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Abstract

When designing steel frames used in large hall buildings it is favourable to use a design
tool set up with a programming language that can consider many different load cases
and load combinations. These design tools can use the finite element method in order
to perform the calculations needed to design the frames. Due to the extent of these
design tools, the amount of elements used are restricted to a smaller number in order to
have a low computational time. In this study one design tool, using a two-dimensional
model with few beam elements, is investigated. A three-dimensional model of two
frames with beam-profiles of IPE, one with and one without haunches, with many shell
elements is created. A linear static, linear buckling and a non-linear static analysis
is performed, for one load case and combination, in order to compare with the two-
dimensional model regarding cross-section forces, displacements and stability of the
structure.

With the linear static analysis, it is found that the two-dimensional model is sufficient
to use when calculating cross-section forces and displacements. The implementation
of haunches can be improved to more accurately model the stiffness of the corners.
The linear and non-linear static analysis found that the design tool is insufficient when
calculating the utilization in regards to stability according to European standards for
designing buildings, Eurocode. For the load case and combination investigated both
models established that lateral torsional buckling of the right beam was the cause for
instability of the frame. The design tool conservatively calculates the critical load with
a factor of 2 to 6.5 depending on the frame and analysis type. This conservatism is
caused by estimates in Eurocode and in the two-dimensional model.

This thesis found that considering the moment distribution when calculating the util-
ization in regards to stability according to Eurocode will result in less conservative
calculations. For the frame without haunches, the utilization was similar to the one
derived from the non-linear analysis performed on the three-dimensional model. For
the frame with haunches, the contribution to stability from the haunches needs to be
implemented in order to have more accurate results.

The rigid connections between beams and purlins were modelled to investigate if the
increased rotational stiffness, for the points where the purlins were attached to the
beams, would assist in stabilizing the frame. This study found that modelling the
connections as they are today will not contribute to increased stability. If the con-
nections between purlins and beams improved from one-bolt connections to two-bolt
connections, it would be of interest to incorporate this in the design tool.
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Sammanfattning

Vid dimensionering av st̊alramar som används i stora hallbyggnader är det fördelaktigt
att använda ett dimensioneringsverktyg, uppbyggt med hälp av ett programmerings-
spr̊ak, som kan ta hänsyn till flera olika lastfall och lastkombinationer. Dessa dimen-
sioneringsverktyg kan använda finita elementmetoden för att utföra de beräkningar
som behövs för att dimensionera ramarna. P̊a grund av omfattningen av dessa dimen-
sioneringsverktyg är mängden element som används begränsad till ett mindre antal för
att f̊a en l̊ag beräkningstid. I denna studie undersöks ett dimensioneringsverktyg som
använder en tv̊adimensionell modell med f̊a balkelement. En tredimensionell modell av
tv̊a ramar med balkprofiler av IPE, en med och en utan voter, med m̊anga skalelement
skapas. En linjär statisk, en linjär knäckning och en olinjär statisk analys utförs, för
ett lastfall och en lastkombination, för att jämföra med den tv̊adimensionella modellen
med avseende p̊a snittkrafter, förskjutningar och stabilitet.

Den linjära statiska analysen visar att den tv̊adimensionella modellen är tillräcklig
för att använda vid beräkning av snittkrafter och förskjutningar. Implementering-
en av hörn kan förbättras för att mer exakt modellera hörnens styvhet. Den linjära
och olinjära statiska analysen visade att dimensioneringsverktyget är otillräckligt vid
beräkning av utnyttjandegraden med avseende p̊a stabilitet enligt europeisk standard
för dimensionering av byggnader, Eurokod. För det undersökta lastfallet och last-
kombinationen visade b̊ada modellerna att vippning av den högra balken var orsaken
till ramens instabilitet. Dimensioneringsverktyget beräknar den kritiska belastning-
en konservativt med en faktor p̊a 2 till 6,5 beroende p̊a ram och analystyp. Denna
konservatism orsakas av antaganden i Eurokod och i den tv̊adimensionella modellen.

Detta examensarbetet fann att om momentfördelningen tas hänsyn till vid beräkning
av utnyttjandegraden med avseende p̊a stabilitet enligt Eurokod kommer det att re-
sultera i mindre konservativa beräkningar. För ramen utan voter liknade utnyttjan-
degraden den som härleddes fr̊an den olinjära statiska analysen som utfördes p̊a den
tredimensionella modellen. För ramen med voter måste bidraget till stabiliteten fr̊an
voterna implementeras i dimensioneringsverktyget för att f̊a mer exakta resultat.

De styva kopplingarna mellan balkar och tak̊asar modellerades för att undersöka om
den ökade rotationsstyvheten, för de punkter där tak̊asarna var fästa vid balkarna,
skulle hjälpa till att stabilisera ramen. Denna studie fann att modellering av kopp-
lingarna som de är idag inte kommer att bidra till ökad stabilitet. Om kopplingarna
mellan tak̊asar och balkar förbättrades fr̊an enbultsförband till tv̊abultsförband skulle
det vara av intresse att implementera detta i dimensioneringsverktyget.
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1 Introduction

1.1 Background

Future stricter requirements on global greenhouse gas emissions from the steel and
iron industry along with the history of collapsing hall buildings in Sweden laid ground
for the incentive to investigate a design tool for steel frames used in hall buildings.
These steel frames are shown in Fig. 1.1.

1.1.1 The steel industry and carbon emissions

The steel and iron industry stands for approximately 7-9% of the global greenhouse
gas emission and therefore has a big influence on meeting the requirements of a more
sustainable future [1]. The increased demand for a sustainable use of steel in com-
bination with the International Energy Agency (IEA), stating that the steel demand
will increase by 25-30% by the year 2050, puts even more pressure on mindful use of
the material. One method to take both these requirements into account is to optimize
the dimensions of building components. By mindfully calculating and optimizing the
design and dimensions according to given requirement, will lead to less material use.
Reducing the use of material will result in less greenhouse emission [2].

1.1.2 The history of collapsing hall buildings in Sweden

During the winter of 2009-2010 around 180 hall buildings in Sweden collapsed due to
heavy snow fall [3]. During that winter the snow fall was heavy but did not exceed
the specific snow load on the ground according to the European standards. The
calculation of snow load according to Eurocode is based on reports from the Swedish
Meteorological and Hydrological Institute (SMHI). This meant that the snow was not
the main issue but highlighted other concerns in the structures. The collapses were
mainly due to design errors and execution on site [3]. The buildings that were most
prone to collapse were larger buildings with large spans, low angled roofs and built
within the last 30 years. The main technical flaw was the lack of lateral stability.
Another contributing factor that led to collapse were unsymmetrical snow load on
the roof of the buildings. This meant heavy snow load on the leeward side and low
snow load in the windward side on roofs with an angle lower than 15°. The building
material were mainly steel and timber, only one case of a damaged concrete structure
was reported [4].
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Figure 1.1: Construction of steel frames used in a hall building. Taken from
https://www.lr-system.se/stalhallar/.

1.1.3 Pre-existing design tool

A program for designing steel frames will be examined in the master’s thesis. It is used
for evaluating specific frames or to generate an optimized frame from the requirements
given by the user. All the calculations are done according to Eurocode and the program
can handle permanent loads, as dead weight, and variable load, as snow load and wind
load. The stability of the frame is also calculated according to stability fomrulas in
Eurocode, here the user can choose to add or not to add lateral stabilizing supports
along the frame.

The program also allows the user to add haunches, struts, additional openings, equip-
ment loads and storage loads. Furthermore, beam-profiles of types HEA and IPE are
used for the frames that can be designed. These can also be combined in terms of
beam and column depending on the users wishes. This design tool is programmed
using the coding language Python and beam elements are used in a two-dimensional
space. This type of element are thought to be sufficient for the calculations while
remaining a low computational time.

1.2 Aim and objective

The aim of this thesis is to provide insight on how to increase the accuracy of simplified
models when designing steel frames that use a minimum amount of material while
maintaining the requirements given by the European standards for designing buildings.
First, the design tool will be investigated to establish if the choice of element is proper
for the kind of calculations needed. Secondly, the method for determining the material
utilization for the frame will be investigated to establish if it is conservative or not. If
the design tool is deemed to be too conservative, improvements will be suggested to
reach a higher utilization.

2



Figure 1.2: Illustration of a typical frame with haunches.

1.3 Method

Two different three-dimensional models using another kind of element, shell elements,
were created using the finite element program HyperWorks. One frame with haunch
and one without. An illustration of one of the frames can be seen in Fig. 1.2. A
linear static analysis, a linear buckling analysis and a non-linear static analysis were
performed. These analysis were used to determine if the choice of element are sufficient
for calculations, if the method for calculating the utilization is correct and if the design
tool is conservative or not. Lastly some improvements to the model were implemented
and tested on the modelled three-dimensional frames.

1.4 Limitations

In the existing design tool, the option to add mid-supports at the gable frames is given
to the user. These are added to add openings such as doors, windows or other openings.
These mid-supports will not be investigated in this master’s thesis. Openings can also
be added in the length direction of the building, which will contribute to a varying
distance between the frames. All hall buildings that will be investigated and compared
will have the same centre distance between the frames.

Furthermore, a point load that represents equipment loads can be added by the user.
This can be mounted on the inside of the walls or roof of the frames. These loads
will neither be considered in this study. A storage load can also be added. This load
occurs if the hall building is used as storage for granular material such as grain and
soil. This will not be examined. In the design tool the connection to the ground can
be chosen as fixed or pinned, but the only boundary condition considered in the three-
dimensional models will be pinned. The design tool also considers every load case and
load combination but the three-dimensional models consider one load case and one
load combination that was deemed to be the most unfavourable in terms of applied
load and utilization. Only the characteristic loads were used in the load combination
for the snow load and dead weight. The wind load was multiplied with a reducing
factor of 0.3.
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2 Theory

2.1 Steel as a building material

For a long time, steel has been a fundamental building material due to its great
material characteristics [5]. Especially for buildings with larger spans and a desire to
minimize the material use. Steel has high compressive strength and almost equally
high strength in tension, even when not combined with other materials. This makes
it an independent building material. Something to be mindful of is that steel can be
prone to corrosion and thermal deformation, thus must be protected from oxygen and
high temperatures.

