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Abstract: This thesis examines the impact of the European Cohesion Policy on

regional economic performance during the funding periods of 2007-2013 and 2014-

2020, using a Regression Discontinuity Design (RDD) and spatial econometric tech-

niques. The analysis leverages the eligibility rule, which grants additional funding

to regions with a GDP per capita below 75% of the EU average, creating a natural

experiment to assess the policy’s effectiveness. The findings reveal that the Cohe-

sion Policy’s impact varied between the two periods. Specifically, the 2014-2020

period demonstrated a positive effect on regions barely meeting the funding thresh-

old, while the 2007-2013 period showed no significant effects. Moreover, although

the spatial analysis revealed significant interdependence among regions, there was

no conclusive evidence of indirect effects of the policy. However, the positive im-

pacts observed during the 2014-2020 period remained robust even when accounting

for spatial spillovers. The relative success in 2014-2020 may suggest that the shift

towards a more place-based policy approach was more effective than the narrower

focus on convergence in the earlier period, or it may highlight the policy’s limita-

tions during economic crises. †
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1

Introduction

Economic disparities across countries and regions within the European Union (EU)

remain a significant challenge, undermining the European goal of economic cohesion

and integration. Many regions have been trapped in a cycle of economic decline,

experiencing lower growth, employment and productivity which has fueled political

discontent and unrest, often manifested as support for Euroskeptic parties (Dijkstra

et al., 2020). To address these disparities, the EU has implemented a system of

public transfers known as the Cohesion Policy, aimed at fostering structural and

economic homogeneity among member states and regions. The importance of the

Cohesion Policy has grown over time: from less than 10% of the budget in the 1970s

to almost one third (32.2%) of the 2014-20 budget (Fratesi, 2024).

With the accession of the Southern European countries - Greece, Spain and

Portugal - in the 1980s, the considerable developmental differences among member

states and their regions became more pronounced. As concerns about the sharp

competitive pressures these countries might face upon entering the Single Market

grew, especially in the light of the strict policies on the public debt, the increase

in funds allocated to regional policy enabled these nations to maintain a controlled

deficit while continuing to invest in strategic areas (Dicharry et al., 2019). With the

German Reunification in 1990 and the Eastern enlargements in 2004, 2007 and 2013,

the importance of these considerations were strengthened and today the Cohesion

budget is the second largest category after the Common Agricultural Policy (CAP).

For the funding period of 2021-2027, €392 billion has been allocated, with the vast

majority is directed towards less developed regions (European Commission, 2024).

The body of research evaluating the impact of the EU Cohesion Policy on various

metrics, particularly economic growth, is extensive. However, the literature reveals

a lack of consensus on the outcomes of this policy. While some studies indicate

a positive impact on economic growth, others report insignificant or even negative

effects (Dall’Erba and Fang, 2017). One challenge in many studies evaluating the

policy is the issue of endogeneity - meaning that unobserved factors simultaneously

affect both the policy outcomes and the allocation of funding. As a result, it be-

comes difficult to ascertain whether observed economic growth in funded regions is

genuinely attributable to the policy itself or if it merely reflects these underlying,
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unobserved factors. This problem is particularly acute when comparing regions at

different stages of development. Standard economic theory, such as the convergence

hypothesis, suggests that less developed regions are expected to grow faster than

more developed ones, naturally catching up over time (Barro and Sala-i Martin,

1992). This natural growth dynamic can confound the effects of regional policies,

making it challenging to isolate the impact of the policy from the general trend of

economic convergence.

To address these concerns and isolate the causal effect of the Cohesion Pol-

icy on economic outcomes on economic growth, previous research has employed a

quasi-experimental Regression-Discontinuity Design (RDD). This approach has been

demonstrated in studies evaluating earlier programming periods, notably by Becker

et al. (2010, 2018) and Pellegrini et al. (2013). The method leverages the policy’s

funding rule, which provides additional resources to regions below a specific GDP

per capita threshold - 75% of the EU average. The strength of RDD lies in its ability

to simulate a randomized experiment by comparing regions that are similar in all

respects except for their position relative to this predefined GDP threshold. Regions

just above the threshold do not receive extra funding, while those just below do.

This setup allows researchers to attribute differences in economic outcomes directly

to the impact of the Cohesion Policy, thereby providing a reliable estimation of its

effects on regional economic growth (Angrist and Pischke, 2009).

In this study, the aim is contribute to the research on the EU’s cohesion policy

in two significant ways. Firstly, by building on prior research that employed a RDD

approach by conducting an ex-post evaluation covering the most recent completed

programming periods of 2007-2013 and 2014-2020. This extension not only allows

for an examination of the policy’s effects within a more recent timeframe but also

provide a more comprehensive assessment of its impact following the 2004, 2007

and 2013 enlargements, which predominantly included Eastern European countries.

These countries were almost uniformly classified under the ”less developed” status,

thereby offering a richer context to evaluating the policy’s effectiveness in a setting

where the Cohesion Policy’s framework has evolved significantly.

Secondly, this study extends beyond the typical focus on direct regional impacts

to explore the indirect, cross-regional spillover effects of the Cohesion Policy on eco-

nomic growth. Cross-regional spillover effects refer to the impact that the policy

interventions in one region can have on neighbouring regions, which may manifest

through various channels such as enhanced infrastructure that improves connec-

tivity and reduces transportation costs across regional boundaries. Although the

literature, including works by Fidrmuc et al. (2024) and others, acknowledges the

importance of these spillovers from the EU Cohesion Policy, there remains a gap

in quantifying these effects using RDD which allows for a more reliable and precise
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estimation of the causal impacts.

This fills both a theoretical and methodological purpose. The regional growth

trajectory in a highly integrated market like the EU, regions are expected to exhibit

significant spillovers among each other due to factors such as trade flows, labor

mobility, and shared resources, aligning with principles from the New Economic

Geography (NEG) literature (Krugman, 1991). It is both expected and explicitly

desired by the EU that the policy should impact neighboring regions (EUR-lex,

2021). Methodologically, the presence of indirect treatment effects between regions

violate the non-interference assumption that is crucial in RDD (Imbens and Rubin,

2015). However, addressing potential cross-sectional dependencies that could clarify

these indirect effects is notably overlooked in RDD research (Cornwall and Sauley,

2021). This approach is crucial for accurately capturing the full impact of the

Cohesion Policy, and offers insights into the broader efficacy of regional development

strategies within the EU.

This thesis seeks to answer several key questions regarding the effectiveness of

the European Cohesion Policy: Has the program achieved its intended outcomes,

particularly in promoting economic growth in eligible regions? To what extent has

the Cohesion Policy in one region influenced economic growth in neighboring re-

gions? Are there significant spillover effects, and do these enhance or undermine the

policy’s effectiveness? This approach addresses the effectiveness of regional policy

across spatial boundaries and provides deeper insights into the broader economic

impacts of these policies.

The results indicate a differential impact of the policy across regions and pro-

gramming periods. The 2014-2020 period demonstrated a positive effect on GDP

per capita growth, while no significant impacts were observed during the 2007-2013

period. Additionally, while significant spatial interactions were found in the data,

there was no conclusive evidence of indirect treatment effects from policy interven-

tions in neighboring regions. Nevertheless, the positive impacts observed during the

2014-2020 period remained robust even when accounting for spatial spillovers. The

relative success in 2014-2020 may suggest that the shift towards a more place-based

policy approach was more effective than the narrower focus on convergence in the

earlier period, or it may highlight the policy’s limitations during economic crises

such as the 2008 financial crisis and the eurozone crisis.

The remainder of this thesis is outlined as follows: Section 2 gives some back-

ground and context to the EU Cohesion Policy, Section 3 provides the theoretical

framework and Section 4 gives an overview of previous research on the matter. Sec-

tion 5 then outlines the empirical approach, Section 6 describes the data and Section

7 presents the results. Finally, Section 8 concludes by discussing policy implications

and future research.
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2

EU Coheion Policy

The European Union’s Cohesion Policy is a fundamental component of the EU’s

strategy to promote economic, social, and territorial cohesion among its member

states. Established as a mechanism to reduce developmental disparities between EU

regions, this policy aims to foster harmonious development throughout the Union,

enhancing economic integration and ensuring that the benefits of economic growth

are distributed equitably across all regions.

The origins of the Cohesion Policy can be traced back to the 1957 Treaty of

Rome, which emphasized the need to reduce disparities between regions and ad-

dress the underdevelopment of less favored ones. However, it was not until the

significant reforms in 1989 following the accession of Greece, Spain and Portugal

that investments in regional policy began to form a substantial potion of the EU

budget. These changes marked the beginning of what is now known as the modern

Cohesion Policy (European Union, 2008). Subsequent treaties have further refined

the Cohesion Policy: The Maastricht Treaty of 1992 introduced the Cohesion Fund

(CF), and during this period, the resources for structural and cohesion funds doubled

and The Lisbon Treaty 2007 emphasized ”greater social, economic and territorial

cohesion” as a fundamental goal .

Financially, the Cohesion Policy is supported through the Structural and In-

vestment Funds, comprising the Europe and Regional Development Fund (ERDF),

the Cohesion Fund (CF), and the European Social Funds Plus (ESF+) along with

the Just Transition Fund (JTF). These funds are targeted to support socio-economic

development in less developed EU regions and cities, enhance environmental sustain-

ability and transport infrastructure in poorer EU countries, and foster job creation

and social inclusion in the EU (European Union, 2008). The funds are managed

through multi-level governance model and is a partnership between the European

Commission, the member states and local governments and organizations (Fratesi,

2024).

The Cohesion Policy is organized into seven-year programming periods, each

characterized by specific objectives that has evolved over time. Within these periods,

regions are classified at the NUTS2 (Nomenclature of Territorial Units for Statistics)

level into various categories based on their development status. Less developed
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regions, identified by a GDP per capita in purchasing power parity (PPP) below

75% of the EU average, receive more focused funding to aid in their development and

convergence with their more developed counterparts. While this rule has remained

throughout, the other objectives above this threshold have gone from encompassing

a broad set of objectives to being more streamlined, leading to more consistent

objectives in recent programming periods (Fratesi, 2024).

