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Abstract

Bloodstream infections (BSIs) are among the top causes of death in Europe and
as such, a serious health concern. Blood cultures are the most common method
to diagnose this condition, bringing certain disadvantages. Mainly, it is time-
consuming as it can take several days to get the test results back. Furthermore,
the blood cultures carry a high risk of contamination. For this reason, a successful
deployment of machine learning in the field could reduce arbitrary antibiotic usage
and expedite correct treatment. This was the motivation for our thesis, where
XGBoost, TabNet and a Multilayer Perceptron are used to predict blood culture
outcomes.

The main question is which model performs the best on the provided dataset?
This dataset contains vital measurements and laboratory results in tabular format.
Furthermore, due to the required preprocessing of the raw data and handling of
its missing values, which imputation method is most suitable? To answer these
questions, we conduct a study where the models and multiple imputation methods
are evaluated and compared. We find that XGBoost is the superior model, while
imputing with median values and including missing indicators obtains the best
results. This combination of methods obtained an Area under Receiver operating
characteristic of 0.763 and an Area under Precision-Recall curve of 0.361. With
this model and a threshold of 5%, the amount of blood cultures could be reduced
by 29%, with the drawback that 1% of true positives are missed.
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Chapter 1
Introduction

This report describes the exploration of diagnosing bloodstream infections using
machine learning. In this first chapter, we will introduce the project and the
aim of the thesis. In the following chapters, essential theory is presented, where
the machine learning models and evaluation metrics are described as well as the
preprocessing and its content. In the next section, the method is presented, with
the results and the discussion of the findings following. Lastly, the final chapter
states our conclusion.

1.1 Background

A bloodstream infection (BSI) is a serious health concern that is associated with a
high mortality rate. The yearly cases of BSIs in Europe are estimated to be more
than 1,200,000, resulting in deaths of approximately 157,000 patients (1).

A BSI is defined by a relevant pathogen in a patient’s bloodstream causing disease
(2). BSIs are commonly diagnosed by blood culture growth, which indicates a
positive outcome. Due to the lack of other viable methods, blood cultures are seen
as the best method for diagnosing BSIs (3).

The use of blood cultures is associated with two main disadvantages. Firstly,
taking blood cultures is time-consuming and a positive outcome can take 24-48
hours to determine. Additionally, it can take 5-7 days to rule out a positive
outcome, due to potential delay in bacterial growth. Secondly, blood cultures are
likely to be contaminated, leading to false positive results. Research has indicated
that 40-55% of all blood cultures with growths may be due to contamination.
Due to these disadvantages, it has been reported that only 0.18-2.8% of decisions
related to treatment are influenced by the outcome of blood cultures (4).

The absence of a viable diagnostic method for early detection of BSI impedes the
possibility of optimal treatment. Finding a better diagnostic method could result
in lower antibiotic usage and shorter hospital stays, as the right treatment can be
used earlier.

1



2 Introduction

1.2 Previous work

In the early stages of this thesis, a literature study revealed that no previous
research has been conducted on predicting BSI outcomes from tabular data using
artificial neural networks (ANNs). However, there is research that uses machine
learning methods such as logistic regression and tree-based models like XGBoost.

In previous research, a comparison between an XGBoost and a logistic regression
model was made (4). In that study, multiple datasets were provided by medical
institutions from the Netherlands and the United States. The authors concluded
that it was possible to predict BSI outcomes using clinical information such as age
and sex together with vital and laboratory data. The study came to the conclusion
that XGBoost was the superior model compared to logistic regression, achieving
an Area Under the Receiver Operating Characteristics curve (AUROC) of 0.81 in
a test set and up to AUROC of 0.8 in external validation. It was also concluded
that if a threshold of 5% is set, then 30% of blood culture tests could be avoided,
but in turn, 1% of true-positive outcomes were missed.

The lack of studies investigating ANNs, particularly those incorporating large
datasets and including patients of all ages, has inspired the ideas behind this
thesis.

1.3 Aim

The aim of this thesis is to evaluate if deep learning can be used to reliably diagnose
bloodstream infections as an alternative to XGBoost. Furthermore, it will cover
the process needed to go from raw medical data to a format suitable for machine
learning models and analyze the impact of this preprocessing on the results.

This gives rise to the following questions, which will be addressed in the thesis:

• Which imputation method performs the best?

