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ABSTRACT 

The global call for more sustainable energy development and natural resource management 

hinges on both the technical ability and social capacity to harness the potentials from these 

resources.  

Symbolic Regression in Energy Engineering explores leveraging machine learning to solve 

renewable energy challenges arising from the notorious volatility of resources. Symbolic 

regression, a machine learning technique, uncovers mathematical models from data without 

predefined structures, thus providing interpretable and accurate models. This thesis 

investigates symbolic regression's applications in energy engineering, particularly in 

predicting renewable energy outputs such as wind speed against power output, which are 

highly variable and unpredictable. The study utilizes genetic programming to evolve 

symbolic expressions that model complex relationships within wind energy systems. The 

methodology includes collecting and preprocessing data, training symbolic regression 

algorithms, and evaluating models using various metrics. The results demonstrate symbolic 

regression's effectiveness in creating predictive models that outperform traditional regression 

methods in both accuracy and interpretability. By capturing intrinsic data patterns, symbolic 

regression offers a promising approach to enhancing the reliability and efficiency of 

renewable energy systems. The discussion highlights the advantages of symbolic regression 

over traditional methods, including better model interpretability and reduced human bias, and 

suggests future research directions to further improve this technique's applicability in energy 

engineering. 

This abstract captures the essence of the thesis, highlighting the importance of symbolic 

regression in addressing renewable energy challenges, the methodology employed, and the 

significance of the results obtained.  

  



iii 
 

ACKNOWLEDGEMENT 

I acknowledge God for being God and Guide over me in all; the Swedish Institute for the 

lifetime opportunity to be part of this program through their sponsorship and training; My 

family, for their support and prayers; My Fiancée, Pempherani Namacha for her 

encouragement throughout this journey; My teachers, Jens, Per, Hesam and my supervisor 

Rixin, for showing me clearly that energy is beyond a career; And my friends, Noah, Kiran, 

Emmanuel, Ajibola, Shadrach, Mirembe and Kelly for cheering me in success and lifting me 

in downtimes. 

  



iv 
 

Table of Contents 
ABSTRACT .......................................................................................................................... ii 

ACKNOWLEDGEMENT ...................................................................................................... iii 

Table of Figures ..................................................................................................................... vi 

List of Tables ........................................................................................................................ vii 

1.0 Introduction and Theoretical Background ......................................................................... 1 

1.1 Background of Symbolic Regression .............................................................................. 1 

1.2 Symbolic Regression: Unveiling the Equation Behind the Data ....................................... 1 

1.3 How Symbolic Regression works. .................................................................................. 2 

1.3.1 Symbolic expression ................................................................................................ 3 

1.3.2 Evaluating Performance in Genetic Programming for Symbolic Regression .............. 4 

1.3.3 Initialization of the parameters ................................................................................ 4 

1.4 The difference between symbolic regression and other forms of statistical regression....... 5 

1.5 Importance of Symbolic Regression in Energy Engineering ............................................ 5 

1.6 Application of symbolic regression ................................................................................. 6 

2.0 Research Questions and Objectives ................................................................................... 7 

2.1 Scopes and Limitations................................................................................................ 10 

3.0. Methodology ................................................................................................................. 11 

3.1 Data Collection and Preprocessing ............................................................................... 11 

3.1.1 Existing equations ................................................................................................. 11 

3.1.2 Field Data details and source ................................................................................. 11 

3.2 Symbolic Regression Algorithms ................................................................................. 11 

3.3 Training Parameter Setting ......................................................................................... 15 

3.4. Evaluation Metrics ..................................................................................................... 17 

3.4.1 Quantifying Predictive Performance: Numeric Metrics .......................................... 17 

3.4.2 Delving Deeper: Symbolic Metrics ......................................................................... 17 

3.4.3 Selecting the Optimal Evaluation Strategy ............................................................. 18 

4.0 Results and Analysis ....................................................................................................... 19 

4.1. Predictive Modelling of Sound Power from wind turbine against Distance ................... 19 

4.1.1. Data Description .................................................................................................. 19 

4.1.2. Symbolic Regression Models for simulated data .................................................... 20 

4.1.3. Model analysis with simulated data. ...................................................................... 20 

4.1.4 Comparison with other tradition machine learning models ..................................... 24 

4.2 Symbolic regression on wind field data of multiple variables ........................................ 26 

4.2.1 Data presentation .................................................................................................. 26 



v 
 

4.2.2 Symbolic regression model for field data ................................................................ 28 

4.2.3. Results and Analysis ............................................................................................ 29 

4.2.4 Comparison with other tradition machine learning models ..................................... 37 

5.0 Discussion ...................................................................................................................... 39 

5.1 Interpretation of Symbolic Regression Models ............................................................. 39 

5.1.1 Performance and Accuracy. .................................................................................. 39 

5.1.2 Interpretability of Mathematical Expression .......................................................... 40 

5.1.3 Resource Use (Runtime Requirements) .................................................................. 40 

5.2 Comparison with Traditional Regression Approaches .................................................. 41 

5.3. Challenges and Future Directions ............................................................................... 42 

5.3.1 Current Limitations and Issues ............................................................................. 42 

5.3.2 Potential Improvements in Symbolic Regression Techniques .................................. 43 

5.3.3 Improvement Issues .............................................................................................. 44 

5.4 Symbolic Regression as Emerging Trends in Energy Engineering ................................. 44 

5.5. Conclusion and Future Study. .................................................................................... 44 

References ........................................................................................................................... 46 

 

 

  



vi 
 

Table of Figures 

Figure 1 A graphical representation of gene expression. ................................................... 3 
Figure 2 An illustration of the dimensions of a wind turbine. ............................................ 7 
Figure 3 A comparative chart of Sound Power of wind turbines and other acoustic systems. . 8 
Figure 4 An illustration of measurement patterns for estimating wind turbine sound power 

effects on measuring tools. .......................................................................................... 8 
Figure 5 Cross over illustration. ................................................................................. 12 
Figure 6 Subtree Mutation ........................................................................................ 13 
Figure 7 Hoist Mutation ........................................................................................... 13 
Figure 8 Point Mutation ............................................................................................ 14 
Figure 9: Chart of simulated sound power data - Dc-Lt chart. ......................................... 19 
Figure 10 Training Parameter for the simulated dataset. ................................................. 20 
Figure 11: Gene expression of the first training in case 1. .............................................. 21 
Figure 12 First test comparison for simulated sound power. ........................................... 22 
Figure 13 Gene expression for the second test of simulated data in case 1. ....................... 23 
Figure 14 Second test comparison for simulated sound power. ....................................... 24 
Figure 15 Comparison between symbolic regression and other regressors in case 1............ 25 
Figure 16 A graphical correlation matrix for the wind field data in case 2. ........................ 27 
Figure 17 2-D Chart of wind speed against Wind Power output from case 2. .................... 27 
Figure 18 A 3d visualization of the highest correlated variable in case 2. .......................... 28 
Figure 19: Case 2 first test gene expression. ................................................................ 29 
Figure 20: 3-D First test comparison for wind field data in case 2. .................................. 30 
Figure 21: 2-DFirst test comparison for wind field data in case 2. ................................... 30 
Figure 22: Case 2 second test gene expression. ............................................................ 31 
Figure 23: 2-D Second test comparison for wind field data in case 2. .............................. 32 
Figure 24 Cubic function illustration. ......................................................................... 32 
Figure 25: 2-D first improvement test comparison for wind field data in case 2. ................ 33 
Figure 26 Plot of tan and tanh () function and operator. ................................................. 34 
Figure 27 Plot of arctan () function. ............................................................................ 34 
Figure 28 Plot of hyperbolic arctan-arctanh () function. ................................................. 34 
Figure 29 2-D second improvement test comparison for wind field data in case 2. ............. 35 
Figure 30 2-d plot of the third improvement attempt. .................................................... 36 
Figure 31Error prompt from runtime due to large number of operators (GPlearn 

documentation) ....................................................................................................... 36 
Figure 32 Fourth improvement test on case 2. .............................................................. 37 
Figure 33: Comparative graphical matrix for SR with other regressors in case 2. ............... 38 

 

  



vii 
 

List of Tables 

Table 1 A list of symbolic regression parameters and their functions .................................. 4 
Table 2 output mathematical expression table for the simulated dataset. ........................... 20 
Table 3 Test performance for first testing on simulated data-CASE 1 ............................... 22 
Table 4 Test performance forsecond testing on simulated data ........................................ 24 
Table 5 Test performance for the traditional regression methods ..................................... 25 
 



1 
 

1.0 Introduction and Theoretical Background 

1.1 Background of Symbolic Regression 

People’s perceptions of reality have been shaped by their observation of the world around 

them, which most times does not reflect the realities of a different space. Therefore, research 

seeks for realities that are widely applicable in multiple spaces. Its a common knowledge that 

some renewable energy sources like wind and solar, have been notorious for being volatile 

and highly unpredictable, hence, several assumptions have been made while describing some 

parameters necessary for harnessing the energy therein which warrants research. Research 

follows a well-defined path, often called the scientific method. This method involves three 

key phases: 

• Observation: This is where scientists gather information about the world around 

them. They collect data through experiments, measurements, or even simple 

observations (Sobh et al, 2006). 

