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Abstract

The aim of this thesis is to provide a comprehensive introduction to interacting

particle systems and their scaling limits by investigating two particle systems: the

Solid On Solid growth process (SOS) and the Weakly Asymmetric Simple Exclu-

sion Process (WASEP).

An interacting particle system is a stochastic process describing the evolution of

�nitely or in�nitely many particles, each of which, in the absence of any interac-

tion, would evolve like a Markov process. The particle system can be examined

in di�erent scales by grouping particles together and considering their average.

Their behaviour is described by a Markov process on a microscopic scale, while

on a macroscopic scale, it is represented by a partial di�erential equation. In the

scaling limit, both the deterministic and stochastic properties are signi�cant, and

a stochastic di�erential equation characterizes the particle system.

The WASEP and SOS are, though modelling di�erent physical phenomena, related

in that the WASEP can be seen as the discrete derivative of the SOS. It was thus

su�cient to simulate only the WASEP and calculate the value of the SOS after the

simulation �nished. As expected, the simulations suggest systems with more sites

have a smoother �nal distribution and take longer to converge. When the number

of empty and occupied sites in the WASEP was close, the variance was higher, and

convergence was faster.

In Bertini and Giacomins paper Stochastic Burgers and KPZ equations from Parti-

cle Systems, the Kardar-Parisi-Zhang equation was proven to be the hydrodynamic

scaling limit to the SOS. Instead of considering the non-linear stochastic PDE di-

rectly, they used the Cole-Hopf transform to get the stochastic heat equation, for

which the existence and uniqueness of a solution are known. A similar transform,

the Gärtner transform, was used on a scaled and linearly interpolated SOS process.

The transformed process was shown to converge to the stochastic heat equation,

which implies that the SOS converges to the KPZ-equation in the hydrodynamic

limit. The same method of proof was used to show the convergence of the WASEP

to the stochastic Burgers equation.

The SOS belongs to the KPZ universality class. Models in this class are expected

to be invariant under the scaling h(x, t) = αh(α−2x, α−3t). Much of the research

on KPZ universality has been done with the SOS since it has the necessary prop-

erties to be linearised with the Gärtner transform.

Keywords: Interacting particle systems, Scaling limits, WASEP, SOS, KPZ-

equation
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Summary

The Weakly Asymmetric Simple Exclusion Process (WASEP) is a model
used to, for example, describe the internal movement of a collection of gas
molecules with the assumption that space is divided into discrete spaces.
These spaces have room for one molecule and can be either occupied or
empty. Here, the WASEP is modelled in one dimension. After a random
amount of time, a molecule will attempt to move one step to the left or one
step to the right. If the neighbouring spot is empty, it will succeed. Regard-
less of whether it moved or not, it will again wait for a random time to move.
Weakly Asymmetric means that the particles are slightly more likely to want
to move left than right. No matter where the particles were initially, after
su�cient time, the average concentration of particles at di�erent places on
the line will stabilize. How fast this happens depends on how many parts
the space is divided into and the proportion of occupied and empty spaces.
In a larger system, where space is divided into more spaces, convergence is
slower. On the other hand, when there are approximately the same number
of occupied and empty spaces, it will converge faster.

The Solid On Solid (SOS) process is a growth process. Among other phenom-
ena, it describes how a crystal forms on a surface. One at a time, particles
deposit on, or evaporate from, a place on the border of the crystal and the
surrounding material. As deposition occurs slightly more often than evapo-
ration, the crystal will grow. The SOS enforces a single-step constraint on
the growth. It means that no molecules at the border are at the same height
as their immediate neighbours; they are either one step above or below. As
a consequence, deposition is only possible at places where both neighbours
are one step higher, i.e. a local minimum. Similarly, the only particles that
can evaporate are the ones that are higher than their surroundings.

These two models are related. A molecule moves one step to the left in
the WASEP at the same rate as a particle is deposited in the SOS. Further,
movement to the left in the WASEP is possible when there is a particle in
the original space and none in the left neighbouring space. When this occurs,
there is a local minimum in the SOS.

The WASEP and SOS models describe physical phenomena on a microscopic
scale, where individual molecules are detectable. When zooming out, only
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the average motion is visible. Instead of measuring individual molecules,
temperature, volume, and pressure describe the gas. The crystal grows con-
tinuously, and the border appears smooth. There is mathematical proof that
when appropriately scaling space and time and increasing the number of
spaces in the modelled system with time, the particle system models will
converge to stochastic di�erential equations.
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Chapter 1

Introduction: scaling limits of

particle systems

Statistical mechanics is a branch of physics with the goal of connecting the
observed macroscopic features of a physical system with the properties of
their microscopic constituents. The study of interacting particle systems
originated from statistical mechanics with the aim to better understand phe-
nomena such as phase transition. Since then, models with similar mathemat-
ical structures have been formulated to describe various physical phenomena.
Among these are ferromagnetism under an external magnetic �eld, the spread
of infection, tumour growth and the process in which two species switch ter-
ritories.

Mathematically, an interacting particle system is a stochastic process de-
scribing the evolution of �nitely or in�nitely many particles, each of which,
in the absence of any interaction, would evolve like a Markov process. Like
the physical systems they model, their properties depend on the scale. On
a local level, their movement is random. Going to a coarser scale is done by
grouping particles together and considering their average values. Eventually,
the scale grows coarser, and the evolution of the system will become inde-
pendent of the stochastic �uctuations from the Markov processes. Instead,
a partial di�erential equation describes the evolution.

Assume the realisation of a particle system is on a �nite interval which con-
tains N discrete points that are the possible positions for a particle. These
positions are called sites. As N → ∞, the distance between particles will go

9



10 CHAPTER 1. INTRODUCTION

to 0. Instead of a Markov process, a partial di�erential equation will describe
the evolution of the system. The correct scaling in time and space is needed
to see both the deterministic evolution and the random �uctuations of the
system. In this scaling, there will be an equilibrium state (Lan02). On this
level, the evolution of the system depends on both random noise and a par-
tial di�erential equation and is described with a stochastic partial di�erential
equation. Using a di�usive scaling , t ∼ ε−2t, x ∼ ε−1x, the equation found
as N → ∞ is called the hydrodynamic scaling limit.

The Kardar-Parisi-Zhang (KPZ) equation appears in the scaling limit for
many particle systems and other models. It is an ill-posed non-linear stochas-
tic partial di�erential equation. In 1997, Bertini and Giacomin (Ber97) suc-
cessfully solved it by linearisation and showed that it converged to the same
function as was found in the scaling limit of the (Weakly Asymmetric) Single
Step Solid on Solid process.

The Single Step Solid on Solid Process is a growth process and one of the two
processes examined here. The other is the Weakly Asymmetric Simple Ex-
clusion Process that models particles on a shifting place on a lattice. Though
modelling di�erent kinds of physical systems, the two processes are related
in the sense that the latter can be interpreted as the discrete derivative of
the former.

This thesis aims to introduce particle systems and scaling limits and pro-
vide a comprehensive overview of the ideas presented in (Ber97). The focus
will be on the two particle systems described in (Ber97), and their behaviour
at a microscopic level and in the limit is investigated theoretically and with
simulations.

Chapter 2 presents the mathematics used for studying particle systems and
their scaling limits. It includes a brief discussion of Markov processes in
Section 2.1, stochastic calculus with a focus on interpreting a stochastic par-
tial di�erential equation in Section 2.2 and what it means for a stochastic
process to converge in Section 2.3. Some de�nitions from probability theory
can be found in the Appendix A. These include σ-�elds, �ltrations, random
variables, and stochastic processes.

Chapter 3 describes the two studied particle systems. Exclusion processes,
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exempli�ed by the Weakly Asymmetric Simple Exclusion Process (WASEP),
are introduced in Section 3.1. This Section also covers the tagged particle
process. Section 3.2 presents the Weakly Asymmetric Single Step Solid On
Solid Process (SOS), and Section 3.3 contains a description of the relation-
ship between the processes.

Chapter 4 contains simulations of the two particle systems. The method
used for simulations is explained in Section 4.1, and the code is found in Ap-
pendix B. The results of the simulations are discussed in Sections 4.2 and 4.3.
In the former section, a Java animation examines the small-scale behaviour
of the particle systems B.2. In the latter, a Matlab simulation explores the
long-term behaviour of systems with di�erent sizes and varying numbers of
particles B.1.

The theoretical long-term behaviour of the particle systems is analysed in
Chapter 5. The derivation of a limiting equation is shown for the symmetric
simple exclusion process in Section 5.1, for a gradient exclusion process in
Section 5.2 and for the WASEP in Section 5.3. Section 5.4 discusses the limit
of the SOS. This Section also introduces the KPZ equation and summarises
the relationship between the SOS and the KPZ equation described in the
paper by Bertini and Giacomin (Ber97). Finally, Section 5.5 presents the
KPZ Universality conjecture.

The last chapter, 6, brie�y summarises some of the current research on par-
ticle systems and KPZ universality.
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Chapter 2

Mathematical background

The dynamics of a particle system di�er depending on scale. At the micro-
scopic scale, the random movement of individual particles dominates, and
the system is characterised by a stochastic process. In the macroscopic scale,
where individual particles are no longer discernible, a partial di�erential
equation is used to describe the average dynamics of the particles. When
rescaling from the microscopic scale to the macroscopic, there is a place
where both the stochastic process and the di�erential equation contribute to
the observable system dynamics. This is sometimes referred to as the meso-
scopic scale. In this scale, the random �uctuations around the average, which
cancels out at the macroscopic scale, become signi�cant. The aim of taking
a scaling limit is to investigate the behaviour of a particle system at this scale.

Two di�erent models are studied in this thesis; one is an exclusion process,
and the other is a growth process. Both these processes are used for mod-
elling several physical phenomena.

Exclusion processes can model, for example, the behaviour of a gas. In this
model, space is considered discrete, and only one particle can be in any place.
The movement of individual gas molecules and their interaction is studied on
a microscopic scale. On the macroscopic scale, the gas is described by ther-
modynamic state variables, such as temperature and pressure, that depend
on the average state of the molecules.

Similarly, if describing the growth of a crystal with a growth process, the
microscopic level concerns the deposition and evaporation of individual par-

13



14 CHAPTER 2. MATHEMATICAL BACKGROUND

ticles, and the model on the macroscopic scale is the height of the whole
crystal.

Analysis of the particle system models requires di�erent mathematical tools
depending on scale. Markov processes model the local particle dynamics.
Section 2.1 contains a description of Markov processes and Markov genera-
tors.

In the scaling limit, partial di�erential equations, with an additional depen-
dence on white noise to model the �uctuations around the average, describe
the dynamic system. Equations like this are known as stochastic di�erential
equations. Section 2.2 introduces stochastic calculus and stochastic di�eren-
tial equations. De�nitions for the concepts used to derive stochastic integrals
are found in the Appendix A.

The stochastic partial di�erential equation that describes the macroscopic
behaviour is derived as a limit when the size of the system goes to in�nity.
Convergence for stochastic processes is discussed in Section 2.3.

2.1 Markov processes

A Markov process is a stochastic process with the property that only the cur-
rent state of the process determines the next. For a de�nition of stochastic
processes, see Appendix A.3 and for conditional expectations, see Appendix
A.2.

Formally, a Markov process is de�ned as a stochastic process ξn where

P
(
ξn+1|ξn, ξn−1, . . . , ξ0

)
= P

(
ξn+1|ξn

)
. (2.1)

A Markov process is characterised by its intensity matrix Q = (qij) where
element qij is the transition rate from state i to state j. The element qii is
de�ned to be qii = −

∑
j ̸=i qij. As a result, the sum of a row in an intensity

matrix will always be 0.

In the absence of interactions with other particles, the movement of a single
particle is governed by a Markov process. For a simple exclusion process at
a speci�c time, only the two neighbouring states are reachable for any one
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particle. Thus, the only elements which could be positive on row i in the
intensity matrix are qi,i+1 and qi,i−1. Suppose there are N sites in the system.
Then, this matrix will be of size N ×N . Assume the rate of a jump one step
right is λ and the rate one step left is µ. The intensity matrix Q will have
−(λ + µ) on the main diagonal, λ on the upper diagonal, µ on the lower
diagonal, and 0 at all other positions.

While the intensity matrix for a single particle is possible to write out, such
is not the case when the particles are combined into a particle system. The
whole particle system is also a Markov process. However, its state space, con-
sisting of all possible con�gurations of particles, is much larger. A Markov
generator is used instead of an intensity matrix to explain its evolution. A
Markov generator is a functional acting on f : Ω → R. f(ξt) is a cylindri-
cal function, which means it has a �nite norm and guarantees the statistical
properties of the stochastic process ξt are unaltered. If the current state of
a Markov process such as a particle system is ξt(x), the Markov generator L
acting on f(ξt) is written as a sum over the sites x

Lf
(
ξt(x)

)
=
∑
x

g(ξt)
[
h
(
f
(
x, ξt(x)

))]
, (2.2)

where g(ξt) is some function describing the transition rates and[
h
(
f
(
x, ξt(x)

))]
describes which sites are possible to transition to from posi-

tion x. In the case of a single step exclusion process for every x, the possible
transitions are to x + 1 and x − 1, and only for these two positions can[
h
(
f
(
x, ξt(x)

))]
be non-zero.

2.2 Stochastic di�erential equations

While the large-scale behaviour of a particle system, such as di�usion and
drift, can be represented by a deterministic partial di�erential equation, this
model fails to include small random �uctuations from particle movement. A
random noise term in the form of some stochastic process can be appended
to the equation to rectify this.

The particle systems introduced in Section 3 are studied in 1 + 1 dimen-
sions. 1 + 1 refers to one dimension in time and one dimension in space.
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How to �nd a non-trivial scaling limit in more than one space dimension is
unclear. The solution to the KPZ equation found in (Ber97) relies on the
existence of a solution to the stochastic heat equation, and the solution to
the stochastic heat equation is only well de�ned in one space dimension.