• How does deep learning perform compared to XGBoost?

• Which features have a high impact on predictions?



Chapter 2
Data

Region Skåne provided the data used in this thesis, containing information about
patients who underwent blood culture testing between 2021 and 2023. The data
had been pseudo-anonymized, meaning personal information such as social security
numbers had been removed and replaced with a patient ID to protect patient
privacy. However, the data is not fully anonymized, meaning that it needs to be
handled with care, as it is possible to figure out a patient’s identity given the data.

(a) Figure showing the age distribution for

patient episodes. Notably, it can be

seen that the majority of the patients are

above 50 years old, with a mean age of

64 years.

(b) The distribution of sexes for patient

episodes. Males are slightly over-

represented, accounting for 53 % of the

episodes.

Figure 2.1: Distribution of age and sex in the data.

The data came divided into three separate datasets, containing vital measure-
ments, laboratory results and outcomes respectively. The datasets, described in
further detail below, consist of results for approximately 73,800 unique patients.

3



4 Data

During 2021-2023, these patients corresponded to about 100,000 patient episodes.
An episode is defined as a period of hospitalization. During each patient’s stay,
about 900 different tests can be performed; however, in most cases, a majority of
the tests are not done.

The study population is broad regarding age, which can be seen in Figure 2.1a,
with patients ranging from newborns to 105-year-olds. However, it is worth noting
that 75% of the patients are older than 53 years old, with the mean age being 64
years old.

As seen in Figure 2.1b, the probability of a patient being male is slightly higher
than that of a female, with males accounting for 53% of the episodes in the data.

Below follows a more detailed explanation of the contents of the datasets used in
this thesis.

2.1 Vital measurements dataset

One dataset contains vital measurements like respiratory rate and pulse rate.
These measurements are typically taken many times during a patient’s stay.

2.2 Laboratory result dataset

An additional dataset contains various laboratory results, such as C-reactive pro-
tein and P-sodium. Typically, multiple tests are taken to account for contaminants
or faulty tests, leading to multiple entries representing the same result. Before this
thesis, an initial preprocessing of this data had been done, where these duplicates
were removed.

2.3 Outcome dataset

The outcome dataset contains the outcomes from blood culture testing. It also
contains general information about each episode, such as the patient’s sex and
age. Additionally, it includes times of importance, such as the start and end of
hospitalization and the time for when a patient was subject to a blood culture,
referred to as the baseline.

In some cases, the baseline is not recorded. Figure 2.2 shows the different ways
the baseline has been set. In most cases, the exact culture time is provided, but in
some cases, the time is gathered from other sources. Below follows an explanation
of the sources which the baseline comes from:

Culture time provided: The exact baseline is available.

From laboratory value: It is unlikely that a blood culture test was not taken
when other blood-related laboratory tests were taken. The baseline is set to
the same time as when other tests were done.
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Figure 2.2: Source of baseline in data. The columns describe the
source from where the baseline of a patient episode was taken.
It can be seen that the majority of episodes already had sup-
plementary baselines, while the second most frequent origin of
baseline was extracted from when other blood-related labora-
tory tests were taken.

From hospitalization start: If there are no laboratory results, the blood cul-
ture test would likely have been taken at the start of hospitalization.

Other: In this case, there is often just a date associated with the episode. The
baseline is set as the available date with time 00:00:00.

As mentioned in the introduction chapter, a blood culture test can give a false
positive result if the blood culture is contaminated. The process of determining
the outcome of a blood culture is quite advanced, meaning that individual decisions
are taken based on which bacteria is found and in how many blood culture sets,
consisting of two bottles, the bacteria is found. To account for this, the dataset
contains two different outcomes:

• Outcome: The finding of a relevant pathogen in at least one blood culture
set, or a potential contaminant in more than one blood culture set, leads to
a positive outcome.

• Outcome without contaminants: Contrary to the outcome above, the
finding of a potential contaminant in a blood culture set leads to a negative
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outcome.

The motivation behind constructing an outcome without contaminants is that
a blood culture can be contaminated despite a potential contaminant not being
present in more than one blood culture set, potentially leading to an overestimation
of the number of relevant positive outcomes.



Chapter 3
Models and evaluation metrics

There are multiple types of machine learning models, based on different concepts
and architectures. In this chapter, we present the relevant theory to cover the
models used in this thesis.