• Hypothesis Generation: Based on their observations, researchers propose a possible 

explanation for the data they collected. This explanation, called a hypothesis, should 

be clear and testable. A good hypothesis often allows for predictions about future 

observations of the same system (Chua W et al, 2019). 

• Hypothesis Validation: This phase is crucial! Scientists design experiments or gather 

new data to see if the hypothesis holds true (Miller et al, 2002). Does the proposed 

explanation actually match reality? 

1.2 Symbolic Regression: Unveiling the Equation Behind the Data 

One technique used in hypothesis generation as mentioned above is called Symbolic 

Regression (SR). Here, researchers aim to discover a mathematical formula, often written as 

an equation, that best describes the relationship within a given set of data (Keren et al 2023). 

Imagine a natural phenomenon influenced by specific factors (measurements or features). 

Symbolic Regression attempts to uncover the mathematical equation that connects these 

measurements to the observed outcome. 

Eschewing a priori model specification, symbolic regression circumvents the introduction of 

human bias or limitations in domain knowledge. It endeavours to unveil the inherent 

relationships within the dataset by allowing the data's intrinsic patterns to dictate the 

appropriate models, rather than imposing human-centric, mathematically convenient 

structures. The fitness function guiding the model evolution incorporates not only error 

metrics (ensuring accurate data prediction) but also specialized complexity measures (Weng, 

B. et al. 2020). This ensures the resulting models capture the underlying data structure in a 

human-interpretable manner. This facilitates the reasoning process and bolsters the 

probability of gleaning insights into the system generating the data. Furthermore, it enhances 

generalizability and extrapolation behaviour by mitigating overfitting. Notably, accuracy and 

simplicity can be addressed as distinct regression objectives, resulting in optimal solutions 

forming a Pareto front. Alternatively, they can be combined into a single objective through a 

model selection principle like minimum description length. 

It is a method of regression analysis that searches the space of mathematical expressions to 

find the best model for a given dataset, both in terms of accuracy and simplicity. Unlike 
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traditional regression methods, SR doesn't start with a predefined model. Instead, it explores 

a vast space of mathematical expressions to find the most accurate and interpretable 

representation of the data. It is a non-standard method that does not require a pre-specified 

model structure, but instead infers the model from the data. Symbolic regression has been 

applied to renewable energy, specifically in the context of photovoltaic (PV) power 

forecasting.  

Recent research has also explored the integration of symbolic regression with other 

techniques, such as machine learning and data mining, to improve its performance and 

applicability. For example, a study published in Nature Communications used symbolic 

regression to guide the design of new oxide perovskite catalysts with improved oxygen 

evolution reaction (OER) activities (Weng, B. et al.,2020) 

Liron Simon explained symbolic regression as a powerful tool for understanding complex 

relationships between variables, and it is particularly useful in situations where the 

underlying dynamics are hard to model from physical principles or simplified models are 

needed. It can be applied to various fields, including physics, where it is used to formulate 

accurate symbolic expressions even from data with high noise levels (Liron et al, 2023). The 

method is also useful in physics-informed modelling, where it aids in formulating an accurate 

symbolic expression and offers a novel a-priori feature selection process to test different 

hypotheses efficiently. 

1.3 How Symbolic Regression works. 

It builds a set of random formulars to represent the relationship between variables in data. 

These variables are some independent variables and their resultant dependent variables. 

These formulars are meant to predict the initial set of data as a generalized correlation 

between the dependent and independent variables. It carries out this by following a sequence 

of genetic selection. Symbolic regression utilizes the principles of genetic programming to 

autonomously discover model structures and their associated parameters. This approach 

commences with a meticulously chosen collection of mathematical operators, functions, 

variables, and constants that act as the fundamental building blocks. These elements are then 

subjected to a process of random combination and recombination, echoing biological 

evolution, and repeated over numerous iterations. The objective is to evolve a set of equations 

that effectively represent the inherent dynamics of the system. A fitness function serves as the 

guiding force, selectively retaining the most successful solutions – those that demonstrate the 

most faithful representation of the data as measured by a designated error metric – for 

subsequent "reproduction" and "mutation" steps. Conversely, solutions deemed inadequate 

are discarded. This iterative process continues until a predetermined level of accuracy is 

achieved. Symbolic regression, empowered by genetic programming, has emerged as a 

significant tool within the domain of industrial empirical modelling (P. Valsaraj et al, 2019). 
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1.3.1 Symbolic expression 

Symbolic regression powered by genetic programming leverages LISP programming methos 

of expressing the relationship between variables in a simple correlation. The fundamental 

building blocks are symbolic expressions, or s-expressions for short. These s-expressions 

serve a dual purpose, representing both the program itself and the data it manipulates. An s-

expression can take one of two forms: an atom or a list. Atoms, the basic syntactic units of 

Lisp, encompass both numeric values and symbols. These symbols can be constructed from 

letters, numbers, and even non-alphanumeric characters.  

For instance, looking at the equation below. 

𝑍 =
𝑌2+ 7𝑊−3

𝑋
….(1) 

It can be written in a form that reflect the operations that connects the independent variables 

W, X, Y, and the integers to produce the dependent variable, Z. Using the LISP programming 

s-expression, the integers and dependent variables are referred to as the atoms. The atoms are 

arranged in a way that it connects to their operations.  

The following can be written in the form as below: 

𝑍 = (÷ (− (+ (×  𝑌 𝑌) (×  7 𝑊) 3) 𝑋)….(2) 

For each set of the atoms, some operations are used to explain the interrelationship usually 

placed at the left corner, immediately before the set of atoms. For (×  7 𝑊) This multiplies y 

y itself while for (×  𝑌 𝑌) This multiplies w by 7 and finally both set of atoms are connected 

by a “+” operation.  

Graphically, the following can be represented in a generational tree as follows: 

 

Figure 1 A graphical representation of gene expression. 
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The tree graph known as Syntax tree consists of several nodes and leaves. The nodes are the 

functions and operations that connects the variables and constants while the leaves or 

terminal nodes are the independent variables and integers that make up the correlation.  

1.3.2 Evaluating Performance in Genetic Programming for Symbolic Regression 

Within the domain of genetic programming (GP) applied to symbolic regression, the concept 

of fitness serves as a crucial metric for assessing the effectiveness of an evolved program 

(Fleck P. et al, 2024). Similar to other machine learning paradigms, GP necessitates the 

establishment of a well-defined objective function, which dictates whether maximizing or 

minimizing the value leads to an optimal solution, specific to the problem at hand (Fleck P. et 

al, 2024). 

Regression Problems: 

Mean Squared Error (MSE): This metric quantifies the average squared difference between 

predicted and actual values (M, Padhma. 2023). 

Root Mean Squared Error (RMSE): The RMSE is derived from the MSE by taking its square 

root, offering a more interpretable measure of prediction error in the same units as the target 

variable (M, Padhma. 2023). 

Classification Problems: 

Logarithmic Loss: This function measures the performance of a classification model by 

penalizing the model for assigning low probabilities to correct classifications and high 

probabilities to incorrect classifications (Anushruthika, 2023) 

Binary Cross-Entropy Loss: This metric is another common choice for evaluating binary 

classification models, specifically designed for problems with two possible outcomes 

(Anushruthika, 2023). 

1.3.3 Initialization of the parameters 

The tabulation below outlines pertinent parameters along with their respective descriptions 

important to the initialization phase of Genetic Programming. These parameters are 

fundamental in configuring the symbolic operation: 

Table 1 A list of symbolic regression parameters and their functions 

Parameter Description 

population_size 
Denotes the quantity of programs partaking in the inaugural 

generation and each subsequent generation thereafter. 

function_set 
Signifies the ensemble of mathematical functions available for 

utilization within the operation. 

generations 
Specifies the maximum number of iterations until termination of the 

programs. 

stopping_criteria 
Establishes a predefined criterion, often a numerical threshold 

representing an optimal score, for halting the program. 

p_crossover 

A percentage parameter dictating the selection of a random subtree 

from the victorious program in a tournament, to be replaced in 

ensuing generations through crossover. 
p_subtree_mutation Represents a percentage parameter facilitating the reintroduction of 
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defunct functions and operators into the population, fostering 

diversity. 

p_hoist_mutation 
A percentage parameter responsible for excising genetic material 

from tournament victors. 

p_point_mutation 
A percentage parameter selecting random nodes from the tournament 

champion to be replaced, contributing to variation. 

max_samples 
Augments the subsampling endeavours on data, thus enhancing the 

diversity of perspectives on individual programs. 

parsimony_coefficient 
Governs the penalty applied to the fitness measure during selection, 

thereby regulating program complexity. 

