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Abstract

A process of a random graph, that grows in a box [0, N ]2 ⇢ R2
and yields a

quadrangulation when it stops growing, is investigated in this work. The random

components in this model come from the Poisson distributed number of points,

the position of those, and the either horizontal or vertical direction in which lines

grow from these points. The model finds inspiration in a cellular automata model

by Ekström and Turova (2022), which is used to model neuronal activity in the

brain. This work provides results on the quadrangulation model, including tail

bounds for the distribution of the growth of lines, bounds for the expected values

of a model characteristic and the covariance structures of the behaviour around

points depending on their distance. It is also set into relation with work on Gilbert

tessellation.
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1 Introduction

The process of a random quadrangulation treated in this work is inspired by a model
for neuronal activity in the brain within a cellular automata setup presented by Ekström
and Turova (2022) in [4], described in more detail in Section 3.1. For the original model,
different types of behaviours can be characterised. The model presented here is a simplified
and approximate version of the behaviour of a model with monotone growth (in time-scale)
of the activation set ([4], Model (a) in 3.6), which is defined on Z2. This work focuses on
a modified version in R2. An example of the quadrangulation is shown in Figure 1. For
a specific type of configuration of parameters in the original model, the results presented
here can be seen as approximate results on the original model as well.

Figure 1: Example of a random quadrangulation that is obtained from the model in R2

presented in this work.

This problem can partly be categorised within the field of percolation, where the
first model was formulated in 1957 ([8], Chapter 1.1). The idea of percolation models
is inspired by phenomena in nature and natural sciences, like the spread of water in a
porous stone or the spread of a disease in an epidemic. Mathematically, such models are
often formulated on the lattices Zd, but can be generalised to other lattices or graphs. It
is explored how and if vertices are connected (through edges) in a stochastic setting. One
commonly posed question revolves around the existence of infinite clusters, which often
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has a behaviour characterised by different phases and a critical point for a parameter that
marks the point of phase transition. Such a phenomenon of change in behaviour at a
critical point is also explored in this work.

However, for various forthcoming questions in this work, typical techniques from per-
colation are not directly applicable because of the time- and spatial dependence and non-
monotonicity in some regards. This partly stems from the fact that the cellular automata
model arises from a bootstrap percolation with additional activation rules, increasing the
degree of complexity and thus preventing common percolation techniques to be applicable.
The key idea for this model often lies in reducing the dependence structures sufficiently
to find bounds for properties of interest.

Only after deriving the results presented in this work (up to Section 5) did the au-
thor become aware of publications on the model presented here. To the author’s best
knowledge, there are three papers [1], [2], [12] which present approximate results on char-
acteristics of this model, but no exact results were obtained in those works. Our model
can be considered as a special case of a tessellation called Gilbert Tessellation that dates
back to a publication by Gilbert in 1967 [7]. This special case is called Rectangular Gilbert
Tessellation. The results from [1], [2], [12] are summarised and discussed in relation to our
work at the end, as the presented results here are all derived independently. Additionally,
our results are of a different type. The language used to describe presented phenomena
also differs from the language used in the other publications.

Since our model was derived from the cellular automata model and the authors of [12]
derived it from a more general tessellation model, two different backgrounds led to the
same model independent of the other. This shows that this model is truly versatile and
of mathematical interest.

After introducing some preliminary theory in the next section, the model is illustrated
with some examples and first observations in Section 3 to gain intuition for the succeeding
results. These are stated and proved in Section 4 and split into the main model of
this work and some adjusted versions. Section 5 explores some more properties and
generalisations of this model. Finally, Section 6 discusses the results known to the author
about rectangular Gilbert tessellation and concludes with open questions.

2 Preliminaries

In this section, some preliminary theory is explained to make the result section more
accessible. This includes some results from basic probability theory to remind the reader
as well as some tail bounds used to obtain the later presented results.

Two well-known results from basic probability theory are the Law of Total Probability
and Law of Total Expectation. To that end, let (⌦,F ,P) be a probability space and let
V be an event on (⌦,F ,P). The Law of Total Probability is stated here for the discrete
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and continuous case in no more generality than needed for this work. Let {Uk}k be a
partition of ⌦.

(a) Discrete case: P(V ) =
X

k

P(V |Uk)P(Uk). (1)

(b) Continuous case: Let X be a random variable on the given probability space with
probability density function f . Then:

P(V ) =

Z 1

�1
P(V |X = x)f(x)dx. (2)

Let X be a random variable on the probability space (⌦,F ,P) with existing expected
value and let Y be a random variable on the same probability space. Then the Law of
Total Expectation states E(X) = E(E(X|Y )). Additionally, the following special case
holds:

E(X) =
X

k

E(X|Uk)P(Uk). (3)

The Poisson distribution and process with their properties defined next play a central
role in this work.

Definition 2.1 (Poisson Distribution). ([11], Chapter 1.1)
Let K be a random variable and � > 0 the intensity parameter. K is said to have a
Poisson distribution Poi(�) if for all k 2 N0:

P(K = k) =
e���k

k!
. (4)

Furthermore it holds that E(K) = Var(K) = �.

Definition 2.2 (Poisson Process). ([3], Chapter 2.3.1)
Let � > 0 be a constant intensity, Rd the state space, ⌫d the Borel measure in Rd and A a
bounded Borel set. A homogeneous Poisson process K, from now on just Poisson process,
is characterised by the following two properties:

(i) The random number of points K(A) in A has Poisson distribution with expected
value �⌫d(A), in short K(A) ⇠ Poi(�⌫d(A)).

(ii) For disjoint bounded Borel sets A1, . . . , Ak, the random variables K(A1), . . . , K(Ak)

are independent.

The second property is often referred to as independent increments. For such a Poisson
process, it holds that, for a compact set A and conditioned on K(A) = n, the n points
are uniformly distributed in A ([3], Property 2.3.1(e)).
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A slightly altered version of a Poisson distribution is the zero-truncated Poisson dis-
tribution, allowing only positive integer values. It is derived by taking a Poisson variable
and conditioning on it being strictly positive.

Definition 2.3 (Zero-truncated Poisson Distribution). The random variable K is said to
have a zero-truncated Poisson distribution with intensity � > 0, in short K ⇠ PoiTr(�),
if the probability mass function is as follows for k 2 N:

fK(k) =
1

e� � 1
· �

i

i!
. (5)

Then the cumulative distribution function is non-zero for k � 1 and given by

FK(k) =

Pbkc
i=0

�i

i! � 1

e� � 1
. (6)

The next two theorems present bounds for tail probabilities for the Poisson and Bino-
mial distribution, where the first one is a so-called Chernoff bound.

Theorem 2.1. ([10], Section 18.4)
Let K ⇠ Poi(�),� > 0. Let x > �. Then:

P(X � x)  exp(x� �)

✓
�

x

◆x

. (7)

Theorem 2.2. ([13], Theorem 4.5)
Let ⇠ ⇠ Bin(n, p) and denote µ = E(⇠) = np. Let # 2 (0, 1). Then:

P (⇠  (1� #)µ)  exp

✓
�#2µ

2

◆
. (8)

Let us recall the probability generating function g⇠(t) for a Binomial random variable
⇠ ⇠ Bin(n, p) with p 2 (0, 1) and q = 1� p for t � 0 ([9], Chapter 2, p. 61):

g⇠(t) = (q + pt)n. (9)

Finally, we need the concept of first-order stochastic dominance.

Definition 2.4. ([15], Section 4.3)
Let X and Y be two random variables on some probability space. X is said to (first-order)
stochastically dominate Y if for all z:

P(X � z) � P(Y � z). (10)

Equivalently, this is sometimes characterised by P(X  z)  P(Y  z), as this can be
perceived as more intuitive.

4



3 The Model

Consider a two-dimensional Poisson process with constant intensity parameter � > 0 on
[0, N ]⇥ [0, N ] in R2, N > 0, i.e., K ⇠ Poi(�N2). Given a realisation of this process, from
each point, a line grows with equal probability in either both horizontal or both vertical
directions at unit speed. We call this the orientation of a point. A line stops growing
if it runs into another one or when it reaches the border of the box. By the time all
lines stop growing, which is after at most N time units, all areas separated by the grown
lines are almost surely rectangles. Thus, we call this process a quadrangulation. Figure 2
illustrates the process for four vertices. 

P

-

-

Figure 2: Example of a process with four vertices at time points t = 0 in the top left,
some t1 > 0 in the top right, the time point t2 > t1 at the time of the first collision in the
bottom left and t = N in the bottom right.

Figures 3 to 7 show examples of realisations of the quadrangulation for 10, 100 and
1000 points. The red points correspond to horizontal and the green ones to vertical lines.
We can observe that the exact realisations can look very different for the same number of
points. Consider the examples with 10 points first. Observe that in Figure 3, there are
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more collisions between lines from points and less lines reaching the border than in the
other example with 10 points in Figure 4.

Figure 3: Example (a) with 10 points. Figure 4: Example (b) with 10 points.

Adding more points, e.g., see Figures 5 and 6 with 100 points, it becomes much less
likely that the lines from one vertex both reach the border on opposite sides. The average
length of the lines in relation to the size of the box becomes shorter. Furthermore, clusters
of rather long parallel lines can be observed. If a point is surrounded by many points with
the same orientation, there are less lines that can potentially block its line and more lines
that can stop orthogonal lines from cutting it off, making it more likely to grow far.

Figure 5: Example (a) with 100 points. Figure 6: Example (b) with 100 points.

Let us consider even more points, e.g., 1000 points in Figure 7. We can observe that
most lines are cut off so quickly that areas far away from each other, for example close
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to the upper left and the bottom right corner, do not seem likely to interfere. This
phenomenon is considered by deriving covariance results. Moreover, the clusters of very
narrow rectangles with parallel longer sides can be observed here, too, separated by groups
of rectangles with side lengths similar to each other, in other words, more “square shaped”.

Figure 7: Example with 1000 points.

3.1 Relation to the Cellular Automata Model

The original version of this model is defined on Z2 in [4]. The growing lines in our model
represent the propagation of activation initiated in a random set, which is the counterpart
to the Poisson process here. The activation set in [4] is defined by assigning each vertex
in [0, 1, . . . , N ]2 ⇢ Z2 the state active with probability p 2 (0, 1) independently. The rules
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for vertices to become active are not described in detail here, but essentially the structure
of the active set grows like the lines described in the previous subsection with our model.
The rows of active vertices form the shapes of lines, as seen in Figure 8, but the active
set remains a countable set of vertices. Note that in addition, both lines stop in case they
arrive at the place of collision at the same time (call it head-on collision). Moreover, there
is some different behaviour if they run very closely to each other when parallel, which is
also disregarded in more detail here. Figure 8 shows an example of a limit pattern for
the original model, where we can see the structural similarity to the model in continuous
space.

