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1

Introduction

Biodiversity loss has emerged as one of the most pressing environmental issues of

our time. The rapid decline in species and habitats across the globe poses significant

challenges not only to ecosystems but also to human well-being. Latin America and

the Caribbean, regions rich in biodiversity, have experienced particularly severe

impacts. Large-scale land acquisitions (LSLAs), often for agricultural development,

are increasingly scrutinized for their role in accelerating these changes.

Understanding the effects of LSLAs on biodiversity is crucial for devising strate-

gies to mitigate their negative impacts. This thesis investigates the differential

effects of transnational versus domestic agricultural investments on biodiversity in

Latin America and the Caribbean. By examining a range of econometric models,

this research seeks to uncover the nuanced relationships between land acquisitions

and biodiversity outcomes.

The study employs a comprehensive methodological approach, utilizing Ordinary

Least Squares (OLS) models, Fixed Effects (FE) models, and full matching. These

models are designed to provide robust insights into how different types of LSLAs

impact biodiversity, accounting for various control variables and potential biases.

The subsequent sections will outline the research problem, define the aim and

scope of the study, and provide an overview of the thesis structure. These sections

will lay the groundwork for a detailed examination of the theoretical framework, data

sources, and empirical findings, ultimately contributing to a deeper understanding

of the complex dynamics at play between agricultural investments and biodiversity

in these critical regions.
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1.1 Research Problem

Research exploring the complex relationship between biodiversity and economic

development has been varied, encompassing both qualitative and quantitative di-

mensions. Scholars have delved into various facets of this dependency - notably, as

a precursor of this research, I aimed to contribute to this discourse by shedding light

on the significance of agricultural land size in determining a country’s biodiversity

levels across regions such as Latin America and the Caribbean, as well as Europe

(Mihálka, 2023).

Central to understanding this dynamic is the role of land acquisitions, particu-

larly on a large scale, which, naturally, significantly influence a country’s agricultural

land size. While research, such as that conducted by Davis et al. (2023), provides

compelling evidence of the detrimental impact of transnational land acquisitions

on biodiversity, an important gap remains unaddressed: whether these effects dif-

fer from those of domestic investments. Additionally, despite existing literature

supporting the notion that foreign investments can negatively affect sustainability

metrics (for more detail, see section 2.2), these researches’ specific implications for

biodiversity still remain unclear.

Addressing these gaps is crucial for advancing our understanding of the relation-

ship between economic development and wildlife conservation. This research seeks

to bridge these gaps by exploring how transnational and domestic land acquisitions

impact local biodiversity in the Global South.

1.2 Aim and Scope

This paper seeks to fill this critical gap in the existing research landscape by

providing a nuanced exploration of the impact of transnational agricultural LSLAs

on local biodiversity, compared to their domestic counterparts. Drawing from the

ideas of the likes of Dasgupta (2021) and Davies et. al. (2023), and partly building

upon the foundations laid down in Mihálka (2023), this study endeavors to offer a

comprehensive understanding of this complex relationship.

Thus the research question of this thesis is the following:
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How do foreign investments in agriculture affect local biodiversity in

Latin America and the Caribbean?

As the question states, the scope of this research is concentrated on Latin Amer-

ica and the Caribbean, regions of cardinal importance for biodiversity conservation.

By focusing on these areas, the study aims to uncover region-specific dynamics and

contribute to a deeper understanding of the interaction between land acquisitions

and biodiversity conservation efforts. Furthermore, the research will use the presence

of agricultural LSLAs as a proxy for agricultural investments.

Through the synthesis of existing literature and careful empirical analysis, this

study aims to contribute valuable insights to both academic discourse and policy

formulation for sustainable development. Additionally, the findings of this research

may serve as a foundation for future exploration of the topic, providing a method-

ological framework that can be applied to other regions, or more specific case studies.

By considering regional specifics and adapting the methodology accordingly, future

research endeavors may further enhance our understanding of both the local, and

global implications of large-scale land acquisitions on biodiversity.

1.3 Outline of the Thesis

The thesis begins with a discussion of the Theoretical Framework (chapter 2),

which introduces the context, reviews past literature, and outlines the considerations

relevant to the research’s data and methodology. Following this, the Data chapter

(chapter 3) presents the source material, details the data processing procedures

undertaken, and provides a summary and descriptive statistical analysis of the final

dataset. Subsequently, in the Empirical Analysis (chapter 4), the methodology

employed in the research is explained, and the results are presented and discussed

in detail. The thesis wraps up with a Conclusion (chapter 5) that encapsulates the

findings and implications of the study.
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2

Theoretical Framework

2.1 Context

The world is undeniably experiencing a major biodiversity crisis. This issue has

garnered significant attention from not just the scientific community and governing

bodies (e.g., OECD, 2018A & 2019B; Dasgupta, 2021; Convention on Biological

Diversity, 2022A & 2022B, cited in Mihálka, 2023), but also larger news sources

and the general public (e.g., Greenfield, Rainis, 2022; Pelley, 2023, cited in Mihálka,

2023). However, despite its critical importance, this global issue often remains

overshadowed by other global challenges.

Figure 2.1: Living Planet Index in Latin America and the Caribbean

Source: Our World in Data (Ritchie, Spooner, Roser, 2024)

Latin America and the Caribbean hold particular significance in this context,
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as the region is home to vast areas of tropical forests and numerous biodiversity

hotspots. Nonetheless, the region’s wildlife has been in severe decline over the past

half-century. As illustrated in figure 2.1, the region’s Living Planet Index (LPI)

— ”[...] a measure of the state of the world’s biological diversity based on popula-

tion trends of vertebrate species from terrestrial, freshwater and marine habitats”

(Zoological Society of London, WWF, 2023) — has plummeted from its baseline

of 100% in 1970 to a deeply concerning 6.4% in 2020. This drastic decline poses

severe consequences not only for the inhabitants of the region but also for the global

ecosystem. Therefore, it is crucial to enhance our understanding of this issue and

investigate the impact of human activities on the species we need to protect and

foster.

Agriculture stands as one of the most significant impactors of biodiversity. The

growing global population necessitates increased agricultural production, whether by

enhancing yield per cropland through advanced technology and process optimization

or by expanding the agricultural land area. For example, as shown on figure 2.2, the

total cropland area of South America has more than doubled between 1970 and 2020.

Without the implementation of more sustainable farming practices, this expansion

could have dire consequences on the future of local biodiversity.

Figure 2.2: Total cropland area in South America

Source: Our World in Data (Ritchie, Roser, 2024)

Additionally, the increasingly globalized economy has profoundly impacted bio-

diversity. As depicted in figure 2.3, globalization has shown an increasing trend
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over the past two decades, despite occasional fluctuations. The rise of transnational

corporations and their increasing power have exerted considerable and continuous

pressure on ecosystems (as discussed by e.g. Österblom et. al., 2022).

Figure 2.3: Globalization, shown in the Trade Openness Index

Source: Our World in Data (Ortiz-Ospina, Beltekian, Roser, 2024)

This research aims to interlink these three topics — biodiversity, agriculture, and

the emergence of transnational entities — and uncover their effects on biodiversity in

the crucial region of Latin America and the Caribbean. To deepen our understanding

of these topics, the next section will review key pieces of literature that explore them

in more detail.

2.2 Literature Review

The literature review section provides an in-depth examination of existing re-

search and theoretical frameworks that inform the current study. This review

aims to further contextualize the research within the broader academic discourse

on transnational agricultural large-scale land acquisitions and their impacts on local

biodiversity. By critically analyzing essential studies such as Dasgupta (2021) and

Davis et. al. (2023), this section will highlight significant findings, identify gaps

in the literature, and establish a foundation for the methodological approaches em-

ployed in this thesis.
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The Dasgupta Review (2021) provides a crucial framework for understanding the

extensive impact of modern agricultural practices on biodiversity. These practices,

primarily aimed at maximizing farm yields, have inadvertently led to a significant

reduction in biodiversity. This reduction has compromised ecosystems’ ability to de-

liver vital services—such as regulation, maintenance, and cultural services—that are

essential for the sustainable provision of provisioning services like food and building

materials. This fundamental trade-off, detailed in Chapter 2, underpins the central

argument of this review: productivity and resilience are increasingly dependent on

biodiversity, which has been decreasing over the past 70 years due to the rising need

for provisioning services.

The review also notes how the current state of global biodiversity is alarming, as

highlighted by several key indicators. The global LPI shows a stark 68% decline in

the abundance of an enormous amount of vertebrate populations between 1970 and

2016. The International Union for Conservation of Nature (IUCN) Red List reveals

that over more than one fourth of assessed species are threatened with extinction,

including substantial proportions of mammals, amphibians, conifers, reef-building

corals, and birds. Additionally, the Biodiversity Intactness Index (BII) reports that

only 79% of naturally present biodiversity remained in terrestrial ecosystems by

2015, with most biomes falling below the proposed safe limit of 90%. Chapter 2

also offers an extensive analysis of these indicators, painting a a complex, but grim

picture of the global biodiversity crisis.

One of the significant challenges addressed in The Dasgupta Review is the mea-

surement of biodiversity and natural capital. Chapter 4 outlines four primary chal-

lenges—diversity, reliability, adaptability, and scalability—that complicate the val-

uation of biodiversity, given that most natural capital is not priced in markets. The

review proposes a framework for measuring biodiversity through indicators of struc-

ture, function, composition, and resilience, applicable at multiple levels. Developing

robust measurement tools and frameworks is crucial for capturing the true value of

biodiversity and natural capital. This underscores the choice of using a comprehen-

sive index to represent biodiversity in this thesis, ensuring a holistic and accurate

assessment of the impacts of transnational agricultural land acquisitions.

The Review underscores the importance of incorporating both temporal and spa-
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tial dimensions in biodiversity research. It explains that traditionally, research has

focused on temporal trends, often neglecting spatial changes. To fully understand

spatial changes, it is necessary to examine the specific conditions that support par-

ticular landscapes or ecosystems. For example, Chapter 3 discusses how biosphere

tipping points can have widespread spatial implications, affecting regional water

cycles and leading to mismatches between ecosystem service demands and sustain-

able supply capabilities. The review advocates thus for a holistic approach that

integrates both temporal and spatial aspects to effectively address biodiversity loss.

The Review also addresses the significant impact of transnational investments on

biodiversity, particularly in developing countries. Chapter 8 highlights how extrac-

tive activities such as mining, logging, and agricultural businesses can lead to severe

ecosystem degradation and biodiversity loss. These negative impacts can dispro-

portionately affect local communities in biodiversity-rich regions, worsening poverty

and socio-economic challenges. The review argues for stringent environmental and

social performance standards for transnational companies and stronger government

regulations and tax policies to account for the externalities of environmental degra-

dation. This chapter emphasizes the need for comprehensive policies that recognize

the value of natural capital and mitigate the adverse effects of transnational invest-

ments.

According to Dasgupta, institutions play a pivotal role in managing biodiversity.

The Review highlights the challenges posed by the open-access nature of global

commons like the atmosphere and oceans. Effective institutions are essential for

enforcing laws, establishing protected areas, incentivizing conservation, and sup-

porting community-based natural resource management. Institutional change can

drive behavioral shifts, reducing unsustainable consumption patterns and address-

ing the drivers of biodiversity loss. Chapter 7 elaborates on the significant role of

institutions in biodiversity conservation, arguing that creating robust institutions is

vital for sustainable natural capital management.

The Dasgupta Review concludes that protecting biodiversity through sustainable

development is essential for ensuring the long-term delivery of ecosystem services.

Sustainable practices not only enhance ecosystem resilience and reduce poverty but

also create new economic opportunities. Chapters 3 and 5 discuss how sustainable
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development practices that protect biodiversity can offer significant benefits, includ-

ing mitigating environmental disturbances such as climate change, natural disasters,

and emerging diseases. By integrating the insights from The Dasgupta Review, this

literature review highlights the critical importance of sustainable development in

preserving biodiversity and promoting human well-being.