2.1.1 Material properties

When choosing steel as a construction material the essential characteristics are com-
pressive and tensile strength, ductile behaviour and welding possibility [6]. Different
steel types are often represented by stress-strain curves. In Fig. 2.1 a typical stress-
strain curve for steel can be seen.

Figure 2.1: The relation between stress and strain in steel. Recreated from [7].
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In Fig. 2.1 the relation between stress and strain are shown for construction steel
being exposed to uniaxial tension. The different points marked in the figure show the
most important parameters. The most interesting values are the strength of the steel,
the modulus of elasticity and the shear modulus. The strength can be determined
first by the yielding point, and then by the breaking point. When steel reaches the
yielding point the material behaviour changes from elastic to plastic. Elastic behaviour
is characterized by deformation that is reversible and plastic behaviour by deformation
that is irreversible. The value of the yielding point is often used in capacity calculation
for steel structures. A ductile behaviour of the steel material is requested when used
as a building material because the maximum strength is reached after the yielding
point, due to hardening effects, but also because the failure is not abrupt.

Furthermore, from the curve in Fig. 2.1, the modulus of elasticity can be calculated.
This is the relation between the stress and strain in the elastic region for the material.
The shear modulus cannot be determined only by the curve itself but can be calculated
according to Eq. (2.1).

G =
E

2 · (1 + v)
(2.1)

where the modulus of elasticity is denoted E and the Poisson’s ratio is denoted v and is
often chosen to be 0.3. Poisson’s ratio is a factor that describes the ratio of transverse
contraction strain to longitudinal extension strain in the direction of the stretching
force.

2.1.2 Connections and joints

Different methods are used for connecting steel components and these are divided into
mechanical connections and welded connections. The components can be beams and
columns or flanges and webs. A bolted and a welded connection is illustrated in Fig.
2.2.

Bolted connections are a mechanical connection and are typically made of plates and

Figure 2.2: Example of different types of connections. Recreated from [8].
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some sort of bolts that attach the two structural components together. The advant-
ages are that these are easy to assemble on site and allow some movement in the joint,
which is often advantageous regarding thermal expansion. Joints made with bolted
connections, are considered as either pinned or as rigid in analysis, although the be-
haviour is semi-rigid in real practice. Pins are another mechanical connection and are
used when the connected parts require free rotation. The connection is resembled as a
hinge and only forces and no moments are transferred through this type of connection
[8]. Welded connections often involves melting methods with high temperatures and
electrode’s that help with the fusion after solidification. They are more complex to
execute therefore must be made in a controlled environment and by someone with the
right expertise. The benefit of welds is the heightening of strength of the construction,
durability and making the connection more rigid. One thing to be aware of when using
welds is the possibility of fatigue failure and shrinkage of the welds [8].

2.2 Instability in structural components

Beyond making sure the material of the structure does not yield, the stability of a
whole structure is of interest. There are several critical loads corresponding to different
instability modes that need to be investigated and made sure the structure is secured
against. Following the methods presented in Eurocode SS-EN 1993-1-1 the needs for
stability will be met.

2.2.1 Flexural buckling of compressed components

Given that the axial force has no eccentricity, the component is straight, and the
material has an elastic behaviour a critical buckling load for a structural component
can be determined. The instability mode corresponding with this buckling load is
flexural buckling and is shown in Fig. 2.3 [8].

Figure 2.3: Conceptual illustration of flexural buckling. Recreated from [9].
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By solving the differential equation in Eq. (2.2), where the displacement normal to
the axial force is denoted w, the critical buckling load can be determined and is shown
to Eq. (2.3)

EI · w′′′′ +N · w′′ = 0 (2.2)

Ncr = i2
π2EI

l2cr
(2.3)

where the buckling mode is denoted i and the buckling length is denoted lcr. A load
that can produce multiple states of equilibrium is called a bifurcation load [9] and the
first buckling mode has the corresponding bifurcation or buckling load according to
Eq. (2.4). The first three buckling modes are illustrated for a simply supported beam
in Fig. 2.4.

Ncr =
π2EI

l2cr
(2.4)

When compressed in the axial direction, thin open cross-sections can experience tor-
sional or torsional-flexural buckling. The component twists around its shear center and
does not deflect. The corresponding instability mode for this critical load is torsional
flexural buckling and is shown in Fig 2.5 [8].

2.2.2 Lateral torsional buckling of bending components

Beams subjected to bending can displace in the weak axis direction, v, according to
Fig. 2.6 [8]. The bending causes compression in one part of the cross-section and
tension in the other. The lateral displacements v for the two flanges differs in a state
of equilibrium in a deformed position. Destabilizing forces in the same direction as the
displacement are acting on the flange that is subjected to compression and stabilizing
forces in the opposite direction of the displacements on the flange in tension. Because
of this the displacements in the compressed flange grow faster and as a result the cross
section is twisting. This instability mode, where the component is subjected to both
lateral displacements and torsion, is called lateral torsion buckling [8] and can be seen
in Fig. 2.6.

Figure 2.4: The first three buckling modes for a simply supported beam. Recreated from
[9].
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Figure 2.5: Conceptual illustration of torsional-flexural buckling. Recreated from [9].

Figure 2.6: A simply supported beam subjected to later torsional buckling and its
cross-section. Recreated from [9].

9



2.2.3 Eurocode and stability requirements

In Eurocode SS-EN 1993-1-1 2005 there is a procedure for determining the utilization
of structural components in regards to stability with the requirement that it is below
one. These requirements are described in this chapter.

Structural components in compression

When designing a structural component subjected to compression, instability should
be taken into consideration with the requirement that the relation between the design
force and force capacity is below one [10]. This relation can be expressed as shown in
Eq. (2.5).

NEd

Nb,Rd

≤ 1 (2.5)

where the design compressive force and force capacity regarding instability are denoted
NEd and Nb,Rd respectively. When calculating the force capacity, the class of the cross-
section needs to be taken into consideration where the regular area is chosen for class
1-3 and effective area is chosen for class 4. The calculations for force capacity are
shown in Eqs. (2.6) and (2.7).

Nb,Rd =
χAfy
γM1

(2.6)

Nb,Rd =
χAefffy
γM1

(2.7)

where the reduction factor for relevant instability mode is denoted χ, the cross-section
area and effective area are denoted A and Aeff , the yield strength of the material
is denoted fy and the partial coefficient γM1 takes capacity regarding instability into
consideration. The reduction factor χ , shown in Eq. (2.8), is determined by buckling
curve and should not be higher than one [10]

χ =
1

ϕ+
√
ϕ2 − λ̄2

≤ 1 (2.8)

where

ϕ = 0.5[1 + α(λ̄− 0.2) + λ̄2] (2.9)

and the slenderness parameter λ̄ is calculated with two different methods depending on
the class of cross-section, the difference being identical to the method for calculating
force capacity. The calculation for the slenderness parameter is shown in Eqs. (2.10)
and (2.11)

λ̄ =

√
Afy
Ncr

(2.10)

10



λ̄ =

√
Aefffy
Ncr

(2.11)

where the imperfection factor is denoted α and the elastic critical normal force for
relevant instability mode based on the gross cross-section is denoted Ncr.

Structural components in bending

When designing a structural component un-braced in the lateral direction being sub-
jected to bending around the stiff axis, the effects of lateral torsion buckling should be
taken into consideration [10]. The relation between designing acting bending moment
and bending capacity must be below one. This is shown in Eq. (2.12)

MEd

Mb,Rd

≤ 1 (2.12)

where the designing acting bending moment and bending moment capacity regarding
instability are denoted MEd and Mb,Rd respectively. Calculating the bending moment
capacity using Eq. (2.13)

Mb,Rd = χLTWy
fy
λM1

(2.13)

where the bending resistance is denoted Wy. The bending resistance is determined
depending on the class of cross-section. For class 1-2 a plastic bending resistance is
chosen whereas for class 3 and 4 an elastic and an effective bending resistance is chosen
respectively. The reduction factor for lateral-torsion buckling is denoted χLT and is
calculated in a similar way as for the reduction factor for buckling and must not exceed
one. The calculation is shown in Eqs. (2.14) and (2.16)

χLT =
1

ϕLT +
√
ϕ2
LT − λ̄2LT

≤ 1, 0 (2.14)

where

ϕLT = 0.5[1 + αLT (λ̄LT − 0.2) + λ̄2LT ] (2.15)

λ̄LT =

√
Wyfy
Mcr

(2.16)

where the imperfection factor is denoted αLT . The slenderness parameter for lateral
torsion buckling is denoted λ̄LT and the elastic critical moment for lateral torsion
buckling is denoted Mcr. The elastic critical moment for lateral torsion buckling takes
loading conditions, real moment distribution and lateral restraints into consideration.
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Structural components in bending and compression

If an analysis with second order effects including imperfections is disregarded the
following stability analysis should be made for double symmetric cross-sections, which
the beam-profiles of IPE and HEA both are [10]. Structural components subjected to
bending and compression simultaneously that are un-braced for torsion and are prone
to twist must satisfy the following criteria shown in Eqs. (2.17) and (2.18).