During the 2007-2013 programming period, there was two main objectives: ”Con-

vergence” for regions below the 75% threshold, and ”Regional Competitiveness and

Employment” (RCE). Following the 2004 EU-25 enlargement of eight Eastern Euro-

pean countries along with Cyprus and Malta, the average GDP per capita fell com-

pared to the average in the EU-15 countries. Consequently, some regions previously

eligible for support became above the 75% threshold solely due to changes in mea-

surements. These regions received ”Phasing-Out” (PO) support from the Cohesion

Fund (EUR-lex, 2006). Similarly, regions covered by objective status in the 2000-06

period but not in the 2007-13 period, even within the EU-15, recieved ”Phasing-In”

(PI) support through the RCE-objective. In the 2014-20 period, the categories were

more easily defined: ”Less Developed” (<75%, corresponding), ”More Developed”

(GDP per capita > 90% of EU average) and a new ”Transition” category (GDP per

capita between 75% and 90% of the EU average) for regions that have become more

competitive but still require some targeted support. Additionally, in both periods,

member states with a GNI/head below 90% of the EU25/EU27 average also received

funding from the Cohesion Fund European Commission (2014). 1

The eligible regions below the 75% threshold and non-eligible regions above the

75% threshold are depicted in Figure 2.1. Both maps illustrate a clear core-periphery

pattern, with mainly Eastern Europe and most of Southern Europe being eligible

for funding, while most of North-Western Europe is not. Several regions have ex-

perienced a change in status: essentially all of Eastern Germany, parts of Spain,

Greece and the UK, and some regions in Eastern Europe have transitioned away

from eligible status in the later period. Conversely, two regions, Basilicata in Italy

and Kentriki Makedonia in Greece transitioned the other way around.

1Member states below this threshold largely reflect the same regions being eligible for the
Convergence objective, however some regions within these countries are not. See Section 6 for a
further discussion on what this implies for the study.
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Figure 2.1: Objective Regions Below 75% (in Blue) and Non-Objective Regions Above
75% (in Red) in the EU-27 Countries in 2007-13 and the EU-28 Countries in 2014-20.
Note: Islands Are Not Depicted in the Maps, Including the French Overseas Departments
(French Guiana, Mayotte, Réunion, Martinique, and Guadeloupe), the Two Autonomous
Portuguese Regions (Azores and Madeira), and Spain’s Canary Islands. All of Which
Except Madeira and Canary Islands Are Convergence-Objective Regions in Both Periods.

The picture of the development during this period is twofold. In the most recent

9th Cohesion Report, the European Commission (2024) described a significant con-

vergence, particularly in the two decades following the 2004 enlargement. Income

per capita in Central and Eastern Europe as a whole has increased from 52% of the

EU average in 2004 to nearly 80% in 2024. Conversely, many regions, especially in

the Soutern Member States, have experienced a gradual divergence, exacerbated by

the financial crisis of 2008.

To illustrate the relative development over time between eligible and non-eligible

regions, Figure 2.2 uses 2007 as a baseline (GDP per capita in 2007 = 0). The plot

shows that regions treated under the ”Convergence Objective” and classified as ”Less

Developed” have seen the most significant growth from 2007 to 2020, while non-

eligible regions have experienced moderate growth. Regions switching between eli-

gibility statuses show varied trends: those transitioning from eligible to non-eligible

have grown more than non-eligible regions, while those moving in the opposite di-

rection have experienced negative growth (note that this is only two regions in Italy

and Greece). This pattern aligns with expectations, as regions losing their objective

status typically surpass the 75% threshold, whereas regions gaining objective status

fall below it.

For further insight, a second plot focuses on specific geographical groups within

the eligible regions: Eastern, Southern, and North-Western Europe. Eastern Eu-

rope has experienced the highest growth, followed by North-Western countries. In

contrast, Southern Europe has seen minimal or even negative growth on average.
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This uneven distribution of growth raises concerns that the benefits of potential

treatment effects may be largely confined to Eastern and North-Western Europe,

with Southern Europe not experiencing similar advantages.

Figure 2.2: Development in GDP per Capita (PPS) Between Eligible Regions and Geo-
graphical Groupings, 2007-2020, Log Change Relative to 2007. Note: The Member State
Groupings Is Based on EU’s Definition by Geographic Area.
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3

Theoretical Framework of Regional

Policy and Growth

The effectiveness of regional policies in promoting economic growth hinges on a

critical examination of whether such policies are necessary and what they aim to

achieve. The justification for implementing regional policy derives from an un-

derstanding that market forces alone may be insufficient, particularly under the

neoclassical assumption of perfect information and optimal market functioning. In

reality, significant disparities often persist due to market or institutional failures,

necessitating targeted interventions to enhance equity and efficiency across regions,

thus necessitating the need for regional policies.

Fratesi (2024) suggests that the justification for implementing regional policies

hinges on satisfying three critical considerations: i) the spontaneous outcomes of the

market are found to be dissatisfying in at least one aspect, such as leading to unequal

regional development or persistent income disparities, ii) standard macroeconomic

policies prove inadequate in addressing the spatial disparities created by market

forces, which may fail to effectively target the unique challenges faced by certain

regions, necessitating more focused interventions and iii) there exist regional policies

that have the potential to improve the situation, specifically designed to address the

geographical, economic, and social characteristics of different regions.

Various economic theories provide different perspectives on regional growth and

the role of policy. These theories help us comprehend the dynamics of regional

development and the potential impacts of targeted interventions.

3.1 Economic Theories of Regional Growth

The Neoclassical Growth Theory (NGT) is the most fundamental framework when

exploring determinants of economic growth. It posits that all regions should converge

toward a steady state of growth, driven by capital accumulation, labor mobility, and

technological advances. This theory suggests that poorer regions will naturally catch

up to richer ones due to diminishing returns on capital and labor migration to more

developed regions (Barro and Sala-i Martin, 1992). This means that as economic
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integration promotes convergence, there would not be no need for regional policy,

as there would be a stable spatial equilibrium of no regional disparities. Instead,

policies should solely aim to reduce rigidities that slow this process down, such

as barriers to trade (Fratesi, 2024). However, in less stringent models within the

NGT, growth rates and the steady states depend on specific features specific to each

economy, such as the quality of institutions, which implies that regions with similar

characteristics will converge to locally stable steady states, so called ”convergence

clubs” (Barro and Sala-i Martin, 1992). In this view, regional policies could aim to

facilitate conditions needed for regions to move to another ’higher’ club.

Contrasting this, the literature on New Economic Geography (NEG), primarily

developed by Krugman (1991), highlights how economic activities cluster in ’core’

areas, creating agglomeration economies at the expense of peripheral areas. These

clusters attract more investment and skilled workers, potentially leading to a di-

vergence, not convergence, across regions. The increased gap between the core and

peripheral regions is also supported by endogenous growth theory and innovation

economics (Pieńkowski and Berkowitz, 2016). In this view, a the stable spatial

equilibrium could be a situation of persistent regional disparities, and thus regional

policies aimed to minimize interregional inequalities in less developed and periph-

eral regions could be desirable to counteract the market forces working towards

divergence. However, this will not necessarily maximize the total growth - posing a

trade-off between efficiency and equity.

Navigating the trade-offs between equity and efficiency is central a central chal-

lenge to the design of regional policies. These trade-offs are influenced by whether

regional growth is viewed as generative or competitive, as illustrated by Richard-

son (1973). In a generative growth model, the development of one region enhance

the overall economy, potentially leading to benefits for neighboring regions via posi-

tive spillovers. On the other hand, competitive growth models propose that regions

compete for a limited pool of resources, implying the presence of negative spillovers

- that the growth of one region may occur at the expense of another. While the

former poses no trade-off between equity and efficiency, the trade-off in the latter

does. With the presence of positive spillovers/externalities, regional policies could

increase the overall income levels, but with negative spillovers, the overall benefit is

less than the increase seen in the target region, as the policy will achieve growth in

the targeted region but reduce it elsewhere

3.2 Place-Based Policies

Whilst historically, regional policies has focused on equity, during economic down-

turns when resources are scarce, the emphasis shifts towards increasing efficiency
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(Fratesi, 2024). This shift can be seen with the development of the EU Cohesion

Policy that was originally created with the purpose of reducing regional differences

in development, but for the 2000-2006 and 2007-2013 programming periods it was

criticised for its narrow focus on convergence (Bachtler and Gorzelak, 2007). More

recently, during the recent programming period of 2014-2020, the focus have shifted

somewhat from redistribution to investment and increasingly improve the overall

competitiveness of the EU as a whole. This new focus highlight the increased rele-

vance of new so called place-based theories that suggest that it is possible to overcome

the equity-efficiency trade-off (Fratesi, 2024).

This approach has been supported by many recent contributions in regional

science, where the key idea is that policies are tailored to the unique economic and

social characteristics of each region, aiming to unlock regions underlying potential

while minimizing adverse spillovers (Barca, 2009). One of the main theoretical

basis for such policies is that the agglomeration externalities can be exploited by

leveraging local capabilities and resources, that not only drives regional development

but also supports broader economic growth. This theoretical basis asserts that by

focusing on enhancing local conditions through specialized, region-specific policies,

regions can develop unique competencies that contribute to a mode balanced overall

economic landscape (Neumark and Simpson, 2015). Smart Specialisation Strategies

(S3), prominently featured in the 2014-2020 EU programming period, exemplify

this approach by encouraging regions to identify and invest in their unique areas

of competitive advantage. The goal of S3 is not just to foster local innovation, but

to create a network of complementary capabilities across regions that collectively

boost the EU’s global competitiveness (Fratesi, 2024). However, it is important to

recognize that the research on the long-term economic sustainability of these policies

is not conclusive and is still evolving (Neumark and Simpson, 2015).
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4

Previous Research on the EU

The existing literature on the impact of EU funds on economic growth is mixed.

Dall’Erba and Fang (2017) conducted a meta-analysis on 17 studies and estimated

an average estimate of growth elasticities close to zero at 0.174, ranging between

-7.6 to 6.3. One plausible reason for the broad range of findings can be attributed

to methodological differences. Many studies attempting to measure the impact of

European cohesion policy employ econometric techniques based on the neoclassi-

cal growth model, rooted in empirical work on regional growth and convergence

(Pieńkowski and Berkowitz, 2016). Early studies by Sala-i Martin (1996); Boldrin

and Canova (2001) utilized such cross-sectional regressions and found no discernible

impact from EU’s Structural Funds Programme, ultimately deeming it largely inef-

fective.

However, as noted by later studies, this approach may lead to endogeneity and

yield unreliable, biased estimates. One endogeneity issue is due to reverse causality,

as the allocation of structural funds is closely correlated with indicators of economic

growth (Becker et al., 2012; Mohl and Hagen, 2010). Within the neoclassical frame-

work, regions with a lower GDP per capita are expected to growth independently

of EU funds, and since the criteria for fund allocation is based on the relative GDP

per capita (in PPS), regions with greater potential for economic growth are more

likely to receive funds. Another endogeneity issue is omitted variables. For example,

regions with structural issues may continue receiving funds because these underly-

ing problems inhibit growth, not necessarily due to the effectiveness of the funds

themselves. This leads to a spurious correlation between funding and economic

performance, as these factors are not included in the analysis, thereby biasing the

results (Fidrmuc et al., 2024). Dall’Erba and Fang (2017) noted in their review that

most studies has tended to ignore these endogeneity issues, thereby obscuring the

true causal effect of the policy.

