Demand at the RDC coming from the regular retailers
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is denoted channel 0. The demand at the RDC originating from VR1 and
VR2 is denoted channel 1 and 2 respectively. Within the context of Volvo,
the notation outlined in Table 4 will be employed.

Table 4: Description and notation of the different demand channels.

Description Notation

Regular retailers
(Channel 0)

These are the retailers
owned by Volvo,
whose inventory
policy Volvo can
control with an
LPA-agreement.

Regular retailers

Virtual retailer 1
(Channel 1)

These are the retailers
without an
LPA-agreement,
whose inventory
policy Volvo can not
control.

VR1

Virtual retailer 2
(Channel 2)

These are retailers
with an LPA
agreement, but not
owned by Volvo.

VR2

In the initial phase of the numerical study, no distinction in service level
between VR1 and VR2 will be implemented. The demand will continue to
be allocated between the two channels based on its origin. Nevertheless,
with identical service level targets, the outcome should indicate that no
reservation stock is required for VR2. The decision to maintain separate
demand channels stems from the realization that combining them would
yield close to identical results, with the slightest deviation of the
approximated demand distributions. Our intention is to investigate the
model's performance in the subsequent phase, where service differentiation
between the two channels is introduced.
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The mean and variance of the demand at the virtual retailers is compiled as
the sum of the ingoing dealers mean demand and variance.

6.1.2 Distribution fitting
The data collected from Volvo present challenges in determining demand
distributions. Sales history is aggregated monthly, providing information on
the number of picks and total units sold during each period, typically
expressed in months. This poses difficulty in accurately determining the
distribution of customer order sizes due to the limited granularity of the
data. To address this challenge, instead of attempting to estimate the order
size probability distribution for each retailer individually, a logarithmic
compounding distribution is employed. This method is commonly used in
practice when detailed information about order sizes is unavailable.
However, the nature of the order distribution in the logarithmic model can
result in a notable probability of very large order sizes, which may not
accurately reflect real-world ordering behavior and consequently lead to
inflated inventory levels required to meet target fill rates.

Nonetheless, for the purpose of this master thesis, which aims to compare
inventory control systems, this assumption regarding demand distribution is
not restrictive. This is because both systems operate under the same
assumption regarding demand distribution. Therefore, while the use of the
logarithmic compounding distribution may introduce some inaccuracies in
representing real-world order sizes, it does not impact the comparative
analysis of inventory control systems, as both are subject to the same
assumption.

For dealers without an LPA agreement, Volvo lacks data beyond the orders
they have placed at the RDC, essentially limited to batch records at specific
time stamps. Given the scarcity of information regarding the order
probability distribution, we had to resort to rudimentary assumptions.
Following discussions with our supervisor, Prof. Johan Marklund, we
interpreted the orders logged at the RDC as indicative of demand. While this
interpretation may not precisely reflect reality, it's an acceptable
approximation given the absence of detailed information about the demand
at these retailers.
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To fit the collected demand data to a logarithmic compounding distribution,
the formulas outlined in Section 4.2.2 are employed. It is important to note
that for the distribution to be valid, the variance-to-mean ratio must exceed
one. However, this requirement does not pose a limitation for the items
under investigation.

6.2 Analytical model
The analytical model was implemented in Python, the preferred
programming language at Volvo. The EM-model was developed following
the specifications outlined in Section 5.3.

It's important to highlight that, at this stage, the analytical model
necessitates manual intervention. Data essential for computing inventory
policies is supplied as inputs in an Excel spreadsheet, from which the
Python-based analytical model retrieves and utilizes for optimization.

The negative binomial approximation for demand during the lead time for
retailers, can pose limitations due to computational constraints. For high
values of r, see (20), combined with relatively high demand, the
computation of the probability mass function can be time consuming
because values tend towards infinity. An alternative approach is to find a
better demand distribution than the logarithmic distribution to model the
customer order sizes. In cases where the problem took longer to solve, there
were probabilities of very large customer order sizes, which is definitely not
the real case for the item under investigation. In these scenarios, we opted to
remove the item from the study since the analytical model in Python can not
calculate the fill rate given the assumptions of the demand distribution.

6.2.2 Using the single echelon-model as a base-line comparison
As previously outlined, the SE-model serves as Volvo's existing
single-echelon inventory control system, forming the basis for evaluating
the analytical model. For a detailed understanding of the SE-model's
operations, see Section 2.1.
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To ensure that the study's results are both comparable and valid, it is
imperative that the two models operate under uniform assumptions, thereby
mitigating any biases within the systems. It is noteworthy that the optimized
parameters derived from the SE-model undergo a different process than our
analytical model, potentially resulting in service level disparities in the
simulation compared to the fill rates in Volvos inventory control system.
This discrepancy primarily stems from differences in assumptions regarding
demand distribution and the SE-model's single-echelon optimization.

To overcome this, we adopt an approach where the simulated fill rates,
derived from input parameters retrieved from Volvo’s system, serve as the
target fill rates for the analytical model. This ensures comparability across
results and allows us to evaluate the EM-model's ability to achieve fill rates
with less inventory in the system. The input parameters were obtained from
databases within Volvo, provided by our supervisor at Volvo, regarding both
the RDC and the retailers for the selected articles. See Figure 16 for an
illustration of the process.

Figure 16: The process of obtaining average inventory and target fill rates
in the SE simulation model.

6.3 Discrete event simulation
An essential part of the numerical study involves conducting discrete event
simulations, using the specified inventory parameters to assess the fill rate
and associated inventory levels within the system. This section provides a
more in-depth description of the ExtendSim 10 model developed for this
purpose.

Employing a discrete event simulation model enables evaluation of the
EM-model, under comparable conditions with the SE-model. The input
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parameters concerning demand, order quantities, transportation times,
holding costs, and backorder costs remain consistent across both models.
The optimal reorder points derived from the analytical model are used as
inputs, yielding average fill rates and inventory levels over the multiple
runs.

6.3.1 Model setup
The discrete event simulation model used in this master's thesis was a
modified version of a research model previously developed in ExtendSim
10. This model was developed by the division of Production Management at
the Faculty of Engineering, Lund University. In the modified version,
additional retailers were added to the original version. A conceptual setup of
the modified model is illustrated in Figure 17.

Figure 17: A conceptual overview of the discrete event simulation in
ExtendSim 10.

The model replicates the one warehouse multiple retailers (OWMR)
structure observed in the market replenishing from the RDC in
Johannesburg. Consisting of two warehouse blocks, this setup allows us to
mirror the combined stock policies in the EM-model. The virtual retailers,
labeled as 16 and 17 in the model, replenish from virtual warehouses, which
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in turn are restocked from the central warehouse with a transportation time
of zero. Conversely, the regular retailers replenish from the central
warehouse.