 

1.4 The difference between symbolic regression and other forms of statistical regression 

Traditional regression methods focus on optimizing the parameters within a pre-defined 

model structure. In contrast, symbolic regression employs an inductive approach, inferring 

the model itself from the data. This entails the simultaneous discovery of both the model 

structure and its parameters. 

This data-driven approach comes with a significant challenge: an exponentially larger search 

space. Symbolic regression not only contends with an infinite space of potential expressions, 

but also the possibility of infinitely many models perfectly fitting a finite dataset (assuming 

no constraints on model complexity). Consequently, symbolic regression algorithms may 

require substantially more computational resources compared to traditional regression 

techniques to identify suitable models and parameterizations. This computational burden can 

be mitigated by restricting the algorithm's building blocks based on prior knowledge of the 

underlying system that generated the data. However, the decision to employ symbolic 

regression ultimately hinges on the extent of this domain knowledge. 

Despite these challenges, the very characteristic that presents a vast search space also offers 

advantages. Evolutionary algorithms, commonly used in symbolic regression, rely on 

diversity within the population to effectively explore this space. This often results in the 

identification of a collection of high-performing models (along with their respective 

parameter sets). Analysing this ensemble can provide deeper insights into the underlying 

process, allowing the user to select an approximation that best balances accuracy and 

interpretability based on their specific needs. 

1.5 Importance of Symbolic Regression in Energy Engineering 

Symbolic regression is a powerful tool in energy engineering, as it can help to identify the 

relationships between various factors and energy consumption or production. This technique 

is particularly useful in time series analysis, where it can be used to model and predict energy 

trends over time. It is based on the principles of genetic programming, which allows it to spot 

complex relationships and patterns in data that may not be immediately apparent. This makes 

it a valuable tool for understanding the behaviour of energy systems and predicting future 

trends. 

In energy engineering, symbolic regression has been used to model the behaviour of various 

systems, including renewable energy systems, energy efficiency systems, and power 
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generation systems. For example, it has been used to predict electricity consumption based on 

factors such as temperature, humidity, and time of day (Lei Gan a et al.,2022). 

One of the key advantages of symbolic regression is its ability to provide interpretable 

results. This means that it can help to identify the factors that are driving energy consumption 

or production, which can be useful for improving the efficiency of energy systems and 

reducing their environmental impact. 

Symbolic regression is a valuable tool in energy engineering, as it can help to identify 

complex relationships in energy data and provide interpretable results. Its use in time series 

analysis and integration with other techniques has the potential to further improve its 

performance and applicability in this field. 

1.6 Application of symbolic regression 

The scope of symbolic regression in energy engineering includes its application in various 

aspects of energy engineering, such as renewable energy, energy efficiency, and power 

generation. It has been used to guide the design of new materials with improved activities in 

energy engineering, develop model predictive control systems for HVAC scheduling, and 

model the behaviour of various energy systems. 

• Modelling complex relationships: Symbolic regression can be used to model complex 

relationships between various factors and energy consumption or production. This is 

particularly useful in time series analysis, where it can be used to predict energy trends 

over time. 

• Improving efficiency: By integrating physical laws and mathematical models into data-

driven approaches, symbolic regression can improve the accuracy and efficiency of 

energy systems. This can help to reduce the computational burden and improve the 

overall performance of energy systems. 

• Explaining relationships: Symbolic regression can provide interpretable results, which 

can help to explain the relationships between various factors and energy consumption or 

production. This can be useful for improving the efficiency of energy systems and 

reducing their environmental impact. 

• Integrating with other techniques: Recent research has explored the integration of 

symbolic regression with other techniques, such as machine learning and data mining, to 

improve its performance and applicability. For example, physics-based symbolic 

regression has been used to improve the accuracy of power flow modeling and analysis. 

Generally, symbolic regression is a powerful tool in energy engineering, as it can help to 

identify complex relationships in energy data and provide interpretable results. Its use in time 

series analysis and integration with other techniques has the potential to further improve its 

performance and applicability in this field. 
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2.0 Research Questions and Objectives 

Some renewable energy sources like wind and solar energy are considered volatile because of 

the high seasonality and unpredictable nature (Hoen, B.D, 2022), hence, the needs to leverage 

artificial intelligence in modelling their expected performance and power output. These 

models will be necessary starting from the planning phase of the energy development process 

through the consumption of energy. 

In this research, we looked at two properties of wind energy and addresses some questions 

thereof: 

• Power Output: A very important aspect of planning wind energy development is to 

observe the wind profile in the area in terms of wind speed, wind density, and the 

corresponding wind power. This had been for long estimated with the formular: 

 

𝑃𝑎𝑖𝑟 = 0.5𝜌𝑎𝑖𝑟𝐴𝑈3….(3) 

 

Where Pair is the Power available in the air, 𝜌𝑎𝑖𝑟 is the average air density which is 

usually 1.225kg/m3 between the heights of 0 and 100m above the ground. A is the 

sweep area in m2 and U is the average instantaneous wind speed in m/s. 

A is calculated from the rotor radius/diameter as in the equation A =πR2, where R is 

the distance from the centre of the hub to the tip of the blade. 

The figure below:  

 

Figure 2 An illustration of the dimensions of a wind turbine. 

 

The equation for power in the air made from clearly measurable parameters and the 

air density is also generalized regardless of the temperature, elevation, topography, 

and humidity of the area, hence does not reflect the reality on the terrain.  

• Noise estimation: One of the major concerns of developing a wind energy project is 

the noise that comes from the turbine. To tackle this, several governments and local 

authorities have instituted measures to limit the noise to the barest minimum. In 

Europe, the noise expected to be heard from a wind turbine is 35-45dB when 

measured from a distance of 300m (Chiu, CH., 2021). Compared to other noise 
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sources, as in the figure below, this noise limit is meant to be very bearable and would 

not cause any health challenges. 

 

Figure 3 A comparative chart of Sound Power of wind turbines and other acoustic systems. 

 

 

To achieve this, the designers of the wind turbine will have to optimize the sound 

dampening systems of the turbine based on the location of the turbine and the distance 

between the turbine and residential areas.  

 

Figure 4 An illustration of measurement patterns for estimating wind turbine sound power effects on measuring tools. 
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The model below has been used extensively to estimate the surrounding noise based 

on the distance between the turbine and the measuring tool, the height of the turbine 

and the sound emitted by the turbine (Nick Jenkins et al, 2017):  

𝐿𝑤 = 𝐿𝑝 + 10𝑙𝑜𝑔10(2𝜋𝑅2) + 0.005𝑅…..(4) 

Where: 

Lw is the Sound Power at the wind turbine. 

Lp is the sound power at the point of measurement. 

R is the distance between the hub of the turbine and the point of measurement. This 

can also be measured from the centre of one blade at an angle of deviation between 

the reference point of measurement and the foot of the tower, usually denoted as r. To 

calculate R as follows𝑅 = √𝐻2 + 𝐷2. Where D is the distance between the foot of the 

tower and the point of measurement and H is the distance height of the hub from the 

ground.  

In trying to make this estimate, the two main parameters of concern are the Sound 

Power emitted from the turbine and the distance from the point of measurement. This 

is putting optimization into consideration where the expected measurement will be the 

average range in regulation (35 to 45dB) which is 40dB and the average height of 

wind turbine is 90m. Hence the equation for the base truth becomes: 

𝐿𝑤 = 40 + 10𝑙𝑜𝑔10(2𝜋(902 + 𝐷2)) + 0.005√902 + 𝐷2……(5) 

The key objective of this research is to design and train a machine learning model, Symbolic 

Regression to generate explainable equations for highly dynamic data emanating from energy 

systems. At the end of the research, explainable models were generated for estimating the 

power output of a turbine from the wind speed and the optimal sound level of a wind turbine 

based on the distance between the turbine and the point of measurement. In achieving these 

objectives, the following questions were addressed: 

i. What are the parameters important to train the symbolic regression model to 

predict the relationship between variables in data to be applicable to real wind 

field measurements? 

ii. What are mathematical explainable models and correlations which can be 

derived from a field data that can predict wind power output for that field over 

a range of wind speed and the optimal design sound power of a wind turbine 

over a range of distances? 

iii. How does the prediction outputs from symbolic regression model compare to 

some other popular machine learning models? 

iv. What are the limitations to applying symbolic regression effectively in energy 

engineering and potential improvements that can be made?  
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2.1 Scopes and Limitations 

 The process of creating a generalizable and interpretable mathematical expression 

underlying a set of data stems from the availability of reliable and well cleaned datasets. 

