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Abstract

Since the release of the recent generation of Large Language Models (LLMs) such
as GPT-4 (GPT standing for generative pre-trained transformer), companies and in-
dividuals are exploring opportunities to improve their effectiveness by automating or
receiving assistance with knowledge-intensive tasks by using artificial intelligence
(AI). Within software engineering, a plethora of commercial services promising im-
pressive results has reached the market in the past year. This thesis explores the prac-
tical implications of applying LLMs in this software engineering context. Through a
case study at Craft Docs, a software development company, we investigated the cur-
rent use of LLMs and identified specific opportunities to leverage these models as a
way of improving the efficacy of software engineers.

Action research (AR) was chosen as the research methodology, carried out by devel-
oping a prototype that was deployed and evaluated at the company. A literature study
and interviews surveying the use of and sentiment towards LLMs at the case com-
pany guided the development, and the prototype was evaluated with practical tests
and retrospective interviews.

Findings from the project suggest that while LLMs can enhance certain aspects of
software engineering, their effectiveness is highly dependent on the context of use and
the specific tasks they are designed to support. The prototype developed in this study
demonstrates a practical implementation of retrieval-augmented generation (RAG)
to provide additional context to LLMs, showing both the strengths and limitations of
these technologies in real-world settings. Most apparent was that even with access
to relevant code context, tasks given to an LLM need to be carefully scoped to yield
effective results.

Keywords: ai, artificial intelligence, large languagemodels, llm, retrieval-augmented
generation, rag, software engineering, code, programming



Sammanfattning

Sedan lanseringen av de senaste generationerna stora språkmodeller (LLM), som
GPT-4 (GPT som generative pre-trained transformer), utforskar företag och indi-
vider möjligheter att förbättra sin effektivitet genom att automatisera eller få hjälp
med kunskapsintensiva uppgifter med artificiell intelligens (AI). Inom programvaru-
utveckling har en mängd kommersiella tjänster som lovar imponerande resultat nått
marknaden under det senaste året. Detta examensarbete utforskar de praktiska im-
plikationerna av att tillämpa LLM:er inom sammanhanget programvaruutveckling.
Genom en fallstudie på Craft Docs, ett företag inom apputveckling, undersökte vi
användningen av LLM:er och identifierade specifika möjligheter att utnyttja dessa
modeller för att förbättra programvaruingenjörers effektivitet.

Aktionsforskning (action research, AR) valdes som forskningsmetodik, genomförd
genom att utveckla en prototyp som implementerades och utvärderades på företaget.
En litteraturstudie och intervjuer som undersökte användningen av och inställningen
till LLM:er på fallföretaget styrde utvecklingen, och prototypen utvärderades med
praktiska tester och retrospektiva intervjuer.

Resultaten från projektet tyder på att även om LLM:er kan förbättra vissa aspekter av
programvaruutveckling är deras effektivitet starkt beroende av användningssamman-
hanget. Utformningen av uppgifterna som ges till modellerna har stor påverkan på
nyttan. Prototypen som utvecklades i denna studie demonstrerar en praktisk tillämpn-
ing av retrieval-augmented generation (RAG) för att ge ytterligare kontext till LLM:er,
och visar både styrkor och begränsningar med dessa teknologier. Det mest uppenbara
var att även med tillgång till relevant kod och kontext måste uppgifter som ges till en
LLM vara noggrant definierade och avgränsade för att ge effektiva resultat.

Nyckelord: ai, artificiell intelligens, stora språkmodeller, llm, retrieval-augmented
generation, rag, programvaruutveckling, kod, programmering
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1 Introduction

In the introduction chapter, background to the problem is provided and the case com-
pany is presented. The problem is closely described and defined in terms of research
questions. The section also presents the structure of the thesis and its delimitations.

1.1 Background

The recent advancements in Large Language Models (LLMs) present new opportu-
nities for companies to improve their effectiveness and competitive strength. Using
LLMs effectively is likely to be increasingly important for staying competitive, es-
pecially for start-up companies with a need for effective value creation with limited
resources.

Software engineering is a field where LLM applications such as code generation,
translation between programming languages, documentation generation and testing
already are emergent and in focus for companies developing and commercializing
LLMs and LLM-based tools.

Ozkaya (2023), editor of IEEE Software, a publication by the Institute of Electri-
cal and Electronics Engineers (IEEE) suggests that software engineers should “think
about LLMs as partners”. She outlines specification generation, improved testing,
developer feedback, documentation, and language translation as possible use cases.
Research performed in affiliation with GitHub (Ziegler et al., 2022) has shown LLM
code completion to increase job fulfilment, decrease frustration and help software
engineers stay in the flow, as well as preserve mental effort. In addition, a study car-
ried out at Harvard Business School by Dell’Acqua et al. (2023) studied the effects
the LLM ChatGPT-4 (GPT standing for generative pre-trained transformer) had on
knowledge workers’ productivity and quality. It was found that AI-assisted consul-
tants at Boston Consulting Group on average carried out tasks 25% faster, completed
12% more tasks overall and delivered work assessed to be of 40% higher quality
compared to peers unassisted by AI.

Dell’Acqua et al. (ibid.) describe though that these effects do not apply unilaterally,
and introduce the notion of a ”jagged frontier of AI capabilities”, outlining that LLMs
capabilities and human capabilities do not always align, and that performance gains
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only are achieved when LLMs outperform humans on a given task. The jagged fron-
tier is visualized in figure 1.

Figure 1: The ”jagged frontier of AI capabilities”, adapted from Dell’Acqua et al.
(2023).

Due to the fast pace of development within the field, it is not exactly clear which
tasks lie where on the frontier and as Dell’Acqua et al. (2023) outline, being able to
navigate the frontier is an important ability to be able to achieve effectiveness gains.
Additionally, the implementation of LLMs within the field of software engineering
so far lacks universally acknowledged best practices, akin to the early stages of the
internet’s adoption, where widespread enthusiasm existed without clear guidelines
on optimal utilization. This thesis aims to provide an insight into how applications
of LLMs in software engineering and the software development process look like in
a case study relevant to the field, and with an action research (AR) approach show
how opportunities can be acted upon and may result in improvements.

1.2 Craft Docs

Craft Docs (Craft) is a European start-up company developing and distributing amod-
ern writing and note-taking platform under the same name. They are defining their
mission as building “the future of Documents” and “to create a beautiful and joyful
space where you no longer feel like you are fighting the tool”. Craft is available on
iOS for iPhone and iPad, MacOS,Windows and in the web browser, under both a free
version and paid subscriptions with over 1 million registered users as of September
2022 (Craft Docs, n.d.[b]).
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Founded in July 2019 in Budapest, Hungary by Bálint Orosz (Craft Docs, n.d.[b]),
this is his second venture after acting as co-founder and CEO for a mobile app agency
later sold to travel agency and search aggregator Skyscanner (Smith, 2015). The app
was first released in November 2020, after which Craft raised two rounds of venture
funding and was awarded the Mac App of the Year award by Apple (Craft Docs,
n.d.[b]).

For this thesis, the software engineering teams at Craft have been in focus, consisting
of 22 team members as of January 2024. In addition, CEO Bálint Orosz, product
designers, and data analysts also work with code as part of their tasks. The main pro-
gramming languages used at Craft are JavaScript with TypeScript and Swift. Craft
describes its work culture as focused around kindness and support, being results-
driven and focused, working in “highly aligned, loosely coupled teams”, being agile,
passionate, committed and focused on innovation (Craft Docs, n.d.[a]). Craft is com-
mitted to continually improving its work processes and being conscious about what
tools and systems are used in software engineering. They were thus an early adopter
of LLMs in both its product (Baldwin, 2022) and within its software development
processes. The software engineers at Craft are generally highly experienced profes-
sionals with multiple years of experience working with a multitude of technologies,
and have experience in keeping up with recent developments within the industry.

Prior to the initiation of the thesis project, Craft had surveyed employees on how
widely ChatGPT was used in the company by its employees. A large portion of the
employees answered that they are using it every day, both in software engineering
and other teams. However, there seemed to be differences across different groups of
employees, with some usingAI tools to amuch greater extent than others. CEOBálint
Orosz and others had already raised the notion that AI is useful for some coding-
related tasks, but when working with Craft’s codebase specifically it has in some
cases been less useful. It was assumed this could be the case due to the large amounts
of proprietary code and intellectual property, which public LLMs do not have access
to.

1.3 Objective and research questions

This master’s thesis aims to analyze how customized LLMs can be used to improve
the effectiveness of workers in software engineering. This will be done in three steps,
starting with a literature research and surveying how LLMs are used at Craft Docs, a
software-based start-up company, answering the research question:

R1: How do software developers at Craft Docs use LLMs today?

Based on the field and literature reconnaissance, one or more hypotheses on how
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LLMs can be customized and used to improve effectiveness will be formulated, to
answer the question:

R2: What LLM-related improvement opportunities can be found in regard to software
engineers’ effectiveness?

These hypotheses will be tested by developing, deploying, and evaluating one or more
customized LLM prototypes at Craft, answering:

R3: What actual improvement in effectiveness is achieved by acting on the found
opportunities?

R1 is intended to be answeredwith an interview-based case study at the thesis project’s
case company, providing a foundation for answering R2, which in turn is aimed to
be answered with a combination of case study insights as well as a literature study.
R3 is to be answered with an action research project including a functional prototype
and subsequent testing and evaluation at the case company.

1.4 Scope of study

The scope of the thesis project has been limited to looking at the discipline of soft-
ware engineering. Adjacent fields such as data analysis and design, though these
might work closely with code as well, are omitted from the scope. Although soft-
ware engineers also have other types of tasks, writing and working with code is the
main focus of this thesis. This project encompasses a case study, which due to the fo-
cus on coding has been constrained to software engineering teammembers at the case
company. Interview guides for interviews with case study participants were scoped
to the code-related tasks that are part of their work.

The LLMs included in analyses, concepts and prototypes are limited to publicly avail-
able models from providers such as OpenAI, Google etc. The thesis work will not
include any coding or training of these models beyond fine-tuning, prompting or oth-
erwise providing context via available tools such as web-based graphical user in-
terfaces (GUI) or application programming interfaces (APIs). This is to be able to
achieve meaningful iterations and prototypes under the time constraints for a master
thesis project.

1.5 Distribution of work

Both authors participated in all steps, tasks and aspects of this thesis project. Re-
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search papers and source materials were in some cases divided equally, with one
author synthesizing and relaying key information to the author. Both participated in
all interviews that were performed, contributed to the technical development of the
prototype, and wrote this report together.

1.6 Target audience

The target audience for this thesis is decision-makers and software engineers inter-
ested in understanding LLM’s impact and possible applications, primarily at small
to medium-sized companies, but also in the wider industry. Secondarily, the the-
sis is aimed at researchers and students interested in artificial intelligence, software
engineering and productivity.

1.7 Outline of thesis

The outline of the thesis is summarised in Table 1. The thesis contains six chapters,
following the chosen research approach.
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Table 1: Outline of thesis.

Chapter Focus

1. Introduction In the introduction chapter, background to the problem is provided and the
case company is presented. The problem is closely described and defined
in terms of research questions. The section also presents the structure of
the thesis and its delimitations.

2. Theory This chapter presents a theoretical overview of concepts and solutions
highly relevant to the thesis. These are the discipline of software en-
gineering, the emerging technology LLMs, methods for optimizing and
augmenting LLM output, as well as an overview of LLM-based services
currently available on the market.

3. Method The method chapter comprises the research design and methodology of
the thesis project, defining the overall process. Research quality and
ethics considerations are also presented.

4. Results This chapter presents the results from the initial literature research and
interviews, the generated concept as well as the prototype iterations. Fi-
nally, the results of the evaluation of the last prototype are presented.

5. Discussion This chapter contains the authors’ thoughts and observations on the re-
sults from the user needs analysis, prototyping phase and subsequent eval-
uation, contrasting them with results from the literature study. Addition-
ally, the limitations of the conducted research project are discussed, along
with possible future improvements regarding the developed prototype.

6. Conclusion The final chapter presents the thesis project’s conclusions as answers to
the research questions, and summarizes the key results.



2 Theory

This chapter presents a theoretical overview of concepts and solutions highly rele-
vant to the thesis. These are the discipline of software engineering, the emerging
technology LLMs, methods for optimizing and augmenting LLM output, as well as an
overview of LLM-based services currently available on the market.

2.1 Software engineering

As digitalization has spread through basically all aspects of modern life, software
has become an essential part of business processes, interactions, communication and
more. The work surrounding and encompassing the development, deployment and
maintenance of software is what is nowadays commonly referred to as software en-
gineering, a discipline born out of two NATO Science Committee conferences (Naur
and Randell, 1969; Buxton and Randell, 1970). IEEE defines software engineering
as “the application of a systematic, disciplined, quantifiable approach to the develop-
ment, operation, and maintenance of software; that is, the application of engineering
to software, and the study of such approaches.” (IEEE, 1990).

O’Regan (2022) describes the discipline as not only being concerned with the actual
development of software, but also with how it is designed and modelled, inspected
and tested, how its performance is measured and how it is secured against adverse
actors. In addition, he mentions ethical and legal aspects, software procurement,
software project management and managing requirements as important aspects of
the discipline.

Important to note is that contrary to other engineering disciplines such as civil, elec-
trical or mechanical engineering, is that within computer science, the term engineer
is used much more loosely, and seen as somewhat interchangeable with the term de-
veloper, explains O’Regan (ibid., p. 5). He describes that within the industry, it is
acknowledged that to achieve good business results and maintain a sound reputation,
software companies need to have confidence in the professional qualifications of em-
ployees. This is especially due to the fact that educational backgrounds vary widely
and not every software engineer having a formal engineering degree. Being able to
deliver high-quality products and services is thus tied to investing in education and
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training related to the discipline, “such as [in] project management, software design
and development, software testing and service management” (O’Regan, 2022, p. 6).

In recent decades, process-light software development methodologies have gained
popularity, with the term agile being coined in the agile manifesto by Beck et al.
(2001). They describe a belief in early and continuous value delivery to customers,
face-to-face conversation, a sustainable pace of development and harnessing com-
petitive advantage by welcoming changing requirements. As a continuation to these
trends, O’Regan (2022, pp. 14-15) mentions practices such as continuous integration
(CI) – the practice of submitting work as soon as it is finished to receive immediate
feedback, continuous delivery and testing – automatically building and testing each
new code addition, and continuous deployment (CD) – automating the delivery of
changes and code to end users. According to O’Regan (ibid., p. 15), these practices
are employed to accelerate delivery and yield faster business results.

A similar hope for increased productivity and faster results is put on emerging AI
tools, mostly LLMs, as described by Peng et al. (2023) specifically for the soft-
ware engineering use case, or as mentioned previously for consultants and other roles
(Dell’Acqua et al., 2023). For the software engineering use case, Peng et al. (2023)
present promising results, with speed improvements of more than 55% for those as-
sisted by the tool GitHub Copilot, based on a state-of-the-art LLM.

2.2 Large Language Models

LLMs are the underlying technology used in language-based generative AI services
such as ChatGPT. As presented by Nvidia (n.d.), current use cases for text-based
LLMs can be divided into the following areas:

• Generation (e.g., story writing, marketing content creation)

• Summarization (e.g., legal paraphrasing, meeting notes summarization)

• Translation (e.g., between languages, text-to-code)

• Classification (e.g., toxicity classification, sentiment analysis)

• Chatbot (e.g., open-domain Q&A, virtual assistants)

Technically, LLMs are machine learning (ML) models created to predict the most
probable next token in a sequence of tokens, with tokens representing words or code
(Google, 2023). These models are referred to as large due to their large volume of
training data, and large number of parameters or weights in the model (ibid.).

The public attention regarding LLMs began with the release of ChatGPT and its
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subsequent models, with GPT-4 being their latest and most capable model (Ope-
nAI, n.d.[b]). Although GPT-4 is the best publicly available LLM based on current
benchmarks, Google has released a more advanced model, Gemini Ultra, reportedly
surpassing the capabilities of GPT-4 (Gemini Team et al., 2023). Since the model
has not yet been publicly available at the time of writing, these claims have not been
independently audited.

Current available LLMs can be divided into two groups, one being closed source
models released by large companies such as OpenAI (GPT), Google (Gemini) and
Meta (LLaMA, large languagemodel meta ai) with the other group consisting of open
source models available on sites such as HuggingFace (n.d.). Open source models
are freely available and can be modified, whereas closed source models are made
commercially available under license.