In summary, The Dasgupta Review (2021) provides a comprehensive framework

for understanding the relationship between biodiversity, ecosystem services, and hu-

man well-being. It emphasizes the need for robust measurement tools, effective

institutions, and sustainable development practices to address the ongoing biodiver-

sity crisis. These insights are crucial for informing policies and practices aimed at

protecting biodiversity and ensuring a sustainable future.

Bucheli’s (2008) article delves into the historical dynamics between the United

Fruit Company (later United Brands) and Central American and Caribbean na-

tions during the 19th and 20th centuries. The multinational corporation wielded

significant influence in the region, contributing to economic development through

infrastructure projects while simultaneously facing scrutiny for its dealings with

local dictators which in many cases resulted in negative effects on social and envi-

ronmental factors.

Despite United Fruit’s role in bolstering economic activity through initiatives

such as establishing plantations and infrastructure, its reputation in the region

remains tarnished due to its collaborations with authoritarian regimes. Bucheli

challenges the notion of a natural alliance between multinational corporations and

dictatorial regimes, asserting that cooperation was contingent upon economic bene-

fits and stability provided by the corporations, alongside the strength of local labor

movements.

The study situates itself within the nexus of business history and the political

economy of foreign direct investment, drawing upon New Institutional Economics

(NIE) to underscore the impact of political regimes on corporate operations. Bucheli

underscores the significance of research on foreign direct investment in the primary

sector, highlighting its potential influence on local politics and susceptibility to

political violence.
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The article sheds light on United Fruit’s diminishing influence in the face of ris-

ing nationalism and shifting economic paradigms, ultimately leading to divestment

and local ownership of plantations. It underscores the complex interplay between

multinational corporations and political regimes, emphasizing the imperative of inte-

grating theoretical debates in political economy into analyses of corporate operations

in developing nations.

In conclusion, Bucheli’s work offers valuable insights into the historical dynam-

ics between multinational corporations and Central American nations, underscoring

the multifaceted impacts of transnational investments on regional development and

political stability.

The study conducted by Davis et al. (2023) investigates the impact of transna-

tional agricultural large-scale land acquisitions (TALSLAs) on forest covers and

biodiversity in the Global South. Utilizing data from 178 locations across 40 coun-

tries, the authors aim to assess the effects of TALSLAs on deforestation rates and

vertebrate biodiversity in various regions.

The findings reveal significant evidence linking TALSLAs to deforestation in

Asia and Africa, whereas no discernible difference is observed in Europe or Latin

America. Regarding vertebrate biodiversity, the study indicates that most TALSLAs

result in significant losses in relative species richness, although outcomes for relative

species abundance are more varied. Notably, nearly 40% of the reviewed locations

are situated, either wholly or partially, within biodiversity hotspots.

Davis et al. (2023) contextualize the research by defining large-scale land acqui-

sitions as transactions involving a minimum of 200 hectares. They underscore the

growing prevalence of such acquisitions, particularly transnational ones for agricul-

ture, which account for a substantial portion of the total land area acquired. The

authors emphasize the unprecedented scale of these acquisitions and their implica-

tions, rooted in historical colonial and imperial legacies. Additionally, they discuss

the misconception surrounding land acquisitions in ”marginal lands,” often revealed

to intersect with biodiversity hotspots.

Furthermore, the study highlights the potential ecosystem services provided by

some land acquisitions, juxtaposed with the negative environmental impacts associ-
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ated with agricultural conversions. The authors stress the significance of assessing

the impacts of TALSLAs on forest covers and biodiversity through a quantitative

lens, thus complementing existing research in the field.

Methodologically, Davis et al. (2023) obtain TALSLA deal centroids from the

Land Matrix (2024a & b) and create approximations based on deal sizes, acknowl-

edging the limitations of this approach in accurately representing actual deal areas.

They also create additional buffer zones to examine potential spillover effects. Re-

garding biodiversity assessment, the study reveals severe losses in relative species

richness across most locations, with mixed effects on relative species abundance.

Notably, many TALSLAs are found to intersect with biodiversity hotspot areas,

indicating negative biodiversity impacts even in buffer zones.

Despite its invaluable contributions, the study has areas of improvement, includ-

ing the low observation count in South America relative to other regions, potentially

impacting the generalizability of results. Moreover, the focus on forest loss rather

than general overview of habitats warrants further investigation, particularly in re-

gions with significant biodiversity importance such as Latin America.

Dogan (2022) provides an example of research investigating the impact of FDI

in agriculture on a sustainability measure. Although the study does not directly ad-

dress biodiversity, it offers valuable insights and methodologies that can be adapted

for our purposes. Dogan’s research, utilizing an unbalanced panel dataset from 56

developing countries between 2005 and 2020, applies the terminology of the Food

and Agriculture Organization of the United Nations (FAO), defining agriculture as

”agriculture, forestry, or fishing” (FAO, cited in Dogan, 2022, p. 55). This empir-

ical study employs quantitative methodologies, specifically fixed effects regression

models, to uncover a significant negative correlation between agricultural FDI flows

and food security. These finding aligns with several papers reviewed in their lit-

erature review, suggesting that agricultural FDI can adversely affect sustainability

measures. Furthermore, the study reveals that robust land governance systems can

mitigate these negative impacts. Dogan’s research underscores the importance of

quantitative methods in investigating the effects of FDI in agriculture on sustainabil-

ity measures and highlights the importance of considering the institutional context
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in such analyses.

Santangelo (2018) reinforces the findings of Dogan (2022) through similar quanti-

tative methods. This research not only confirms the negative impacts of agricultural

FDI on sustainability but also emphasizes the difficulties in obtaining detailed data

on FDI in agriculture, as noted by Cotula et al. (2009, cited in Santangelo, 2018,

p. 79). This challenge of data acquisition is crucial to consider for our research,

as comprehensive and accurate data are necessary for robust analysis. The conver-

gence of findings between Dogan and Santangelo strengthens the argument for the

use of quantitative methodologies in studying the impacts of agricultural FDI and

underscores the significance of data accessibility and quality in such research.

Ferrier and Guisan (2006) argue that modeling biodiversity and its changes us-

ing large multi-species datasets at the community level is often more effective for

general goals than species-level modeling. This perspective significantly influences

the approach to biodiversity research within this study. Given the relatively short

scope and time-span of this thesis, resources are insufficient to analyze individual

species-level data comprehensively. Ferrier and Guisan’s work suggests that employ-

ing a more complex, larger biodiversity dataset will simplify the methodology while

still yielding adequate results. This approach aligns well with the aim of producing

robust findings within the constraints of the research timeframe.

Mann and Smaller (2010) discuss the recent trend of foreign investment in farm-

land for agriculture across various parts of the world, particularly focusing on crops

used for food, feed, and energy. These investments, often in the form of purchases

or long-term leases of large tracts of arable land, are primarily driven by concerns

over food, water, and energy security. Besides highlighting the potential dangers

to food and water security and certain social aspects, Mann and Smaller empha-

size that the lack of regulations concerning pesticides, herbicides, water protection,

and biodiversity in some host states poses significant risks to other water users, soil

management, and the long-term sustainability of agricultural projects.

The role of institutional arrangements is crucial in regulating the terms and

conditions of foreign investment in farmland. The presence of strong regulatory

frameworks is essential for establishing clear rules for investors and safeguarding

public interest. Although Mann and Smaller’s research mainly reviews situations

20



in African countries such as Ethiopia, Kenya, and Mozambique, their findings are

considered applicable to Latin America to a considerable extent. However, regional

differences should be acknowledged and accounted for in the analysis.

Sändig (2021) also discusses LSLAs and their effects in countries of the Global

South. Their research adopts an opposite perspective compared to the previously

discussed studies, exploring how local communities influence LSLAs through vari-

ous avenues. Using a sample of 28 LSLAs, primarily focused on agriculture, Sändig

identifies three main ways in which communities can manifest resistance: every-

day resistance, contentious politics, and legal mobilization. It is found that in less

constrained environments, communities can adopt a more organized approach in

resisting these investments.

While legal mobilization is not discussed in detail in Sändig’s examples, the over-

all findings suggest that the institutional setting once again plays a significant role

in the outcomes of LSLAs. The ability of local communities to organize and resist

these investments depends largely on the strength and structure of local institutions.

This insight aligns with the broader understanding that robust institutional frame-

works are crucial in managing the impacts of transnational agricultural investments

and ensuring that local interests are protected.

The review of existing literature reveals several critical insights pertinent to

understanding the impacts of LSLAs on local biodiversity in Latin America and the

Caribbean.

The works of e.g. Mann and Smaller (2010), Dasgupta (2021) and Davis et al.

(2023) confirm the severity of the biodiversity crisis, providing numerous examples

through their extensive reviews. Both sources highlight how modern agricultural

practices and FDI in agriculture tend to negatively affect sustainability measures,

encompassing both environmental and social dimensions. This consistent finding

across multiple studies underscores the significant ecological trade-offs associated

with agricultural expansion and foreign investment.

Additionally, data availability issues are a recurring theme in prior research (e.g.

Santangelo, 2018, Davis et. al., 2023). Assumptions and approximations, coupled

with clear explanations of their potential pitfalls, are often necessary to achieve
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meaningful results. The reviewed literature often approximates FDI in agriculture

through the lens of TALSLAs. This method, utilized in multiple studies, including

Davis et al. (2023), offers a practical approach for acquiring adequate data on

agricultural investments. Consequently, this approximation will be adopted in the

present research as the appropriate measure of FDI in agriculture.

Davis et al. (2023) specifically highlight that LSLAs negatively impact bio-

diversity through various mechanisms. Their research, in line with the Dasgupta

Review’s Chapter 2 and 3 (2021) emphasizes the importance of considering tempo-

ral and spatial dimensions in understanding these effects, as well as the critical role

of institutional settings. However, a notable gap in prior research is the differentia-

tion between domestic and transnational LSLAs, which could significantly influence

sustainable development outcomes.

The region of Latin America and the Caribbean is often overlooked in these stud-

ies. Although Mann and Smaller (2010) provide a comprehensive qualitative review

of LSLAs, and Davis et al. (2023) employ a robust methodology yielding significant

results, their focus remains predominantly global, evidenced by for example a low

observation count in this specific region. This gap underscores the need for more

focused research on Latin America and the Caribbean, regions of key importance

for biodiversity conservation.

Given the critical importance of biodiversity protection in these regions and their

under-representation in existing research, this study will measure foreign investments

in agriculture using LSLAs, following the methodological framework of Davis et al.

(2023).

To address the gap in prior research, and answer the research question presented

in chapter 1, the following hypotheses are formulated based on the literature review:

H1: All agricultural LSLAs have a significant and negative effect on local biodi-

versity in the region.

H2: Transnational LSLAs will have a higher long-term negative effect on local

biodiversity in the region than domestic LSLAs.

These hypotheses aim to investigate the multi-faceted impacts of agricultural
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investments on biodiversity, with a particular focus on the comparative effects of

domestic versus transnational LSLAs. This research will contribute to a deeper

understanding of how foreign agricultural investments influence local ecosystems

in Latin America and the Caribbean, providing valuable insights for sustainable

development policies.

2.3 Data and Methodological Considerations

2.3.1 Importance of Data Selection

Data selection is critical to addressing the research questions effectively. The

data must align with the theoretical considerations discussed earlier in the literature

review. The selection criteria for datasets include relevance to the research questions,

reliability, and the ability to capture both spatial and temporal variations.

To investigate the impacts of LSLAs on biodiversity, diverse datasets capturing

relevant variables will be employed. These datasets will encompass information on

biodiversity, land use, climate conditions, and human activities. Each dataset will

be selected based on its ability to provide high-resolution, accurate, and reliable

data. The datasets also need to offer sufficient temporal coverage to enable analysis

over time.

Biodiversity data will provide insights into the state of local ecosystems and

the various species within them through a comprehensive index, as for example

suggested by Dasgupta (2021). Data on land use will help in understanding the

extent and nature of land acquisitions, while geography and climate data will control

for environmental factors that could influence biodiversity independently of LSLAs.

Additional human activity data will be considered to account for other influences

on biodiversity, ensuring a comprehensive analysis.

Potential challenges related to data quality and availability will be addressed.