More recent studies has tried to tackle this endogeneity by the means of quasi-

experimental methods, such as synthetic control methods (Barone et al., 2016) and

instrumental variables (IV)-estimation (Fidrmuc et al., 2024). Most notable how-

ever, is the regression discontinuity design (RDD) which has been employed by

several studies to exploit the eligibility threshold of the objective regions (Becker
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et al., 2010, 2013, 2018; Pellegrini et al., 2013; Cerqua and Pellegrini, 2018; Gagliardi

and Percoco, 2017; Percoco, 2017; Giua, 2017; Crescenzi and Giua, 2020). This has

been done in particular to compare growth in less developed (Objective 1/Conver-

gence objective) regions that receive more substantial support from the Cohesion

Policy (’treated group’) with regions that do not receive any support from the Co-

hesion Policy (’control group’). This method shows an important discontinuity of

regional GDP growth at the threshold point corresponding to the border between

the eligible and non-eligible regions (75% of the average EU GDP per capita), which

clearly shows the impact of Cohesion Policy ‘treatment’.

Pellegrini et al. (2013) used a dataset covering two programming periods between

1994-2006, identifying positive albeit modest effects of the Objective 1 interventions

on growth. Similarly, Becker et al. (2010, 2013) employed data covering the years

from 1989 to 2006, and further expanded this dataset to include up to 2013 in a

subsequent study (Becker et al., 2018). These studies all found an overall positive

influence on GDP growth, although at different magnitudes. In Becker et al. (2018),

they noted that the policy is effective in the short-term, but not as much in the long-

term. Giua (2017) and Crescenzi and Giua (2020) applied a spatial RDD (comparing

outcomes in areas just inside and outside a geographical treatment boundary) to mu-

nicipalities and regions near the borders of funded and non-funded areas, identifying

heterogeneous growth and employment effects, successfully in German regions, but

less so in Italy and Spain. Gagliardi and Percoco (2017) noted significant bene-

fits in rural regions near urban centers, highlighting the spatial variability in the

effectiveness of EU Cohesion Policy. In Table 4.1 the previous research applying

RDD on the EU Cohesion Policy and the sample and design is summarized. It is

notable that the majority of studies have focused on earlier periods, particularly on

the 2000-2006 period. Only one study has extended its analysis to include the later

period of 2007-2013, while none have yet investigated the most recent 2014-2020

period.

Another reason for the mixed and weak overall results on the impact of EU funds

is the oversight of spatial spillovers, i.e., the broader economic effects that EU-funded

projects can have beyond the targeted regions (Pieńkowski and Berkowitz, 2016).

Investments in one area may benefit neighboring regions or even wider geographical

areas due to the interconnected nature of the EU’s economy, where goods, services,

labor, and capital flow relatively freely across borders. Recognizing these spillover

effects is crucial for accurately assessing the full impact of Cohesion Policy, as they

can amplify or negate the perceived effectiveness of these investments. While some

studies find positive impacts of these funds both in the regions where they are

directly invested and in adjacent areas (Mohl and Hagen, 2010; Fidrmuc et al., 2024),

others do not find significant benefits or even suggest negative effects (Breidenbach
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et al., 2019). Fidrmuc et al. (2024) found that the favorable, although weak, effect

took place more in nearby regions rather in the recipient region.

Table 4.1: Previous RDD research on the EU Cohesion Policy

Author Method Period Countries

Pellegrini et al. (2013) Sharp RDD 1994-2006 EU-15
Pellegrini (2016) Sharp RDD 1994-2006 EU-15
Becker et al. (2010) Fuzzy RDD 1989-2006 EU-15
Becker et al. (2013) Mixed Fuzzy RDD 1989-2006 EU-15
Becker et al. (2018) Fuzzy RDD 1989-2013 EU-25
Giua (2017) Spatial RDD 1988-1999 Italy
Crescenzi and Giua (2020) Spatial RDD 2000-2006 EU-15
Percoco (2017) Fuzzy RDD 2000-2006 EU-15
Gagliardi and Percoco (2017) Fuzzy RDD 2000-2006 EU-15
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5

Empirical Approach

To assess whether the EU Cohesion Policy lives up to its goal and effectively boosts

regional performance, I will employ a Regression Discontinuity Design (RDD). This

approach leverages the eligibility for Cohesion Policy funding - set at 75% of the

EU average GDP per capita - as a quasi-experimental cutoff to discern the policy’s

impact on regional growth. RDD is particularly well-suited for this analysis as it

capitalizes on the natural experiment created by the policy design. Specifically,

it explores whether regions that marginally qualify for Cohesion Policy funding

exhibit significantly different economic outcomes compared to those that narrowly

miss qualification. The intuition of RDD in this context is that the discontinuity

around the threshold can be exploited to create counterfactuals: by focusing on

regions around the critical eligibility threshold of 75% GDP per capita relative to

the EU average, this analysis seeks to understand the effects of policy interventions at

the margin - where similar regions may experience vastly different policy treatment

due to slight differences in their economic status. For example regions just below

the threshold at 74.99% and just above at 75.01% are likely more comparable than

regions located far away.

Moreover, recognizing the interconnected nature of regional economies, the RDD

approach is extended by integrating spatial econometric techniques. This enhance-

ment is crucial to capture not only individual regional treatment effect but also

the indirect effects of the policy - specifically, regional spillover effects. Regional

economic growth is generally seen as highly interdependent, influenced by (1) neigh-

bouring region characteristics, (2) the spatial connectivity structure of regions, and

(3) the strength of the spatial dependence (LeSage and Fischer, 2008).

In the EU - a single free market with free trade in goods and services and un-

hindered mobility of labor and capital - Cohesion Policy funds are likely to impact

not only on the economy of the region receiving funds but also neighboring regions.

For example, Objective transfers could used to finance public infrastructure can

generate not only local effects on the treated regions but also spillovers to neigh-

bouring regions. This is even expressed as an explicit goal to ”support national,

regional and local, cross-border and urban mobility” and to further develop the

trans-European transport network (EUR-lex, 2021, p.4). This notion is also crucial
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from a theoretical standpoint, aligning with insights from new economic geography,

which emphasize the role of spatial interactions and agglomeration effects in shaping

regional economies. These theories highlight how economic activities in one region

can spill over and influence neighboring areas 1, creating complex spatial dynamics

that shape regional development patterns. Despite the the clear policy importance

and theoretical relevance, estimating spillovers have not been comprehensively ex-

plored in previous RDD-literature on the Cohesion Policy. 2

Beyond the intrinsic interest in exploring spatial spillovers, their consideration is

also important from a methodological standpoint. The presence of spatial spillovers

would violate the non-interference assumption (Imbens and Rubin, 2015; Cornwall

and Sauley, 2021) leading to downward biased estimates of the average treatment

effect. Positive spillovers, for instance, can reduce the observed difference in growth

rates between the treated and untreated regions, complicating the interpretation of

treatment effects (Becker et al., 2010). Spatial econometric models also help detect

and account for spatial autocorrelation, a phenomenon where the similarity in values

among geographical units can skew the results.

5.1 Regression Discontinuity Design

The Regression Discontinuity Design (RDD) hinges on several key methodological

considerations: mainly whether to use parametric or non-parametric regressions,

choosing between sharp versus fuzzy designs. Following the approach of Pelle-

grini et al. (2013), this study will utilize a sharp design and both parametric and

non-parametric estimation techniques. In a sharp Regression Discontinuity Design

(RDD), eligibility for treatment is determined solely by whether the running variable

crosses the predefined cutoff point. This setup offers the advantage of a clear causal

interpretation, although it requires careful data handling, as discussed in Section 6.

The treatment effect is identified by a binary Objective status, defined as:

Ti =

1 if x̃i ≤ 0

0 if x̃i > 0
(5.1)

1Related regions will be referred as ’neighbours’, but do not necessarily mean contiguity-based
(sharing a border) relationships, but more general sense of relatedness.

2Note that Pellegrini et al. (2013) and Becker et al. (2010) addressed spatial spillovers, but only
from a methodological point of view as a robustness check of their main results. Pellegrini et al.
(2013) used a spatial lag model, only accounting for spillovers in the dependent variable (economic
growth) but not the independent variable (the treatment), and no considerations where thus made
as to whether the treatment itself had an impact neighboring regions. They also acknowledges
the absence of theoretical framework as a limitation of their study that does not engage with
assumptions of regional growth. Becker et al. (2010) did not use spatial econometric techniques at
all, only adjusting the selection of control units.
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Where i denotes each NUTS-2 region, Ti represents the objective status (the ”treat-

ment”), xi is the running variable, which is the GDP per capita of the region as

a proportion of the EU average in the years the rule was determined. The term

x̃i = xi− 0.75x0 represents the deviation of the GDP per capita in each region from

75% average x0 in the threshold years.

To estimate the average causal treatment effect at the threshold without assum-

ing any specific functional form, the non-parametric RDD-estimate can be written

as (Angrist and Pischke, 2009):

τ = lim
d→0

(E[yi | x̃i < d] − E[yi | x̃i < −d]) = E[y1i − y0i | x̃i = 0] (5.2)

Where E[yi | x̃i < d] is the expected outcome for units slightly above the threshold,

within a small interval d of the running variable deviation x̃i, E[yi | x̃i < −d]

is the expected outcome for units slightly below the threshold, within the same

small interval −d. The limit limd→0 indicates narrowing the interval around the

cutoff x̃i = 0 (the deviation from 75% of the EU average GDP per capita, where

x̃i = xi − 0.75x0) to an infinitesimally small size, ensuring comparisons are made as

close as possible to the threshold to minimize the influence of other factors. Lastly,

E[y1i − y0i | x̃i = 0] is the expected difference in outcomes precisely at the cutoff

point.

Next, the parametric approach for estimating the RDD is formalized as follows:

yi = α + τTi +
m∑
j=1

βjx̃i
j +

m∑
j=1

δj(Ti × x̃j
i ) + ϵi (5.3)

Where yi represents the economic growth, α is the intercept, Ti is a binary treat-

ment indicator as defined in Equation 5.1 with τ capturing the direct effect of the

treatment. x̃i is the running variable, and x̃j
i represents its j-th power, allowing for

a polynomial specification. βj are coefficients for each polynomial term of x̃i and

δj are coefficients for interaction terms between Ti and each polynomial term of x̃i,

enabling the model to capture how the effect of the treatment varies with different

levels of x̃i. ϵi is the error term, capturing random deviations not explained by the

model.