3.1 Extreme Gradient Boosting

XGBoost (5), short for Extreme Gradient Boosting, is a gradient boosting system
based on decision trees. It has been deployed in a range of machine learning
challenges, achieving state of the art results.

With the XGBoost algorithm, new trees are constructed and added iteratively
based on earlier trees, where the training of the model consists of minimizing the
following objective function for all N data points and K decision trees:

Obj =
NX

n=1

L(ŷn, yn) +
KX

k=1

⌦(fk), (3.1)

where L(ŷn, yn) is the loss function with true labels yn and predicted labels ŷn.
The loss function that will be used for the XGBoost model in this thesis is Binary
Cross Entropy, explained in Section 3.2.2 further down. The second term in the
equation is the regularization term, with ⌦(fk) representing the complexity of a
tree fk. The motivation for the inclusion of this term is to prevent over-fitting by
penalizing the complexity of the model. The function for a single tree, fk, includes
its structure and leaf values. The set of functions fk are the parameters that are
learned during the training. Output predictions ŷ from the model are calculated
as the sum of the predictions from all trees K, according to

ŷ =
KX

k=1

fk(x). (3.2)

7



8 Models and evaluation metrics

3.2 Artificial Neural Networks

There are many types of Artificial Neural Networks (ANNs), and which one is
suitable for use depends on the data. The preprocessed data used in this thesis is
non-sequential. For this reason, a simple Multilayer Perceptron (MLP), or feed-
forward neural network as it may also be called, is deemed feasible for the work
at hand.

Additionally, a second more complex type of ANN, called TabNet, will be used.
This model will be described further down.

3.2.1 Activation functions

Activation functions are used in ANN to introduce non-linearity; without it, there
would be no point in having multiple layers, as the output would be a linear
combination of the weights and input, which can be represented using just one
layer.

In this thesis, three different activation functions with certain properties will be
used. Below are descriptions of each of them.

Rectified Linear Unit

Rectified linear unit or ReLU is a widely used activation function that can be
applied to all layers but the input and output layers (6). ReLU is presented as

ReLU(x) = max(0, x). (3.3)

From the formula, it can be seen that the ReLU function preserves all positive
input values while negative values are set to zero.

Sigmoid

The sigmoid function converts the output to a value between zero and one, which
can be interpreted as a probability. This property of the function makes it suitable
for use as the activation function in binary classification tasks. Therefore, it will
be the activation function of choice in the output layer since the output will consist
of a single value representing the probability of a positive outcome for BSI. The
formula for the sigmoid function is defined as

�(x) =
1

1 + e�x
(3.4)

for input x.
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Gated Linear Unit

The Gated Linear Unit, or GLU, is an activation function which uses a gating
mechanism for controlling how much of the input should be let through. The
GLU function is defined as

GLU(x) = (x ⇤ w + b)⌦ �(x ⇤ v + c), (3.5)

where x is the input and w, v, b and c contains trainable parameters which are
adjusted during training.

Sparsemax

The sparsemax activation function is closely related to the softmax activation
function, which is commonly used in the output layer of models for multi-class
classification (7). Both sparsemax and softmax have the property that the output
is a probability distribution, meaning the output is both positive and sums to one.
The difference between them is that the sparsemax output can be sparse, which is
crucial when creating a mask that should filter features. The formula can be seen
below:

sparsemax(x) = argmin
p2�K�1

kp� xk2, (3.6)

where K is the number of features in x and �K�1 refers to the (K�1) dimensional
probability simplex. The output of the sparsemax function is the point on the
probability simplex closest to the input by euclidean distance. It is often the case
that the closest point on the probability simplex will be at the boundary of the
simplex, resulting in the output being sparse.

3.2.2 Loss function

Loss functions measure the difference between the output value and target value.
While there are many different loss functions, Binary Cross Entropy (BCE) (8)
will be used in this thesis. In this case, binary implies that the target value should
be binary, meaning either zero or one. The function is defined as

L = � 1

N

NX

n=1

yn · log(ŷn) + (1� yn) · log(1� ŷn), (3.7)

where yn is the labels found in the outcome and ŷn is the model output values,
for a batch n and number of batches N .
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3.2.3 Learning phase
The learning phase in machine learning refers to the phase where the weights of
the model are updated to minimize the loss function, carried out by optimization.
The basis for many optimization algorithms, and probably the most commonly
used, is Stochastic Gradient Descent (SGD).