Issues such as missing data or measurement errors will be mitigated through setting

approximations or assumptions, which will be discussed in detail.

23



2.3.2 Methodological Approaches

The methodological approaches in this research will involve quantitative tech-

niques to analyze the collected data. Given the need to address both spatial and

temporal variations, spatial analysis and panel data analysis methods will be promi-

nently featured.

Spatial analysis techniques will be employed to examine the relationships be-

tween LSLAs and biodiversity. These techniques will involve mapping and analyzing

spatial patterns, providing visual and quantitative insights into the spatial dynamics

of biodiversity changes. Geographic Information System (GIS) tools will be utilized

to handle and process spatial data effectively.

Panel data analysis will be used to capture both spatial and temporal variations

in the data. This method is advantageous as it controls for unobserved hetero-

geneity and captures dynamic changes over time. Spatial panel datasets will be

crucial in allowing a more nuanced analysis of the interactions between LSLAs and

biodiversity.

To isolate the specific effects of LSLAs on biodiversity, prior discussed various

control variables such as geographic features, climate conditions and human activi-

ties will be included in the analysis. These controls are essential to account for other

factors that could influence biodiversity, ensuring that the results specifically reflect

the impacts of LSLAs.

Appropriate statistical models, including Ordinary Least Squares (OLS) and

Fixed Effects (FE) models, and more advanced methodologies such as optimal full

matching will be employed to analyze the data. The rationale for choosing these

models will be explained to ensure that the methodology aligns with the research

objectives.

Methodological constraints, such as the limitations of certain statistical tech-

niques or potential biases, will also be discussed. Approaches to address these

constraints, including robustness checks and alternative modeling strategies, will be

proposed.

In summary, a robust spatial panel dataset has to be constructed, incorporating

local biodiversity data, characteristics of LSLAs, geographic, climate, and other hu-
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man activity factors. The chosen methodology will align with the research questions

and aims, previous research, and the dataset’s structure and characteristics. This

approach ensures a comprehensive and careful analysis of the effects of transnational

agricultural large-scale land acquisitions on local biodiversity in Latin America and

the Caribbean.
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3

Data

In the previous section, we underscored several important factors in choosing

appropriate data, such as the significance of spatial and temporal patterns in study-

ing biodiversity and its relationship with LSLAs. Thus, our research prioritized

the utilization of spatial panel datasets. These datasets offer a dynamic foundation

that allows for the exploration of spatial and temporal dynamics in the forthcoming

analysis, aligning closely with the research objectives outlined in our study.

Moreover, the value of databases utilized in previous research was recognized,

such as the Land Matrix employed in the study conducted by Davis et al. (2023),

in investigating the impacts of LSLAs on biodiversity. While these databases pro-

vide a foundational understanding of the subject matter, this research required a

comprehensive exploration of additional databases to meet the specific requirements

of our study. By considering various data sources, we aimed to enrich our analy-

sis and provide a more robust assessment of the relationship between LSLAs and

biodiversity.

In this chapter, the data acquisition process is explored in detail, describing the

approach to sourcing datasets across different categories. The arguments behind

selecting each dataset and data processing, and how these choices align with the

objectives of our research are examined. Additionally, descriptive statistics are used

to further explore the final dataset. Through this overview, the research aims to es-

tablish a solid foundation for the subsequent analyses and interpretations presented

in this study.
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3.1 Source Material

3.1.1 Biodiversity Habitat Index

In the pursuit of identifying a reliable spatial biodiversity database, multiple

datasets have been explored using the UN Biodiversity Lab (2024). This platform

offers a comprehensive map function, allowing the examination of various layers of

spatial data. Among the array of available datasets, the Biodiversity Habitat Index

(BHI) database developed by Harwood et al. (2022b) emerged as the optimal choice

for several reasons.

Foremost, the BHI database constructs a comprehensive biodiversity index that

encapsulates the overall impact on biodiversity. While previous research, such as

that conducted by Davis et al. (2023), utilized indicators like forest loss, relative

species richness and relative species abundance, our focus on assessing the quality

of habitats enables a holistic examination of the biodiversity landscape.

Moreover, the database employs high resolution (30 arc-seconds) spatial data,

spanning the years 2000, 2005, 2010, 2015, and 2020. This extensive temporal

coverage provides a large number of data points, allowing robust analysis and inter-

pretation.

Additionally, the accompanying paper by Harwood et al. (2022a) underscores the

trustworthiness and robustness of the dataset, further strengthening its suitability

for the research aims. It provides detailed guidance on some necessary calculations,

ensuring accuracy and reliability in data interpretation.

Considering these factors collectively, the BHI database can be established as a

solid foundation for the research objectives. Its comprehensive nature, high resolu-

tion, and robust methodology align closely with the aims of this study, laying the

groundwork for the subsequent analysis.

3.1.2 Large-Scale Land Acquisitions

As mentioned in the preceding chapter, the database by the Land Matrix (2024a

and 2024b), also utilized by Davis et al. (2023), emerges as an invaluable resource

for investigating the impacts of LSLAs on biodiversity. This repository is the prod-

uct of an independent initiative aimed at enhancing transparency surrounding such
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(a) 2000 (b) 2020

Figure 3.1: A comparison of BHI in 2000 and 2020

Red areas indicate a lower, while green areas indicate a higher BHI

investments within the Global South.

Of great importance to this study is the comprehensive nature of the database,

which captures critical data points essential for analyzing LSLAs. Notably, the

database carefully records the precise locations and estimated sizes of land acqui-

sitions, encompassing both domestic and transnational transactions. Moreover, it

offers a a large amount of supplementary information about the individual deals

and their respective locations. This includes insights such as the purpose behind

each land acquisition, the purchase price, the identities of acquiring entities, and

their countries of origin, among other potentially relevant details. While these data

points were not part of the subsequent analysis of the thesis, future research could

delve into these details for more insights on the matter.

In essence, the Land Matrix database serves as a rich repository of information,

providing researchers with a comprehensive toolkit to investigate LSLAs and their

impacts on local factors, such as, in the case of this study, biodiversity.

To ensure alignment with the specific aims of this research, the original dataset

has been filtered twofold. Firstly, the data was refined to encompass the geographic

scope of this study, namely Latin America and the Caribbean. Additionally, the

intention of the investments was restricted to agriculture or forestry, As suggested
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by the FAO definition cited in Dogan (2022), further refining the dataset to align

with the research’s scope.

Upon applying these filters, the dataset encompasses a total of 866 LSLA lo-

cations related to agriculture, comprising 370 transnational investments and 496

domestic investments. The distinction whether the individual locations are domes-

tic or transnational serves as a crucial dummy variable, serving as the primary

independent variable for addressing the research question at hand.

It is important to highlight that while the database provides coordinates for

LSLA locations, it only includes exact areas for a very limited number of land ac-

quisitions in the region. However, this limitation is addressed through the creation

of area approximations, which will be explained in detail in section 3.2. This strate-

gic approach ensures the robustness and reliability of the data for upcoming analysis

and interpretation.

Figure 3.2: LSLA locations

Pink points represent transnational, while blue points represent domestic acquisitions

3.1.3 Additional Control Variables

In addition to the main independent variable of LSLA locations, this research

acknowledges the necessity of incorporating additional control variables. It is under-

stood that the state of biodiversity is influenced by several other factors beyond the
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specifics of LSLAs alone. While these variables may not serve as the primary focus

of this study, they account for crucial components for constructing robust analytical

models.

The additional control variables under consideration in this research can be

broadly categorized into three distinct categories: geography, climate, and human

activity. Each category covers a range of variables that may exert varying degrees

of influence on biodiversity dynamics within the study region.

Geography

Given that both the dependent variable (BHI) and the main independent variable

(LSLA locations) are spatial in nature, the inclusion of key geography controls takes

on high importance. These controls serve to contextualize the spatial relationships

under investigation and mitigate potential negating effects arising from geographic

heterogeneity within the study region.

It is important to note that these geography controls can be considered constant

for the purposes of this research, as their timescale of change is sufficiently large to

be deemed negligible within the study timeframe of 2000-2020. As such, there is no

need to account for temporal variability in these controls, as our analysis is confined

to a specific timespan imposed by the availability of data from the BHI database.

Most evidently among these geography controls are latitude, longitude, and area

data, which serve as fundamental variables of spatial location and extent. Since these

variables are already included in the point dataset of the Land Matrix database,

there is no need for acquiring an additional dataset.

In addition to latitude, longitude, and area data, it is vital to include additional

geography controls such as elevation, slope, and terrain ruggedness in the analysis.

These fundamental geographic factors have the potential to exert significant effects

on both biodiversity patterns and the spatial distribution of land acquisitions. To

incorporate these variables, raster datasets have been sourced from EarthEnv (2024)

at a 1km resolution, using GMTED2010 as a source.

Moreover, proximity to bodies of water arises as another useful geographic pa-

rameter, given its potential impact on baseline biodiversity levels. Data on the

proximity to water bodies has been obtained from Natural Earth (2024) in the
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form of shapefiles, compromised by a line dataset for rivers and polygon datasets for

lakes. The method for extracting the actual distance from land acquisition locations

to these water bodies will be elaborated upon in the upcoming section 3.2.

Additionally, an essential factor to consider is the agricultural suitability of the

land, which can greatly influence both biodiversity and the spatial distribution of

land acquisitions. To incorporate this variable into our analysis, data has been

collected from the database of Schneider et. al. (2022), who have developed a

comprehensive global inventory of potentially cultivable land (PCL) across various

scenarios and time periods.

For the purposes of this research, the historical database spanning from 1980

to 2009 has been selected from Schneider et al.’s inventory. This dataset accounts

for irrigation patterns, providing insights into the historical suitability of land for

agricultural purposes. Specifically, raster data with a 30 arc-second resolution has

been acquired to align with the resolution of other variables within our analysis.

Climate

Controlling for climate effects is also crucial in researching biodiversity, as cli-

mate variables can influence ecosystems in numerous ways. While a wide range of

climate-related variables could be considered, this research focuses on two primary

factors: temperature and precipitation. These variables are chosen for their signif-

icant impact on environmental conditions and their straightforward application in

the upcoming empirical analysis.

Unlike geographic controls, climate variables are dynamic and their temporal

changes must be accounted for in the analysis. Therefore, the datasets selected for

this study are spatial panel datasets that span the observed years. The datasource

that best meets these requirements is WorldClim (2022), which provides historical

monthly raster datasets for minimum temperature, maximum temperature, and

precipitation.

To create the necessary annual datasets, GIS tools were employed to calculate

cellwise means for each raster dataset, by year of observation. By incorporating

the measures for these three variables, the research ensures comprehensive control

over the climatic changes that can occur within a region. This approach allows
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for a relatively simple but thorough examination of the impact of temperature and

precipitation on biodiversity, contributing to the robustness of the analysis.

Human Activity

Once again, controlling for human activity assumes critical importance within

the scope of this research. Human activities can exert significant pressures on bio-

diversity, necessitating their inclusion as control variables in the analysis.

Human activity variables are also dynamic in nature and cannot be considered

constant over the study period. Ideally, spatial databases would be sought for these

variables to capture their spatial heterogeneity and temporal dynamics comprehen-

sively. However, due to the complexities associated with some of these variables,

acquiring spatial databases may not always be feasible.

In Mihálka (2023), it has been demonstrated that population density has a sig-

nificant negative effect on biodiversity. To represent population density, and by ex-

tension human activity, a spatial approximation based on nighttime lights activity

can be employed. The use of nighttime light data for this purpose is well-established

in scientific literature, with numerous research papers employing this approximation

(e.g. Sutton, 1997, Liu et. al., 2011).

For this study, raster data has been procured from Li et al.’s (2023) Harmonized

Global Night Time Lights dataset, once again offering a spatial resolution of 30 arc

seconds. This dataset provides valuable insights into the spatial distribution and

intensity of human activity, as indicated by nighttime lights (NTL) emissions (Li et.

al., 2020). By incorporating this proxy for population density into our analytical

models, we aim to capture the spatial heterogeneity of human activities and their

potential impacts on biodiversity dynamics within the study region.