NEd

χyNRk

γM1

+ kyy
My,Ed +∆My,Ed

χLTMy,Rk

γM1

+ kyz
Mz,Ed +∆Mz,Ed

χLTMz,Rk

γM1

≤ 1, 0 (2.17)

NEd

χzNRk

γM1

+ kzy
My,Ed +∆My,Ed

χLTMy,Rk

γM1

+ kzz
Mz,Ed +∆Mz,Ed

χLTMz,Rk

γM1

≤ 1, 0 (2.18)

Depending on the cross-section class, the interaction factors denoted kyy, kyz, kzy and
kzz are determined. The additions in moment caused by a displacement of the center
of gravity are denoted ∆MEd and ∆Mz,Ed.

2.3 Finite element method

The finite element method is a numerical method used in structural mechanics when
the behaviour of complex structures is of interest [11]. The structure is divided into
small finite elements, each possessing an approximation of the displacement over the
element. The variation of the unknown variable, which for structural mechanics typic-
ally are displacements and rotations, is described with shape functions. This method
allows for complex behaviour to be described with simple approximations reaching a
more accurate depiction of the real behaviour with smaller elements. The smaller the
elements, the greater the computational cost. Therefore, it is important to achieve a
balance where the computational cost is not too high while still achieving an accurate
result, when modelling using the finite element method.

2.3.1 Linear static one-dimensional system

In a static one-dimensional system, a relation between displacements and external
forces is expressed. The stiffness of the body determines the deformation corresponding
to the applied force. A simple system can be described with a spring example, two
nodes with one degree of freedom each connected by a spring with a stiffness, see Fig.
2.7 and Eq. (2.19).

[
k −k
−k k

] [
u1
u2

]
=

[
f1
f2

]
ke u = f

(2.19)

where the element stiffness matrix is denoted ke, the displacement vector is denoted
u and the external force vector is denoted f . Knowing the boundary condition for one
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Figure 2.7: A simple two-node spring element.

node and the force applied to the other node, the system has two unknown variables
and with two equations the system can be solved. With several elements a global
stiffness matrix is assembled, from each element stiffness matrix, and a global system
can be expressed in Eq. (2.20)

Ku = f (2.20)

where the global stiffness matrix is denoted K. Displacement vector and force vector
u and f contains displacements and external forces for every node, respectively. Using
the finite element method for solving a static linear problem means solving this system.

2.3.2 Three-dimensional finite element formulation

A four-node element in a three-dimensional space with six degrees of freedom in each
node, three for translation in x-, y- and z-direction and three for rotation around these
three axis. The global system will consist of a stiffness matrix with 24 rows and 24
columns, a displacement vector with 24 rows and one column and an external force
vector with 24 rows and one column. To determine the stiffness matrix K a differential
equation describing the equilibrium between the internal and external forces acting on
a body must be solved [11]. The differential equation is solved by approximating the
displacement variation within each element using shape functions. The equilibrium
equation for three-dimensional elastic problem is written as shown in Eq. (2.21)

∇̃Tσ + b = 0 (2.21)

where the gradient matrix for the stresses is denoted ∇̃T , the stress vector is denoted σ
and the body forces are contained in vector b. The stress vector and body force vector
include forces in all directions. Including traction forces t acting on the surface of the
body, multiplying the expression with an arbitrary weight function v, integrating over
the region and rewriting the equation by partial integration the weak form is gathered,
see Eq. (2.22). ∫

V

(∇̃v)Tσ dV =

∫
S

vT t dS +

∫
V

vTb dV (2.22)

To derive the three-dimensional finite element formulation a shape function matrix N
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is used to approximate the variation of displacements over each element. With this
method the displacements u can be expressed according to Eqs. (2.23-2.27)

u = N a (2.23)

and using Galerkin’s method the arbitrary weight function v can be expressed as

v = N · c (2.24)

When v and c are arbitrary constants [11] the gradient can be written as

∇̃v = B · c (2.25)

where B can be written as

B = ∇̃N (2.26)

Taking this into consideration the weak form is rewritten to∫
V

BTσ dV =

∫
S

NT t dS +

∫
V

NTb dV (2.27)

The constitutive model for an elastic material is written as shown below in Eq. (2.28)

σ = Dϵ (2.28)

This equation is inserted into the weak form where the constitutive matrix is denoted
D. The strain is the gradient of the displacements according to kinematic relations
making the constitutive model as shown in Eq. (2.29)

σ = DBa (2.29)

Making the distinction of different boundary conditions where either the traction vec-
tor t or the displacement vector u is prescribed, natural and essential boundary con-
dition respectively, the finite element formulation is expressed as Eq. (2.30) .

(

∫
V

BTDBdV )a =

∫
Sh

NThdS +

∫
SE

NTtdS +

∫
V

NTbdV

Ka = fb + fl

(2.30)

where

t = Sn = h on Sh (2.31)

u = g on Sg (2.32)
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2.3.3 Non-linear model

In a non-linear finite element model, both the geometry and material can have a
non-linear behaviour. To solve a finite element equation using a non-linear model a
different method is used and plasticity of the material can be included.

Non-linear geometry

In a non-linear model the contributions from geometrical non-linearity is taken into
consideration, if the displacements are large enough [12]. The stiffness of the structure
changes with the displacement of the structure therefor every load step in the Newton-
Raphson scheme, the tangent stiffness Kt is calculated using the Total Lagrangian
formulation according to Eq. (2.33)

Kt = K0 +Kσ +Ku (2.33)

where the initial linear stiffness is denoted K0. The additional stiffness matrices arise
from internal forces and displacements denoted Kσ and Ku respectively.

Plasticity and von Mises criterion

A yield criterion is established to model plasticity in the material model to determine
when the material starts yielding. To model plasticity in steel the von Mises criterion
is commonly used [13] and this yield criterion is shown in Eq. (2.34)√

3J2 − σy0 = 0 (2.34)

where

√
3J2 = [

1

2

[
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2]
+
1

3
(σ2

12 + σ2
23 + σ2

13)]
1/2

(2.35)

and the inital yield stress in pure tension is denoted σy0.

Solution of a non-linear equilibrium equation

When solving Eq. (2.20) using a non-linear model the stiffness matrix K changes with
the displaced geometry of the structure [13]. The solution to Eq. (2.20) is therefor
divided into increments of steps. The Newton-Raphson iteration scheme solves Eq.
(2.36)

Kt(a
i − ai−1) = fn+1 − fint (2.36)
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where the current displacement for iteration i is denoted ai and the displacement for
previous iteration is denoted ai−1. The known load is denoted fn+1 and the internal
forces from previous iteration is denoted fint. The tangent stiffness is denoted Kt

which describes the stiffness of the structure with the current displaced geometry.

By controlling the equilibrium between external and internal forces, using the Newton-
Raphson algorithm, Eq. (2.36) can be solved [13]. This is done with an iterative
procedure adjusting the displacements until near equilibrium is achieved. For every
load step a new load is applied and the iterative process is performed again. Tangent
stiffness, Kt, is determined, current displacement, ai, is solved, strains, stresses and
internal forces are calculated. Next load step can initiated with new displacements,
strains, stresses and internal forces. This is illustrated in Fig. 2.8.

Close to a peak load, or critical load, the Newton-Raphson scheme does not converge
[13] and this is illustrated in Fig. 2.9. If the determinant of Kt is equal to zero, the
equation system shown in Eq. (2.37) possesses a non-trivial solution. This implies
difficulties using this scheme.

Ktȧ = 0 (2.37)

Figure 2.8: The Newton-Raphson iteration.
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Figure 2.9: Newton-Raphson scheme does not converge close to peak.

2.3.4 Element types

The design tool and the finite element software, HyperWorks, uses the finite element
method to calculate the behaviour of the steel frame. Two different approaches were
used as one is in a two-dimensional space and the other in a three-dimensional space.
Beam elements were used in the design tool and shell elements were used in Hyper-
Works when creating the three-dimensional model of the frame.

Beam element

Beam elements incorporates the effects of axial deformation a bar is prone to when
subjected to loading and shear and rotational deformation a beam is prone to when
subjected to loading [9]. In a two-dimensional space a beam element therefor has six
degrees of freedom, three for each node see Fig. 2.10. Structural components where the
height of the cross-section is larger compared to the width and thickness are sufficiently
modelled with beam elements to reduce computational cost. This approximation is
possible as the prominent stresses are in the longitudinal direction. Through this
method normal forces, shear forces and bending moments can be extracted to use in
further analysis of a structure.

Figure 2.10: A beam element and its degrees of freedom.
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Figure 2.11: A shell element and its degrees of freedom.

Shell element

Structural components with a thickness that is small compared to the length and
width are best modelled using shell elements. Stresses in the normal direction of a
shell element are neglected. A conventional four-node shell element has translation
and rotational degrees of freedom in all directions for each node, see Fig. 2.11.

2.3.5 Eigenvectors and eigenvalues

With the help of eigenvectors and eigenvalues, critical loads can be predicted. When
running a linear buckling analysis in a finite element solver, the results are eigenvalues
that can be multiplied with the initial applied load. The pure definition of the eigen-
value problem is stated in Eq. (2.38) where F (x) is a linear function, A is a quadratic
matrix, also called a transformation matrix, x̄ ̸= 0 is the eigenvector and λ is the
eigenvalue [14].

F (x) = Ax̄ = λx̄ (2.38)

The definition states that if a vector x̄ is mapped on to the function F (x) they have
to be parallel for x̄ to be defined as a eigenvector. Thus making the value λ the
eigenvalue. This value can be a scalar of any sort, negative or positive. To calculate
the eigenvalue, Eq. (2.38) can be rearranged as shown in Eqs. (2.39 - 2.41), where Eq.
(2.40) is the well-known eigenvalue problem and Eq. (2.41) is called the characteristic
equation.