In this Section, stochastic calculus will be introduced for one-dimensional
integrals and ordinary di�erential equations. Consider �rst the di�erential
equation

dXt = f(Xt)dt+ g(Xt)dWt. (2.3)

With a locally Lipschitz continuous function f and appropriate boundary
and initial conditions for Xt, the deterministic part dXt = f(Xt)dt has a
unique, well-de�ned solution. However, with the addition of g(Xt)dWt, a
stochastic process proportional to the increments of a Wiener process, it is
no longer clear what a solution to equation (2.3) is. A Wiener process is a
stochastic process used for modelling uncorrelated noise. It will be de�ned
later in this Section.

As the Wiener process is not di�erentiable, equation (2.3) lacks rigorous
meaning. This is circumvented by extending concepts from calculus to stochas-
tic processes and considering the corresponding integral equation instead of
studying the di�erential equation directly,

X(T ) = X(0) +

∫ T

0

f(Xs)ds+

∫ T

0

g(Xs)dWs. (2.4)

The integral
∫ T

0
g(Xs)dWs is an Itô stochastic integral. It integrates over a

Wiener process Wt instead of over an interval, which makes it di�er from
Riemann integrals in calculations, properties and convergence.

TheWiener processWt is a stochastic process with stationary, independent
and Normal distributed N (0, t) increments W (t) − W (s) where W (0) = 0
almost surely (a.s.) and the sample paths t 7→ W (t) are a.s. continuous.( An
event A is said to occur almost surely if P (A) = 1). The Wiener process is
a random walk process in one dimension. It is a continuous process, but it
is not di�erentiable. The Wiener process is scale invariant, if Wt is a Wiener
process so is α−1Wα2t for any α ̸= 0.
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Similarly to the Riemann integral, the Itô integral is de�ned with an ap-
proximating sum∫

g(t)dWt =
n−1∑
j=0

g(sj)∇Wt =
n−1∑
j=0

g(sj)
(
W (tj+1)−W (tj)

)
. (2.5)

The di�erence is that the choice of sj ∈ [tj, tj+1] a�ects the limit of the
approximating sum for the stochastic integral. It is advantageous if sj can
be picked so that the approximation at any time t only depends on what is
known at t and not on any future events.

For a stochastic process, the concepts of knowledge and time are represented
by σ-�elds and �ltrations, respectively. These are introduced brie�y in the
Appendix A.1. Filtrations are used in the de�nitions of random variables
and probability spaces. These de�nitions can be found in the Appendix A.2.

The stochastic function g(t) and the Wiener process Wt in equation (2.5)
are both adapted to the �ltration Ft. By choosing sj = tj in the sum ap-
proximating the Itô integral (2.5) will be adapted to the same �ltration.
Convergence of the sum will be in the space of square integrable random
variables.

A function g(t) is called a random step function if

g(t) =
n−1∑
j=0

ηj1[tj ,tj+1](t) (2.6)

where (ηj)j∈[0,n−1] is a series of square integrable Ftj -measurable random
variables. If there is a sequence g1(t), g2(t), . . . such that

lim
n→∞

E

(∫ ∞

0

∣∣g(t)− gn(t)
∣∣2dt) = 0 (2.7)

the stochastic function g(t) is said to be approximated by random step func-
tions.

The sum (2.5) converges for functions g(t), which can be approximated by
random step functions, are adapted to Ft, have a.s. continuous paths, and



18 CHAPTER 2. MATHEMATICAL BACKGROUND

are square integrable. It is for this class of functions the Itô integral exists.
Convergence refers to convergence in probability, de�ned in Section (2.3).

Assume the {gn}n∈N is a sequence of random step functions converging to
a stochastic process g. The Itô integral of g is a stochastic process de�ned
by the limit

lim
n→∞

E
(
|I(g)− I(gn)|2

)
= 0 (2.8)

where

I(fn) =
n−1∑
j=0

ηj
(
W (tj+1)−W (tj)

)
(2.9)

2.2.1 Computation of the Itô Integral

The non-di�erentiability of the Wiener process causes an extra term in the
computation of the Itô integral compared to the Riemann integral. The Itô
formula is written as an Itô process with di�erential notation. Suppose that
ξ(t) is the Itô process satisfying the di�erential equation

dξ(t) = b(t)dt+ σ(t)dWt, (2.10)

where b(t) is a stochastic process adapted to the �ltration Ft and is integrable
on the interval [0, T ] for all T ≥ 0, and σ(t) is an Itô integrable function.
Then the Itô formula (2.11) satis�es the di�erential equation (2.10) for
F
(
t, ξ(t)

)
;

dF
(
t, ξ(t)

)
=
(
F ′
t

(
t, ξ(t)

)
+ F ′

x

(
t, ξ(t)

)
b(t) +

1

2
F ′′
xx

(
t, ξ(t)

)
σ2(t)

)
dt

+ F ′
x

(
t, ξ(t)

)
σ(t)dWt, (2.11)

and can be used to calculate the value of the stochastic integral.

As an example to illustrate that the Itô formula, equation (2.11), gives the
same result as obtained by the de�nition of the stochastic integral, both are
used to compute the stochastic integral

∫ T

0
tdWt below.

By the de�nition: Approximate F (t) = t by a random step function

fn =
n−1∑
i=0

tni 1[tni ,tni+1]
(2.12)
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where the interval [0, T ] has a partition with n equal parts. The stochastic
integral of the step function is

I(fn) =
n−1∑
i=0

tni
(
W (tni+1)−W (tni )

)
(2.13)

which is equal to

n−1∑
i=0

(
tni+1W (tni+1)− tni W (tni )

)
−

n−1∑
i=0

W (tni+1)(t
n
i+1 − tni )

= TW (T )−
n−1∑
i=0

W (tni+1)(t
n
i+1 − tni ). (2.14)

Convergence gives ∫ T

0

tdWt = TW (T )−
∫ t

0

Wtdt. (2.15)

Using the Itô formula: To use Itô's formula, consider the integral as a
part of an Itô process in di�erential form

dξ(t) = b(t)dt+ tdWt. (2.16)

Comparison with the Itô formula (2.11) �nds the dWt term

F ′
x(t, x)σ(t) = t. (2.17)

This is true when F (x, t) = tx and σ(t) = 1. Aside from F ′
x the Itô formula

requires the derivatives F ′′
xx and F ′

t . With the choice of F (x, t) = tx; F ′′
xx = 0

and F ′
t = x. Insertion in (2.11) yields

dF (t,Wt) = Wt dt+ t dWt, (2.18)

which is a representation of the integral equation

TW (T ) =

∫ T

0

Wtdt+

∫ T

0

tdWt (2.19)
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or, equivalently ∫ T

0

t dWt = TW (T )−
∫ T

0

Wt dt. (2.20)

The two methods �nd the same expression for
∫ T

0
t dWt. The Itô integral

has three properties which can be used to �nd the distribution.

1. Linearity Just as the Riemann integral, the Itô integral is linear∫ t

0

(
αf(r) + βg(r)

)
dWr = α

∫ t

0

f(r)dWr + β

∫ t

0

g(r)dWr (2.21)

2. Isometry There is an isometry between the Itô and the Riemann inte-
gral

E

(∣∣ ∫ t

0

f(r)dWr

∣∣2) = E

(∫ t

0

|f(r)|2dr
)

(2.22)

3. Martingale property The expectation of its value at any time in the
future is equal to the current value

E

(∫ t

0

f(r)dWr|Fs

)
=

∫ s

0

f(r)dWr (2.23)

Finding the distribution of
∫ T

0
t dWt = TW (T ) −

∫ T

0
Wt dt : As the

Wiener process is equal to the sum of its incrementsWt =
∫ t

0
dWs, the integral

in equations (2.15) and (2.20) can be evaluated as∫ T

0

Wtdt =

∫ T

0

∫ t

0

dWsdt =

∫∫
0≤s≤t≤T

dtdWs =

∫ T

0

(T − s)dWs

The Itô integral, being a linear combination of independent normally dis-
tributed random variables, is also normally distributed. Because of the mar-
tingale property, it has zero mean. Calculations using the property of isome-
try �nd the variance

∫ T

0
(T−s)2ds. Since all increments of the Wiener process

are normally distributed, i.e. Wt −W0 ∼ N (0, t), the Wiener process itself
is normally distributed. As the sum of two normally distributed random
variables ∫ T

0

tdWt ∼ N
(
0, T 2 +

T 3

3

)
. (2.24)
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2.2.2 Martingales

Stochastic processes where the expectation of a future value at any time is the
current value of the process are called martingales. All Itô integrals belong
to this class of stochastic processes. The Wiener process is also a martingale.
There are inequality relations and conditions of convergence known for mar-
tingales, which automatically are true for the stochastic integrals.

Formally, a sequence of random variables ξ1, ξ2, . . . is called a martingale

with respect to a �ltration F1,F2, . . . if

1. ξn is integrable for all n ∈ N

2. ξ1, ξ2, . . . is adapted to F1,F2, . . .

3. E
(
ξn+1|Fn

)
= ξn for all n ∈ N

De�nitions of these properties can be found in Appendix (A.2).

A random variable τ with values in the set {1, 2, . . . , } ∪ {∞} is called a
stopping time if for each n {τ = n} ∈ Fn. The �rst time a stochastic
process hits a certain value is one example of a stopping time.

If a process X has a sequence of stopping times τ such that limn→∞ τn = ∞,
and the stopped sequence is a martingale for each τn X is called a local

martingale. One method of solving stochastic di�erential equations relies
on local martingales. All martingales are local martingales but only bounded
local martingales are martingales.

2.2.3 Solving a Stochastic di�erential Equation

Returning to stochastic di�erential equations with the knowledge of how to
make sense of the dW (t)-term, it is possible to de�ne what a solution to
equation (2.3) is.

An Itô process ξ(t) with F0-measurable initial condition ξ0 is a solution to
the stochastic initial value problem{

dξ(t) = f
(
ξ(t)

)
dt+ g

(
ξ(t)

)
dWt

ξ(0) = ξ0
(2.25)
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if

ξ(T ) = ξ(0) +

∫ T

0

f
(
ξ(t)

)
dt+

∫ T

0

g
(
ξ(t)

)
dWt. (2.26)

The stochastic process f must be adapted to Ft and
∫ T

0
|f(t)|dt < ∞ a.s.,

and the stochastic process g must be possible to approximate with random
step functions.

If f and g are Lipschitz continuous and ξ0 is a F0-measurable random vari-
able the initial value problem in equation (2.25) has a solution ξ(t), t ≥ 0.
It is a unique solution in the sense that if η(t), t ≥ 0 is another Itô process
satisfying the same initial value problem η(t) is a.s. identical to ξ(t), i.e.
P
(
ξ(t) = η(t) ∀ t ≥ 0

)
= 1.

A solution to a stochastic di�erential equation can have a maximum time
of existence. This time, τ , is called the explosion time and is the stopping
time limt→τ Xt = ∞ for a stochastic process Xt that solves the di�erential
equation. (Brz99)

Aside from calculations similar to the ones used for deterministic di�erential
equations, a stochastic di�erential equation can be solved by formulating the
Martingale Problem. For a one-dimensional di�usion process, this is done by
de�ning two stochastic processes:

Mt = Xt −X0 −
∫ t

0

b(Xs)ds (2.27)

Λt = M2
t −

∫ t

0

σ2(Xs)ds (2.28)

If the processes Mt and Λt are both local martingales, X is a solution to the
stochastic di�erential equation

X(t)−X(0) =

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs. (2.29)

Since the Itô integral is a martingale, the process

Mt = X(t)−X(0)−
∫ t

0

b(Xs)ds (2.30)
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must also be a martingale in order for equation (2.29) to be true. By squaring
and using the isometry properties of Itô integrals

M2
t =

(
X(T )−X(0)−

∫ t

0

b(Xs)ds

)2

=

(∫ t

0

σ(Xs)ds

)2

=

∫ t

0

σ2(Xs)ds

(2.31)
which means

Λt = M2
t −

∫ t

0

σ2(Xs)ds (2.32)

is also a martingale when X solves (2.29). As all martingales, Mt and Λt are
local martingales and X(t) solves the martingale problem.

2.3 Convergence of stochastic processes

Suppose there is a sequence of random variables (ξn)n∈N, a random variable
X on the probability spaces (Ωn,Fn,Pn) and (Ω,F ,P), and a continuous,
bounded function f . Then, if

lim
n→∞

En

(
f(ξn)

)
= En

(
f(ξ)

)
(2.33)

the sequence (ξn) is said to converge in distribution to ξ, and if

lim
n→∞

∫
f(x)Pn(dx) =

∫
f(x)P(dx) (2.34)

the probability measures Pn is said to converge weakly to P. With the
expectation En corresponding to Pn, if the process convergences in distribu-
tion, it also converges weakly.

If limn→∞

(
P
(
|ξ − ξn| > ε

)
= 0

)
for all ε > 0 the sequence is said to

converge in probability to ξ. A sequence that converges in distribution
will also converge in probability, but the reverse is not necessarily true.

A sequence of probability measures on a metric space is tight if, for ev-
ery ε > 0, there is a n0 and compact set K such that Pn(K) > 1−ε for every
n > n0. Prohorov theorem states that in a complete, separable metric space,
a sequence of random variables contains a weakly convergent subsequence if
and only if it is tight.
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2.3.1 Convergence of Martingales

Let ξn be a series of observations of a random variable ξ, where the obser-
vations gets closer to the true value of ξ with time. Then ξn = E

(
ξ|Fn

)
,

which means that ξn is a martingale converging to ξ. Any martingale which
is uniformly integrable, i.e. for all ε > 0 there exists a M > 0 such that∫
{|ξn|>M} |ξn|dP < ε, converges to an integrable random variable.

Uniform integrability is a su�cient and necessary condition for martingales
to converge in L1. By Chebyshev's inequality, convergence in L1 implies con-
vergence in probability and convergence in distribution as well.