In our model, i.e., on ⌦ ⇢ R2, the event of a head-on collision has probability 0.
Note also that even in the discrete space case, with a very small p, i.e., the points are
sparsely spread, the probability of a head-on collision becomes small. So the two models’
behaviours are more similar. However, the probability for a head-on collision remains
strictly positive for a finite box on Z2.

Figure 8: Example of a limit pattern for the corresponding model in the cellular automata
with p = 0.01, taken from Figure 13 in [4].

The head-on collisions can form patterns that enclose areas in a way that has probabil-
ity 0 in R2. Namely, the discrete model does not necessarily result in a quadrangulation.
Some examples of possible patterns are shown in Figure 9, where the formed lines are
displayed instead of the set of active vertices. The first row shows three examples how
the lines can enclose areas entirely (lock-ups) and the second row shows examples of fin-
ished processes. While these are mathematically highly interesting to analyse, they also
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complicate the behaviour and thus make it more involved to derive any kind of results. As-
suming continuous space allows for some simplifications, which help to obtain the results
presented in this work.

e

ja

Figure 9: Examples of lock-ups and head-on collisions in a quadrangulation on Z2.

3.2 Graphical Representation of Dependence Structures

Let us make sure to understand the complexity of the model and its dependence struc-
tures by considering some examples. Figure 10 shows how the outcome of the random
quadrangulation can change when only one more point is added or a point’s orientation
is changed and the rest is kept the same. This is because of the chain reactions, which
can be started by these changes. In the figure, the first column shows examples of quad-
rangulations with 5 (A) and 6 (B) points. In the second column, one point is added in
each example, while in the third column, the orientation of one point is changed. The
added/changed vertex and its line are coloured blue. We can see that the outcomes are
strongly influenced by these small changes.

Figure 10 also shows that adding one point does not guarantee a longer total line
length, neither does it guarantee the opposite, which gives a non-monotonicity in that
regard.

It is also possible to gain intuition for the behaviour of the complexity on a small scale
when fixing the number of points to k = 3. Up to rotation and flipping, there are five
different patterns which the quadrangulation can result in. These are presented in Figure
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Figure 10: Quadrangulations: A with k = 5 and B with k = 6 in the first column, an
additional point added in the second column and a changed orientation for one point in
the third column. The changing vertex is coloured in blue.

11. It is important to realise that the points are only examples and different positions can
lead to the same pattern, possibly with different positions and sizes of the rectangles. We
can observe that in all but the first case, there are four collisions of lines with the border
of the box and two collisions between lines. It is possible to compute exact results for
k = 3, yet the derivations are very long and tedious and give no further insight into the
more general behaviour of this model. Hence, they are not presented here.

Figure 11: The five different patterns in which the random quadrangulation can result for
k = 3 points, with some example points included.

Because of the randomness in the number of points, the orientation and the position
of the points, combined with the growth of one line depending on the growth of the other
lines, analysing the behaviour of this model and deriving distributional results is not a
straight forward task. As the entire outcome of this process depends on the length of the
lines growing from the vertices, we are interested in deriving probabilistic properties for
these. So first, let us define the objects that are necessary for that. Denote the set of
points (also called vertices) in ⌦ from the Poisson process by V . We define the collection

10



of points G(0) := V ⇢ ⌦. For t > 0, we set

G(t) := (Lv(t), v 2 V), (11)

where Lv(t) is the entire line in both directions that has grown from vertex v up to time
t. The graph does not change after time N . Hence, the graph

G := (Lv, v 2 V) := (Lv(N), v 2 V) (12)

is the random quadrangulation obtained from the process.
As the line from any v 2 V grows in two directions, Lv can be split into two parts for

all v 2 V as
Lv = L+

v [ L�
v , (13)

where L+
v can be seen as the line upwards for points with vertical orientation and towards

the right side for points with horizontal orientation without loss of generality. Corre-
spondingly, L�

v is the line growing downward for vertical v and toward the left side for
horizontal v. Based on this, the following variable can be defined. With a slight abuse of
notation, denote Lv the length of the line in the following definition.

Definition 3.1 (Line Lv). Let v 2 V be a point of the realisation of the Poisson process
with assigned orientation. Define Lv to be the length of the line uniformly selected among
L+
v and L�

v .

So whenever the variable Lv is used, it refers to the line once the process has finished.
Due to symmetry reasons, exploring distributional characteristics on Lv is representative
of L+

v and L�
v . It should be noted that, for a fixed v, one of L+

v and L�
v cannot be larger

than N
2 . Apart from that detail, the growth of these two lines is independent. This will

become clear throughout the rest of this section.
Fix 0  t  N arbitrarily for now. Let us consider the event

{Lv > t}, (14)

which tells that the line Lv has grown further than a distance t, i.e. the line Lv is longer
than t at time N . The concepts time and distance are used interchangeably throughout
this work and are often both denoted by t. This is possible because the lines grow at unit
speed and depending on the context, either time or distance is more intuitive to use than
the other.

Observe that the area, in which points potentially influence the outcome {Lv > t},
is diamond shaped with distance t from the centre to the corners. This is illustrated in
Figure 12. Denote this area D(t)

v , in short Dv when it is clear what t is. Points in the
triangle corresponding to the half of the diamond closest to v (shaded grey in Figure 12)

11



can directly cut off the line Lv. Denote this area C(t)
v , short Cv. (Notice that phrases of

the type “a point cuts off Lv” should be interpreted as “the line from a point cuts off Lv”.
Both of these formulations are used throughout this work.)

Definition 3.2 (Cones). Given a point v 2 V and line Lv, let an area be called a cone at
v, if it is the area of size t2 that is enclosed by two diagonals of the same length growing
from v in a right angle, and both diagonals are in a 45 degree angle to Lv.

With this definition, Cv is a cone, specifically the one enclosing Lv. Points in Cv can
cut off Lv before it grows a distance t. Because from there, if a point u has orientation
orthogonal to Lv, the line from u arrives to the place of collision earlier than Lv (assuming
it grows that far). Thus Lv stops growing there, or in other words is cut off (see Figure
12). If a point is outside of the cone Cv, the line arrives to the place of collision later than
Lv and thus Lv grows further. Though lines from points in Dv \Cv (the non-shaded area
in the figure) do not have direct influence on {Lv > t}, they can have indirect influence
as they can prevent lines in Cv from cutting off Lv. This is also demonstrated in Figure
12. At first, one might think a line from a point u in Cv, which could cut off Lv, can itself
be cut off by points outside Dv before reaching Lv. However, that is not the case, as the
points cutting off the threatening line from u need to be in a certain close proximity, too,
namely in Cu, and regarding the event {Lv > t}, it holds Cu ⇢ Dv.

 

Figure 12: Illustration of the area of influence of a growing line. The shaded area is the
cone Cv, the entire rotated square is the diamond Dv, including examples of other lines
growing and influencing Lv.

Whether Lv grows at least a distance t depends on the orientation of a certain group
of points within Cv, which we need to define. If a line from a point in Cv grows parallel
to Lv, it cannot cut off Lv and is thus no “threat”. If it grows orthogonal to Lv, the event
{Lv > t} can only happen if this line is cut off before reaching Lv. That means, this
point, call it u, has to lie in an area where the line from u is blocked by a line parallel to
Lv. Figure 13 shows some red and blue lines, where the red lines are cut off by the blue
lines growing parallel to Lv – because they lie in a specific area, described next.
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V

Figure 13: Example of lines parallel to Lv (blue) cutting off all potential threats for Lv

(red).

These areas in which points with orientation orthogonal to Lv can lie are also cones,
only that they do not enclose the line growing from the points connected to the cones.
Figure 14 shows the difference between these different types of cones, where the red area is
the Cv on both sides introduced earlier. This is the area in which a point can potentially
cut off Lv, an example is given by u1. However, lines from points in the blue area cannot do
that as they arrive to the place of potential collision later than Lv (if they are orthogonal,
an example is depicted by u2).

 

U2

U

Figure 14: The red areas depict Cv on each side, the blue areas are the “blocked” areas.
The line from u1 cuts off Lv, while the line from u2 is cut off by Lv.

This means that, if all lines from points in Cv that grow orthogonal to Lv are blocked
by points that have lines parallel to Lv, i.e., these points lie in blocked areas, then {Lv > t}
happens. That also means that all points that cannot lie in such blocked areas must grow
lines parallel to Lv. This is depicted in Figure 15, where the points that lie in blocked
areas are crossed out in red and the points that have to be parallel are depicted with a
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line parallel to Lv. The dashed lines mark the borders of the blocked areas. With this in
mind, we can define the notion of tops.

Definition 3.3 (Tops). Let v 2 V with a fixed orientation and u 2 V lies in Cv. Let u be
called a top, if it must be of the same orientation as v in order for {Lv > t} to happen.

A top u must have the same orientation as v in the sense that otherwise, the line from
u will definitely cut off Lv.

X X

V

Figure 15: Illustration of tops. Points that are crossed out in red are not tops, because
they are blocked by lines from other points.

With the notions of cones, blocked areas and tops and an intuition for how the lines
influence each other, we are equipped to derive some results on this model.

4 Results

The results are separated into two different parts which correspond to different perspec-
tives on the model. The last part of this section focuses on how these perspectives relate
to each other.

4.1 Constant Intensity

For now, � > 0 is assumed to be a fixed constant that does not depend on the size of the
box N . The theorem that is stated first forms the basis for most of the results presented
in this work. It provides an upper bound on the tail probability of the distribution of Lv.

Including all necessary conditions for Lv to grow a certain distance to get an exact
probability is highly involved due to the dependence structures. Additionally, the be-
haviours on both sides of Lv in the cone Cv are not independent, as points in Cv on one
side of Lv can influence points in Dv \Cv. These can in turn influence points on the other
side of Lv in Cv. This is shown in Figure 16, where a line from the left side of Lv cuts off
Lv in the left figure, and does not because of an added point on the other side in the right
figure. It is not a likely event, but it is possible and must be taken into consideration.
Thus, the idea is to obtain a bound by reducing the dependence structure and considering
events on subsets of Cv on both sides of Lv that are independent.
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v v

Figure 16: Illustration of the possible interaction between the two sides of Lv without
crossing Lv.

Theorem 4.1. Let � > 0 be fixed and select a point v 2 V uniformly. There are constants
c and ↵ such that

P(Lv > t)  ce�↵t (15)

for all N and t.
In particular, if t > ap

�
where a = 8

(1�e�1)(1�#opt)
+ 2 and #opt like in (18), and the

distance to both borders parallel to Lv is greater than 1p
�
, then (15) holds for the rate of

decay
↵ =

p
�#2

opt(1�
1

e
) (16)

and for the scaling

c =

 
exp

✓
3

2
(1� 1

e
)#2

opt

◆
+

✓
1

2

◆�(3+(1�#opt)(1� 1
e ))
!2

, (17)

where

#opt = � ln(2)

3
+

r
ln(2)2

9
+

2 ln(2)

3
. (18)

Proof. Assume t > ap
�

and that the distance from both borders is at least 1p
�
. Consider

the area of width 1p
�

that is adjacent to Lv on an arbitrarily fixed side and is of length t

(see area shaded red in Figure 17). Let us also refer to it as stripe and denote it by Sv.
We observe that, for the event {Lv > t} to happen, it is a necessary condition that

the lines from all points in Sv do not cut off Lv. This is necessary for the stripes on both
sides. Call the stripe on the other side S 0

v. Let us define the following events.