Demand enters the model via a demand block, assuming a compound
Poisson distribution. By assigning a parameter specifying the originating
retailer, the system ensures that the demand is directed to the correct dealer.
In cases where the system only experiences demand from VR2 and not from
VR1 , VR2 is modelated as VR1. As a result of this, the VR2 channel is only
active when the system experiences demand in all three distribution
channels.

The transfer of information, depicted by the dotted line in Figure 17, is
transmitted throughout the model without any time delay. Inventory
parameters utilized as input data in the model are managed within the
ExtendSim database. Additionally, this database facilitates exporting results
for further analysis in Excel.

The chosen items undergo two simulations each utilizing reorder points
from the SE-model and the EM-model optimization, respectively. Each
simulation consists of 50 runs over a period of 4100 time units for each run.
At the onset of each run, all installations possess a stock-on-hand equivalent
to the maximum stock of Ri + Qi units, with a warm-up period set to 250
time units. The warm-up period ensures that the fact that the system starts
with maximum stock does not have an impact on the result and data is only
collected after the warm-up period is reached.

6.3.2 Model validation and verification
The study culminated in an analytical model which already had a validated
and verified ExtendSim model. The simulation model was developed by
researchers at the Department of Industrial Management and Logistics at
Lund University. The models support a structure of one warehouse and
multiple retailers (OWMR), where the warehouse supplies the downstream
retailers.
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Adjustments were made to tailor the model to the South African market,
including the addition of more retailers and updates to the demand
distributions. To validate the model, test cases were conducted by
significantly reducing system variability. This approach aimed to ensure that
the simulated results closely matched those of the analytical model. By
minimizing randomness, the model's behavior became more predictable,
facilitating validation. Additionally, the mean values of the demand in the
simulation were compared with those of the analytical model under
equivalent conditions to ensure consistency. The verification of the
simulation model in ExtendSim found a discrepancy in the logarithmic
generating demand block, compared to theoretical values. Therefore, the
probability of different customer order sizes had to be manually inserted,
thereafter resulting in a fully functioning simulation model.
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Chapter 7. Result and analysis
The analysis of the results will be divided into two parts. The first part,
section 7.1, is the service differentiation across two channels, and the second
part, section 7.2, is the result of service differentiation across three channels.
The analysis will focus on how well the model achieves the target fill rates
and examine the expected inventory levels in the system. Here the base-line,
as discussed in section 6.2.2, is the outcome from the simulation based on
parameters from the currently used SE-model. This is then compared with
the simulation outcome using the parameters from the analytical model.

For the second part, no valid comparison can be made between the current
practice and the EM-model. Therefore, this part will focus mainly on how
well the model achieves the desired fill rates for the different channels.

7.1 Service differentiation across two channels
In this section, we will focus on presenting and discussing the results
concerning service differentiation across two specific channels. To clarify,
this pertains to both regular retailers and additional channel(s) that share the
same target fill rate. Consequently, both VR1 and VR2 may be operational,
yet adhere to identical service level targets.

7.1.1 Reorder points
This section examines the proposed decision parameter, the reorder points,
across various installations. The analysis aims to show the potential
systematic changes in decision-making that may arise with the
implementation of the EM-model in the Volvo distribution process.

The reorder point at the RDC is presented in Figure 18, and the reorder
points for the dealers are presented in Figure 19. In both Figures, the current
reorder points for dealers and the optimized reorder points using the
EM-model are present.
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Figure 18: Reorder point at the RDC for the different items.

Figure 19: Reorder point at the regular retailers for the different items.

Figure 18 shows that the reorder point at the RDC in Johannesburg was
decreased in all cases. In total the reorder point was decreased by 33
percent. Moreover Figure 19 shows that the aggregated reorder point at the
retailers increases in all cases. In total the aggregate reorder point for
retailers was increased by 37 percent for the different items. This result is
expected since as previously mentioned multi-echelon models such as the
EM-model tend to push stock downstream in the system resulting in higher
reorder points at retailers.
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Figure 20 illustrates the reorder points for virtual retailers, all sharing the
same target service level in this phase of the study. Remember that the
reorder points for virtual retailers are the reorder points for the reservation
stock dedicated to serve the virtual channels, i.e. this is added to the RDC
stock.

Figure 20: Reorder point for virtual retailers.

In the majority of cases, when only VR1 has a reservation level, VR2

remains inactive, experiencing no demand for the item under investigation.
Conversely, when both virtual retailers are active, most results indicate a
reservation level (R+1) of zero for VR2, signifying that no additional
reservation stock is needed to fulfill VR2's demand. This aligns with
expectations, as VR1's reservation level already encompasses the demand to
be supplied downstream to VR2, and since both channels share identical
service levels, no further reservation is deemed necessary.

However, in certain instances, VR2 necessitates additional reservation stock
to achieve desired fill rates. This observation underscores that despite both
virtual channels aiming for the same service level, supplementary
reservation stock for VR2 becomes important for fulfilling fill rate
requirements. This finding is interesting, suggesting that even with uniform
service targets across channels, varying demand sources may mandate
reservation levels to attain desired fill rates. From modeling perspective,
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demand adhering to the same target service level can be bunched together in
the virtual channels. The case when combining the demand from VR1 and
VR2 into one channel becomes interesting, and is illustrated in Table 5.

Table 5: Results from treating VR1 and VR2 as either separate or combined
for item 6.

Test Mean demand (μ)
and standard
deviation (σ) per
time unit

Reservatio
n levels

Ready rate Fill rate diff
(pp.)

VR1 and
VR2
treated as
separate
channels

VR1: μ = 1,24 ;
σ = 3,52

VR2: μ = 3,29 ;
σ = 7,29

S1= 116
S2 = 4

VR1 = 96,7%
VR2 = 97,1%

VR1 = -4,92
VR2 = -0,84

VR1 and
VR2
treated as
combined
channels

VRcom: μ = 4,53 ;
σ = 8,10

Scom = 116 VRcom = 96,7% VRcom = -4,99

As seen from Table 5, when VR1 and VR2 are analyzed individually, the
deviations from the target are -4.92 and -0.84, respectively. However, when
considered as a combined demand source, the deviation is -4.99. Given that
the reservation level remains identical for both the combined scenario and
VR1 in isolation, it is not surprising that the deviations are nearly identical in
both cases. The differentiating factor lies in the reservation level for VR2,
which consequently leads to additional stock and thus a higher fill rate for
VR2. The model still does not fully achieve the target fill rate for VR2, but
the deviation is smaller.