Open source models generally under-perform closed source models on benchmarks
with some exceptions where open source models exceeded in relation to older closed-
source models such as GPT-3.5, but lagging far behind the more cutting edge GPT-4
(Kwan et al., 2024). An explanation for this difference in performance can be found in
the expensive training cost associated with these cutting-edge LLMs, with the cloud
computing power alone needed to train GPT-4 being estimated at $60M, and overall
training cost estimated to exceed $100M (Minde, 2023), though the actual figures
are undisclosed. This as well as the need for large comprehensive training datasets
provides a barrier to entry for open source contributors.

LLM tools such as OpenAI’s ChatGPT, Microsoft’s Copilot and Google’s Gemini
are mainly controlled via prompts, being natural language text that works as input for
the model (Amazon Web Services, n.d.). The underlying LLM will then provide a
result based on the input(ibid.). Providing proper prompts is important for receiving
a high-quality answer from the probability-based LLM (Harvard University Informa-
tion Technology, 2023).

LLMs are built using transformer networks, which in turn are neural networks that
learn context and meaning through tracking relationships in sequential data such as
sentences (Nvidia, n.d.). Transformers were introduced by Vaswani et al. (2023) in
the paper “Attention Is All You Need”. The authors describe the concept of attention,
mathematically focusing on the most important parts of a natural language sequence.
This made it possible to process longer sequences compared to earlier models. Fur-
thermore, this is where GPT gets its name from, with GPT being short for Generative
Pre-trained Transformers.

LLM-based tools have been shown to increase the productivity of knowledge workers
within different areas (Dell’Acqua et al., 2023; Cambon et al., 2023), with the most
commonly used tools being ChatGPT by Open AI and Copilot by Microsoft. Beyond
actual improvements in productivity, it is also reported that participants perceive the
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productivity gain to be more substantial than the actual time saved (Cambon et al.,
2023). Furthermore, a recent study showed that developers assisted by Github Copi-
lot, an LLM tool powered by Open AI’s LLM models, completed tasks 55.8% faster
compared to a control group, with less experienced developers benefiting more (Peng
et al., 2023). The study was however done on a greenfield task only, meaning that it
was a standalone program without dependencies that the participants were asked to
build.

2.3 Methods for optimizing and tailoring LLMs

Over the past years, several methods for optimizing and tailoring LLMs to specific
use cases have emerged. This thesis will focus on the three most commonly used
tools, being prompt engineering, retrieval-augmented generation (RAG) and fine-
tuning (Allard and Colin, 2023).

2.3.1 Prompt engineering

Prompt engineering is the discipline of refining and optimizing prompts, the user
input provided to LLMs (Gemini Team et al., 2023). Improved prompting may lead
to the expansion of LLMs abilities (Wei, Tay, et al., 2022), making it a crucial part
of optimising LLMs performance. An example of how to improve prompting is to
provide context, which improves the quality of the generated answer (Tufano et al.,
2021) and is also the purpose of RAG.

2.3.2 Retrieval-Augmented Generation

RAG presents an opportunity how to expand the effectiveness of LLM tools beyond
simple tasks, allowing LLMs to address context-related questions (Khadija, Aziz, and
Nurharjadmo, 2023) and shows promising results for being deployed across a wide
range of natural language processing tasks (Lewis et al., 2021). The basic concept
of RAG is that the entered prompt is used to calculate an embedding, which in turn
is used to search and retrieve documents that are passed to the LLM to generate an
answer (Barnett et al., 2024), as shown in Figure 2.

An embedding is a vector of numbers, and both the input query, as well as the docu-
ments available for the retriever, are transformed into these embeddings in chunks or
as a whole. This transformation is done by a language model, to achieve a mathemat-
ical representation of the natural language content. Searching with the help of these
embeddings is called semantic search and works by identifying the vectors with the
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Figure 2: General concept of RAG.

shortest distance from each other to be able to find the best matches (Barnett et al.,
2024).

2.3.3 Fine-tuning

Fine-tuning is the process of training an already trained model on data specific for a
certain task to make the model more aligned to its users’ needs (Ouyang et al., 2022;
Allard and Colin, 2023). This allows the model to become more accurate, efficient
and better at following instructions related to the desired task due to the distilling of
its expertise (Ouyang et al., 2022; Allard and Colin, 2023). Further benefits of fine-
tuning include the reduced input and therefore computational cost needed to reach
the desired output (Allard and Colin, 2023) as well as fine-tuning being a much more
cost-efficient way of obtaining a model tailored model for a specific task compared
to training a new model from scratch (Ouyang et al., 2022).

2.4 LLM-based services and service providers

LLMs, alone or in combination with the previously described method of RAG, are
employed in various commercially available services. Some of these services are
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tailored to coding use cases specifically or broadly. These relevant services address
three main coding use cases, some of them providing solutions for multiple. These
are

• completion - completing a line of code, or generating the next one based on
previous ones,

• function generation - drafting a complete function/component, and

• chat - being able to converse back and forth with an LLM in natural language
and code.

Below, the identified companies and their services are described in further detail,
with their solutions, limitations, technical ways of working as well as pricing consid-
erations.

2.4.1 OpenAI

OpenAI has emerged as one of the most important entities concerned with devel-
oping and distributing generative AI services through LLMs, in large part thanks to
their breakthroughs with the LLMs based on theGenerative Pre-Trained Transformer
(GPT) architecture and multi-billion dollar funding from Microsoft and others (Ba-
jekal et al., 2023).

OpenAI’s publicly available offering can be divided into two categories - services
available via APIs, and ChatGPT. Both of these build on top of the LLM technolo-
gies developed by OpenAI such as GPT-3.5 and GPT-4 for text, DALL-E for gener-
ating images or Whisper for speech recognition (OpenAI, n.d.[f]). Within ChatGPT,
these models are packaged within a user-friendly interface as different features (Ope-
nAI, 2023). For developers, they are accessible through stand-alone APIs that can be
integrated in various applications (OpenAI, n.d.[d]).

ChatGPT is likely the most widely known LLM-based consumer service, setting a
record as the consumer application with the fastest-growing user base in history (Hu,
2023). It has also beenwidely adopted for code-related use cases, as shown by Feng et
al. (2023). The authors analyzed ChatGPT’s performance on code generation tasks
through crowdsourcing based on social media data, finding that the most popular
programming languages mentioned in conjunction with ChatGPT are Python and
JavaScript. They also found that the most common use cases are code generation,
debugging and testing, preparing for programming interviews and other related tasks.
The authors concluded that the stable attention and posting regarding ChatGPT on
social media indicates that it is helpful for code generation, though sentiment analysis
showed that fear is the dominant emotion across social media platforms, possibly
caused by ”concerns over job security”. As previously mentioned, ChatGPT has also
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shown impressive performance in regards to productivity and work quality in other
contexts, with Dell’Acqua et al. (2023) finding a 25% improvement in speed, 12%
improvement in quality, and 40% higher work quality comparing knowledge workers
assisted by ChatGPT to those without this tool in a study at Boston Consulting Group.

The APIs offered by OpenAI enable more sophisticated and customized use cases
compared to ChatGPT, as they can be interacted with via HTTP and through the
Python and Node.js libraries provided by OpenAI (n.d.[d]). Pricing for the APIs
varies based on volumes and model version (OpenAI, n.d.[i]). According to the tech-
nical documentation, the APIs offered can be grouped into a few broad categories,
namely audio, chat, files, images, and some additional use cases such as fine-tuning,
embeddings, moderation and Assistants. The Assistants API is especially interesting
for this thesis, as it enables the creation of ChatGPT-like AI assistants that can make
use of further tools, such as a code execution environment and Retrieval-Augmented
Generation (OpenAI, n.d.[e]). This enables automating the process of chunking up-
loaded documents, indexing and storing embeddings in a vector database, and im-
plementing a vector search that can retrieve relevant content related to a user prompt
(ibid.).

2.4.2 Google Gemini

Google’s LLM assistant Gemini (formerly Bard) is also capable of generating code
(Google, n.d.[c]). Generally, it is very similar in functionality to ChatGPT, as it works
in the same chat-style manner, can comprehend text and images, and can generate
images (Pichai and Hassabis, 2024). As the Gemini models were made available
in February 2024, no independent studies of its performance or real-world implica-
tions on worker effectiveness and efficiency were available at the time of writing.
Google currently offers APIs for developers to use the Gemini models, but did at
the time of writing not offer any fine-tuning or retrieval services. Also, access to
the advanced model Gemini Ultra requires a commercial relationship with a Google
representative (Google, n.d.[a]). Accessing the API is priced based on whether in-
puts are allowed to be used as training data as well as usage volumes in a pay-as-
you-go model (Google, n.d.[b]). Pre-packaged services are available and for indi-
viduals cost $20/month (Google, n.d.[d]), thus on the same level as ChatGPT. For
teams, general LLM functionality with a chat assistant starts at $20/user/month, with
a $30/user/month plan providing access to further functionality and additional avail-
able languages (Google Workspace, n.d.). Code-specific features are packaged as
Code Assist for $19/user/month (Google Cloud, n.d.).

2.4.3 GitHub Copilot

GitHub Copilot is an LLM-based programming tool, also described as an ”AI pair
programmer that suggests code and entire functions in real-time based on context” by
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Peng et al. (2023) in their 2023 study affiliated with GitHub, Microsoft Research and
MIT. Powered by OpenAI’s Codex model (Chen et al., 2021), a modified version of
GPT-3, Copilot is integrated into integrated development environments (IDEs) such
as Visual Studio, Visual Studio Code, JetBrains, Vim and more, and can work with
”all [programming] languages that appear in public repositories”, with ”quality of
suggestions [...] [depending] on the volume and diversity of training data for that
language” (GitHub, n.d.). As GitHub is owned by Microsoft, they are backed by a
comparatively large amount of funding and engineering resources. Currently, GitHub
Copilot is priced at $10/month for individuals, $19/month/user for businesses, and
$39/month/user for access to enterprise functionality (ibid.).

According to GitHub (ibid.), the functionality of Copilot currently consists of code
completion and coding suggestions, and a chat assistant. For ”enterprise customers”
that are screened with the help of a waitlist, GitHub (ibid.) also offers automated
change descriptions, and ingesting code repositories and related documentation with
what is assumed by the authors to be a combination of a fine-tuned model and a
method of retrieval.

In addition to the previously referenced study by Peng et al. (2023) that was based
on a greenfield task of programming a web server and conducted in affiliation with
GitHub, other researchers were also able to find positive effects on productivity. Chat-
terjee et al. (2024) concluded a ”notable boost in productivity and code quality with
GitHub Copilot”, and reported indications for a ”significant increase in productiv-
ity and job satisfaction”. However, B. Zhang et al. (2023) found that integrating the
generated code can pose a difficulty, and concluded that Copilot is a ”double-edged
sword” requiring the developer’s careful consideration, especially in regards to how
well it performs with chosen programming languages and technologies.

2.4.4 LLM programming tool start-ups

In addition to the widespread commercial tools from OpenAI and Microsoft, there is
also a plethora of start-up companies developing LLM-based tools for programming
applications. Most of these focus on providing coding assistance directly in the IDE,
either as a plug-in, or as a standalone IDE. Key differentiators from GitHub Copilot
are privacy, wider access to more advanced features, and deeper integration into the
code editor.

An example of a privacy-focused tool is Tabnine which describes itself as ”The AI
coding assistant that you control”, and uses a proprietary languagemodel ”exclusively
trained on permissively licensed open source repositories” (Tabnine, n.d.). They also
highlight security and privacy certifications, strict privacy controls and isolated de-
ployments, while at the same time offering a similar feature set to GitHub Copilot.
Pricing is similar to GitHub Copilot, with $12/month/user on the standard plan, and
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$39/month/user for the enterprise plan (Tabnine, n.d.).

For advanced features and deeper integration in the code editor, one of the more
widespread tools is Cursor. Unlike GitHub Copilot, Tabnine and others, Cursor is a
standalone IDE which according to the developers enables deeper integration of AI
functionality (Cursor, n.d.). Similarly to GitHub Copilot, Cursor has a chat function-
ality and auto-completion. However, Cursor supports directly referencing code files
in the chat window and generating mid-line completions, whereas Copilot only sup-
ports end-of-line or new-line completions, according to Cursor’s developers (ibid.).
The developers also outline that Cursor accomplishes advanced code generation with
the codebase context by generating embeddings and storing these in a database on
their servers. Cursor is slightly more expensive than GitHub and Tabnine, with indi-
vidual pricing at $20/month and team pricing at $40/user/month (ibid.).

Overall, it is noticeable that the market for LLM-assisted code editing and generation
is moving quickly, with new entrants and rapid development. Compared to general
chat and text generation tasks, where the large actors on the market such as OpenAI
with ChatGPT, and Google with Gemini are leading, there is a wider variety with
various differentiators available within code editing and generation.
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3 Method

The method chapter comprises the research design and methodology of the thesis
project, defining the overall process. Research quality and ethics considerations are
also presented.

3.1 Research approach

Research design is closely tied to research purpose and the latter should inform the
former. Four purposes for thesis projects are outlined by Höst, Regnell, and Rune-
son (2006, p. 29): descriptive, exploratory, explanatory and problem-solving studies.
This master thesis follows a problem-solving approach, which is also cited as most
common for technical universities by Höst, Regnell, and Runeson (ibid., p. 29). As
the goal of the thesis project is to both gain an understanding of the problem and
to achieve improvements, an action research (AR) process is suitable (ibid., p. 31).
Stemming from social sciences, Robson andMcCartan (2016, p. 199) describes AR’s
purpose as ”to influence or change some aspect of whatever is the focus of the re-
search” with ”[i]mprovement and involvement” being central. Within improvement,
three components are identified: improving a practice, improving understanding of
a situation, and improving the situation in which the practice is embedded (ibid., p.
199).

Höst, Regnell, and Runeson (2006) describe AR as a principally flexible research
approach, meaning its methodology can be changed or adjusted during the study’s
duration. Though there is flexibility, according to the authors the general process fol-
lows the three steps of investigating a situation or phenomenon to clarify the problem
to be solved; creating a proposal for a solution to the problem; as well as collecting
data and evaluating how well the solution meets expectations. They again point out
that this is an iterative process, following a structure similar to quality improvement
practices in cycles.

As visually outlined in Figure 3, both the overall thesis project as well as the de-
velopment of the solution follow the approach of investigating, taking steps towards
a solution, and evaluating its effects. For the overall thesis, this is denoted as the
investigation, solution and evaluation phase. For the prototype, generation denotes
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Figure 3: Research approach of the thesis project.

the step of creating the solution, testing the step of collecting data on how well it
meets expectations, and review the iterative further clarification of the problem to be
solved. The solution phase thus starts off directly with creating a proposal for solving
the problem identified during the investigation phase.

3.1.1 Investigation

The investigative part of the chosen action research approach was carried out in two
parts with one being a literature study, and the other being a needs analysis and user
study.

3.1.1.1 Literature study
A literature studywas carried out to give theoretical background on the topic of LLMs
in software engineering, coding use cases as well as RAG. RAG as an optimization
method was included in the search explicitly as it is foundational for being able to
provide additional context to an LLM, and thus essential for developing such an ap-
plication. The search was performed using a systematic search approach, amended
with further sources found through forward snowballing (Wohlin, 2014).

A tentative start set was compiled through a block search in EBSCOhost (accessible
as LUBSearch through Lund University Libraries), using three blocks comprised of
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the following keywords.

• ”LLM”, ”LLMs”, ”Large Language Models”, ”GPT-4”, ”GPT4”, ”GPT-3.5”,
”GPT3.5”, ”GPT”, ”ChatGPT”

• ”Benchmarking”, ”Benchmark”, ”Retrieval”, ”Retrieval-Augmented Genera-
tion”, ”Retrieval Augmented Generation”, ”RAG”

• ”Software”, ”Software Engineering”, ”Coding”, ”Code”, ”Programming”

Keywords within a block are joined withOR, blocks joined with AND, searching dur-
ing the time window from 2010 to the day the search was performed, 2024-01-30.
This start set included 724 resources, which was condensed through manual review
based on relevance to a final set of 31 resources. From there on, further articles
and resources cited within the start set were added to the study, resulting in a final
list of 45 resources. The manual review screened for sources referring to modern
LLMs, as literature on older language models was not deemed relevant any longer
due to the fast pace of development. Additionally, resources not related to LLM op-
timization, LLMs as chat assistants or LLMs in software engineering were excluded.
Additional resources cited in the screened start set that were deemed promising were
subsequently also screened based on the stated criteria before being included.