With this algorithm, the weights are updated for subsets of the dataset, called
minibatches. The average gradient is calculated for a randomly selected minibatch.
When all the batches have been processed, one epoch has been completed. This
method of more frequently updating the weights, compared to updating for the
whole dataset, speeds up the process and reduces computational time.

The gradient for a minibatch of size N is calculated as

ĝ =
1

N
r

NX

n=1

L(ŷ, y), (3.8)

for a loss function L, predicted labels ŷ and true labels y. Accordingly, the weights
are updated as

w = w � ✏ĝ, (3.9)

for a learning rate ✏, which determines the step size and affects how fast the
function converges.

The algorithm that will be used in this thesis will be Adam (6) (deriving from
adaptive moments), a further development of SGD. Contrary to SGD, this al-
gorithm introduces an adaptive learning rate, meaning that the learning rate is
divided into individual rates for different weights which are adjusted while train-
ing. Furthermore, Adam incorporates the use of momentum. In short, this means
that the weights are not only updated based on the previous gradient, but a se-
quence of previous gradients. This is carried out through the use of a velocity
variable that increases when successive gradients have similar values, thus giving
the learning algorithm "momentum".

3.2.4 Multilayer Perceptron architecture
The overall architecture in the MLP is resembling that of a human brain. It
consists of multiple layers of neurons, or nodes, that are connected by weights.
The first layer is called the input layer and the last layer is called the output layer,
while the layers in between are called hidden layers. There is always at least one
hidden layer in an MLP.

The output y from each node in a layer is the sum of the weighted input x =
(x1, x2, ..., xn) with weights w = (w1, w2, ..., wn) and bias b. Finally, this sum
is put through an activation function f . This gives the following mathematical
formula
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y = f

 
nX

i=1

xiwi + b

!
. (3.10)

In Figure 3.1, a visualisation of an MLP with two hidden layers is shown. Here,
hm are the calculated node values that are used as input for the next layer.

x1

x2

x3

xn

...
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(1)
1

h
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2
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(1)
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m

...
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(2)
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2
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(2)
3
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(2)
m
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y1

yk

...

Input
layer

Hidden
layers
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layer

Figure 3.1: Visualisation of a multilayer perceptron
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3.2.5 TabNet
TabNet (9) is a deep learning architecture developed by Google which is specifically
designed to work with tabular data. The architecture uses sequential attention
which makes it possible to adjust the features used at any given step based on
the input features. This means that there is no need to do feature selection, that
is reducing the number of features by selecting the ones deemed most impactful,
before training the model as the model can learn which features to use.

One of the main ideas with TabNet is to introduce interpretability for tabular deep
learning models. Interpretability is important, especially when the model should
be used in healthcare. A physician would like to know which features contributed
to a specific prediction. TabNet provides two types of interpretability:

Local interpretability: Provides insights into which features contributed most
to a specific prediction.

Global interpretability: Provides insights into which features are most impor-
tant to the model during training.

Figure 3.2: Figure showing the architecture of TabNet.

In Figure 3.2, it can be seen that the TabNet architecture contains multiple re-
peating steps. Understanding one step means that it is possible to understand the
global architecture. It is essential to understand two components; the attentive
transformer and the feature transformer which will be described in detail below.
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Feature Transformer

The feature transformer has two responsibilities:

• Create an output of the dimension nd used for decision step.

• Create an output of dimension na which is used as input to the next attentive
transformer, described below.

The feature transformer consists of multiple GLU blocks as can be seen in Figure
3.3. Each block includes a fully connected (FC) layer with batch normalization
(BN) and a GLU activation function. A specific type of BN called Ghost Batch
Normalization (GBN) is used. Unlike regular BN, where weights are updated
based on entire batches, GBN updates parameters using smaller parts of each
batch, known as virtual batches.

Figure 3.3: Figure showing the architecture of the feature trans-
former as described in the TabNet research paper. The output
of each addition is normalized by a factor

p
0.5 to stabilize the

learning.

The weights in the FC layers in these GLU blocks can be shared between feature
transformers. In the original TabNet paper, each feature transformer contains four
GLU blocks, two of which share weights between steps.

Attentive Transformer

Figure 3.4: Figure showing the architecture of the attentive trans-
former.