λx̄−Ax̄ = 0 (2.39)

(λI−A)x̄ = 0 (2.40)

det(λI−A) = 0 (2.41)
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When solving the eigenvalue problem, the eigenvector indicates the displacements and
the eigenvalues are the scale factors that can be applied to the eigenvectors. There
are as many eigenvalues for a model as there are degrees of freedom.
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3 Models

3.1 Two-dimensional model

The existing design tool uses a two-dimensional model based on beam elements to
calculate section forces, stresses and displacements. All calculations and designing are
performed with algorithms implemented using the programming language Python.

3.1.1 Subdivision and implementation of haunches

The frame is divided into ten parts, two for each column and three for each beam,
which is then divided into several elements. The standard value is set to ten elements
per part and is used for this comparison, shown in Fig. 3.1. The subdivision is used
to enable the modelling of the frame where haunches are placed. The division is
dependent of the length of the haunches. The elements used in the two-dimensional
model are beam elements and with described subdivision the model consists of 100
elements, 101 nodes and 303 degrees of freedom.

Figure 3.1: The subdivision of the model used in the design tool.
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Figure 3.2: Visualization of how the haunch is implemented in the design tool along with
the cross-section of the haunch at the top of the column.

The method for implementing haunches in the design tool is to create a larger cross-
section for the part corresponding to the haunch. In reality the cross-section of the
haunch changes linearly and in the two-dimensional model the ten elements cross-
section changes step-wise following the haunch, shown in Fig. 3.2. The haunches
contribution to the stability of the frame is neglected when calculating the utilization
in regards to stability according to Eurocode. This is a conservative approach and
the contribution is neglected by not including the cross-sectional area for the haunch
when performing the calculations.

3.1.2 Boundary- and load conditions

A pinned boundary condition is used for the beam-to-ground connection by setting
the displacement to zero for first, second, 301st and 302nd degree of freedom. These
degrees of freedom represent the translation in horizontal and vertical direction for the
first and last element closest to the ground. The displacement vector for the system
is shown in Eq. (3.1).

a =



0
0
a3
...

a300
0
0
a303


(3.1)

The loads are calculated according to Eurocode and consists of permanent load, as
dead weight of the frame, och variable loads, as wind and snow load. More on how
these loads are calculated can be found in section 3.2.5.
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3.1.3 Material model

The design tool only considers linear and elastic material behaviour. The material
used is steel S355, which means the steel will yield at 355 MPa. The modulus of
elasticity and Poisson’s ratio was chosen to 210 GPa and 0.3, respectively.

3.2 Three-dimensional model

In this chapter, a description of the modelling of two different steel frames is presen-
ted. The intention is to choose two frames that varied in cross-section, span and the
inclusion of haunches or not. The first frame that was chosen had the beam-profile of
IPE240, for both the columns and beams, and with haunches. The second frame had
the beam-profile of IPE360, for both the columns and beams, without haunches. These
two frames were chosen due to the span being quite similar and therefore difference of
the haunches and cross-section would be highlighted.

3.2.1 Method

HyperWorks, a finite element program, was used to create a three-dimensional model of
the two frames. First, the geometry of the model was created from existing blue prints,
to ensure the geometry of the frame was based in reality. When the geometry of the
frame was established a mesh of shell elements was applied. Then the chosen boundary
conditions and relevant loads, calculated according to Eurocode, were applied. The
same conditions were implemented in the design tool used for the two-dimensional
model using beam elements.

When the model was established, a linear static analysis, a linear buckling analysis and
a non-linear static analysis were performed using OptiStruct as the solver. From the
linear static analysis the cross-section forces, deflections and stresses were obtained.
Reaction forces, normal forces, moments and displacements were compared between
the models to establish if the three-dimensional model was correctly constructed and
that the two-dimensional model used a sufficient element type. The linear buckling
analysis revealed what failure mode, regarding stability, was relevant and the corres-
ponding critical buckling load. The critical buckling load was then compared with the
two-dimensional model. The non-linear model used in this analysis include an ideal
elasto-plastic material with von Mises yield criterion without hardening effects. The
load is acting as a follower load and depend on the displacement of the frame changing
direction from the initial direction each load step. The load was divided into twenty
load-steps and the initial load-step was zero. This analysis also determined the critical
failure load and this was compared to the critical failure load derived from the linear
buckling analysis, but also the two-dimensional model.
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Figure 3.3: The cross-section of a corner of a frame with haunch.

3.2.2 Geometry

The frames consist of two columns and two beams. The beams make up the roof of
the frame with a certain angle and are constrained to the columns at the corners of
the frame. The beams and columns have beam-profiles of IPE and the cross-sections
are therefore double symmetric. For the frames that need reinforcement in terms
of haunches, these can be attached to the beam and the column. This changes the
geometry of the corner of the frame and how the column-to-beam connection is made.
This also changes the cross-section at the part where a haunch is attached, see Fig.
3.3 for a sketch of a reinforced cross-section.

At the bottom of the column the connection between the frame and the ground consists
of a plate and two bolts. At the corner of the frames the column and beam are
connected with two plates and bolts and the same connection is used at the top of
the frame. This was modelled as one plate with double thickness as it was regarded
as a rigid connection. In the three-dimensional model the density of all the plates
were neglected. This is because the plates are not taken into consideration in the
two-dimensional model and to make the initial comparison more accurate, the same
conditions were applied in the three-dimensional model. This implies that the stiffness
of the plate is included in the model but the dead load from the plates are not.

The first frame that was modelled had beam-profiles of IPE240 for both column and
beam and had haunches in the corners. The second frame had beam-profiles of IPE360
and was without haunches. The frames are shown in Figs. 3.4 and 3.5 respectively.

3.2.3 Material model

The material used to model the frame was steel S355, which means that the steel will
yield at 355 MPa. The modulus of elasticity and Poisson’s ratio was chosen to 210
GPa and 0.3 respectively. The material model for the linear analysis was elastic and
ideal elasto-plastic for the non-linear analysis.
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Figure 3.4: The geometry of the frame with beam-profiles IPE240 with haunches.

Figure 3.5: The geometry of the frame with beam-profiles IPE360 without haunches.

3.2.4 Boundary conditions

It is a pinned boundary condition, as in the design tool, that is to be replicated for
the three-dimensional model. Three boundary conditions were investigated for the
three-dimensional model and the one where reaction forces were best comparable to
the reaction forces for the two-dimensional model was used. The two other boundary
conditions are shown in Appendix A. The chosen boundary condition was to restrict
translation in all directions around the holes, where the bolts are fastened, in the plate
connecting to the ground. The boundary is visualized in Fig. 3.6. A pinned boundary
condition is possible due to rigid connections at the corners and at the top of the
frame, where thick plates are placed, which create stability.

To model the frames connection to the rest of the hall building, restraints for the frame
to move in and out of the plane were assigned along the whole frame. The constrains
was placed along the outer flange in the middle and restraining the frame from moving
out of the plane along the outer flange as shown in Fig. 3.7. This was seen as a good
approximation as the distances between the purlins that connects the frame to the
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Figure 3.6: Clarification of the chosen boundary condition where all translations are
restrained around the highlighted area.

rest och the hall building are small. The distances for the frames with beam-profiles
of IPE240 and IPE360 are 1000 mm and 800 mm, respectively. This accounts for ten
and 13 purlins for each beam for respective frame.

Figure 3.7: The constraint restraining the frame from moving in and out of plane.
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3.2.5 Load conditions

The loads that were applied to both models were calculated according to Eurocode.
This included permanent load, wind load and snow load. The worst load combination
was used in the analysis as seen in Fig. 3.8. The wind load was reduced by a factor of
0.3 whereas the permanent and snow loads have no reducing factor. An imperfection
load of 1 kN was applied on the frame when executing the non-linear static analysis.
This load was applied in the out-of-plane direction on the bottom flange in the middle
of the right beam, see Fig. 3.9. This imperfection load was included to create an
imperfection of geometry to achieve instability as the other loads are applied in the
plane.

Figure 3.8: Load combination used in the analysis. The light purple loads are the
permanent loads, the purple loads are the snow load and the orange loads are
the wind loads.

Figure 3.9: Illustration of the placement of the imperfection load.
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Permanent load

The permanent load consists of dead weight of the columns, beams, ribs and purlins.
The dead weight was implemented in HyperWorks with the GRAV function, which
automatically calculates the weight of the structure and is added as a load. The weight
of the ribs and purlins were implemented as a distributed load where the value of the
weight was taken from the design tool for simplicity.

Wind load

When calculating the acting wind load on the frame the procedure in SS-EN 1991-
1-4 2005 was followed. The wind load is varying along the height of the frame but
conservatively the highest load is applied over the whole region, which is in compliance
with the design tool. Depending on the angle of the roof the load has a pressure or
suction effect on the frame. If it has a suction effect on the roof in load combination
with snow load, the worst case is to apply a load with zero force [15]. Only the external
wind load was calculated since the two-dimensional model did not consider internal
wind load. The equation for external wind load is shown in Eq. (3.2)

we = qp(ze)cpe (3.2)

where the form factor for external wind load is denoted cpe, the characteristic reference
wind pressure qp(ze) and the reference height ze. The characteristic wind pressure
was calculated with knowledge of exposure and wind speed both determined by the
surrounding terrain. This is shown in Eq. (3.3)

qp(z) = [1 + 6 · Iv(z)] ·
[
kr · ln

(
z

z0

)
· c0(z)

]2
· qp (3.3)

where the turbulence intensity at height z, Iv(z), the terrain factor kr and the reference
wind pressure qb is calculated using Eqs. (3.4-3.6) [15]

Iv(z) =
1

c0(z) · ln
(

z
z0

) (3.4)

kr = 0, 19 ·
(

z0
z0,II

)
(3.5)

qb =
1

2
· ρ · v2b (3.6)

where the minimum height for chosen terrain category is denoted zmin. The roughness
length is denoted z0, the topography factor c0, the roughness length for terrain category
2 z0,II , the density for air ρ and the reference wind speed denoted vb. For a height z
below the minimum height zmin gives qp(z) = qp(zmin)

When choosing the form factors for the external wind, cpe,10 was always chosen due to
the area always exceeding 10 m2. For the columns, the form factor was chosen from
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Figure 3.10: An illustration of the zones for the wind load acting on the frame.

the tables provided by SS-EN 1991-1-4 from chapter 7.2 [15]. The relation between the
height of the column, h, and span of the building, d, was used for interpolation when
needed. For the roof, the same table used for the columns were used together with the
angle of the roof. When needed, interpolation was done to calculate the correct cpe,10
value for the correct section. For gable roof the roof is divided into different zones. In
this case a frame that would be placed in the middle of the hall structure was chosen,
thus the roof will be divided into six zones, see Fig. 3.10.