Symbolic regression has a very good ability in evaluating dataset with consistent trends and 

for this, several outliers may be ignored in the process of fitting the model into the dataset.  

The research was carried out using different data sources with different measurement 

inconsistencies hence, the generated equations will be particular to each dataset and their 

respective sources. 
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3.0. Methodology 

3.1 Data Collection and Preprocessing 

The data for this research was sourced from two processes. These processes required to 

develop symbolic regression models and mathematical expressions are data-intensive and 

requires a lot of historic, simulated, or orchestrated data to function effectively. Google cloud 

GPU was used through Colab to carry out the training of the model. 

3.1.1 Existing equations 

For the Turbine Sound Power- Distance measurements, a range of possible distances between 

the turbines and measurement point (usually in the residential area or location of concerns) is 

simulated to calculate the proximate design sound power emitted from a wind turbine. This is 

also used to estimate the sound effect of one turbine to another in a case of cluster. 

𝐿𝑤 = 40 + 10𝑙𝑜𝑔10(2𝜋(902 + 𝐷2)) + 0.005√902 + 𝐷2 

3.1.2 Field Data details and source 

The field data used for this research is a 2023 full year hourly log of wind turbine Texas 

AW3000/77 cleaned and managed at the National Renewable Energy Laboratory (NREL) in 

Texas, United States. It was made public under license derived from the American Wind 

Energy Association. The specification of the turbine is as tabulated below: 

Parameters Value 

Manufacturer Acciona Windpower 

Wind Class IEC/NVN IIA 

Name AW3000/77 

Rotor diameter 111m 

Rated output 3600KW 

Hub Height 80m 

Location Texas U.S 

Cut-in wind speed 3.0m/s 

Cut-off wind speed 25m/s 

Maximum rotor speed 17.15m/s 

 

The data was collected and pre-processed in a manner that it exhibits pristine data 

completeness and is free from any extraneous noise, factors that typically impede forecasting 

endeavours with actual datasets and detract from the overarching research objective. After 

creating and training functional symbolic regression algorithm with simulated data from 

exciting equations, the field data was therefore fed into the system to produce an interpretable 

mathematical formular for future uses in that field for estimating the energy use.   

 

3.2 Symbolic Regression Algorithms 

Symbolic regression, harnessed within the gplearn framework, leverages the power of 

genetic programming (GP) paradigms to unveil mathematical expressions that optimally 
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represent the inherent relationships encapsulated within a dataset. This approach hinges on 

the iterative evolution of symbolic expressions, akin to mathematical formulae, across 

successive generations. The guiding principles for this evolution are derived from natural 

selection and genetic recombination, mirroring the very processes that drive biological 

adaptation. 

I. Initialization: The process commences with the establishment of a population 

comprised of random symbolic expressions. These expressions are typically depicted 

as tree structures, wherein each node embodies an operator (e.g., addition, 

multiplication) or an operand (e.g., variable, constant). In each case as mentioned in 

the section above, two types of  

 

II. Evaluation: Each symbolic expression within the population is meticulously evaluated 

against the provided dataset. This evaluation quantifies the expression's fitness, often 

measured by a pre-defined error metric such as mean squared error (MSE) or mean 

absolute error (MAE). Essentially, this step gauges how well a particular expression 

aligns with the observed data. 

 

III. Selection:  The algorithm strategically selects symbolic expressions for procreation, 

exhibiting a propensity towards those boasting superior fitness scores. This process 

emulates natural selection, where individuals better suited to their environment (those 

with higher fitness) are more likely to pass on their traits. 

 

IV. Genetic Operators: The chosen symbolic expressions undergo a series of genetic 

operations, mirroring the mechanisms observed in biological reproduction. These 

operations include: 

• Crossover: This process entails the exchange of subtrees between parent expressions, 

akin to the exchange of genetic material during sexual reproduction. By fostering the 

exchange of building blocks, crossover facilitates the exploration of novel and 

potentially superior expressions. 

 

 

Figure 5 Cross over illustration. 

 

• Mutation:  This operation introduces deliberate yet controlled alterations to the 

structure or parameters of individual expressions. Mutation acts as a catalyst for 
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diversification, preventing the population from stagnating at a local optimum and 

potentially leading to the discovery of improved solutions. 

In gplearn symbolic regression, there are basically three types of mutation that can be 

available: 

i. Subtree Mutation (Aggressive Restructuring): This mutation strategy, 

controlled by the parameter p_subtree_mutation, is characterized by its substantial 

impact on individual genomes. It injects a high degree of novelty by replacing 

random subtrees within the winner's program with entirely new genetic material. 

This process can potentially reintroduce functionalities or operators that may have 

been lost during prior evolutionary cycles, thereby promoting genetic diversity 

within the population. In essence, a subtree is chosen randomly from the 

champion program and substituted with a novel subtree generated de novo. 

 

Figure 6 Subtree Mutation 

 

ii. Hoist Mutation (Parsimony Enforcement): This mutation technique, governed 

by the p_hoist_mutation parameter, serves the primary function of mitigating 

program bloat. Bloat refers to the uncontrolled growth of program size, potentially 

leading to inefficiencies. Hoist mutation achieves bloat control by strategically 

removing genetic material from the winner's program. It selects a subtree from the 

champion program and subsequently chooses a subsubtree within it. This 

subsubtree is then "hoisted" to replace the original subtree, resulting in a more 

parsimonious offspring for the next generation. 

 

Figure 7 Hoist Mutation 

 

iii. Point Mutation (Fine-Grained Modification): Point mutation is likely the most 

prevalent mutation operator employed in genetic programming. Similar to subtree 



14 
 

mutation, it has the potential to reintroduce lost functionalities or operators into 

the population, thus maintaining genetic diversity. This mutation strategy involves 

selecting random nodes from the winner's program and replacing them. Terminals 

are substituted with other terminals, and functions are replaced with functionally 

equivalent functions possessing the same arity (number of arguments) as the 

original node. The resultant program constitutes the offspring for the subsequent 

generation. 

 

 

Figure 8 Point Mutation 

 

V. Replacement: The newly generated offspring expressions are strategically introduced 

into the population, either entirely or partially, based on pre-defined criteria. These 

criteria might encompass elitism (ensuring the best existing expressions are 

preserved) or generational turnover (gradually replacing older expressions with fitter 

offspring). 

 

VI. Termination Criteria: The evolutionary process persists until a pre-defined termination 

criterion is met. Common termination criteria include reaching a maximum number of 

generations, achieving a satisfactory fitness threshold (indicating a sufficiently 

accurate model), or observing convergence within the population (implying a lack of 

further improvement). 

 

VII. Best Solution Extraction: Upon termination, the algorithm gleans the most optimal 

model from the final population. This "best" expression, identified based on its 

superior fitness score, represents the symbolic regression model that most effectively 

captures the underlying relationships within the dataset. 

By meticulously traversing this iterative evolutionary process, gplearn strives to unearth 

concise symbolic expressions that can accurately encapsulate the intricate relationships 

embedded within a dataset. These expressions not only empower researchers to make 

predictions but also furnish valuable insights into the functional form of the relationships 

between input variables and the target variable. The ability to unveil the underlying 

mathematical structure fosters a deeper understanding of the system under investigation. 
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3.3 Training Parameter Setting 

Each of the fed-in datasets were divided into two portions: Training and Testing dataset. The 

training dataset is 70% of the data while the testing is 30%. This is to achieve optimal 

performance and also for in-context evaluation. Building upon the core principles of 

symbolic regression within gplearn, we can delve deeper by considering a specific parameter 

configuration: 

 

Population Size (population_size=5000 to 10000): 

The population size dictates the number of candidate symbolic expressions evaluated in each 

generation. Here, a population size of 10000, usually used for the first test with defined 

function set, signifies a diverse pool of expressions, fostering a more comprehensive 

exploration of the solution space. While 5000 signifies a less diverse pool of expressions in 

the solution space. While larger populations enhance the likelihood of discovering optimal 

solutions, they also incur increased computational costs. 

Function Set ('add', 'sub', 'mul','log','cos','sin'): 

This is a collection of operators that form the mathematical expression being generated 

through symbolic regression. This parameter governs the building blocks available for 

constructing symbolic expressions. The specific functions included within function_set 

significantly influence the expressiveness of the model and its ability to capture the 

underlying relationships in the data. The optimal choice for function_set depends on the 

anticipated functional form of the target variable. 