The purpose of the attentive transformer is to generate a mask that filters features
for the next step in the model. The architecture of the attentive transformer is
shown in Figure 3.4. Notably, each attentive transformer contains a block with
an FC layer and a BN layer, using GBN. The output of the BN layer is piecewise
multiplied by a prior scale P and transformed into a mask, using the sparsemax
function.

The prior scale P is calculated as follows:
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P0 = 1,

Pi =
iY

j=1

(� �Mj),

where P0 represents how much each feature has been used at step 0, and Pi is
the prior scale from the previous steps. The hyperparameter � is a relaxation
parameter that controls how many times a feature can be utilized. If � = 1, then
a feature can only be used once. Setting � to a higher value allows features to be
used across multiple steps. The variable Mj corresponds to the mask used at a
previous step. For example M2 corresponds to the mask generated by the attentive
transformer at step 1 in the architecture.

3.3 Evaluation metrics

Evaluation metrics will be used to evaluate and compare the performances of
XGBoost, MLP and TabNet. There is a multitude of different metrics and since
they each provide specific information, a relevant selection will be used in this
project.

3.3.1 Precision and recall
A binary dataset can be divided into positives (P) and negatives (N) (10). When a
binary classification model has been used to make predictions on this dataset, the
outcome labels can then be compared to the dataset and its actual values. This
comparison results in four different categories:

• True positives (TP) are labels that are predicted as positive and the real
values are also positive.

• False positives (FP) are labels that are predicted as positive but the real
values are negative.

• True negatives (TN) are labels that are predicted as negative and the real
values are also negative.

• False negatives (FN) are labels that are predicted as negative but the real
values are positive.

Precision and recall are then defined as:

Precision =
TP

TP + FP
(3.11)

Recall =
TP

TP + FN
(3.12)
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In other words, precision can be seen as the fraction of positive predictions that
were correctly predicted, while recall can be seen as the amount of positives that
were covered or included in the prediction.

From a medical standpoint, both high precision and high recall is sought-after.
High precision means that patients are not incorrectly predicted to have a BSI,
which results in fewer unnecessary tests. High recall means that patients that do
have a BSI are not incorrectly predicted to not have one. Having a low recall could
be fatal since it can result in patients going undiagnosed.

3.3.2 AUROC

The Area Under the Receiver Operating Characteristics (AUROC) (11), or simply
the area under the ROC curve, which in turn will be explained below, is an evalu-
ation metric that can be interpreted as the ability to distinguish between positive
and negative classes.

The ROC curve is constructed with the False Positive Rate (FPR) on the x-axis
and True Positive Rate (TPR) on the y-axis, and is based on the continues output
for all possible threshold values. The threshold value determines when a sample
is classified as positive or negative based on the output of the model.

TPR is equal to recall, which was defined in equation 3.12 above. The FPR is
defined as

FPR =
FP

TN + FP
(3.13)

An ideal model, being able to perfectly classify samples, would have a TPR of
one and a FPR of zero for every data point, leading to the curve in blue colour
seen in Figure 3.5. Consequently, for a model that has no classification capacity
whatsoever, the TPR and FPR would be equal for every data point. This scenario
is described by the red-coloured curve in Fig. 3.5.
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Figure 3.5: The ROC curves for an ideal model, in blue colour, and
a model which randomly classifies samples, in red colour, and
their respective AUROC values.

As mentioned earlier, AUROC is the area under the ROC curve, ranging from
zero to one. As illustrated in Figure 3.5, an ideal model would have an AUROC
value of 1.0 while a random model would have a value of 0.5. On the other hand,
a model which misclassifies all samples would have an AUROC value of 0.0.

3.3.3 AUPRC

Similar to AUROC, in that they both represent areas under curves plotted across
all possible threshold values, the Area Under the Precision-Recall Curve (AUPRC)
(10) is an evaluation metric that represents the relationship between precision
and recall, which were defined in Equation 3.11 and Equation 3.12 respectively.
Contrary to the ROC curve, the Precision-Recall Curve (PRC) is plotted with
recall on the x-axis and precision on the y-axis.

It is of interest to observe both precision and recall, and the trade-off between
them, since if isolated, they can potentially provide uninformative results. For
instance, a model classifying every sample as positive would give a perfect recall
of 1.0 while the precision would be low.
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Figure 3.6: The PR curves for an ideal model, in blue colour, and
a model which randomly classifies samples, in red colour, and
their respective AUPRC values.