The result indicates that further segmentation between channels adhering to
the same service level can result in higher fill rates for the proceeding
virtual retailer. However, this is a special case of when the demand is
weighted differently in the two virtual channels and the analytical model
suggests further stock allocation to VR2. However, the majority of items
investigated in this study suggests a reservation level for VR2 set to zero
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under the circumstances of identical service level targets. This indicates that
bunching them together or treating them as separate will in most cases
achieve the same fill rate. The deviation in fill rate can rather be explained
by the lead time approximation, as further elaborated in section 7.1.2.1.

7.1.2 Fill rates
Firstly the average fill rate difference from the base-line across all retailers
is presented in Figure 21. The result indicates that the difference for most of
the items is small with a deviation less than one percent points (pp).
However for item 8, 10 and 11 the difference is relatively high with a higher
average fill rate deviation of 12,3, 6,3 and 6 percent respectively. For other
items, for example 1 and 5 the average fill rate difference is low, under 0,2
percent.

Figure 21: Average fill rate difference for the different items for all retailers.

Figure 22 presents a box chart depicting the fill rate difference. The mean,
indicated by a cross, represents the average fill rate difference shown in
Figure 21. The colored box in Figure 22 represents the interquartile range,
encompassing 50% of the observations. The T-shaped lines, or whiskers,
denote the minimum and maximum values within the dataset. Any dots
outside the whiskers are outliers, indicating values that significantly deviate
from the rest of the data.
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Figure 22: A box chart over the fill rates for the different items.

Overall, the fill rate difference for each item is close to zero with some
instances where the fill rates are exceeded considerably. The overshoot can
be explained by the discretization of the reorder points further elaborated in
7.1.2.1. According to the results, the analytical model performs well when
achieving the target fill rates.

7.1.2.1 Fill rates for selected items

In this section the fill rate difference of item 1 and 8 is presented in more
detail, corresponding to the items with the lowest and highest deviation in
fill rate respectively.

Figure 23 illustrates the deviation in fill rates for item 1 across various
retailers. Among them, retailers 3, 12, and the virtual retailer exhibit
deviations exceeding 0.5 percent, with disparities of 0.53%, 0.88%, and
-1.16%, respectively. Despite the presence of both positive and negative
variations, along with relatively minor differences, the average deviation for
this item, as depicted in Figure 21, remains low. This outcome suggests that
while the overall discrepancy is low, certain retailers may experience higher
deviations in their fill rates. The latter can not be certain by only looking at
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the mean fill rate achieved over multiple simulation runs. For retailer 12 and
VR1, with the highest deviation from target fill rate, the standard deviation
of the mean fill rate is 2,5 and 1,1 percentage points respectively. This
indicates that we can not say by statistical significance that the expected fill
rate deviates from the target, considering a 95% confidence interval.

Figure 23: Fill rate difference for item 1 at the different channels, σR-12=2,5
pp and σVR1 = 1,1 pp.

Figure 24 shows that the fill rate difference for item 8 is consistently high,
overshooting the fill rate by 4,5 to 20 percentage points, at all active
retailers except the first virtual retailer. This explains why the average fill
rate difference for this item is relatively high in Figure 21.
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Figure 24: Fill rate deviation for item 8 at the different channels.

This is a result of the discretization of the reorder points. For items
experiencing low demand, have low ordering quantities, and require a
relatively low target fill rate, the decision of the reorder point can influence
the fill rate significantly, as illustrated in Figure 25. Figure 25 showcases the
obtained fill rate for different reorder points for retailer 1, here the average
demand is 0,006 units/day with a standard deviation of 0,105 units/day.
Consequently, in order to attain the target fill rate, the actual fill rate must
sometimes surpass expectations considerably.
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Figure 25: Decision of reorder points and the impact on the fill rate for
retailer 1.

Showcased in Figure 26 this is not only true for item 8 for retailer 1. In
Figure 26 the reorder point is reduced by one at all retailers where the fill
rate difference is positive. Instead of exceeding the target fill rate a majority
of the retailers falls below the target fill rate. This indicates that the model
successfully sets the reorder point to obtain the target fill rate.

Figure 26: Fill rate deviation for item 8 when reorder point is reduced by
one at all installations.
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7.1.2.2 Fill rates for virtual retailers

In this section the fill rates for the virtual retailers is examined in more
detail. Figure 27 below presents a box chart over the fill rate difference for
the virtual retailers over the items. The achieved fill rates for virtual retailers
slightly come up short of the targets. However, the mean deviation for all
items is less than two percentage points. In Figure 27, the mean is illustrated
as a “x”, the median as a solid line (slightly above the mean for VR1 and
VR2), and the highest and lowest values illustrated by the T-shaped borders
of the Figure.

Figure 27: A box chart over the fill rate difference for the virtual retailers.

Delving deeper into the simulation outcomes, examining the confidence
intervals is crucial for assessing the statistical significance of any fill rate
deviations. If the confidence interval spans above and below the target
range, we cannot confidently determine whether the model consistently
meets or fails to meet the target fill rate.

Table 6 shows the mean fill rate difference and the standard deviation for the
Virtual retailers across different items. Out of 15 simulated items, only two
items (3 and 9) have a statistically significant deviation from the target fill
rate, as their 95 percent confidence intervals are below the target service
level. Deviations for all items are within a confidence interval of three
standard deviations.
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Table 6. Investigation of confidence interval for virtual retailers

Item Mean fill
rate
difference
VR1 (%)

Standard
deviation
VR1
(pp)

Mean fill
rate
difference
VR2 (%)

Standard
deviation
VR2
(pp)

1 -1,16 1,1 - -

2 -0,4 2,5 - -

3 -5,72 2,0 -4,79 1,96

4 -0,81 1,1 - -

5 -0,26 1,7 - -

6 -0,44 0,9 - -

7 -2,33 2,2 - -

8 -1,05 2,3 - -

9 -6,75 2,8 -6,74 2,8

10 0,06 2,1 - -

11 0,63 2,0 0,96 1,9

12 -3,35 2,1 - -

13 -0,12 0,8 -0,09 0,7

14 2,17 2,7 2,92 2,6

15 -3,75 3,2 -2,36 3,1

7.1.2.2.1 Lead time impact on fill rate

In this section, the lead-time to the RDC is investigated further to see if it
has an impact on the achieved fill rate for the virtual retailers.
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The test in Table 7 was conducted using a dataset encompassing diverse
demand patterns, varying order quantities, and predetermined fill rates. In
each test, the transportation time to various retailers varies, yet remains
consistent across all trials. The target fill rates in the tests for VR1 and VR2
are 95% and 96% respectively. The creation of fictional demand patterns
serves the purpose of encompassing a range of scenarios and evaluating fill
rate deviations within the simulation. As elaborated in section 7.1.2.1, the
reorder level significantly influences fill rates across different demand
patterns, prompting the exploration of factors that may affect the model
through the testing of diverse scenarios.