B := {no lines from points in stripe Sv cut off Lv} (19)

B0 := {no lines from points in stripe S 0
v cut off Lv} (20)

B̄ := {no lines from points in Cv \ (Sv [ S 0
v) cut off Lv} (21)
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t

Figure 17: Illustration of the stripe Sv of width 1p
�

and length t, shaded in red.

Then,
B \B0 \ B̄ = {Lv > t} (22)

and thus
{Lv > t} ⇢ B \ B0, (23)

which implies
P(Lv > t)  P(B \B0). (24)

However, the events B and B0 are not independent. This is because lines from points in
a triangle in the square in the stripe Sv furthest away from v, the striped area in Figure
17, can indirectly influence what happens in the corresponding area in the other stripe
S 0
v, in the way that was also illustrated in Figure 16. We keep this in mind for now.

We recall the definition of tops (see Definition 3.3) and note that, in order for Lv to
grow longer than a distance t, all points that are tops in Sv and S 0

v need to have the
same orientation as v. Thus, the question is how many tops there are. For that, divide
the stripes into boxes with side length 1p

�
, starting from the end of the stripe with v, as

illustrated in Figure 18. This leaves a triangle at v and possibly a fraction of a square at
the other end of the stripe.

In order to only be left with boxes (squares) that have the same distribution of the
number of points in them, we cut away the triangle and the possibly left over partial
square, as they have different areas and therefore different Poisson distributions. Ad-
ditionally, we cut away one more box furthest away from v to ensure that we obtain
non-interfering areas on both sides of Lv. We denote this adjusted stripe by S̃v, and
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X X

V

Figure 18: Illustration of tops. Points that are crossed out in red are not tops, because
they are blocked by lines of other points. The boxes which the stripe Sv is divided in are
also shown.

correspondingly the one on the other side by S̃ 0
v. We also define the adjusted events:

B̃ := {no lines from points in the adjusted stripe S̃v cut off Lv}, (25)

B̃0 := {no lines from points in the adjusted stripe S̃ 0
v cut off Lv}, (26)

which are now independent and have the same probability due to symmetry. Furthermore
it holds that B̃ \ B̃0 � B \ B0. Combining that, we obtain

P(Lv > t)  P(B \ B0)  P(B̃ \ B̃0) = P(B̃) · P(B̃0) =
⇣
P(B̃)

⌘2
. (27)

Let w denote the number of boxes in S̃v that contain at least one point and regard
this as fixed for now, i.e., as one realisation, which is w = 8 in figure 19. Then there
are at least

⌅
w
3

⇧
� 2 tops because of the following arguments. The points in some boxes

might be in areas blocked by lines from other points and are therefore not tops. Lines
from points in one box can only block parts of their neighbouring boxes, not further away.
This is because of the squared shape of the boxes. We can refer back to Figures 18 and
19 to see that, where points which are not tops are crossed out in red. Moreover, the
points in the boxes furthest to the right and to the left can be in areas blocked by lines
from points outside of S̃v. Figure 19 shows an extreme case, where there are w = 8 boxes
that contain points but only two tops. Having only bw

3 c � 2 tops is unlikely, because it is
unlikely that the points in three consecutive boxes are always in that type of position. It
is also likely that there are boxes that contain more than one point and more than one
top. In that sense, Figure 18 shows a more typical number of filled boxes in relation to
tops than Figure 19 does.

Now, we can get to the technical details of this approach. Because of (27), it is enough
to derive a bound for one side. Define

M := #{tops in S̃v}, (28)
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v

C
Figure 19: Illustration of Sv and S̃v with the minimum possible number of tops given the
w = 8 filled boxes in S̃v. The area shaded in red are the boxes in Sv \ S̃v

for which the distribution is unknown. By its definition, S̃v is made of

bt := bt ·
p
�c � 2 � t ·

p
�� 3 (29)

squares, each with area 1
� . Thus, for the number of points Ki in box i, i 2 {1, . . . , bt}, it

holds that
Ki := #{points in box i} ⇠ Poi(1). (30)

It follows that a box contains at least one point with probability (1 � 1
e), which is char-

acterised by the Bernoulli variable ⇠i ⇠ Bin(1, 1� 1
e), i 2 {1, . . . , bt}. These variables are

all independent because of the independent increments of a Poisson process. So denote
the random variable ⇠ as the number of filled boxes in S̃v, which then has a Binomial
distribution

⇠ :=
btX

i=1

⇠i ⇠ Bin
✓
bt, 1�

1

e

◆
(31)

with expected value µ = (1 � 1
e)bt and of which the earlier w can be seen as a reali-

sation. Due to the explained relationship between the number of tops and filled boxes,
M � b ⇠

3c � 2, from which it follows that 3M+8 � ⇠. This implies that M is stochastically
dominant over b ⇠

3c � 2 and thus

P(M  m)  P(b⇠/3c � 2  m). (32)

The event B̃ (see (25)) means that all tops need to have orientation parallel to Lv,
which has probability 1

2 for each top independently, so P(B̃|M = m) =
�
1
2

�m. Let
# 2 (0, 1), which is needed for a Chernoff bound, be chosen as

# := #opt := � ln(2)

3
+

r
ln(2)2

9
+

2 ln(2)

3
. (33)

This is optimal in a sense explained at a later point. Define � such that it is the largest
non-negative integer for which it holds that 3� + 8  (1 � #)µ. This is also the reason
for the assumption t > ap

�
, as (1 � #)µ must be at least 8 for the chosen (positive) #.

Using the law of total probability in (34), the stochastic dominance of M in (39) and

18



the Chernoff bound for the lower tail of a Binomial distribution in (41), we obtain the
following bound.

P(B̃) =
1X

m=0

P(B̃|M = m)P(M = m) (34)

=
�X

m=0

P(B̃|M = m)P(M = m) +
1X

m=�+1

P(B̃|M = m)P(M = m) (35)


�X

m=0

P(M = m) +
1X

m=�+1

P(B̃|M = m) (36)

= P(M  �) +
1X

m=�+1

✓
1

2

◆m

(37)

= P(M  �) +

✓
1

2

◆�

(38)

 P(⇠  3� + 8) +

✓
1

2

◆�

(39)

 P(⇠  (1� #)µ) +

✓
1

2

◆ 1
3 (1�#)µ�3

(40)

 exp

✓
�1

2
#2µ

◆
+

✓
1

2

◆ 1
3 (1�#)µ�3

(41)

 exp

✓
�1

2
#2(1� 1

e
)(t ·

p
�� 3)

◆

+ exp

✓
� ln(2)

3
(1� #)(1� 1

e
)(t ·

p
�� 3) + 3 ln(2)

◆
(42)

Since the Chernoff bound holds for any # 2 (0, 1), it can be chosen such that it is
optimal for this case. Here it is optimal when the rate of decay, i.e., the factor before t in
the exponential terms, is the same in both parts of the sum, as that maximises the overall
rate of decay and hence gives the strongest bound. This is achieved when

1

2
#2 =

ln(2)

3
(1� #), (43)

which is the reason for the optimal value presented in (18). Simplifying (42) with this
yields

P(B̃) 
 
exp

✓
3

2
(1� 1

e
)#2

opt

◆
+

✓
1

2

◆�(3+(1�#opt)(1� 1
e ))
!

| {z }
=:c̃

· exp

0

B@�
p
�#2

opt

2
(1� 1

e
)

| {z }
=:↵̃

t

1

CA

(44)
Then (27) implies that c = c̃2 and ↵ = 2↵̃.
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When the distance to one of the borders parallel to Lv is less than 1p
�
, the stripe on

that side does not fully lie in ⌦ and the upper bound does not hold for c and ↵ as before.
However, the exponential upper bound is still obtained for the constants c̃ and ↵̃, because
for large enough N , the distance is always at least 1p

�
to one of the parallel borders.

Remark 4.1. The distance to the border in the direction of Lv does not affect that the
values presented for c and ↵ hold in the upper bound. This is because Lv is guaranteed
to be cut off by the border in case the distance is less than t, making the probability for
{Lv > t} even smaller, in fact it is 0 in that case. Hence the upper bound is still correct.

Theorem 4.2. Let � > 0 be fixed and select a point v 2 V uniformly. There are constants
c and ↵ such that, for all t and N ,

P(Lv > t) � ce�↵t. (45)

In particular, if the distance to the border in the direction of Lv is at least t and t > 2p
�
,

then (45) holds for c = 1
16 and ↵ = 2 ln

�
8e
e�1

�p
�.

Remark 4.2. For the particular values of c and ↵, we require the distance from the border
in the direction of Lv to be at least t, because if it is not, the probability for {Lv > t}
is 0 as it is definitely stopped by the border. Then the lower bound does not hold for the
presented values, and it is not needed.

Before going into the technical details of the proof, the idea behind it needs to be
explained. From the upper bound in Theorem 4.1, we recall the observation that all tops
(illustrated in Figure 15) need to have lines growing parallel to Lv. This is a necessary
condition for {Lv > t} to happen and makes it possible to obtain an upper bound. A
sufficient condition is needed to obtain a lower bound. This can be a condition which
requires more points than necessary to be parallel to Lv, so when conditioning on that,
the event {Lv > t} is guaranteed to happen. The question is, how to define that group of
points that is required to have the same orientation as v, or in other words, in what area
are points required to grow lines parallel to Lv?

Figure 20 shows an example of the stripe Sv again as it was defined in the proof of
Theorem 4.1, so adjacent to Lv and of width 1p

�
. It is split into boxes and can contain

some points, specifically tops. Let us imagine that we know the number of points in the
stripe, but not outside of it, so there might be points outside of the stripe which are
not depicted in the figure. The shaded areas above the points in the stripes indicate the
areas from which no points can grow lines that cut off Lv. This is because they will be
blocked by the lines from the tops before reaching Lv, if not already before. These are
the blocked areas. So conditioned that all points outside of the area blocked by lines from
tops grow parallel to Lv (shaded in the figure), the line Lv grows at least a distance t
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(when assuming this for both sides). Hence, this is a sufficient condition. The question
is how to bound this area, since the exact value of it depends entirely on the number,
orientation and position of points, and is therefore quite involved.

V

Figure 20: Illustration of the area where the orientation of points does not affect {Lv > t},
shaded in blue. I.e., the area blocked by lines from tops. The line Lv is of length t.