5.2 Spatial Dependence

In order to address the cross-regional spillovers, it is essential to consider the spatial

dependence in the data. Spatial dependence describe how geographical units - such

as NUTS2 regions in this study - are interconnected and can influence each other.

This concept is somewhat analogous to time-series analysis, which uses Autoregres-
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sive (AR) and Moving-average (MA) models to account for temporal dependencies

as spatial dependencies in economic data can manifest either through a spatial lag

or in the error process. Not accounting for these dependencies can lead to biased

and inefficient estimates (Anselin, 1988). To properly handle spatial dependence,

spatial models are estimated that incorporate linkages among regions based on a

chosen spatial weight matrix.

5.2.1 Spatial Weight Matrix

The assumptions made on the structure of linkages among geographical areas is

reflected on the choice of spatial weight matrix, upon which spatial models then

can be used to estimate spillovers (Anselin, 1988). 3 This matrix essentially defines

the connections between regions, specifying which areas influence each other and

to what extent. By selecting appropriate weights, researchers can model different

types of regional interactions. For instance, a common choice is to use a contiguity-

based matrix where regions sharing borders are assumed to influence each other,

or a distance-based matrix that considers all regions within a certain radius as

interconnected. For this thesis, both of these matrices are considered. 4

The Queen-Contiguity is utilized for the simplicity and clarity in defining neigh-

bors as regions that share a border (or a vertex ). This matrix is effective when policy

spillovers are expected to most pronounced between directly adjoining regions. The

mathematical representation of a typical contiguity-based matrix, W , is defined as:

W =

wi,j = 1 if i ̸= j and i, j share border or vertex

wi,j = 0 otherwise
(5.4)

Where i and j is the centroid (the geometric center of a region) of regions and

wij denotes the elements of the spatial weight matrix W . An important limitation

of the Queen matrix is that it does not account for islands or disconnected regions,

which must be taken into consideration.

In contrast, distance-based matrices offer a broader range of interactions. These

matrices may use a threshold to determine connectivity or treat all regions as in-

terconnected regardless of distance. The global linkage approach, which does not

3The spatial weight matrix is a fundamental advantage in spatial econometrics but also attracts
criticism due to the assumptions needed about its form (Gibbons and Overman, 2012). However,
as noted by Abreu et al. (2004), choosing not to specify a spatial weight matrix also implicitly
assumes a specific spatial structure—that the regions do not influence each other.

4One important caveat is that the spatial weight matrix must be exogenous, and time-invariant
which precludes using other types of spatial distances such as trade or cultural distances which in
practice could be argued to be more realistic (Abreu et al., 2004). For this reason, most spatial
weight matrices are based on distance or contiguity, since they are clearly exogenous (Anselin and
Bera, 1998).
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restrict economic interactions by distance, can be represented as follows:

W =

 wi,j = 0 if i = j

wi,j =
d−2
ij∑
j d

−2
i,j

otherwise
(5.5)

Here, d−2
i,j is the squared inverse distance between centroids of regions i and j,

and the weights are normalized such that the sum of all weights for each row equals

to one. This normalization ensures that the influence exerted by all neighboring

regions on a given region i is standardized, providing a relative rather than absolute

measure of distance. The squared inverse weighting means that the influence of a

region is diminishing more steeply with the square of the distance. This approach

is beneficial when economic interactions are not strictly limited by proximity and

can span broader geographic expanses, thus reflecting more realistically the inter-

connected nature of modern economies (Kopczewska et al., 2017). 5

5.2.2 Spatial Models

To effectively distinguish between direct and indirect effect of spatial relationships,

the Spatial Durbin Model (SDM) is particularly suited due to its ability to include

spatial lags of both dependent and independent variables. The SDM is comprehen-

sive, as it also nests other spatial models, specifically both the Spatial Lag Model

(SLM) and the Spatial Error Model (SEM), making it suitable to start with and

differentiate between the SDM and other potential models (Fidrmuc et al., 2024).

The modification to incorporate the spatial terms into the parametric model as

described in Equation 5.6 is as follows:

yi = α + τTi +
m∑
j=1

βjx̃i
j +

m∑
j=1

δj(Ti × x̃j
i ) + ρ(Wy)i + ϕ(WT )i + ϵi (5.6)

Here, ρ(Wy)i represents the spatial lag of the dependent variable y, indicating how

similar outcomes in neighboring regions influence the region i. ϕ(WT )i represents

the spatial lag of the treatment variable T , which accounts for the spillover effects

of treatments applied in neighboring regions.

5The autonomous overseas territories far away from he mainland is excluded because these
would inflate the cut-off distances. Also, the economical impact of the nearest EU regions on these
territories are likely very limited.
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6

Data

6.1 Data Harmonization

The data is composed from several sources (see A.1) with the spatial grid defined by

NUTS at level 2. The NUTS classification is a hierarchical system for dividing up the

economic territory of the EU, that generally mirrors the territorial administrative

division of the Member States. It is divided at four different levels (NUTS 0, 1, 2

and 3) where 0 is the largest at the national level of the member states and 3 is the

smallest, typically comprising of small regions or groups of municipalities. One of

its explicit purposes is the framing of EU’s regional policies where regions eligible

for support from cohesion policy has been defined at the NUTS-2 level (Eurostat,

n.d.).

However the regions has been adjusted on a regular basis (i.e. 2003, 2006, 2013,

2016 and 2021), and the data is available at different classifications, which means

that the data need to be denoted in one single version in order to create a har-

monized dataset. This is done using Eurostat’s correspondence tables to assign

the observations in the programming periods according to one homogeneous NUTS

classification, NUTS-2006. See Appendix A for a closer explanation of how these

regions are mapped and which regions this concerns. However, a few regions where

not possible to map, resulting in a loss of a few regions. In total, the mapping yields

a dataset of 271 EU-28 regions for the 2014-20 period and 261 EU-27 regions in

2007-13 period.

6.2 Treatment Variable

The binary Objective treatment variable Ti is determined on whether a NUTS2

region has a GDP per capita in purchasing power parity terms (PPS) is less than

75% of the EU average. For the last two completed programming periods used

here, 2007-2013 and 2014-2020, the European Commission computed the relevant

threshold of GDP per capita in PPS terms based on the figures for the last three

years of data available at the time when the Commission’s regulations came out,

which correspondingly are 2000-02 and 2007-09 (European Commission, 2017).
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The treatment assignment are depicted in Figure 6.1 below, pooled from both

periods, to observe how the rule has been implemented, and those that have switched

statuses throughout the two periods. The dashed line on the x-axis denotes the 75%

rule and we observe that all regions in both periods on paper adheres to this rule.

Figure 6.1: Assignment of Treatment Status in 2007-13 and 2014-20. Note: The data
points are ”jittered” to avoid overlap and enhance clarity, the regions can only take a value
of 1 if below the threshold or 0 if above.

However, it is important to consider is how the EU transfers have been allocated

in practice. In the Figure 6.2 below, the amount of EU Funds per initial GDP is

plotted for both periods. While there is a distinguishable jump at 75% in the amount

of funding allocated to the treated regions, it is noticeable that some control regions

above the threshold value of 75% does still receive a significant amount of funding

despite not being eligible. This is to be expected to some degree, for example

the Cohesion Fund finances projects only in member states whose Gross National

Income (GNI) per inhabitant is less than 90 percent of the EU average. In the 2007-

13 period, this concerned all member states that joined the EU in 2004 and 2007

along with Greece and Portugal. While the eligibility status (below 75%) covers the

majority of their territory, a few non-objective regions in these countries received

support from the Cohesion Fund. This also concerned the Phasing Out (PO)-regions

which received 20% of the Cohesion Fund allocation European Commission (2010).

To conduct a Sharp Regression Discontinuity Design (RDD) and compare the

economic performance of ”hard financed” regions with ”soft financed” regions, a
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threshold value of per capita aid intensity has been established, following the method-

ology described by Pellegrini et al. (2013). This approach involves identifying a

minimum threshold of EU Funds per initial GDP for treated regions and exclud-

ing all non-treated regions that exceed this threshold, thereby minimizing overlap

and ensuring that no control regions have received more funding than the treated

regions. The thresholds determined are 0.13% for the 2007-13 period and 0.18%

for the 2014-20 period. This exclusion criteria imply a removal of 17 regions in the

2007-13 period and 24 regions in the 2014-20 period from the analysis. A discussion

of these regions and further information are provided in Table A.3. Naturally, this

poses a limitation of this study by potentially omitting valuable data that could

influence the overall findings. 1

Figure 6.2: Structural Funds Per Initial GDP in the 2007-13 and 2014-20 Programming
Periods

6.3 Outcome and Control Variables

The variable of interest is the per capita growth in GDP, measured in purchasing

power standards (PPS), from 2007 to 2020 for the EU-28 countries. Regional GDP is

technically calculated as the regional Gross Value Added (GVA) plus taxes on prod-

ucts minus subsidies on products. The PPS values are derived using the EUR/PPS

conversion rates from AMECO.

Control variables used is initial population, employment share and population

structure that could influence the the effect of treatment on growth. Addition-

ally, fixed effects will be utilized to account for unobserved heterogeneity that may

1While the total amount of regions excluded compared to Pellegrini et al. (2013) are a few more,
the complete dataset here are substantially larger.
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vary across both countries and the two funding cycles. Furthermore, in the spatial

econometric model, spatial lags is also incorporated.

6.4 Descriptive Statistics

In order to introduce the data, summary statistics is presented for GDP per capita

growth across treatment groups of NUTS-2 regions over the two programming pe-

riods 2007-2013 and 2014-2020, as well as for the combined period of 2007-2020 in

Table 6.1. From 2007-2020, treated regions exhibited a significantly higher growth

rate (2.7%) compared to non-treated regions (0.9%), whilst regions that switched

treatment status, displayed the lowest mean growth (0.8%) and the highest vari-

ability (std.dev 2.1), reflecting the pattern seen in Figure 2.2 or possibly suggesting

a negative impact of changing status. The growth differential between treated and

non treated regions was notable in the 2007-13 period, with treated growing at 1.9%

compared to only 0.51% for non-treated regions. The 2014-20 period shows an even

larger disparity in growth rates, with treated regions averaging 3.13% growth ver-

sus 1.17% for non-treated regions, although smaller in relative terms. In 2007-13

there was a notably high variability (std dev 2.54) among treated regions, possibly

reflecting crisis regions experiencing negative growth.