In addition, a Google search was carried out to gain a comprehensive overview of
existing commercial code-related LLM-based services to broaden the list from those
referenced in academic resources. As necessary, further academic resources were
consulted during the later stages of the thesis project to gain an understanding of the
referenced concepts.

3.1.1.2 User study and needs analysis
Interviews were performed to gain an understanding of the current usage of LLM-
based tools, user needs, and issues encountered in a relevant software engineering
setting. Relevant interview subjects were identified within different teams at Craft
Docs, all working within software engineering. Interview participants were selected
to provide spread across seniority and main technologies used. During this initial
round of interviews, 11 people participated. Each software engineering team mem-
ber at the company received an interview request, and those who were able to partic-
ipate during a two week period were interviewed, with reminders being sent to some
individual to achieve a proportional distribution across the domains within the case
company.

The chosen interviewmethodwas semi-structured, aiming to get an overview of LLM
tools each individual uses as well as how often, and to gain a qualitative understanding
of how well they work for different types of tasks individuals perform as part of
their work. 30-minute interviews were carried out with each participant, a full list of
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interview questions can be found in Appendix A.2.1. The interview questions were
compiled based on the results from the online search as part of the initial literature
research.

Insights from the interviews were synthesised and coded to be presented in tables. In
addition to this, an overview of the tools used and how they are used were summa-
rized in a tree graph. Coding was performed by the authors through transcribing the
interview, extracting relevant passages of text and grouping them by themes.

3.1.2 Solution

As the AR process focuses on implementing and evaluating a change or solution, it
is described by Kemmis and Wilkinson (2002, p. 21) as ”a spiral of self-reflective
cycles of” three steps, namely

• plan a change;

• act and observe the process and consequences; and

• reflect on the process and consequences.

This process is repeated multiple times, incorporating learnings from the previous
cycle into the planning stage of the next (ibid., p. 21). AR is often performed with
the goal to reach the intended improvement or change, and embed or permanent it in
an organization (Höst, Regnell, and Runeson, 2006, p.41). In technical thesis projects
such as this one, this is often done by developing a prototype and evaluating it, though
with the process of permanenting or productizing the prototype lying outside of a
thesis’ scope (ibid., p. 41).

For this thesis, planning a change consists of developing a concept for a solution based
on results of the investigation phase - the concept generation. In subsequent stages,
the planning step revolves around improving the solution based on reflection. Acting
consists of developing the prototype and releasing it to users, the prototype gener-
ation. Reflecting on the results of the prototype testing provides an understanding
of its performance and consequences for users, which during the prototyping stages
corresponds to the prototype review, and afterwards to the final evaluation.

3.1.2.1 Concept generation
To guide the iterative development of a prototype, insights from the investigation
phase are synthesized for two purposes. This is done to set goals on which the proto-
type solution can be evaluated later, and to gauge technical feasibility and limitations
to inform the prototype development.

To choose goals that align with users’ needs, the concept of needfinding, popular-
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ized by Patnaik and Becker (1999), can be employed. According to the authors, the
practice focuses on uncovering development opportunities that solve people’s prob-
lems rather than focusing directly on specific solutions. This was done by choosing
the most prevalent issues raised in interviews during the user study and formulating
goals aimed at addressing them.

Gauging technical feasibility and limitations is important for ensuring that a working
prototype is achievable with the available resources and existing technology. For this
project, the feasibility study was conducted by synthesizing findings from the liter-
ature study, in terms of technologies intended to be used, already existing software
addressing similar problems, as well as services that can be employed in a prototype.

3.1.2.2 Prototype generation
In accordance with the action research approach of iterative improvement, prototype
generation is done in multiple rounds. During the initial round, the foundations for
the prototype are set up and the first version should reach a stage where it is usable.
The subsequent rounds aim at improving upon the initial version of the prototype,
incorporating insights from feedback and addressing shortfalls raised during testing.

Initially, three roundswere planned. After the second round, a conclusionwas reached
that no further meaningful improvement to the prototype was achievable within the
limitations and time frame of the thesis. Thus, in accordance with the principles of
action research, the focus was shifted towards evaluating and analyzing.

3.1.2.3 Prototype testing
The prototype testing is conducted as part of iterations one and two, to gain insights
regarding the prototype’s performance, potential areas for improvement, and to un-
cover issues that may arise. These can all be of both technical nature, and regarding
the user experience.

Testing is performed unsupervised, and software engineers at the case company are
asked to employ the prototype in their actual work tasks, similarly to how they use
ChatGPT or other LLM coding tools. This is to take a step away from the theo-
retical performance of the language model, and find shortfalls or opportunities in a
real-world setting. To perform the testing, the prototype is made available to the par-
ticipants via an email invitation, and they receive an account with which they can log
in and use the prototype.

In addition to the testing done by the engineers at the case company, the model will
also be tested by the authors in a structured manner. This will be done by executing
scenario tests to benchmark the prototype.
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3.1.2.4 Prototype review
During the prototype review, insights from the testing phases are compiled and po-
tential causes for shortfalls are analyzed. As the results from the review phase are
guiding the next prototype generation, this review should result in a list of shortcom-
ings, their potential causes, and possible remediation to achieve improvement.

During the prototype review phase, short interviews were carried out with the soft-
ware engineers that participated. Throughout the period, the authors requested inter-
views with those engineers that had used the prototype, with in total three participants
of which one was interviewed twice, once in each round. These interviews were short
and semi-structured, focused on extracting the most relevant information. Questions
were prepared based on the goals set out during the concept generation phase and can
be found in Appendix A.2.3.

3.1.3 Prototype evaluation

To understand the impact and consquences of a solution or change, an evaluation is
necessary. For this project, evaluation will be performed by first creating evaluation
criteria, and then evaluating the findings from the prototype using these criteria. The
evaluation criteria are developed based on the results of the theoretical background,
literature research and interview findings prior to and during testing. The evaluation
criteria will be structured and summarised in a cohesive tree structure. The evaluation
performed as part of the project is two-fold, with both being qualitative methods to
extract the findings to be analysed using the criteria tree.

3.1.3.1 Scenario evaluation
The first evaluation method is based on creating software development scenarios,
which are provided as test cases to the assistant. Analyzing its output and compar-
ing it with a standard ChatGPT assistant provides insights into its quality. Focus
was put on reasonably easy-to-achieve tasks, to provide a complement to the testing
conducted by experienced software engineers at the case company.

3.1.3.2 Interview retrospective
The second evaluation method aims to provide insights into the prototype’s perfor-
mance in a real-world software development scenario, based on semi-structured in-
terviews with software engineers at the case company. All software engineers who
participated in prototype testing and met a usage threshold are offered a 30-minute
interview to reflect on their experience. Engineers met the threshold if they had used
the prototype intensively at least during one full project. During this phase, two inter-
views were performed as only two people had met the threshold and used the assistant
in an actual work project. Interview questions for this third round of interviews were
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also based on goals set out for the prototype during the concept generation phase,
though compared to the short interviews during the prototype review phase aimed to
be more comprehensive.. The interview guide can be found in Appendix A.2.3.

For analyzing the interviews, relevant phrases from interview transcripts were re-
trieved and coded in the participant’s language, grouped as ”first-order concepts” as
described by Maanen (1979). The resulting groupings are subsequently explained by
the authors as more theoretical second-order themes, described by Maanen (ibid.) as
”statements about relationships between certain properties observed to covary”.

As described and employed by Corley and Gioia (2004), similar themes were grouped
into overarching dimensions of interest, and visualized as a data structure in the for-
mat proposed by Corley and Gioia (ibid.). The emerging dimensions can then be
compared or contrasted with theory.

3.2 Research quality

To both ensure and evaluate the trustworthiness of this thesis, a framework for quality
in quantitative research originally proposed by Lincoln and Guba (1985) is employed.
This framework encompasses four aspects for evaluating research quality, namely
credibility, transferability, dependability and confirmability.

Establishing credibility demonstrates confidence in the findings’ truth, meaning that
the thesis reports and demonstrates facts and observations that align with the ex-
periences and perceptions of participants and experts or members of a community.
Lincoln and Guba (ibid.) propose techniques such as triangulation either by meth-
ods, using multiple data collection methods, or by sources, with continuous feedback
loops with study participants over time, or adding additional outside perspectives for
comparison. The authors also propose peer debriefing, which was performed contin-
uously during the thesis project between the two authors.

Transferability is concerned with how applicable the findings are to a broader con-
text, for example, a research field or an industry. Lincoln and Guba (ibid.) argue that
investigating and describing a phenomenon in deep enough detail enables evaluating
how and to which extent conclusions can be transferred to other settings and situa-
tions. As software engineering tasks and processes are similar across many settings,
conclusions may have a broad range of applications.

Demonstrating dependability shows that the thesis’ findings are consistent and re-
peatable. Lincoln and Guba (ibid.) describe external audits as a method for estab-
lishing dependability, which for this thesis is conducted through public discussion
and peer feedback with other students, as well as the supervision and examination by
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researchers at Lund University.

Lastly, confirmability is concerned with demonstrating neutrality, thus showing that
the results of the thesis are not affected by the researchers due to bias, interest or
motivations (Lincoln and Guba, 1985). For the thesis, regular supervision by an
experienced researcher at the university was used as a form of triangulation, to ensure
that findings are based on the literature and data.

3.3 Use of generative AI

Generative AI-based services were used as part of the project to generate scripts used
during the technical development (ChatGPT), to generate the cover image for this
report (Midjourney), to proofread the report (ChatGPT and Grammarly), and give
feedback on how to formulate sentences more clearly (ChatGPT and Grammarly).

3.4 Ethical considerations

According to Robson andMcCartan (2016), it is important to avoid bias and maintain
integrity in research. Integrity in research includes declaring personal bias, ensuring
objectivity in research questions, attending possible conflicts of interest, avoiding
observational bias, respecting intellectual property, as well as not fabricating, falsi-
fying or misrepresenting data (ibid.). To comply with these guidelines, the research
questions were formulated with input from the academic supervisor. Weekly external
reviews in addition to approximately bi-weekly meetings were carried out with the
academic supervisor to ensure oversight. It is to be noted that the action research
approach can carry a certain bias towards positive outcomes. However, the industry
supervisor remains objective, prioritizing overall organizational effectiveness over fa-
voring certain technologies. To reduce observational bias, comprehensive notes were
maintained, and selective attention and coding were refrained from.

Robson and McCartan (ibid.) also highlights the importance of participation in any
study being voluntary, with full consent and also, if needed or desired, anonymity.
This is achieved bymaking participation in the study fully voluntarywith no repercus-
sions for those who choose not to participate. Furthermore, insights from interviews
and feedback are presented without naming.
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4 Results

This chapter presents the results from the initial literature research and interviews,
the generated concept as well as the prototype iterations. Finally, the results of the
evaluation of the last prototype are presented.

4.1 Investigation

The following sections will present the findings from the literature study as well as
the findings from the user study and needs analysis.

4.1.1 Literature study

This section introduces the concept of benchmarking to compare and evaluate LLMs
and reports the performance of the most prevalent models. Additionally, methods for
optimizing and tailoring LLMs to specific use cases are presented.

4.1.1.1 Benchmarking of Large Language Models
As language models are built on various sets of training data, have different focus
areas in terms of applications and are employed in multiple fashions to support LLM-
based tooling, there is a need to be able to compare the underlying models. Thus, to
test the performance of LLMs on various types of tasks, researchers have compiled
testing sets with tasks models can be evaluated on. These benchmarks range across
various disciplines such as common-sense reasoning with HellaSwag (Zellers et al.,
2019), multiple-choice tests across various subjects with MMLU (massive multitask
language understanding) (Hendrycks et al., 2020) or grade school-level mathematics
with GSM-8K (grade school math, 8k) (Cobbe et al., 2021). For coding tasks, the
most prevalent benchmarks are HumanEval, first introduced together with the code-
specific LLM Codex developed by researchers at OpenAI (Chen et al., 2021), as well
as CRUXEval (Code Reasoning, Understanding, and eXecution Evaluation), intro-
duced by researchers at Massachusetts Institute of Technology and Meta Platforms
(Gu et al., 2024).
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4.1.1.1.1 HumanEval
HumanEval is an evaluation set made up of 164 Python programming problems writ-
ten manually, first introduced by Chen et al. (2021) at OpenAI. Solutions generated
by LLMs can then be executed against a suite of tests created by the authors, with
an average of 7.7 tests per problem. The authors describe the need for handwritten
problems to arise due to many publicly available programming problems being part
of the model’s training data and thus possibly skewing results. They released the
evaluation set publicly so that other models can be evaluated on it.

A HumanEval score is reported in many research papers introducing new large lan-
guage models, with scores of 67.0% reported in the introductory technical paper for
GPT-4 by OpenAI et al. (2023) at OpenAI, 74.4% for Gemini Ultra and 67.7% for
Gemini Pro reported in the technical report for Google’s LLM Gemini by Gemini
Team et al. (2023).

The independent researchers Liu et al. (2023) have since expanded HumanEval with
additional test cases, as much as 80 times per problem, to make the benchmark more
rigorous and reliable. The authors also provide a comprehensive automated leader-
board (Liu et al., n.d.) for both the extended version called EvalPlus and the original
HumanEval benchmark.

Figure 4: Excerpt from the EvalPlus leaderboard (Liu et al., 2023) as of 2024-02-23,
fair use under Apache 2.0 license.
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As of 2024-02-23, GPT-4 Turbo andGPT-4 are the top two performingmodels, reach-
ing 81.7% and 79.3% on EvalPlus. On the original HumanEval benchmark, GPT-4
performs better than GPT-4 Turbo at 88.4% and 85.4% respectively, as can be seen in
figure 4. The higher scores than in the introductory report can be attributed to Ope-
nAI releasing newer iterations of the models (OpenAI, n.d.[c]). Google’s Gemini Pro
ranks on place 18 as of 2024-02-23, with scores of 55.5% on EvalPlus and 63.4% on
HumanEval, with various mostly open-source models placing in between. Gemini
Ultra was not yet publicly available at the time of writing, thus no independent score
can be found.

4.1.1.1.2 Other coding benchmarks
CRUXEval was developed by Gu et al. (2024) as an evaluation set additional to Hu-
manEval, putting greater focus on not only code generation, but also reasoning sur-
rounding programming problems and understanding of code. Coding problems in
the benchmark are written in Python. Also for this benchmark, there is a publicly
available leaderboard (Gu et al., n.d.). Similarly to HumanEval, GPT-4 is the best
model on the benchmark at 75.5%.

As noticeable with the two described benchmarks, the main focus for evaluating pro-
gramming performance lies on code in Python. For this thesis, it is also relevant
to look at performance in other languages, as JavaScript with TypeScript and Swift
are the most used languages at the case company. To evaluate performance in other
languages, Yan et al. (2023) created CodeScope, evaluating both understanding and
generation with individual coding problems in the most common programming lan-
guages. Depending on the sub-task in the benchmark, the researchers included up
to 43 programming languages, including JavaScript and Swift. Similarly to the pre-
viously named benchmarks, GPT-4 places at the top with an overall score across all
tests and languages of 39.2% on the leaderboard (Yan et al., n.d.).

All three benchmarks mentioned so far employ self-contained programming prob-
lems to test model performance. For this thesis, it is also relevant to understand how
well models perform in a setting that is closer to the discipline of software engineer-
ing. There, projects contain dependencies across files and folders and generally have
larger contexts, argue the researchers Li et al. (2024). Thus they compiled the bench-
markDevEval, aiming to address this discrepancy. They describe that the benchmark
contains problems better resembling those in real-world projects, a sufficient amount
of inter-file dependencies and context across multiple files, with problems in Python.
As shown in their paper, success rates for common LLMs are much lower on the
benchmark, with the top-performing model being GPT-4 at 21.6%.
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4.1.1.2 Best practices for optimizing and tailoring LLMs
The current best practices of the three most commonly used tools - prompt engi-
neering, RAG and fine-tuning (Allard and Colin, 2023) - are presented below. As
presented in Figure 5, the LLM can be improved along two axes, context optimiza-
tion and LLM optimization, which refer to what the model needs to know and how
the model needs to act (ibid.).

Figure 5: The LLM optimization flow, adapted from Allard and Colin (2023).

4.1.1.2.1 Prompt engineering
There exist several techniques that can be applied to the prompt in order to improve
the generated answer. Examples of these are providing context, Chain of Thought
(CoT), and Tree of Thought (ToT).