It is possible to employ the number of empty and filled boxes again, this time focusing
on the number of empty boxes. For now, assume that there is a fixed number w of empty
boxes in the stripe Sv, as illustrated for w = 6 on the left side in Figure 21. The area
in which lines from points are not blocked by lines from tops (i.e., the non-shaded area)
is the largest when the empty boxes are consecutive and as far away from v as possible,
as shown in the figure. Considering the right illustration in the figure, where there is a
point in the box furthest away from v, observe that the area not shaded in blue (i.e., the
area from which lines might cut off Lv) is immensely smaller than before. This can give
a better bound because then, less points need to be required to be parallel to Lv.

That area is still largest when the empty boxes lie consecutively furthest away from
v. When the box furthest away from v contains any points, the distance a point in the
non-blocked area can have from Lv is no larger than 1p

�
(2 + w

2 ) in any case. Due to the
use of a probability generating function at some later point in the proof, it is desirable
to have an area that does not contain a squared term of the number of empty boxes w.
Because of that, we consider the entire area shaded green in Figure 21, even if it includes
an area outside of Cv. Note that the size of this shaded area depends on the number of
empty boxes w.
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12 7

W G W 5

Figure 21: Illustration of possible scenario when not conditioning on a point in the last
box with w = 6 (left) and of Sw

v , shaded in light green, with the example of w = 5 empty
boxes in the worst possible location (right).

Before we formalise the idea of the proof, we state the following useful observations.

Proposition 4.1. Let K ⇠ Poi(1) and KTr ⇠ PoiTr(1). Then K + 1 has stochastic
dominance over KTr, i.e., P(K + 1  k)  P(KTr  k), k 2 N.

Proof. The cumulative distribution functions are the following (recall (4) and (6)):

P(K + 1  k) = P(K  k � 1) =
k�1X

j=0

1

e · j! =
1

e

 
kX

j=0

1

j!
� 1

k!

!
, (46)

P(KTr  k) =

Pk
j=0

1
j! � 1

e� 1
=

1

e� 1

 
kX

j=0

1

j!
� 1

!
. (47)

Furthermore, it holds that

P(K + 1  k)  P(KTr  k) (48)

because plugging in (46) and (47) yields the equivalent inequality

kX

j=0

1

j!
� e� e� 1

k!
, (49)

which holds for all k 2 N. Let us prove this last statement.
It can be calculated that it holds for k = 1, 2, 3. Next, inspect the increase for the left-

and right-hand side from k to k + 1. For the left-hand side, this is

k+1X

j=0

1

j!
�

kX

j=0

1

j!
=

1

k + 1
(50)
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and for the right-hand side, it is

e� e� 1

(k + 1)!
�
✓
e� e� 1

k!

◆
=

e� 1

k!

✓
1� 1

k + 1

◆
. (51)

Relating (50) and (51),
1

k + 1
� e� 1

k!

✓
1� 1

k + 1

◆
(52)

is equivalent to
(k � 1)! � e� 1, (53)

which holds for all k � 3. So since (49) holds for k = 1, 2, 3 and the increase for the
left-hand side is larger than for the right-hand side for all k � 3, the inequality must hold
for all k 2 N, concluding the proof.

Corollary 4.1. Let K1, . . . , Kn ⇠ Poi(1), K ⇠ Poi(�), KTr
1 , . . . , KTr

n ⇠ PoiTr(1) and
K 0 ⇠ Poi(�+ n) all independent. Then for all k � n:

P(K 0  k � n)  P(K +KTr
1 + . . .+KTr

n  k).

Proof. Observe that K+K1+ · · ·+Kn
d
= K 0. Each Ki+1 has stochastic dominance over

KTr
i , i 2 {1, . . . , n}. This together gives:

P(K +KTr
1 + . . .+KTr

n  k)

� P(K + (K1 + 1) + . . .+ (Kn + 1)  k)

= P(K +K1 + . . .+Kn  k � n)

= P(K 0  k � n).

Proof of Theorem 4.2. First, let us determine the number of boxes in the stripe Sv of
width 1p

�
. Instead of cutting off the potential fraction of a box furthest away from v we

increase it to a whole box as we are obtaining a lower bound in this case. Furthermore,
we cut away the triangle at v, leaving

bt := dt ·
p
�e � 1 (54)

boxes. Formalising the idea of the area shaded green in Figure 21, we denote this area
by Sw

v , as it depends on the number of empty boxes w. It is a rectangle with a height of
1p
�
(2 + w

2 ) and a width of bt · 1p
�
 t, plus the attached triangle of area 1

2� as depicted by
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the region shaded green in Figure 21. It is of size

A(Sw
v ) :=

1p
�
(2 +

w

2
) · (bt ·

1p
�
) +

1

2�
 1p

�
(2 +

w

2
)t+

1

2�
=: A. (55)

We define the following events:

B := {Lv is not cut off from points in Cv on the side of Sv}, (56)

Bw := {all points in Sw
v have the same orientation as v}. (57)

As explained with the illustrations in Figure 21, we want to condition on that the
box furthest away from v (call it last box ) contains points separately. Let ⇣ denote the
(random) number of empty boxes within the other bt � 1 boxes in Sv. Then

⇣ ⇠ Bin
✓
bt � 1,

1

e

◆
. (58)

Let us define
⌫ := (last box in Sv non-empty) ⇠ Bin

✓
1, 1� 1

e

◆
. (59)

All the definitions so far considered only the events on one side of Lv, but of course Lv

only grows longer than a distance t if it is not cut off from either of the sides. So with w0

empty boxes in the stripe S 0
v on the other side, let S 0w

v denote our area of consideration
(shaded green in Figure 21) on the other side. We also define

B0 := {Lv is not cut off from points in Cv on the side of S 0
v}, (60)

B0
w := {all points in S 0w

v have the same orientation as v}, (61)

⌫ 0 := (last box in S 0
v non-empty) ⇠ Bin

✓
1, 1� 1

e

◆
, (62)

⇣ 0 ⇠ Bin
✓
bt � 1,

1

e

◆
(63)

as the corresponding events and random variables on the other side. Note that

{Lv > t} = B \B0. (64)

Since B and B0 are not independent by the arguments at the beginning of the section and
illustrated in Figure 16, let us show that we can use our bounds independently. For that,
observe that

B \ B0 ◆ Bw \B0
w. (65)

Furthermore, ⇣, ⇣ 0, ⌫ and ⌫ 0 are independent due to the independent increments of the
Poisson process. The orientation of points is independent of the number of points. Finally,
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Bw is independent of the number of points and empty boxes on the other side (⇣ 0 and ⌫ 0)
and vice versa. With these arguments, the following holds:

P(B \ B0) =
1X

i=0

1X

j=0

bt�1X

w=0

bt�1X

w0=0

P(B \ B0|⇣ = w, ⇣ 0 = w0, ⌫ = i, ⌫ 0 = j)P(⇣ = w|⇣ 0 = w0, ⌫ = i, ⌫ 0 = j)

· P(⇣ 0 = w0|, ⌫ = i, ⌫ 0 = j)P(⌫ = i|⌫ 0 = j)P(⌫ 0 = j)

�
1X

i=0

1X

j=0

bt�1X

w=0

bt�1X

w0=0

P(Bw \B0
w|⇣ = w, ⇣ 0 = w0, ⌫ = i, ⌫ 0 = j)P(⇣ = w)P(⇣ 0 = w0)P(⌫ = i)P(⌫ 0 = j)

=
1X

i=0

1X

j=0

bt�1X

w=0

bt�1X

w0=0

P(Bw|⇣ = w, ⌫ = i)P(B0
w|⇣ 0 = w0, ⌫ 0 = j)P(⇣ = w)P(⇣ 0 = w0)P(⌫ = i)P(⌫ 0 = j)

=
1X

i=0

bt�1X

w=0

P(Bw|⇣ = w, ⌫ = i)P(⇣ = w)P(⌫ = i)

·
1X

j=0

bt�1X

w0=0

P(B0
w|⇣ 0 = w0, ⌫ 0 = j)P(⇣ 0 = w0)P(⌫ 0 = j). (66)

Define
Kw := #{points in Sw

v } ⇠ Poi(�A(Sw
v )) (67)

and denote K̃w the number of points in the area Sw
v without the w empty boxes. The

latter set has a total area w
� . Hence,

K̃w ⇠ Poi
⇣
� ·
⇣
A(Sw

v )�
w

�

⌘⌘
. (68)

Furthermore, denote �̃ = �·(A(Sw
v )�w

� ), where A(Sw
v ) is as defined in (55), so K̃w ⇠ Poi(�̃).

Note that �̃  �A (because of (55)). Denote U1, . . . , Ubt ⇠ Poi(1) as the i.i.d. Poisson
distributed points in each of the bt boxes in Sv and UTr

1 , . . . , UTr
bt ⇠ PoiTr(1) the zero-

truncated version of these variables. Let

K̄w := #{points in Sw
v \ Sv}. (69)

Then Kw = K̄w +U1+ · · ·+Ubt and K̃w
d
= K̄w +Uw+1+ . . .+Ubt conditioned that Ui = 0

for all 1  i  w.
Equipped with this, we begin by reducing the bound to the case when ⌫ = 1, i.e., the

last box is filled:

1X

i=0

bt�1X

w=0

P(Bw|⇣ = w, ⌫ = i)P(⇣ = w)P(⌫ = i) (70)

� (1� 1

e
)
bt�1X

w=0

P(Bw|⇣ = w, ⌫ = 1)P(⇣ = w). (71)
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We save the factor (1 � 1
e) for the rest of the computations and continue with the law

of probability and the independence of ⌫, ⇣ and the orientation of points. Recall the
definition of Bw (see (57)) and that each point has orientation like v with probability 1

2 .

bt�1X

w=0

P(Bw|⇣ = w, ⌫ = 1)P(⇣ = w) (72)

=
bt�1X

w=0

1X

k=0

P(Bw|Kw = k, ⇣ = w, ⌫ = 1)P(Kw = k|⇣ = w, ⌫ = 1) P(⇣ = w) (73)

=
bt�1X

w=0

P(⇣ = w)
1X

k=0

✓
1

2

◆k

P(Kw = k|⇣ = w, ⌫ = 1) (74)

Let k̃ = �̃+bt�w, chosen so that the following fact can be used in (80). For some µ > 0 and
some Z ⇠ Poi(µ), it holds that P(Z  µ) > 1

2 [14]. We recall that �A =
p
�(2 + w

2 )t+
1
2 .

bt�1X

w=0

P(⇣ = w)
1X

k=0

✓
1

2

◆k

P(Kw = k|⇣ = w, ⌫ = 1) (75)

�
bt�1X

w=0

✓
1

2

◆k̃

P(Kw  k̃|⇣ = w, ⌫ = 1)P(⇣ = w) (76)

=
bt�1X

w=0

✓
1

2

◆k̃

P(K̄w + U1 + · · ·+ Uw + Uw+1 + · · ·+ Ubt  k̃|⇣ = w, ⌫ = 1)P(⇣ = w)

(77)

=
bt�1X

w=0

✓
1

2

◆k̃

P(K̄w + UTr
w+1 + · · ·+ UTr

bt  k̃)P(⇣ = w) (78)

Cor.4.1
�

bt�1X

w=0

✓
1

2

◆k̃

P(K̃w  k̃ � bt + w)P(⇣ = w) (79)

>
bt�1X

w=0

✓
1

2

◆�̃+bt�w+1

P(⇣ = w) (80)

�̃�A
�

bt�1X

w=0

✓
1

2

◆�A+bt�w+1✓bt � 1

w

◆✓
1

e

◆w ✓
1� 1

e

◆bt�1�w

(81)

� 1

4

✓
1

8

◆p
�t bt�1X

w=0

0

@
✓
1

2

◆p
�t
2 �1

1

A
w ✓

bt � 1

w

◆✓
1

e

◆w ✓
1� 1

e

◆bt�1�w

(82)
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We can now use the probability generating function for Binomial random variables
(see (9)).