Additionally, once again reviewed in Mihálka (2023), Gross Domestic Product

(GDP) emerges as an important variable in our analysis. The database compiled by

Chen et al. (2022) stands out as the most suitable resource for our research needs,

offering a gridded real GDP database. Notably, this database has been constructed

using calibrated nighttime light data, which enhances its accuracy. However, it is

important to acknowledge that this GDP dataset is likely to exhibit a high degree

of correlation with the nighttime light dataset utilized in this study. Therefore, this
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correlation must be carefully considered and thoroughly tested before constructing

the empirical analysis. This is further discussed in subsection 3.3.2.

Furthermore, it is essential to address the temporal limitations of the GDP

dataset, which only extends until 2019. To mitigate this limitation, this paper will

operate under the assumption that the GDP data for 2020 are sufficiently similar to

those of 2019. Thus the 2019 GDP data is utilized in combination with 2020 data

from other datasets.

Another crucial aspect considered in this research is institutional quality. While

some previous quantitative studies, such as Welsch, 2004 and Tan et. al, 2022 (cited

in Mihálka, 2023), have primarily focused on corruption, this research aims to take a

broader approach by addressing institutional quality, which inherently encompasses

corruption among other factors. This decision has also been influenced by the likes

of Bucheli (2008), Dasgupta (2021), Sändig (2021) and Dogan (2022), which shows

that a country’s institutional environment is crucial when assessing biodiversity or

transnational agricultural acquisitions in the region.

Acquiring a spatial database for institutional quality would not only be challeng-

ing but also unnecessary; country-level aggregation should suffice for the purposes of

this research. To this end, the International Property Rights Index (IPRI) provided

by the Property Rights Alliance (2024) has been selected. This index, ranging from

0 to 10, comprises components such as legal and political factors, judicial indepen-

dence, and the rule of law, among others.

However, it is important to acknowledge the limitations of this dataset. The first

available year for the IPRI is 2007, posing a temporal constraint on our analysis. To

address this obstacle, this research adopts the assumption that IPRI values remained

relatively stable between 2000 and 2005 and were comparable to the 2007 levels. As

a result, the IPRI values for 2007 will be used as proxies for both 2000 and 2005 in

our analysis.
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3.2 Data Processing

3.2.1 Unit Approximation

One of the fundamental challenges encountered in this paper was determining the

appropriate spatial unit for analysis, considering the dataset and research objectives.

Drawing on insights from Davis et al. (2023), it became evident that creating area

approximations around LSLA locations would be the most effective approach. These

area approximations allow for a more in-depth understanding of the spatial extent

and impact of LSLAs on biodiversity in Latin America and the Caribbean.

To generate these area approximations, the size of individual LSLA locations was

calculated using deal sizes provided by the Land Matrix database, along with the

number of locations assigned to each deal. Essentially, an average size was computed

for each location based on these parameters. Subsequently, circular buffers were

created around each LSLA location, with the radius of each buffer corresponding

to the calculated average size. This method ensures that the area approximations

adequately represent the spatial footprint of LSLAs and facilitate subsequent spatial

analysis.

Through this approach, we aim to overcome the challenge of spatial represen-

tation inherent in LSLA data and provide a more comprehensive understanding

of the spatial dynamics of large-scale land acquisitions and their implications for

biodiversity in the study region.

Figure 3.3: Comparison between the exact area and area approximation

Naturally, it is essential to consider that the actual spatial configurations of

LSLA locations may differ significantly from the circular approximations generated.
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For instance, a long rectangular land parcel could have the same geometric center

as a circular approximation. Or as shown by figure 3.3, the location of the points

and exact polygons can be slightly misaligned, resulting in a somewhat spatially

shifted approximation. However, due to limitations in the availability of polygon

data provided by the Land Matrix (2024b), which contains the actual shape and

size of these locations, this research deems the use of circular approximations as an

acceptable compromise. Nonetheless, it is crucial to bear in mind this limitation

when interpreting the results, as the spatial accuracy of the approximations may

vary.

By utilizing these area approximations as polygons, we can effectively extract the

necessary data from the raster datasets reviewed earlier. This approach enables us

to analyze the spatial relationships between LSLA locations and various geographic

and environmental factors, providing insights into the potential impacts of large-

scale land acquisitions on biodiversity in Latin America and the Caribbean.

3.2.2 Zonal Statistics

Zonal statistics serves as a crucial tool for calculating statistical indicators from

raster datasets, utilizing the spatial extent of another geographic layer, such as

another raster or a polygon, as reference. Given the diverse array of raster-based

datasets utilized in this research to align with the BHI dataset, these calculations

are indispensable for acquiring accurate data for our selected spatial unit.

Calculating the weighted geometric means for BHI

Calculating the BHI value for each location in the LSLA dataset was informed

by the supplementary paper provided by Harwood et. al. (2022a), which outlines

the correct methodology for calculating the mean per territory. This supplement

provides crucial insights into an additional raster dataset containing weights that

should be utilized for the calculations. Simply put, these weights essentially provide

adjustments for the spatial effects on biodiversity.

Moreover, the paper highlights that using an arithmetic mean would yield in-

accurate results. Instead, it recommends the following formula for calculating the
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(a) LSLA area approximations (b) Elevation raster

(c) Calculated elevation geographic means

Figure 3.4: Zonal statistics through the example of elevation in Uruguay

Color scale adjusted for better visual presentation

weighted geometric means (Harwood et. al. 2022a)1:

Xr = e

∑i=n
i=1 [

ln(xi)
Ai

]∑i=n
i=1

[ 1
Ai

]

Where:

• X : weighted geometric mean of BHI

• x : BHI raster

• A : weight raster

• r : region

• i : individual cell

• n : number of raster cells in the region

1The formula presented in this paper deviates slightly from the one in the original source due
to a typo concerning the terms for which natural logarithms are required. Employing the original
formula may lead to inaccurate outcomes.
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In practice, the calculation of weighted geometric means for individual locations

has been executed through multiple steps using GIS software. Initially, new raster

layers were generated for the denominator and the numerator in each year. These

rasters were computed using the following formulas:

wgm BHI num =
ln(x)

A

Where wgm BHI num is the numerator for the weighted geometric mean;

wgm BHI denom =
1

A

Where wgm BHI denom is the denominator for the weighted geometric mean.

Subsequently, zonal statistics tools were employed to determine the sum of cell

values from both the denominator and numerator raster sets using the area ap-

proximation polygon dataset (wgm BHI num sumr and wgm BHI denom sumr).

These sums were then assigned to each unique location ID.

Finally, the weighted geometric means were computed for each year and location

ID utilizing the following formula:

wgm BHIr = e
wgm BHI num sumr

wgm BHI denom sumr

In summary, utilizing GIS software, the process involves multiple steps, including

the generation of raster layers for both the denominator and numerator, computation

of cell value sums using zonal statistics tools, and calculation of weighted geometric

means based on a specific formula. This approach ensures the accurate assessment

of the BHI across LSLA locations in Latin America and the Caribbean.

Calculating the geometric means of other raster datasets

For other datasets utilized in this research, calculating the geometric means

did not require weighting, significantly simplifying the calculation process. Essen-

tially, the geometric means were computed using GIS tools applied to the polygons

representing the area approximations, and subsequently assigned to the individual

location IDs.

In the case of variables that remain static and are based on raster datasets,
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such as geography controls, these calculations were conducted once and applied uni-

formly across all time points of the research. Conversely, for variables characterized

by dynamism, such as climate controls and human activity indicators, these calcula-

tions were performed for each year of observation, ensuring temporal accuracy and

relevance.

3.2.3 Additional Calculations

In addition to zonal statistics, supplementary calculations have been undertaken

to supplement the analytical framework. One such calculation focused on deter-

mining the distance from bodies of water, which emerged as potentially important

control variables for geographical effects. Using GIS software once again, this pro-

cess required calculating the distance of each point in the location dataset to the

nearest line or polygon, depending on whether it meant to rivers or lakes.

3.3 Final Dataset

3.3.1 Summary of the Final Dataset

Following the completion of data cleaning procedures, the final dataset comprises

a total of 4043 observations spanning the five observed years. Within this dataset,

2357 observations represent domestic locations, while 1686 are transnational loca-

tions, encompassing 22 variables.

To establish a suitable methodology for analysis, the following subsection of the

paper will conduct descriptive statistics. This approach aims to uncover the funda-

mental relationships between the variables, establishing a deeper understanding of

the dataset’s characteristics and informing subsequent analytical approaches.

3.3.2 Descriptive Statistics

Below, table 3.1 summarizes the source, units and additional characteristics of

these variables. Spatial means and distance calculations were performed according

to subsection 3.2.2.

To visualize one of the key trends, figure 3.5 presents the yearly state of BHI
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Table 3.1: Summary statistics table of the final dataset

Categorical variables - country, location ID and deal ID - are excluded

Statistic N Mean St. Dev. Min Max

BHI (0-1) 4,043 0.46 0.13 0.24 0.90
Year of obs. 4,043 2010 7.072 2000 2020
Transnational Dummy 4,043 0.42 0.49 0 1
Avg. Loc. Size (ha) 4,043 17,359.38 46,996.50 10 545,000
Year of impl. 4,043 2010 5.16 2000 2020
Longitude (◦) 4,043 −63.40 11.95 −92.72 −37.80
Latitude (◦) 4,043 −16.93 15.69 −51.75 21.15
Elevation (m) 4,043 370.12 493.10 2.74 3,951.52
Slope 4,043 2.03 3.29 0.08 22.02
Ruggedness (0-100) 4,043 7.57 11.59 0.48 75.22
Distance - Lakes (◦) 4,043 3.63 3.05 0.00 14.22
Distance - Rivers (◦) 4,043 0.56 0.60 0.00 5.87
Minimum Temp. (◦C) 4,043 15.98 4.90 −2.46 24.48
Maximum Temp. (◦C) 4,043 27.66 4.52 8.33 35.12
Precipitation (mm) 4,043 105.36 62.84 0.15 378.55
PCL (0-1) 4,043 0.68 0.21 0.00 0.86
NTL (0-63) 4,043 14.53 18.52 0.00 63.00
GDP (mUSD, 2017) 4,043 3.76 6.63 0.00 40.80
IPRI (0-10) 4,043 4.61 0.84 2.64 6.97

over the observed years, in the format of a boxplot. We see a clear decline over the

5 years in multiple measures. Whether it is mean, or upper/lower quantiles being

measured, biodiversity is clearly in a worse state in these locations, based on the

BHI measure. This, once again, supports the claims of the prior research reviewed

related to the current state of global biodiversity.

Naturally, we also need to determine whether the state of biodiversity in domestic

and transnational LSLA locations is different. For this, figure 3.6, a similar boxplot

to the prior, shows a much lower level of BHI in transnational locations. This

supports the findings of Davis et. al. (2023) saying transnational agricultural LSLAs

are in fact a danger to local biodiversity. However, this plot provides a comparison

to their domestic counterparts.

Combining the previous two plots, figure 3.7 shows the decline of the BHI over

the 5 observed years, categorized into domestic and transnational LSLAs. However,

something interesting can be seen here: the BHI in transnational locations appears

to decline in a slower pace compared to domestic locations, even though BHI levels

are generally lower in this category. While this essentially proves H1, it somewhat
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Figure 3.5: Box plot of BHI per year

Figure 3.6: Box plot of BHI per LSLA type

countersH2 of the research, and is thus investigated closely in the empirical research.

To gain more insights on this relationship, figure 3.8 shows a combination of 4

density plots, divided by the first and last years of observations, and the category

of LSLAs. As also advised by the box plots of figure 3.7, these scenarios show a

negative shift in time, or when the location is transnational. However, while the

two plots showing domestic locations somewhat resemble a normal density curve,

the other two show two distinct peaks in the density of the BHI, indicating the

existence of additional sub-groups that divide this category. This finding is also

something considered in the upcoming empirical analysis.
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Figure 3.7: Box plot of BHI per year and LSLA type

Figure 3.8: Density plot of BHI, by year and LSLA type

Shifting our attention from the relationships of the dependent to the main inde-

pendent variable of research, the scatter plots of figure 3.9 and figure 3.10 show the

relationship between the BHI and geography controls. It is important to note that

all of these controls except the PCL index had to be log-adjusted to better observe

these relationships - something to also consider during the empirical analysis.