CoT is a prompting technique that instructs the GPT to reason about the problem in a
multi-step fashion instead of jumping to the the conclusion directly (Wei, Tay, et al.,
2022; Wei, Wang, et al., 2023; Yao et al., 2023). Although CoT has been shown to
improve the quality of answers on some tasks, it does not show a significant increase
across all test sets (Wei, Wang, et al., 2023). On StrategyQA, a test set that can be
seen as similar to the task being attempted to achieve in this thesis, GPT-3 did not
show any performance improvements when being prompted to use CoT (ibid.).

A further development of CoT is ToT, which prompts the GPT to perform deliberate
decision-making (Yao et al., 2023). This is executed through iterative prompting, in-
structing the model to create and evaluate multiple threads and continuing the thread
assessed by the LLM to be the most correct (ibid.). Research by Kadavath et al.
(2022) has provided promising results of LLMs being able to evaluate the correct-
ness of answers generated by the same model. ToT does however increase the cost
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per generated answer, due to it requiring the creation of multiple threads and the
corresponding multiple sets of tokens needed for each thread (Yao et al., 2023).

4.1.1.2.2 Retrieval techniques
As shown by Li et al. (2024), LLM performance on code generation tasks with depen-
dencies across files in a project is worse compared to stand-alone tasks. For LLM-
based tools to have practical use in software engineering, capturing the nature of
code, being modularized across files and exhibiting local context such as variable
definitions as well as global context with function or API invocations across files,
is of high relevance (Tu, Su, and Devanbu, 2014). Applying the concept of RAG to
code completion and generation tasks can thus be expected to improve performance.

By basing the generated output on provided documents through RAG, answers get
more specific and factual compared to non-RAG-poweredmodels (Lewis et al., 2021),
as well as reducing hallucinations (Barnett et al., 2024). Additional benefits of a
RAG-powered model are many. Firstly, RAG-powered models have the benefit of
not requiring any additional training when updating their knowledge and can be up-
dated through hot swapping the retrieval data, making updating the knowledge base
of models faster and less resource demanding compared to fine-tuning (Lewis et al.,
2021). Secondly, RAG improves the semantic search capabilities of LLMs (Barnett
et al., 2024). Thirdly, RAG systems are able to link sources to generated content
(ibid.), providing a way to fact-check the answers more easily.

Already before the release of the current state-of-the-art LLMs, such as GPT-4, ma-
chine learning researchers at Microsoft have been able to show in previous studies
(Clement et al., 2021) that providing the local context by incorporating the work-
ing file as part of the prompt can improve code completion. To address the missing
global context and incorporate a wider context, applying retrieval-augmented gener-
ation techniques to code repositories was first proposed in the academic literature by
F. Zhang et al. (2023), also affiliated with Microsoft.

Generally, retrieval techniques focused on code-related use cases outlined in research
papers focus on two use cases: completion, meaning being able to generate the re-
mainder of a line of code, or the next line based on previous lines, and function gener-
ation, being able to generate a complete function based on its name and parameters.
This may be due to the prevalence of tools aiming to integrate LLM generation di-
rectly into IDEs, within which the actual code writing and editing is performed.

Two research groups have shown that specific RAG methods that work in a more
sophisticated fashion than with a vector similarity search can have beneficial effects
on code generation quality. These are RepoCoder by F. Zhang et al. (ibid.), a method
employing multiple rounds of retrieval to improve the result, as well as Repository-
Level Prompt Generator (RLPG) proposed by Shrivastava, Larochelle, and Tarlow
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(2023), which works by accessing further files based on connections in the code, such
as parent classes, referenced methods and more.

As presented by Barnett et al. (2024), the robustness of a RAG system is something
that has to evolve through iterations rather than something that can be designed from
the start. Furthermore, when constructing a RAG system, some key aspects that can
improve the performance of the system are that:

• larger context allows for better results,

• semantic caching of provided content to reduce cost and latency, and

• adding metadata such as file name to improve retrieval.

For the prototype, to be created using OpenAI’s available web tool, adding meta-data
to the provided files is the only controllable aspect of the three. The file name and
path will therefore be added before its corresponding code part in the files provided
to the retrieval.

4.1.1.2.3 Fine-tuning
Fine-tuning can improve output when the goal is to optimise a model for a specific
task which requires a domain-specific dataset for the model to be trained on (Allard
and Colin, 2023). One way of creating this dataset is through reinforcement learning
from human feedback (RLHF), which can be used for fine-tuning a language model
to a broad set of questions (Ouyang et al., 2022).

Due to the diverse set of tasks that the generated prototype will have to handle, and the
formatting of answers not being of main concern, fine-tuning is thought to have lim-
ited impact on the performance of the augmented LLM in this thesis. Furthermore,
creating a dataset of high quality for the LLM to be fine-tuned on would require many
hours of work from the engineers at the company. The same goes for RLHF. Also,
the current generation of OpenAI Playground does not allow for simultaneous RAG
and fine-tuning implementation.

4.1.2 User study and needs analysis

In this section, results from the user study are presented, with an overview of the
observed usage of LLM-based services at the case company. Each of the different
use cases found as part of the study are described in detail.

4.1.2.1 Overview of usage
The conducted interviewswith software engineers at Craft Docs showcased thewidespread
use of both ChatGPT and other GPT API clients, so called wrappers. These function
in the same way as the ChatGPT web application and were thus grouped together
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with ChatGPT as GPT . Also, Microsoft Copilot (Copilot) is used. However, nearly
half of the interviewees reported Copilot not being applicable in their line of work
due to its unavailability in the IDE they use.

LLM-based tools

GPT

Text production

Documentation Product copy Proofreading

Code production

Greenfield Integrated Code feedback

Information gathering

Learning Lookup

Copilot

Completion Chat

Figure 6: Overview of the LLM-based tools used and their respective use cases.

Figure 6 presents the found use cases which were grouped depending on which LLM-
based tool was used by participants and their descriptions of tasks. Task descriptions
were coded by the authors and grouped under common themes. Table 2 shows the
usage distribution of the respective tools between interview participants.

Table 2: Usage distribution.

Uses Does not use Not applicable

Copilot IP2, IP4, IP7, IP11 IP1, IP3, IP6 IP5, IP8, IP9, IP10, IP12

GPT IP2, IP3, IP4, IP6, IP7, IP8, IP9, IP10,
IP11, IP12

IP1, IP5

Specifically for GPT, which emerged as the most widely used tool at the case com-
pany, the use cases outlined in Figure 6were analyzed in terms of users’ sentiment and
experiences, with details in the following paragraphs. Table 3 provides an overview of
interview participants’ experiences with each respective use case, and if they showed
generally positive or negative attitudes towards it.

4.1.2.2 Text production
Although text production was not brought up as a use case for GPT by most inter-
viewees, those mentioning it had an overall positive experience in this field. These
participants frequently used it for proofreading and creating product copy, the text
that goes into the toolbars, buttons and other parts of the product. GPT was also used
for documentation and communication tasks. It is to be noted however that the results
regarding text generation possibly do not show the full picture, since code generation
was the focus of the interviews and no specific questions regarding text generation
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Table 3: Positive and negative experience in regard to the use-cases found related to GPT.

Positive Negative

Text production
Documentation IP2
Product copy IP2, IP10, IP11
Proofreading IP10, IP11

Code production
Greenfield IP2, IP3, IP4, IP7, IP9, IP10 IP1
Integrated IP3, IP6, IP9, IP11 IP1, IP4, IP5, IP6, IP7
Code feedback IP3, IP9

Information gathering
Lookup IP2, IP3, IP4, IP6, IP8, IP9, IP11 IP5, IP7
Learning IP3, IP6, IP7, IP8, IP10, IP12 IP7

were asked.

4.1.2.3 Code production
Participants exhibited mixed feelings regarding GPT’s capabilities for code produc-
tion, with a clear split between greenfield tasks and more complex integrated tasks.
Greenfield tasks are task regarding code for areas where no previous work needs to be
taken into account, or well-defined tasks that could be described as schoolbook exam-
ples. This was an area in which GPT generally excelled. Experiences were however
mixed regarding GPT’s capability in more complex integrated programming tasks,
where the code needed had to fit into the context of already existing code and depen-
dencies.

The mixed experiences regarding integrated code production can be attributed to sev-
eral reasons, with the main one being GPT’s lack of knowledge about the context.
The lack of knowledge about what the participant in question was working on led
to the need of having to provide extensive context to get a meaningful and useful
result. Also, in the process of providing this context, it was mentioned as a regular
occurrence that GPT interpreted it wrong, forcing the participant to start the process
over again. GPT was also described as being misleading when tasked with helping
to debug errors in code.

The limited scope of training data for GPT was also mentioned as an assumed cause
for dissatisfaction. The vast majority of GPT’s training data was created and collected
before September 2021, with only small amounts of pre- and post-training data con-
taining more recent content (OpenAI et al., 2023). This leads to GPT being mostly
useless when working with cutting-edge technologies developed after this cut-off.
Furthermore, although the training data of GPT-4 is extensive, it is not exhaustive,
as demonstrated by a reported lack of knowledge about the intricacies of macOS and
iOS operating systems and APIs, where GPT falls short according to interviewees.
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Some participants did nonetheless exhibit positive experiences regarding using GPT
for writing complex and integrated code. An example is for tasks where it is easy to
define the APIs needed and give the context needed in a quick and efficient way. An-
other good use case mentioned was for creating rough prototypes. However, the code
generated by GPT was however seldom ready to use and often required adjustments
and iterations to work sufficiently well.

4.1.2.4 Information gathering
The experience of using GPT for information gathering was overall positive, with
some exceptions. GPT was mainly reported to save a lot of research when perform-
ing explorations involving unfamiliar technology, as well as being able to work as a
mentor within a new field or subject. Furthermore, it was reported to save time by
presenting the result directly instead of having to find it on web pages after a search
with a search engine. Negative experiences were mostly related to not being able to
trust GPT due to it hallucinating. Some handled this by looking up the provided an-
swer with a search engine to check its correctness. It was also reported that although
answers could be somewhat incorrect, they usually pointed participants in the right
direction. Another negative experience was related to the previously mentioned lack
of knowledge due to the nature of GPT’s training data not being exhaustive andmostly
containing data originating before September 2021.

4.1.2.5 Usage across company-specific domains
What was made clear during the interviews was that the performance of GPT differs
between different subject areas and programming languages. The more common the
tasks and themore commonly used the programming language, the better the reported
performance of GPT in general. It was also reported that GPT performed well in
areas that could be considered more established practices, such as web applications.
In contrast, GPT usually performed poorly on less common tasks and less widely used
programming languages. In addition to this, it also seemed as if GPT had not received
sufficient training data in some areas, such as programming Mac/iOS applications,
since performance in that field was reportedly poor. An overview of the interview
participants and which field they primarily work in can be seen in table 4.

Table 4: Usage of GPT across domains.

Uses Does not use

Web IP2, IP3, IP4, IP9, IP11 IP1

Mac/iOS IP8, IP9, IP10 IP5
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4.2 Solution

This section will cover the results corresponding to the step of creating a solution in
the action research approach presented by Höst, Regnell, and Runeson (2006). The
solution will be in the form of a working prototype to be tested.

4.2.1 Concept generation

Before starting the actual development iterations, a concept was created according
to the guidelines outlined in section 3 Method and in conjunction with the initial
delimitations in regards to types of tasks and available LLMs.

Based on the interviews, it was decided to focus on function and component code
generation for integrated use cases, as this emerged as the most ambivalent in the
interviews. They require a lot of manual context input, and as shown some users
felt existing tools worked for this process whereas others expressed not being content
with what is available.

Within this task, four goals were set out for the prototype to accomplish, and to track
its performance against. These are that the solution should

• require less detailed prompts;

• provide more accurate responses;

• require less back-and-forth iteration; and

• have an ease of use on par with current tools.

The goals were set based on results from the initial interviews. As participants ex-
pressed frustrations with the need for providing context manually, the goals focus on
being able to use the chat assistant similarly to existing ones, but with less need for
manual input. Goal 1 and 3 aim to lessen the user’s need of providing information,
whereas goal 2 and 4 aim to uphold or improve quality of the user experience.

The literature research has shown that there are tools available and some of them are
already used within the case company. The tools aiming to address a similar problem
or use case, incorporating a whole codebase context, are though currently not in use
by anyone at the company. This could be due to organizational inertia, not having
enough time to try out a new tool, or other organizational barriers, for example in
regards to data protection.

In terms of technical limitations and feasibility, the concept of RAG combined with
prompt engineering was chosen as the main way of augmenting a large language
model with the necessary context. Through OpenAI, RAG is made available as a
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service. This has the benefit of being able to more easily implement a prototype, but
the downside of not having knowledge and control over which retrieval techniques
are employed. It was decided that as part of this thesis project, the benefit of speed
and flexibility is more important than having exact control over retrieval techniques
for possibly achieving better performance. With tailored prompting and instructions,
some performance optimizations can be expected to be achievable.

Fine-tuning was not chosen as a tool for augmenting the LLM in the initial cycle. This
is due to fine-tuning being more fit for improving model efficiency through empha-
sising knowledge that already exists in the model (Allard and Colin, 2023), which is
not the case for this study. Furthermore, as recommended by Allard and Colin (ibid.),
fine-tuning is not ideal to start with when iterating new use cases.

As the literature research has shown, GPT-4 and GPT-4 Turbo are the best LLMs
and current state-of-the-art. The case company enabled access to these models and
retrieval through OpenAI, namely via the Assistant API, so this approach was chosen
to use in the prototype. Overall, this provides an opportunity to iterate quickly due
to using existing RAG services, while at the same time reaping the benefits of state-
of-the-art LLMs. To find the best way of incorporate the repository into the RAG
system, an iterative approach was chosen.

4.2.2 First iteration - prototype generation

In line with the results from the investigation phase as well as the scope and delimi-
tation outlined in the introduction, the prototype for the coding assistant was created
within OpenAI’s environment, based on the Assistant API’s specification, and fol-
lowing its possibilities and limitations. The OpenAI Playground (OpenAI, n.d.[h])
provides a graphical user interface (GUI) through which users can interact with the
prototype.

4.2.2.1 Retrieval-Augmented Generation
For the initial prototype, data was retrieved from Craft’s web application repository
that contained all front-end code related to the React-based web application written
in TypeScript. This data was processed to meet the requirements and limitations of
OpenAI’s Assistant API specifications, namely being limited to a maximum num-
ber of 20 files and 2,000,000 tokens per file (1 token corresponds to approximately
4 characters). Data processing included merging of individual files into larger mark-
down text files, as well as adding metadata for each individual file in the form of the
file path.

As the repository is a so-called monorepo containing several projects in a separate
folder each, these base folders were merged into one file each with the exemption
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Figure 7: Overview of the data processing.

of those which exceeded the token limit, which had to be split into two files. Fur-
thermore, delimiters in the form of backticks were added to mark the start and end
of each merged code file. All of the data processing was executed with the help of
a command line script (see Appendix B.1) as a way of streamlining the workflow
for setting up the RAG system. The script was compiled with the help of ChatGPT.
Figure 7 visualizes this process.

Retrieval works as a tool the language model has access to, with the model’s system
prompt providing instructions on how to call tools and retrieve their output (Ope-
nAI, n.d.[a]). The system prompt containing these instructions is not published by
OpenAI, and can therefore not be examined.

4.2.2.2 Prompt engineering
For the first version of the prototype, the initial prompt (see Appendix B.2) created
was comprised of three high-level concepts: the assistant’s overall purpose, what files
it has access to and how those are structured, and how the files are to be interpreted
and incorporated into its answers.

4.2.2.3 Technical description of the assistant
When the first message is sent to the assistant by a user or tester, a thread is created.
This thread forms the basis of a conversation, to which all instructions, messages,
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retrieved chunks of code and responses are appended, and each step is encoded as an
event on the thread. The assistant prototype has a unique ID tied to the thread and
the thread itself receives a unique ID. In addition, the chosen language model (GPT-4
Turbo), the instructions (assistant prompt), references to the knowledge files outlined
earlier and the instruction to use the retrieval tool are stored within the thread. Poten-
tial errors, start and end times, and usage statistics are also appended. An example
of a completed thread object can be found in Appendix B.3.