For a convergent process the limit limn→∞ E
(
|ξn − ξ|

)
= 0. From Chebe-

shev's inequality

P
(
|ξ − µ| ≥ kσ

)
=

1

k2
(2.35)

for any k ∈ R and any stochastic process ξ with E(ξ) = µ and Var(ξ) = σ2.
For a convergent process ξ the expectation E(ξn − µ) = E(ξn − ξ). When
choosing k = ε

σ
it is true for any ξn in the sequence that

P
(
|ξn − µ| ≥ ε

)
=

σ2

ε2
=

E[(ξn − µ)2]

ε
≥ E[(ξn − µ)]2

ε

by the Cauchy-Schwartz inequality. Taking the limit,
limn→∞ P(|ξn − µ| ≥ ε) = 0, which for uniformly convergent ξn is equivalent
to limn→∞ P(|ξn − ξ| ≥ ε) = 0, proving that ξn is convergent in probability.



Chapter 3

Particle system models SOS and

WASEP

A particle system consists of �nitely or in�nitely many particles, where ev-
ery particle attempts to change states according to an independent Markov
chain. Interactions between particles result in the next step for any single
particle to depend on more than its current position. However, the system
as a whole is Markovian. (Lig85)

The state space of a particle system is denoted with

Ω = {particle states}{number of particles}

and its evolution is described with a Markov generator.

The following Sections describe two particle systems, the weakly asymmetric
simple exclusion process and the single step solid on solid process, and the
relationship between them.

3.1 Exclusion Process

In an exclusion process, space is considered on a �nite lattice with �xed
positions. Each position can be either occupied or empty. Two particles
at di�erent positions cannot move simultaneously, and in a simple exclusion
process, there can be at most one particle at any given position. A particle
at position x waits for a time t ∼ Exp(1), after which it attempts to move

25
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to position y with probability p(x, y). If y is vacant, the particle moves to y;
otherwise, it stays at x. A stochastic process ηt describing the state of the
lattice, or the con�guration of the system, at time t has value ηt(x) = 1 for
all x that are occupied at time t, and ηt(x) = 0 for vacant x.

3.1.1 Weakly Asymmetric Simple Exclusion Process

In the Weakly Asymmetric Simple Exclusion Process (or WASEP), particles
tend to move in one direction slightly more often than the other. Instead of
describing the process with occupation variables ηt as in the previous Sec-
tion, spin variables can be used to make calculations easier. Then σ(x) = −1
when x is vacant and σ(x) = 1 when x is occupied. The state space for
the WASEP is Ω = {−1, 1}Z, and the current spin con�guration at time t is
σt =

(
σt(x), x ∈ Z

)
. (Ber97)

In this process, a particle will jump one step to the right with probabil-
ity 1

2
and one step to the left with probability 1

2
+

√
ε, where ε is a small

number. The Markov generator for the WASEP is constructed as a sum of
two generators for a Totally Asymmetric Simple Exclusion Process (TASEP),
an exclusion process where particles can only move in a single direction. The
generator for a TASEP to the right looks like

L+f(σ) =
∑
x

1 + σ(x)

2
· 1− σ(x+ 1)

2

[
f(σx,x+1)− f(σ)

]
, (3.1)

where σx,y is de�ned as

σx,y(z) =


σ(x) if z = y,
σ(y) if z = x,
σ(z) otherwise.

(3.2)

On matrix form
[
f(σx,x+1)− f(σ)

]
becomes


f
(
σ(2)

)
− f

(
σ(1)

)
f
(
σ(1)

)
− f

(
σ(2)

)
0 0 · · · 0

0 f
(
σ(3)

)
− f

(
σ(2)

)
f
(
σ(2)

)
− f

(
σ(3)

)
0 · · · 0

0 0 f
(
σ(4)

)
− f

(
σ(3)

)
f
(
σ(3)

)
− f

(
σ(4)

)
· · · 0

0 0 0 f
(
σ(5)

)
− f

(
σ(4)

)
· · · 0

0 0 0 0
. . . . . .

.
(3.3)
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As the only non-zero elements are on the main and upper diagonal for each
element x, the only possible transition from x is to x + 1. Also, since the

only possible values of σ(x) is 1 and −1, the product
(

1+σ(x)
2

· 1−σ(x+1)
2

)
will

be zero unless x is occupied and x+1 vacant. The generator L+ �nds which
particles can jump right in the exclusion process.

Similarly, the generator L−, which �nds the particles that can jump left,
is de�ned as

L−f(σ) =
∑
x

1 + σ(x)

2
· 1− σ(x− 1)

2

[
f(σx,x−1)− f(σ)

]
(3.4)

The generator for the WASEP, Lε, is de�ned by combining these two:

Lε =
1

2
L+ +

(
1

2
+
√
ε

)
L−, (3.5)

where
√
ε is called the strength of the asymmetry, which here is to the left.

ε can be arbitrarily small. (Ber97)

3.1.2 Tagged Particle Process

The tagged particle process follows the motion of one particle during the evo-
lution of an exclusion process, often the one closest to the right of the origin
at time t = 0, i.e. the �rst particle encountered when going through all sites
one at the time beginning at the origin. This process is a combination of
two Markov processes: the exclusion process σ and the process describing
the movement of the tagged particle. From the view of the tagged particle,
the system is stationary at any time. The e�ect of σ on the tagged particle
is to slow down its movement. (Lig85)

Let x0
t be the position of the tagged particle at time t. At time 0, the

tagged particle is picked to be the one closest to the right of the origin:
x0
0 = min{x ∈ Z, x ≥ 0, σ(x) = 1}. The state space for the tagged particle

process is {(σ, x) ∈ Ω×Z : σ(x) = 1}. The joint Markov Process (σt, x
0
t ) has

the generator

Hε =
1

2
H+ +

(
1 +

√
ε
)
H−, (3.6)
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where H± is de�ned as

H±f(σ, x) =
1

2

∑
x ̸=x0

1 + σ(x)

2
· 1− σ(x± 1)

2

[
f(σx,x±1, x0)− f(σ, x0)

]
+

1− σ(x0 ± 1)

2

[
f(σx,x±1, x0 ± 1)− f(σ, x0)

]
. (3.7)

The �rst part of this generator describes the evolution of all particles except
the tagged one, and for those particles, H± behaves like L±. The second
line of equation (3.7) represents the movement of the tagged particle. The
probability of particle movement in either direction is 0 if the neighbouring
spot is occupied. (Ber97)

3.2 Single Step Solid on Solid Process

The Single Step Solid on Solid process (SOS) is a model for surface growth
in which particles are deposited on other particles or evaporate from a mate-
rial. It is related to the Ising model, which describes how the spin of atoms
in a magnetic material changes when subjected to an external magnetic �eld.
The border between the two possible states � the microscopic interface � is
represented by a single-valued function ζ : Z → Z. Assume ζ models the
growth of a crystal, then ζ(x) is the height of the growing crystal at position
x. The process has a single step constraint, |ζ(x+ 1)− ζ(x)| = 1 . Indepen-
dent of each other, local minima change to local maxima with rate 1

2
+

√
ε

and local maxima become minima with rate 1
2
.

The state space for the SOS process is

Ω̂ = {ζ ∈ ZZ : ∀ x ∈ Z |ζ(x+ 1)− ζ(x)| = 1}. (3.8)

Its evolution is governed by the Markov generator

L̂ε(ζ) =
∑
x

c+(x, ζ)
[
f(ζ +2δx)− f(ζ)

]
+ c−(x, ζ)

[
f(ζ − 2δx)− f(ζ)

]
, (3.9)

where

c+ =

{
1
2
+
√
ε if ζ(x+ 1)− 2ζ(x) + ζ(x− 1) = 2,

0 otherwise.
(3.10)
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and

c− =

{
1
2

if ζ(x+ 1)− 2ζ(x) + ζ(x− 1) = −2,
0 otherwise.

(3.11)

c+ is only non-zero when ζ(x) is a local minimum, and c− is non-zero at local
maxima only. In the sum in equation (3.9), only the current x is signi�cant,
and for all other values f(ζ + 2δx)− f(ζ) = 0.

3.2.1 Initial Distributions to the SOS

There are requirements for the initial distribution of ζ to ensure its conver-
gence. For the family {µε}ε>0 of probabilities on Ω̂ to be an initial distribu-
tion to the SOS, it has to satisfy three conditions. These distributions are
called near-stationary.

ζ should have the same scaling as a Wiener process, which means that
ζε(r) =

√
εζ(ε−1r) has the same properties as ζ. The �rst condition is

the existence of a random function h0 such that ζε ⇒ h0 as ε → 0 in the
topology of C(R).

The second condition sets a bound on the growth of ζ; it cannot grow faster
than exponentially. Formally, for each n ∈ N there exists a > 0 and c > 0
such that for the expectation corresponding to the probability measure µε

sup
x∈Z

e−aε|x|E(e−n
√
εζ(x)) ≤ c. (3.12)

The third condition provides an estimate which implies that the initial dis-
tribution is Hölder continuous with exponent < 1

2
. This level of roughness

appears in Brownian motion. For each n ∈ N and ε > 0 there exists a > 0
and c > 0 such that

E
(√

ε[ζ(x)− ζ(y)]
)2n ≤ ceaε(|x|+|y|) (ε|x− y|)n . (3.13)

Assume m is a Hölder continuous function on R with α ≥ 1
2
that ful�ls
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the growth condition |m(r)| ≤ a
(
1 + |r|

)
for all r ∈ R and some a > 0.

Further assume the increments, ζ(x + 1) − ζ(x) ∈ {1,−1}, are independent
and that the distribution µε of the marginals

[
ζ(x + 1) − ζ(x)

]
depend on

m(r) as

µε

(
ζ(x+ 1)− ζ(x)

)
=

1√
ε

[
m(εx)−m(ε(x− 1))

]
. (3.14)

In this case, the distribution µε ful�ls the conditions for an initial distribu-
tion of the SOS. The probability of the increment ζ(x + 1) − ζ(x) depends
on a function of x and x− 1.

The conditions in (Ber97) are satis�ed for a deterministic ζ0 where

ζ0(x) =

{
y for even x,

y + 1 for odd x.
(3.15)

This ζ0 is known as the �at initial condition. Another initial distribution
that ful�ls the above conditions is Brownian motion - a random walk. Their
combination, the �at → Brownian initial condition, which resembles the �at
for x ≤ 0 and Brownian motion for x > 0, also satis�es the requirements for
an initial distribution.

Later research has found a valid initial condition that is not near-stationary,
the wedge initial condition ζ0 = |x|. However, by using the Gärtner trans-
form (equation(5.49)) and scaling with ε−1/2

2
the transformed process ε−1/2

2
Zε

converges to δx=0, and the �rst condition is satis�ed. Further, it can be shown
that this Zε(t, ·) satis�es the second and third condition for all times t > 0
and the family of solutions does converge when t → 0. Similar arguments can
be made to prove that the scaled and transformed process satis�es the three
requirements for the wedge-Brownian initial distribution, where ζ0(x) = −x
for x ≤ 0 and a random walk for positive x, and the wedge-�at initial con-
dition, where ζ0(x) = −x for x ≤ 0 and oscillates between 2 values for
positive x. The six initial conditions mentioned above correspond to the six
fundamental growth geometries in the KPZ class. (Cor11)

3.3 Relationship between WASEP and SOS

The two models described above are related and can be derived from each
other. The probability for a particle to move left in the WASEP is the same
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as the probability of deposition in the SOS. Assuming the initial distribution
satis�es the necessary conditions, SOS can be obtained from WASEP as in
equation (3.16). Here ζ is the SOS, σ is the WASEP, and x0

t is the tagged
particle.

ζt(x) =


∑

x0
t<y≤x σt(y)− x0

t if x > x0
t ,

−
∑

x<y≤x0
t
σt(y)− x0

t if x < x0
t ,

−x0
t if x = x0

t .

(3.16)

When x > x0
t , the position x is to the right of the tagged particle. The height

of the interface ζ(x) is the sum of the values of σ for all positions y between
the tagged particle and the current x subtracted by the position of the tagged
particle.The distance from the tagged particle to any x puts a maximum limit
on the value of ζ(x). Since the state space for σ is Ω = {−1, 1}Z, ζ(x) could
reach any integer its state space is ZZ.

For any x > x0
t the increment

∣∣ζ(x)−ζ(x+1)
∣∣ = ∣∣∣∣( ∑

x0
t<y≤x

σ(y)−x0
t

)
−
( ∑

x0
t<y≤x+1

σ(y)−x0
t

)∣∣∣∣ = ∣∣σ(x+1)
∣∣ = 1.

(3.17)
Similar results can be obtained for x < x0

t , which means the single step con-
straint for ζ is satis�ed for all x.

To obtain the WASEP from the SOS set σt(x) = ζt(x)− ζt(x− 1) = ∇ζt(x).
Because of the single step constraint the possible values of σ are {−1, 1},
which gives the state space {−1, 1}Z.(Ber97)

The SOS is evaluated at di�erent points on the lattice than the WASEP.
If the sites of the WASEP are x = (. . . , x − 1, x, x + 1, x + 2, . . . ) the sites
for the associated SOS are x′ = (. . . , x − 3

2
, x − 1

2
, x + 1

2
, x + 3

2
, . . . ). In the

literature, the sites in both discrete lattices are denoted with the same x.
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Chapter 4

Simulations

Because of the relationship between the WASEP and the SOS, it was suf-
�cient to simulate only the WASEP and calculate the SOS from the result.
The simulations are made using a graphical visualization of a Simple Exclu-
sion Process described in (Cor11), which is explained in Section 4.1. Section
4.2 contains simulations of small systems with high asymmetry and explores
the particle dynamics and relation between models. With high values of ε,
the modelled exclusion process is no longer weakly asymmetric but rather an
example of the Asymmetric Simple Exclusion Process (ASEP). The ASEP
and the WASEP have the same relationship to the SOS. The simulations
in Section 4.3 are done for larger systems, and the asymmetry is inversely
proportional to the system size. Here, long-term behaviour is compared for
di�erent system sizes and initial conditions.