Generations (generations=20 to 40): 

The number of generations determines the extent of the evolutionary process. Here, 20 

generations represents a moderate exploration, striking a balance between achieving a 

reasonable solution and computational efficiency, while 40 represents a higher level since 

there is no specific function set being used, hence the need to review more generations. For 

more complex relationships, increasing generations might be necessary. Conversely, for 

simpler problems, fewer generations might suffice. 

Stopping Criteria (stopping criteria=0.01): 

This parameter establishes the fitness threshold that signifies a satisfactory solution. With a 

stopping criterion of 0.01, the algorithm terminates when the mean squared error (MSE) 

between the predicted and actual values falls below 0.01. This indicates a high degree of 

accuracy in the discovered model. 

Genetic Operators: 

• Crossover Probability (p_crossover=0.7): This parameter sets the probability of 

performing crossover, where subtrees are exchanged between parent expressions. A 
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value of 0.7 indicates a high likelihood of crossover, promoting the exploration of 

diverse combinations of building blocks. 

• Subtree Mutation Probability (p_subtree_mutation=0.1): This value governs the 

probability of introducing modifications to the structure of individual expressions 

through subtree mutations. Here, a 0.1 probability suggests a balanced approach, 

allowing for some variation while maintaining the integrity of the expressions. 

• Hoist Mutation Probability (p_hoist_mutation=0.05): This parameter controls the 

likelihood of performing hoist mutations, which involve selecting a random subtree 

and inserting it elsewhere in the expression. A value of 0.05 signifies a low 

probability, promoting stability and preventing excessive disruption of promising 

expressions. 

• Point Mutation Probability (p_point_mutation=0.1): This value dictates the 

probability of introducing minor alterations to individual elements within expressions 

(e.g., changing an operator or operand). A 0.1 probability allows for controlled 

exploration of nearby solutions in the search space. 

Additional Parameters: 

• Max Samples (max_samples=0.9): This parameter influences the proportion of the 

training data used for fitting the model in each generation. Here, using 90% of the 

data (max_samples=0.9) provides a sufficient training set while reserving a portion 

for potential validation. 

• Verbose (verbose=1): Setting verbose to 1 enables the algorithm to provide 

informative messages during the evolutionary process, offering insights into progress 

and performance. 

• Parsimony Coefficient (parsimony_coefficient=0.01): This parameter introduces a 

penalty for overly complex expressions, favoring models with a balance between 

accuracy and simplicity. A value of 0.01 signifies a slight preference for parsimonious 

models. 

• Random State (random_state=0): Setting a fixed random state ensures 

reproducibility, allowing for consistent results when rerunning the symbolic 

regression process. 

By carefully considering these parameters, researchers can tailor the gplearn symbolic 

regression algorithm to their specific data and problem at hand. This parameterization not 

only influences the efficiency of the search process but also impacts the interpretability and 

complexity of the discovered model. 
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3.4. Evaluation Metrics 

The assessment of symbolic regression models necessitates a comprehensive evaluation 

strategy encompassing both their predictive accuracy and structural fidelity. This two-

pronged approach ensures the discovered expressions not only generate accurate predictions 

but also unveil the inherent mathematical relationships within the data. 

3.4.1 Quantifying Predictive Performance: Numeric Metrics 

The cornerstone of numeric metrics lies in gauging the model's ability to replicate the target 

variable's values. These metrics establish the discrepancy between the actual data points and 

the corresponding predictions generated by the symbolic expression. Commonly employed 

numeric metrics include: 

• Mean Squared Error (MSE) and Mean Absolute Error (MAE): This metric 

calculates the average of the differences between the predicted and actual values. It 

can be absolute or squared. A lower MSE and MAE signifies a superior fit, indicating 

the model's proficiency in approximating the target variable. 

• Prediction Score: This metric computes the average of the absolute differences 

between the predicted and actual values. Maximizing prediction translates to a model 

with enhanced predictive accuracy. 

• R-squared: This metric quantifies the proportion of variance in the target variable 

that can be attributed to the model. An R-squared value approaching 1 suggests a 

strong correlation between the predicted and actual values, signifying a model that 

effectively captures the underlying trends. 

3.4.2 Delving Deeper: Symbolic Metrics 

While numeric metrics provide valuable insights into predictive accuracy, symbolic metrics 

delve a layer deeper. They assess the structural resemblance between the discovered symbolic 

expression and the true functional form that generated the data. Symbolic metrics transcend 

mere prediction accuracy, aiming to capture the essence of the mathematical relationship 

between the input variables and the target variable. Evaluating symbolic similarity presents a 

unique challenge, and various methodologies have been established: 

• Tree Edit Distance: This metric calculates the minimum number of edit operations 

(insertions, deletions, substitutions) required to transform one expression tree into 

another. A lower edit distance signifies a closer structural resemblance between the 

discovered expression and the actual underlying function. 

• Normalized Edit Distance: This metric refines the Tree Edit Distance by 

incorporating the size and depth of the expression trees, offering a more standardized 

comparison for expressions of varying complexity. 

• Parsimony: This metric prioritizes simpler expressions with fewer operators and 

operands. Less complex expressions are generally considered more interpretable and 

desirable, facilitating a deeper understanding of the discovered relationships. 
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3.4.3 Selecting the Optimal Evaluation Strategy 

The selection of appropriate evaluation metrics hinges on the specific objectives of the 

symbolic regression task. If the primary goal is achieving accurate predictions, numeric 

metrics like MSE or MAE might be sufficient. However, for tasks where interpretability and 

comprehension of the underlying relationships are paramount, symbolic metrics like 

normalized edit distance or parsimony become indispensable considerations. By employing a 

multifaceted evaluation strategy that incorporates both numeric and symbolic metrics, 

researchers can gain a holistic understanding of the efficacy and interpretability of their 

symbolic regression models. 
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4.0 Results and Analysis 

In this section, the results, and outputs from several cases as well as their respective analysis 

were made.  

4.1. Predictive Modelling of Sound Power from wind turbine against Distance 

In preparing the model for a field scenario, some testings were carried out on simulated data 

to estimate the performance and understand the best performing values for parameters and 

their respective effects on the mathematical expressions generated by them. 

4.1.1. Data Description 

The data for this part of the research was simulated from 1000 samples of the distance 

between the foot of the wind turbine mast to the point of measurement (Dc) ranging from 100 

m to 1000 m. Using equation (5) as described, the value of Turbine Sound Power (Lt) that 

will theoretically amount to average of 40dB when the turbine is placed at distance, Dc was 

derived. Plotted below is the Dc-Lt chart. 

 

Figure 9: Chart of simulated sound power data - Dc-Lt chart. 

Manne Friman (2011) estimated the average sound power of wind turbine of height 90m to be 

101.8 dBA which corresponds to approximately 300 m away from residential area according 

to the data represented in the chart. 
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4.1.2. Symbolic Regression Models for simulated data 

On the training dataset, which is 70% of the entire data, the following values were used to 

prepare the gplearn model for predicting and validation using the test data. 

Figure 10 Training Parameter for the simulated dataset.  

Parameter First Value Second Value 
population_size 5000 5000 
function_set 'add','sub', 'mul','log','cos','sin' N/A 
generations 40 20 
stopping_criteria 0.01 0.01 
p_crossover 0.7 0.7 
p_subtree_mutation 0.1 0.1 
p_hoist_mutation 0.05 0.05 
p_point_mutation 0.1 0.1 
max_samples 0.9 0.9 
verbose 1 1 
parsimony_coefficient 0.01 0.01 
random_state 0 0 

 

4.1.3. Model analysis with simulated data. 

4.1.3.1 First training and testing of simulated data with predefined arithmetic 

operators. 

Using the first parameter, the training was conducted on training data and the following table 

shows the performance and the mathematical expression as the output. 

Table 2 output mathematical expression table for the simulated dataset. 

Training time 607.365 Seconds 

Output Mathematical expression: where X0 is 

the sound, Lt produced by the wind turbine. 
0.0720000000000001X0(X0

−0.54)−1.732252X0

+(0.0720000000000001X0(X0

+0.54)−0.07082341344X0−(0.099−X0

)cos(0.044X0)+0.00348192(X0−0.54)(2X0

+0.526)+0.09672⋅(0.18X0(X0

−0.54)+0.382)cos(0.044X0)−0.09672sin(X0

)+0.33755784206944)cos(0.044X0)−log(X0

)−log(X0+0.526)+log(cos(0.044X0

))−0.551472948 

 

 

In addition to interpretable mathematical expression that comes with training a symbolic 

regression model, a graphical representation of the output mathematical expression, known as 

Gene Expression, is possible and it enables the user to visually understand the generational 

interactions that led to the output. Below is the gene expression for the above mathematical 

model. In the representation below, the output operators as specified in the function_set is 

represented as nodes while the sub operators, variables and integers are the leaves, showing 
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several generations of iterations needed to produce a reliable mathematical expression for the 

set of data. 