1 events: {
2 thread: {
3 run: [
4 created,
5 queued,
6 in_progress,
7 completed,
8 step: [
9 created,

10 in_progress,
11 completed
12 ]
13 message: [
14 created,
15 in_progress,
16 delta,
17 completed
18 ]
19 }
20 }

Example 1: Event types

The thread has two types of objects tied to it, runs and messages. After the thread is
created with the first message, a run is queued on OpenAI’s servers, and then started.
This run orchestrates the retrieval and generation, each as a step with its respective
type, either tool_calls or message_creation. Messages are appended to the thread
and receive their ID. As seen in Example 1, runs and messages go through different
states during the process. In the background, the language model coordinates the tool
calls, assembles a final prompt containing the user’s prompt and retrieved chunks, and
generates the response (OpenAI, n.d.[e]). According to the documentation, in case
multiple tools are made available to the model, it can ”intelligently” choose between
them depending on the user’s prompt (ibid.).
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In Figure 8, the complete process is visualized as a swimlane diagram, outlining how
the different entities interact. Therein, Assistant refers to the model on OpenAI’s
backend orchestrating the retrieval and generation process, and LLM to the model
generating the final output. Figure 9 shows the user interface.

4.2.3 First iteration - prototype testing

Initial testing was carried out by the authors before releasing the prototype to the soft-
ware engineers at the company. This was done to ensure the answers provided by the
prototype were at least somewhat accurate and to evaluate the level of hallucination
by the prototype. This showed that returned code examples could be found within the
repository, showing that the retrieval mechanism worked as expected. Providing the
complete file path of each referenced piece of code worked intermittently, sometimes
the path was not mentioned at all, and sometimes only the file name. In some cases,
the file names were made up, with the model hallucinating file names and paths that
did not exist.

Testing performed by the software engineers at the case company revealed that the
main issues were response speed, and the assistant intermittently not providing an an-
swer even though the process was marked as complete. Unfortunately, during the first
round, engagement with the prototype was rather low, which can also be attributed
to its slow response speed.

4.2.4 First iteration - prototype review

One of themain points of feedback during the first iterationwas that the prototypewas
slow. This might have been partly due to the reported issues that OpenAI had during
the testing period, with reported incidents on February 13 and 14 (OpenAI, n.d.[g]).
Furthermore, sometimes the prototype did not provide any answer, something that
also might have been due to the reported incidents at OpenAI.

Another issue with the first iteration was the lack of participation from the software
engineers. This was largely due to the bad timing of the first iteration cycle that
coincided with a part of the company’s software development cycle that had little
to no need for the tool. This led to the first iteration cycle being mainly focused
on further literature research and testing by the authors with some input from the
engineering team.

Even though the model had access to the information needed it sometimes still hallu-
cinated and provided made-up answers. This included made-up file paths and func-
tion names. However, most of the time the prototype seemed to retrieve the relevant
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The graphical user interface
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thread.run.create
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Message is streamed - thread.message.delta

The message is formed while generation is proceeding, thus deltas  containing
individual pieces of the message are sent from the LLM to the Assistant, and rendered in
the user interface as generation is ongoing.

thread.message.completed

Finalize run
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Figure 8: Swimlane diagram of the retrieval and generation process.
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chunks of code from the provided files given the answers it provided. Furthermore,
the prototype was able to provide answers that showcased this retrieved information
being used in a correct way that provided helpful assistance to real-world coding
problems in an integrated environment.

4.2.5 Second iteration - prototype generation

During the second prototyping round, the process for setting up retrieval from the
initial round was repeated. This was done to update the data to the current state of
the codebase and ensure that changes made by software engineers during the testing
and evaluation phases are incorporated into the assistant. To make it easier for the
model to provide the correct file path, the full file path was provided in the markdown
file headers.

Regarding the assistant’s prompt, changes were made according to the improvement
opportunities or shortcomings uncovered as part of the first iteration’s testing. The
instructions were amended to make sure that the model provides the full file path
of code files that are referenced, without providing the names of the large internal
knowledge files. During initial testing, it was determined that one instruction was
not enough, and a second instruction with a strong negation (”absolutely never”)
needed to be added to ensure the file names for internal use were ignored and the file
paths within the knowledge files are used instead. A chain of thought instruction was
also added to the prompt, asking the model to explain its reasoning step-by-step.

With the aim of improving the credibility of the answers generated, experiments were
made adding an instruction prompting the model to evaluate its answer and provide
information on how accurate it believes the answer to be. The model did not follow
this instruction, and rather, this had detrimental effects, as other instructions were
ignored when this was present. Thus, this was not implemented.

With the goal of improving the model’s understanding of the repository, an additional
file containing a file tree outlining the folder and file structure of the repository was
added to the knowledge files and instructions included in the prompt. This did not
yield any results though, as the model did not seem to access this file. Thus, this idea
was discarded.

4.2.6 Second iteration - prototype testing

During the second testing period, no larger issues with outages were reported, neither
by software engineers at the case company that tested the prototype, nor by OpenAI
directly. In the meantime, OpenAI had also upgraded the assistant framework’s ca-
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pabilities, so that instead of a blank page while waiting for information retrieval and
generation, a loading animation is displayed. Previously, the generated answer was
displayed when it was finished, while now, the answer is streamed directly into the
user interface window, in the same manner as on ChatGPT.

As in the first round, the assistant prototypewas released to the testers, with reminders
asking for participation sent individually. Compared to the first round, further engi-
neers participated, and according to both usage statistics as well as self-reports used
the prototype more thoroughly than during the previous testing period, across a range
of tasks.

4.2.7 Second iteration - prototype review

While no issues with abnormal long loading times similar to those in the first iteration
were reported, software engineers who participated in the test still mentioned that it is
slow compared to ChatGPT. The quality of the generated answers was rated as similar
to ChatGPT for code-heavy questions. Though, it was observed that engineers testing
the assistant did not necessarily change their behavior with the assistant prototype,
and similar to how they use ChatGPT pasted code snippets into their prompts.

In regards to questions requiring a larger amount of reasoning, testers reported trying
to ask higher-level project-related questions, but did not feel that the assistant was
able to provide answers they would rate as truthful or reliable. Similarly, when using
the assistant prototype to help write business logic-related code, their hope that the
assistant would suggest patterns globally used across the repository was not met, as
the assistant did not suggest any such patterns.

4.3 Prototype evaluation

The evaluation starts with the construction of the evaluation tree to be used as the
criteria framework. This is followed by presenting the results and evaluation of the
comparison tests. Finally, the qualitative analysis of the interviews is presented and
evaluated.

4.3.1 Evaluation tree

For this evaluation to be structured and comprehensive, the different parts of the pro-
totype and its functionalities were broken down into a tree structure that can be seen
in Figure 10. The leaves to be included in testing are leaves 1-8, with leaves 9-10
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being excluded due to the black box characteristics of the RAG making it impossi-
ble to evaluate chunking properly. The tests will be created to resemble real-world
scenarios similar to those that would occur in production.

Splitting the prototype into two areas, LLM and RAG, is motivated by the definitions
presented by Mialon et al. (2023) where an Augmented Language Model is split into
the parts reasoning and tools. With the LLM being responsible for the reasoning,
and the RAG being a tool, these definitions correspond to the split in Figure 10.
Furthermore, with prompt engineering being strongly connected to the behavior and
reasoning capabilities of the LLM, the effects of prompt engineeringwill be evaluated
with the help of the leaves under LLM in Figure 10.

Prototype

LLM

Natural language
understanding

1. Correct query
interpretation

2. Clarity in
generated answer

Code syntax
and semantics

Codebase navigation
and analysis

3. Understanding
project structure

4. Identifying relevant
connections and dependencies

5. Correct integration of
retrieved information in

generated answer

6. Produces
functioning code

RAG

Retrieval

Source selection

7. Contextual
relevancy

8. Lexical
relevancy

9. Speed of retrieval

Chunking

10. Ability of embedding
to capture context and

meaning

11. Efficient segmenting

Figure 10: Overview of the structure and functionalities the prototypes will be eval-
uated on.

RAG is split into two distinct areas, chunking and retrieval. Barnett et al. (2024)
describes these two areas as the index and query process. The chunking is in turn split
into two leaves to cover both the ability to segment the files in an efficient and correct
manner, as well as producing embeddings that fully capture the chunks’ meaning and
dependencies.

The retrieval part is split into selecting the correct sources and speed of the retrieval.
Source selection is split into contextual and lexical relevancy to evaluate the re-
triever’s ability to find results matching both in text and semantics. Speed is relevant
as a metric due to speed being one of the main points of feedback from the engineers.

Mialon et al. (2023) describes the possibility of dividing reasoning intomultiple types
of different reasoning. For this thesis, natural language, and code syntax and se-
mantics are the most relevant areas of reasoning to evaluate. The natural language
understanding is split into correctly interpreting the question and generating an under-
standable answer. Understanding of code syntax and semantics is split into codebase
navigation and analysis, correct integration of retrieved information in the generated
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answer, and producing functioning code. Codebase navigation and analysis is split
into understanding the project structure and identifying relevant connections and de-
pendencies.

4.3.2 Scenario evaluation

Oriented around the elements of the evaluation tree, questions for this test were cho-
sen to resemble real-world scenarios and to test the different capabilities of the proto-
type. Elements 1 through 8 in Figure 10 were determined to be viable to test with this
testing framework. Additionally, the prototype’s capabilities compared to ChatGPT
can be clarified and easily understood. The first two questions evaluate the assis-
tant’s capability on static changes to the visible user interface, with the first being a
text change, and the second a more complicated ordering change. The third question
aims to change a visible element in combination with a change in underlying logic.
The final two questions are aimed at evaluating the assistant’s capabilities in under-
standing underlying logic of something that does not produce a visual change, with
one being open-ended and the last one being targeted and specific. A summary of the
leaves evaluated for each question is provided in Table 5.

Table 5: Leaves evaluated for each question.

Question Leaves evaluated

Question 1 1, 2, 5, 6, 7, 8

Question 2 1, 2, 3, 5, 6, 7, 8

Question 3 1, 2, 3, 4, 5

Question 4 1, 2, 3, 7, 8

Question 5 1, 2, 3, 4, 5, 7, 8

4.3.2.1 Question 1
This question again focuses on finding the correct piece of code corresponding to
a description of the user interface, testing the lexical and contextual relevancy of
the retrieval process, as well as the LLM’s ability to interpret the query, provide
a clear answer, and correctly integrate the retrieved information. As there is only
one preference panel containing an integrations section, this question does not test
codebase navigation and analysis capabilities.

Prompt

In the Integrations section of the preferences panel, the learn more link is currently in title case. Help me
change it to sentence case instead.

52



ChatGPT response

To change the ”Learn More” link in the Integrations section of the preferences panel to sentence case,
follow these steps:

1. Access the Preferences Panel: Open the application or website where you need tomake the change.
Navigate to the preferences or settings section.

2. Locate the Integrations Section: Within the preferences or settings, find the section labeled ”In-
tegrations” or something similar.

3. Edit the Text: Look for the ”Learn More” link. You will need to access the backend or content
management system (CMS) where the text for this link is stored or configured.

4. Change to Sentence Case: Modify the text from ”Learn More” to ”Learn more”. Ensure you only
capitalize the first letter of the first word, and all other letters are in lowercase, except for proper
nouns or as grammatically required.

5. Save Your Changes: After making the edits, save your changes. It might be necessary to review
your changes for accuracy and to ensure it adheres to the overall style guide of the application or
website.

6. Test the Change: Go back to the preferences panel in the application or website to ensure the
changes have been applied successfully. Verify that the link now reads ”Learn more” in sentence
case.

If you do not have direct access to the backend or CMS, you may need to contact your web developer
or the technical team responsible for maintaining the application or website. Provide them with specific
instructions about the change you wish to make.
If there are specific software or tools involved that you’d like guidance on, such as a particular content
management system or code snippet examples, please provide more details so I can offer a more tailored
response.

Assistant response

I found the section of the code responsible for rendering the ”Learn More About Integrations” link in the
Integrations section of the preferences panel. It is located in the file editor/src/webapp/preferences
-panel/sections/Integrations.tsx.
To change the label to sentence case, you need to update the LinkLabel component’s content from ”Learn
More About Integrations” to ”Learn more about integrations”. Here’s how you can make that change:
Original code:

1 < S e c t i o nA l i g n S t a r t >
2 <Ex t e r n a l L i n k h r e f ={CRAFT_INTEGRATIONS_HELP_ARTICLE_URL}>
3 <LinkLabel >Learn More About I n t e g r a t i o n s < / LinkLabel >
4 </ Ex t e r n a lL i nk >
5 </ S e c t i o nA l i g n S t a r t >

Updated code:

1 < S e c t i o nA l i g n S t a r t >
2 <Ex t e r n a l L i n k h r e f ={CRAFT_INTEGRATIONS_HELP_ARTICLE_URL}>
3 <LinkLabel >Learn more abou t i n t e g r a t i o n s < / LinkLabel >
4 </ Ex t e r n a lL i nk >
5 </ S e c t i o nA l i g n S t a r t >

Just make sure to keep everything else the same and only change the text content of the LinkLabel com-
ponent.

ChatGPT provided a generic answer containing high-level instructions in how towork
with a content management system and directing the user to talk to their technical
team.

The assistant prototype was able to provide a clear answer, referring to the correct
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part of the codebase, and providing correct instructions on how to make the requested
change.

Compared to questions 3 and 5, it is noticeable that the assistant is more successful
with requests lacking ambiguity. Ambiguities either introduced by prompting, or pre-
existing in the codebase, seem to increase the difficulty of retrieving the correct files,
and lead the LLM to provide a confident answer even though it could be misleading,
as other contextually relevant files or code snippets are not taken into account.

4.3.2.2 Question 2
This question aims to manipulate the appearance of a menu, once again probing the
retrieval process’ ability to understand both the lexical and contextual meaning of
what menu is referred to, what part of that menu, and retrieve the corresponding
code chunks correctly. Regarding the LLM generation, interpretation of the query
in terms of what is meant with order, as well as the clarity and correctness of the
provided response is tested.

Prompt

In the Info Page in the side menu, I want to change the order of Created, Updated and Author in the
Properties section. Author should come first before the dates.

ChatGPT response

To change the order of ”Created,” ”Updated,” and ”Author” in the Properties section of your Info Page
in the side menu so that ”Author” comes before the dates, you will likely need to modify the HTML or
template code that generates this page, depending on the platform or system you are using. Here’s a general
approach you can follow:

1. Locate the Template or HTML File: Find the template or HTML file that renders the Info Page.
This could be part of a content management system (CMS), a static site generator, or custom
HTML for a web application.

2. Identify the Properties Section: Within the file, look for the code that generates the Properties
section. This might be in a loop or a series of statements that output the ”Created,” ”Updated,”
and ”Author” information.

3. Rearrange the Code: Change the order of the statements or template tags that output these prop-
erties so that ”Author” comes first. For example, if the original order is something like this:

1 <p>Cre a t e d : {{ page . c r e a t e d }} </p>
2 <p>Updated : {{ page . upda t ed }} </p>
3 <p>Author : {{ page . a u t h o r }} </p>

You would rearrange it to:

1 <p>Author : {{ page . a u t h o r }} </p>
2 <p>Cre a t e d : {{ page . c r e a t e d }} </p>
3 <p>Updated : {{ page . upda t ed }} </p>

4. Test Your Changes: Save your changes and test the Info Page to ensure that the properties now
appear in the correct order. Make sure to check for any unintended side effects or formatting
issues.

5. Deploy Your Changes: Once you’re satisfied with the appearance and functionality, deploy the
changes to your live site or application, following your usual deployment process.
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If you’re working within a specific CMS (like WordPress, Drupal, Joomla) or using a web development
framework (like React, Angular, Vue), the exact steps and code syntax may vary. Consult the documenta-
tion for your specific platform or framework for guidance on modifying templates or HTML structures.

Assistant response

To change the order of ”Created,” ”Updated,” and ”Author” in the Properties section of the Info Page in
the side menu so that ”Author” comes before the dates, you need to adjust the order of their rendering in
the PropertiesSection component.
Currently, in the editor/src/uiview/sidemenu/SideMenuInfoPage/PropertiesSection.tsx
file, the order is:

1 <Data I t em l a b e l ="Created" d a t a ={ c r e a t e d S t r } i c on ={ Ca l enda r } / >
2 <Data I t em l a b e l ="Updated" d a t a ={ u p d a t e dS t r } i c on ={ Ca l enda r } / >
3 <Author I t em f i r s tName ={ f i r s tName } las tName ={ las tName } / >

To have ”Author” show up first, you should adjust it to:

1 <Author I t em f i r s tName ={ f i r s tName } las tName ={ las tName } / >
2 <Data I t em l a b e l ="Created" d a t a ={ c r e a t e d S t r } i c on ={ Ca l enda r } / >
3 <Data I t em l a b e l ="Updated" d a t a ={ u p d a t e dS t r } i c on ={ Ca l enda r } / >

This change moves the rendering of the author information to the top, followed by the created and updated
dates accordingly.