4.1 Method

Figure (4.1) shows a sketch of the graphical representation of a WASEP
process. A lattice with discrete positions where a particle can be located
is situated on the x-axis. Time is represented on the y-axis. For each site
in the lattice, two Poisson processes are attached: L describing jumps one
step to the left and R describing jumps one step to the right. In �gure 4.1,
these Poisson processes are illustrated with purple (L) and green (R) arrows.
Their positions on the y-axis represent the time a jump can occur. In order
for the state of the particle system to change at any given time, the current
position must be occupied, and the relevant neighbour must be empty.
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Figure 4.1: A graphical representation on the WASEP. Time is on the y axis,
and particle locations are on the x axis. The arrows represent times when it
is possible to jump from one location to the adjacent

In �gure 4.2 A, 5 particles have been added to the system in �gure 4.1.
The tagged particle, at site x1, is red. The other four, at x2, x5, x7 and, x8,
are blue. The �rst jump happens at time t1 when the particle at x7 jumps
to x6. Between t1 and t2, the particles at x5 and x6 attempt to jump but
�nd the neighbouring space occupied at those times. Figure 4.2 A shows the
individual particles at di�erent times, and in �gure 4.2 B, the paths they
take are included.
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Figure 4.2: A simulation of the particle system in �gure 4.1. The blue dots
represent particles. The tagged particle, marked in red, is the one furthest
to the left at time 0. At each time step t0 to t6, the position of each particle
is marked. In the right �gure, the paths of all particles are drawn.



36 CHAPTER 4. SIMULATIONS

The �rst step in the simulation is to generate the two processes L and R
with intensities 1

2
+
√
ε and 1

2
respectively. The intensities are normalized and

calculated as the probability of going in either direction for a Poisson process
with intensity 1. When ε → 0, this is close to the true process and conserves
the ratio between left and right. For larger ε, two processes with di�erent
intensities are simulated instead. The processes are stored in a variable called
a jump that contains the time a particle can shift state, its position before
the state shift and the direction it attempts to move in.

In Section 4.2, particles can enter and exit the system, and jumps are gener-
ated for every position in the lattice, plus one outside that represents particles
entering the system. In Section 4.3, borders are assumed to be impassable,
and jumps are only generated for the points inside the lattice. The jumps
for all positions are sorted by time.

// Initialize jumps

for all positions i
time = 0;
while time < max_time // generate L

t = −log(1− u) // u ∼ U(0, 1), t ∼ Exp(1)
time = time + t;
if c = rand < q

q+p
// q = P(left), p = P(right)

dir = −1;
else

dir = 1;
end

new jump with position i, time time and direction dir
end

end

The con�guration of the WASEP is represented by a vector of size n called
wasep. The initial value of the tagged particle x0_t is the position of the
�rst positive element in this vector. In Section 4.2, the WASEP and SOS are
simulated simultaneously, and the WASEP is represented by spin variables
{−1, 1}. In Section 4.3, the SOS is calculated afterwards, and occupation
variables {0, 1} were used instead to simplify calculations of the mean occu-
pancy of any site in the WASEP.
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The simulation of the particle system begins when jumps and wasep are
initialized. It iterates through the list of jumps, each time processing the as
yet untreated jump with the lowest time value. After checking the feasibility
of the particle movement, the con�guration vector wasep updates. In Sec-
tion 4.2, the initial number of particles is 50, and the size of the lattice is
100. Particles can move in and out of the lattice. For similar probabilities
of successful movement inside and across the borders, the site just outside
is assumed to be occupied with probability 0.5. In Section 4.3, because of
the assumption of impassable boundaries, it is only the last if-clause in the
pseudo code below, concerning the interior points, that is active.

// step
while jumps not empty

jump = next jump in the list;
from = jump.position;
to = from + jump.direction;
if from = n+ 1 //entering particle

if wasep[to] == −1 and rand < 0.5
wasep[to] = 1 //to = 0 or to = n

end

end

if (from = n and direction > 0) or (from = 1 and direction < 0)
// exiting particle

if wasep[from] == 1 and rand < 0.5
wasep[from] = −1;

end

end

if wasep[from] == 1 and wasep[to] == −1
wasep[from] = −1;
wasep[to] = 1;

end

end

The SOS can be calculated directly from the WASEP using equation (3.16).
As an element of the WASEP is equal to the slope between two points in the
SOS, the lattice used for a simulation is not the same for the two particle
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systems. If the WASEP is simulated over n points, the corresponding SOS
requires n+ 1.

4.2 Simulations on small systems

To observe how the dynamics of the particle systems at the microscopic level,
they are simulated with few sites and high asymmetry and animated in Java.
The images in �gures 4.3, 4.4, 4.5, 4.6, and 4.7 are taken from these anima-
tions. In these simulations, the number of sites for the exclusion process is
100, and the initial number of particles is 50. The corresponding number of
sites for the SOS is 101. Particles can enter the system at both borders and
at any one time, it is assumed the site just outside the border is occupied
with a probability of 0.5. The asymmetry in these simulations is to the left,
but the �gures are �ipped to show a growing process. The exclusion process
modelled in this Section is the ASEP.

Figure 4.3 shows a Section of the system four times at the beginning of a sim-
ulation of the SOS with ε = 0.25. The discrete system with particles as blue
dots is to the left, and the linear interpolation of the surface is added to the
right images. Image A and its right neighbour show the initial distribution of
the particles. This distribution is the �at initial condition from Section 3.2,
which is known to satisfy the criteria in (Ber97). In image B of this �gure, the
�rst deposition has occurred. The neighbouring positions to the one which
changed are now neither local minima nor maxima. The height of these two
positions will stay at the same level until the system changes so that they are
local extreme points again, after which change will be possible. In image C,
a short time has passed, and deposition or evaporation has occurred in sev-
eral places. The bottom image, D, shows the state of the system after some
more time. 49 of the 101 sites in the simulated system are shown in �gure 4.3.

In �gure 4.4, two simulations of the SOS with �at initial conditions are
depicted. In the left image, the asymmetry is ε = 0.25, and in the right,
ε = 0.75. The process is recorded in 5 equidistant points in time, with the
yellow line being the initial condition and the red being the distribution at
the end of the simulation. The times in between are shown in di�erent shades
of orange; the darker the shade, the more time has passed in the simulation.
It is clear that a higher asymmetry ε leads to faster growth.
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The premise of �gure 4.5 is similar to �gure 4.4 but with an initial con-
dition |x|, the wedge initial condition. In the beginning, the height function
is V-shaped, and with increasing simulation length, the shape gradually be-
comes rounder.

Figures 4.6 and 4.7 show the same processes as �gures 4.4 respectively 4.5
but includes the underlying exclusion process. In �gure 4.6, the process with
a �at initial condition is shown in the beginning and after some time with
di�erent asymmetries. Figure 4.7 shows 3 points in time for the process with
wedge initial condition. The con�guration of the WASEP is depicted on a
line, with dots on the occupied sites. The tagged particle is green, and all
the others are blue. Since particles can enter and exit the system, the tagged
particle is not always the one furthest left or even in the visible part of the
system. The connection between the two particle systems is visible in these
two �gures. The slope of the SOS is 1 when there is a particle in the site to its
right and −1 when there is no particle. The wedge-shaped initial condition
of the SOS corresponds to all particles being on one half of the lattice for the
ASEP. In the �at initial condition, every other site is occupied.



40 CHAPTER 4. SIMULATIONS

Figure 4.3: Several time points when simulating the SOS with ε = 0.25.
The left images show the particles, and the images to the right include the
interpolated function. Image A shows the initial con�guration. Image B is
just after the �rst particle deposition. In image C, some time has passed,
and image D shows the distribution at the end of the simulation
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Figure 4.4: Two simulations of the SOS captured at 5 points in time. In the
left image ε = 0.25, and in the right ε = 0.75

Figure 4.5: The SOS at �ve di�erent time-points in one iteration with dif-
ferent ε and wedge initial condition
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Figure 4.6: ASEP and SOS with �at initial condition and varying large ε

Figure 4.7: ASEP and SOS with wedge initial condition and varying large ε
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4.3 Simulations on larger systems

The simulations in this Section show the long-term behaviour of the WASEP
and SOS for particle systems with a number of sites N between 500 and
2500, varying numbers of particles and di�erent initial distributions. They
are run as 4N consecutive simulations of time N/4, with the initial condition
of each being the result of the last one. In the majority of the simulations,
the system size is N = 1000.

4.3.1 Simulation of the WASEP

After enough time, the mean distribution of particles in the WASEP reaches
an equilibrium. The distribution is calculated as the probability for each site
to be occupied at the end of a simulation.

The mean of the �nal distribution for 50 instances of the WASEP in a system
with N = 2000 is shown in �gure 4.8. In Figures A and B, the simulations
have 200 particles, in Figures C and D they have 1000, and in E and F 1600.
In the left �gures (A, C and E), the WASEP is shown together with the least
square approximation of a straight line in red.

After removing the linear dependence from the measured distribution, ran-
dom noise remains. Figure 4.11 shows the spectra of the residual noise. The
spectrum is relatively �at and varies around 0.003, which suggests that the
noise is Normally distributed. This indicates that the stationary distribution
of the WASEP can be approximated with a linear equation with added white
noise.

Figure 4.8 compares the WASEP (blue) to a process composed of the line
found with Least Squares approximation and Gaussian noise with the same
standard deviation as the original WASEP (red). Images A, C and E show
the WASEP with di�erent number of particles, and images B, D and F the
approximated process. The mean of the sum of the squared errors for these
three approximations is 0.0024, 0.034, respectively 0.0051.

Looking at the Least Square estimated line for the WASEP at di�erent points
in time, the constant term is always the fraction of occupied sites. The slope
initially changes to stabilize around a constant that depends on the number
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of particles in the system. Figure 4.9 shows the estimated slope of the mean
WASEP through time for a system with 1000 sites and 300 particles. It has
been �tted with non-linear Least Squares to a line y = m(1−2−t/k), where m
is the �nal value of the slope and k determines how fast it converges. As seen
in �gure 4.10, the speed of convergence depends on the number of particles
in the system. When half of the sites are occupied, convergence is faster than
in systems where the di�erence between the number of occupied and empty
sites is vaster.

Figure 4.12 shows the average position furthest right and furthest left reached
by the tagged particle at di�erent times for 8 systems with N = 1000 and
between 200 and 900 initially evenly distributed particles. The asymmetry is
to the left, and for all of the systems, the position furthest to the left reached
is the left border at site 1. The most remote attainable position to the right
seems to stabilize with time. Where it is depends on the initial number of
particles. More sites are reachable for the tagged particle for a system with
fewer particles. The variation of which position this is also greater for sys-
tems with fewer particles.
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Figure 4.8: The likelihood of a particle to be at a site in the WASEP as an
average of 200 iterations, with 2000 sites in total. The red line is the Least
Squares estimate. The system in Figure A has 200 particles and shows the
simulated process together with its approximation 0.10−0.042x+N (0, 0.038)
in Figure B. Figures C and D have 1000 particles, and the approximation
0.50− 0.082x +N (0, 0.083) and �gure E and F have 1600 particles and the
approximation 0.80− 0.076x+N (0, 0.059)
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Figure 4.9: The slope of the Least Square estimate of the WASEP for a
system with 1000 sites and 300 particles at di�erent times and the estimated
function of the slope in time. The slope of the WASEP converges.

Figure 4.10: The estimated function of the slope in time for eight systems
with 200 to 900 particles. The system with 500 particles converges faster
than the ones with more particles, the system with 900 particles converges
slowest
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Figure 4.11: The spectra of the WASEP with 2000 sites and 1000 particles
after the linear dependence was removed.

Figure 4.12: The position furthest to the left (A) and furthest to the right(B)
for the tagged particle as an average of 50 iterations for a varying number of
particles which were initially evenly distributed
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4.3.2 Simulation of the SOS

To �nd the distribution of the SOS, equation (3.16) is implemented and ap-
plied to all iterations of the �nal con�guration of the WASEP. After that,
the mean height of the iterations of the SOS is computed.

Figure 4.13 shows the mean of the SOS at several points in time for the
�at and the wedge initial conditions. Eventually, both reached a parabola of
approximately the same height and stayed there.

Figure 4.14 shows the mean height of the �nal distribution of the SOS for
9 systems with N = 1000 and the number of particles varying between 100
and 900 together with the least squares estimate of a parabola. Initially, in
all systems, the particles were evenly distributed. The residuals of the Least
Squares �tting calculated as 1

N

∑
(ζ(x) − (ax2 + bx + c))2 are recorded in

table 4.1. Overall, the �nal distribution of the SOS is fairly well-described
with a second-degree polynomial.

The mean variance of 50 iterations of the nine processes in �gure 4.14 is
recorded in table 4.2. The system with 500 particles has noticeably higher
variance than, for instance, the systems with 100 or 900 particles. When the
number of free sites is close to the number of occupied, there are more pos-
sible particle con�gurations as compared to systems with signi�cantly more
or fewer particles.

Figure 4.15 A shows the nine systems of �gure 4.14 in the same plot. In
the image, the �nal distributions (solid line) are compared to the initial ones
(dashed line). The initial distributions on this scale are straight lines with the
slope dependent on the number of particles in the corresponding exclusion
process. In the equilibrium state, the lines have curved, but their endpoints
remain the same.

Rotating the distributions in �gure 4.15 by removing the linear dependence
originating from the initial distribution, it transforms into the distribution in
�gure 4.16 A. The �nal distributions are parabolas of varying heights. The
maximum height of the parabolas follows the same patterns as the variances,
with the systems with low or high numbers of particles being shorter than
the middle ones. The height of the distribution for the particle systems with
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100 and 900 particles are relatively close, as are the systems 200 and 800, 300
and 700, and 400, 500 and 600. The maximum height of the SOS is recorded
in the table 4.2. Normalizing by dividing by max height produces �gure 4.16
B. After normalization, the stationary distribution of all SOS systems can
be approximated by the same curve 1− x2.

Similarly, �gure 4.17 compares the stationary distribution for systems with
di�erent sizes N all with N

2
particles. Once again, normalization results in a

1− x2 curve 4.17 B. This curve becomes much smoother with an increasing
system size N .