1

4

✓
1

8

◆p
�t bt�1X

w=0

0

@
✓
1

2

◆p
�t
2 �1

1

A
w ✓

bt � 1

w

◆✓
1

e

◆w ✓
1� 1

e

◆bt�1�w

(83)

=
1

4

✓
1

8

◆p
�t
0

@1� 1

e
+

1

e

✓
1

2

◆p
�t
2 �1

1

A
bt�1

(84)

� 1

4

✓
1

8

◆p
�t✓

1� 1

e

◆p
�t�1

(85)

Putting back in the factor (1� 1
e) from (71), the final bound is

bt�1X

w=0

P(⇣ = w)
1X

k=0

✓
1

2

◆k

P(Kw = k|⇣ = w, ⌫ = 1) � 1

4
exp

✓
� ln

✓
8e

e� 1

◆p
�t

◆
. (86)

Due to (66), squaring this expression yields a lower bound for P(Lv > t) with the constants
c and ↵ as stated above in the theorem.

We will now consider a different characteristic that describes the behaviour of this
model and we start by defining it.

Definition 4.1 (Escaping lines). Consider a realisation of the quadrangulation at time
N , i.e., all lines have stopped growing. Call the lines that reach the border of ⌦ escaping
lines.

Note that here, the word line is used in the sense that each vertex has two lines. The
expected value of the number of escaping lines is bounded from above in the following
theorem.

Theorem 4.3. Let Y be the number of escaping lines and assume a Poi(�N2),� > 0,

process on ⌦. Then, for all � > 0, there exists a constant C(�) such that, for large N ,

E(Y )  C(�)N1+�. (87)

Asymptotically in N , this bound can be made arbitrarily close to linear in N . The
proof of this theorem has the following key ideas. First, observe that if there was a fixed
number of points in ⌦, say k, and E(Yv) denotes the expected value of the indicator that
Lv reaches the border (v uniformly selected from V), it would hold that E(Y ) = 2kE(Yv),
as each point grows a line in two opposite directions. However in this case, the number
of points K is random and thus we have a random sum of expected values where the
expected value E(Yv) depends on K. So Wald’s identity cannot be used. Because of this,
Theorem 4.1 needs to be slightly adjusted in order to use it.
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Furthermore, the law of total expectation is essential as well as the independent in-
crements of a Poisson process. Finally, the law of total probability in the continuous case
can be utilised to find an upper bound for E(Yv) together with the adjusted version of
Theorem 4.1. Consider the following Lemma first.

Lemma 4.1. Let K ⇠ Poi(�N2) and � > 0 be fixed. There exist constants c and ↵ such
that, for all t and N ,

P(Lv > t|K  �N2+�)  C1ce
�↵t. (88)

In particular, if t > ap
�

and the distance from Lv to both borders parallel to Lv is
greater than 1p

�
, then (88) holds for a, c and ↵ as in Theorem 4.1 with the additional

C1 =
P(S̄�N2+�)
P(K�N2+�) with S̄ ⇠ Poi

⇣
�N(N � 2p

�
)
⌘
.

Proof. Assume t > ap
�

and the distance from Lv to both parallel borders is at least 1p
�
.

Let us consider the setup from the proof of Theorem 4.1 with the adjusted stripe S̃v (and
S̃ 0
v on the other side) of width 1p

�
and containing bt := bt ·

p
�c � 2 boxes. We keep the

events B̃ and B̃0 – that the points in the adjusted stripes do not cut off Lv (see (25)
and (26)). These events are independent, but not when conditioning on K  �N2+�.
However, they are independent of the number of points outside of the stripes Sv and S 0

v.
This is because points outside of the stripes cannot influence whether a line from a point
in the stripes cuts off Lv. The size of the area where the points do influence these events,
i.e., the stripes Sv and S 0

v, is bounded by 2tp
�
 2Np

�
. So denote the number of points

outside of the stripes
S̃ ⇠ Poi(�N2 � 2t

p
�). (89)

The events B̃ and B̃0 are independent of S̃. Furthermore, S̃  K holds because the area
which S̃ corresponds to is a subset of ⌦, which implies stochastic dominance of K over
S̃. We can make the following argument:

P(Lv > t|K  �N2+�)  P(B̃ \ B̃0|K  �N2+�) (90)

=
P(B̃ \ B̃0 \ {K  �N2+�})

P(K  �N2+�)
(91)

 P(B̃ \ B̃0 \ {S̃  �N2+�})
P(K  �N2+�)

(92)

=
P(S̃  �N2+�)

P(K  �N2+�)
P(B̃)P(B̃0), (93)

 C1,tce
�↵t, (94)

where c and ↵ are as before in Theorem 4.1. To make the factor C1,t = P(S̃�N2+�)
P(K�N2+�)

independent of t, note that for some S̄ ⇠ Poi(�N(N � 2p
�
)), it holds that

P(S̃  �N2+�)  P(S̄  �N2+�). (95)
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So with C1 :=
P(S̄�N2+�)
P(K�N2+�) � C1,t, the bound is proved.

The next step is to find E(Yv).

Lemma 4.2. Let v 2 V be uniformly selected and assume the distance from Lv to the
parallel borders is at least 1p

�
. Let {Lv ! border} denote the event that the line Lv runs

into the border of the box ⌦. Then

E( {Lv ! border}|K  �N2+�)  1

↵N

�
ln(C1c) + 1� C1ce

�↵N
�

(96)

for large N with C1, c and ↵ like in Lemma 4.1.

We can observe that, as one would expect, the bound decreases in N and intensity �

(as ↵ increases in �).

Proof. Let dborder denote the distance from v to the bound in the direction of growth
of Lv. Since the vertices come from a Poisson process, they are uniform in ⌦ when
conditioning on the number of points and thus the distance from the border of ⌦ is
uniformly distributed on [0, N ]. Denote Ñ = min(N, ln(C1c)

↵ ) which is the minimum value
of t where the exponentially decaying bound from Lemma 4.1 is less than or equal to 1.
Using the law of total probability and the fact that the number of points and distance
from the border are independent, we obtain the following:

E( {Lv ! border}|K  �N2+�) (97)

= P({Lv ! border}|K  �N2+�) (98)

=

Z N

0

1

N
· P({Lv ! border}|K  �N2+�, dborder = t)dt (99)


Z Ñ

0

1

N
· 1dt+

Z N

Ñ

1

N
· C1ce

�↵tdt (100)

=
1

↵N

�
ln(C1c) + 1� C1ce

�↵N
�
. (101)

Since the exponential bound for the probability P(Lv > t|K  �N2+�) in Lemma 4.1 does
not assume knowledge or the probability of potential points outside of the stripe, adding
the condition of the distance to the border does not change that exponential bound and
can be used in the same way for the step with the inequality in (100).

Now, these lemmas can be combined to complete the proof of Theorem 4.3.
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Proof of Theorem 4.3. Fix � > 0 and let C1, c and ↵ be defined as in Lemma 4.1. Set
C2 = P(K  �N2+�). This clearly also depends on the choice of �.

E(Y ) = P(K  �N2+�) · E(Y |K  �N2+�) +
X

k>�N2+�

E(Y |K = k) · P(K = k) (102)

 2C2�N
2+� · P({Lv ! border}|K  �N2+�) (103)

+
X

k>�N2+�

2k · P({Lv ! border}|K = k) · P(K = k) (104)

 2C2�N
2+� 1

↵N

�
ln(C1c) + 1� C1ce

�↵N
�
+ 2�N2

X

k>�N2+�

e��N2
(�N2)k�1

(k � 1)!
(105)

 2C2�N
1+�↵�1

�
ln(C1c) + 1� C1ce

�↵N
�
+ 2�N2 P(K � �N2+�) (106)


�
2C2�↵

�1
�
ln(C1c) + 1� C1ce

�↵N
��

| {z }
C̃(�)

N1+� (107)

+ 2�N2 exp
�
��N2+�(� ln(N)� 1 +N��)

�
(108)

The last inequality comes from Theorem 2.1:

P(K � �N2+�)  exp(�N2+� � �N2)

✓
�N2+�

�N2

◆�N2+�

(109)

= exp
�
��N2+�(N�� � 1 + � ln(N))

�
. (110)

The expression (108) converges to 0 as N ! 1. Hence, C(�) can be chosen as an
appropriate multiple of C̃(�) to include (108). This concludes the proof.

Remark 4.3. It should be noted that the choice of � is crucial for the performance of the
bound. For a fixed N , the smaller the �, especially � ⇡ 0, the larger C1 � 1 and C2  1.
Both C1 and C2 converge to 1 as N ! 1. Furthermore, for a fixed � > 0, the larger N ,
the smaller the second part of the sum. Finally, choosing � close to zero yields an almost
linear bound in N .

In addition to the upper bound for E(Y ) that can be made arbitrarily close to linear
in N for large N , we can also derive a lower bound that is linear in N .

Theorem 4.4. Let Y be the number of escaping lines and K ⇠ Poi(�N2),� > 0. Then,
there exist constants C1 and C2 such that

E(Y ) � C1N � C2. (111)

Proof. To prove this, the concept that was used to prove Theorem 4.1 can be used: the
number of tops in a stripe of width 1p

�
being bounded by a scaling of the number of filled

boxes in the stripe.
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Consider a frame of width 1p
�

in ⌦, as illustrated in Figure 22. Cutting away the
corner squares, also with side length 1p

�
, leaves the four stripes S1, . . . , S4 shaded red in

that figure. The number of escaping lines is independent for all four stripes. We can again
consider tops in those stripes, this time facing the border instead of some line Lv. If a
top has orientation orthogonal to the border, it is guaranteed to have an escaping line.
This is illustrated in the example stripe S2 in the figure as well. There, it also becomes
apparent that tops are not guaranteed to escape as they might have a line growing parallel
to the border. It is also possible for points that are not tops to have escaping lines, in
case the top by which it could be blocked has orientation orthogonal to the border. In
total, the number of escaping lines from the stripes is bounded from below by the number
of tops with orientation opposite of the closest border. Being orthogonal to the border
has probability 1

2 for each point independently.