Figure 11: Section in the Information menu.

In this example, we can see that ChatGPT was able to provide a very high-level guide
on how to change the order of HTML elements, instructing the user to find the relevant
piece of code and take framework-specific considerations into account. The assistant
prototype was able to find the relevant file, thus showing that the contextual search
found the menu and its subpage, correctly provided the path to it, and described the
necessary changes to make.

Implementing the change, we can see that the instructions were correct and led to
success, as can be seen in Figure 11. The assistant prototype’s response is brief, but
contains all necessary details, demonstrating correct query interpretation and clarity
in its answer.

55



4.3.2.3 Question 3
The third question aims to change a visible front-end behavior with the purpose of
testing how well the prototype is able to interpret the visual output generated by the
code. Therefore, it is asked to change an observable user interface element and behav-
ior. Additionally, as user interfaces often rely on dependencies in how components
are defined, it makes it possible to gain insights into how well the prototype is able
to understand the structure of the project and identify relevant connections.

Prompt

I want to change the default colors in the formatting tab of the right sidebar. How can I do that?

ChatGPT response

To provide you with the most accurate and up-to-date instructions, I need to know which software or
application you’re referring to. The ”formatting tab in the right sidebar” could apply to several different
programs, such as Microsoft Word, Google Docs, or even a specific design tool. Could you clarify the
software you’re using?

Assistant response

To change the default colors in the formatting tab of the right sidebar, you should update the colors specified
in the stylePanelMainColors array. This array is used to define the main colors available for styling
within the right sidebar’s formatting tab.
For example, the following snippet defines a set of color pairs used in the sidebar:

1 c o n s t s t y l e P a n e lMa i nCo l o r s = [
2 r e f i n e d T e x t C o l o r P a i r s [ 1 ] ,
3 r e f i n e d T e x t C o l o r P a i r s [ 7 ] ,
4 r e f i n e d T e x t C o l o r P a i r s [ 4 ] ,
5 r e f i n e d T e x t C o l o r P a i r s [ 3 7 ] ,
6 r e f i n e d T e x t C o l o r P a i r s [ 1 2 ] ,
7 r e f i n e d T e x t C o l o r P a i r s [ 1 7 ] ,
8 r e f i n e d T e x t C o l o r P a i r s [ 2 2 ] ,
9 r e f i n e d T e x t C o l o r P a i r s [ 3 2 ] ,

10 r e f i n e d T e x t C o l o r P a i r s [ 4 2 ] ,
11 r e f i n e d T e x t C o l o r P a i r s [ 4 7 ] ,
12 r e f i n e d T e x t C o l o r P a i r s [ 4 5 ] ,
13 ] ;

Each entry in the stylePanelMainColors array references a color pair from refinedTextColorPairs
, which eventually maps to specific color codes defined earlier in your code base. The
refinedTextColorPairs itself is derived from an earlier defined color arrangement, combining col-
ors for both light and dark mode.
To change the default colors, you need to eithermodify the referenced indexes in stylePanelMainColors
to point to different pairs in refinedTextColorPairs or directly change the color codes in the underlying
data structure from which refinedTextColorPairs is built.
For instance, if you wish to add a new color pair or change an existing one in refinedTextColorPairs
, you would adjust or add the color codes accordingly in the related arrays. Afterwards, make sure the
stylePanelMainColors points to the correct indexes of refinedTextColorPairs to reflect your
changes in the right sidebar’s formatting tab.

ChatGPT was not able to provide a relevant answer, as it does not have any contextual
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knowledge regarding what project, software, framework or programming language is
referred to. The prototype understood what part of the user interface was referred to
(correct query interpretation), and following the instructions of the assistant, it was
easily possible to change the array index of one of the stylePanelMainColors to a
different one and running the application, as it generated a clear answer, correctly
based on the retrieved pieces of code.

Figure 12: Colors in the application sidebar menu.

Here, it is noticeable that while the assistant was correctly able to identify where in
the codebase to change the underlying color that is applied when the button is clicked
– the text turned green when clicking on the button. Though, as noticeable in Figure
12, it was not able to comprehend that the visible color in the menu needed to be
changed in a different place, thus it is still showing as black.

This indicates that while understanding the context of what is to be achieved, the
retrieval process and LLM in combination were not able to grasp that there are addi-
tional dependencies to account for. This could be due to the contextual search during
the retrieval process not capturing these chunks, or the LLM not grasping the addi-
tional dependency, or a combination of both.

4.3.2.4 Question 4
The fourth comparison question aims to evaluate the ability of the prototype to cor-
rectly interpret a rather loosely formulated query, find the correct piece of code based
on both lexical and contextual relevancy, and give a clear and precise answer. This
question is designed to be easy to interpret from reading the code without the code
running.

Prompt

I’m working on implementing an analytics event when users create a new document. Help me implement
this logging.
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ChatGPT response

Implementing analytics events, such as logging when users create a new document, involves several steps
across both the frontend and backend parts of your application. The specific implementation can vary
depending on the analytics platform you’re using (e.g., Google Analytics, Mixpanel, Amplitude) and the
architecture of your application. However, I’ll provide a general guide that you can adapt to your specific
situation.
Step 1: Identify the Event
First, clearly define the event you want to track. In this case, the event is ”Document Creation.” De-
cide on a consistent naming convention for your events. For example, you might name this event
document_created.
Step 2: Instrument the Event
Frontend Implementation
If the document creation process happens on the frontend (e.g., in a web or mobile application), you’ll
need to add code to track the event at the point where the user action is completed.
For a web application using JavaScript, here’s a pseudo-code example:

1 f unc t i on c rea t eDocumen t ( ) {
2 // Logic to create a new document...
3
4 // After successfully creating the document , log the

analytics event
5 a n a l y t i c s . t r a c k ( 'document_created' , {
6 // Optionally , include relevant properties about the

document
7 document_ id : newDocumentId ,
8 u s e r _ i d : c u r r e n tU s e r . id ,
9 document_ type : 'report' , // Example property

10 t imes t amp : new Date ( ) . t o I SOS t r i n g ( ) // Example property
11 } ) ;
12 }

Replace analytics.track with the appropriate function call based on the analytics library you are using.
Backend Implementation
If the document creation is confirmed on the backend, or if you want to ensure the event is tracked even
for API-based interactions, you’ll need to add similar logic on your server.
Here’s a pseudo-code example for a Node.js backend:

1 app . p o s t ( '/create-document' , a sync ( req , r e s ) => {
2 // Logic to create a new document...
3
4 // After successfully creating the document , log the

analytics event
5 a n a l y t i c s . t r a c k ( 'document_created' , {
6 document_ id : newDocument . _ id ,
7 u s e r _ i d : r eq . u s e r . id ,
8 document_ type : r eq . body . type , // Example property
9 t imes t amp : new Date ( ) . t o I SOS t r i n g ( ) // Example property

10 } ) ;
11
12 r e s . j s o n ({ s u c c e s s : true , document_ id : newDocument . _ i d } ) ;
13 } ) ;

Step 3: Test Your Implementation
After implementing the event tracking, test it thoroughly to ensure that events are being fired as expected
and that the data captured is accurate. Use the analytics platform’s debugging tools or view reports to
verify.
Step 4: Deploy and Monitor
Once you’re satisfied with the implementation, deploy the changes. Continue to monitor the events in your
analytics dashboard to ensure data is being recorded as expected and to gain insights from user behavior.
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Further Considerations
• Privacy and Consent: Ensure that your event tracking complies with privacy laws and regula-

tions (like GDPR, CCPA). Inform users about the data being collected and obtain their consent if
necessary.

• Rate Limits and Quotas: Be mindful of any rate limits or quotas imposed by your analytics plat-
form, especially if you expect a high volume of events.

• Enhancing Data: Consider enriching the event data with additional context that could be useful
for analysis, such as the user’s geographic location, the device they’re using, or the application
version.

This guide provides a basic framework, but the specifics can vary widely depending on your technology
stack and requirements. If you need more detailed assistance on a particular aspect or technology, feel free
to ask!

Assistant response

I found a type definition that includes newDocument in what appears to be a list of analytics logging events
within the project. This is part of a broader set of event types that the application can log. The relevant
code snippet is found in editor/src/analytics/editorAnalyticsLogger.ts. Here’s the relevant
segment that includes newDocument as part of the event names:

1 export t y p e Ed i t o rLogEven t =
2 // Other event types omitted for brevity
3 | "newDocument"
4 // Other event types omitted for brevity
5 ;

To implement logging for when users create a new document, you would utilize the analytics logging
function provided in your application, presumably referencing this newDocument event type. Although a
code snippet specifically for firing this event was not directly found, you would typically use the analytics
service in your application like this:

1 import { e d i t o rA n a l y t i c s L o g g e r } from 'path/to/editorAnalyticsLogger'
;

2
3 // This function might be called at the point in your application

where a new document is successfully created.
4 f unc t i on logNewDocumentEvent ( ) {
5 c o n s t l o g g e r = e d i t o rA n a l y t i c s L o g g e r ( ) ;
6 l o g g e r . l ogEven t ( "newDocument" ) ;
7 }

Make sure to replace 'path/to/editorAnalyticsLogger'` with the actual import path to your
editorAnalyticsLogger module within your project.
Since the specifics of triggering the event depend on how and where in your codebase documents are
created, you’ll want to place the call to logNewDocumentEvent() appropriately. This could be in a
function that handles the creation logic after the document creation is confirmed, or within a success
callback if document creation is asynchronous.
To integrate this accurately, review your application’s architecture surrounding document creation and
ensure the logging function call correctly aligns with the application’s flow.

Comparing the two responses, we can see that the assistant is able to provide a much
more specific answer, as it has the context of the repository, and was able to retrieve
the relevant file where the analytics logger and events are defined. This is an indi-
cation that both the lexical meaning of analytics as well as logging was understood,
as well as what it means specifically in the context of the repository. The retrieved
information was correctly integrated into the answer, providing a clear response on
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how to implement the logging for an event.

However, the file path the assistant provided is not completely correct, as the editor
AnalyticsLogger.ts file is in the editor/src directory, and not in editor/src/
analytics. Possible reasons could be either in the retrieval process, or the chunk
not being correctly retrieved, but as the remaining code from the retrieved chunk was
correct, it seems more likely to arise from the LLM generation process.

4.3.2.5 Question 5
To gain a better understanding of the assistant’s ability to handle ambiguity, this ques-
tion asks about keyboard shortcuts. As the application contains multiple scenarios
where keyboard shortcuts have different effects, this is a good way to test if the as-
sistant gathers these scenarios and asks for clarification, or just picks one. In terms
of the evaluation tree, this provides insight into query interpretation, clarity of an-
swer, project structure and dependencies, as well as the retrieval process’ relevancy
in source selection.

Prompt

I want to change the keyboard shortcuts for Group/Ungroup in the editor to use the the J key instead of the
G key.

ChatGPT response

To customize keyboard shortcuts, including changing the group/ungroup actions to use the ”J” key instead
of the ”G” key, you’ll need to access the settings or preferences within your specific editor. Since software
and applications vary in how they allow users to modify shortcuts, I’ll provide a general approach that
applies to many programs:

1. Open Keyboard Shortcuts Settings: Most applications have a ”Settings” or ”Preferences” menu.
Within this menu, look for sections titled ”Keyboard Shortcuts,” ”Key Bindings,” or similar. In
some cases, you might be able to open the keyboard shortcuts settings directly by using a meta
shortcut, often something like Ctrl + K Ctrl + S (Windows/Linux) or Cmd + K Cmd + S (Mac).

2. Search for Group/Ungroup Commands: Once in the keyboard shortcuts settings, use the search
function to find the current bindings for ”Group” and ”Ungroup” commands. They’re typically
labeled as such, but terminology might vary slightly.

3. Modify the Shortcuts: Click on the current shortcut or the command itself, usually prompting you
to enter a new key combination. Press the ”J” key (or the desired combination involving the ”J”
key, like Ctrl + J or Cmd + J) to set it as the new shortcut. Ensure you’re not creating a conflict with
an existing important shortcut. Repeat the process for both ”Group” and ”Ungroup” commands,
or any other commands you wish to modify.

4. Save and Test: Save your changes, usually by simply exiting the settings or pressing a designated
”Save” button. Test the new shortcuts in your editor to ensure they work as expected.

If you provide the name of the specific editor you’re using (e.g., Adobe Photoshop, Microsoft Word, Visual
Studio Code, etc.), I can give you more precise instructions tailored to that software.
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Assistant response

To change the keyboard shortcuts for group/ungroup in the editor to use the J key instead of the G key,
you’ll need to modify the contextMenu configuration within the contextMenu.ts file in the canvas/
src/lib/contextMenu directory.
Here are the current key bindings that you need to change:
For grouping, the current binding is "\$g". For ungrouping, the current binding is "\$!g"[2].
To use the J key instead, you should modify these lines as follows:
For grouping, change from kbd: "\$g" to kbd: "\$j", And for ungrouping, change from kbd: "\$!
g" to kbd: "\$!j",
Please ensure that these keybindings do not conflict with existing shortcuts in the editor.

As expected, ChatGPT provided a generic answer on how to customize keyboard
shortcuts across applications that support user-modified shortcuts. The assistant has
the context of the project and was able to provide an application-specific answer.
However, even with the explicit instruction to change shortcuts in the editor, the as-
sistant provided instructions regarding keyboard shortcuts in the canvas/whiteboard
which is integrated into the application. It also did not mention that there might be
additional files where shortcuts are defined, except the explanation it concluded with,
tasking the user to do that work themselves.

Additionally, the assistant refers to the context menu displayed in the whiteboard
editor, thus only prompting to change the tooltip suggesting the key combination to
the user, instead of changing the key combination for the shortcut.

Most probably, the lack of mentioning additional shortcut definitions as well as the
lack of actually describing how to change the shortcut can be attributed to the retrieval
process not having fetched those files. In terms of lexical relevancy, the retrieval
process fetched pieces of code regarding keyboard shortcuts as expected, but did not
grasp the context of the editor. The LLM then was not able to recognize any other
dependencies or connections, and gave a clear answer correctly integrating the code
it received, even if it is not fully relevant to the question.

4.3.3 Interview retrospective

Based on interviews conducted with the software engineers who participated in the
prototype testing, higher-order reflections on the performance and limitations of the
prototype emerged as part of the analysis with the outlined qualitative approach.
These are visualized in Figure 13 and complement the technical assessment with
a user experience perspective.
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● When working on a specific module on a toolbar, 
the assistant was useful and provided accurate 
answers within the problem space.

● The answers from the assistant were more brief 
and on point compared to ChatGPT. I found that 
very positive.

● It was easy to tell the assistant what file was 
important as the task I worked on was quite 
contained, in one single file.

● The assistant understood my instructions well.

● More context is a step forward, but in the ideal 
world it would see connections between 
components and recognize data flows.

● AI tools should have understanding of types, code 
standards and linting which are set up in the IDE.

● When changing a file, there are many files that are 
referenced, such as type definitions, functions. I also 
have to paste them, otherwise LLMs imagine how 
they "might work".

● Sometimes the answer was not accurate, but I 
think that's to be expected with any LLM tool. It took 
multiple prompts to get what I was looking for.

● Both ChatGPT and the assistant provide 
suggestions, not complete solutions.

● It's sometimes hard to validate the results. Both the 
assistant and ChatGPT can be too confident in their 
answers.

● I asked broad questions about how to approach a 
problem, and did not get good answers. The 
assistant did not seem to know common 
approaches used in the project.

● I still need to figure out the approach to addressing 
a problem myself, but the assistant was very helpful 
in providing the code needed to solve when I gave it 
the right instructions.

● I used it less often than I anticipated. I have Copilot 
integrated in my IDE, and it often solves easy tasks 
for me right there. Then I don't need to open 
ChatGPT or the assistant prototype.

● I like to use Copilot more, as it is integrated into my 
IDE.

● I believe the changes I make in my IDE are very 
important context, and it could be helpful if the 
assistant automatically gets access to them. 
Otherwise, I have to paste them myself.