Table 7: Test data to investigate the lead time approximation.
Test
case

Lead
time
to
RDC

Mean
demand
at
retailers
per time
unit

Standard
deviation at
retailers
per time
unit

Order
quantity
retailers

Order
quantity
RDC

FR
VR1
(%) ,
σ(pp)

FR
VR2
(%) ,
σ(pp)

Difference
from target
FR (pp)

1

84 0,4 1 1 68 93,1
2,1

95,0
1,9

VR1: -1,9
VR2: -1

20 0,4 1 1 68 94,6
1,4

94,7
1,6

VR1: -0,4
VR2: -1,3

10 0,4 1 1 68 94
1,4

96,3
1,4

VR1: -1
VR2:
+0,3

2

84 0,6 1 3 45 90,2
2,4

93,4
2,1

VR1: -4,8
VR2: -2,6

20 0,6 1 3 45 93,2
1,3

93,1
1,4

VR1: -1,8
VR2: -2,9

10 0,6 1 3 45 92,2
1,2

95,7
1,2

VR1: -2,8
VR2: -0,3

3

84 1 2 5 140 91,5
2,2

92,8
2,2

VR1: -3,5
VR2: -3,2

20 1 2 5 140 93,4
1,4

94,7
1,4

VR1: -1,6
VR2: -1,3

10 1 2 5 140 93,6
1,4

94,9
1,4

VR1: -1,4
VR2: -1,1
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Table 7 indicates that increased demand variability, stemming from
prolonged lead times, leads to larger deviations from the target fill rates at
VR1 and VR2. The increased variability in demand contributes to an
increased frequency of stock-outs, consequently rendering lead times more
erratic and resulting in higher deviation in the fill rates. The same tendency
can be observed when increasing the demand variability for the same
warehouse lead-time. Conversely, as seen in Table 7, the METRIC-inspired
approximation serves as a robust estimate of the lead times when the
transportation time to the RDC is relatively short, as illustrated by the lower
fill rate deviation.

However, drawing any conclusions that the fill rate deviation is correlated to
the lead-time approximation is riskful, and we reserve this section as one
possible explanation for the relatively small deviations. It is worth
highlighting that despite relying on METRIC-type approximations, the
lead-time approximation effectively achieves target fill rates for the regular
retailers. This can possibly be attributed to the impact of the relative error
incurred when approximating stochastic lead times through the inclusion of
stock-out delays. With pre-existing transportation time already factored in,
this relative error becomes less pronounced. Conversely, for virtual retailers
with a transportation time of zero, the relative error in lead time
approximation has a higher impact on the fill rate.

7.1.3 Expected inventory levels
This section investigates the differences in expected inventory levels, to
evaluate if cost benefits arise with the EM-model in comparison to the
current SE-model used for inventory control at Volvo. In Figure 28, the total
expected inventory is presented for each item. Each bar has a dotted area,
representing the expected inventory at the controllable Volvo owned
retailers. The rest of the bar represents the expected inventory at the RDC,
including separate stock for virtual retailers. With reorder points set
according to the analytical model, the average inventory in the system
decreases by 24,62%. This outcome is unsurprising, as multi-echelon
models typically drive stock downstream while concurrently reducing
upstream inventory levels. The rationale behind this trend lies in the
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optimization of inventory allocation in the system. The expected inventory
includes the general stock used to serve all channels, and the reservation
stock used to serve direct demand stemming from independent dealers
(virtual retailers).

Figure 28: Expected inventory in the system for the different items.

7.2 Service differentiation across three channels
This section presents the findings of the exploration study on implementing
service differentiation across three channels. While this practice is not
currently applied within GTO at Volvo, examining its potential benefits
offers valuable insights. The model performs well for regular retailers, as
indicated in Section 7.1.2, with very low deviation from the target fill rates.
Therefore, the result and analysis will solely focus on how well the model
achieves the target fill rates for the virtual retailers.

The result of the study consists of five different test cases for two pairs of
target fill rates. The target fill rate is illustrated by a horizontal line in each
Figure. In the first test case a scenario where the variance-to-mean ratio of
the demand is close to one is examined. The second case on the other hand
examines a scenario where this ratio is higher. Case three examines the
model's performance when most of the demand enters the system through
VR1. In case four a similar case is investigated where this demand arrives to
the system though VR2. The last case investigates a case where a majority of
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the demand arrives to the system through the regular retailers. In Appendix
D the input data for the different test cases is stated. All test cases were
conducted with a lead time to the RDC of 84 days and a fixed order quantity
of 68 units at the RDC. Since the study is an exploration of the potential
benefits of service differentiation in the Volvo distribution network, using
the current lead time mimics the real system better. In Figure 29-32, μ
represents the total mean of the demand, σ represents the standard deviation
of the total demand, and S represents the reservation stock.

Figure 29: Fill rate mean for VR1 ± 3σ with a target fill rate of 80%

Figure 29 shows that the actual fill rate is above the target for the majority
of tests. For test 1 through 3 the reservation level is set to 0, which means no
reservation stock is necessary for VR1. The resulting fill rate is the
consequence of only relying on the general stock for supplying this channel,
which in these cases have a fill rate exceeding the target fill rate. For test
four the reservation level is set to 19 resulting in an overshoot of the target
fill rate of roughly 10 percent. The demand in channel VR1 is low, only 15
percent of the total demand and 60 percent of the total demand stemming
from VR2. When the majority of the demand stems from the regular
retailers, the fill rate (±3σ) encapsulates the target.
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Figure 30: Fill rate mean for VR2 ± 3σ with a target fill rate of 95%

In Figure 30, the attained fill rate for VR2 is depicted. The model
successfully reaches the target fill rates across all test cases, with a slight
overshoot for test four. For test case four, the relative overshoot for VR2 is
less than for VR1 showcased in Figure 29.

Figure 31: Fill rate mean for VR1 ± 3σ with a target fill rate of 90%
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Figure 31 shows the fill rates for VR1 for the different cases. As seen, in
four out of five tests, the fill rate is within the interval of the expected fill
rate. In the test where the fill rate falls short of the target, the deviation is -2
percentage points. Interestingly, in test four when the majority of the
demand stems from VR2 and a minority from VR1, there is once again an
overshoot of the target fill rate. In this case, an overshoot of roughly 6
percent. The model's performance when the majority of demand stems from
VR2 is further investigated in section 7.2.1.

Figure 32:Fill rate mean for VR2 ± 3σ with a target fill rate of 98%

As shown in Figure 32, the model successfully achieves the target fill rate
for four out of five tests, with an undershoot of 2 percentage points for test
1.