Ss

i
is s N

5

Figure 22: Illustration of the frame of width 1p
�

and stripes S1, . . . , S4. On the right side,
an example of S2 with tops and vertices that are not tops whose lines reach the border.

Now consider one stripe and divide it into boxes with side length 1p
�

again, meaning
the number of points in each box follows a Poi(1) distribution independently for all boxes.
That also means a box is non-empty with probability

�
1� 1

e

�
. This leaves

bt :=

�p
�

✓
N � 2p

�

◆⌫
�

p
�N � 3 (112)

whole boxes. So let M be the number of tops and ⇠ ⇠ Bin(bt, 1 � 1
e) be the number of

non-empty boxes. Recalling the arguments in the proof of Theorem 4.1, it holds that
M � b ⇠

3c � 2. The expected value of the number of orthogonal tops is 1
2 · E(M) as the

orientation is independent of the position of the points. Because there are four stripes,
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the following holds:

E(Y ) � 4 · 1
2
· E(M) (113)

� 2E
✓�

⇠

3

⌫
� 2

◆
� 2E

✓
⇠

3
� 3

◆
(114)

=
2

3
E(⇠)� 6 =

2

3
(1� 1

e
)bt � 6 (115)

� 2

3
(
p
�N � 3)(1� 1

e
)� 6 (116)

=
2

3

p
�(1� 1

e
)

| {z }
C1

N � (6 + 2(1� 1

e
))

| {z }
C2

, (117)

which is linear in N .

Next, we want to consider the covariance between the growth of lines from different
vertices depending on their distance. As described in the observations about the model
in Section 3, the potential interaction seems to become increasingly unlikely with growing
distance – if that also means the number of points between them increases.

Recall the definition of Lv (see (3.1)) and define

Z(t)
v = (Lv > t) (118)

for some uniformly selected vertex v 2 V . Let us consider how far the lines from two
vertices can grow independently of each other, for a fixed distance between them. First,
define a useful metric.

Definition 4.2 (Distance between vertices). Let u, v 2 V. Define

d(u, v) = ku� vk1 = |u1 � v1|+ |u2 � v2| (119)

through the p-norm with p = 1 as the distance between u and v. Denote d1(u, v) = |u1�v1|
and d2(u, v) = |u2 � v2| as the distances in the x- and y-coordinates.

With this, we can consider different cases of Lu and Lv for different orientations of u
and v. These are shown in Figure 23, where the distance between them is fixed. The first
row displays the case where the vertices have the same orientation, which is also parallel to
the direction of the maximum of d1(u, v) and d2(u, v). The second row is similar, but they
are growing parallel to the shorter distance. In these two cases, where they grow parallel,
cases (i) and (ii) are the same up to flipping. The third row presents the possibilities for
when they are orthogonal. Clearly, which vertex is horizontal and which is vertical could
be switched, but that results in the same type of possibilities.

Table 1 shows the different maximum possible t in {Lu > t} and {Lv > t} such that
these events are independent, which can be derived from Figure 23. This is when the
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i i Iii N

v

Figure 23: Illustration of the different cases of Lu and Lv for a fixed distance between
the vertices. The diamonds have the maximum possible equal size for the independent
growth of the corresponding lines.

areas of influence Dv and Du do not overlap, as illustrated in the figure. The following
lemma draws a general conclusion from this.

(i) (ii) (iii) (iv)
(1) t  1

2d(u, v) t  1
2d(u, v) t  1

4d(u, v) 8t > 0

(2) t  1
2d(u, v) t  1

2d(u, v) 8t > 0 8t > 0

(3) t  1
4d(u, v) t  1

2d(u, v) 8t > 0 8t > 0

Table 1: Distances of how far lines from two vertices can grow independently for the cases
corresponding to 23.

Lemma 4.3. For any Lu and Lv of uniformly selected u, v 2 V, the events {Lu > t} and
{Lv > t} are independent for all t  1

4d(u, v).

Proof. This follows from Table 1.

This lemma is central for the next theorem.

Theorem 4.5. Select two vertices u, v 2 V uniformly. Then there are constants c and ↵

such that the following bound holds for the covariance between Z(t)
u and Z(t)

v for all t:

|Cov(Z(t)
u , Z(t)

v )|  c2e�
↵
2 d(u,v). (120)
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In particular, if d(u, v) > 4ap
�
, then (120) holds for the values of a, c and ↵ from Theorem

4.1.

Proof. Assume d(u, v) > 4ap
�
. First, observe that, for any t̃ 2 (0, t), the event {Lv > t}

can be rewritten as follows:

{Lv > t} = {Lv > t̃} \ {Lv not cut off in [t̃, t]}. (121)

For shorter notation, denote {Lv not cut off in [t̃, t]} by {Lv surv. [t̃, t]}. Because of
Lemma 4.3, choose

t̃ =
1

4
d(u, v), (122)

and note that then,
P(Lu > t̃|Lv > t̃) = P(Lu > t̃). (123)

Finally, use Theorem4.1 for the last inequality.

��Cov(Z(t)
u , Z(t)

v )
�� =

��P(Lu > t, Lv > t)� P(Lu > t)P(Lv > t)
�� (124)

=
��P(Lv surv. [t̃, t]|Lu surv. [t̃, t], Lv > t̃, Lu > t̃)·

P(Lu surv. [t̃, t]|Lv > t̃, Lu > t̃) · P(Lu > t̃|Lv > t̃) · P(Lv > t̃) (125)

� P(Lv surv. [t̃, t]|Lv > t̃) · P(Lv > t̃) · P(Lu surv. [t̃, t]|Lu > t̃) · P(Lu > t̃)
��

=
��P(Lu > t̃)P(Lv > t̃)

��·
��P(Lv surv. [t̃, t]|Lu surv. [t̃, t], Lv > t̃, Lu > t̃)P(Lu surv. [t̃, t]|Lv > t̃, Lu > t̃) (126)

� P(Lu surv. [t̃, t]|Lu > t̃)P(Lv surv. [t̃, t]|Lv > t̃)
��

 P(Lu > t̃)P(Lv > t̃) (127)

 c2e�
↵
2 d(u,v) (128)

Of course, some cases of Lu and Lv have even weaker covariance or are in fact indepen-
dent because the areas of influence do not overlap no matter how far they grow. However,
the theorem stated above holds for all cases presented in Table 1 and Figure 23.

This theorem bounded the absolute value of the covariance, but it is also interesting
to know about the sign of the covariance. We have the following conjecture.

Conjecture 4.1. Consider Z(t)
u and Z(t)

v for uniformly selected u, v 2 V and direction of
growth. The following holds for the sign of the covariance:

Cov(Z(t)
u , Z(t)

v )

8
<

:
� 0 if u, v have the same orientation,

 0 if u, v are orthogonal.
(129)
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Inspect the two cases more closely by considering some illustrations. Figure 24 shows
two examples of some Lu and Lv where they are parallel. We can split

Cov(Z(t)
u , Z(t)

v ) = P(Lu > t, Lv > t)� P(Lu > t)P(Lv > t) (130)

= P(Lu > t|Lv > t)P(Lv > t)� P(Lu > t)P(Lv > t) (131)

and consider P(Lu > t|Lv > t). In the left illustration in Figure 24, there are shaded
areas, which we now call protected areas because of the following. When conditioning on
Lv > t, i.e., the grey line growing at least as far as depicted in the figure, no points in the
area shaded blue can cut off Lu as they cannot pass the grey line. There are two reasons
why the impact of this decreases with increasing distance between u and v. One is that
the further away Lu and Lv are, the more points there are between the lines and that
makes it more likely that that lines from points in the shaded areas would have no impact,
because they are more likely to be cut off. Furthermore, the larger the distance between
u and v, the smaller these areas become. Still, these arguments lead to the conjecture
that the covariance is positive for parallel lines. However, it is more difficult to say when
the lines do not have these protected areas, as illustrated in the right figure.

U n

v

Figure 24: Illustration of protected areas on the left and weak overlapping of the diamonds
Dv and Du on the right.

This looks very different when the lines grow orthogonal to each other. The left
illustration in Figure 25 shows that if a point u is in the cone C(t)

v and grows towards
the line Lv, it is impossible for both to grow larger than t, i.e., P(Lv > t, Lu > t) = 0.
Thus the covariance is negative in that case. But like in the parallel scenario, it is more
difficult to say something about the covariance when the diamonds, and especially the
cones, barely overlap, like in the right illustration in the figure.

Generally, it is important to realise that this covariance structure strongly depends on
the assumption that K ⇠ Poi(�N2), specifically on the fact that the expected number of
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u

V
U

Figure 25: Illustration of the argument for (possibly) negative covariance.

points in ⌦ increases for increasing t and tends to infinity for N ! 1. There are more
details on this assumption in the next subsection.

To understand this better, consider the case of two points in ⌦, regardless of the size of
⌦. No matter their distance, there is a probability of 1

2 that they collide, as that happens
with probability one in the case that they are not parallel. This means that there is no
decay in the covariance regarding their distance. This leads to the question when, i.e., for
what intensities, there is exponential decay in covariance and motivates to generalise the
model as follows.

4.2 Changing the Poisson Intensity

Another possible assumption for the intensity on ⌦ is to consider intensities depending
on N , for example ⇤(N) = �

N2 for some � > 0, i.e., expecting � points in the square, no
matter the size of it. Then the behaviour of the probability P(Lv > t) might change and
no longer show exponential decay. Similarly, if ⇤(N) = �

N� for some � < 2, the number
of expected points in ⌦ still grows with increasing N , but the larger �, the slower the
increase. Let us consider ⇤(N) = �

N� for � < 2 next.

Proposition 4.2. Let � > 0 be fixed and denote ⇤(N) = �
N� for � < 2 fixed. So

K ⇠ Poi(⇤(N) ·N2) = Poi(�N2��). Then there exist constants c and ↵ such that, for all
t and N ,

P(Lv > t)  ce�↵t. (132)
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In particular, if t > ap
⇤(N)

and the distance to both borders parallel to Lv is greater than

1p
⇤(N)

, then (132) holds for ↵ =
p
�#2

opt
N�/2 (1� 1

e) and a,#opt and c remain unchanged from
Theorem 4.1.

Remark 4.4. This theorem indicates that the behaviour of exponential decay still exists
for such a ⇤(N). The closer � is to 0, i.e., the closer it is to the model with constant
intensity and K ⇠ Poi(�N2), the stronger the exponential decay. The reverse also holds:
the closer � to 2, the slower the exponential decay. If � < 0, then the decay is even
stronger than for the model with constant intensity discussed in the previous subsection.

Proof. The proof of this is only outlined as it works in the same way as the original
theorem’s proof. What is changed is that now, the length of the squares in the stripe
needs to be adjusted to N�/2

p
�

and so there are bt =
j
t ·

p
�

N�/2

k
� 2 boxes. So we have

⇠ ⇠ Bin(bt, 1 � 1
e) as before but with adjusted � and bt. Plugging this into the original

proof yields the ↵ stated in this theorem.