Table 6.1: Summary Statistics and Naive Estimates of GDP per capita growth.

Period Status Mean ∆ Mean Std N

2007-2020 Non-Treated 0.907 0.856 166
Treated 2.669 1.762 (0.2357) 1.889 68
Switchers 0.836 2.148 27

2007-2013 Non-Treated 0.514 1.369 181
Treated 1.900 1.386 (0.3008) 2.535 80

2014-2020 Non-Treated 1.170 1.265 200
Treated 3.131 1.961 (0.2466) 1.904 71

Note: ∆ Mean represents the difference in average annual GDP per capita growth rates between the
treated and non-treated regions. Standard Error (SE) of this difference in paranthesis, calculated
using the formula: SE(∆) = (s2t/nt+s2c/nc)

1/2, where s denotes the standard deviation and n the
sample size for each group.

Furthermore, Table 6.2 compares the treated and non-treated with respect to

different variables at the initial year of both programming periods. Non treated

regions are generally more populated than the treated ones and are naturally both

richer and more productive. Non-treated regions also have higher employment share

and have a somewhat higher median age than treated regions.
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Table 6.2: Summary Statistics: Pre-Treatment in Both Periods

Treatment

Period Variable 1 0

2007 Population (Thousands of inhabitants) 1764.745 1903.127
GDP per capita (PPS) 16683.742 29426.314
Productivity (GDP per worker, PPS) 39473.301 48938.481
GDP Index (EU-27 =100, PPS) 57.164 112.283
Employment Share 58.110 66.019
Population Structure (Median Age) 36.101 40.884

2014 Population (Thousands of inhabitants) 1722.733 1993.253
GDP per capita (PPS) 18091.228 30681.246
Productivity (GDP per worker, PPS) 43368.126 52881.908
GDP Index (EU-28 =100, PPS) 54.939 111.986
Employment Share 58.732 66.046
Population Structure (Median Age) 36.335 40.701

Note: GDP index (EU-27/28) is the data upon which the eligibility rule where decided from
the DG Regio database, while GDP per capita (PPS) is from Cambridge Econometrics used to
calculate the growth variable.
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7

Results

This chapter presents the main findings from the empirical analysis. The RDD strat-

egy will closely follow the methodologies outlined by recommendations of Imbens

and Lemieux (2008); Lee and Lemieux (2010) and Jacob et al. (2012). Concerns

specifically relevant to the EU Cohesion Policy draws upon previous research by

mainly Pellegrini et al. (2013) and Becker et al. (2010, 2018). First, the main RDD

analysis is conducted that involves graphical analysis to visually asses the disconti-

nuity at the eligibility threshold and then estimation of the treatment effect using

both parametric and non-parametric methods. This analysis is performed separately

for each of the two programming periods. To ensure robustness, sensitivity analyses

are conducted and the validity of the RDD strategy is evaluated, ensuring that it

meets the necessary assumptions for a credible causal inference.

Finally, the analysis is then extended by investigating the spatial dependence in

the data and integrating spatial econometric techniques into the RDD framework

as suggested by Cornwall and Sauley (2021). By employing a Spatial Durbin Model

(SDM), not only the direct effects of the policy can be captured, but also the indi-

rect effects through the spatial linkages between regions. Through these methods,

this chapter will detail the outcomes of the policy interventions, highlighting the

differential impacts on treated versus non-treated regions.

7.1 Main RDD Analysis

As is conventional within the RD-literature, the analysis starts with a graphical

representation to depict the relationship between the outcome variable (average

annual growth growth rate of per capita GDP in PPS) and the running variable

(the level of GDP per capita in PPS, EU-25/27=100). This approach aims to

determine whether there is evidence of a discontinuity, a ”jump”, at the cutoff. The

absence of visual evidence for such discontinuity, would suggest that it is unlikely

that more complicated statistical models will yield significant treatment effects (Lee

and Lemieux, 2010).

Figure 7.1, illustrates this relationship for the periods 2007-2013 and 2014-2020,

with the non-treated regions depicted on the LHS of the threshold value and treated
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regions at the RHS with a distance from the threshold of x̃ = xi−0.75x0. Following

Pellegrini et al. (2013), this is depicted with a non-parametric, flexible polynomial

regression model, separately estimated in both sides of the cut-off point, together

with 95 percent confidence interval bands. Superimposing flexible regression lines

is beneficial as it does not assume any specific parametric form for the relationship

between the treated and control units, and provides a visual sense of the amount

of noise in the data (Jacob et al., 2012). A logarithmic scale is used to reduce

the significant skewness and stabilize the variance in the distribution. Crosses in

the left figures indicate the observations that received ”hard financing” despite not

being formally eligible according to the 75% rule. The right graphs are showing the

corresponding relationship where these regions are excluded and in bins of 2% in

order to help smoothing the the data and highlight the underlying patterns more

distinctly (Imbens and Lemieux, 2008).

The higher growth rates of treated regions is clearly visualized in both periods,

as previously indicated using the naive estimator of the difference of the average an-

nual growth rate between treated and non-treated regions in Table 6.1. The treated

regions also exhibit considerably greater dispersion among the treated regions com-

pared to the control regions.

Most importantly, the non-parametric regression line shows a small but distinct

negative jump from treated to non-treated regions in the 2014-20 period of what

looks to be around 1%. However, no such jump is seen in the 2007-13 period. The

polynomial fits indicate a steep downward slope left of the cutoff in both periods,

suggesting a strong convergence pattern. In the 2007-13 period, the curve that is

relatively flat at the outset but then steeply declines as it approaches the cutoff,

indicating a non-linear relationship. The confidence interval is consistently quite

wide throughout, particularly at the cutoff, where significant negative growth is

observed in many regions. In the 2014-20 period, the confidence intervals suggest

less uncertainty around the threshold.

On the control side, to the right of the threshold, there is a relatively flat trend,

but slightly upward-sloping as it moves further away from the threshold in the

2007-13 period. In the 2014-20 period, the trend is similar, but there is consider-

able uncertainty further from the threshold, likely due to the sensitivity of a few

individual regions with very high GDP per capita. This causes the polynomial fit

to exhibit erratic behaviours, possibly indicating the need for smaller bandwidth or

different kernel choices. In general, the findings so far indicates a jump of approxi-

mately the same magnitude as (Pellegrini et al., 2013) using the same approach in

1995-2006. However, the steeper negative relationship among the treated regions

are much more pronounced here in both periods, which is likely due to the strong

convergence pattern of the Eastern European countries.
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(a) 2007-2013

(b) 2014-2020

Figure 7.1: Non-Parametric Flexible Polynomial Regression Model in Both Programming
Periods. Note: The right graphs display the averages of GDP per capita growth, organized
into equally sized bins of 2%. In the left graphs, non-compliers in the control group are
marked with a ’+’ and are excluded from the right graph.
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7.1.1 Non-Parametric Estimates

When estimating the treatment effect, one can make use of both parametric and non-

parametric approaches, each balancing precision and bias differently. Parametric

estimates utilizes the entire dataset, which increases precision but carries a risk of

bias due to potentially inaccurate model specifications. In contrast, non-parametric

methods focus on data subsets near the cutoff, sacrificing more precision to achieve

a more accurate specification of the functional form and thus reduce bias in the

estimates (Lee and Lemieux, 2010).

In the Table 7.1 below, the non-parametric estimates is presented using a local

linear regression approach. Following Pellegrini et al. (2013), the analysis involves

first selecting an optimal bandwidth for the regression, which is crucial for balanc-

ing the bias and variance, using a one common MSE-optimal bandwidth selector.

Additionally, the sensitivity pf the estimates are evaluated by using different kernels

- Triangular, Epanechnikov and Rectangular, since different kernels distribute the

weights, or the influence each data point has on the estimation at a particular target

point. Similar to Becker et al. (2010, 2013), the standard errors are clustered at the

country level to account for potential correlations within each country. This cluster-

ing is essential to address shared economic policies, cultural factors, or institutional

similarities that might influence the estimates.

As anticipated from the graphical analysis in Figure 7.1a, during the 2007-13

period, the estimates are small and insignificant, indicating a lack of treatment

effect during this period. The estimates is small and range between almost zero for

the conventional estimates and the bias-corrected estimates are approximately 0.2.

In contrast, the 2014-20 period yields larger and (weakly) significant estimates,

possibly indicating a treatment effect. Note that the negative estimates indicate that

the GDP growth drop when shifting to the control group, conversely meaning that

there is a GDP increase when moving from the control group to the treatment group.

Therefore, negative estimates should be interpreted as indicating positive effects of

the treatment. Specifically, the conventional estimates are approximately 1.4 and

bias-corrected is 1.6, meaning that the latter approach suggest a slightly stronger

effect. Robust estimates are not significant for the Triangular and Epanechnikov

kernels.

When comparing the estimates depending on kernel, the estimates are consis-

tently lower for the triangular kernel while highest for the rectangular. This patterns

suggest that the Triangular kernel, giving more weight to data points close to the

cutoff, might be capturing a less pronounced treatment effect. In contrast, the

Rectangular kernel, treating all data points within the bandwidth equally, could be

incorporating broader variations across the dataset, leading to higher estimates.
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Table 7.1: Non-Parametric Estimates Using Different Kernel Types in 2007-2013 and
2014-2020.

(1) (2) (3)
Triangular Epanechnikov Rectangular

2007-2013

Conventional 0.000919 -0.0143 0.00916
(1.280) (1.318) (1.404)

Bias-corrected -0.223 -0.200 -0.226
(1.280) (1.318) (1.404)

Robust -0.223 -0.200 -0.226
(1.457) (1.478) (1.533)

2014-2020

Conventional -1.274 -1.416∗ -1.583∗

(0.823) (0.853) (0.876)
Bias-corrected -1.414∗ -1.611∗ -1.670∗

(0.823) (0.853) (0.876)
Robust -1.414 -1.611 -1.670∗

(0.986) (1.005) (0.988)

Note: Clustered standard errors at the country level in parentheses, p < 0.15, * p < 0.10, **
p < 0.05, *** p < 0.01. Negative estimates indicate that the GDP growth drop when shifting to
the control group, conversely meaning that there is a GDP increase when moving from the control
group to the treatment group. Therefore, negative estimates should be interpreted as indicating
positive effects of the treatment. Conventional estimates use standard regression, bias-corrected
adjust for potential overfitting of the model, and robust estimates account for heteroskedasticity
and more complex error structures.