When the form factors and characteristic reference wind pressure was calculated the
characteristic external wind load could be calculated according to Eq.(3.2). The load in
zones J and I was put set to zero as this was the worst load case scenario as previously
stated.

Snow load

The characteristic snow load was determined by following Eurocode SS-EN 1991-1-3.
It will act as a variable load and calculated using Eq. (3.7)

S = µiCeCtsk (3.7)

where the characteristic snow load is denoted sk and depends on the geographic loc-
ation and the form factor based on the roof is denoted µi. The exposure factor is
denoted Ce and determined by table 5.2 in SS-EN 1991-1-3 and the coefficient determ-
ining the energy losses through the roof is denoted Ct and is normally set to 1.0 [16].
Both frames have gable roofs thus the form factor varies between the right and left
side and was determined from SS-EN 1991-1-3.
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Overview of loads

The loads acting on the frames as described in Fig. 3.8 are presented as a short
overview in table 3.1 and table 3.2 for frame with beam-profiles IPE240 and IPE360
respectively.

Table 3.1: Forces acting on frame with beam-profiles IPE240 with haunches.

Load x-direction [kN] y-direction [kN]

Permanent load acting on left column - 1.54

Wind load acting on left column 3.96 -

Permanent load acting on left beam - 8.76

Wind load acting on left beam 1.54 3.76

Snow load acting on left beam - 57.28

Permanent load acting on right beam - 8.76

Snow load acting on right column - 42.96

Permanent load acting on right column - 1.67

Wind load acting on right beam 1.40 -

Total load 6.90 124.73

Table 3.2: Forces acting on frame with beam-profiles IPE360 without haunches.

.

Load x-direction [kN] y-direction [kN]

Permanent load acting on left column - 1.91

Wind load acting on left column 3.27 -

Permanent load acting on left beam - 11.19

Wind load acting on left beam 1.35 3.99

Snow load acting on left beam - 61.95

Permanent load acting on right beam - 11.19

Snow load acting on right column - 46.46

Permanent load acting on right column - 1.91

Wind load acting on right beam 1.18 -

Total Load 5.80 138.60
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3.2.6 Mesh convergence study

To determine what mesh size to use for following analyses, a mesh convergence study
was performed. The purpose of this was to ensure that the mesh that later was used
was fine enough to get accurate results while still maintaining a low computational
time. The study was done by comparing the von Mises stresses for different mesh
sizes, then calculating a relative error from the smallest mesh size applied. Only the
snow load was applied on the frames for this study due to this being the largest and
an asymmetrical load. For the stresses, a designated area was chosen and an average
value of the stress within the area was calculated. The designated area was chosen to
be at the top flange at the corner of both frames as seen in Fig. 3.11.

It was analyzed at which mesh size the error converges to almost zero, which was then
chosen as mesh size for further analysis. The study was performed on both frames to
investigate if the different geometries converged with the same mesh size. To see how
this converged, the relative error was plotted against the number of elements in the
model. The result of the mesh convergence study can be seen in Fig. 3.12 and Fig
3.13.

Figure 3.11: The area where the mean value of von Mises stresses were retrieved.
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Figure 3.12: The result of a mesh convergence study for a frame with beam-profiles
IPE240 with haunches.
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Figure 3.13: The result of a mesh convergence study for a frame with beam-profiles
IPE360 without haunches.

The same mesh size, 20 mm, was used for both frames. This accounted for approxim-
ately 40300 and 49700 elements for the frame with beam-profile IPE240 and IPE360
respectively. The amount of elements was seen as sufficient as the relative error was
below 0.5 % compared to the finest mesh size of 10 mm. See Fig 3.14 for some different
mesh sizes visualized in the corners of both frames.
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Figure 3.14: Visualization of a mesh-size of 120, 60, 30, 20, 15 and 10 mm. The chosen
mesh-size was 20 mm.
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4 Comparison of the models

A linear static analysis was performed on the three-dimensional model using shell
elements to be able to compare cross-section forces and displacements with the two-
dimensional model and to check that the two models produce comparable results for
further comparisons. The fundamental conditions are applied load, material properties
and geometry.

4.1 Linear static analysis

From the linear static analysis a visualization of the deformed frames, with a factor
of 20, along with the stress distribution is presented in Figs. 4.1 and 4.2. The stress
distribution for the right corner for both frames is presented in Fig. 4.3. The von
Mises stresses for each element are shown, the legend bar shows the stress with a unit
of MPa.

Figure 4.1: Deformed frame with beam-profiles IPE240 with haunches along with the
stress distribution.

Figure 4.2: Deformed frame with beam-profiles IPE360 without haunches along with the
stress distribution.
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Figure 4.3: Deformed corners for both frames along with the stress distribution.

4.1.1 Reaction forces

To ensure that the applied load on the three-dimensional model was correct, the reac-
tion forces for the frames were compared. The result of the different models and frames
are presented in Tables 4.1 and 4.2. The reaction forces in the x- and y-direction are
presented in these tables for both left and right supports, together with the difference
in force and as a percentage.

Table 4.1: Reaction forces for models using shell and beam elements for a frame with
beam-profiles IPE240 with haunches.

Left support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction 27.9 26.5 1.5 5.6

y - direction 65.9 64.2 1.7 2.6

Right support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction −34.8 −32.5 −2.3 7.1

y - direction 58.8 57.5 1.2 2.1

Table 4.2: Reaction forces for models using shell and beam elements for a frame with
beam-profiles IPE360 without haunches.

Left support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction 35.2 32.2 3.0 9.2

y - direction 73.6 71.5 2.2 3.0

Right support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction −41.0 −37.7 −3.3 8.7

y - direction 65.0 63.9 1.1 1.7
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4.1.2 Normal force and moment diagram

A further comparison of the two models was made, by comparing their normal-force-
diagrams and moment-diagrams for the right beam of the frame. The right beam was
chosen, as this structural component is of interest when investigating the failure modes
analyzed in the linear buckling analysis, see section 5.1. The normal-force-diagrams
are shown in Figs. 4.4 and 4.5.
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Figure 4.4: Normal force diagram of the right beam in a IPE240 frame with haunches.
Normal force is represented by the vertical axis and the length of the right
beam is represented by the horizontal axis
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Figure 4.5: Normal force diagram of the right beam in a IPE360 frame without haunches.
Normal force is represented by the vertical axis and the length of the right
beam is represented by the horizontal axis.
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As seen in the diagram the trend of the two lines are the same, but the value differs.
The right beam is compressed more in the model using shell elements than the model
using beam elements. To compare the moment distributions in the right beam the
moment-diagrams are shown in Figs. 4.6 and 4.7. The moment distribution for the
two-dimensional and three-dimensional model are similar and the same behaviour is
seen in both models with different geometries.
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Figure 4.6: Moment diagram of the right beam in a IPE240 frame with haunches. The
moment is represented by the vertical axis and the length of the right beam is
represented by the horizontal axis.
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Figure 4.7: Moment diagram of the right beam in a IPE360 frame without haunches.
The moment is represented by the vertical axis and the length of the right
beam is represented by the horizontal axis.
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4.1.3 Deflection

A comparison of the deflection of the frames were also made. The displacement from
the three-dimensional model were extracted from the outer flange. The cross-section of
the flange deforms minimally in a linear analysis, therefore it is a valid comparison with
the two-dimensional model, where the displacements are extracted from the middle of
the beam-profile. The comparison is presented in Figs. 4.8 and 4.9, where the height
is represented by the vertical axis and the width of the frame is represented by the
horizontal axis. In both figures the deflection has been multiplied with factor of 20 to
enhance the differences.

Figure 4.8: Displacement for the frame with beam-profiles IPE240 for both the two- and
three dimensional model.

Figure 4.9: Displacement for the frame with beam-profiles IPE360 for both the two- and
three dimensional model.

In addition to the deformation of the frame, the deflection along the beam was plotted
for the two frames and models. The deflection of the left and right beams for the frame
with beam-profiles IPE240 and IPE360 are shown in Figs. 4.10-4.13 respectively.
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Figure 4.10: Displacement of the left beam for the frame with beam-profiles IPE240. Top
of the frame is at the right. The deflection is represented by the vertical axis
and the length of the beams represented by the horizontal axis.
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Figure 4.11: Displacement of the right beam for the frame with beam-profiles IPE240.
Top of the frame is at the left. The deflection is represented by the vertical
axis and the length of the beams represented by the horizontal axis.
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Figure 4.12: Displacement of the left beam for the frame with beam-profiles IPE360. Top
of the frame is at the right. The deflection is represented by the vertical axis
and the length of the beams represented by the horizontal axis.

-60

-50

-40

-30

-20

-10

0

10

0 2 4 6 8 10 12

D
is

p.
  i

n 
y 

  -d
ir

ec
ti

on
 (

m
m

)

Length of right beam (m)

Shell Elements

Beam Elements

Figure 4.13: Displacement of the right beam for the frame with beam-profiles IPE360.
Top of the frame is at the left. The deflection is represented by the vertical
axis and the length of the beams represented by the horizontal axis.
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The maximum difference in deflection for each beam and frame is presented in Table
4.3. It is observed that there is a greater difference for the frame with beam-profiles
IPE240 with haunches.