 

 

Figure 11: Gene expression of the first training in case 1. 

 

While the output performance score is very high and above the statistical confidence level of 

certainty, it appears cumbersome and too long, hence the need for next trial of training.  
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Table 3 Test performance for first testing on simulated data-CASE 1 

Prediction time of test data 0.0041408538818359375 Seconds 

Performance score 0.9983602524874564 

 

Comparing the ground truth of the test data to the predicted outcomes, a plot was made to 

show the level of alignment and to justify the performance in the table 3 above. A measure of 

residual dispersion was also plotted below the main curve to check the extent of deviation of 

the predicted value from the ground truth. 

 

Figure 12 First test comparison for simulated sound power. 

4.1.3.2 Second training and testing of simulated data with undefined operators. 

Using the parameters in the second value column of the table, there, it is observed that there 

was no provision of predefined mathematical operators which gives the model an open ability 

to leverage any operator within the model for execution of training. After 335.956 seconds of 

training, the following mathematical expression was generated by the symbolic regression 

model on the training data. 
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To represent the above using gene expression as was done in the first case, the output was as 

below: 

 

Figure 13 Gene expression for the second test of simulated data in case 1. 
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At the end of the testing, a clearly different outcomes were observed from the outputs. Below 

are the results that were observed: 

Table 4 Test performance forsecond testing on simulated data 

Prediction time of test data 0.006814002990722656 seconds 

Performance score 0.9857463519752963 

 

Just like the first case, a plot of the ground truth superimposed by model outputs was plotted 

as shown below. 

 

Figure 14 Second test comparison for simulated sound power. 

4.1.4 Comparison with other tradition machine learning models 

After the symbolic regression, a comparative analysis was conducted with two other 

traditional regression methods: Decision tree regressor (with max_depth of 5) and random 

forest regressor (n_estimators=100, max_depth=5). The max_depth value was set at 5 to 

avoid overfitting. These two regression methods were chosen because of their ability to 

operate with graphs and near selective probability style. The particulars of the regressors 

were tabulated below: 

 

 



25 
 

Table 5 Test performance for the traditional regression methods 

Particulars/Regressor Decision Tree Random forest 

Max_depth 5 5 

N_estimators N/A 100 

Training time 0.004815101623535156 

seconds 

0.19230151176452637 

seconds 

Prediction time 0.005401611328125 seconds 0.011875152587890625 

seconds 

Performance score 0.9971088171211464 0.9978694916455902 

 

The performance of the best trial of the symbolic regression (i.e. with specified mathematical 

operators), and that of the two traditional regressors were plotted against the ground truth in 

graphical method. 

 

Figure 15 Comparison between symbolic regression and other regressors in case 1. 
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4.2 Symbolic regression on wind field data of multiple variables 

In this section of the report, the research carried out using data from wind turbine at an 

energy farm in Texas was processed, trained, tested, visualised, and evaluated. 

In this field data, investigations were made in addition to the hourly time stamp for a full year 

which comprises of 8760 records captured. Five scenarios were captured to have a robust 

data for research. These are Wind Power Output (WP) in KW, Instantaneous wind speed 

(WS) in m/s, Wind Direction (D), Air Pressure (P) in atm and Temperature (T) in Celsius. 

Like the other randomised simulated sound power data operation, 70% of the dataset were 

also used for the training while 30% was used for testing.  

4.2.1 Data presentation 

The field data was loaded into the symbolic regression program after installing all the 

dependent packages and it was displayed as the table below: 

 

The data is therefore explored to verify relationships between the variables. First by checking 

the general correlations matrix of the variables as below: 

 

The from the correlation matrix, the top 3 performing variables are the Wind Power (WP), 

Wind Speed (WS) and the atmospheric pressure (P). To verify the correlation matrix, a 

relationship matrix was plotted graphically to visualise the performance of each of the 

variable against one another as below: 
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Figure 16 A graphical correlation matrix for the wind field data in case 2. 

After confirming the performance of the three variables as mentioned, a 2d and 3d 

representation was carried out to make sure to verify the dynamics of this relationships as 

follows: 

 

Figure 17 2-D Chart of wind speed against Wind Power output from case 2. 
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Figure 18 A 3d visualization of the highest correlated variable in case 2. 

4.2.2 Symbolic regression model for field data 

Having understood the implication of changing each parameter in the training model, the 

following was used in the case of field data. 

Parameter First Value Second Value 
population_size 10000 5000 
function_set 'add','sub','mul','cos','sin','neg','log' N/A 
generations 40 20 
stopping_criteria 0.01 0.01 
p_crossover 0.7 0.7 
p_subtree_mutation 0.1 0.1 
p_hoist_mutation 0.05 0.05 
p_point_mutation 0.1 0.1 
max_samples 0.9 0.9 
verbose 1 1 
parsimony_coefficient 0.01 0.01 
random_state 0 0 
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4.2.3. Results and Analysis 

4.2.3.1 First training and testing of field data with predefined arithmetic operators. 

After training the model using field data, the information below was derived. 

Time to fit 2695.1628074645996 seconds 

Mathematical expression −2X0X1−X0−X1+(1.33136862235806(X0X1

+0.95)log(X02)−sin(X0))(X0+X1

+log(cos(log(X1+1.33136862235806(X0

+0.95)log(X0X1⋅(0.263−X0))−((0.047−X0

)(sin(cos(X0−0.788))−0.315104)−sin(X0

−0.644)−cos(2X0)−cos(−log(X0)+sin(X0

−0.644)+cos(2X0))+0.105896)sin(X1

)−cos(X1+log(cos(X1))+cos(−log(X0

)+sin(X0−0.644)+cos(2X0))))))−sin(0.479

))log(X0)+log(log(X1))+sin(0.479X0)−0.687 

 

 

Where X0 is the Wind speed (WS) and X1 is the atmospheric pressure (P). 

This was also plotted as expressions below:  

 

Figure 19: Case 2 first test gene expression. 

To check the performance of the model, the expression was tested with the test dataset. The 

following information was derived: 
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Time to predict 0.006573915481567383 seconds 

Performance score 0.9990568346624557 

The output from the test above was plotted in both 2d and 3d dimensions as shown in the 

figure below: 

 

Figure 20: 3-D First test comparison for wind field data in case 2. 

 

Figure 21: 2-DFirst test comparison for wind field data in case 2. 

With a very high performance from the model, another parameter style was tried. 
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4.2.3.2 Training field data without specified function set. 

Using the parameters in the second value column of the table, there, it is observed that there 

was no provision of predefined mathematical operators which gives the model an open ability 

to leverage any operator within the model for execution of training. After 

268.04965806007385 seconds of training, the following mathematical expression was 

generated by the symbolic regression model on the training data. 

 

Just like the first training, the X0 and X1 variables are Wind Speed and Atmospheric pressures 

respectively as the variables upon which the Wind Power depends. Using gene expression, 

the output of the equation is as shown below: 

 

Figure 22: Case 2 second test gene expression. 

After testing the function on the test data set, the prediction lasted for 0.0037853 seconds 

with performance of 0.9530293695138294. The visualization is as shown below: 
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Figure 23: 2-D Second test comparison for wind field data in case 2. 

4.2.3.3 Model Improvement 

i. Modifying using cubic function 

Having tested scenarios with both defined and undefined function set, another operator X3 

which is the ‘cube operator’ was introduced by means of external definition. Below is an 

illustration of a cubic function graphically, showing the two-placed ascent of the function. 

 

Figure 24 Cubic function illustration. 

Knowing that training with defined function set performed better than undefined function set, 

there was a trial to improve the first by adding further operators to the function set. In the 

trial, division (‘div’), inverse (‘inv’) and cube (pow_3) was added to the function set. The 

population size was also increased to the average of the first two trials (7500) and the 
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generations was placed at 40. After 746.2349247932434 seconds of training, the 

mathematical function below was generated: 

 

(14.668646806097X0−13.4838126828742X1) (X0X1+0.804X0−2X1−3.647) 

 

When tested against the ground truth of the test data, it took 0.002997875213623047 seconds 

to predict at performance score of 0.9698901576623179. The result is visualized below: 

 

Figure 25: 2-D first improvement test comparison for wind field data in case 2. 

ii. Modifying with tangent functions 

In trying to further improve the performance of the model at higher wind speed, we looked at 

operators that has near-same pattern of plot as the ground truth. These operators are “tan ()”, 

tanh (), “arctan ()” and “arctanh ()”. Where, just like cubic function, gplearn does not have 

arctan, customised models were created to include these operators in the code.  