Potentially the most important geography control, the location size, is presented

in relation to biodiversity in figure 3.9. While the fitted line shows slight upward

trend in the BHI when the location size increases, the scatter plots paints a much

more noisy picture. The insight we can draw from this is there is no clear relationship
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between the two variables - however, including this control is still important for the

upcoming analysis, as it can change in relation to other factors.

Figure 3.9: Scatter plots and linear approximations between BHI and average location size

For the rest of the geography controls presented in figure 3.10, we see a similar

scenario: while the fitted lines do show some upwards or downwards trends, this is

likely due to outliers in the dataset - most of it is noise. However, it is important to

note that the relationship of BHI to the average slope and average ruggedness looks

very similar, indicating correlation between the two variables.

The scatter plot of figure 3.11 confirms a high correlation between the two vari-

ables: the observations almost perfectly sit on the fitted line of the graph. Thus

moving forward, one of these variables, namely ruggedness, will be excluded from

the dataset, to avoid auto-correlation in the upcoming analysis.

Similar to figure 3.10, figure 3.12 shows the scatter plots of the BHI and the cli-

mate variables. Once again, the relation of these controls to the dependent variable

is unclear, but should be included in the analysis due to the spatial and temporal

nature of the research.

However, potential correlation is once again apparent between two explanatory

variables. Naturally, the change of average minimum and maximum temperatures

will go somewhat hand in hand. The scatter plot of figure 3.13 confirms this: the two

independent variables are highly correlated in the case of this dataset too. Again

to avoid auto-correlation, average minimum temperature will be removed from the
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(a) log(Elevation) (b) log(Slope)

(c) log(Ruggedness) (d) PCL

Figure 3.10: Scatter plots and linear approximations between BHI and other geography
controls

Figure 3.11: Scatter plots and linear approximations between slope and ruggedness

upcoming analysis. Average maximum temperature will be kept instead, as the

rising high temperatures have a bigger effect on biodiversity change, this will likely

hold more explanatory power in our analysis.
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(a) Minimum Temperature (b) Maximum Temperature

(c) Precipitation

Figure 3.12: Scatter plots and linear approximations between BHI and climate controls

Figure 3.13: Scatter plots and linear approximations between minimum and maximum
temperature

For the last group of controls, for human activities, figure 3.14 once again shows

scatter plots in relation to the BHI. Here the trends seem somewhat clear for NTL

and GDP data, both the scatters and the fitted lines show a somewhat negative
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relationship to the dependent variable.

However, this shows another case of possible autocorrelation, as the distribution

of observations looks similar in both cases. To confirm this, figure 3.15 shows another

scatterplot between the NTL and the natural logarithm of the GDP variables. While

not as strong as in the two previous cases, this also shows correlation between the

two variables. This of course makes sense, as it was prevously discussed that Chen

et. al.’s (2022) spatial GDP database is in fact adjusted by NTL data. As the

correlation between these two independent variables is not as precise as the previous

examples, and given the high importance of both factors for this research, these will

be both included in the subsequent analysis - although in separate models, to once

again avoid auto-correlation.

Regarding the IPRI, figure 3.14c shows even though the fitted line shows other-

wise, there is once again no clear correlation between the BHI and IPRI - but this

could again change when not viewed in isolation.

(a) NTL (b) GDP

(c) IPRI

Figure 3.14: Scatter plots and linear approximations between BHI and human activity
controls
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Figure 3.15: Scatter plot and linear approximation between NTL and GDP

Having discussed the basic relationships and descriptive statistics of the key

variables, the focus now shifts to the empirical methodologies employed in this

research.
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4

Empirical Analysis

4.1 Methodology

4.1.1 Integration of Theory and Data

To reiterate, quantitative methodologies are employed in this research, with the

state of biodiversity (BHI) serving as the dependent variable and the primary in-

dependent variable being whether the LSLA in question is a transnational or do-

mestic investment, represented by the Transnational Dummy variable. To address

the research question and test the two hypotheses, a difference-in-differences (DiD)

method is deemed most suitable. The specifics of this method are further discussed

in subsection 4.1.2. Additionally, the general formulad use throughout this analysis

is explained in subsection 4.1.3.

Prior quantitative research reviewed in chapter 2 suggests the use of multiple

regression models to adequately explore the effects in question. Employing a variety

of models is crucial as each model has its shortcomings, and utilizing multiple ap-

proaches will assist in selecting the most appropriate one. It is common practice to

commence such research with OLS models. Although the bias associated with OLS

is well-known, it remains a valuable tool for assessing the basic relationship between

the variables. This is elaborated upon in subsection 4.1.4.

In addition to OLS, fixed effects models will be utilized to control for time-variant

unobserved heterogeneity and to mitigate endogeneity by accounting for individual-

specific effects. Detailed discussion on this can be found in subsection 4.1.5. To
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further refine the methods, full matching will be employed, which assigns weights

to the main independent variable, transnational dummy. This methodology is also

employed due to the discrepancies observed between domestic and transnational lo-

cations, as illustrated in figure 3.7 and figure 3.8. Utilizing a matched dataset is

expected to help bring the two groups of LSLAs closer together, addressing these

discrepancies. The details of this approach are provided in subsection 4.1.6. To

ensure thoroughness, the results will be subjected to robustness checks, which will

be discussed further in subsection 4.1.7.

Based on insights from Davis et al. (2023), the average location size in the sample

will be set above 200 hectares, as this criterion provides an adequate definition of

large-scale acquisitions. Additionally, the regression models will employ the natural

logarithm of the BHI to aid with a more straightforward interpretation of the results.

4.1.2 Difference in Differences

To address the research question and hypotheses outlined in the previous section,

an appropriate methodological framework must be established. The empirical anal-

ysis will utilize the difference-in-differences (DiD) methodology. This approach is

selected due to its suitability in assessing the impact of TALSLAs on local biodiver-

sity, taking into account the temporal and spatial dimensions of the data structure.

The difference-in-differences methodology is a quasi-experimental design used to

estimate causal relationships by comparing the changes in outcomes over time be-

tween a treatment group and a control group. The key advantage of this approach is

its ability to control for unobserved confounding factors that might affect the treat-

ment and control groups differently over time. This method has been extensively

discussed in the literature (e.g. Angrist & Pischke, 2008 p. 169-182) and will be an

effective tool in uncovering the impacts of these investments.

In this research, the ”treatment” is defined as the presence of transnational

LSLAs. The control group comprises domestic LSLAs. The primary outcome of

interest is the change in the BHI before and after the implementation of these

LSLAs. The pre-treatment period is set at the year 2000, representing the initial

BHI levels before the large-scale implementation of LSLAs. The post-treatment
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period is set at 2020, the latest year for which BHI data is available.

The LSLA data has been subsetted to align with these temporal boundaries.

Although this results in a reduced number of total observations, it simplifies the

analysis while still yielding robust and meaningful results. The reduction in ob-

servations is considered an acceptable trade-off for the clarity and precision this

methodology provides.

An essential aspect to consider is the year of implementation for each LSLA.

Variations in the time elapsed between the LSLA implementation and the post-

treatment period will exist across different locations. This variation could potentially

influence the observed impact on biodiversity. The timing of LSLA implementation

will be further discussed and controlled for in the subsequent sections to ensure the

validity and reliability of the results.

4.1.3 The General Formula

Using the DiD methodology, the analysis will incrementally introduce control

variables while constructing the comprehensive regression models. The initial step

involves testing the effects of the three crucial dummy variables: transnational, time,

and DiD. Subsequently, geography controls will be introduced, followed by climate

controls, and finally, human activity controls.

Given the high correlation of the explanatory variables, as discussed in relation

to Figure figure 3.15, human activity controls will first employ data from the GDP

database. This will then be compared with control data from the NTL database. As

the final step, a country interaction with the DiD variable will be incorporated into

the models to uncover whether the effects of these locations are context-dependent.

The general formula for the regressions is presented in Appendix B.

4.1.4 OLS Models

OLS models are a commonplace tool in econometric research due to their sim-

plicity and accessibility. They provide quick results and an initial overview for

assessing relationships between variables, serving as a valuable preliminary step be-

fore employing more refined methodologies. In this analysis, OLS models are used to

establish the foundational relationships between the variables under consideration.
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The control variables are gradually introduced into the OLS models, as discussed

in subsection 4.1.3.

Given the delayed effects of LSLAs on biodiversity, as discussed earlier, the OLS

models also include subsets of data based on the implementation year of the LSLAs.

This approach helps in understanding the temporal dynamics of LSLA impacts on

biodiversity.

Practically, these models have been constructed using the lm() function in R

(RDocumentation, 2024). Despite the utility of OLS models, it is important to

acknowledge their limitations. As Baltagi (2021b, p. 48) notes, OLS estimates can

be biased and inconsistent under certain conditions. Therefore, the analysis also

employs more refined methods to ensure robustness and reliability of the findings.

4.1.5 Fixed Effects Models

The next step of the analysis employs two-way fixed effects (FE) models to

control for unobservable individual and time effects in the regressions, as suggested

by Baltagi (2021b, pp. 47-50). Implementing these models is expected to result in

a more robust and reliable analysis, thereby strengthening the findings.

Once again, additional controls were gradually added to the FE models, in ac-

cordance with subsection 4.1.3.

In practice, these regressions were conducted in R, using the plm() function from

the plm package (Croissant & Millo, 2023), specifically employing the "within"

model. The formula indexes were set to the individual location ID and the year

variables, representing the time-invariant, individual-specific effects in these models.

Although these FE models are more refined than ordinary least squares (OLS)

models, there remains room for further refinement to enhance the robustness of the

analysis.

4.1.6 Matched Fixed Effects Models

To further enhance the robustness of the analysis, full matching has been em-

ployed to assign weights to the observations. This method allows for the creation

of a weighted sample that accounts for potential confounding variables, thereby

improving the precision of the estimates and reducing bias.
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Hansen (2004), and later Hansen & Klopfer (2006) describe this method as the

most effective approach for matching control and treatment groups in an experimen-

tal study, which they promptly demonstrate through the examples of coached and

uncoached SAT scores, and women’s and men’s working conditions, respectively. In

a nutshell, this methodology effectively reduces the disparity between the standard

deviations of the two groups to a minimal level. While this will put more tension

on the model, it will also show us a more true effect that the independent variables

exert on the BHI.

This analysis’ full matching relies on the assumption that the transnational

dummy is influenced by several contextual factors of the location. Specifically, the

institutional context (represented by the natural logarithm of the IPRI variable),

the economic context (represented by the natural logarithm of the GDP variable),

and the quality of land (represented by the PCL variable). These variables were

used in the matching process to ensure a balanced comparison between treated and

untreated groups.

In practice, the matching was conducted using the MatchIt package (Greifer,

2023). This process assigned weights to the observations, which were subsequently

utilized in the regression models constructed with the aforementioned plm package

(Croissant & Millo, 2023). This approach aims to provide a more reliable and

accurate assessment of the effects of transnational investments on biodiversity.

The weights assigned to the control group (i.e. domestic locations) are summa-

rized in figure 4.1. The treatment group (i.e. transnational locations) was assigned

to a weight of 1, as the other observations were weighted to them.

4.1.7 Robustness Checks

To ensure the validity and robustness of the results, additional analyses were

performed. Random effects models were constructed based on the methodology

suggested by Baltagi (2021b, pp. 47, 50-55). These models were implemented

again using the plm package (Croissant & Millo, 2023), specifically employing the

"random" model.

Furthermore, Lagrange multiplier (LM) tests were utilized to determine whether

significant random effects were present in the data, indicating the preference for
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Figure 4.1: Weight brackets of the control group

models other than OLS. This approach follows the guidelines provided by Baltagi

(2021a, pp. 81-82). Additionally, Hausman tests were conducted to validate the use

of fixed effects models over random effects models, again as recommended by Baltagi

(2021a, pp. 89-94). The tests were executed using the plmtest() and phtest()

functions from the plm package in R (Croissant & Millo, 2023). These robustness

checks aimed to confirm the appropriateness of the chosen modeling approaches and

to ensure the reliability of the findings.