One observation is that the model tends to achieve the target fill rate for VR2

with less deviation from target. A possible explanation is, as the model is set
up, the succeeding virtual retailers have higher target service levels. As
illustrated in Figure 25, the reorder points have a bigger impact on the fill
rate at lower values. Conversely, at higher reorder points, often translating to
higher service level targets, the impact is less, as seen by the derivative in
Figure 25.
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This behavior can partly explain why the deviation for VR2 is less than for
VR1, for both sets of service level targets, as seen in both Figure 33 and
Figure 34. Additionally, when the target fill rate increases for VR1 the
deviation becomes less, as seen in Figure 34 compared to Figure 33.

Figure 33: Service level difference for all tests when target fill rate is 80%
and 95% for VR1 and VR2 respectively.
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Figure 34: Service level difference for all tests when target fill rate is 90%
and 98% for VR1 and VR2 respectively.

7.2.1 Performance of model with majority of demand in VR2

In the initial test cases presented in section 7.2, it was observed that the
average fill rate is above the target for VR1 when most of the demand comes
from VR2. In this section more test cases are investigated to see if the trend
remains. It is important to keep in mind that these tests have the purpose of
examining the model's performance in an extreme situation. The test cases
are presented in Table 8. In this section, the average fill rate difference for
the regular retailers are presented as well. The variance-to-mean ratio in all
test cases is intentionally set high, exceeding 80 in all test cases.

The majority of the demand is channeled through virtual retailers,
representing direct demand at the central warehouse. Direct demand at the
central warehouse diminishes the effects of a multi-echelon model because
it bypasses the intermediary stages that characterize such systems. The
purpose of a multi-echelon model is to distribute inventory across
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controllable retailers and the RDC. When the majority of demand is
modeled as direct demand, the benefits of inventory allocation within the
multi-echelon system are reduced. However, analyzing these cases may be
valuable, as some items from Volvo, not investigated in the first section of
the results and analysis, may exhibit these patterns.

107



Table 8: Data for test cases when the majority of demand stems from VR2.

Test case Mean
demand
and
standard
deviation
for regular
retailers
per time
unit.
(μ, σ)

Mean
demand
and
standard
deviation
for virtual
retailers
per time
unit.
(μ, σ)

Demand in
each
channel
(%)

Target FR

4.1
(same as
test 4)

0,0555; 1 VR1:0,3; 5
VR2:1,2; 5

Regular:
25%
VR1: 15%
VR2: 60%

VR1: 80%
VR2: 95%

0,0555; 1 VR1:0,3; 5
VR2:1,2; 5

Regular:
25%
VR1: 15%
VR2: 60%

VR1: 90%
VR2: 98%

4.2

0,0555; 1 VR1: 0,5 ; 5
VR2: 1,5 ; 5

Regular:
20%
VR1: 20%
VR2: 60%

VR1: 80%
VR2: 95%

0,0555; 1 VR1: 0,5 ; 5
VR2: 1,5 ; 5

Regular:
20%
VR1: 20%
VR2: 60%

VR1: 90%
VR2: 98%

4.3

0,0555; 1 VR1: 0,5 ; 5
VR2: 1 ; 5

Regular:
25%
VR1: 25%
VR2: 50%

VR1: 80%
VR2: 95%

0,0555; 1 VR1: 0,5 ; 5
VR2: 1 ; 5

Regular:
25%
VR1: 25%
VR2: 50%

VR1: 90%
VR2: 98%

108



The resulting fill rate from the tests for VR1 and VR2, are presented through
Figure 35 to Figure 38.

Figure 35: Fill rate mean for VR1 ± 3σ when target fill rate is 80%.

Figure 36: Fill rate mean for VR2 ± 3σ when target fill rate is 95%.
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Figure 37: Fill rate mean for VR1 ± 3σ when target fill rate is 90%.

Figure 38: Fill rate mean for VR2 ± 3σ when target fill rate is 98%.

As can be seen from Figure 35 to 38, the overshoot for VR1 remains.
However, the deviation from the target fill rate becomes less when the target
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fill rate increases and/or the variance-to-mean ratio decreases, see test 4.1
and 4.2. This result is expected as the variance-to-mean ratio decreases, the
demand gets more predictable and stable. However, for test 4.3, the
variance-to-mean ratio remains the same for VR1 compared to test 4.2. The
parameters changed are the mean and standard deviation of demand for
VR2. The result yields a lower fill rate deviation for VR1 with zero
reservation stock for this channel. The achieved fill rate is therefore a result
of the general stock at the RDC. Given the reorder point and order quantity
at the RDC, the lowest achievable fill rate for VR1 in test 4.3 is therefore
roughly 85%, corresponding to the fill rate at the RDC.

However, for these test series it is interesting to find the true optimal policy
at the virtual retailers in order to achieve the target fill rates. This was
conducted for test 4.1, with the highest deviation in fill rate for both VR1

and VR2. The optimal policy was found by decreasing the reservation level
for VR1 until the fill rate aligns with the target. Given the optimal policy for
VR1 the optimal reservation level for VR2 was found in a similar manner.

There are many combinations of S1 and S2 which satisfies the target fill
rates, and finding the true optimal policy in the simulation model requires
modifying reorder points for both regular retailers and the RDC. This is
deemed too time consuming. Therefore, Table 10 presents a few local
optimal policies which satisfies the target fill rates. In Table 9, the result for
test 4.1 with policies from the analytical model is presented in more detail.
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Table 9: Detailed data from analytical model for test 4.1.

Target fill
rate

Invento
ry
policy
for VR1
and VR2

Resulting fill
rate given
analytical
model policies

Fill rate RDC
given
analytical
model policies

Expected
inventory in
the system

VR1 = 80%
VR2 = 95%

SVR1= 19
SVR2 = 25

FRVR1= 90,5%
FRVR2 = 96,2%

FRRDC = 86,4% E[IL] = 437
units

Table 10: Local optimal inventory policies for VR1 and VR2 for test 4.1.

Target
fill rate

Local
optimal
inventory
policies
for VR1
and VR2

Resulting fill
rate given
optimal
policies

Fill rate RDC
given optimal
policies

Expected
inventory in the
system

VR1 = 80%
VR2 = 95%

SVR1= 0
SVR2 = 33

FR1 = 85,9%
FR2 = 96,0%

FRRDC = 86,4% E[IL] = 428 units

VR1 = 80%
VR2 = 95%

SVR1 = 10
SVR2 = 25

FRVR1 = 89,5%
FRVR2 = 95,7%

FRRDC = 86,9% E[IL] = 428 units

From Table 9 we can conclude that the best local optimal policy for VR1 and
VR2 given the circumstances for test 4.1 is a reservation level of zero for
VR1, with additional 33 units reserved for VR2. The expected inventory in
the system is reduced by nine units compared to the analytical model. This
is a relatively small improvement compared to the reductions presented in
section 7.13 where the EM-model was compared to the SE-model.