First, looking at Tan () operator curves runs infinitesimally at different radian values, 

however, at convergence, it maintains same graphical representation as the given trend of 

data. Tanh () which is the hyperbolic tan () was also investigated and it has almost perfect 

representation of the trend lines in the graph. 
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Figure 26 Plot of tan and tanh () function and operator. 

 

Figure 27 Plot of arctan () function. 

 

Figure 28 Plot of hyperbolic arctan-arctanh () function. 

When only arctan and tan functions were used as part of the operators in the function set, 

maintaining the 40-generation number and 7500 population size, the particulars are as 

follows: Training time-1001.499017238617 seconds, Testing time-0.005352973937988281 

seconds, prediction accuracy-0.994829961342487. Below is an extract of the expression 

delivered as the result of the analysis. 
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The output was also plotted against the ground truth and the figure below expressed the 

performance. 

 

Figure 29 2-D second improvement test comparison for wind field data in case 2. 

The next analysis decided to avoid hyperbolic arctan function since the function arctanh does 

not have closure against negatives in argument vectors, which will make it have adverse 

search effect. Therefore, all other tangent functions were included in the function_set for 

another search. The expression output are as follows: 
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Maintaining the 40-generation number and 7500 population size, the particulars are as 

follows: Training time- 1722.1066410541534 seconds, Testing time- 0.005915164947509766 

seconds, prediction accuracy-0. 0.9959415926641438. Below is the graphics against ground 

truth. 

 

Figure 30 2-d plot of the third improvement attempt. 

In addition to the above outputs, a runtime prompt was made between the 15th and 16th 

generation of selection as shown in the snapshot below.  

 

 

Figure 31Error prompt from runtime due to large number of operators (GPlearn documentation) 

Gplearn documentation mentioned that it is dues to very high length of the expressions during 

that selection stage within the generations. With understanding that the expression is 

extremely long and complicated, defeating the target of interpretability, the parsimony was 

increased from 0.01 to 0.05 and other all operators still intact. This resulted to improved 

expression output, however, the training time was still long (1710.8609819412231 seconds), 

and part of the performance was also sacrificed to make way for simpler and more 

interpretable expression as shown below (0.9932227118345662). 
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The output was also plotted as below. 

 

Figure 32 Fourth improvement test on case 2. 

4.2.4 Comparison with other tradition machine learning models 

Like the simulated data, the wind energy field data was predicted with other traditional 

regressors. The best performing symbolic regression model was compared to Decision Tree 

and Random Forest regressors and the result was plotted as follow: 
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Figure 33: Comparative graphical matrix for SR with other regressors in case 2. 
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5.0 Discussion 

One of the key benefits of leveraging symbolic regression in solving renewable energy 

challenges is the ability to create a relationship between the parameters that are leading to the 

known volatility associated with such energy sources. Wind energy is famous for being very 

volatile and many factors can affect the power output from a wind turbine even at other 

parameters staying constant. This session describes the deductions made from the results and 

how they helped to achieve the research objectives. 

5.1 Interpretation of Symbolic Regression Models 

From the experiment, symbolic regression models anchored on gplearn leverages multi-level 

generational selection to discover the best relationship between sets of variables in data. In 

describing this result, some aspects of the results would be discussed. Different approaches to 

the training of the model resulted in variation in outputs. In this session, we refer to the 

simulated turbine sound power data as Case 1 and the wind field data for power output as 

Case 2. 

5.1.1 Performance and Accuracy. 

Adopting a model or its outputs is largely dependent on the performance of the model when 

compared to the deviation from the ground truth. From the result of difference instances of 

training, the following can be inferred to have significant impact on the performance of the 

model: 

• Size of the population and number of generation parameters: From the model outputs, 

it will be noticed that variation in the number of population and generation in each set 

resulted in variation in the performance of the model against same base truth. Looking 

at the simulated wind sound power data, using the format of (population_size, 

generation), the training with parameters (5000,40) led to a 99.84% accuracy which 

is higher than the training conducted with less generation (5000, 20) yielding 98.27% 

accuracy. Considering the field data with more noise and data points, parameter 

(10000,40) yielded 99.91% accuracy, (7500,40) yielded 97% accuracy while 

(5000,20) yielded 95.3% accuracy. From the performance at different parameters, it 

can be inferred that the higher the population size and generation count, the better the 

performance of the model. 

• Operator selections: The main driving forces behind a useful mathematical expression 

are the operators that make up the function. In symbolic regression driven by gplearn, 

function_set parameters determine the choice of operators under which the generation 

search can be conducted. From the Case 1, It can be noticed that the first training 

performed better than the second training. This is because, the former had defined 

function set, hence the model operated under limited operators carefully selected in 

line with the data pattern. On the other hand, the latter was trained without function 

set, hence left with option of selecting either from the basic arithmetic functions 

(multiplication, division, addition, and subtraction) without any guide or any 

mathematical operator it considers necessary, which can be too many to work with. 
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Same pattern can also be noticed in the three trainings in Case 2, where the 2 trainings 

with defined function_set parameters had better performances than the training 

without defined function sets. 

• Data Cleanliness: While there was no metric to measure the cleanliness of the data, it 

can be observed that data with less noise visually performed better than that with 

more noise.  

5.1.2 Interpretability of Mathematical Expression  

The end goal of symbolic regression model is to come up with an interpretable mathematical 

expression representing the relationship between elements of data in a dataset. Where 

parsimony coefficient for all cases and trainings were kept constant 

(parsimony_coefficient=0.01), it is clearly noticeable that the simpler the expression derived 

the less the accuracy of the model. Where the first training in Case 1 and Case 2 had high 

number of operators and complications in their output mathematical expressions, they 

showed to be relatively performed better their simpler counterpart. The length of the 

mathematical expression has also been seen to have no effect on the length of the gene 

expression and trees produced by a model. However, they are more related to the number of 

operators, number of generations and population size being involved in the model 

development. 

5.1.3 Resource Use (Runtime Requirements) 

It is a common knowledge that training a very large machine learning model require 

enormous amount of computing power, hence the need to make provision for that. In this 

research, Google Cloud’s GPU was used in place of CPU which proved to be very slow and 

consumes a lot of time. Leveraging local computing also makes it more demanding for 

energy and hardware cost, therefore the need to involve cloud computing. In this particular 

gplearn driven symbolic regression case, the resource use was affected by the following 

parameters: 

• Size of the data: From the results of training the simulated sound power dataset with 

700 records out of 1000, the average training time with google GPU cloud computer 

was 472 seconds, while the wind energy field data with training dataset of 5999 

records out of 8571 records took an average of 1236.5 seconds to train. The longer the 

training time, the more internet time and electrical energy consumed in the model 

training process. In addition to the number of counts, the memory size of the data 

involved also affect the computing time consumed in the process of developing the 

model. 

•  Shape of the data: Where the data being trained consists of only one variable being 

used to solve for another variable, it gives rise to a model with one independent 

variable as in case 1. Case 2 had 2 independent variables (Wind Speed, WS and 

Atmospheric Pressure, P) used to predict the Wind Power Output from the turbine. 

From the training time, it can be clearly seen that the computing time required for 

case 2 is high compared to that of case 1. 
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• Data Noise: The runtime required to train a dataset with more noise as in case2 is less 

than the runtime required to train the data with less noise as case 1. 

5.2 Comparison with Traditional Regression Approaches 

One important aspect of this research is the comparison between symbolic regression and 

other regressors in machine learning ecosystem. Diagrammatically, these comparisons are 

shown in figures 14 and 23 for case 1 and case 2 respectively. Symbolic regression anchored 

on Genetic Programming boasts of some benefits as seen in this research over some of the 

other traditional regression models like the Decision Tree and Random Forest Regressors. 

Performance and Accuracy: From the results of the comparative analysis gotten from case 

1, it can be noticed that while all the regressors used performed beyond the statistical 

confidence level of certainty (95%), the performance of the symbolic regression model 

exceeded that of the other models significantly. Considering case 2, where the best 

performing symbolic regression model was compared with other regressors, it performed 

better than decision tree and while random forest seemed to perform better, the difference 

was not significant. 

Automatic Feature Engineering: Unlike traditional regressors that require manual feature 

selection and engineering, Symbolic Regression can automatically discover complex 

relationships and create new features from existing ones through its symbolic representation. 

This can be particularly beneficial when the underlying relationships between features and 

the target variable are unknown or not easily captured by traditional feature engineering 

techniques. In this case of field wind power output, there are unlimited conditions that were 

not measured or accounted for, but they have significant impact on the power output of the 

turbine. Symbolic regression made it possible to use constants and coefficients in leveraging 

the available data to connect the represent the relationship with target variable. 