Together, �gures 4.17 and 4.16 suggest the equilibrium of the SOS to be
1− x2 multiplied with a constant depending on N and the number of parti-
cles, and adjusted for the linear dependence from the initial distribution.

In �gure 4.18, 10 instances of the SOS are shown for two systems. In 4.18 A
the system has 2500 sites and 1250 particles and in 4.18 B there are 500 sites
and 250 particles. The larger system is much smoother, and the di�erent
iterations seem to vary around a parabola. The smaller system shows no
such common shape. At this level of the microscopic-macroscopic scale, the
stochastic process dominates. In �gure 4.19, the 500 site system is compared
to a �fth of the 2500 site system where the processes have a similar struc-
ture. The di�erence comes from the endpoints. In image A, the boundary
conditions ζ(1) = ζ(N) = 0 are absent.

Figure 4.20 shows part of one iteration of the SOS after it has stabilised.
The �rst state is in blue. In the 2.5s following, successful jumps occurred
601 times. These are shown in green in �gure 4.20, and the �nal distribution
is black. Changes have happened more often at places where the average
slope of the SOS is relatively �at.

Number of particles 100 200 300 400 500 600 700 800 900
Residuals 0.653 1.723 0.689 1.111 0.699 1.368 0.461 0.986 1.186

Table 4.1: Residuals of the Least Square estimate for the SOS of 50 iterations
with 1000 sites and varying number of particles
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Figure 4.13: The mean of the SOS at various points in time for �at (A) and
wedge (B) initial conditions. The 40 recorded times of the SOS are organized
in 8 sequential groups, represented by di�erent colours in the image, begin-
ning with blue, red, and yellow and ending with purple.

Number of particles 100 200 300 400 500 600 700 800 900
Mean variance 53.5 92.4 120.5 168.9 176.1 150.6 132.7 111.0 92.3

Max height 17.5 43.4 53.7 59.6 61.4 60.7 51.2 44.0 25.4

Table 4.2: Mean variance of the SOS of 50 iterations with 1000 sites and a
varying number of particles and the maximum height of the SOS in �gure
4.16
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Figure 4.14: The �nal distribution of the SOS for a system with 1000 sites
for a varying number of particles together with the approximation given
by the Least Squares estimated second-degree polynomial. Residuals of the
estimated polynomial can be found in table 4.1
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Figure 4.15: The SOS for a system with 1000 sites and di�erent numbers
of particles. Image A shows the �nal distribution of the SOS, and image B
compares the �nal distribution to the initial for all systems.

Figure 4.16: The same processes as in �gure 4.15 but adjusted for initial
conditions. Image A shows the �nal distribution minus the initial, and in
image B the distributions are normalized.
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Figure 4.17: The average of 50 iterations of the SOS for a system where
the initial distribution corresponds to every other site in the WASEP being
occupied (i.e. the number of particles is N/2) for systems of di�erent sizes.
Image A shows the �nal distributions. In image B, these are normalized by
dividing with the maximum value of the SOS.

Figure 4.18: 10 instances of the SOS. The system has 2500 sites in A and
500 sites in B
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Figure 4.19: 10 instances of the SOS. A was simulated with 2500 sites and
B with 500 and for both processes 500 sites are shown

Figure 4.20: Zoomed in on one iteration of the SOS with 1000 sites and 500
particles. The initial con�guration is in black and the �nal con�guration 2.5s
later is in green. The intermediary states are in orange
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4.3.3 Conclusions

With a larger number of sites, both the SOS and WASEP become smoother
and take longer to converge. The other main factor in�uencing the behaviour
is the di�erence between empty and occupied sites in the WASEP. In the SOS,
this di�erence is visible in the angle of the initial condition.

If the di�erence is low, convergence becomes faster, but the variance is higher.
A SOS process with �xed end-points will grow to a parabola. If the initial
distribution is close to horizontal, it becomes higher and smoother. The fur-
ther from equal the number of occupied and empty sites is, the lower and
rougher the parabola becomes, and the time it needs to converge becomes
longer. Disregarding initial conditions, the behaviour of any two systems is
similar if one has the same percentage of occupied sites that the other has
empty.
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Chapter 5

Scaling Limits

The results from the previous Chapter suggest that the average particle den-
sity of the WASEP and the mean height of the SOS approach stationary
distributions as time and the number of sites increases. The individual par-
ticle systems �uctuate around the stationary average.

As the number of sites, N , increases on an interval, the discrete particle
system model approaches a continuous model. The link between the discrete
microscopic model described by a Markov generator and the macroscopic
di�erential equation describing the large-scale behaviour of the system is, for
an exclusion process, the hydrodynamic scaling limit. This scaling limit is
obtained as N and t both approach in�nity under appropriate scaling of time
and space.

If space is scaled as x = uN and the particle con�guration of an exclusion
process is denoted ηt, the associated empirical measure πN(η, du) is de�ned
by

πN(η, du) =
1

N

∑
TN

ηt(x)δx(du), (5.1)

where TN = Z/NZ is the discrete torus with N sites. Assume that the
initial con�guration πN

0 → ρ0(u)du in probability, with ρ0(u) being a smooth
function on TN . Then, the empirical measure converges in distribution, i.e.

{πN
t , 0 ≤ t ≤ T} → {ρ(t, u)du 0 ≤ t ≤ T}, (5.2)

57
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where ρ(t, u) is the unique solution to a partial di�erential equation

∂tρ = ∆h(ρ) (5.3)

with initial condition ρ(0, u) = ρ0(u). The function h depending on the mi-
croscopic interaction. (Fra14)

Hydrodynamic limits can be applied for many particle systems, but there
are also systems which do not converge (Fra14). The space in which the
limits converge is D

(
[0, T ],M+

)
, the space of right continuous functions with

left limits taking values in the space M+(T) of �nite positive measures on T
with the weak topology.

Let QN be the probability measure on D
(
[0, T ],M+

)
which corresponds to

the Markov process πN
t , speeded up with N2, and with initial distribution

µN . There are several steps in the process to show that QN is a hydrody-
namic limit to the system. First, the family QN has to be tight to guarantee
convergence. The limit points must be concentrated on absolutely contin-
uous trajectories that are weak solutions to the limiting PDE. This PDE
should have a unique weak solution. Lastly, the empirical measure πN needs
to converge in probability to a deterministic measure πt(u)du (Lan02).

The set TN contains the N sites of a realisation of an exclusion process
with periodic boundaries. As N → ∞, the space between particle sites will
go to zero. Let ηt be a particle con�guration for an exclusion process, πN

its associated empirical measure, and G : TN → R a continuous function.
De�ne

⟨πN
t , G⟩ = 1

N

∑
x∈TN

G
( x

N

)
ηt(x). (5.4)

AsN increases πN approaches the continuous measure π and the sum ⟨πN , G⟩
approaches the integral ⟨π,G⟩ =

∫
TG(u)π(du).

The Itô initial value problem{
dξ(t) = f

(
ξ(t)

)
dt+ g

(
ξ(t)

)
dWt

ξ(0) = ξ0
(5.5)

is solved by the Itô process

ξ(T ) = ξ(0) +

∫ T

0

f
(
ξ(t)

)
dt+

∫ T

0

g
(
ξ(t)

)
dWt. (5.6)
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To �nd the limiting equation describing the equilibrium state of the process
ηt, choose ξ(t) = ⟨πN

t , G⟩, f as the Markov generator LN for η, and g so
that the martingale

∫ T

0

(
g(ξ(t)

)
dWt vanishes in the limit. Inserting this into

equation (5.6) yields

⟨πN
t , G⟩ = ⟨πN

0 , G⟩+
∫ T

0

N2LN⟨πN
s , G⟩ds+MG,N

t . (5.7)

There is a di�usive element in an exclusion process. Di�usion is described
with the heat equation ∂tu = ∂xxu. In this equation, the �rst derivative of
time corresponds to the second derivative of space. This suggests that for
movement in an exclusion process to be noticeable, time must be scaled by
ε2 when space is scaled by ε. This is called the di�usive scaling, and the
factor N2 in front of the generator LN originates from this.

5.1 Symmetric Simple Exclusion Process

As an example, consider the symmetric simple exclusion process. The Markov
generator for the entire system using occupation variables η(x) ∈ {0, 1} is

LNf(η) =
1

2

∑
x

(
η(x)

(
1− η(x+ 1)

))[
f(ηx,x+1)− f(η)

]
+

1

2

∑
x

(
η(x)

(
1− η(x− 1)

))[
f(ηx,x−1)− f(η)

]
. (5.8)

For any one site x, the �ow of particles leaving is

1

2
η(x)

(
1− η(x+ 1)

)
+

1

2
η(x)

(
1− η(x− 1)

)
(5.9)

and the �ow of arriving particles is

1

2
η(x+ 1)

(
1− η(x)

)
+

1

2
η(x− 1)

(
1− η(x)

)
. (5.10)

The total rate of change at site x will depend on

LNη(x) = −η(x)
(
2− η(x+1)− η(x− 1)

)
+
(
1− η(x)

)(
η(x+1)+ η(x− 1)

)
,

(5.11)
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which simpli�es to

1

2

(
η(x+ 1) + η(x− 1)− 2η(x)

)
= ∆η(x), (5.12)

where ∆ is the discrete Laplacian. Then

LN⟨πN
s , G⟩ = 1

2N

∑
x∈TN

G
( x

N

) [
η(x+ 1) + η(x− 1)− 2η(x)

]
. (5.13)

The sum in equation (5.13) is split into two parts,
∑

x∈TN
G
(

x
N

) [
η(x+1)−

η(x)
]
and

∑
x∈TN

G
(

x
N

) [
η(x − 1) − η(x)

]
. After summation by parts in

equations (5.14) and (5.16) they are recombined in equation (5.17). The �rst
part becomes

N∑
x=1

G
( x

N

) (
η(x+ 1)− η(x)

)
=G

(
N + 1

N

)
η(N + 1)−G

(
1

N

)
η(1)−

N∑
x=1

η(x+ 1)

(
G

(
x+ 1

N

)
−G

( x

N

))

=G

(
N + 1

N

)
η(N + 1)−G

(
1

N

)
η(1)−

N−1∑
x=0

η(x)

(
G
( x

N

)
−G

(
x− 1

N

))
.

(5.14)

Since the domain is a torus, N + 1 refers to the same site as 1, and N and 0
are also equivalent. Thus G

(
N+1
N

)
η(N + 1) = G

(
1
N

)
η(1) and

N−1∑
x=0

η(x)

(
G
( x

N

)
−G

(
x− 1

N

))

=
N−1∑
x=1

η(x)

(
G
( x

N

)
−G

(
x− 1

N

))
+ η(N)G

(
N

N

)
−G

(
N − 1

N

))

=
N∑

x=1

η(x)

(
G
( x

N

)
−G

(
x− 1

N

))
.

(5.15)
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Similarly, the second part turns into∑
TN

G
( x

N

) (
η(x− 1)− η(x)

)
=−G

(
N + 1

N

)
η(N + 1) +G

(
1

N

)
η(1) +

N+1∑
x=2

η(x)

(
G

(
x+ 1

N

)
−G

( x

N

))

=
N∑

x=1

η(x)

(
G

(
x+ 1

N

)
−G

( x

N

))
.

(5.16)

They combine to

N∑
x=1

η(x)

(
G

(
x+ 1

N

)
+G

(
x− 1

N

)
− 2G

( x

N

))
=
∑
TN

η(x)
1

N2
∆G

( x

N

)
,

(5.17)
transforming equation (5.7) into

⟨πN
t , G⟩ = ⟨πN

0 , G⟩+ 1

2

∫ t

0

〈
πN
s ,∆G

( x

N

)〉
+MG,N

t , (5.18)

where MG,N
t is a martingale.

Let QN be a probability measure corresponding to πN speeded up by N2

with initial condition µN . QN is relatively compact and will thus have a
limit point. All limit points to QN at time 0 are concentrated on trajectories
that are equal to ρ0(u)du. Solving the martingale problem �nds the limit
points to QN at all times to be concentrated on absolutely continuous tra-
jectories that are weak solutions of the stochastic heat equation with initial
condition ρ0. The weak solution to the stochastic heat equation is unique
(Lan02). πN

t converges in distribution to the deterministic measure πt(u)du.
This implies πN

t converges in probability to a measure ρ(u) which solves{
dtρ(t, u) =

1
2
∆ρ(t, u)

ρ(0, u) = ρ0(u).
(5.19)

The detailed proof can be found in (Lan02).
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5.2 Gradient systems

For more complicated particle systems, further assumptions are necessary to
prove the uniqueness of the limit (Lan02). One such assumption for exclu-
sion processes is for the system to be gradient. In this case, properties of the
current facilitate calculations.

The current over {x, x + z} is equal to the �ow from x to x + z minus
the �ow from x + z to x. The generator LN

(
η(x)

)
can be described by the

current of the process

LNη(x) = Wx−1,x −Wx,x+1 = −∇(Wx,x+1). (5.20)

This relation gives a new expression for the part inside the integral in equation
(5.7)

N2LN⟨π,G⟩ = − 1

N

∑
TN

G
( x

N

)
∇Wx,x+1. (5.21)

Summing by parts yields

− 1

N

N−1∑
x=1

G
( x

N

)
∇Wx,x+1

= − 1

N
(G

(
N

N

)
WN−1,M −G

(
1

N

)
W1,2 +

1

N

N−1∑
x=1

Wx,x+1∇G
( x

N

)
. (5.22)

Because the state space is on a discrete torus, the endpoints have the same
value and

N2LN⟨πN , G⟩ = 1

N

∑
x

(∇NG)
( x

N

)
NWx,x+1, (5.23)

where the discrete derivative is ∇N = N
(
G(x+1

N
)−G

(
x
N

) )
.