The findings suggest that the achieved fill rate overshoots the target when a
majority of the demand in the system comes from the VR2 channel. The
EM-models fundamental concept is to reduce the fill rate at the RDC in
order to achieve the inventory reduction benefits. When the majority of the
demand is modeled as direct demand, the fill rate at the RDC increases in
order to maintain the desired fill rate for the virtual channels. This is a
consequence of the induced backorder costs which are demand weighted,
according to (51). With higher demand in the virtual channels, more stock is
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required at the general stock in order to decrease the total cost of the system,
hence resulting in a higher fill rate. However, using a multi-echelon model
when most demand enters the system directly at the RDC undermines its
ability to control retailers. In such cases, a single-echelon model is likely
sufficient and more computationally efficient. However, Volvo's SKU data
for the investigated items shows that most demand comes from controllable
retailers rather than direct demand from non-controllable retailers, justifying
the use of a multi-echelon model.

Still, our conclusion is that the model can handle the extreme situation
described above. From a practical standpoint, it is better to overshoot rather
than undershoot the desired fill rate. The optimal policy derived via
reducing the reservation level in the simulation yielded results with a
reduction of roughly 2% of the total expected inventory compared to the
analytical model.

Another noteworthy observation emerges when comparing test 3 in section
7.2 with test 4.1, particularly in the context of total demand originating from
virtual channels being kept the same. The notable distinction lies in the
primary source of demand: test 3 predominantly originates from VR1,
whereas test 4.1 sees the majority stemming from VR2. It's worth noting that
in test 3, where VR1 is the primary source, deviations from the fill rate are
considerably smaller. Conversely, test 4.1 highlights that larger deviations
tend to occur when the majority of demand emanates from VR2. In test 3,
there is no reservation stock required for VR1 in order to achieve the target
fill rate indicating that the model finds an optimal policy for VR1.

The test cases are too few to draw any well-grounded conclusions. However,
an interesting observation is that when determining the reservation levels for
VR1, the demand from VR2 is considered. From the model´s perspective,
VR1 supplies VR2 and the dedicated stock for VR1 is used by VR2 as well.
When there is a large portion of demand stemming from VR2, a big portion
of the reservation stock for VR1 is solely used to supply demand from VR2.
The necessary reservation stock to serve direct demand from VR1 is
relatively small. With the added reservation stock for VR1, it is not
surprising that the fill rate exceeds the target considerably.
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However, putting the result from the analytical model and the optimal policy
found in the simulation model in context, the relative decrease in total
inventory in the system is very small. For practical reasons, the discrepancy
in results would not have a big impact on the total cost.

7.3 Validity of the results
The numerical study was conducted on a limited sample size, making it
necessary to conduct more testing on a larger number of items to draw any
definitive conclusions. This additional testing is essential to validate the
expected stock reduction and meet target service levels. The sample size
aimed to represent a broad spectrum of products by considering the mean
demand experienced by the entire system, different coefficients of variation
(i.e., the degree of demand fluctuation), and the distribution of demand
across different channels. With the broader spectrum of items investigated,
one can cautiously assume similar results for a wider sample size, thus
ensuring that the conclusions remain reliable and trustworthy.

The extensive manual work required for setting up the simulations was a
limiting factor. All data had to be manually extracted from databases, which
involved determining the distribution of order sizes to be used as input in
the simulation model. Therefore, the sample size that was possible to
consider within the time frame of this project was limited. As the
distribution system expanded to include more active retailers, the simulation
duration increased significantly. Extendsim is an excellent tool for
validating results, however our application suffers from scalability issues.

The use of a logarithmic distribution for order sizes does not accurately
reflect actual customer order sizes. Due to the lack of precise information,
assumptions had to be made. In some cases, the logarithmic distribution led
to a relatively high probability of very large customer order sizes, which
were unrealistic for the items under investigation. These probabilities of
very large customer orders makes it very sensitive to reach the target service
levels. If a customer orders a large batch of items, even with a very low
probability, it significantly impacts the fill rate attained over multiple runs.
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This can explain the large variability in average fill rates. If the correct
distribution of demand were available, the simulation model and the
analytical model would likely produce better results with less variability and
differences between experienced averages and targets.

Each simulation run represents roughly 11 years, and each item was
simulated over 50 runs to accurately estimate expected inventory levels and
fill rates. The simulation results assume a steady state in the system, but in
reality, demand patterns are likely to change over such an extended period.
Therefore, it is important to note that fill rates in practice will likely
fluctuate considerably over shorter time spans. Currently, Volvo does not
monitor fill rates at dealers, but the results from the analytical model will
provide valuable insights for developing near-optimal inventory policies
based on current demand conditions.
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Chapter 8. Conclusion
The problem formulation presented in section 1.4.1 revolved around
investigating the impact of applying a recently developed
service-differentiated multi-echelon omnichannel inventory control model at
Volvo.

Based on the conducted literature review and a mapping of the current
inventory control system at Volvo the authors suggest that the EM-model is
the best currently available model for the company meeting the set up
requirement of service differentiation. This is also supported by the
numerical results from a study of Volvo´s distribution system in Southern
Africa showcasing promising results.

On average the expected inventory in the system is decreased by 24,62% for
the investigated items, which in practice would lead to considerable system
cost savings. The reduction in expected inventory can be explained by the
reorder point reduction at the RDC when the system is optimized according
to the EM-model rather than the SE-model. This could be accomplished
while still maintaining or closely achieving (within less than one percentage
point difference) the average fill rate of the currently adopted inventory
control model.

In the case of negative fill rate deviation, this can be partially attributed to a
trend of negative deviations observed at the virtual retailers. In all cases
where the average fill rate difference for the items is negative, the negative
deviations at the virtual retailers is bigger. This trend can partially be
explained by a limitation in the lead time approximation which in the case
of relatively long lead time becomes even more evident. Since the market
investigated in this master thesis involves retailers replenishing from
Johannesburg, the deviation is likely to be smaller in other markets with
shorter lead time controlled by SML. The replenishment lead time to
Johannesburg from the CDC in Gent is one of the longest due to the
geographical distance.
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Given the result from the numerical study, and the limited number of items
tested, the model seems to perform well in achieving target fill rates while
simultaneously reducing the average inventory in the system. Given this
result, we can expect to see similar results for a wider sample size.

8.1 Future research
Modeling stochastic processes necessitates making assumptions and
approximations to render them computationally feasible. In this particular
model, a logarithmic distribution has been chosen to approximate the
customer order sizes. The decision to approximate the demand as
logarithmic stems from insufficient data and time constraints. Nonetheless,
for effective implementation of the model, additional data or improved
approximations for the demand are imperative.

Incorporating emergency shipment and return mechanisms into the model
would better represent the real dynamics of inventory distribution. However,
the absence of established criteria for initiating these actions poses a
challenge. Without a robust framework defining when such events occur,
integrating these functions becomes impractical.