Interpretability: The resulting model from Symbolic Regression is an equation that 

explicitly shows the relationship between the features and the target variable. This enables 

researchers and users to understand the logic behind the model's predictions and gain insights 

into the underlying process it represents. In contrast, traditional regressors like black-box 

models can be difficult to interpret, making it challenging to understand how they arrive at 

their predictions. 

Flexibility: Symbolic Regression can handle various data types, including symbolic data and 

continuous data. This flexibility allows it to model a wider range of problems compared to 

traditional regressors that might be limited to specific data types. While the research was 

limited to measured numerical data from turbines and simulations, symbolic regression has 

proven to perform exceptionally with the data type presented in this research. 

Discovery of Non-Linear Relationships: Symbolic Regression can effectively capture non-

linear relationships between features and the target variable. This is advantageous in 

scenarios where the data exhibits complex patterns that traditional linear regression models 

might not be able to capture accurately. As can be seen in the results from both cases in this 
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research, neither of the equations formed were linear, hence, it eliminated the limitation of 

finding the best average fit as is common among other regressors.  

Potential for Evolving Existing Models:  The symbolic representation, gene expression and 

mathematical expressions of SR models allows them to be further evolved or improved by 

incorporating domain knowledge or additional data. This can be useful for refining the model 

over time or adapting it to changing conditions. These outputs can be further modified to 

predict relationships from future data knowing, having known the basis for the former.  

5.3. Challenges and Future Directions 

5.3.1 Current Limitations and Issues 

In the previous section, Symbolic regression, through the results in the previous chapter 

showed tremendous benefits over other regressors and some other machine learning models. 

However, it's important to consider some limitations of Symbolic Regression as well: 

Initial Computational Cost: The process of evolving trees can be computationally 

expensive, especially for large datasets. From the results we got in case 1, while symbolic 

regression being compared used 607.3658051490784 seconds of run time to train a model, 

Decision Tree and Random Forest used 0.004815101623535156 seconds and 

0.19230151176452637 seconds of run time respectively. In the second case (case 2) with 

even larger dataset, the best competent symbolic regression model took 2695.1628074645996 

seconds to train, while Decision tree and even better performed random forest took a fraction 

of seconds. While the cost of predicting future data might be lower for symbolic regression 

since there is an actively verified mathematical expression produced as an outcome, the cost 

of training the model is enormously greater than other regressor counterparts. 

Potential for Overfitting: Due to the flexibility of Symbolic Regression models, there's a 

risk of overfitting the training data if not properly regularized. In the bid to make sure that a 

model performs very well for a dataset, the user tends to over-tune the parameters to create 

room for more intricate searches and to eliminate specific errors observed. This therefore 

streamlines the model from performing at equal or better standing when exposed to a 

different dataset. Other regressors leaves an open position for general search and very little 

option of overfitting. 

Readability of Complex Models: While generally interpretable, very complex models 

generated by symbolic regression through genetic programming can become difficult for 

humans to understand. As can be noticed in the mathematics expression from the second 

training of both case 1 and case 2 without defined operators, there was an infinity sign (∞) as 

part of the interpretable models. This element bound by an operator makes it more complex 

to explain. 

Parsimony Problems: In symbolic regression, there could be sometimes a trade-off between 

simplicity of the model and accuracy of the model. When it could be easier to look at the 

second mathematical expressions from case 1 and 2 and conclude that they are simple and 

easier to explain that the first results from both experiments, selecting them would imply 
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ignoring the continuity guarantee of the high performing models over future data points. As 

can be seen in figure 13, where there was a snap in case 1 data continuity, and from case 2’s 

figures 21 and 22 where the model moved away from the data trend midway, it can be 

inferred that simplest of the models does not always represent the best performing model, 

even when it can be better explainable. 

5.3.2 Potential Improvements in Symbolic Regression Techniques 

Having explained different challenges and limitations encountered in symbolic regression, 

some potential improvements can be done on the conventional symbolic regression 

techniques. 

Firstly, and most importantly, preprocessing and data cleaning ability should be incorporated 

into the algorithm before feeding in data for training and prediction. Improving the ability of 

symbolic regression to deal with noisy data or outliers can make the technique more robust 

and accurate, particularly in industrial and real-world scenarios where clean data is not 

always available. As was noticed in the wind power data with more noise, it is important to 

adjust the model to be able to handle noisy data. 

 Furthermore, efforts should be made towards reducing the run time as much as possible. This 

can be achieved by increasing the operating power of the computer used in training the model 

in line with the veracity, variety, and volume of the data being trained. One can choose 

Graphic Processing Unit (GPU), where Central Processing Unit (CPU) proves sluggish on 

personal computers. One can also choose cloud computing like amazon web services, google 

cloud computing (as used in this research) or Azure Cloud Platform to enhance the parallel 

computing capacity of the processors. Leveraging parallel computing resources to run 

symbolic regression algorithms can significantly speed up the process by evaluating multiple 

models simultaneously.  

Another approach that would improve the performance of symbolic regression is to employ 

hybrid methods in feature selection and engineering. Combining symbolic regression with 

other machine learning techniques, such as neural networks or ensemble methods, might 

improve model performance, especially on complex datasets. Incorporating automatic feature 

selection or dimensionality reduction techniques can help in removing irrelevant or redundant 

variables, making the model simpler and potentially more interpretable. Refining the fitness 

functions used to evaluate the goodness of fit for generated models can lead to more robust 

models. This includes the use of multiple criteria, such as simplicity and predictive power, 

instead of relying solely on error minimization. 

Additionally, introducing user-defined constraints can also improve the symbolic regression 

techniques. This will prevent the user from over-fitting. Allowing users to incorporate 

domain-specific knowledge through constraints or hints about the expected model form can 

guide the search process towards more applicable and interpretable models. Improving the 

efficiency of the underlying algorithms, which can involve advances in tree-based data 

structure manipulations or the use of more efficient programming languages and libraries. 

Developing and using metrics to specifically quantify and optimize the interpretability of the 
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resulting symbolic expressions may help in better aligning with human understanding and 

facilitate model adoption. 

In addition to the above approaches, multi-objective optimization can also improve the 

efficiency and performance of symbolic regression techniques. Matteo et al considered this 

approach very useful in developing an effective symbolic regression mode. Incorporating 

multi-objective optimization techniques that can optimize for conflicting objectives, such as 

model complexity and accuracy, simultaneously (Matteo et al). 

5.3.3 Improvement Issues 

In most cases, the need to add more operators arises and sometimes the need to use heavier 

infrastructure to address the optimal selection problem. However, care should be taken in 

doing so since in most cases, as we could see, simply results to worse cases. Some cases are 

digitally inaccessible and any deviation from the expected trend of the operators will mislead 

the model into selecting its supposed best expression. 

As can be seen in section 4.2.3.3 where several improvement measures were employed, 

which included selecting operators with similar looking trends like tanh (). Apart from putting 

a very strong strain on resource use, the training took very much longer time and with less 

accurate result than the first trial of case 1. 

5.4 Symbolic Regression as Emerging Trends in Energy Engineering 

Symbolic regression is emerging as a powerful technique for data-driven modelling and 

discovery in the renewable energy sector. The key advantages of symbolic regression are: 

Symbolic regression can uncover hidden relationships and elucidating ambiguous 

connections in energy data without relying on predefined model structures or assumptions 

(Gajendran,2023). This allows it to capture complex nonlinear phenomena that may not be 

well-described by traditional engineering models. 

By generating interpretable mathematical expressions, symbolic regression provides insights 

into the underlying physical principles governing energy systems. This can lead to the 

discovery of new scientific laws and the verification of existing ones. 

Symbolic regression has been successfully applied to a variety of energy engineering 

problems, including wind turbine wake prediction, combined cycle power plant performance 

estimation (Andelic et al, 2023), and materials discovery for energy applications Angelis, et 

al., 2023). These studies demonstrate the versatility of the technique across different energy 

domains. 

The combination of symbolic regression with other machine learning methods, such as neural 

networks, can further enhance the modelling capabilities and interpretability (Nanna, 2021). 

This hybrid approach leverages the strengths of both techniques. 

5.5. Conclusion and Future Study. 

In conclusion, the results from this research have shown the wide range of application of 

symbolic regression in addressing renewable energy challenges of volatility, especially 
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regarding wind energy power output as studied. Over other regression techniques, it has 

proven to have tremendous advantages. 

Future study would explore several improvement strategies as suggested in section 5.3.2 to 

come up with more robust and more effective symbolic regression models. It is recommended 

that more field data be trained to come up with more widely applicable mathematical 

expression to address key renewable energy challenges. 
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