If the current W0,z can be written as a sum of local functions hn minus
their translation τxhn for every z it is called gradient (Lan02). The current
of a gradient system is translation invariant; Wx,x+z = τxW0,z for every x and
z. The current Wx,x+1 can be written as a di�erence of the local functions
and their translations Wx,x+1 = τx

∑n1

i=1{τx1,i
h1,i − h1,i}. Inserting this into
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equation (5.23), summation by parts is possible a second time. Equation
(5.23) becomes

N2LN⟨πN , G⟩ = 1

N

∑
x

N

{
∇G

( x

N

)
−∇G

(
x− 1

N

)}
τxh, (5.24)

which further simpli�es to

N2LN⟨πN , G⟩ = 1

N

∑
x

G′′
( x

N

)
τxh
(
η(x)

)
+O(N−1). (5.25)

Since the martingale

MN = ⟨πN
t , G⟩ − ⟨πN

0 , G⟩ −
∫ t

0

N2LN⟨πN
s , G⟩ds (5.26)

vanishes at 0 its expectation is constantly 0 and

E(⟨πN
t ⟩ − ⟨πN

0 ⟩) = E
(∫ t

0

∑
x

G′′
( x

N

)
τxh
(
η(x)ds

)
+O(N−1)

)
, (5.27)

which converges to∫
TN

G(u)ρ(t, u)du−
∫
TN

G(u)ρ0(t, u)du =

∫ t

0

∫
TNG

′′(u)EµN

[
τxh
(
η(x)

)]
duds.

(5.28)
The expectation EµN

[
τxh
(
η(x)

)]
∼ EνN

ρ(s,x/N)
[h] if local equilibria are con-

served. Thus, if the empirical measure ρ converges, it must satisfy∫
TN

G(u)ρ(t, u)du−
∫
TN

G(u)ρ0(t, u)du =

∫ t

0

∫
TN

G′′(u)h̃(ρ(s, u))duds

(5.29)
for all smooth G and times t and h̃(ρ(s, u)) = Eρ[h] =

∫
h(η)dρ(η). There-

fore, ρ is a weak solution of the di�erential equation{
∂tρ = ∆h̃(ρ)
ρ(0) = ρ0.

(5.30)

(Lan02)
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5.3 Weakly Asymmetric Simple Exclusion Pro-

cess

Though an exclusion process, the WASEP is not gradient. In this Section,
the Markov generator for one site in the WASEP will be derived. The ideas
in the proof of the convergence of the limit are discussed in Section (5.4).

From the Markov generator for the WASEP with η ∈ {0, 1}

LNf(η) =
1

2

∑
x

(
η(x)

(
1− η(x+ 1)

))[
f(ηx,x+1)− f(η)

]
+(1

2
+
√
ε
)∑

x

(
η(x)

(
1− η(x− 1)

))[
f(ηx,x−1)− f(η)

]
. (5.31)

The rate of change for one site x is found to be

LNη(x) = −1

2

(
η(x)

(
1− η(x+ 1)

))
−
(1
2
+
√
ε
)(

η(x)
(
1− η(x− 1)

))
+(1

2
+
√
ε
)(

η(x+ 1)
(
1− η(x)

))
+

1

2

(
η(x− 1)

(
1− η(x)

))
, (5.32)

which simpli�es into

LNη(x) =
1

2
∆η(x) +

√
ε
(
η(x+ 1)

(
1− η(x)

)
− (η(x)

(
1− η(x− 1)

))
(5.33)

and further to

LNη(x) =
1

2
∆η(x) +

√
ε
(
∇+η(x)− η(x)

(
∇+η(x) +∇−η(x)

))
=

1

2
∆η(x) +

√
ε
(
∇η(x) + 2η(x)∇η(x)

)
. (5.34)

In the limit, the WASEP converges to the stochastic Burgers equation

∂tut =
1

2
∆ut −

1

2
∇u2

t +∇Ẇt. (5.35)

The proof of convergence is analogous to the SOS and uses the relation
ηt(x) = ∇−ζ(x).
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5.4 Single Step Solid on Solid Process

The generator for the SOS (equation 3.9) in Section (3.2) has transition rates
which depend on the local particle con�guration. The transition rates are
non-zero only when the criteria for a site being a local extreme point are
met. The conditions determining the feasibility of transition need to be rep-
resented inside the Markov generator to derive the limiting equation for the
SOS. To �nd a di�erent expression for the generator, the SOS relationship
to the WASEP is exploited. Let η(x) be the con�guration of the WASEP
and set ζt(x) =

∑
y≤x 2η(y)− 1.

A particle moving one step to the right from site x to site x + 1 in the
WASEP corresponds to the local maximum between the relevant sites, be-
coming a local minimum in the SOS. This transition occurs at rate 1

2
when

the condition η
(
x
)(
1− η(x+1)

)
is satis�ed. A change from local minima to

local maxima at the same position in the SOS transpires when a particle at
site x+ 1 moves one step to the left. The transition rate for this is 1+ε

2
, and

the condition to be satis�ed is η
(
x+ 1

)(
1− η(x)

)
.

Putting this together leads to an expression of the generating function in
the WASEP variables

LNη(x) = −1

2
η
(
x
)(
1− η(x+ 1)

)
+

(
1

2
+
√
ε

)
η
(
x+ 1

)(
1− η(x)

)
. (5.36)

Simplifying, the symmetric part of the above equation becomes η(x + 1) −
η(x). Using the relation ζt(x) =

∑
y≤x 2η(y) − 1 it can be expressed as

1
2

(
ζ(x+ 1)− ζ(x) + 1

)
− 1

2

(
ζ(x)− ζ(x− 1) + 1

)
= 1

2
∆ζ(x).

The asymmetric part η(x+ 1)
(
1− η(x)

)
translates to

1

2

(
ζ(x+ 1)− ζ(x) + 1

)(
1− 1

2

(
ζ(x)− ζ(x− 1) + 1

))
, (5.37)

which is equal to

1

4

(
1 +∇+ζ(x)

)(
1−∇−ζ(x)

)
. (5.38)
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Expanding yields

1

4

(
1 +∇+ζ(x)−∇−ζ(x)−∇+ζ(x)∇−ζ(x)

)
=

1

4

(
∆ζ(x) + 1−∇+ζ(x)∇−ζ(x)

)
. (5.39)

The Markov generator for the SOS is found by combining the symmetric
part, ∆ζ(x), and the asymmetric part, in equation (5.39)

Lεζ(x) =
(1
2
+
√
ε
)
∆ζ(x) +

√
ε
(
1−∇+ζ(x)∇−ζ(x))

)
. (5.40)

With a di�usive scaling, it converges to the KPZ equation.(Ber96)

The Kardar-Parisi-Zhang equation (5.44) is proposed to describe the be-
haviour of the interface �uctuations in a random growth model. The growth
of the interface height is characterised as a combination of di�usion, lateral
growth and random forcing. To derive the model, the simplest non-trivial
representation for these components is chosen as

∂tht = ν∆ht + F (∇ht) +
√
Dξt. (5.41)

Di�usion is represented by ν∆ht, with ν as the viscosity. The stochastic
process ξt behind the random forcing is assumed to be independent in space
and time and is modelled as white noise. The lateral growth ∇ht depends
on some function F . F is approximated by a Taylor expansion. The terms
of third and higher order are irrelevant for large-scale behaviour. Inserting
this expression in equation (5.41), it becomes

∂tht = ν∆ht + F (0) + F ′(0)∇ht +
1

2
F ′′(0)(∇ht)

2 +
√
Dξt. (5.42)

F (0) and F ′(0)t vanish with the Galilei transformation
h̃t(x) = ht(x − F ′(0)t) − F (0)t. Set F ′′(0) = λ. With these choices for the
noise and lateral growth, equation (5.42) becomes the KPZ equation

∂th̃t = ν∆h̃t +
1

2
λ(∇h̃t)

2 +
√
DẆt. (5.43)

Choose the parameters ν = 1
2
, λ = −1 andD = 1 and set h = h̃. (Kru92)(Qua11)

The previous equation becomes

∂tht =
1

2
∆ht −

1

2
(∇ht)

2 + Ẇt. (5.44)
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The function ht(x) is the height at x, or the distance from a starting line
to the interface. Locally, on a small scale, the behaviour of ht depends on
all three terms on the right-hand side of the equation (5.44). However, it is
assumed that when moving to a coarser scale by grouping particles together,
the only relevant term is ∆ht.

The Wiener Process has covariance E
(
Wt(r),Ws(r)

)
= (t ∧ s). De�ne the

molli�ed Wiener process W κ
t (r) = Wt(δ

κ
r ), where δκr (r) = κJ

(
κ(r − r)

)
for

an even positive function J ∈ C∞
0 (R) where

∫
Jdr = 1. This process has a

covariance resembling a tent function: E
(
W κ

t (r),W
κ
s (r)

)
= (t ∧ s)(δκr−r, δ

κ
0 ).

ReplacingWt in equation (5.44) byW κ
t will avoid di�culties when integrating

in�nitely many Wt. As δκ → δ when κ → 0, W κ
t converges to Wt. Rewriting

the KPZ equation (5.44) into integral form with test functions and W κ
t gives∫ t

0

∂(hκ
s , ϕ)ds =

∫ t

0

{1
2
∆(hκ

s , ϕ)−
1

2

(
∇(hκ

s , ϕ)
)2}

ds+

∫ t

0

(Ẇ κ
s , ϕ)ds. (5.45)

Integrating by parts and adding the Wick product of the non-linearity gives

hκ
t (ϕ) = h0(ϕ) +

1

2

∫ t

0

{
hκ
s (ϕ

′′)−
[
(∇hκ

s )
2 − Cκ(0)

]
(ϕ)
}
ds+W κ

t (ϕ). (5.46)

The Wick product, Cκ(0) ∼ 1
κ
, originates from the extra term in the Itô

integral. The initial condition h0 is assumed to be continuous, and for every
r ∈ R the exponential moment E

(
ep·h0(r)

)
can grow at most exponentially

in r. Since W κ
t is smooth for �nite κ, equation (5.46) can be solved by a

di�erentiable process hκ ∈ C
(
[0, T ];C

(
R)
)
∩ C

(
(0, T ];C1(R)

)
. The family

{hκ}κ>0 converges weakly as κ → ∞ in the topology of C([0, T ];C
(
R)
)
.

The function ζ̄ is de�ned in Section 3.2 as the linear interpolation of the
SOS process. Scaling in time and space and adding the Wick term νεt =
1
2
ε−

3
2 − 1

24
ε−

1
2 yields Zε

t (r) =
√
ε
(
ζ̄ε−2t(ε

−1r)− νεt
)
. When the initial distri-

bution has the right properties the family {Zε}ε>0 converges weakly as ε → 0.

{hκ}κ>0 and {Zε}ε>0 converge to the same process.

To prove this, Bertini and Giacomin apply a transformation to the KPZ
equation and a microscopic analogue to this transformation on the �uctua-
tion �eld and show that they both converge to a solution of the stochastic
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heat equation (Ber97).

The linear interpolation of a valid initial distribution of the SOS converges
in the right scaling to a random function that satis�es the conditions for an
initial function of the KPZ equation. Assume ζ̄ to be a continuous function
by linear interpolation, scale this interpolated function as ζ̄ε =

√
ε ζ̄
(
1
ε
r
)
and

let ζ0 ful�l the conditions for an initial distribution of the SOS. Then there
exists a random function h0 ∈ C(R) such that ζ̄ε converges weakly to h0 in
the topology of C(R) as ε → 0.

The function h0 de�ned as above will be Hölder continuous with exponent
less than 1

2
. This process is continuous but not di�erentiable, and behaves

like a random walk. h0 satis�es the conditions for an initial function for the
KPZ equation (5.44)(Ber97).

Using the Cole-Hopf transformation θt = e−ht on equation (5.44), it becomes
the stochastic heat equation

dθt =
1

2
∆θtdt− θtdWt. (5.47)

For a bounded interval on R, the existence and uniqueness of the solution to
equation (5.47) are already proved. De�ne Ψ : D

(
[0, T ];C(R)

)
7→ D

(
[0, T ] :

C(R)
)
as

Ψ(ft(r)) =

{
− log ft(r) if f ∈ D

(
[0, T ];C+(R)

)
,

0 otherwise.
(5.48)

If θ is a solution to the stochastic heat equation, and θ ∈ C+(R), Ψ(θ) = h
is a solution to the KPZ equation. (Thm 3.1 and 3.2 in (Ber97)).

The transformation for the �uctuation �eld corresponding to Cole-Hopf is
the Gärtner transformation

ξt(r) = exp{−γεζ̄t(r) + λεt} (5.49)

where γε =
1
2
log(1 + 2

√
ε) and λε = 1 +

√
ε−

√
1 + 2

√
ε. Using the inverse

map to the Gärtner transform, Zε
t can be rewritten as

Zε
t (r) = −

√
ε

γε
log
(
ξεt (r)

)
+
√
ε

[
λε

γε
ε−2 − νε

]
t. (5.50)
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Since limε→0

√
ε

γε
=

√
ε

1
2
(1+2

√
ε)

= 1 and there exists a constant c such that

|λε

γε
ε−2 − νε| ≤ c for all ε ∈ (0, 1) most variables disappear from Zε as ε → 0.

For ε close to 0 equation (5.50) simpli�es to

Zε
t (r) = − log

(
ξεt (r)

)
= Ψ

(
ξεt (r)

)
. (5.51)

When ξ is scaled di�usively as ξεt (r) = ξε−2t(ε
−1r) the family {ξεt }ε>0 con-

verges weakly to θ as ε → 0, where θ is the solution to the stochastic heat
equation. The proof can be found in (Ber97). It is done by identifying the
limit through formulating the martingale problem for the stochastic heat
equation and proving that the family {ξε}ε>0 converges to a process ξ with
the same law as the unique solution to this problem.

ξε converges to the solution of the stochastic heat equation (5.47), and there-
fore Zε converges to h, which is the solution to the KPZ equation (5.44).
Thus, the solution of the KPZ equation can be derived as the scaling limit
of the SOS particle system.

5.5 KPZ Universality

The KPZ equation was invented to describe a growth process whose evolu-
tion depends on both a smoothing, di�usive part and a growth rate, where
the growth rate is a combination of a non-linear dependence of growth rate
on the local slope and space-time independent noise. This is true for the
SOS and for various other models which are said to belong to the KPZ uni-
versality class. It is predicted that for all these models at the time t, the
�uctuations around the mean will be on the scale t

1
3 , and the process will be

spatially correlated on a t
2
3 scale. Experiments have con�rmed this behaviour

in several cases, such as liquid crystal growth and bacterial colony growth
(Cor16), (Rem22).