Table 4.3: The difference in greatest deflection for each beam and frame.

.

Beam Shell Elements [mm] Beam Elements [mm] Diff. [mm] Diff. [%]

Left IPE240 −85.6 −97.4 11.8 −12.1%

Right IPE240 −81.7 −94.3 12.6 −13.3%

Left IPE360 −50.5 −47.0 −3.5 7.4%

Right IPE360 −49.6 −45.9 −3.7 8.1%
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5 Critical load and utilization

A linear buckling analysis and a non-linear static analysis, with large deformations
and elasto-plastic material, were performed on the three-dimensional model. This was
performed to determine the critical load carrying capacity of the frames. These two
critical loads will be used to compare the utilization between the two-dimensional and
three-dimensional models.

5.1 Linear buckling analysis

A linear buckling analysis is performed with an eigenvalue solver to determine the
critical load for the frame. The applied load is presented in section 3.2.5. The first
eigenmodes for both models in the buckling analysis resulted in a failure mode that
was lateral torsional buckling. The lateral torsional buckling occured in the right beam
of the frame where the lower flange displaced out of the plane. The failure modes are
shown i Figs. 5.1-5.4 for the two frames.

Figure 5.1: The failure mode for the lowest load for the frame with beam-profiles IPE240
with haunches. A factor has been added to enhance the lateral torsional
buckling.
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Figure 5.2: Showing the lateral torsional buckling from above for the IPE240 frame.

Figure 5.3: The failure mode for the lowest load for the frame with beam-profiles IPE360
without haunches. A factor has been added to enhance the lateral torsional
buckling.

Figure 5.4: Showing the lateral torsional buckling from above for the IPE360 frame.

The critical load for this failure mode is represented by a factor of all the applied
loads acting on the structure, this includes the load contributed by the structures own
weight. This factor is referenced by eigenvalue or buckling load factor. For a structure
with perfect geometry a value above one indicates that more load can be applied to
the structure without any instability and a value below one indicates that the applied
load causes instability. The utilization of the structure is calculated by dividing one
by the eigenvalue. The eigenvalue for both frames is shown in table 5.1 along with the
utilization in regards to stabilization.
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Table 5.1: Eigenvalue and utilization.

Frame Eigenvalue Utilization

IPE240 1.44 69 %

IPE360 4.45 22 %

5.2 Non-linear static analysis

The non-linear analysis uses the Newton-Raphson scheme to determine the critical
load for the frame. When the maximum load is reached the Newton-Raphson scheme
in force control is unable to converge which is described in section 2.3.3. The Newton-
Raphson scheme was unable to converge when the load as presented in Table 5.2 was
applied to the frame. This critical load is presented as a critical load factor, which is a
factor of the load that is applied to the frame, along with the utilization of the frame.
This load factor scales the imperfection load that is applied in this analysis as well.

Table 5.2: Critical load factor and utilization for the different frames of the shell model.

Frame Load factor Utilization

IPE240 1.18 85 %

IPE360 2.33 43 %

The critical load factor derived from the non-linear static analysis is lower compared
to the one derived from the linear buckling analysis due to plastic strains and large
deformations. This comparison is illustrated in the load-displacement curves in Figs
5.5 and 5.6. The out-of-plane displacement for the lower flange was chosen due to
lateral torsional buckling of the right beam being the failure mode for both frames.
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Figure 5.5: Load-displacement curve for the linear buckling and non-linear static analysis
performed on the frame with beam-profiles IPE240. The critical load factor is
represented by the vertical axis and the displacement of the lower flange in
the middle of the right beam in the out-of-plane direction is represented by
the horizontal axis.
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Figure 5.6: Load-displacement curve for the linear buckling and non-linear static analysis
performed on the frame with beam-profiles IPE360. The critical load factor is
represented by the vertical axis and the displacement of the lower flange in
the middle of the right beam in the out-of-plane direction is represented by
the horizontal axis.
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The distribution of plastic strains in the frames occurring from the critical load is
presented in Figs. 5.7 and 5.8. Local distribution of plastic strains in the corner of
the frames is presented in Fig. 5.9. The frame with beam-profiles of IPE240 has no
plastic strains along the whole frame except one local plastic region where the haunch
connects with the beam. The frame with beam-profiles IPE360 experience more plastic
strains with mainly two local plastic regions where the whole beam-profile is yielding.
These local plastic regions are on the left and right side of the lateral torsional buckling
of the right beam.

Figure 5.7: Distribution of plastic strains for the frame with beam-profiles IPE240.

Figure 5.8: Distribution of plastic strains for the frame with beam-profiles IPE360.
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Figure 5.9: Local distribution of plastic strains in the corner of both frames. The color
blue is the lowest value for plastic strains and the color red is the highest
value of plastic strains.

The deformation for both frames is presented in Figs. 5.10 and 5.12 which show the
lateral torsional buckling in the right beam. The deformation as seen from above is
presented in Figs. 5.11 and 5.13 which shows the lateral displacement for the lower
flange. The displacements are multiplied by a factor of 10 and 5 for the frames with
beam-profile IPE240 and IPE360, respectively. The out-of-plane displacement of the
lower flange in both frames are presented in Figs. 5.14 and 5.15 to visualize the lateral
torsional buckling. The out-of-plane displacement for the lower flange is represented
by the vertical axis. The length of the frame is represented by the horizontal axis.

Figure 5.10: Lateral torsional buckling of frame with beam-profiles IPE240.
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Figure 5.11: Lateral torsional buckling of frame with beam-profiles IPE240, seen from
above.

Figure 5.12: Lateral torsional buckling of frame with beam-profiles IPE360.

Figure 5.13: Lateral torsional buckling of frame with beam-profiles IPE360, seen from
above.
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Figure 5.14: Displacement of lower flange in the beams of the frame with beam-profiles
IPE240.

Figure 5.15: Displacement of lower flange in the beams of the frame with beam-profiles
IPE360.
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5.3 Comparison with the two-dimensional model

The utilization in regards to stability is calculated in the design tool according to Eqs.
2.17 and 2.18 found in section 2.2.3 using the normal forces and moments calculated
from the two-dimensional model. The most utilized structural component, according
to the design tool, is the right beam. This is the same structural component that is
subjected to lateral torsional buckling and causes instability of the frame according
to the linear buckling analysis and non-linear static analysis, performed on the three-
dimensional models. The utilization for both models, including both analysis types,
is presented in Table 5.3.

Table 5.3: Utilization for both models and frames.

Beam Elements Shell Elements Linear Shell Elements Non-linear

IPE240 458 % 69 % 85 %

IPE360 84 % 22% 43 %

The utilization is higher for the two-dimensional model. This implies that the design
tool, using this model, will suggest a larger dimension for the beam-profiles to achieve
a similar utilization compared to the three-dimensional model. This is a conservative
approach to stabilizing the frame and will put a higher demand on the use of material.
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6 Improvements to existing model

The design tool, using the two-dimensional model, was established to be conservative.
In the following chapter the results from two suggested improvements are presented
along with the methods to implement these improvements. The first improvement is in
regards to applying the Eurocode. The second improvement is in regards to improving
the stability for the frames and how this is modelled.

6.1 Considering moment distribution in stability

analysis

The equation for calculating stability utilization according to Eurocode was performed
for the beam model as described in section 2.2.3 and Eqs. (2.17) and (2.18). In both
these equations the critical elastic lateral torsional buckling moment, Mcr, must be
calculated. This equation is taken from a national appendix [17] and is presented in
Eq. (6.1)

Mcr = C1
π2EIz
L2

√
Iw
Iz

+
L2GIt
π2EIz

(6.1)

where Young’s modulus is denoted E and the moment of inertia around the weak
is denoted Iz, according to Fig. 6.1. The beam length between points, which have
lateral restraints, is denoted L and is the length of the right beam for this case see Fig
6.2. The torsion constant is denoted It and the warping constant is denoted Iw. The
coefficient C1 depends on the section properties, support conditions and the moment
diagram. In the design tool the members of the structure are seen as only having end
moments, illustrated in Fig. 6.1, and the parameter, C1 has been set to be equal to
one implying that the ratio of the end moments, ψ are equal to one [17]. In Figs. 4.6
and 4.7 the moment distributions for the right beams, where lateral torsional buckling
occur, is presented with moment diagrams and shows that the ratio between the end
moments are not equal to one. This is illustrated in Fig. 6.2 and the ratio can be
calculated according to Eq. (6.2) and the results are presented in Table. 6.1 for both
frames and models.

ψ =
Mleft

Mright

(6.2)

Because the end moment ratio, ψ is not equal to one a higher value for the paramater,
C1 should be chosen to be more accurate. If the value of C1 would increase the value
of Mcr will also increase at the same rate, which is used to calculate the slenderness
index, λ̄LT according to Eq. (6.3).
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Figure 6.1: End moment acting on the structural component and the cross-section where
y-axis and z-axis are displayed.

LMleft

Mright

Figure 6.2: Moment distribution of the right beam and defined end moments.

Table 6.1: Result of the calculation of the end moment ratio in the different frames

Frame Moment Ratio ψ beam model Moment Ratio ψ shell model

IPE240 -0.21 -0.16

IPE360 -0.33 -0.29

λ̄LT =

√
Wyfy
Mcr

(6.3)

The slenderness index is then used in Eq. (6.4) and then Eq. (6.5)

ΦLT = 0.5
[
1 + αLT (λ̄LT − 0.2) + λ̄2LT

]
(6.4)

χLT =
1

ΦLT +
√

Φ2
LT − λ̄2LT

(6.5)

where αLT is an imperfection factor. Lastly, the result from Eq. (6.5) is used in Eqs.
(2.17) and (2.18) found in section 2.2.3. From these equations it can be proven that
an increasing value of C1 will lead to a decreasing value of the utilization regarding
stability. Thus making the choice of setting C1 equal to one very conservative.