● It would be really awesome of the prototype was 
integrated into my IDE and updated its data sources 
as I write code.

● I usually paste code files I'm working on, and with 
that approach I have not seen any significant 
differences between ChatGPT and the assistant.

● Instead of going to ChatGPT and having to 
copy-paste the context myself, the assistant had 
access to it and probably saved me 20 minutes. 
That's quite a good improvement.

● AI tools save time, but not in areas where I feel very 
comfortable and have all the knowledge I need.

● For new areas or prototypes, I feel like I can save up 
to 50% time by using AI tools. It's not as effective for 
working on code that touches multiples areas of an 
existing project.

● It's really helpful when working with third-party tools 
or packages that are well-known and probably part 
of the training data, especially if I haven't used them 
before.

● I can imagine it could be helpful for non-engineers or 
designers, or beginners.

● Answers to open questions seemed to be helpful for 
beginners, but not for me with two years of 
experience working on the project.

Within delimited problem areas, the 
assistant provides accurate and useful 

answers. They are briefer and more 
on-point than existing solutions.

With good instructions and delimited 
problems, the assistant interprets them 

well and effectively.

Neither Copilot or the Assistant 
recognizes the underlying connections 
between functions, components, code 

standards and data flows.

Answers are not accurate enough to be 
implemented without further thinking 

or consideration. They are suggestions.

General questions and problem 
approaches still need to be figured out 

by the user. Correct and precise 
instructions are still necessary.

AI tools integrated into the IDE are 
more easily accessible and thus used 

more often.

The assistant would work better if it 
also has the context of code changes 

made in the IDE.

When manually providing context, the 
assistant does not give a significant 

advantage over existing tools.

Not having to provide context yourself 
is a time-saver.

AI tools can save time working with 
new areas or limited scope, when the 

training data contains relevant 
information.

The assistant could be helpful for users 
with little coding experience.

Effectiveness in 
limited scope 

problem areas

Need for precise 
instructions and 
critical thinking

Effectiveness in 
unfamiliar areas

Improved 
effectiveness when 
context is supplied 

automatically

Need for IDE 
integration

1st order concepts 2nd order themes Aggregate dimensions

Figure 13: Results of the qualitative analysis.



4.4 Summary of results

This summary aims to provide a comprehensive overview of the achieved improve-
ment, usage considerations and shortcomings, as well as relate user experience con-
siderations with the technical dimensions of the evaluation tree. This section contains
the authors’ own reasoning based on the action research process and its evaluation.

4.4.1 Effectiveness in limited scope problem areas

Both from the qualitative analysis and comparison test, it became apparent that the
scope of prompts the assistant is tasked with has a strong influence over its perfor-
mance.

In the comparison test, specifically question 3 and 5, issues with incorporating ad-
ditional context surrounding the problem arose, leading to unexpected effects due
to dependencies. With LLMs having no inherent ability to understand connections
between pieces of code based on how they run, important details contained in other
files are not passed on to the LLM prior to the generation process and thus missed.

As part of the interview retrospective, a participant noted that their impression is that
in these cases, they have to paste additional context on functions or components, as
”otherwise LLMs imagine how they might work”. Another participant noted that ”in
the ideal world, it would see connections between components and data flows”. These
issues are not only related to code specifically, but also to instructions such as code
standards or linting set up in the IDE, which govern how code should be formatted
or organized.

On the other hand, interview participants also noted that if they worked with clearly
delimited scopes, such as in one case a ”specific module” in ”one single file”, the
assistant was able to provide brief, on-point accurate answers and interpreted instruc-
tions well, which was described as ”very positive” and can be seen as an improvement
over existing solutions. This can also be related to the clearly scoped questions 2 and
1 in the comparison test. In those cases, all necessary code was part of one file, and
answers were clear and accurate.

Tying back to the evaluation tree, this limitation is interpreted to revolve around the
source selection process as part of retrieval, as well as the codebase navigation and
analysis capabilities of the LLM. As the vector search process (the process of finding
chunks with similar vectors and thus similar content) is based on contextual similar-
ity, it is not able to search by actually navigating the code based on its linkages and
dependencies, which in turn also has detrimental effects on the LLM’s ability to take
these into account when generating an answer.
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If files or pieces of code that are necessary to understand a given question are not
passed to the LLM, it does not have the ability to identify these connections, and nei-
ther can it request additional files to be retrieved. However, in those cases where the
necessary chunks of code are somewhat contained, identified by the search process,
and passed to the LLM, sentiment from users and test results suggest that natural
language understanding, integration of code into generated answers, and quality of
generated code are satisfactory.

4.4.2 Need for precise instructions and critical thinking

A critical phenomenon emerging from the scenario testing and interview retrospec-
tive is that precise instructions are important for achieving relevant and correct an-
swers. With ambiguity in the prompt or codebase, answer quality decreased. In the
comparison test, this can be seen in questions 3 and 5, where the prompt leaves room
for interpretation of what is meant by the user. In contrast, questions 1 and 2 leave
little to no room for interpretation and therefore result in a relevant and correct output.

Due to the risk of hallucinations, the user needs to have sufficient knowledge of the
problem subject to evaluate the output provided by the LLM. As mentioned by the
engineers in the interviews, answers can be misleading and wrong, making the assis-
tant potentially detrimental if relied upon without proper verification and oversight.
A participant described this consideration as that these tools provide ”suggestions,
not complete solutions”.

Employing critical reasoning when specifying the problem scope is deemed highly
important, described by an interview participant as having to ”figure out the approach
to addressing a problem” themselves. Similarly, critical thinking is necessary to val-
idate the answer as described previously. All this shows that the assistant created
should be considered a tool rather than a replacement, with it being important that
the person using this tool has sufficient experience in the field to be able to use it
effectively and confidently.

Referring back to the evaluation tree, these findings primarily tie back to correct query
interpretation, the ability to identify relevant connections and dependencies, and an
understanding of project structure. As also described regarding effectiveness in lim-
ited scope problem areas, precise instructions emerge as fundamental for achieving
good results on both LLM- and retrieval-related dimensions of the evaluation tree.
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4.4.3 Improved effectiveness when context is supplied automatically

As hypothesized in the concept generation stage based on the user study and needs
analysis, the interview retrospective indicated that automatically providing context to
the LLM leads to an improvement in effectiveness. One of the participants voiced
that not having to copy-paste context in the form of code snippets themselves was
able to save around 20 minutes on a half-day task. However, being able to gain this
improvement seems to entail the need for a change in how the tool is used, as another
participant stated that they continued to paste code files themselves and with that
approach did not notice a significant difference compared to ChatGPT.

To recapitulate, with the tool being able to fetch needed context by itself, time can
be saved when using it. Furthermore, if the engineer using the tool is unsure about
what context is needed, the automatically supplied context may also save the person
time researching and discovering what parts of the code are necessary to parse with
the prompt in order to get a meaningful answer, keeping considerations regarding
problem scope in mind.

4.4.4 Effectiveness in unfamiliar areas

From the interviews, it was discovered that the assistant could be helpful in unfamiliar
areas and especially for prototyping. As one of the interviewees pointed out, on new
areas or prototypes, they perceive LLM-based tools as being able to save up to 50%
of the time needed for such tasks.

The authors’ experience aligns with this sentiment, as neither of them had previously
workedwith the given repository and project, andwere able to implement instructions
provided by the assistant as shown in the scenario evaluation.

In more general terms and not specific to the repository, participants also voiced that
LLM tools including the assistant are helpful with third-party packages unfamiliar to
the user, in case they are well known and expected to be part of the model’s training
data.

Interview participants also described that they could ”imagine [the assistant] could be
helpful for non-engineers or designers, or beginners”, especially with broader open
questions. Though, this suspicion was not definitely proven as only the software
engineering team was in the scope of this thesis.
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4.4.5 Need for IDE integration

Participants in the interview voiced thewish for the assistant to be integrated into their
IDE, mainly to enable faster and easier use. As no restrictions were placed on usage
of other LLM-based developer tools during the testing periods, a participant noted
that in many cases with ”easy tasks”, GitHub Copilot was able to provide satisfactory
suggestions directly in the IDE. This reduced the need to employ the assistant.

Aside from a potential improvement in ease-of-use, closer integration with the IDE
could enable even better contextual understanding, described by one of the partici-
pants as follows: ”I believe the changes I make in my IDE are very important context,
and it could be helpful if the assistant automatically gets access to them.” As noted
by participants, code generated by the assistant is mostly regarded as a suggestion,
thus it can be expected that engineers make changes to it before integrating it. These
changes can be meaningful context for multi-step conversations with the assistant.

From the authors’ perspective, manual updates to the assistant’s knowledge files are
a laborious process which could benefit from automation with an IDE integration.
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5 Discussion

This chapter contains the authors’ thoughts and observations on the results from the
user needs analysis, prototyping phase and subsequent evaluation, contrasting them
with results from the literature study. Additionally, the limitations of the conducted
research project are discussed, along with possible future improvements regarding
the developed prototype.

5.1 Contrasting research results with theory

Research results will be contrasted with theory. For the sake of clarity, this section
is divided into results and considerations regarding LLM technology’s impact on
software engineers’ effectiveness, and technical considerations regarding LLMs.

5.1.1 Impacts on effectiveness

As presented in the theoretical background, previous studies both by Harvard Busi-
ness School with GPT-4 at Boston Consulting Group (Dell’Acqua et al., 2023) as
well as one by Microsoft Research, MIT Sloan and GitHub with Copilot and a group
of software engineers (Peng et al., 2023) showed substantial improvements in work-
ers’ effectiveness if assisted by an LLM-based tool. In the case of GitHub Copilot,
this increase amounted to 55.8% faster task completion, with even more significant
increases for less experienced developers.

In the study by Peng et al. (ibid.), the task at hand consisted of developing an HTTP
server with no preexisting code that had to be taken into account or systems required
to be integrated with, where the 55.8% improvement in speed and higher task com-
pletion rate was observed. In line with the findings of this project, LLM tools can
provide accurate answers and code for greenfield tasks with a limited scope. However,
to conclude from these results that the mere usage of LLM tools in software engineer-
ing always leads to improvements, disregarding the use case and type of task, would
be a fallacy.

An important consideration to take into account when interpreting such results is
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the scope of given tasks. Dell’Acqua et al. (2023) use the terms inside and outside
the frontier to describe if tasks are applicable for an LLM. In their study, inside-the-
frontier tasks are viable and result in effectiveness gains, whereas outside-the-frontier
tasks could lead to decreased performance. Even though their study was conducted
in a different setting with different work tasks, this categorization seems to apply also
within software engineering.

In the study by Dell’Acqua et al. (ibid.), they gave two tasks, one outside and one
inside the frontier. Within the frontier, the task mainly consisted of generating ideas,
describing a prototype and the market, creating a list of steps to launch it and writing
a memo and article. Outside the frontier, the task consisted of analyzing data and
suggesting actions based on it. As might be expected, the second task did not benefit
from GPT-4 usage (ibid.).

Comparing these results to our observations within software engineering, similar pat-
terns emerge. Software engineers interviewed implicitly described their process of
navigating the jagged frontier, making sure to take LLM’s output as suggestions, and
think through what approach to take instead of taking LLM’s recommendations at
face value. In addition, we can see signs of the interview participants making their
judgments on which tasks lie within the frontier and which do not - LLM tools seem
to be more heavily employed when tasks are limited in scope or outside of existing
systems such as prototypes. When a significant knowledge gap exists, LLMs also are
reported to be useful, though frustrations sometimes arose due to hallucinations or
nonfactual information, which could hint at the specific task lying outside the frontier.

As part of this project, the division of tasks into greenfield and integrated emerged
quite early on, with software engineers expressing frustrations applying LLM tools ef-
fectively on the integrated tasks. According to interviewees and theoretical research,
these amount to the majority of code-related work, as the discipline inherently en-
tails building upon, maintaining and improving existing systems. This suggests that
results such as those presented by Peng et al. (2023) have to be examined carefully
to not draw conclusions hastily regarding the whole field of software engineering,
which may have contributed to the current AI hype.

Specifically for code-related tasks, it can also be discussed how LLM’s probabilistic
nature influences performance. This can be assumed to contribute heavily to perfor-
mance on such tasks, and thus the location of the frontier. As outlined previously,
LLM generation is based on the concept of attention, with tokens influencing each
other to encode meaning. Code and natural language are inherently different in terms
of their context density, a paragraph of text can be expected to be understood even if a
few words are changed or missing, whereas a block of code may result in completely
different behavior if one word or statement is omitted or changed, as code often is
more deterministic. With the chosen RAG process, this is assumed to be a contribut-
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ing factor to unexpected or unsatisfactory results caused by missing context, in the
words of an interview participant with the LLM ”imagining” what missing compo-
nents or functions might look like.

5.1.2 Technical considerations

Due to the choice of creating the prototype using OpenAI Playground, not all prompt-
ing, RAG and fine-tuning techniques found from the literature research could be im-
plemented. However, out of those possible to implement, some provided successful
results although generally not as good as the ones presented in prior research. This is
thought to be due to the prototype incorporating various techniques simultaneously
in a broad scope while most previous research had proved each technique successful
when deployed mostly isolated in limited scopes.

Of course, larger improvements within LLMs and embeddings could contribute to
better performance of the assistant application, though the focus in this discussion
lies on techniques and methods available to the public.

5.1.2.1 Prompt engineering
From the development and testing of the prototypes, it was discovered that not all
prompting techniques that had proven effective in previous well-defined research set-
tings were as effective combined in real-world applications. This is thought to be
much due to the large input, generally consisting of around 5,000 to 50,000 tokens,
making it difficult for the model to take sufficient consideration to all instructions due
to the nature of how the attention mechanism in transformers works. For the proto-
type to follow instructions, these had to sometimes be mentioned twice in the system
prompt. This put some contrast to previous findings on context being helpful for gen-
erating better outputs, since too much context may make it difficult for the model to
take sufficient consideration of all instructions. A way to work around this could be
to fine-tune the model in a way that makes parts of the system prompt superfluous.

5.1.2.2 RAG
Evaluating the RAG component of the prototype is difficult due to the black box
characteristics of OpenAI Playground. However, overall answers got more specific
as seen from the examples in scenario evaluation. Furthermore, although it was a
manual process, it proved easy and efficient to update the retrieval data through hot
swapping.

With the code repository merged into larger files due to the limitations set by Ope-
nAI, the traceability of code snippets through linking the file source was usually not
sufficient since each file contained. However, through the addition on meta-data in
the files and prompting the prototype to include this in the answer, it was most times
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able to provide this file path correctly. A tool allowing a sufficient number of files to
be uploaded would mitigate this.

It was expected that the RAGmight struggle with the task at hand since most research
on RAG has been on simpler information retrieval without the need for understand-
ing the complex dynamic of a code repository where both lexical and semantic search
might fall short of finding the relevant documents. The results were however promis-
ing, although it was noted that lexical relevancy often seemed to be the main search
criteria for finding the relevant chunks. An example of this can be seen in scenario
evaluation Question 5, where the RAG process returned code snippets regarding a
user interface displaying what keyboard shortcuts are available, rather than the code
where the keyboard shortcuts are defined.

More advanced versions of RAG such as RepoCoder proposed by F. Zhang et al.
(2023) or Repository Level Prompt Generator proposed by Shrivastava, Larochelle,
and Tarlow (2023) could have had a positive impact on output but could not be imple-
mented due to the decision to build the prototype with OpenAI’s tools. Additionally,
one of the main points of feedback since the first iteration was the prototype being
slow, and adding these iterative retrieval techniques would make the prototype sig-
nificantly slower and probably affect the overall user experience.

5.2 Future improvements of the application

Building upon the idea of CoT, ToT could be implemented to further improve the gen-
erated outputs. By sampling multiple times, evaluating the answers, and continuing
on the best answer, the output will likely improve and reduce the need for the engineer
using the tool to perform this iterative problem-solving. The issue with this however
is the increased computing needed that will grow by several multiples. This will in
turn lead to the model being slower unless computing is improved, which is very
likely to happen when seeing how Moore’s law has played out up until now. Com-
bining ToT with the RepoCoder strategy, proposed by F. Zhang et al. (2023), presents
even further opportunities for improvements on generated output. Once again though,
this will lead to an increased need for computing and slower response times unless
computing power is improved.

In terms of how users interact with the application, interview participants voiced
the need or wish for closer integration with their IDE. One aspect of this is ease of
use, where positive experience with integrated tools such as Copilot was highlighted.
Opening a web browser and navigating to the assistant is an additional step which
adds friction to the process.