Additionally, extending the model into three echelons, by including the
central warehouse distributing to the regional warehouse, would be
interesting to see how the inventory is allocated. Currently, we assume an
infinite stock supplying the RDC, whereas in practice, this is not the case.
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Appendix A: Interview guide
Person introduction
What is your position at Volvo?
What types of tasks do you work with on a regular basis?

General
Could you walk us through the Volvo organization, how does Volvo spare
parts fit in this?
Do you have any organizational tree that we could have access to?
How is the system integrated with other business systems, such as ERP?

What is the procedure if the systems is not the same in different
business units?
What does a project at SML normally look like?
Who are your end customers?
What is significant for these customers?
How is the contracts with the customers normally designed? Do you for
example have KPIs such as service levels incorporated in the contracts?
What key performance indicators (KPIs) do you use to evaluate the
efficiency of your distribution and inventory management system?
How does the fact that you are working with spare parts impact your way of
structuring?
What challenges or pain points have you encountered with your current
system?

General Distribution Network
What does your distribution network look like?

- Different depending on market/geographical location?
- What types of distribution channels do you use?

(market/geographical dependent?)
Do you ship partial deliveries or only full orders?
Is your system generally a divergent system? (other words: retailers only
ordering from one RDC)
Do you have a map of the distribution network?
Do you use vendor managed inventory agreements?
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Do you use any differentiation in priority to the different
customers/markets?
Which level of service differentiation do you use today?
How do you accommodate for the different requirements?
Translateral shipment between dealers?
What strengths do you see in your current network?
What weaknesses do you see?

Inventory Management System
How do you segment products?
Are there some segments particularly hard to manage? (sizes, available
space etc).
What kind of inventory policy do you use?
Do you have the same policy everywhere? Dependent on specific market?
Do you use continuous or periodic review? If periodic, which periodicity?
What is your current method of determining parameters for inventory
control?

- Can you walk us through the process?
- Why have you chosen this way of optimizing?

Strengths/Weaknesses?
At which frequency are these updated?
How is the current inventory management system performing?
Do you use deterministic or stochastic calculations?
Which assumptions and approximations are made?
How do you track and manage inventory levels?
How are customer orders processed and tracked from placement to
delivery?
Is there a First Come First Serve (FCFS) policy or priority depending on
dealer?
What measures are in place to handle out-of-stock situations? are “missed
orders” back-ordered or counted as “lost sales”?

- Is it different depending on dealer?
How are these costs calculated?
Is slow and lumpy a good description of the demand for your products?

- Do you have spare parts exhibiting other demand patterns? (e.g.
normal distribution, high quantities etc)
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- Are there different distributions depending on demand patterns used?
Any restrictions regarding order quantities from dealers?

Available data
What type of data is available for the different items/markets in general?
How is demand data organized at different aggregate levels? For example, is
it stored at the SKU-level, SKU at warehouse-location level, or any other
specific level?
What is the time interval for storing demand data? Is it recorded on a
weekly, monthly, or daily basis? Additionally, can we retrieve information
on past deliveries, including order times and quantities?
Can we retrieve past inventory policy parameters for analysis and reference?
Is historical stock-level data accessible, allowing us to track changes over
time?
Is information available regarding delivery times between various
warehouse locations, encompassing both transportation times and the actual
delivery times (i.e., the duration between order placement and delivery)?
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Appendix B: List of notation
- Reorder point at retailer i𝑅

𝑖

- Reorder point at central warehouse𝑅
0

- Optimal reorder point𝑅*

- Order quantity at retailer i𝑄
𝑖

- Order quantity at central warehouse𝑄
0

- Order quantity at retailer i in normalized system𝑄
𝑖,𝑛

- Arrival rate (mean within time period t)λ
- The probability of a certain demand size of j by a single customer𝑓

𝑗

- The probability of customers having a total demand of𝑓
𝑗
𝑘 𝑘 𝑗

- Stochastic demand during the time interval t𝐷(𝑡)
- Stochastic demand at installation i𝐷

𝑖

- Discrete stochastic order size at installation i𝑂
𝑖

- Expected mean demand per time unit tµ
´ - Estimation of the expected mean demand during the time unit tµ

- Variance of the demandσ2

- Standard deviation of the demandσ
- Estimation of the standard deviation of the demandσ´
- Inventory level at installation i𝐼𝐿

𝑖

- Inventory position at installation i𝐼𝑃
𝑖

- Lead time to upstream installation𝐿
- Estimated expected lead time at installation i𝐿

𝑖

- Expected lead time for virtual retailer with delivery delay𝐿
𝑖

- Transportation time from the central warehouse to the regular𝑙
𝑖

retailer i
- Density function𝑓
- Distribution function𝐹
- The gamma distribution function𝑔(𝑥)
- The gamma functionΓ(𝑟)
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- Holding cost at installation iℎ
𝑖

- Backorder cost at installation i𝑏
𝑖

- max(x,0)(𝑥)+

- max(-x,0)(𝑥)−

- Induced backorder cost at installation iβ
𝑖

- Optimal induced backorder costβ*

- Induced backorder cost at installation i in normalized systemβ
𝑖,𝑛

- Shortage cost per unit and time unit𝑝
𝑖

- Shortage cost per unit and time unit in normalized system𝑝
𝑖,𝑛

- Shortage cost per unit an time unit for the customer demand at𝑝
𝑖

retailer i
- Probability of no stockout per order cycle𝑆

1

- Fill rate𝑆
2

- Ready rate𝑆
3

- Loss function𝐺(𝑥)
- Density function for normal distribution N(0,1)ϕ
- Probability function for normal distribution N(0,1)Φ
- Base stock level𝑠

𝑖

- Number of regular retailers𝑁
- Number of virtual retailers𝑀
- Fill rate at retailer i (i = 1,...,N)γ