4.2 Results

This section will present the findings from each stage of the analysis, progressing

from the basic OLS models to the matched FE models, ending with the robustness

checks. For all models, clustered robust standard errors were calculated using the

vcovCR function from the clubSandwich package in R (Pustejovsky, 2023). This

approach follows the recommendations of Moody and Marvell (2020) to mitigate the

potential effects of autocorrelation (also discussed in Mihálka, 2023). The regression

tables were generated using the Stargazer R package by Hlavac (2022).
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4.2.1 OLS Results

Full sample

The results for the full sample OLS models are presented in table 4.1, with

the first column of table A.2 detailing the outcomes for model 1.6. The findings

indicate a consistent and significant negative correlation between log(BHI) and the

transnational dummy variable. The time dummy variable also exhibits a negative

sign across all models; however, it loses statistical significance when human activities

are incorporated in model 1.4.

Noteworthy results are observed for the DiD dummy variable. The coefficients

for this variable are significant in all models, although their direction remains posi-

tive until country interactions are introduced. The exception to this pattern occurs

with country-specific interactions, such as those for Brazil, Chile, and Mexico, where

some interaction coefficients achieve statistical significance. This suggests that the

DiD effect of transnational investments varies by country, highlighting the impor-

tance of country-specific factors in understanding the impact of these investments

on biodiversity.

Table 4.1: OLS results

Dependent variable:

log(BHI)
(1.1) (1.2) (1.3) (1.4) (1.5) (1.6)

Transnational Dummy −0.18701∗∗∗ −0.07428∗∗∗ −0.07724∗∗∗ −0.08064∗∗∗ −0.08238∗∗∗ −0.04668∗∗∗

(0.02225) (0.02019) (0.02060) (0.02032) (0.02016) (0.01605)

Time Dummy −0.08466∗∗∗ −0.08466∗∗∗ −0.08550∗∗∗ −0.04259 −0.02379 0.01313
(0.00263) (0.00263) (0.00785) (0.02671) (0.02671) (0.03964)

DiD Dummy 0.03214∗∗∗ 0.03051∗∗∗ 0.03672∗∗∗ 0.03464∗∗∗ 0.03510∗∗∗ −0.09457∗∗∗

(0.00371) (0.00391) (0.00501) (0.00538) (0.00517) (0.02350)

Interacted with countries No No No No No Yes

Constant −0.70337∗∗∗ −1.43997∗∗∗ −2.21885∗∗∗ −2.02354∗∗∗ −2.03047∗∗∗ 0.26978
(0.01367) (0.12871) (0.24304) (0.27973) (0.27631) (0.26117)

Controls for:

Geography No Yes Yes Yes Yes Yes
Climate No No Yes Yes Yes Yes
Human Activity No No No Yes (GDP) Yes (NTL) Yes (NTL)

Observations 1,598 1,598 1,598 1,598 1,598 1,598
R2 0.09111 0.38472 0.41478 0.43601 0.44068 0.70662
Adjusted R2 0.08940 0.38045 0.40997 0.43066 0.43537 0.69792
Residual Std. Error 0.29072 (df = 1594) 0.23980 (df = 1586) 0.23402 (df = 1584) 0.22988 (df = 1582) 0.22893 (df = 1582) 0.16745 (df = 1551)

Note: Clustered robust standard errors are in parentheses
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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OLS with different sample subsets

The results for the limited sample OLS models are presented in table 4.2. For

subsets of LSLAs implemented before 2015 (model 2.2) and 2010 (model 2.3), similar

results to the full sample (model 2.1) are observed. In these models, the transna-

tional and DiD dummies are significant and negative, while the time dummy remains

insignificant.

However, when the data is limited to LSLAs implemented before 2005 (model

2.4), the main explanatory variables lose their significance. This change is likely

attributable to the much lower number of observations (302), which potentially

causes imbalances in this specific model.

Going forward, the subset used for model 2.3 will be employed in the research for

several reasons. First, the sample size remains large enough, with 850 observations,

as anything smaller would be insufficient. Second, this subset introduces a ten-year

difference between the last year of implementation and the state of the BHI in 2020.

Third, the coefficients, with the country interactions further discussed in column 2

of table A.2, continue to show meaningful results relevant to the research.

Table 4.2: OLS results with different subsets

Dependent variable:

log(BHI)
(2.1) (2.2) (2.3) (2.4)

Transnational Dummy −0.04668∗∗∗ −0.05338∗∗∗ −0.06239∗∗ 0.01506
(0.01605) (0.01754) (0.02756) (0.03478)

Time Dummy 0.01313 0.02683 −0.04806 −0.02488
(0.03964) (0.05278) (0.07309) (0.11986)

DiD Dummy −0.09457∗∗∗ −0.09085∗∗∗ −0.10737∗∗∗ −0.02021
(0.02350) (0.02460) (0.02783) (0.02243)

Constant 0.26978 0.53463∗ 0.05971 −0.87376
(0.26117) (0.30387) (0.40175) (0.65412)

Year of implementation 2020 2015 2010 2005
between 2000 and:

Observations 1,598 1,252 850 302
R2 0.70662 0.70399 0.70713 0.78776
Adjusted R2 0.69792 0.69269 0.69150 0.75523
Residual Std. Error 0.16745 (df = 1551) 0.16535 (df = 1205) 0.16213 (df = 806) 0.13422 (df = 261)

Note: Clustered robust standard errors are in parentheses
All models contain geography, climate and human activity control variables
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.2.2 FE Results

The results for the initial FE models are presented in table 4.3, with the country

interactions collected in the third column of table A.2. For these FE models, the

data has been subset to include locations with a year of implementation before 2010.

Additionally, observations from Ecuador have been excluded due to data structuring

issues.

The results show that the transnational dummy is omitted in all cases, likely

due to high autocorrelation with the newly introduced fixed effects for location IDs

and years of observation. The time dummy retains its significance throughout all

models, but interestingly, it flips to positive effects when human activity controls

are introduced in model 3.4.

The DiD dummy is significant and positive across all models, with only some

country interactions showing a negative relationship between the variable and log(BHI).

The model fit has also improved significantly, with the R2 increasing from 0.69 in

the subsetted OLS model 2.3 to 0.79 in model 3.6. This improvement indicates a

better explanatory power of the FE models, suggesting a more accurate depiction

of the relationships between the variables under study.

Table 4.3: FE Results

Dependent variable:

log(BHI)
(3.1) (3.2) (3.3) (3.4) (3.5) (3.6)

Transnational Dummy (omitted) (omitted) (omitted) (omitted) (omitted) (omitted)

Time Dummy −0.09511∗∗∗ −0.09511∗∗∗ −0.01786∗∗∗ 0.10610∗∗∗ 0.10944∗∗∗ 0.15684∗∗∗

(0.00365) (0.00365) (0.00373) (0.01599) (0.01566) (0.02217)

DiD Dummy 0.04170∗∗∗ 0.04170∗∗∗ 0.02602∗∗∗ 0.02140∗∗∗ 0.02084∗∗∗ 0.03267∗∗∗

(0.00478) (0.00478) (0.00368) (0.00351) (0.00350) (0.00620)

Interacted with countries No No No No No Yes

Controls for:

Geography No Yes Yes Yes Yes Yes
Climate No No Yes Yes Yes Yes
Human Activity No No No Yes (GDP) Yes (NTL) Yes (NTL)

Observations 846 846 846 846 846 846
R2 0.71412 0.71412 0.84467 0.87297 0.87266 0.90022
Adjusted R2 0.42620 0.42620 0.68675 0.74258 0.74197 0.79131

Note: Clustered robust standard errors are in parentheses. Sample is set to year of impl. between 2000 and 2010
Observations of Ecuador excluded due to data structuring issues
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.2.3 Matched FE Results

The results for the matched FE models are presented in table 4.3, with the

country interactions collected in the fourth column of table A.2. In these models,

human activity controls and the control for PCL are excluded, as they were used to

construct the weights through the transnational dummy.

Once again, the transnational dummy has been automatically omitted, likely due

to high autocorrelation with the fixed effects. The time dummy is mostly negative

and retains its significance only until the climate control variables are introduced.

The DiD dummy is significant and positive in all cases, consistently producing

negative correlations through country interactions. For model 4.4, this suggests

a negative DiD effect for 10 of the countries included in the analysis. This finding

implies that the impact of transnational investments on biodiversity is heterogeneous

across different countries, with several exhibiting adverse effects.

The exclusion of specific controls in the matched models, while necessary for the

construction of weights, does not appear to diminish the robustness of the findings.

The significant and positive DiD dummy across all models underscores the reliability

of the results, despite the variations in country-specific interactions.

4.2.4 Summary of Different Models

To summarize these results, table A.1 provides a comparison between the dif-

ferent stages of the analysis. While the transnational and time dummies vary in

significance throughout these steps, the DiD dummy remains significant in all mod-

els. However, its overall direction changes when FE are introduced.

The initial OLS models show a significant negative correlation between log(BHI)

and the transnational dummy. The time dummy, though consistently negative, loses

statistical significance when human activities are controlled for. The DiD dummy,

while significant in all cases, changes direction upon the introduction of country

interactions, suggesting a country-dependent effect of transnational investments on

biodiversity.

When examining the limited sample OLS models, similar results are observed

for subsets of LSLAs implemented before 2015 and 2010. The transnational and

DiD dummies are significant and negative, while the time dummy remains insignif-
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Table 4.4: Matched FE Results

Dependent variable:

log(BHI)
(4.1) (4.2) (4.3) (4.4)

Transnational Dummy (omitted) (omitted) (omitted) (omitted)

Time Dummy −0.08105∗∗∗ −0.08105∗∗∗ −0.00415 0.00619
(0.00375) (0.00375) (0.00461) (0.00490)

DiD Dummy 0.02764∗∗∗ 0.02764∗∗∗ 0.01326∗∗∗ 0.01711∗∗

(0.00485) (0.00485) (0.00383) (0.00669)

Interacted with countries No No No Yes

Controls for:

Geography No Yes Yes Yes
Climate No No Yes Yes

Observations 846 846 846 846
R2 0.71080 0.71080 0.83963 0.87120
Adjusted R2 0.41955 0.41955 0.67658 0.73193

Note: Clustered robust standard errors are in parentheses.
Sample is set to year of impl. between 2000 and 2010
Observations of Ecuador excluded due to data structuring issues
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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icant. However, for LSLAs implemented before 2005, the significance of the main

explanatory variables is lost, likely due to the reduced number of observations. Con-

sequently, the subset used for model 2.3, which includes LSLAs implemented before

2010, is employed going forward due to its sufficient sample size and meaningful

results.

In the FE models, the transnational dummy is omitted, likely due to high au-

tocorrelation with the fixed effects for location IDs and years of observation. The

time dummy remains significant but flips to a positive effect when human activity

controls are introduced. The DiD dummy is significant and positive throughout,

with only some country interactions showing a negative relationship between the

variable and log(BHI). The model fit improves significantly, with an R2 increasing

from 0.69 in the subsetted OLS model 2.3 to 0.79 in model 3.6.

The matched FE models continue to show the omission of the transnational

dummy due to high autocorrelation. The time dummy remains mostly negative and

loses significance with the introduction of climate control variables. The DiD dummy

is consistently significant and positive, producing negative correlations through

country interactions. This suggests a negative DiD effect for several countries in-

cluded in the analysis, indicating heterogeneous impacts of transnational invest-

ments on biodiversity.

Overall, while the significance of the transnational and time dummies varies, the

consistent significance of the DiD dummy highlights the robustness of the findings.

The changes in the direction of the DiD dummy when FE are introduced under-

score the importance of accounting for fixed effects in understanding the impact of

transnational investments on biodiversity. The consistently high model fit, ranging

from an adjusted R2 of 0.69 in the OLS models to 0.79 in the initial FE model,

further supports the reliability of the results.