Considering the theorems presented so far gives way to think more carefully about
how to interpret expressions like t ! 1 (for example in Theorem 4.1) or d(u, v) ! 1 (in
Theorem 4.5). When the model is defined on ⌦ = [0, N ]2 and K ⇠ Poi(�N2��), � < 2,
then N ! 1 is necessary for t ! 1 to be possible, as t  N . This suggests looking at
t ! 1 by setting t = t(N) = �N for a fixed � 2 (0, 1), and then N ! 1. This also
provides a way to approach the question of a phase transition of the behaviour of this
model for � � 2.

Let us consider K ⇠ Poi(�N2��) for any � and investigate P(Lv > t) for t = t(N) = �N

and N ! 1. We obtain the following from Proposition 4.2:

P(Lv > t)  c exp

 
�
#2

opt
p
�

N�/2
(1� 1

e
)t

!
(133)

= c exp

 
�
#2

opt
p
��

N�/2�1
(1� 1

e
)

!
(134)

From this we can observe that, when � = 2, the upper bound remains constant for
N ! 1, while for � < 2, there is exponential decay (even if it is slow for large �). For
� > 2, there is exponential growth, which does not yield an interesting scenario. The
question is whether the exact probability behaves the same way. Let us investigate the
lower bound for that.

As the lower bound in Theorem 4.2 also decays exponentially in
p
�t for � < 2, it can

be adjusted for ⇤(N) = �
N� like Proposition 4.2 for Theorem 4.1. The bound becomes

constant in N for � = 2 when replacing the intensity by ⇤(N) = �
N2 and t = �N , in the

same way the upper bound does. This means that both the upper and lower bound do not
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display exponential decay for t(N) ! 1 and hence, P(Lv > t) cannot decay exponentially
for N ! 1 either.

All these arguments imply that � = 2 is a critical point and marks a phase transition
for P(Lv > t) when t = t(N) ! 1.

Another way to approach our model is to disregard the size of the box, set it to [0, 1]2,
and make the assumption that there are K ⇠ Poi(�) points. The question of P(Lv > t)

from earlier can then be considered from the angle of increasing the intensity � instead of
the distance t to detect exponential decay. That is because of the following connection.

When considering ⌦ = [0, N ]2, the crucial part that is responsible for the exponentially
decaying probability of Lv growing further is that there are increasingly many points that
might cut it off. So that can be re-scaled to fixing the distance t in P(Lv > t) and
increasing the intensity of the Poisson process. In more detail, this is represented by the
following proposition, for which we consider a two-dimensional Poisson process on [0, 1]2.

Proposition 4.3. Let K ⇠ Poi(�),� > 1, the Poisson process on [0, 1]2. Let t 2 (0, 1) be
fixed. Then there exist constants c and ↵ such that

P(Lv > t)  ce�↵
p
� (135)

for all �. In particular, if
p
� > a

t this holds for ↵ = #2
opt(1� 1

e)t with #opt, c and a like
in Theorem 4.1.

Proof. This proof is only outlined again as most of it works exactly like in Theorem 4.1.
The side length of the squares in the stripe Sv is kept as 1p

�
so that there are Poi(1) points

independently in each of the bt = bt ·
p
�c � 2 boxes. Also, ⇠ ⇠ Bin(bt, 1 � 1

e) as before.
The bound and the constant c are the same, and the perspective here is to increase �.
Then P(Lv > t) ! 0 as � ! 1 with ↵ = #2

opt(1� 1
e)t.

Remark 4.5. It should be noted that, when changing the intensity regardless of the size of
the box, i.e., changing the constant �, the size of the box does not matter. It is then just a
question of scaling whether we consider [0, 1]2 or [0, N ]2. Choosing [0, N ]2 and considering
decay in distance instead of intensity provides a way to quantify the speed of growth and
decay.

The scaling and how the models on [0, 1]2 and [0, N ]2 relate can be made precise. Let
Lv,�,N be defined like in Definition 3.1, only that � and N in the index indicate that it
corresponds to constant intensity � and the size of ⌦ being N , i.e., K ⇠ Poi(�N2) points
in [0, N ]2. With the above definitions it holds that

Lv,�,N
d
=

1p
�
Lv,1,

p
�N . (136)
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The upper bound in Theorem 4.1 and the lower bound in Theorem 4.2 each coincide for
P(Lv,�,N > t) and P( 1p

�
Lv,1,

p
�N > t) = P(Lv,1,

p
�N >

p
�t) for some fixed t  N . This

is because the crucial part for the exponential decay is the Poisson intensity, specifi-
cally in Cv and Dv. The expected number of points in [0, N ] ⇥ [0, N ] with intensity
parameter � is �N2, as well as on [0,

p
�N ]⇥ [0,

p
�N ] with intensity parameter 1. Fur-

thermore, the Poisson intensity for the area of influence, D(t)
v for {Lv,�,N > t} and D(

p
�t)

v

for {Lv,1,
p
�N >

p
�t} respectively, is the same for each diamond, which is 2�t2.

The phenomenon on phase transition at � = 2 for K ⇠ Poi(�N2��) also becomes
apparent when considering this question in the light of the relationship between the model
on [0, 1]2 and changing � or [0, N ]2 with ⇤(N) = �

N� and increasing N and t(N). When
� = 2, the distribution of the number of points in ⌦ does not change, and this is equivalent
to keeping � constant in the setup on [0, 1]2 and not changing t, which clearly cannot show
any decay then. Generally, the two model definitions can be considered equivalently, only
that �(N) = �

N� , � < 2, on [0, N ]2 gives a rate of change in the intensity of the Poisson
distribution parameter.

5 Other Characteristics and Phenomena

There are many questions and ideas for generalisations that come up when working on
this model. Some of them are explored in this chapter.

5.1 Rectangles

A part that was not explored in detail is the characteristics connected to the number,
area and side length of the rectangles yielded from this process.

Proposition 5.1. Let K ⇠ Poi(�) be the number of points in ⌦ = [0, 1]2 and let R be the
number of rectangles. Then E(R) = �+ 1.

Proof. Assume that there are initially K = k points in ⌦. Let us call the event of one
line running into another line collision. We observe that

#{collisions}+#{escaping lines} = 2k. (137)

This is because each point grows two lines and each line ends either by colliding with
another line or because it runs into the bound of the box. Furthermore, each collision
stops almost surely only one line.

Next, we observe that the corner of a rectangle is either a collision of a line with
another one or with the boundary of the box. And in four cases, it is a corner of [0, 1]2.
Unless it is a corner of ⌦, such a point makes one corner for two rectangles, and each
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rectangle has four corners. Thus, the points of collisions with other lines or the bound
make k rectangles. There is one additional rectangle from the corners of ⌦.

All in all, it then holds E(R) = E(K + 1) = �+ 1.

This also matches the well-known Euler’s formula about the relationship of the number
of vertices (V ), edges (E) and faces (F ) for planar graphs, which states that V �E+F = 2.
Here, the vertices are all corners of the rectangles, which, in the case of k points in ⌦, is
V = 2k + 4 as argued previously. Furthermore, all the vertices are of degree 3, i.e., are
connected to 3 edges, except for the four corners of ⌦ which are of degree 2. This means
there are E = 3

2V � 2 edges. Plugging this into the formula, we obtain F = k + 2. As
the area outside of ⌦ is also counted as a face, this leaves k + 1 rectangles inside of ⌦ as
stated in the proof.

Generally, the rectangles and their side lengths can be used to pose interesting ques-
tions. First, it should be noted that the side lengths of rectangles and the line lengths
from certain vertices are not the same – the former depend on the places of collisions
between two lines or a line and the border. One can pose the following question. When
colouring all rectangles blue, that have a side that is longer than some x0, and considering
this quadrangulation on the entire R2, is there some critical point x0 for which there exists
almost surely an infinite cluster of blue rectangles? This is a question typical for the field
of percolation.

5.2 Models with Alternative Orientation Distributions

How does the model behave when the probability for vertical and horizontal orientation
is not 1

2 each? Let p > 1
2 be the probability for, say without loss of generality, vertical

(or “dominant”) orientation and (1 � p) correspondingly the probability for horizontal
orientation. Let �v = (v vertical) be the variable denoting the orientation of the vertex
v. Then

P(Lv > t) = P(Lv > t|�v = 1)P(�v = 1) + P(Lv > t|�v = 0)P(�v = 0) (138)

= P(Lv > t|�v = 1)p+ P(Lv > t|�v = 0)(1� p) (139)

and, using the definition for B̃ from (25), i 2 {0, 1}:

P(Lv > t|�v = i) 
⇣
P(B̃|�v = i)

⌘2
. (140)

We can focus on the following. What changes is the probability for the points being
parallel to the growing line, changing from 1

2 to p if v is vertical and (1 � p) if it is
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horizontal. Additionally, the choice of optimal # is now

#(p)
opt =

ln(p)

3
+

r
ln(p)2

9
� 2

3
ln(p) (141)

if v is vertical and

#(1�p)
opt =

ln(1� p)

3
+

r
ln(1� p)2

9
� 2

3
ln(1� p) (142)

if v is horizontal. Using all definitions and variables from Theorem 4.1, the following holds
for a point with dominant orientation. Some steps that are exactly as in Theorem 4.1 are
omitted.

P(B̃|�v = 1) =
1X

m=0

P(B̃|M = m,�v = 1)P(M = m,�v = 1) (143)

=
�X

m=0

P(B̃|M = m,�v = 1)P(M = m) +
1X

m=�+1

P(B̃|M = m,�v = 1)P(M = m) (144)

 P(M  �) +
1X

m=�+1

pm  . . . (145)

= exp
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Using the same idea and considering a point with non-dominant orientation, it holds that:

P(B̃|�v = 0) =
1X

m=0

P(B̃|M = m,�v = 0)P(M = m) (148)

 P(M  �) +
1X

m=�+1

(1� p)m  . . . (149)

= exp
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We obtain the constants c1 = c̃21, c2 = c̃22, ↵1 = 2↵̃1 and ↵2 = 2↵̃2 as before, where c1 and
↵1 are the constants of the exponentially decaying bound of P(Lv > t) for a vertex v with
dominant orientation and c2 and ↵2 the corresponding ones if v has the non-dominant
orientation.

As intuition also indicates, the decay is slower if a vertex has the dominant orientation
and quicker if it does not as there are less/more points with a “threatening” orientation.
Furthermore, when considering the entire P(Lv > t) (see (139)), so the weighted average
of the two cases (which comes from the law of total probability), the overall exponential
decay becomes weaker with p closer to 0 or 1 instead of 1

2 .
This can be used to explore how the exponential decay of the covariance changes. The

bound from Theorem 4.5 becomes the following:

|Cov(Zu, Zv)| 

8
>>><

>>>:

c21e
↵1
2 d(u,v), if u, v vertical,

c1c2e
↵1+↵2

4 d(u,v), if u vertical, v horizontal, or vice versa,

c22e
↵2
2 d(u,v), if u, v horizontal.