𝑖

- Target fill rate for the demand at retailer i (i = 1,...,N)γ
𝑖
*

125



Appendix C: Induced backorders -
Normalization of system

Original system
parameters

Normalized system
parameters

Retailer order quantity 𝑄
𝑖 𝑄

𝑖,𝑛
=  

100𝑄
𝑖

µ
𝑖
𝑙

𝑖

Central warehouse
order quantity

𝑄
0

𝑄
0,𝑛

= 𝑄
0

Retailer holding cost
per unit and time unit

ℎ
𝑖

ℎ
𝑖

= 1

Central warehouse
holding cost per unit
and time unit

ℎ
0 ℎ

0,𝑛
=

ℎ
0

ℎ
𝑖

Retailer shortage cost 𝑝
𝑖 𝑝

𝑖,𝑛
=

𝑝
𝑖

ℎ
𝑖

Central warehouse
lead-time

𝐿
0 𝐿

0,𝑛
=

𝐿
0

𝑙
𝑖

Retailer transportation
time

𝑙
𝑖

𝑙
𝑖,𝑛

= 1

Expected demand per
time unit at retailer i

µ
𝑖

µ
𝑖,𝑛

= 100

Standard deviation of
demand per unit and
time unit at retailer i

σ
𝑖 σ

𝑖
, 𝑛 =

100σ
𝑖

µ
𝑖

𝑙
𝑖

Induced backorder
cost

β
𝑖

= β
𝑖,𝑛

· ℎ
𝑖

β
𝑖,𝑛

β
𝑖

=  ℎ
𝑖
 · 𝑔(𝑄

𝑖,𝑛
,  𝑝

𝑖,𝑛
) · σ

𝑖,𝑛

𝑘(𝑄
𝑖,𝑛

, 𝑝
𝑖,𝑛

) 
,   𝐹𝑜𝑟 𝑖 =  1, 2... 𝑁 
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𝑔(𝑄
𝑖,𝑛

, 𝑝
𝑖,𝑛

) =  𝑚𝑖𝑛[𝑔
𝑎

· (𝑄
𝑖,𝑛

)𝑔
𝑏, 𝐺]

𝑔
𝑎

= 𝑚𝑖𝑛[0. 015𝑝
𝑖,𝑛

, 𝑚𝑎𝑥( 0.65

𝑝
𝑖,𝑛

, 0. 05)]

𝑔
𝑏

= 𝑚𝑎𝑥[− 1. 2, − 2𝑝
𝑖,𝑛

−0.25]

𝐺 =  𝑚𝑖𝑛[0. 015, 0. 005𝑝
𝑖,𝑛

0.2]

𝑘(𝑄
𝑖,𝑛

,  𝑝
𝑖,𝑛

) = 𝑚𝑎𝑥[1, 𝑚𝑖𝑛(𝑘
𝑎

· 𝑄
𝑖,𝑛

𝑘
𝑏, 𝐾)]

𝑘
𝑎

= 𝑚𝑎𝑥[0. 7, 𝑚𝑖𝑛(0. 9 , 0. 6𝑝
𝑖,𝑛

0.075)]

𝑘
𝑏

= 𝑚𝑖𝑛(0. 2 ,  0. 4𝑝
𝑖,𝑛

−0.35)

𝐾 =  𝑚𝑎𝑥(1. 3, 𝑚𝑖𝑛(2 ,  2. 5𝑝
𝑖,𝑛

−0.15))
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Appendix D: Test data multiple channels
Test
series

Mean
demand and
standard
deviation for
regular
retailers per
time unit.
(μ, σ)

Mean
demand and
standard
deviation for
virtual
retailers per
time unit.
(μ, σ)

Demand in
each channel
(%)

Target FR Difference
from
target FR
(pp)

1

0,0555; 1 VR1: 0,75; 1
VR2: 0,75; 1

Regular: 25%
VR1: 37,5%
VR2: 37,5%

VR1: 80%
VR2: 95%

VR1: +7,3
VR2: 0

0,0555; 1 VR1: 0,75; 1
VR2: 0,75; 1

Regular: 25%
VR1: 37,5%
VR2: 37,5%

VR1: 90%
VR2: 98%

VR1: +3,4
VR2: - 2,1

2

0,0555; 1 VR1:0,75; 5
VR2:0,75; 5

Regular: 25%
VR1: 37,5%
VR2: 37,5%

VR1: 80%
VR2: 95%

VR1: +4,7
VR2: +0,5

0,0555; 1 VR1:0,75; 5
VR2:0,75; 5

Regular: 25%
VR1: 37,5%
VR2: 37,5%

VR1: 90%
VR2: 98%

VR1: +0,9
VR2: +0,5

3

0,0555; 1 VR1:1,2; 5
VR2:0,3; 5

Regular: 25%
VR1: 60%
VR2: 15%

VR1: 80%
VR2: 95%

VR1: +6
VR2: +1,3

0,0555; 1 VR1:1,2; 5
VR2:0,3; 5

Regular: 25%
VR1: 60%
VR2: 15%

VR1: 90%
VR2: 98%

VR1: -1,1
VR2: +0,6

4 0,0555; 1 VR1:0,3; 5
VR2:1,2; 5

Regular: 25%
VR1: 15%
VR2: 60%

VR1: 80%
VR2: 95%

VR1:
+10,5
VR2: +1,2

0,0555; 1 VR1:0,3; 5
VR2:1,2; 5

Regular: 25%
VR1: 15%
VR2: 60%

VR1: 90%
VR2: 98%

VR1: +5,5
VR2: -0,4

5 0,1667; 1 VR1:0,25; 5
VR2:0,25; 5

Regular: 75%
VR1: 12,5%
VR2: 12,5%

VR1: 80%
VR2: 95%

VR1: -0,7
VR2: +0,8

0,1667; 1 VR1:0,25; 5 Regular: 75% VR1: 90% VR1: -2,0
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VR2:0,25; 5 VR1: 12,5%
VR2: 12,5%

VR2: 98% VR2: +0,9

Appendix E: Active retailer for items
I
T
E
M

Info System parameters
QRDC; μtot; σtot;
% demand in VR
channels

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1
0

R
1
1

R
1
2

R
1
3

V
R
1

V
R
2

1 Initial 10 118; 2,58; 2,77;
27%

x x x x x x x x x x x x x

2 Initial 10 98; 1,23; 3,52;
22%

x x x x x x x x x x

3 Initial 10 341; 11,47; 11,6;
39%

x x x x x x x x x x x x x x

4 Initial 10 149;2,38;3,33;
55%

x x x x x x x x x x

5 Initial 10 40; 0,73; 1,27
24%

x x x x x x x x x x

6 Initial 10 27; 2,11; 2,34;
14%

x x x x x x x x x x x

7 Initial 10 115; 2,06; 2,65;
23%

x x x x x x x x x x x x

8 Initial 10 10; 0,76; 1,65;
38%

x x x x x x x x x x x

9 Initial 10 72; 9,5; 6,5;
25%

x x x x x x x x x x x x x x

10 Initial 10 116; 2,46; 4,42;
46%

x x x x x x x x x x x x x

11 Price class 9 18; 2,17; 2,5;
6%

x x x x x x x x x x

12 Price class 9 11; 1,4; 1,4;
23%

x x x x x x x x x x x
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13 Price class 6 65; 8,37; 5,2;
33%

x x x x x x x x x x x x x

14 Price class 3 68; 2,17; 2,47;
51%

x x x x x x x x x x x

15 Price class 1 437; 15,97; 20,96;
24%

x x x x x x x x x x x x x x
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