4.2.5 Robustness checks

In table A.3 and table A.4, the results of the random effects models, which serve

as the robustness check for the analysis, are shown. The DiD dummy remains con-

sistently significant, except in model 6.4, where the random effects model introduces

country interactions with the variable. These results further confirm the validity of
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the findings presented in the previous subsections.

The outcomes of the LM and Hausman tests, as displayed in table A.5, provide

additional support. The LM test results show high chi-squared values and extremely

low p-values, indicating the presence of panel-level effects in the dataset. Similarly,

the Hausman test results suggest that the random effects estimator is inconsistent,

favoring the fixed effects model.

In summary, the robustness checks validate the findings of the FE models, con-

firming that the results are both valid and robust.

4.3 Discussion

This research addresses a significant gap in the literature regarding the impact

of TALSLAs on biodiversity compared to their domestic counterparts. In summary,

the analysis, as illustrated in figure 3.7 and corroborated by the regression models,

supports H1. Specifically, it was found that agricultural LSLAs have a significant

negative effect on local biodiversity in Latin America and the Caribbean.

However, a more nuanced understanding was obtained for H2. While all com-

prehensive models indicated negative DiD coefficients in some countries, the findings

were not universally applicable across all nations in the analysis. This led to a partial

confirmation of H2: it was confirmed in some countries but not in others.

Therefore, in response to the research question, it can be concluded that LSLAs

for agriculture generally have a detrimental effect on local biodiversity. Furthermore,

transnational investments exacerbate these negative outcomes in specific countries,

such as Bolivia and Colombia.

Even though these results might not confirm both hypotheses universally, this

research still provides robust, interesting, and valuable findings, fills the gap in prior

research discussed in chapter 2. One particularly intriguing discovery is that the

initial biodiversity levels at locations of transnational LSLAs are worse off compared

to their domestic counterparts. This disparity is hypothesized to be influenced by

institutional settings, though identifying the precise reasons falls outside the scope

of this research. Future studies should explore this aspect to gain deeper insights

into why this might be the case, potentially leading to significant advancements in
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biodiversity protection in such areas.

Furthermore, the comprehensive regression models highlight that the DiD effect

of transnational LSLAs is highly country-dependent. Surprisingly, some countries

exhibit a positive DiD effect from transnational LSLAs, a result not anticipated

before. This variation is likely attributable to institutional settings among other

factors.

Additionally, the inclusion of controls for geography, climate, and other human

activities has proven beneficial in researching changes in biodiversity, as evidenced

by the improved model fit in most cases. Therefore, it is recommended that future

quantitative research on biodiversity incorporates these variables to enhance the

accuracy and relevance of their findings.

Future research should concentrate on case studies of different countries to un-

cover why the presence of transnational acquisitions impacts biodiversity so differ-

ently across the region. Such research should ideally begin with qualitative method-

ologies to identify the underlying mechanisms driving these variations. The insights

gained from these qualitative studies can then inform more refined quantitative re-

search, leading to a comprehensive understanding of the phenomena.

Moreover, the findings of this research have significant implications for policy-

makers. The demonstrated negative impact of transnational agricultural LSLAs on

biodiversity in at least some cases suggests that greater caution is needed when

permitting transnational companies to operate within their borders. Policymak-

ers should ensure that robust institutional frameworks are in place to mitigate the

potential harmful effects of agricultural practices on biodiversity. This includes de-

veloping and enforcing regulations that prioritize the protection of local ecosystems

and biodiversity hotspots, ensuring that economic development does not come at

the expense of environmental sustainability.

This research is, however, not without its limitations. First and foremost, ap-

proximating agricultural influence through the areas of LSLA is not ideal for several

reasons. For instance, without knowing the exact size and precise locations of these

LSLAs, the initial dataset might be spatially biased. Furthermore, the absence

of a comprehensive database of areas entirely untouched by LSLAs prevents the

establishment of a true control group for comparing domestic and transnational in-
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vestments. Despite these limitations, due to the low data availability on this topic,

these approximations still provide valuable insights until more detailed data becomes

accessible.

Second, spatial autocorrelation is likely present in the final dataset, a factor

that requires even more advanced methodologies to control effectively. Addressing

spatial autocorrelation, for example through the usage of geographically weighted

regressions could enhance the robustness of future research findings.

Third, due to data limitations, the analysis presented here cannot fully account

for temporal variations. More comprehensive data sources and refined methodologies

could help future research to better control for time-related biases, leading to more

precise and accurate results.

In summary, while this research contributes valuable findings to the understand-

ing of how transnational agricultural LSLAs affect biodiversity, addressing these

limitations in future studies will be crucial for further refining and validating the

results.
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5

Conclusion

This thesis has sought to address the impact of transnational versus domestic

large-scale land acquisitions (LSLAs) in agriculture on biodiversity in Latin Amer-

ica and the Caribbean. The study fills a critical gap in the literature by providing

empirical evidence on how different types of investments influence local biodiversity,

using a comprehensive quantitative analysis. The findings present a nuanced un-

derstanding of the relationship between LSLAs and biodiversity, offering valuable

insights for policymakers and future researchers.

5.1 Summary of Data and Methodologies

The analysis utilized spatial panel datasets covering the BHI for the period 2000-

2020, obtained from Harwood et al. (2022b). The areas affected by LSLAs were

approximated using data from the Land Matrix databases (2024a & b). Various

control variables were also incorporated to account for geographical, climatic, and

human activity influences on biodiversity. The BHI was used as the primary measure

to represent biodiversity comprehensively, aligning with the need for robust and

detailed monitoring tools discussed in the literature review.

A DiD methodology was employed to isolate the impact of LSLAs on biodiversity.

The analysis started with OLS models to establish baseline relationships. Subse-

quently, more refined models were used, including FE models to control for unob-

servable individual and time effects, and matched FE models based on full matching

to address potential biases and discrepancies between domestic and transnational
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LSLA locations. In constructing the regression models, control variables were in-

crementally introduced. Geography controls were added first, followed by climate

controls, and then human activity controls. Finally, country interactions with the

DiD variable were included to capture country-specific effects.

5.2 Summary of Key Findings

The research has confirmed that agricultural LSLAs generally have a significant

negative impact on local biodiversity. This conclusion aligns with hypothesis H1,

which posits that LSLAs, regardless of their origin, detrimentally affect biodiversity.

This was evident from the consistent negative correlation observed between the

Biodiversity Habitat Index (BHI) and the presence of LSLAs in the regions studied.

However, the investigation into hypothesis H2, which proposed that transna-

tional LSLAs would have a more pronounced negative effect on biodiversity com-

pared to domestic LSLAs, yielded mixed results. While the DiD dummy was signif-

icant across all comprehensive models, indicating some level of difference, the direc-

tion and magnitude of this effect varied by country. In some countries, transnational

investments had a more negative impact, whereas in others, the effect was less pro-

nounced or even positive. This suggests that the impact of transnational LSLAs is

highly context-dependent, influenced by country-specific factors.

5.3 Theoretical and Practical Implications

Despite not fully confirming both hypotheses across all cases, the research pro-

vides robust and intriguing findings. One of the notable discoveries is that initial

biodiversity levels in areas with transnational LSLA presence are worse than in ar-

eas with domestic investments. This could be due to various institutional settings,

though uncovering the exact reasons lies beyond the scope of this study. Future re-

search should delve into these institutional contexts to provide more insights, which

could significantly advance biodiversity protection efforts in such areas.

Moreover, the country-dependent nature of the DiD effect underscores the im-

portance of considering local contexts when evaluating the impacts of LSLAs. This

research highlights the need for policymakers to carefully scrutinize and regulate
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transnational investments in agriculture. Institutions capable of protecting biodi-

versity from harmful agricultural practices must be established and strengthened to

mitigate the adverse effects identified.

The study also reveals the importance of including controls for geography, cli-

mate, and human activities in quantitative research on biodiversity. These variables

consistently improved model fit, suggesting their critical role in understanding bio-

diversity changes.

5.4 Future Research Directions

Future research should focus on conducting case studies in different countries to

uncover why the impacts of transnational acquisitions vary so significantly across

the region. These studies should begin with qualitative approaches to identify the

underlying mechanisms, which could then inform more refined quantitative analyses.

Additionally, further exploration into the institutional settings that influence the

outcomes of LSLAs is necessary. Understanding how different governance structures,

regulatory environments, and socio-economic contexts affect biodiversity can provide

deeper insights into mitigating the negative impacts of such investments.

From a methodological perspective, future studies should aim to address the

limitations identified in this research. Enhancing data availability and quality is

paramount. For example, obtaining more detailed information on the size and exact

locations of LSLAs would allow for more precise spatial analysis and better control

for potential biases. Furthermore, advanced methodologies to control for spatial au-

tocorrelation and temporal variations should be employed to enhance the robustness

of the findings.

5.5 Policy Recommendations

The findings of this research have significant implications for policymakers in

Latin America and the Caribbean. It is crucial for governments to implement policies

that regulate transnational agricultural investments more stringently. This includes

establishing robust environmental protection frameworks and ensuring that agricul-

tural practices do not compromise biodiversity. Policymakers should also consider
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creating incentives for sustainable agricultural practices and penalizing activities

that harm local ecosystems.

Moreover, international cooperation and agreements may be necessary to manage

the impacts of transnational LSLAs effectively. Countries in the region could benefit

from sharing best practices and collaborating on strategies to protect biodiversity

while promoting sustainable development.

5.6 Limitations

While this research makes significant contributions, it is not without its limi-

tations. The approximation of agricultural influence through LSLA areas presents

several challenges, such as potential spatial biases due to the lack of precise data

on LSLA locations and sizes. Additionally, the absence of a comprehensive control

group limits the ability to make definitive comparisons. The presence of spatial au-

tocorrelation and the inability to fully control for temporal factors further constrain

the robustness of the findings.

Despite these limitations, the approximations and methodologies used provide

valuable initial insights, highlighting the need for more detailed data and advanced

analytical techniques in future research.

5.7 Conclusion

In conclusion, this thesis has provided a comprehensive analysis of the impacts of

agricultural LSLAs on biodiversity in Latin America and the Caribbean. While con-

firming that LSLAs generally harm biodiversity, it has also uncovered the complex

and country-specific nature of these effects. The findings underscore the importance

of robust institutional frameworks and context-specific policies to mitigate the nega-

tive impacts of transnational agricultural investments. Future research should build

on these insights, addressing the identified limitations and further exploring the

complex dynamics between LSLAs and biodiversity. By doing so, it can contribute

to the development of more effective strategies for protecting biodiversity in the face

of expanding agricultural investments.

65



6

Bibliography

Angrist, J. D., Pischke, J.-S. (2008). Mostly Harmless Econometrics: An Empiricist’s

Companion

Baltagi, B. H. (2021a). Test of Hypotheses with Panel Data, in Econometric Analysis

of Panel Data, Springer Texts in Business and Economics, pp.75–108

Baltagi, B. H. (2021b). The Two-Way Error Component Regression Model, in Econo-

metric Analysis of Panel Data, Springer Texts in Business and Economics, pp.47–74

Bucheli, M. (2008). Multinational Corporations, Totalitarian Regimes and Economic

Nationalism: United Fruit Company in Central America, 1899–1975, Business His-

tory, vol. 50, no. 4, pp.433–454

Chen, J., Gao, M., Cheng, S., Hou, W., Song, M., Liu, X., Liu, Y. (2022). Global 1 Km

× 1 Km Gridded Revised Real Gross Domestic Product and Electricity Consump-

tion during 1992–2019 Based on Calibrated Nighttime Light Data, Scientific Data,

vol. 9, no. 1

Croissant, Y., Millo, G. (2023). Linear Models for Panel Data, R, Available Online:

https://cran.r-project.org/web/packages/plm/plm.pdf [Accessed 16 May

2023]

66

https://cran.r-project.org/web/packages/plm/plm.pdf


Dasgupta, P. (2021). The Economics of Biodiversity: The Dasgupta Review: Full

Report, Updated: 18 February 2021., London: HM Treasury

Davis, K. F., Müller, M. F., Rulli, M. C., Tatlhego, M., Ali, S., Baggio, J. A.,

Dell’Angelo, J., Jung, S., Kehoe, L., Niles, M. T., Eckert, S. (2023). Transnational

Agricultural Land Acquisitions Threaten Biodiversity in the Global South, Envi-

ronmental Research Letters, vol. 18, no. 2

Dogan, B, (2022). Does FDI in Agriculture Promote Food Security in Developing

Countries? The Role of Land Governance, Transnational Corporations, vol. 29, no.