There is not yet a concrete de�nition of which models belong to the KPZ
universality class. Aside from the SOS, other models in the class include
directed polymers and ballistic growth processes. Much of the research on
KPZ universality has been done with the TASEP since it has the speci�c
properties necessary for the Gärtner transform.(Bai22), (Cor11).
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The KPZ universality conjecture states that for any model in this class,
the associated height function h should, with scaling, converge to the same
process

lim
ε→0

ε
1
2

(
h(c1ε

− 3
2 t, c2ε

−1x)− c3ε
3
2 t
)
= h (5.52)

where h depends only on the initial condition h0 = limε→0 ε
1
2h(0, c2ε

−1x). h
is called the KPZ �xed point. It is expected to be a Markov process and is
invariant under the 1 : 2 : 3 scaling (Rem22)

h(x, t) = αh(α−2x, α−3t) (5.53)



Chapter 6

Current state of research and

open problems

To show convergence in the scaling limit to the KPZ equation, Bertini and
Giacomin (Ber97) use a method based on the linearisation of both the par-
ticle system model and the partial di�erential equation. This relies on the
linearised di�erential equation to be well-de�ned and for the microscopic
transform of the particle system to give a meaningful result. The WASEP
has speci�c properties that make this approach work, but for most models,
it does not.

To circumvent this restriction Gonçalves and Jara (Gon14) and Hairer (Hai12)
propose new forms of solutions to the KPZ equation, and Flandoli et al
(Fla21) and Dembo and Tsai (Dem16) �nd ways to link other models to the
TASEP and utilise that connection to prove the scaling limit of the other
models. The methods for investigating the KPZ equation in 1 space dimen-
sion fail for d ≥ 2 when the stochastic heat equation is no longer well-de�ned.
Chatterjee (Cha22) and Tao (Tao23) investigate scaling limits in multiple di-
mensions.

(Gon14) introduces the notion of energy solutions of stochastic di�erential
equations, which gives a well-de�ned solution of the KPZ equation without
relying on the Cole-Hopf transform and the stochastic heat equation. The
idea behind energy solutions is to regularise the non-linear term with noise
in the time variable. This method works for particle systems without the
properties of the WASEP. The energy solution of the KPZ is the same as the

71
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solution obtained by using the Cole-Hopf transform. A process is considered
an energy solution if two criteria limiting expectations and norms hold, and
it is a martingale ful�lling a speci�c equation (Gon14).

In (Hai12), Hairer introduces a new concept of solution to the KPZ equation
that builds on writing the solution as a Wild expansion whose components
are related to the solution to the stochastic heat equation. The series is
truncated, the parts in the series are proved convergent, and the residual is
shown to be a solution to a solvable equation. This construction of a solution
avoids the Cole-Hopf transform and enables analysis of a broader range of
problems. (Hai12).

Because of the non-uniqueness of weak solutions, the solution of a determinis-
tic di�erential equation with deterministic initial condition can be a stochas-
tic process (Fla21). Flandolini et al (Fla21) consider a class of weak solutions
to the Burgers equation where the second and third derivative goes to zero
and whose characterisation is unknown. By �nding a bijection, they link
these to a particle system model called the Active Bi-Directional Flow and
the TASEP, thus showing that the TASEP can be interpreted as a stochastic
weak solution to the deterministic Burgers equation.

In a non-simple exclusion process, particles can jump to sites that are not
their neighbours. These processes also converge to the KPZ equation, which
was proven in (Dem16) for jumps of length 3 or smaller and in (Yan23) for
jumps of �nite arbitrary length. It is an analytic method that compares
the transition probabilities of any asymmetric exclusion process with �nite
length to the TASEP and �nds they have the same scaling limit and, thus,
belong to the KPZ universality class.

There are many models where the scaling of �uctuations and spatial cor-
relation imply they belong to the KPZ universality class, where rigorous
analysis of the scaling limit is impossible. There is not yet a concrete def-
inition of which models belong in the KPZ universality class. If there is
an explicit construction of the KPZ �xed point, the universality conjecture
(5.52) can be used to formulate a concrete de�nition of the KPZ universality
class. (Rem22).

For dimension d > 1, the stochastic heat equation ceases to be well-posed.
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Using the correct scaling in two dimensions, the height function for particles
su�ciently close to each other converges in joint distribution to the multi-
dimensional normal distribution. The local average of hε, the solution to a
2d KPZ driven by molli�ed space-time white noise on a ball, converges to a
sum of a Gaussian process, a constant and the solution to the deterministic
KPZ equation (Tao23).

In higher dimensions, there is no known method of how to take non-trivial
scaling limits, and even in one dimension, there can be many scaling limits
to the same model. Instead, in (Cha22), Chatterjee shows that there is a
general class of growth models for which the scaling limit, regardless of how
it is taken, locally behaves like a KPZ equation. For these models, the lim-
iting function can be decomposed into a Laplacian term, a gradient squared
term, a noise term and a negligible residual.
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Appendix A

De�nitions

A.1 σ-�elds and �ltrations

In statistics, knowledge of possible events is represented by σ-�elds.
A σ-�eld F is de�ned as a family of subsets on a non-empty set Ω
such that (1) ∅ ∈ F , (2) both the set A and its complement Ω\A
are in F and (3) the union of any sequence of sets in F is also in F .
The sets in F are called events.

A �ltration is a sequence of σ-�elds on Ω such that
F1 ⊂ F2 ⊂ . . . ⊂ F . The σ-�eld Fn represents our knowledge
at time n and contains all events for which it is possible to discern
whether or not they have occurred.

A.2 Random variables

A random variable is de�ned as a F -measurable function
ξ : Ω 7→ R. A function is measurable if it can be known,
i.e. {ω ∈ Ω : ξ(ω) ∈ B} ∈ F for all Borel sets B ∈ R) with a
Borel set being the smallest σ-�eld to contain all intervals in R. A
sequence of random variables is adapted to a �ltration if ξn is
Fn-measurable, i.e. ξn ∈ Fn for all n.
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A probability measure P : F 7→ [0, 1] is a function with
the properties P(Ω) = 1 and if A1, A2, . . . are disjoint sets
P(A1 ∪ A2 ∪ . . .) = P(A1) + P(A2) + . . .. Together, (Ω,F ,P) make
up a probability space.

Integrable random variables, expectation and variance

Integrable in the case of random variables refers to the Lebegue
integral with respect to a probability measure P. The random
variable ξ is integrable if

∫
Ω
|ξ|dP < ∞, and the expectation is then

de�ned as E(ξ) =
∫
Ω
ξdP. If

∫
Ω
|ξ|2dP < ∞ ξ is square integrable. If

a random variable is square integrable its variance is
∫
Ω
(ξ−E(ξ))2dP

Conditional Expectation The conditional expectation E(ξ|G)
for the random variable ξ given a σ-�eld G ⊂ F is a random variable
which is G measurable, and for which all events A ∈ G the expec-
tation

∫
A
E(ξ|G)dP =

∫
A
ξdP. The conditional expectation has the

following properties

1. E(αξ + βζ|G) = αE(ξ|G) + βE(ζ|G)
2. E(E(ξ|G)) = E(ξ))

3. E(ξζ|G) = ξE(ζ|G) if ξ is G-measurable.

4. E(ξ|G) = E(ξ) is ξ is independent of G
5. E(E(ξ|G)|H) = E(ξ|H) if H ⊂ G.
6. If ξ ≥ 0 then E(ξ|G) ≥ 0

(Brz99)

A.3 Stochastic Processes

A family of random variables ξ(t) parametrized by t ∈ T is called
a stochastic process. For every ω ∈ Ω the function t → ξ(t, ω) is
called a path or sample path of ξ(t).
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Code

B.1 MATLAB

For simulations of the long-time distribution of particles in the
WASEP

%WASEP, impassable borders, vary occupancy and epsilon

k = 50; %nbr of iterations

xMax = 1000; %nbr of positions

tMax = xMax;

kTagged = zeros(k,tMax);

kWASEPprev =zeros(k,xMax); %latest configuration

kWASEPsave = zeros(k,41,xMax); %save at certain

intervals

xInit = repmat([0,1], 1, 500); %flat, 500 particles

epsilon = 1/xMax; %the asymmetry is the inverse of the

space scaling

saveInd = 1;

Q = (1 + (epsilon))/2; %left intensity

P = 1/2; %right intensity

q = Q/(Q + P); %normalize left

p = P/(Q + P); %normalize right

for ind = 1:k %initialize for all k simulations

kWASEPprev(ind,:) = xInit;
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kWASEPsave(ind,1,:) = xInit;

end

for tInd = 1:4*tMax

kWASEPtInd = zeros(ind,xMax); %temporary

for ind = 1:k

tInd %print out which for loop is active

ind %to estimate the time until the simulation

finishes

%Initialize

A = zeros(tMax*xMax/4, 3); %allocate space for poisson

processes for all sites.

tagged = find(xWASEP > 0, 1); %the tagged particle is

the leftmost one

tagged_left = tagged; %keep track of the leftmost

position of the tagged particle

tagged_right = tagged; %-"- rightmost

tagged_init = tagged; %initial position for this

simulation

%initialize jumps

time = 0; %time at the start of a Poisson process

index = 1; % index of the first non-occupied row of A

for pos = 1:xMax %generate a Poisson process with

intensity (2 + epsilon)/2

U = rand(tMax,1);

X = -log(1 - U)/(P + Q); %exponentially distributed

variables

T_all = cumsum(X); %a Poisson process

ind_T = find(T_all > tMax/4, 1);

T = T_all(1: ind_T - 1); %the non-zero elements

n_T = length(T);
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p_dir = rand(n_T, 1);

p_left = p_dir \langle q; % p(left) = q

dir = ones(n_T, 1);

dir = dir - 2*p_left; %dir = 1 if right, -1 if left

J = [T, pos*ones(n_T,1), dir]; %the Poisson process

at site pos.

Stores time,

position before jump

and jump direction

A(index:index + n_T - 1,:) = J;

index = index + n_T;

end

temp = A(any(A,2),:); %delete redundant (zero) rows of A

A = sortrows(temp,1); %sort by time

[m,n] = size(A);

%step

for t = 2:m %all jumps in A

j = A(t,:);

from = j(2);

direction = j(3);

to = from + direction;

if to > xMax || to \langle 1

%nothing happens, the borders are impassable

else %interior movement

if xWASEP(from) == 1 && xWASEP(to) == 0

%movement only if from occupied and to empty

xWASEP(from) = 0;

xWASEP(to) = 1;

if tagged == from

tagged = to;
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if (to > tagged_right)

tagged_right = to;

elseif (to \langle tagged_left)

tagged_left = to;

end

end

end

end

end

kTagged(ind, tInd, 1) = tagged_left;

kTagged(ind,tInd,2) = tagged_right;

kTagged(ind,tInd,3) = tagged_init;

kWASEPtInd(ind,:) = xWASEP;

kWASEPprev = kWASEPtInd; %last configuration will be

the initial next time

interval

if(rem(tInd,100) == 0)

saveInd = saveInd + 1;

kWASEPsave(:,saveInd,:) = kWASEPprev;

end

end

save("wasepN1000p500initFlat.mat","kTagged",

"kWASEPprev", "kWASEPsave")

For calculating the SOS from the WASEP

function [kSOS] = kWASEP2kSOS(kWASEP, kTagged)

[m,k] = size(kWASEP)

kSOS = zeros(m,k + 1);

for i = 1:m %m simulations

sos = zeros(1,m + 1);

wasep = kWASEP(i,:);

wasep = 2*wasep - ones(size(wasep));

%put wasep in spin variables
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tagged = find(wasep,1); %impassable borders

sos(tagged) = -tagged;

for j = 1:tagged - 1

sos(j) = -sum(wasep(j:tagged)) - tagged;

end

sos(tagged) = - tagged;

for j = tagged + 1:k

sos(j) = sum(wasep(tagged:j)) - tagged;

end

sos(k + 1) = sos(k - 1);

kSOS(i,:) = sos;

end

end

For linear and quadratic estimation

function [theta, res] = LeastSquares(x,y, degree)

%takes pairs (x,y) and finds the line a + bx = y if

degree == 1

%and the parabola ax^2 + bx + c if degree == 2

%x, y must be a column vector and equal size

[m,n] = size(x);

if(m \langle n)

x = x';

y = y';

end

if degree == 1

X = [ones(size(x)) x];

else

X = [ones(size(x)) x x.^2];

end

theta = (X'*X)\X'*y;

res = sum((y - X*theta).^2);

end
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B.2 Java

An animation to visualize the relation between the WASEP and the
SOS. It is in the class wasepPanel that the simulations are made, the
main class WASEPandSOS controls the animation.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

import java.util.Random;

import java.util.PriorityQueue;

import java.util.Arrays;

import java.util.Collections;

import java.util.LinkedList;

class WasepPanel extends JPanel{

double epsilon, tMax, currentTime;

int initChoice; //which initial condition

int xMax; //max nbr of positions + 1

int[] xWASEP; // current configuration of WASEP

Integer[] ySOS, ySOS2; // -''- SOS

int tagged; //position of the tagged particle

int first, nbr, initMin, timeIterations, initTagged;

//used in paintComponent()

Random rand;

PriorityQueue\langleJump> jumps; //potential jumps

sorted by time

int simTime;

public WasepPanel(){

tMax = 30000.0; //generate Poisson process for tMax

long time

timeIterations = 0;

xMax = 101; // 100 positions, index [xMax - 1] is for

border conditions

jumps = initializeJumps();

initChoice = 0;
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xWASEP = initializeX();

int i = 0;

while(xWASEP[i] != 1){

//xWASEP[i] == 1 for the first time is the tagged

particle

i++;