To further investigate the sensitivity of the (weakly) significant estimates in the

2014-20 period, different bandwidths is tested by decrease and increase the band-

width compared to the optimal threshold obtained above. Also, a two different

MSE-optimal bandwidth selectors (MSETWO) - below and above the cutoff - is

tested to examine if the estimates vary significantly with adjustments in the band-

width placement. The results of the sensitivity analysis are presented in Table 7.2.

The general pattern is that the estimate decrease and becomes insignificant with

a wider bandwidth. This indicate that while it can provide a more comprehensive

view of the treatment effect over a larger sample, it also incorporates more variabil-

ity and potentially irrelevant data that dilute the localized impact of the treatment

observed near the cutoff. Interestingly, the msetwo bandwidth selector suggest a

lower treatment effect but a higher statistical significance.

To evaluate the influence of the excluded regions, the last row present the bias-

corrected estimates for the one-common optimal bandwidth selector using the entire

sample. While the magnitude of these estimates varies—appearing both higher and

lower compared to the results presented in row 5 in Table 7.1 depending on the

kernel used—the statistical significance is consistently higher. Since the excluded

regions are exclusively from the control group, it is probable that these regions have

experienced relatively poorer GDP per capita growth. This underperformance is
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logical considering that most of these regions are located in Southern Europe (see

Table A.3), suggesting that their exclusion might underestimate some of the true

treatment effects of the regional policies.

Table 7.2: Non-Parametric Estimates Over Different Bandwidths and Kernels.

(1) (2) (3)
Bandwidth Triangular Epanechnikov Rectangular

15 -1.083 -1.323∗ -1.551∗∗

(0.791) (0.784) (0.740)
25 -1.471∗∗ -1.491∗∗ -1.306∗∗

(0.633) (0.638) (0.656)
35 -0.902 -0.781 -0.546

(0.603) (0.607) (0.632)
45 -0.758 -0.674 -0.582

(0.602) (0.609) (0.622)

MSETWO -1.290∗∗ -1.399∗∗ -1.543∗∗∗

(0.564) (0.557) (0.555)
MSERD⋆ -1.577∗∗ -1.590∗∗ -1.413∗∗

(0.652) (0.644) (0.682)

Note: Clustered Standard errors at the country level in parentheses, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01. ⋆ Refers to the full sample.

In summary, the combined results corroborate the graphical analysis: there is

no significant policy effect in the 2007-13 period, but indications of an effect in

the 2014-20 period, with an estimate of approximate 1.5 percentage points. The

absence of a discernible treatment effect during 2007-2013 aligns with the findings

of Becker et al. (2018), who observed that the impact on GDP growth for the 2000-

06 and 2007-13 programming periods was notably smaller compared to the entire

1989-2013 span. Their analysis suggests that the effects of transfers diminished

during the crisis period, particularly impacting per-capita income in countries most

affected by the crisis. Although Becker et al. (2018) do not isolate the 2007-13 period

in their estimates, the larger effects they noted in the 2000-06 period (around 1.1%

as per Becker et al. (2010)) indicate that the reduced impact during 2007-13 is likely

influenced by this tumultuous period.

With regards to previous periods, the estimate is slightly higher than some stud-

ies investigating previous periods, where Percoco (2017) of 0.8% found in 2000-06,

Pellegrini et al. (2013) of 0.83% in 1994-2006 but lower than Becker et al. (2010) of

1.6% in the period of 1989-2006.

7.1.2 Parametric Estimates

Following the non-parametric analysis, the study proceeds with a parametric ap-

proach, as recommended by Jacob et al. (2012) and in alignment with Pellegrini et al.

(2013). This approach serves as a further sensitivity check for the non-parametric
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estimates previously obtained and a baseline for the subsequent spatial analysis.

Given the apparent absence of a treatment effect in the 2007-2013 period, the anal-

ysis presented will concentrate on the 2014-2020 period.

In Table 7.3 the parametric regressions is presented for various specifications

according to Equation 5.3 in both level and logarithmic forms, and the model is se-

lected based on the models that optimizes the Akaike Information Criterion (AIC)

and the Bayesian Information Criterion (BIC). 1 Model 3 emerges as the most effi-

cient for both level and log, featuring a linear specification with interactions. This

model’s selection indicates that it offers the best trade-off between bias and variance,

suggesting that the underlying functional form of the relationship is linear but allows

for variations on either side of the threshold. This estimate is both insignificant and

surprisingly small (0.08 in level and 0.24 in log).

Table 7.3: Parametric Estimates 2014-20 in Level and Logarithmic Form Over Different
Specifications.

In Level In Log

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment 1.846∗∗∗ 1.288∗∗ 0.0881 0.297 0.0201 0.468 0.235 0.0917 0.107
(0.487) (0.569) (0.568) (0.613) (0.592) (0.632) (0.558) (0.583) (0.555)

Poly order 0 1 1⋆ 2 2⋆ 1 1⋆ 2 2⋆

Observations 247 247 247 247 247 247 247 247 247
R2 0.271 0.300 0.430 0.359 0.433 0.358 0.430 0.416 0.431
AIC 860.5 852.7 803.6 832.6 806.3 831.3 803.8 809.6 807.2
BIC 867.5 863.2 817.6 846.6 827.3 841.8 817.8 823.7 828.3
rmse 1.376 1.351 1.221 1.295 1.223 1.294 1.222 1.236 1.225

Note: Clustered standard errors at the country level in parentheses, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

After specifying the functional form, following Jacob et al. (2012) the model

incorporates covariates, and in this case also country-fixed effects as Becker et al.

(2010, 2018). Additionally, the outermost observations on the left- and right hand

side are dropped sequentially. By focusing the analysis on a more homogeneous set

of data near the cutoff, which resembles the non-parametric approach using smaller

bandwidths (Imbens and Lemieux, 2008). The inclusion of covariates and fixed

effects helps address potential confounders and heterogeneity among the regions,

thus refining the precision of the causal inferences drawn from the model.

Table 7.4 presents these results for Model 3 that was deemed the optimal speci-

fication in terms of AIC and BIC 2, across various configurations in both level and

log transformations of the running variable. The model is examined in its simplest

1Higher-order polynomials where tested, but due to their lower performance in terms of both
AIC and BIC is not presented here for space efficiency.

2AIC and BIC tests where performed on each restricted sample and Model 3 is the best per-
forming model throughout in both level and log.
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form without fixed effects or covariates, with the inclusion of fixed effects, and with

both fixed effects and additional covariates, exploring how each configuration im-

pacts the significance and magnitude of the treatment effect estimates. The trend

of increasing significance and magnitude of estimates as the dataset is restricted to

observations closer to the threshold indicates a more significant observable policy

impact in these areas, consistent with the non-parametric estimates.

When country-fixed effects are added (Column 2 and 5), there is notable increase

in the significance of the treatment effect estimates. This indicates that there is

unobserved heterogeneity affecting treatment effect. The inclusion generally do not

affect the estimates in any particular way compared to the fixed effects model. The

trend is also consistent across both levels and log transformations of the running

variable. The average value of the fully specified model is approximately 0.567%

(level) and 0.529% (in log) average annual growth, which is quite similar to the

0.4% found by Crucitti et al. (2023) during the 2014-20 period. 3

Table 7.4: Parametric Estimates 2014-20 in Level and Log Forms with Fixed Effects and
Covariates: Restricted Samples

Level Log

(1) (2) (3) (4) (5) (6)
Full Sample 0.0881 0.301 0.361∗ 0.235 0.122 0.184

(0.568) (0.232) (0.194) (0.558) (0.223) (0.185)
0.75 0.172 0.421 0.381 0.284 0.387 0.354

(0.572) (0.261) (0.247) (0.557) (0.266) (0.256)
0.65 0.260 0.490∗∗ 0.468∗∗ 0.338 0.461∗∗ 0.440∗∗

(0.600) (0.198) (0.189) (0.588) (0.199) (0.192)
0.5 0.871 0.655∗∗∗ 0.664∗∗ 0.896 0.661∗∗∗ 0.672∗∗

(0.617) (0.223) (0.241) (0.621) (0.222) (0.240)
0.4 1.058∗∗ 0.689∗∗∗ 0.741∗∗∗ 1.070∗∗ 0.687∗∗∗ 0.740∗∗∗

(0.468) (0.152) (0.174) (0.469) (0.151) (0.176)
0.3 1.098∗ 0.758∗∗∗ 0.784∗∗∗ 1.115∗ 0.756∗∗∗ 0.781∗∗∗

(0.596) (0.180) (0.202) (0.595) (0.181) (0.207)
FE No Yes Yes No Yes Yes
Covariates No No Yes No No Yes

Note: Clustered standard errors at the country level in parentheses, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01. Covariates included are employment share in 2014 and population structure (median
age) in 2014.

.

7.2 Validity of RDD

To ensure the robustness of the results various specification tests is employed in

order to look for i) manipulation of the assignment variable , ii) possible jumps in

3Note that these results are not strictly comparable. Crucitti et al. (2023) found that the EU
GDP was estimated to be 0.4% higher by the end of the policy implementation with respect to a
hypothetical scenario without the policy.
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the value of other covariates, iii) conducting ”placebo” regressions to ensure that no

significant effects emerge at other thresholds (Lee and Lemieux, 2010).

The continuity of the density of GDP per capita (the forcing variable) relative

to the 75% threshold (the discontinuity point) is tested following the procedure of

McCrary (2008). This is depicted graphically in Figure 7.2 for both programming

periods. The figure shows a histogram and the estimated density of the data with

standard error bands across the entire density curve to evaluate the robustness and

reliability of the density estimates at and around the threshold.

A spike in density just below the 75% threshold would suggest manipulation

by regions to qualify for objective status, where regions would try to fall below

the threshold to receive treatment. The results for both periods do not show such

a spike. Instead, there is a positive (insignificant) discontinuity estimate in both

periods, indicated by a log difference in height, of 0.01 with a standard error of 0.32

for the first period and 0.13 with a standard error of 0.26 for the second period.

These positive estimates, if anything, is rather suggestive of a higher density above

the threshold, not below it which is clearly depicted in the graphs.

(a) Density 2007-2013 (b) Density 2014-2020

Figure 7.2: Density Check for Manipulation Around the Threshold.

A further test is to make sure that there is no discontinuities in variables that are

determined prior to the assignment in order to check whether not only the treatment

but also the covariates displayed a discontinuity at the threshold. (Lee and Lemieux,

2010). For this purpose, a number of candidate covariates that could in one way

or another affect economic growth is graphically analyzed: employment share and

the population structure (the median age of population) in Figures B.1. The graphs

show no evidence of discontinuity. Neither does a robust non-parametric approach

is employed to estimate the size of the discontinuity at the cutoff point for each

selected covariate, all of which insignificant.