2, pp.49–78

EarthEnv. (2024). Global 1,5,10,100-Km Topography, Available Online:

https://www.earthenv.org/topography [Accessed 7 May 2024]

Ferrier, S., Guisan, A. (2006). Spatial Modelling of Biodiversity at the Community

Level, Journal of Applied Ecology, vol. 43, no. 3, pp.393–404

Greifer, N. (2023). Package ‘MatchIt’, R, Available Online: https://cran.r-project.

org/web/packages/MatchIt/MatchIt.pdf [Accessed 16 May 2024]

Hansen, B. B. (2004). Full Matching in an Observational Study of Coaching for the

SAT, Journal of the American Statistical Association, vol. 99, no. 467, pp.609–618

Hansen, B. B., Klopfer, S. O. (2006). Optimal Full Matching and Related Designs via

Network Flows, Journal of Computational and Graphical Statistics, vol. 15, no. 3,

pp.609–627

Harwood, T., Ferrier, S., Ware, C. (2022a). Summarising CSIRO BILBI 30s Indicators

by Region

67

https://www.earthenv.org/topography
https://cran.r-project.org/web/packages/MatchIt/MatchIt.pdf
https://cran.r-project.org/web/packages/MatchIt/MatchIt.pdf


Harwood, T., Ware, C., Hoskins, A., Ferrier, S., Bush, A., Golebiewski, M.,

Hill, S., Ota, N., Perry, J., Purvis, A., Williams, K. (2022b). BHI v2:

Biodiversity Habitat Index: 30s Global Time Series, Available Online:

https://researchdata.edu.au/bhi-v2-biodiversity-time-series/1959488

Hlavac, M. (2022). Stargazer: Well-Formatted Regression and Summary Statistics

Tables, R, Available Online: https://CRAN.R-project.org/package=stargazer

[Accessed 18 May 2023]

Li, X., Zhou, Y., Zhao, M., Zhao, X. (2020). A Harmonized Global Nighttime Light

Dataset 1992–2018, Scientific Data, vol. 7, no. 1, pp.7-168

Li, X., Zhou, Y., Zhao, M., Zhao, X. (2023). Harmonization of DMSP and VIIRS

Nighttime Light Data from 1992-2021 at the Global Scale, Figshare dataset,

Available Online: https://figshare.com/articles/dataset/Harmonization_

of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_

scale/9828827/8

Liu, Q., Sutton, P. C., Elvidge, C. D. (2011). Relationships between Nighttime Imagery

and Population Density for Hong Kong, Proceedings of the Asia-Pacific Advanced

Network, vol. 31, pp.79-90

Mann, H., Smaller, C. (2010). Foreign Land Purchases for Agriculture: What Impact

on Sustainable Development?, Sustainable Development Innovation Briefs, no. 8

Mihálka, A. (2023). The Effects of Economic Development on Biodiversity:

A Comparative Analysis of Latin America and Europe Using Panel Lin-

ear Regression Models, MSc Thesis, Department of Economic History,

Lund University School of Economics and Management, Available Online:

http://lup.lub.lu.se/student-papers/record/9134241

Moody, C. E., Marvell, T. B. (2020). Clustering and Standard Error Bias in Fixed

68

https://researchdata.edu.au/bhi-v2-biodiversity-time-series/1959488
https://CRAN.R-project.org/package=stargazer
https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_scale/9828827/8
https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_scale/9828827/8
https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_scale/9828827/8
http://lup.lub.lu.se/student-papers/record/9134241


Effects Panel Data Regressions, Journal of Quantitative Criminology, vol. 36,

pp.347–369

Natural Earth. (2024). Free Vector and Raster Map Data at 1:10m, 1:50m, and 1:110m

Scales, Available Online: https://www.naturalearthdata.com [Accessed 1 March

2024]

Ortiz-Ospina, E., Beltekian, D., Roser, M. (2024). Trade and Globalization.

Our World in Data, Available Online: https://ourworldindata.org/

trade-and-globalization [Accessed 26 May 2024]
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Appendix A

Figures and Tables

Table A.1: Summary Table of Different Models

Dependent variable:

log(BHI)

OLS FE Matched FE
(1.6) (2.3) (3.6) (4.4)

Transnational Dummy −0.04668∗∗∗ −0.06239∗∗ (omitted) (omitted)
(0.01605) (0.02756)

Time Dummy 0.01313 −0.04806 0.15684∗∗∗ 0.00619
(0.03964) (0.07309) (0.02217) (0.00490)

DiD Dummy −0.09457∗∗∗ −0.10737∗∗∗ 0.03267∗∗∗ 0.01711∗∗

(0.02350) (0.02783) (0.00620) (0.00669)

Constant 0.26978 0.05971 - -
(0.26117) (0.40175)

Year of implementation 2020 2010 2010 2010
between 2000 and:

Observations 1,598 850 846 846
R2 0.70662 0.70713 0.90022 0.87120
Adjusted R2 0.69792 0.69150 0.79131 0.73193

Note: Clustered robust standard errors are in parentheses
All models contain geography and climate control variables
Models 1.6, 2.3 and 3.6 contain human activity control variables
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.2: Country Interaction Coefficients

Dependent variable:

log(BHI)

OLS FE Matched FE
(1.6) (2.3) (3.6) (4.4)

DiD Dummy −0.09457∗∗∗ −0.10737∗∗∗ 0.03267∗∗∗ 0.01711∗∗

(0.02350) (0.02783) (0.00620) (0.00669)

Interacted with:

Bolivia −0.02459 0.04427 −0.05940∗∗∗ −0.07933∗∗∗

(0.06624) (0.06963) (0.00655) (0.00665)

Brazil 0.17570∗∗∗ 0.19319∗∗∗ −0.01984∗∗ 0.01525∗

(0.03148) (0.03937) (0.00926) (0.00808)

Chile 0.13230∗∗ 0.18213∗∗ −0.00732 0.02558∗∗∗

(0.05429) (0.07838) (0.00841) (0.00733)

Colombia 0.15996∗∗∗ 0.25381∗∗∗ −0.06375∗∗∗ −0.06487∗∗∗

(0.03971) (0.07062) (0.00839) (0.00886)

Costa Rica 0.11690 0.21300 −0.07054∗∗∗ −0.04103∗∗∗

(0.09363) (0.13499) (0.01421) (0.01548)

Guatemala 0.10877 0.14103∗ −0.02167 −0.05895∗∗∗

(0.06097) (0.07240) (0.02192) (0.02068)

Honduras 0.04911 0.08829∗∗∗ −0.02892∗∗∗ −0.03382∗∗∗

(0.02253) (0.02689) (0.00636) (0.00650)

Mexico 0.22502∗∗∗ 0.47914 −0.13233∗∗∗ −0.04481∗∗∗

(0.11690) (0.32717) (0.01310) (0.00766)

Nicaragua 0.16868∗∗ 0.20197∗∗∗ −0.04153∗∗∗ −0.04266∗∗∗

(0.05564) (0.07711) (0.00934) (0.01098)

Panama 0.07231∗∗∗ 0.10768∗∗∗ −0.08947∗∗∗ −0.03149∗∗

(0.03158) (0.04012) (0.01278) (0.01234)

Paraguay −0.00128 0.05145 −0.00373 −0.04878∗∗∗

(0.05164) (0.05399) (0.01249) (0.01027)

Peru 0.24231 0.36375∗∗∗ −0.03057∗∗∗ −0.04446∗∗∗

(0.07256) (0.08976) (0.00766) (0.00975)

Uruguay 0.17463 0.22345∗∗∗ 0.01893∗∗∗ 0.00449
(0.02773) (0.02992) (0.00708) (0.00742)

Venezuela 0.03688
(0.05212)

Observations 1,598 850 846 846
R2 0.70662 0.70713 0.90022 0.87120
Adjusted R2 0.69792 0.69150 0.79131 0.73193

Note: Clustered robust standard errors are in parentheses.
Sample is set to year of impl. between 2000 and 2010 for models 2.4, 3.6 and 4.4
Interaction variables with Dominican Republic, Ecuador, and Jamaica
have been omitted in all cases
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.3: Random Effects Models

Dependent variable:

log(BHI)
(5.1) (5.2) (5.3) (5.4) (5.5) (5.6)

dummy tn −0.26454∗∗∗ −0.14371∗∗∗ −0.18431∗∗∗ −0.18726∗∗∗ −0.18970∗∗∗ −0.08203∗∗∗

(0.02749) (0.03317) (0.03516) (0.03656) (0.03624) (0.02922)

dummy t4 −0.09530∗∗∗ −0.09530∗∗∗ −0.03846∗∗∗ 0.05415∗∗∗ 0.05751∗∗∗ 0.13162∗∗∗

(0.00366) (0.00366) (0.00394) (0.01524) (0.01519) (0.02343)

dummy did 4 0.04188∗∗∗ 0.04188∗∗∗ 0.03098∗∗∗ 0.02705∗∗∗ 0.02693∗∗∗ 0.02701∗∗∗

(0.00478) (0.00478) (0.00381) (0.00358) (0.00362) (0.00642)

Constant −0.65620∗∗∗ −1.14980∗∗∗ 0.60514∗∗∗ 1.08930∗∗∗ 1.10102∗∗∗ 2.12096∗∗∗

(0.01601) (0.19693) (0.21435) (0.22369) (0.21766) (0.28712)

Observations 844 844 844 844 844 844
R2 0.57584 0.60022 0.70510 0.73713 0.73776 0.80988
Adjusted R2 0.57433 0.59494 0.70049 0.73237 0.73301 0.80016

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.4: Matched Random Effects Models

Dependent variable:

log(BHI)
(6.1) (6.2) (6.3) (6.4)

dummy tn −0.21100∗∗∗ −0.12093∗∗∗ −0.14995∗∗∗ −0.15053∗∗∗

(0.03019) (0.03044) (0.03235) (0.03202)

dummy t4 −0.08136∗∗∗ −0.08110∗∗∗ −0.03031∗∗∗ −0.02652∗∗∗

(0.00432) (0.00437) (0.00426) (0.00458)

dummy did 4 0.02794∗∗∗ 0.02768∗∗∗ 0.01858∗∗∗ 0.01000
(0.00530) (0.00535) (0.00414) (0.00705)

Constant −0.70974∗∗∗ −1.29976∗∗∗ 0.44995∗∗∗ 0.32184∗

(0.02031) (0.14044) (0.16688) (0.18013)

Observations 844 844 844 844
R2 0.57052 0.58163 0.68794 0.71122
Adjusted R2 0.56899 0.57660 0.68343 0.70239

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.5: LM and Hausman tests

(3.6) & (5.6) (4.4) & (6.4)

LM
chi-sq 327.31 268.05
p-value 2.2 ×10−16 2.2 ×10−16

Hausman
chi-sq 849.69 242.36
p-value 2.2 ×10−16 2.2 ×10−16
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Appendix B

General Regression Formula

log(BHIit) = β0 + β1DTn,it + β2DT ime,it + β3DDiD,it + β4(DDiD,it × Countryit)

+β5GEOit + β6CLIMit + β7HUMit + ηi + λt + ϵit

where:

• BHIit represents the BHI at location i and time t,

• DTn,it is a dummy variable indicating the presence of a transnational LSLA,

• DT ime,it is a time dummy variable,

• DDiD,it is the interaction term for the DiD analysis,

• Countryit is the categorical country variable,

• GEOit includes geography control variables1,

• CLIMit includes climate control variables2,

• HUMit includes human activity control variables 3,

• ηi represents location fixed effects,

• λt represents time fixed effects, and

• ϵit is the error term.

1The geography control variables are log(location size), latitude, longitude, log(elevation),
log(slope), and PCL

2The climate control variables are average maximum temperature and precipitation
3The human activity control variables are IPRI and either log(GDP) or log(NTL)
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