}

tagged = i;

ySOS = calculateY(xWASEP, tagged);

initMin = Collections.min(Arrays.asList(ySOS));

setBorder(BorderFactory.createLineBorder(Color.BLUE));

nbr = xMax - 1;

first = 0;

epsilon = 0.25;

rand = new Random();

simTime = 60000;

}

public void step(long time ){

//move one timestep = attempt to jump

if(time \langle simTime){

if(jumps.isEmpty()){

jumps = initializeJumps();

timeIterations++;

}

}

Jump j = jumps.poll();

int from = j.getNumber();

int to = from + j.getDirection();

double r;

currentTime = j.getTime();

if(from == xMax - 1){//new particle enters

r = rand.nextDouble();

if(j.getDirection() > 0){

//positive direction = right jump to 0
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if(tagged == -1){

tagged = 0;

//the tagged particle re-enters the system

}

if(xWASEP[0] == -1 && r < 0.5){

//position 0 empty,

// and 50% probability of there being a particle

// outside

xWASEP[0] = 1;

ySOS[0]-=2;

}

}else{//left to xMax-2

if(xWASEP[xMax - 2] == -1 && r < 0.5){

xWASEP[xMax - 2] = 1;

ySOS[xMax - 1]+=2; //ySOS indices are

//"in between" xWASEP

}

}

}else if(from == 0 && j.getDirection() < 0){

//particle leaving from 0

r = rand.nextDouble();

if(xWASEP[0] == 1 && r < 0.5){//position 0 occupied

// and 50% probability of there being a

//particle outside

if(tagged == 0){

tagged = -1;

//the tagged particle exits the system

}

xWASEP[0] = -1;

ySOS[0]+=2;

}

}else if(from == xMax - 2 && to > from) {

//particle leaving from xMax - 2

r = rand.nextDouble();

if(xWASEP[xMax - 2] == 1 && r \langle 0.5){

xWASEP[xMax - 2] = -1;

ySOS[xMax - 1]-=2;

}
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}else{//particles move inside the system

if(xWASEP[from] == 1 && xWASEP[to] == -1){

if(tagged == from){

tagged = to;

}

xWASEP[to] = 1;

xWASEP[from] = -1;

if(j.getDirection() \langle 0){

ySOS[from]+=2;

}else{

ySOS[to]-=2;

}

}

}

}

public int[] initializeX(){

//sets the initial WASEP configuration from 3

choices of initial condition

int[] temp = new int[xMax - 1];

switch (initChoice){

case 0:

for(int i = 0; i \langle 100; i++){//flat

if(i%2 == 0){

temp[i] = -1;

}else{

temp[i] = 1;

}

}

return temp;

case 1:

for(int i = 0; i \langle 100; i++){// wedge

if(i \langle 50){

temp[i] = -1;
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}else{

temp[i] = 1;

}

}

return temp;

case 2:

for(int i = 0; i \langle 100; i++){//Brownian

double r = rand.nextDouble();

if(r > 0.5){

temp[i] = 1;

}else{

temp[i] = -1;

}

}

return temp;

}

return temp;

}

public Integer[] calculateY(int[] x, int x0){

//calculate SOS from WASEP

Integer[] ytemp = new Integer[xMax];

int x0_t; //the tagged particle

if(x0 > - 1){//tagged particle in visible part of system

x0_t = x0;

}else{

x0_t = 0;//if the tagged particle has left

//the systemi t is set to be at

//position 0 for these calculations

}

ytemp[0] = -sumBetween(x,0,x0_t) - x0_t;
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for(int i = 0; i \langle x0_t; i++){

ytemp[i+1] = -sumBetween(x, i + 1, x0_t) - x0_t;

}

ytemp[x0_t + 1] = -x0_t;

for(int i = x0_t + 1; i \langle xMax - 1; i++){

ytemp[i + 1] = sumBetween(x, x0_t + 1, i) - x0_t;

}

return ytemp;

}

public int sumBetween(int[] x, int a, int b){

//sum of elements in x between index a and b

int sum = 0;

for(int i = a; i \langle b + 1; i++){

sum+=x[i];

}

return sum;

}

public PriorityQueue\langleJump> initializeJumps(){

//generates Poisson processes L and R for

// all positions i

Random rand = new Random();

jumps = new PriorityQueue\langleJump>();

Jump j;

double tCurrent;//current time

double q, p; //intensities;

q = 1 + Math.sqrt(epsilon); //intensity left

p = 1; //intensity right

double n = p + q;

q = q/n; //normalize

p = p/n;

for(int i = 0; i \langle xMax ; i++){

tCurrent = 0;

while(tCurrent \langle tMax){//left poisson process

double u = rand.nextDouble(); //u ~ U(0,1)
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double x = -Math.log(1-u)/q; //x ~ Exp(1/q)

tCurrent+=x;

j = new Jump(i, tCurrent, -1);

jumps.add(j);

}

tCurrent = 0;

while(tCurrent \langle tMax ){//right poisson

//process

double u = rand.nextDouble(); //u ~ U(0,1)

double x = -Math.log(1-u)/p; //x ~ Exp(1/p)

tCurrent+=x;

j = new Jump(i, tCurrent, 1);

jumps.add(j);

}

}

return jumps;

}

public void setInit(int c){

//set initial condition choice in interface

initChoice = c;

}

public void setFirst(int i){

//set leftmost particle shown

first = i;

}

public void setZoom(int i){

//set nbr of positions shown

nbr = 100 - i;

}

public void updateEpsilon(int e){

//set the value of epsilon and make new Poisson

processes
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epsilon = (double) e/100;

jumps = initializeJumps();

}

public void reset(){

//reset to the initial configuration

jumps = initializeJumps();

xWASEP = initializeX();

int i = 0;

while(xWASEP[i] != 1){

i++;

}

tagged = i;

ySOS = calculateY(xWASEP,tagged);

ySOS2 = calculateY(xWASEP, tagged);

initMin = Collections.min(Arrays.asList(ySOS));

}

public void paintComponent(Graphics gg){

//makes graphics

Graphics2D g = (Graphics2D) gg;

super.paintComponent(g);

int height = this.getHeight();

int width = this.getWidth();

int x0axis = 7*height/10;

int stepSize = width/nbr;

int dotSize = stepSize - (stepSize/5);

g.setColor(Color.GRAY); //the grid the particles move in

g.drawLine(0,x0axis,width,x0axis);

g.drawLine(0,x0axis/2,width,x0axis/2);

for(int i = first; i \langle nbr + first; i++){

g.fillOval(stepSize*(i - first), x0axis - 1, 2, 2);

}

g.setColor(Color.BLUE); //the particles

for(int i = first; i < Math.min(nbr+first, xMax - 1);

i++){
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if(tagged == i){

g.setColor(Color.GREEN); //the tagged particle in

different color

g.fillOval(stepSize*(i - first), x0axis - (dotSize )/2 ,

dotSize ,dotSize );

g.setColor(Color.BLUE);

}else if(xWASEP[i] == 1){

g.fillOval(stepSize*(i - first), x0axis - dotSize/2,

dotSize,dotSize);

}

}

g.setColor(Color.RED);//the linearly interpolated SOS

g.setStroke(new BasicStroke(dotSize/2 - 1));

for(int i = first; i \langle Math.min(nbr + first ,

xMax - 1 ); i++){

g.drawLine(stepSize*(i - first), x0axis +

initMin*stepSize - dotSize

- stepSize*ySOS[i], stepSize*(i - first + 1),

x0axis + initMin*stepSize

- dotSize - stepSize*ySOS[i + 1]);

}

}

public class WASEPandSOS extends JPanel{

static JFrame frame;

static JPanel mainPanel, buttonPanel, delayPanel,

epsilonPanel,

initPanel, zoomPanel, zoomSlidePanel,

zoomFirstPanel;

static JButton startButton, stopButton, resetButton;

static JSlider delaySlider, epsilonSlider,

zoomSlider;

static JLabel delayLabel, epsilonLabel, initLabel,

zoomLabel1, zoomLabel2;

static JComboBox initSOS;

static JSpinner firstSpinner;



B.2. JAVA 95

static Timer timer;

static WasepPanel wasepPanel;

int maxDelay;

static long startTime, simTime;

public WASEPandSOS(){

//initializes the graphics components

maxDelay = 2000; //max delay between graphics

updates in ms

startTime = 0; //will be the time the start

button is pressed

simTime = 60000; //time the simulation will run in ms

timer = new Timer(10, new ActionListener(){

@Override

public void actionPerformed(ActionEvent e){

long time = System.currentTimeMillis();

wasepPanel.step(time - startTime);

wasepPanel.repaint();

if(time - startTime > simTime){

Timer t = (Timer) e.getSource();

t.stop();

}

}

});

timer.setRepeats(true);

frame = new JFrame("WASEP and SOS"); //main frame

frame.setSize(514,514);

frame.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent windowEvent){

System.exit(0);

}

});

wasepPanel = new WasepPanel(); //where the simulation is

run
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//add buttons to start, stop, reset and set the

speed of the simulation

buttonPanel = new JPanel();

buttonPanel.setLayout(new FlowLayout());

startButton = new JButton("Start");

stopButton = new JButton("Stop");

resetButton = new JButton("Reset");

startButton.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

timer.start();

startTime = System.currentTimeMillis();

}

});

stopButton.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

wasepPanel.printMovement();

timer.stop();

}

});

resetButton.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

wasepPanel.reset();

wasepPanel.repaint();

}

});

delayPanel = new JPanel(); //speed of simulation, or

time between updates

delayPanel.setLayout(new BoxLayout(delayPanel,

BoxLayout.Y_AXIS));

delaySlider = new JSlider(0,2000,1990);

delaySlider.addChangeListener(new ChangeListener(){

public void stateChanged(ChangeEvent e){

timer.setDelay(maxDelay - delaySlider.getValue());

System.out.println(maxDelay - delaySlider.getValue());

}
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});

delayLabel = new JLabel("Speed");

delayPanel.add(delaySlider);

delayPanel.add(delayLabel);

buttonPanel.add(startButton);

buttonPanel.add(stopButton);

buttonPanel.add(resetButton);

buttonPanel.add(delayPanel);

epsilonPanel = new JPanel(); //change value of asymmetry

epsilonPanel.setLayout(new BoxLayout(epsilonPanel,BoxLayout.Y_AXIS));

epsilonSlider = new JSlider(0,100,25);

epsilonLabel = new JLabel("Epsilon = " +

(double) epsilonSlider.getValue()/100);

epsilonSlider.addChangeListener(new ChangeListener(){

public void stateChanged(ChangeEvent e){

wasepPanel.updateEpsilon(epsilonSlider.getValue());

epsilonLabel.setText("Epsilon = " +

(double) epsilonSlider.getValue()/100);

}

});

epsilonPanel.add(epsilonSlider);

epsilonPanel.add(epsilonLabel);

initPanel = new JPanel(); //pick initial condition

initPanel.setLayout(new BoxLayout(initPanel,

BoxLayout.X_AXIS));

String[] initString = {"Flat", "Wedge", "Brownian"};

initSOS = new JComboBox(initString);

initSOS.setSelectedIndex(0);

initSOS.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

wasepPanel.setInit(initSOS.getSelectedIndex());

wasepPanel.reset();

wasepPanel.repaint();

}
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});

initPanel.add(initSOS);

initPanel.add(epsilonPanel);

zoomPanel = new JPanel();

//zoom is set by choosing the number of positions

displayed and

//which should be the leftmost position if the image

zoomSlider = new JSlider(0,90,0);

zoomLabel1 = new JLabel("zoom " );

firstSpinner = new JSpinner(new SpinnerNumberModel(0,0,100,20));

zoomLabel2 = new JLabel("lowest index");

firstSpinner.addChangeListener(new ChangeListener(){

public void stateChanged(ChangeEvent e){

wasepPanel.setFirst((Integer) firstSpinner.getValue());

wasepPanel.repaint();

}

});

zoomSlider.addChangeListener(new ChangeListener(){

public void stateChanged(ChangeEvent e){

wasepPanel.setZoom(zoomSlider.getValue());

zoomLabel1.setText("zoom " + (double) 100/(100 -

zoomSlider.getValue()) );

wasepPanel.repaint();

}

});

zoomSlidePanel = new JPanel();

zoomSlidePanel.setLayout(new

BoxLayout(zoomSlidePanel,

BoxLayout.Y_AXIS));

zoomSlidePanel.add(zoomSlider);

zoomSlidePanel.add(zoomLabel1);

zoomFirstPanel = new JPanel();

zoomFirstPanel.setLayout(new

BoxLayout(zoomFirstPanel,

BoxLayout.Y_AXIS));

zoomPanel.setLayout(new BoxLayout(zoomPanel,
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BoxLayout.Y_AXIS));

zoomFirstPanel.add(firstSpinner);

zoomFirstPanel.add(zoomLabel2);

zoomPanel.add(zoomFirstPanel);

zoomPanel.add(zoomSlidePanel);

initPanel.add(zoomPanel);

mainPanel = new JPanel(new BorderLayout());

mainPanel.setBorder(BorderFactory.createLineBorder(Color.BLUE));

mainPanel.add(wasepPanel, BorderLayout.CENTER);

mainPanel.add(buttonPanel, BorderLayout.PAGE_END);

mainPanel.add(initPanel, BorderLayout.PAGE_START);

frame.add(mainPanel);

frame.setVisible(true);

}

public static void main(String[] args){

SwingUtilities.invokeLater(new Runnable(){

public void run(){

WASEPandSOS ws = new WASEPandSOS();

}

});

}

}

}

class Jump implements Comparable<Jump>{

private int number; //position where the particle

currently is

private Double time; //time of jump

private int direction; //1 if the jump is to the

right, -1 if left

public Jump(int nbr, double t, int r){

number = nbr;

time = t;
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direction = r;

}

public int getDirection(){

return direction;

}

public Double getTime(){

return time;

}

public int getNumber(){

return number;

}

public int compareTo(Jump j){ //sort by jump time

return this.time.compareTo(j.getTime());

}

public void printout(){

System.out.println("from " + number + " in direction "

+ direction + " at time " + time);

}

}
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