Lastly a placebo regressions is conducted to verify whether the significant effects

observed at the original threshold are unique to the intervention. Thresholds both
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below and above, 65 and 90 GDP per capita is tested. The latter could be particu-

larly important since this is the threshold for ”Transitioning” regions in the 2014-20

period. However, neither show any significant results, see Table B.1.

7.3 Considering Spatial Dependence

The last line of analysis is investigating spatial spillovers and to what extent does the

EU cohesion policy in one region influence economic growth in neighboring regions.

Accounting for the indirect cross-sectional dependence in the RDD framework is a

novel approach developed recently by Cornwall and Sauley (2021), that developed

a procedure using the Spatial Durbin Framework to allow for a full accounting of

cross-sectional interactions. This method is crucial because, in the presence of cross-

sectional dependence, parameters can become biased and inefficient (Anselin, 1988;

LeSage and Fischer, 2008). Moreover, commonly used remedies such as spatial fixed

effects and clustered standard errors, though previously employed in this study, may

worsen these misspecification issues (Cornwall and Sauley, 2021).

7.3.1 Spatial Diagnostic Tests

First, a Moran’s I test is conducted on the preliminary OLS model. This measures

the spatial autocorrelation by assessing the degree to which a variable at one loca-

tion is similar to values of that variable at nearby locations, guiding whether spatial

econometric models are warranted to begin with (LeSage and Fischer, 2008). The

results suggest strong evidence against the null hypothesis of no spatial dependence

with a value of 0.44 in 2007-13 and 0.41 in 2014-20 period. The Moran’s I scatter-

plots, depicted in Figure 7.3 is a tool to visualize spatial autocorrelation, essentially

showing whether similar values of a variable are located near each other across a

geographic ares.

In the plot each dot represents a region, where the horizontal axis (Attribute)

measures the GDP per capita growth, and the vertical axis (spatial lag) shows the

average value of GDP growth for neighboring regions. A clear positive slope in the

scatterplot, as observed here, indicates positive spatial autocorrelation. This means

that regions with high values are typically surrounded by regions with similarly high

values, and regions with low values are surrounded by areas with similarly low val-

ues. The histogram is the ’Reference Distribution’ which illustrates the expected

distribution of Moran’s I values under the null hypothesis of no spatial autocorre-

lation. With no spatial patterns in the data, the Moran’s I values would cluster

around zero, but in this case the Moran’s I (marked by the red vertical line) val-

ues stands out significantly to the right of this peak, indicating strong statistically
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significant spatial autocorrelation.

(a) 2007-2013

(b) 2014-2020

Figure 7.3: Morans Scatterplots in 2007-13 and 2014-20.

7.3.2 Spatial Regression Models

Next, the results from introducing the spatial regressions is presented in Table 7.5.

The baseline OLS specification that was deemed the most suitable specification

is presented in Table 7.3 compared to the Spatial Durbin Model (SDM), Spatial

Lag Model (SLM) and Spatial Error Model (SEM) across two different matrices:

Distance and Queen. The SLM incorporates both the lagged dependent variable

(GDP per capita growth) and the lagged independent variable (Treatment), allowing

for the assessment of both direct and indirect spatial effects. The SLM includes only

the lagged dependent variable, while the SEM models spatial autocorrelation in the

error terms (Anselin, 1988).
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The SDM model reveal nuanced spatial interactions when comparing the two

matrices: under the Distance matrix, the direct treatment coefficient changes sign

to -0.26 (not significant), and the indirect effect (the spatial lag or treatment) is

positive at 0.995, although not significant. Utilizing the Queen matrix, the direct

treatment effect becomes even more negative, but still not significant. Here, the

spatial lag of the treatment is positive and significant at 0.875. Furthermore, the

spatial lag of the dependent variable (GDP per capita growth of neighboring regions,

denoted Wy) is strongly statistically significant with a estimate between 0.440-0.904.

While the indirect effect of the treatment is higher than the findings of Fidrmuc et al.

(2024) that found an effect of approximately 0.3, the spatial lag of the dependent

variable more similar (0.7).

When comparing the model specifications, the AIC and BIC are consistently

lower for the spatial models compared to the baseline OLS, with the lowest values

observed for models utilizing the Queen matrix. It is important to note that the

spatial weight matrix and the Queen matrix has different economical interpretations:

while the former defines the spatial relationships based on geographical proximity,

the latter connects units sharing a border, and is thus more reflective of immediate

and direct neighborhood effects, such as more local economic policies that might di-

rectly affect adjacent areas. While this still plausible economically, it comes with the

price that islands aren’t included, thus potentially skewing the analysis by omitting

areas that, while geographically isolated, may still be economically significant.

However, the lowest value is for the Spatial Lag Model in both instances (Col-

umn 3 and 6). This suggest that the spatial autoccorelation is best captured by

incorporating the spatial dependencies through the spatial lag of the independent

variable.

Table 7.5: Results of Spatial Models using Distance and Queen Matrices 2014-2020

Distance Queen

(1) (2) (3) (4) (5) (6) (7)

Direct Treatment 0.0850 -0.260 -0.124 0.0577 -0.482 0.0431 -0.105
(0.298) (0.307) (0.279) (0.302) (0.322) (0.271) (0.335)

Indirect Treatment 0.995 0.875∗∗

(0.958) (0.403)
Wy 0.873∗∗∗ 0.904∗∗∗ 0.866∗∗∗ 0.440∗∗∗

(0.120) (0.0903) (0.121) (0.0699)

Model OLS SDM SLM SEM SDM SLM SEM
Observations 241 241 241 241 241 241 241
AIC 783.1 763.1 762.2 774.5 759.5 752.6 753.1
BIC 797.0 787.5 783.1 795.4 783.9 773.5 774.0

Note: Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.

In Table 7.6 the results from the 2007-2013 period is presented. The OLS model

that is used as baseline specification is with a cubic polynomial and it interaction
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which was deemed as the most appropriate specification. 4 There is some quite

confounding results to unpack. When including the indirect treatment, a strong

negative significant coefficient is apparent when using a distance matrix. At the same

time, the direct effect of the treatment becomes stronger and weakly significant. The

interpretation of this suggests that the influence of the influence of the treatment on

neighboring regions is negative - that while treatment might have beneficial effected

within the treated region, it adversely affects nearby regions. Using a Queen matrix

however, no such effect is seen.

The spatial lag of the dependent variable is particularly strong through all the

models, even more so than in the 2014-2020 period. However, the SEM in column

(4) is the specification with both lowest AIC and BIC. Here, the direct treatment

coefficient becomes significant with a coefficient of 0.936. The SEM models spatial

autocorrelation in the residuals, which means that the original OLS might be un-

derestimating the treatment effect due to spatially correlated errors that OLS fails

to address.

Table 7.6: Results of Spatial Models using Distance and Queen Matrices 2007-2013

Distance Queen

(1) (2) (3) (4) (5) (6) (7)

Direct Treatment 0.312 0.809∗ 0.328 0.936∗∗ 0.325 0.266 0.357
(0.597) (0.435) (0.459) (0.428) (0.455) (0.464) (0.476)

Indirect Treatment -5.541∗∗∗ 0.0453
(0.850) (0.430)

Wy 3.790∗∗∗ 3.495∗∗∗ 3.074∗∗∗ 0.720∗∗∗

(0.118) (0.0624) (0.151) (0.0609)

Model OLS SDM SLM SEM SDM SLM SEM
Observations 239 239 239 239 239 239 239
AIC 871.0 731.6 767.0 730.0 762.2 783.7 798.6
BIC 898.9 769.8 801.8 764.8 800.5 818.5 833.3

Note: Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.

After the spatial model, Cornwall and Sauley (2021) propose a strategy of ”rezid-

ualizing” the results from the spatial models and calculate the optimal bandwidth.

In Table 7.7 this is presented for both periods. The results from the best perform-

ing model in (4) and (6) is the ones of interest for the respective periods, but the

others are included for completeness. While the 2007-13 period does not show any

significant results, the column (4) shows that the non-parametric results is similar

to the ones obtained in Table 7.1 (see column (3) for 2014-2020), with similar coef-

ficients but stronger significance with higher precision (lower standard errors). This

could indicate that when purging the data from the spatial autocorrelation in the

4Although the parametric regressions for the 2007-2013 period were not detailed in the previous
section, the model selection was based on achieving the lowest Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC).
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data, when these ”cleaned” residuals are used in further analysis, they provide a

more accurate picture of the underlying relationship. This provides evidence that

the results are robust when allowing the non-parametric methods to focus more di-

rectly on the variability and structure that might not be related to spatial effects.

Furthermore, the large negative indirect treatment effect seen in the 2007-13 period

is not apparent.

Table 7.7: Optimal Bandwidth from Spatial Models, 2007-13 and 2014-20.

2014-2020 2007-2013

Distance Queen Distance Queen

(1) (2) (3) (4) (5) (6) (7) (8)

Conventional -0.981 -1.067 -1.016 -1.460∗∗∗ 0.122 -0.305 0.724 0.268
(0.709) (0.698) (0.665) (0.566) (0.814) (0.957) (1.104) (1.131)

Bias-corrected -1.161 -1.248∗ -1.209∗ -1.663∗∗∗ 0.185 -0.452 0.606 0.150
(0.709) (0.698) (0.665) (0.566) (0.814) (0.957) (1.104) (1.131)

Robust -1.161 -1.248 -1.209 -1.663∗∗ 0.185 -0.452 0.606 0.150
(0.845) (0.831) (0.785) (0.663) (1.026) (1.175) (1.338) (1.372)

Model SDM SLM SDM SLM SDM SEM SDM SEM

Note: Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01. Optimal bandwidth
MSERD.
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Conclusion

This thesis has critically evaluated the impact of the European Cohesion Policy on

regional economic growth across the two latest programming periods from 2007 to

2020. By employing a quasi-experimental Regression Discontinuity Design (RDD)

and integrating spatial econometric techniques, this study has provided insights into

the causal effect of the policy, considering both its direct and indirect effects.

The first question addressed whether the policy has promoted growth in eligible,

less developed regions. Along with most previous research assessing the impact of

the policy, the results from this study indicate a positive but ambiguous impact on

these regions economic growth. The findings indicate a differential impact across

both regions and programming periods. Specifically, the 2014-20 period showed

a positive effect, with an approximate 1-1.5% GDP per capita growth in regions

below the 75% GDP per capita threshold. These results are primarily evident when

estimates are made close to the threshold, as demonstrated by the non-parametric

estimates that reveal significant effects only when the sample includes mainly those

regions near the cutoff. This highlights a localized impact of the Cohesion Policy,

fostering growth specifically in subgroup of regions that barely qualify for treatment.