Other parameters that will have an impact on the stability utilization, calculated
according to Eurocode, are the interaction factors kyy and kzz [10]. A lower value for
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the interaction factors will lead to a lower utilization in regards to stability. These are
both calculated with the Eq. (6.6)

kii = Cmi

(
1 + 0.6λ̄i

NEd

χiNRk/γM1

)
(6.6)

where Cmi is calculated according to Eq. (6.7)

Cmi = 0.79 + 0.21ψi + 0.36(ψi − 0.33)
NEd

Ncr,i

(6.7)

where the end moment ratio is denoted ψi, which is calculated in Eq. (6.2). The
design normal force is denoted Ned and the elastic critical load is denoted Ncr,i. From
Eqs. (6.6) and (6.7) it is shown that the interaction factors will decrease in value if
the value for end moment ratio decreases.

Thus the two main factors that will have an impact on the utilization in regards to
stability for the frames will be the parameter C1 and the end moment ratio ψ. The
impact a higher value for the parameter C1 and a correct lower value for the end
moment ratio ψ had on the utilization for the frame was investigated. The utilization
was calculated with the design tool, using the two-dimensional model using beam
elements, varying the parameter C1. This was performed two times, one with the end
moment ratio set to be equal to one and one where the end moment ratio was set to the
actual value. How the utilization in regards to stability for both frames is dependent
on these two values are shown in Figs. 6.3 and 6.4. The utilization is represented
by the vertical axis and the parameter C1 is represented by the horizontal axis. The
purple line is using the end moment ratio ψ that is equal to one and the light purple
line a value that is equal the actual value derived from the two-dimensional model.
The yellow dotted line shows the utilization derived from the non-linear analysis using
the three-dimensional model using shell elements.
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Figure 6.3: The effects on utilization for the frame with beam-profiles of IPE240 when
choosing different values for C1 and ψ.
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Figure 6.4: The effects on utilization for the frame with beam-profiles of IPE360 when
choosing different values for C1 and ψ.
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6.2 Rigid connections between beam and purlins

It was investigated how the connection between beams and purlins contributes to the
stability of the frame. According to how the frames are built on-site, the beam and
purlin connections at the top and at the corner are connected with two bolts instead
of one, as it is for the other beam and purlin connections. The location is shown
in Fig. 6.5. The double bolted connection is shown in Fig. 6.6 and is considered
a rigid connection. When the load from wind and snow give rise to torsion of the
beam, the purlins resist this motion due to the bending stiffness of the purlins. These
connections are not taken into consideration in the two-dimensional design tool using
beam elements.

To imitate this resistance caused by the bending stiffness of the purlins the connection
between the purlins and frame were modelled as rotation springs which is shown in
Fig. 6.6. This was performed to achieve additional rotational stiffness at the points
where this connection is used. The spring stiffness is derived from Eq. (6.8)

M = k · θ (6.8)

where the rotational stiffness is denoted k, the moment denoted M and the rotational
angle is denoted θ. With elementary case according to Fig. 6.7 where moment is set
for a rotation that is equal to one the rotational stiffness can be calculated using Eq.
(6.9)

489 1000
1000 1000 1000 1000 1000 1000 1000 944 100[mm]

563 800
800

800 800 800
800 800 800

800 800
800 600 100

Figure 6.5: Placement of purlins on top of the beam. The two marked connections are
double bolted. Recreated from blueprints.
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Figure 6.6: Connection between beam and purlin for a beam-profile IPE240 and how
they are modelled with springs.

Figure 6.7: The elementary case that was used for calculating the spring stiffness in the
modeled purlins.

k = 2 ·
(
3 · EI
L

)
(6.9)

where the modulus of elasticity for the material used for the purlins is denoted E.
The moment of inertia is denoted I and the length of the purlin is denoted L. The
material used for the purlins are timber of the type C24 thus the elasticity modulus
is set to 7400 MPa [18]. The rotational stiffness is multiplied by a factor of 2 as there
are two purlins at each side of the beam that will add to the rotational stiffness. The
moment of inertia, I, is calculated according to Eq. (6.10)

I =
b · h3

12
(6.10)

where the width of the cross-section for the purlin is denoted b and the height of the
cross-section is denoted h. For both frames, purlins with a rectangular cross-section
were used. For the frame with beam-profiles of IPE240, purlins of the dimension
45×195 mm were used and for the frame with beam-profiles IPE360, purlins of the
size 45×220 mm were used.

The effect modelling this rigid connection had on stability and also the utilization
was studied by performing a linear buckling analysis on the three-dimensional model.
The linear buckling analysis was performed when the connections, as the connections
are today, were modelled as rigid but also the effect when more connections could
be seen as rigid. This implies a change of single bolted to double bolted connection
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between purlin and beam. The placements of these rigid connections and how they
are distributed along the beams of the frame are seen in Fig. 6.8.

The added rotational stiffness provided by the purlins connection to the beam is not
around the global x-axis as the beam is at an angle. Two local coordinate systems, one
for each beam, were introduced where the y-axis was normal to the outer flanges and
the x-axis along the length of the beam. The rotational stiffness was applied around
this local x-axis. The result from the linear buckling analysis with the rotational
springs implemented is presented in Tables 6.2 and 6.3 showing the eigenvalues and
failure modes and in Figs. 6.9 and 6.10 showing the effect on utilization.

a) b)

Figure 6.8: Analysis preformed with various positions of springs added in the shell model
a) for the IPE360 frame and b) IPE240.
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Table 6.2: The result of a linear buckling analysis for different number of springs along
the left and right beam in the frame with beam-profiles of IPE240. LTB
stands for later torsional buckling.

Number of Springs Eigenvalue Failure mode

0 1.44 LTB in beam

2 1.49 LTB in beam

3 1.90 LTB in beam

5 2.72 LTB in column

9 2.72 LTB in column

Table 6.3: The result of a linear buckling analysis for different number of springs along
the left and right beam in the frame with beam-profiles of IPE360. LTB
stands for later torsional buckling.

Number of Springs Eigenvalue Failure mode

0 4.45 LTB in beam

2 4.65 LTB in beam

4 6.46 LTB in beam

6 7.95 LTB in beam

12 8.96 LTB in column

60



0

10

20

30

40

50

60

70

80

0 2 4 6 8 10

U
ti

liz
at

io
n 

(%
)

Number of modelled connections

IPE240

Figure 6.9: The effect modelling rigid connections as rotational springs has on the
utilization of the frame in regards to stability. Frame with beam-profiles
IPE240.
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Figure 6.10: The effect modelling rigid connections as rotational springs has on the
utilization of the frame in regards to stability. Frame with beam-profiles
IPE360.
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7 Discussion

7.1 Comparison between the two models

When comparing the two models, one using beam elements and the other using shell
elements, there are small differences in reaction forces, normal force distributions and
displacements. The reaction forces differ less in the y-direction than in the x-direction.
Difference in reaction forces indicates that the applied forces in the two models are
not entirely equal. This is believed to be caused by an error when translating the
geometries of the different models. Although, the root of the issue is however not found
despite troubleshooting. The same parameters were used when calculating the snow
load and wind load according to Eqs. (3.7) and (3.2) found in section 3.2.5. The width
and height for the model using shell elements were believed to be implemented correctly
in the design tool and the troubleshooting stopped here. For further investigation the
calculations of snow and wind load in the design tool needs to be reviewed. As the
difference is at its highest at 9,2 percent and lowest at 1.7 percent, whereas the result
from stability utilization differs substantially more, it can be accepted.

The final boundary condition that was chosen to represent a pinned column-to-ground
connection was to restrict only the holes for bolts in translation in all directions. It
was observed that when the flanges were restricted in the vertical direction it became
increasingly more similar to a fixed column-to-ground connection, compared to a fixed
boundary condition applied in the design tool. The last examined boundary condition
being very similar. This boundary condition was not expected to behave like a pinned
column-to-ground connection, but to visualise the different options for restrictions for
the ground plate.

When comparing the deflection between the two models, two different behaviours was
observed from the two different frames. The deflection for the two-dimensional model
was higher than the three-dimensional model for frame with beam-profiles of IPE240.
The deflection for the two-dimensional model was lower than the three-dimensional
model with beam-profiles of IPE360. Because the normal forces are greater in the
three-dimensional model, the deflection was expected to be slightly higher. This be-
haviour is seen for the second frame with no haunches but the opposite for the first
frame with haunches. This is believed to be caused by the modelling differences of the
corners. The stiffness, which is influenced by the haunches, are believed to be higher
for the three-dimensional model using shell elements. In the design tool the method
for considering the implementation of haunches is to elongate the web of the IPE-
profile. In the more detailed three-dimensional model the implementation of haunches
is considered more realistically where a haunch is added to the IPE-beam. Using shell
elements instead of beam elements allows for this modelling. Respective details can
be seen in Figs. 3.2 and 3.3 found in sections 3.1.1 and 3.2.2. The added stiffness from
a flange is therefore disregarded in the two-dimensional model using beam elements.
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7.2 Critical load

The critical load for the frame with beam-profile IPE240 derived from the linear buck-
ling analysis is higher than the one derived from the non-linear static analysis. There
is a greater difference when the two analysis are performed for the frame with beam-
profiles IPE360. The critical load derived from the linear buckling analysis for that
frame is about double the critical load from the non-linear static analysis. The linear
buckling analysis does not consider the plasticity of the material as the behaviour of
the material in this analysis was elastic. In the non-linear static analysis the mater-
ial of the frame has plastic behaviour above the yielding limit. When the material
yields at local places of the frame, the frame becomes less stiff and the load path
changes. This behaviour happens gradually in the non-linear static analysis whereas
for the linear buckling analysis this behaviour happens abruptly, due to the eigenvalue
method.