Possibly more impactful is the ability to incorporate even more context, as IDEs not
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only are where software engineers write their code and make changes, but also where
linting, code standards and other conventions are enforced. Up-to-date code changes
from the IDE could enable better back-and-forth conversations with the assistant,
where the context in terms of changes made by the software engineer could automat-
ically be fed back into the LLM. Similarly, the RAG database could be kept up to date
in an automated fashion through hot swapping. In regards to code conventions, those
settings from the IDE could inform code generation and provide important input to
achieve code that is more in line with standards set within a repository.

To improve the application’s understanding and reasoning capabilities, larger ad-
vances within LLM technology would be necessary. It can be debated whether im-
provements in embeddings and thus better contextual relationships between tokens in
code could be impactful. For more significant improvements, new LLM architectures
which combine probabilistic and deterministic properties might be needed.

5.3 Limitations

As part of section 3.2, four aspects for ensuring quality adopted from Lincoln and
Guba (1985) were outlined, namely credibility, transferability, dependability, and
confirmability. Employing this framework, the possible limitations and weaknesses
of this thesis were critically evaluated and are described below.

Some of the results of this thesis credibility can be critiqued due to the limited number
of interviewees. As part of the initial user study, a broad range of software engineers
within the case company were interviewed, with team members working in different
disciplines and with different levels of experience. However, due to the prototype
focusing on one of these disciplines, and with participation in the testing process
being voluntary, only two software engineers met the threshold of usage deemed suf-
ficient for insightful reflection. Nonetheless, as the insights from these interviews are
based on extensive usage and reflection, they were deemed sufficiently credible, even
if credibility could be increased with a larger number of participants. Additionally,
credibility could be increased by examining further case companies, which could also
result in better transferability.

A second possible point of criticism regarding transferability surrounds the level of
experience of software engineers participating in the study. Most software engineers
at the case company are highly experienced, and the company holds a high bar in hir-
ing. Additionally, the case company is a startup with less process load than larger or
older businesses. Thus, conclusions regarding effectiveness might not transfer to the
software engineering discipline, as experience levels and types of work vary across
companies and individuals. On the other hand, experienced software engineers’ in-
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sights regarding task selection and methods of working with LLMs can be valuable
guidance for less experienced ones.

Similarly, dependability can be questioned due to interviewees’ personal biases or
previous experiences with LLM tools, either positive or negative. It cannot be fully
guaranteed that the same results would arise from different interviewees within the
same selection. The fast technical development of the used underlying services such
as OpenAI could also change the results if the same setup cannot be reproduced ex-
actly.

In terms of confirmability, the researchers’ interpretation and aggregation of inter-
viewees’ responses can be named as a possible weakness. Actions employed to min-
imize these concerns include peer debriefing, and validation with interviewees and
supervisors.

One characteristic of the AI and LLMfield is the current high pace of research, result-
ing in many valuable and cutting-edge insights being published as preprints. These
papers are published on servers as arXiv and SSRN, which are moderated, but not
peer-reviewed as academic journals generally are. Biases other researchers might
hold, their own interpretations or publication pressures within academia or commer-
cial organizations can thus affect this thesis’ credibility and confirmability. To miti-
gate this, the authors triangulated information from multiple research papers.

Every academic research paper and thus also this thesis has similar shortcomings,
therefore it is important to evaluate them and critically reflect, which has been per-
formed above. Mainly, the number of software engineers involved in testing and thus
the number of reflective interviews can be seen as a significant factor. Nonetheless,
this thesis provides a good overview of important considerations and the possible im-
pact of context-augmented LLM tools, as well as insights regarding effective usage
of such tools.

5.4 Contributions

5.4.1 Academia

With most research evaluating the capabilities and performance of LLMs through
well-defined test sets and stand-alone tasks, this thesis contributes to research by
examining how LLMs can be applied to integrated and complex workflows that are
more representative of work performed by highly skilled workers. The thesis can also
be a foundation for future research from the human-machine interaction perspective,
demonstrating how technical improvements and changes in behavior are intertwined
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and have to be balanced for achieving positive results.

5.4.2 Practical Applications

For practitioners, the technical method used in this thesis demonstrates an attainable
way of developing and configurating an augmented LLM, contributing to the knowl-
edge of how LLMs can be tailored for specific use-cases.
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6 Conclusions

The final chapter presents the thesis project’s conclusions as answers to the research
questions, summarizes the key results and presents the authors’ concluding remarks.

6.1 Key findings

Three research questions were chosen based on the problem description and back-
ground, which are answered below.

R1: How do software developers at Craft Docs use LLMs today?

Based on the interviews with software engineers at the case company Craft Docs,
we can see two LLM-based services in use. These are GitHub Copilot, used by a
subset of interviewees, and OpenAI’s GPT, used by an overwhelming majority of
participants. There are differences to the specific method of accessing GPT, being
either via ChatGPT’s web interface, or accessing the API via a wrapper. Though,
GPT-4 in a chat-based interface is the tool of choice for all who use GPT.

The use of Copilot, which provides suggestions in the IDE, is determined mainly by
compatibility with the IDE the software engineer is using. This results in Mac and
iOS engineers not being able to adopt it. For the engineers where it is compatible
with their IDE, adoption varies.

GPT on the other hand, as a standalone application, is employed across a wide range
of use cases, both relating to code, but also adjacent writing and research tasks. As
the interviews focused on code-related use cases, these were mentioned more widely,
with greenfield tasks such as prototyping or developing scripts and integrated tasks
working within existing applications being mentioned by a majority of interviewees.
Information gathering, either in terms of looking up facts, or using GPT for more
thorough learning processes, was mentioned by almost all participants. Some also
mentioned text production-related tasks.

Overall, there are apparent individual differences in the adoption of tools and the
range of tasks they are used for. The software engineer’s context in terms of IDE,
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programming language or domain influences this, with adoption of tools other than
GPT being limited by compatibility. There were no indications of experimentation
with or adoption of emerging tools from other companies or service providers, other
than the two mentioned above.

R2: What LLM-related improvement opportunities can be found in regard to soft-
ware engineers’ effectiveness?

With GPT as the most widespread tool, and the highest-performing LLM in bench-
marks, it was selected for closer examination. For most tasks, participants find it
useful and describe positive experiences, with integrated coding tasks being the ex-
ception.

These types of tasks, where dependencies have to be taken into account and engineers
need to work with existing code, elicited mixed opinions. A larger number of partic-
ipants reported negative experiences, than those reporting positive experiences, with
multiple interviewees describing a lack of context as the primary issue. In contrast,
participants report more success and positive experiences with greenfield tasks such
as developing prototypes or scrips. Integrated coding tasks were thus identified as the
area with the largest improvement potential, and addressed with a prototype aiming
to provide said context.

Throughout the project, it became apparent that improvement opportunities do not
only relate to the technical abilities and performance of a given tool. Additionally,
the way of using the tool also influences effectiveness. Improvement potential can
also be found in terms of developing a proper approach, choice of problems and
tasks, and level of instructions given to the tool.

R3: What improvements in effectiveness are achieved by acting on the found op-
portunities?

Results from the implementation and testing of the prototype showcased an improve-
ment in effectiveness by supplying context automatically. Participants reported sav-
ing time due to not having to copy and paste necessary pieces of code themselves.

As part of the collaborative action research process, it was also discovered that more
effective use of LLM-based tools is enabled by employing critical thinking in terms
of what types of tasks to apply these tools to. More specifically, these tasks are in
areas with which the user is not familiar, or with problems of limited scope.

For closed-source internal codebases, a retrieval-augmented chat assistant such as
the prototype developed, can enable gains in effectiveness by lessening the labor of
providing clear and precise instructions. Also, it potentially enables engineers new
to the codebase to gain effectiveness in unfamiliar areas.

Referring back to the term jagged frontier of AI coined by Dell’Acqua et al. (2023),
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indications were found of more effective usage for users who have developed strate-
gies for navigating it – hinting that educating on best practices can lead to improved
gains from using these tools.

6.2 Concluding remarks

Overall, these findings point to that technical improvements are able to increase per-
formance of LLM-based tools and assistants for software engineers and knowledge
workers. In terms of the technological frontier coined by Dell’Acqua et al. (2023)
as seen in figure 14, it is though visible that these technical developments with the
currently available methods are not able to smooth the jagged nature of the frontier,
but rather perhaps move it overall, or increase performance in specific areas.

Figure 14: Moving the ”jagged frontier of AI capabilities”, adapted from Dell’Acqua
et al. (2023).

The results point to software engineers specifically and knowledge workers in general
being able to work more effectively when applying LLMs to tasks in the peaks of
the frontier. Overall though, it is clear that an understanding of the fact that the
proficiencies of humans and LLMs do not align is fundamental for effective use, as
it enables navigating the jagged frontier even as it evolves over time.
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Appendix A Interview information

Appendix A contains information regarding interview participants, as well as the
interview guides used in semi-structured interviews with software engineers and ex-
perts.

A.1 List of interview participants

Table 6: List of interviewees.

Role Field Interview Participant

Product Engineer Web IP1

Senior Product Engineer Web IP2

Principal Product Engineer Web IP3

Senior Product Engineer Web IP4

Engineering Manager Web IP5

Product Engineer Backend IP6

Product Engineer Mac/iOS IP7

Stability Engineer Mac/iOS IP8

Staff Product Engineer Mac/iOS IP9

Senior Product Engineer Web IP10

Director of Engineering IP11
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A.2 Interview guides

A.2.1 Interview guide for user study and needs analysis

Background

• What’s your background?

• What type of software (prgoramming language etc) do you work with?

AI powered tools (AI refer to LLMs in the questions below)

• Do you use any AI powered tools?

• If you are not using any AI powered tools, why so?

• What AI powered tools do you use?

• For what tasks do you use them?

• How do you use them (i.e. how are they incorporated in your workflow)?

• How often do you use the AI powered tools you use?

• How well do you thing the AI powered tools you use work for your tasks?

• Have you found a way of making these tools work better for your tasks?

• What would need to improve for the tools to be more useful?

• What does your ideal AI powered tool look like?

A.2.2 Interview guide for prototype testing

Areas of improvement

• How has the prototype worked for you and what could be improved?

• How could it be designed to work better?

Experience

• Do you feel that it has been useful?

• How does it compare to ChatGPT or the other tools that you usually use?

• What tasks have you tried out on it and how has that worked?
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A.2.3 Interview guide for retrospective

• How have you used the assistant?

– For what types of tasks or problems?

– How often have you used it?

– Did you still use other types of LLM tools?

– Have you used the assistant differently than other tools?

• What is your overall impression of the assistant?

– Have you experienced similarities or differences with ChatGPT or Copi-
lot?

• How did using the assistant influence your work efficiency/effectiveness? Was
it helpful?

• To have a larger positive impact on your work, what would this technology
need to be capable of?

– What things are missing today, or not good enough?
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Appendix B Prototype material

Appendix B contains material used in generating the prototypes, such as prompts and
scripts.

B.1 Data processing scripts

1 touch combined.md &&
2 find . \( -name "*.tsx" -o -name "*.ts" -o -name "*.js" -o -

name "*.jsx" -o -name "*.html" -o -name "*.css" -o -name
"*.json" \) -exec bash -c '

3 fileWithPath="{}"
4 echo -e "\n## ${fileWithPath:2}\n\n\`\`\`" >> combined.md
5 cat "${fileWithPath}" >> combined.md
6 echo -e "\n\`\`\`" >> combined.md' \;

Example 2: Initial version of the processing script. combined.md is to be replaced
with the respective repository folder’s name.

1 touch combined.md &&
2 find . \( -name "*.tsx" -o -name "*.ts" -o -name "*.js" -o -

name "*.jsx" -o -name "*.html" -o -name "*.css" -o -name
"*.json" \) -exec bash -c '

3 fileWithPath="{}";
4 echo -e "\n## ${fileWithPath:2}\n\n\`\`\`" >> combined.md
5 cat "${fileWithPath}" >> combined.md
6 echo -e "\n\`\`\`" >> combined.md' \;

Example 3: Second version of the processing script. combined.md is to be replaced
with the respective repository folder’s name.

B.2 Prompts

1 You are a helpful assistant helping developers understand and
work with a React/TypeScript repository.
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2

3 You have access to the {repository name} monorepo in the
files attached. Each file is named after a base folder in
the monorepo (i.e. 'folder_xyz.md' corresponds to the '

folder_xyz ' folder). Too large folders are split into two
, denoted with an underscore and a number, i.e. '_1' and
'_2'.

4

5 Each code file is delimited by a markdown header with the
file path and name, and then its contents enclosed in
backticks. When referring to code files, make sure to
provide the complete path of the file you are referring
to, including the base folder as indicated in the name
of the file you have access to, and the code file's
complete path within that folder as included in the
markdown header after '##'.

6

7 Review files that fit the user's question to help them. Don't
refer to your knowledge files as "provided by the user".
Provide an answer to the user's question based on the

user's instruction and the knowledge retrieved from the
repository.

Example 4: Initial system prompt.

1 You are a helpful assistant helping developers understand and
work with a React/TypeScript repository.

2

3 You have access to the {repository name} monorepo in the
knowledge files attached. Each file is named after a base
folder in the monorepo (i.e. baseapp.md corresponds to

the baseapp folder). Too large folders are split into two
, denoted with an underscore and a number, i.e. _1 and _2
. You should absolutely never provide the names to those
files in your answers!

4

5 Each code file is delimited by a markdown header with the
file path and name, and then its contents enclosed in
backticks. When you reference code, always make sure to
provide the complete path of the file you are referring
to, as indicated in the markdown header after ##. As said
before, never mention the names of the knowledge files,

only the path and name of the code files!
6

7 Review files that fit the user's question to help them.
Provide an answer based on the files you have access to
and your general knowledge. Explain your thoughts and
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reason through them step by step, and please provide
examples in code blocks.

Example 5: Second version of the system prompt.

B.3 Thread object example

1 "data":{
2 "id":"run_BZEarIHxU1QVy5h86gdD5kEx"
3 "object":"thread.run"
4 "created_at":1712137419
5 "assistant_id":"asst_WN0hbTLHE7CphKABLpKPiNW0"
6 "thread_id":"thread_4iKGQRlTWPAv8rXLCQHLX2Oj"
7 "status":"completed"
8 "started_at":1712137419
9 "expires_at":NULL

10 "cancelled_at":NULL
11 "failed_at":NULL
12 "completed_at":1712137449
13 "required_action":NULL
14 "last_error":NULL
15 "model":"gpt-4-turbo-preview"
16 "instructions":"You are a helpful assistant helping

developers understand and work with a React/
TypeScript repository. You have access to the {
repository name} monorepo in the knowledge files
attached. Each file is named after a base folder in
the monorepo (i.e. baseapp.md corresponds to the
baseapp folder). Too large folders are split into
two, denoted with an underscore and a number, i.e. _
1 and _2. You should absolutely never provide the
names to those files in your answers! Each code file
is delimited by a markdown header with the file

path and name, and then its contents enclosed in
backticks. When you reference code, always make sure
to provide the complete path of the file you are

referring to, as indicated in the markdown header
after ##. As said before, never mention the names of
the knowledge files, only the path and name of the

code files! Review files that fit the user's
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question to help them. Provide an answer based on
the files you have access to and your general
knowledge. Explain your thoughts and reason through
them step by step, and please provide examples in
code blocks."

17 "tools":[
18 0:{
19 "type":"retrieval"
20 }
21 ]
22 "file_ids":[
23 0:"file-ERq1A5c5rTqJDDdEgaQS86VU"
24 1:"file-JGqXvZLhBoYz35zK4gTSeFJg"
25 2:"file-yRJtkMi8nmXhhCEeEiQj06dF"
26 3:"file-hGD7CCcKxwHxQLAnXUQ1Mlw6"
27 4:"file-EN4olqCpjIC6x009xsMbdnDG"
28 5:"file-3ys6WDe9ujNvTZJaq5FXcBhB"
29 6:"file-f7X5Ly3tBT1CJoqxrXBls9XE"
30 7:"file-IWcVLN81AisSeF5AZqjQH4dU"
31 8:"file-n4iQ8zl2M6GZKbPx2GtRGxJ6"
32 ]
33 "metadata":{}
34 "temperature":1
35 "usage":{
36 "prompt_tokens":28162
37 "completion_tokens":605
38 "total_tokens":28767
39 }
40 }

Example 6: Thread object as retrieved from the Assistant API.
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