However, this poses limitations on the external validity for regions far away from

the threshold, where the policy’s effect are more challenging to discern. This may be

because regions farther from the threshold do not rely as heavily on the policy due

to the ’natural’ convergence that occurs independently of the Cohesion Policy. The

localized treatment effect is robust considering country fixed effects, but resulted in

lower estimates between 0.4-0.8 %, indicating that the impact varies significantly

depending on the regional characteristics and baseline economic outcomes.

Conversely, the results for the 2007-2013 period did not show significant pol-

icy impacts, likely indicative of the varying macroeconomic conditions during this

time. This period was affected by significant economic turmoil and crises, following

the 2008 financial crisis and the euro-zone crisis, which particularly impacted the

Southern Europe countries.

The next question is related to the investigation of spillovers: to what extent does

the policy in one region influence economic growth in neighboring regions, and does

this enhance or undermine the policy’s effectiveness? Significant spatial interactions
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was discovered in the data, but primarily related to the economic performance (GDP

per capita growth) in nearby regions. No robust results where indicative of indirect

treatment effects from policy interventions in these regions, meaning there is no

indication that the policy has neither an undermining or enhancing effect on the

policy. Although, when properly accounting for spatial effects related to neighboring

regions economic growth obtained gave further support to the robustness of the

RDD-estimates of about 1.5-1.7%.

Considering the range of average annual per capita growth rates from the most

conservative estimate of 0.4% to the more optimistic 1.7%, there has been a total

increase in per capita GDP ranging from 2.4% to 10.2% over the 2014-2020 period.

With the per capita GDP of the treated regions being 59 percent of the EU-27

average and 112 percent for the non-treated regions (see Table 6.2), it would take

between 38 and 161 years for the treated regions to converge to the economic levels

of the non-treated regions based solely on the policy impact. Even considering the

optimistic estimate, these results suggest that the policy has a modest contribution

to reducing disparities between regions at different levels of development.

Although modest, these positive findings still have implications for future Cohe-

sion Policy frameworks. The positive results for the 2014-20 period could suggest

that EU’s modified, more place-based approach - tailoring the funds to the unique

characteristics of the recipient regions - has been more successful than the more

narrow focus on convergence in 2007-13. However, to fully assesses whether this

approach has successfully navigated the efficiency-equity trade-off inherent in re-

gional policies, where the pursuit of equitable growth may come at cost of overall

efficiency, further research is necessary. Furthermore, although positive results are

found in the 2014-20 period, the lack of overall success during the 2007-13 period,

particularly during crises, raises concerns about the policy’s effectiveness under such

conditions. Lastly, one of the main limitations of the study is that the link through

which the policy affects growth is not explained. The policy has many different

policy instruments, but the study only considers the average impact of the policy.

Furthermore, it is important to acknowledge that the policy pursues multiple

goals beyond just economic growth, including the fostering of political stability

and integration within the EU. This role is critical in mitigating social discontent

and preventing political fragmentation, particularly in light of the rising support

for Eurosceptic parties, a trend exacerbated by regional disparities and notably

influential in the Brexit referendum (Dijkstra et al., 2020). Thus, the Cohesion

Policy could be essential for fostering solidarity among EU member states and may

be crucial for the EU’s continued unity. However, this argument has its limitations.

If substantial EU resources are invested in regions without demonstrating clear,

measurable impacts, skepticism may grow among net-contributing member states
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about the efficacy of such expenditures

Lastly, the effects of this policy are also likely diffuse and long-term, making

them challenging to capture through conventional short-term economic indicators

used in this paper. Nevertheless, the persistent economic struggles of some regions,

particularly in Southern Europe, indicate that the EU must continue to refine its

approach to measuring and understanding the impacts of such policies.
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Appendix A

A.1 Data Sources

The data on the outcome- and control variables used is obtained from both Cam-

bridge Econometrics database ARDECO and Eurostat. The information on Objec-

tive status the relative GDP per capita index it was decided upon, and payments

from the EU is from is from the DG-Regio database (European Commission).

Table A.1: Data Sources

Variable Source NUTS-version

Eligibility (Period 1) DG Regio 2003
Eligibility (Period 2) DG Regio 2006
GDPpc index (PPS) (Period 1) DG Regio 2003
GDPpc index (PPS) (Period 2) DG Regio 2006
EU payments (Period 1 & 2) DG Regio 2010/13
GDP (PPS) (2007-20) ARDECO 2016
Population (2007-20) ARDECO 2016
Employment share (2007) Eurostat 2021
Population Structure (2007) Eurostat 2021
Correspondence Tables Eurostat 2003, 2006, 2010, -

2013, 2016

Note: Eligibility in period 1 and 2 refers to the Objective status that the region has been assigned
based on the GDPpc index the relevant years (EU-27/28 = 100).

A.2 Data Mapping

The NUTS-2 regions that has undergone elementary changes, such as a change of

name and code, can easily mapped by using the correspondence tables sequentially.

Regions that experienced splits are adjusted to be represented with their previous

classification and aggregated accordingly. The regions have been harmonized to the

NUTS-2006 classification which is the version the eligibility for 2014-20 programming

period was denoted in. This is because it minimizes the amount of regions that where

not possible to map. Regions that has experienced more complex changes such as

boundary shifts do not have a precise successor. These regions are mapped based
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on whether they share the same name, and where the regions structure has mostly

survived. However, a few regions where not possible to properly map due to changes

affecting the structure to much. These amounts to 7 regions for the 2007-13 period

(DK00, DE41, DEE1, DEE2, DEE3, FI13 and SI00) and IE01 and IE02 in both.

Table A.2: Regions with Complex Changes in NUTS Versions

Type Predecessor Successor

2003-06

Boundary shift BG11 BG31
BG12 BG32
BG13 BG33
BG23 BG34
BG22 BG42
BG23 BG34
UKM1 UKM5
UKM4 UKM6

2006-10

Splits FI18 FI1B, FI1C
Boundary shift DED1 DED4

DED3 DED5
ITD5 ITH5
ITE3 ITI3
UKD2 UKD6
UKD5 UKD7

2010-13

Split UKI1 UKI3, UKI4
UKI2 UKI5, UKI6, UKI7

Boundary shift FR91 FRA1
SI01 SI03
SI02 SI04

2013-16

Split LT00 LT01, LT02
HU10 HU11, HU12
PL12 PL91, PL92
UKM3 UKM8, UKM9

2016-20

Split HR04 HR05, HR06, HR02

Note: Mayotte (FRA5) a new region in NUTS-2013 not included.

Between 2007 and 2013, the excluded regions, primarily from Southern Europe,

received substantial funding despite not meeting typical objective criteria, as they

were in countries with a Gross National Income (GNI) per capita below 90% of the
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EU average. This included regions like Budapest and Bratislava. Notably, some

Phasing-Out regions also received significant support, were mainly found in Spain

with some in Germany and Austria. Ireland, heavily impacted by the financial crisis

during this period, received a significant amount of funding the European Economic

Recovery Plan due to it’s (European Commission, 2010). In the second period

(2014-2020), the focus shifted slightly with 6 regions changing their category and a

continued high concentration of excluded regions in Southern Europe, totaling 18

out of 24.
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Table A.3: Non-Eligible Regions Receiving More EU-funds than Treated Regions in both
Programming Periods.

NUTS ID Name Catg 07 Catg 14 Group Switch

2007-2013

AT11 Lower Austria PO Transition North-Western No
DE42 Oberfranken PO Transition North-Western No
DED3 Dresden PO More developed North-Western No
ES12 Catalonia PO More developed Southern No
ES62 Andalusia PO Transition Southern No
FR83 Corsica RCE Transition North-Western No
HU10 Budapest PI More developed Eastern No
ITF5 Calabria PO Less developed Southern No
SK01 Bratislava RCE More developed Eastern No

2014-2020

DE80 Lower Saxony Conv Transition North-Western Yes
DEE0 Eastern Thuringia NaN Transition North-Western Yes
DEG0 Göttingen Conv Transition North-Western Yes
ES11 Balearic Islands Conv More developed Southern Yes
ES42 Canary Islands Conv Transition Southern Yes
ES61 Community of Madrid Conv Transition Southern Yes
GR13 Western Macedonia PO Transition Southern No
GR22 Epirus Conv Transition Southern Yes
GR25 Thessaly Conv Transition Southern No
GR30 Athens PO More developed Southern No
GR41 Ionian Islands Conv Transition Southern Yes
GR43 Aegean Islands Conv Transition Southern Yes
ITG2 Sicily PI Transition Southern No
MT00 Malta Conv Transition Southern Yes
PT15 Northern Portugal PO Transition Southern No
SI02 Slovenia NaN More developed Eastern No

Both Periods

ES63 Valencia PO More developed Southern No
ES64 Murcia PO Transition Southern No
ES70 Madrid PI Transition Southern No
GR24 Central Macedonia PI Transition Southern No
GR42 Crete PI More developed Southern No
IE01 Dublin PI More developed North-Western No
IE02 Cork RCE More developed North-Western No
PT30 Lisbon PI More developed Southern No

Note: This table categorizes regions by the period they were included in EU funding frameworks.
’Switch’ indicates if there was a change from treatment in the first period the second. Eastern
Thuringia, Slovenia (one region) are missing from the first programming period and Dublin and
Cork are missing from both due to the mapping procedure.
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Appendix B

B.1 Balancing Covariates

(a) Employment Share (b) Population Structure

Figure B.1: Continuity of Covariates. Note: the figure shows averages in evenly spaced
bins of relative GDP per capita, using a 4th-order polynomial function.

B.2 Placebo Regressions

Table B.1: Placebo Regressions: 65 and 90 GDP per captia threshold.

90 GDP per capita 65 GDP per capita

(1) (2) (3) (1) (2) (3)

Conventional 0.486 0.444 0.235 -0.244 -0.290 -0.0594
(0.553) (0.551) (0.596) (0.839) (0.776) (0.765)

Bias-corrected 0.391 0.331 0.203 -0.0967 -0.217 0.0786
(0.553) (0.551) (0.596) (0.839) (0.776) (0.765)

Robust 0.391 0.331 0.203 -0.0967 -0.217 0.0786
(0.635) (0.632) (0.694) (0.999) (0.885) (0.848)

Note: Clustered Standard errors at the country level in parentheses, p < 0.15, ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01. Optimal bandwidth is used MSERD.
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