The difference between the two analyses in regards to critical load is greater for the
frame with beam-profiles of IPE360 than beam-profiles of IPE240. The first mention
frame has more plastic strains when the critical load is applied. This phenomenon is
disregarded in the linear buckling analysis which causes the difference between the two
frames. This suggest that the frame with the beam-profiles IPE240 is slender and the
frame with the beam-profiles IPE360 is less slender.

The failure mode associated with the critical load is lateral torsional buckling for both
frames using both analysis types. The failure mode is reached sooner for the non-linear
static analysis as the stiffness of the right beam decreases with the plastic strains.

7.3 Utilization in stability analyses

The design tool calculates the utilization regarding stability conservatively, with a
factor between approximately 2 and 6,5 depending on the frame and analysis type.
This is believed to be caused by the neglecting the moment variation along the frame.
For this load case it is especially the moment variation in the right beam. The sug-
gested improvement is to choose a higher value than one for the parameter C1, which
takes moment distribution into consideration. The consequences of setting C1 equal
to one is assuming that the moment distribution is uniform. This means that the
maximum moment will be applied uniformly along the beam when calculating the
utilization in regards to stability. From both models it is observed that the moment
will differ along the beam for both frames. Thus making the choice of setting C1 equal
to one incorrect. As mentioned before the design tool uses the national appendix to
determine this parameter which is used to determine the critical elastic lateral tor-
sional buckling moment, Mcr. This value should be carefully chosen to avoid a value
too low that is more conservative than it needs to be. As lateral torsional buckling is
the failure mode, the term in the stability utilization calculation, which takes lateral
torsional buckling into consideration, is dominant. This implies that a change of a this
coefficient is significant for the final result. For both frames the utilization decreased
with higher values for parameter C1 and even more with a correct value for the end
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moment ratio ψ. For the frame with beam-profiles IPE360 the utilization, derived
from the two-dimensional model, approached the utilization, derived from the three-
dimensional model. For frame with beam-profiles IPE240 the utilization never reached
a similar value for higher values of C1. This is believed to be caused by the design
tool not considering the contribution from haunches to the stability of the frame.

Alternatively, to determine the utilization regarding stability of the frame with higher
accuracy another method or model could be used. The method could be by using
an eigenvalue problem performed in the same manner as described in section 2.3.5.
Another model could be the one created using shell elements. Performing a non-linear
static analysis on this model gives the most accurate result for utilization regarding
stability, according to this study.

7.4 Modelling of rigid connections between beam

and purlins

By modelling the connection between beams and purlins at two places per beam,
the increase of buckling load is not as noticeable as when modelling three or more
connections. The increased rotational stiffness at the end of the beams does not
prevent the lateral torsion buckling happening near the middle of the beam. When
the rotational stiffness increases in the middle of the beam the prevention against
lateral torsion buckling is higher which is seen by the change of buckling load for the
frames. When every other, and every connection between beam and purlins for frames
with dimension IPE240 and IPE360 respectively is modelled as a rigid connection the
failure mode is lateral torsion buckling in the column.

The connections are only double bolted at the ends of the beams which allows for a
rigid connection to be modelled. There is a possibility to use double bolted connec-
tions for all beam-to-purlin connections. The linear buckling analysis with more rigid
connections was done to examine the effect more double bolted connections would
have on the stability. With enough rigid connections the failure regarding stability is
not due to lateral torsion in the beam but rather in the column. Implementing this
method has the possibility to decrease the need for material as a smaller dimensions
might be sufficient for stability requirements and the need for lateral braces.
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8 Conclusions

The conclusions of this master’s thesis is presented in bullet form below.

• Modelling the frame with beam elements is sufficient to calculate the cross-
section forces for frames with and without haunches and displacements for frames
without haunches.

• Haunches could be implemented using a more accurate method in order to cal-
culate the displacements more exactly.

• The design tool is conservative with a factor of 2 to 6.5 compared to the three-
dimensional model depending on the frame analysis type when calculating the
utilization of the frame regarding stability.

• When moment distribution is considered when using Eurocode to calculate the
utilization in regarding stability, the designing is not as conservative.

• The design tool needs to consider the haunches’ contributions to the stability of
the frame to be more accurate when calculating the utilization.

• Incorporating rigid connections between beams and purlins, as the examined
frames are constructed with rigid connections at only two positions per beam,
would have a low effect on the stability.

• Creating rigid connections between beams and purlins, using two bolts instead
of one, for more than two connections per beam would increase the stabilization
of the frame.
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9 Further studies

In order to be more sure regarding the findings of this study it would be preferable to
compare with more frames, thus making a parameter study. With modelling of more
frames a correlation might be found. This would be done by changing one parameter
at the time and run the same analysis that has been done during this study. The
parameters could be span width, size of haunches or dimensions of cross-sections.
From these results, perhaps a general statement could be made regarding frames that
are slender, have haunches or have a large spans if the result achieved from this study
was found for several frames.

A similar study could be made including all load cases to investigate if the two-
dimensional model is sufficient for all load cases. The same argument could be made
for both boundary conditions. The same study could be made using fixed boundary
conditions as this can be chosen in the design tool. This would increase the verification
of the three-dimensional model.

One of the findings in this study was that the modelling of stiffness of the haunches
lacks accuracy resulting in a larger deflection compared to the three-dimensional
model. It was also mentioned that the contribution to stability from the haunches
is disregarded in the design tool, using the two-dimensional model. This resulted in a
larger difference between the improved utility and the original utility compared to the
frame with no haunches. No further improvements on how to model the stiffness more
accurately or how to consider the haunches contribution to stability were suggested.
This requires a new study to suggest these kinds of improvements.

In this study it was implied that the use of material could be reduced if suggested
improvements were implemented. However, a precis value of the amount of material
was not given. A calculation of how much material the new improved model would
save was not conducted and is up to further studies to discover.
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Appendix A

A.1 Effects of different boundary conditions

When modelling a three-dimensional model the boundary conditions are of great im-
portance. This is why two additional boundary conditions were applied to investigate
the difference in reaction forces. As mentioned before, the first way to model the con-
nection between the ground and column was to only restrain the holes in all displace-
ment directions. The second chosen boundary condition was to restrain all translation
around the holes and translation in y-direction for the outer flange of the column. The
boundaries are visualized in Fig. A.1. With this boundary condition the result of the
reaction forces are presented in table A.1 and table A.2 for the two different frames.

Figure A.1: Clarification of the second boundary condition. Translation in all directions
are constrained around the holes and translation in y-direction is constrained
for the outer flange.

73



Table A.1: Reaction forces for models using shell and beam elements for a frame with
beam-profiles IPE240 with haunches, both holes and outer flange restricted in
translation.

.

Left support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction 32.9 26.5 6.4 24.2%

y - direction 66.7 64.2 2.5 3.9%

Right support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction -39.7 -32.5 -7.2 22.3

y - direction 58.0 57.5 0.4 0.7

Table A.2: Reaction forces for models using shell and beam elements for a frame with
beam-profiles IPE360 without haunches, both holes and outer flange restricted
in translation.

.

Left support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction 39.9 32.2 7.7 21.2

y - direction 74.1 71.5 2.6 3.7

Right support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction -45.7 -37.7 -8.0 21.2

y - direction 64.5 63.9 0.6 0.9

The third chosen boundary condition was to restrain all translation around the holes
and translation in y-direction for both the outer and inner flange of the column. The
boundaries are visualized in Fig. A.2. With this boundary condition the result of the
reaction forces are presented in tables A.3 and A.4 for the two different frames.

Table A.3: Reaction forces for models using shell and beam elements for a frame with
beam-profiles IPE240 with haunches, both holes and outer flange restricted in
translation.

.

Left support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction 38.7 26.5 12.2 46.0

y - direction 67.1 64.2 2.9 4.6

Right support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction -45.5 -33.5 -13.1 40.3

y - direction 57.5 57.5 -0.1 0.1
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Figure A.2: Clarification of the third boundary conditions. Translation in all directions
are constrained around the holes and translation in y-direction is constrained
for the outer and inner flange.

Table A.4: Reaction forces for models using shell and beam elements for a frame with
beam-profiles IPE360 without haunches, both holes and outer flange restricted
in translation.

.

Left support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction 55.6 32.2 23.4 72.6

y - direction 74.8 71.5 3.3 4.7

Right support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction -61.4 -37.7 -23.7 63.0

y - direction 63.8 63.9 -0.1 0.2

A.2 Fixed boundary condition

It is possible to build steel frames with rigid column-to-ground connections and there
is an option in the design tool to apply this as a boundary condition to the two-
dimensional model. The last chosen boundary condition for the three-dimensional
model that was examined if it was similar to the pinned boundary conditions in the
two-dimensional model was compared again with fixed boundary conditions. The
comparison is shown in tables A.5 and A.6.
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Table A.5: Third boundary condition compared with fixed boundary conditions applied
to the two-dimensional model for frame with beam-profiles IPE240.

Left support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction 38.7 38.5 0.2 0.5

y - direction 67.1 65.4 1.7 2.6

Right support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction -45.5 -44.5 -1.0 2.2%

y - direction 57.5 56.3 -0.1 0.1%

Table A.6: Third boundary condition compared with fixed boundary conditions applied
to the two-dimensional model for frame with beam-profiles IPE360.

Left support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction 55.6 52.7 2.9 5.5

y - direction 74.8 72.6 2.2 3.0

Right support Shell Elements [kN] Beam Elements [kN] Diff. [kN] Diff. [%]

x - direction -61.4 -58.2 -3.2 5.5

y - direction 63.8 62.8 -1.0 1.6
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