(152)

For a bound that is not separated into these three different cases, use (139) with the
obtained bounds. This gives:

|Cov(Zu, Zv)| 
⇣
pc1e

�↵1
4 d(u,v) + (1� p)c2e

�↵2
4 d(u,v)

⌘2
(153)

= p2c21e
�↵1

2 d(u,v) + 2p(1� p)c1c2e
�↵1+↵2

4 d(u,v) + (1� p)2c22e
�↵2

2 d(u,v). (154)

As observed earlier, for large p, the rate of decay ↵1 becomes very small, and that
case contributes more to the entire covariance, meaning the exponential decay becomes
weaker for p close to 1 (and analogously to 0). This matches intuition, too. When there
are a lot of parallel lines, they are more likely to grow much further and thus interfere
with the growth of other lines (of both orientations), even if they are further away. All in
all, this bound has the strongest rate of decay for p = 1

2 . The same analysis can be done
for the lower bound.

Another alternative to consider (which does not originate from [4]) is to allow any
orientation on the circle with uniform distribution (see also Section 6). The first thing to
realise is that then, two lines are parallel with probability 0, meaning in an infinitely large
box, the lines from two points collide at some point with probability 1. Furthermore, the
idea of the proof in Theorem 4.1 about the exponential decay of P(Lv > t) does not work
the same way because the concept of points lying inside areas blocked by lines from other
points is not as straight forward. In addition, the area of direct influence is no longer a
cone but a circle. This is because the distance which a point can have from v to cut off Lv

is now different due to the different angles, illustrated in Figure 26. Whether a point is
a top does not necessarily just depend on the other points in the same and neighbouring
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box but possibly – even if unlikely – on points with much larger distances, also illustrated
in the figure.

wo

Figure 26: Example of a realisation for angle of orientation uniform on the circle on the
left side. Illustration of the area of direct influence on the top right. Illustration that the
approach with boxes in the stripe does not work as before on the bottom right.

Another type of behaviour that can be observed for a certain set of activation condi-
tions in Model (b) in Section 3.6 in [4] corresponds to growing lines in both horizontal
and both vertical directions from all points of the Poisson process on ⌦. Two examples
for four and nine vertices are shown in Figure 27. The behaviour is changed in quite some
ways.

 

Figure 27: Example with 4 and 9 vertices when all points grow lines in all four directions.

For {Lv > t} to happen, the conditions are now much stronger as every point has a
line growing in a direction that is a “threat” to Lv. It is a necessary condition that there
are no points in D(t/2)

v , which has area t2/4. Note that this diamond has only t/2 distance
between corners and centres (see area shaded red in Figure 28). This is because in that
area, lines from points in there can only be stopped by lines from points that are threats
themselves. In the remaining area of the cone, it is possible for points to be blocked by
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lines from points outside of Cv, illustrated in Figure 28, meaning they can potentially be
stopped. Thus a sufficient condition is that there are no points in Cv, which has area t2.
Let KD be the number of points in D(t/2)

v and KC in Cv. This yields a lower and upper
bound for P(Lv > t) of the following type:

P(Lv > t) � P(KC = 0) = e��t2 , (155)

P(Lv > t)  P(KD = 0) = e��t2/4. (156)

V

Figure 28: Illustration of the necessary and sufficient conditions for {Lv > t}, area shaded
in red indicates D(t/2)

v

It is clear that this decay is much stronger than when the lines grow only horizontally
or vertically, as the decay is in t2 instead of t. Because of this, the decay of the covariance
in distance between vertices is also much stronger.

6 Gilbert Tessellation

There are three publications [1], [2], [12] known to the author that have results directly
related to the model of this work. All of them agree on the fact that deriving any exact
results on our model is highly involved and that the model is to date intractable. The
publications work without the restriction that ⌦ is a finite square, but rather ⌦ = R2

(except for simulations). The latter two also derive results for different proportions of
horizontal and vertical lines (as suggested in Section 5.2 in this work). Different approx-
imations are presented in the different articles, as well as simulation results, which are
presented and discussed in this section.

The first published work “Homogeneous Rectangular Tessellations” by Mackisack and
Miles in 1996 [12] presents this model as a special case of the general model known under
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the name of Gilbert Tessellation, among some other rectangular tessellations. In the
general Gilbert tessellation, the model corresponds to the idea presented in Figure 27,
where the lines grow uniformly in any angle on the entire circle. This dates back to work
by Edgar Gilbert in 1967 [7], who did not pay particular attention to the case of only
horizontal and vertical lines, which results in a quadrangulation. It should be noted that
Gilbert is a very well-known mathematician, who introduced a random graph model in
1959 [6]. This is very closely related to the famous Erdős-Renyi model, introduced in
1959 by Erdős and Rényi [5]. The two models were introduced independently.

In [12], an approximate result on the expected value of the line length from one vertex
is derived for the rectangular Gilbert tessellation. This is done by using a heuristic ap-
proach suggested by Gilbert, based on a mean-field analysis. They obtain the approximate
expected value 2.828

p
� (in (39) in [12]) for the mean value per unit area for the total line

length. From their approximations, one can also obtain the approximate expected value
2
p

2/� for Lv, i.e., the entire line from some vertex v 2 V for the finished process. It
should be noted that this cannot be used entirely equivalently for our model, as there is
some bias due to the interactions with the border of ⌦ in our case. This bias is explored
in a simulation study ([12], Section 9-11), but only for one Poisson intensity on a square
(� = 256) for 50 replicates. So it is not possible to draw a conclusion for a general case.
Our work on the tail bounds for the distribution of the line length makes it possible to
bound the impact of the bias induced by the border for any intensity. From their study,
Mackisack and Miles also conclude that the rectangles have a tendency to be more narrow
than a square, i.e., have two longer and two shorter sides, as we observed in Figure 7.

The succeeding work by Burridge, Cowan, and Ma in 2013 [2] improves the approx-
imation of the expected value of the line length, based on an improved algorithm for
simulating the tessellation. They present an adjusted model, named Half-Gilbert Tessel-
lation, for which they derive an analytical expression of the density of the line length.
Main techniques used in their work are mean-field analysis and stopping-set theory for
Poisson processes.

The definition of the Half-Gilbert model is the key for making their model tractable.
In the Half-Gilbert model, only half of the line blocking effects are assumed. Specifically,
only lines growing to the right and downwards block each other, as well as left and upward
growing lines. For example, a line growing to the left is not blocked by a line growing
downward; they both continue in case of collision. However, if it runs into a line growing
upward, it is blocked. An example can be found in Figure 29, which is taken from Figure
1 in [2]. It is demonstrated in that paper that this adjusted model is much more tractable.
This is mainly because it is possible to find self-similar areas when analysing the area of
threat (which is Cv in our model) and the area of influence (which is Dv in our model)
for {Lv > t}. These two areas are the same in the Half-Gilbert model, unlike here.
Additionally, the area of threat lies only on one side of Lv due to only half the blocking
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Figure 29: Example of the Half-Gilbert tessellation with equal probability for horizontal
and vertical lines. Taken from Figure 1 in [2].

effects, which prevents the added complexity of interactions between the sides in the Full-
Gilbert model as illustrated in Figure 16. Through that, it is possible to obtain recursive
results.

The density of Lv, i.e., the line in one direction (called ray in their work), is derived
analytically for the Half-Gilbert model. Burridge, Cowan, and Ma proceed to show that
the density in the Half-Gilbert model with intensity � and the density in the Full-Gilbert
model with intensity �/2 are indistinguishable by eye when plotted, but mathematically
not exactly the same.

Another key achievement in the work by Burridge, Cowan, and Ma is the development
of an algorithm which makes it possible to simulate the Full-Gilbert tessellation much
more efficiently, and thus faster, than their “obvious” method. With that, they obtain an
estimated expected value for Lv from 109 replicates, which is 1.467535 for � = 1 (see (4)
in [2]). That is approximately 3.8% larger than the corresponding value from [12]. That
is obtained by taking half of the value presented in [12] respectively for the entire Lv.

Two of the authors of [2], Burridge and Cowan, improve the approximations and
simplify the analytical solution in 2016 [1]. An analytical expression for the Laplace-
transform is derived as well as higher-order moments. The results are only derived on
the Half-Gilbert model. However, due to the close relationship of the Half- and the Full-
Gilbert model, this is still relevant to our model. That work even generalised some results
from [2]. In particular, the authors derive results on an adjusted Half-Gilbert model,
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which allows the lines to grow in other (and possibly more than two) directions than
solely vertical and horizontal.

Now that the results are summarised, there are some points for discussion. Considering
the scaling relationship of the models with different intensities � in (136), we disagree with
[2], where it is stated at the beginning of Section 3 that P(Lv,� > t) = P(Lv,1 >

p
2�t).

Note that here, the size of the box is omitted in the index as the authors work on the
entire R2, but the statement can be used in the same way. We believe that the factor

p
2

is incorrectly used, given the explanations behind (136).
The authors of [2], Burridge, Cowan, and Ma, disagree with the authors of [12], Mack-

isack and Miles, on the question whether the growths of the lines in opposite directions
from one vertex are independent or not. Mackisack and Miles claim that they are not
entirely independent but “reasonably independent”, without naming reasons, while Bur-
ridge, Cowan, and Ma argue that they are independent. Their argument is the same as
the one presented in our work, which is that they are independent because the areas in
which points can influence the growth of the two lines are disjoint, except for the vertex
in question of course (see Figure 14). Additionally, the Poisson process has independent
increments, which, together with the former argument, implies independence. Only in our
work there is a small dependence, as mentioned in Section 3, due to the finite size of the
box (as one of the lines cannot possibly grow further than N/2). Since the named publi-
cations are based on R2 and hence do not have this restriction, we agree with Burridge,
Cowan, and Ma.

As all three publications work on the entire R2 rather than a finite square as we do,
the question around the (number of) escaping lines is not posed at all and a novelty
in this work. This is also true for the covariance, which is not discussed in any of the
publications. However, it can be assumed that sharper bounds for the exponential decay
can be obtained through the approximations based on results in [1],[2]. Our work is also
the only work that presents distributional results on the Full-Gilbert model by providing
bounds that hold exactly.

Any exact results on the expected value or distribution of the line length that are not
bounds are still not known. The bounds provided in this work and the approximations
from [1], [2], [12] provide more insight and can lead to further progress on this question.

There are many more ways to generalise the model presented here. One way would
be to change the Poisson process into other point processes. For example, one could take
away the homogeneity, meaning the intensity of the Poisson process is not identical on
all of ⌦. One could also allow for covariance structures within the point process. The
generalisation presented in Section 5.2 clearly leads to the original Gilbert tessellation
when removing the finiteness of the considered area.
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