The AUPRC is the area under the PRC. While the baseline value for a random
model is 0.5 for AUROC, the baseline for AUPRC is equal to the proportion of
positive samples in the dataset. As an example, for a dataset consisting of 12.5 %
positive samples, the AUPRC for a random model would be 0.125. This scenario is
exemplified in Figure 3.6 above, where the curves of an ideal and a random model
are drawn.

3.3.4 SHAP
The SHapley Additive exPlanations (SHAP) (12) is a way of calculating the con-
tributions of specific features to predictions. In this thesis, SHAP values will be
used to display feature importance for XGBoost.
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Chapter 4
Preprocessing

In this chapter we will provide the requisites for understanding the preprocessing
used in this thesis, namely imputation and standardization.

4.1 Imputation

For models such as TabNet and MLP, missing values need to be replaced with an
estimate, which is done through imputation. Out of the models used in this thesis,
XGBoost is the only model that supports handling of missing values. In short, this
is carried out through trial and error, where the model learns the optimal decision
to make when a missing value is encountered (5).

When deciding which imputation method to use, it is important to understand
why values are missing. Missing values are usually divided into three cases (13).
A description of each case can be seen below.

• Missing completely at random: Missing values can not be explained
by any features, unobserved or observed. This would, for example, be the
case if a test result is missing due to some kind of malfunction with the test
equipment.

• Missing at random: Missing values are explained by observed features.
An example of this would be if other tests indicate that the patient does not
have BSI so additional testing is not necessary.

• Missing not at random: Missing values are explained by unobserved
features. This would be the case if a physician chooses not to test based on
unobserved features such as intuition or experience.

It is unclear if the missing values in the datasets can be classified as missing at

random or missing not at random as it is unknown to what degree a physician
bases decisions on, whether it is information present in the data or not.

Previous research has shown that no single imputation method works for all types
of data (13). Many of the imputation methods assume that the data belongs to
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one of the cases above. It has been shown that missing indicators can be used
to improve performance in some cases. Below are explanations of imputation
methods used in this thesis.

4.1.1 Mean and most frequent imputation
One of the most straightforward methods for handling missing data is to impute
with the mean or most frequent value, depending on the feature type. For contin-
uous values, missing values can be replaced with the average of the non-missing
values, while for categorical values, empty values can be replaced with the most
frequent value.

4.1.2 Median and most frequent imputation
Missing values can be imputed with median instead of mean values. This approach
can be suitable when the distribution of the values is skewed, meaning that the
distribution is not symmetric (14).

4.1.3 Multivariate Imputation by Chained Equations
Multivariate Imputation by Chained Equations (MICE) is an advanced imputation
method that utilizes machine learning algorithms to impute missing values using
the values that are not missing in a dataset. MICE assumes that the missing data
is missing at random (15).

The following steps are done in MICE (16):

• Step 1: All missing values are temporarily replaced with a standard value
such as mean.

• Step 2: A feature is chosen to be imputed so all missing values for that
feature is set back to missing.

• Step 3: A predictive model is trained on other features to be able to predict
the missing values in the chosen feature.

• Step 4: The predictions of the trained model is used to replace the missing
values in the chosen feature

• Step 5: Steps 2-4 are then repeated until there are no missing values left
for any features.

The steps in Mice can be repeated multiple times to potentially produce better
imputations.

4.2 Missing indicator

Each imputation method can be extended to include indicator variables indicating
if a value was missing before the data was imputed. This means, that for every
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feature in the dataset, a new feature is added, containing zeros (the value in the
corresponding feature column was not missing before imputation) and ones (the
value in the corresponding feature column was missing before imputation).

4.3 Standardization

Standardization was applied to the dataset to transform each feature to have a
mean of zero and a standard deviation of one. The formula for this is

y(x) =
x� µ

�
, (4.1)

where µ is the mean and � is the standard deviation of a feature x. This function
is applied on every value for each feature in the dataset.

The motivation for standardizing the dataset is to unify the values between fea-
tures, since they are measured in different scales and units. In turn, this reduces
the risk of giving unintended weight to features based on their initial distribution.
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Chapter 5
Method

The methodology in this thesis consisted of two major parts. The first step,
described in Section 5.1, was to preprocess the dataset to make it suitable for use
with the models. The second step was to construct the different models, presented
in Section 5.2. The Pandas library was used to handle the large datasets, while the
XGBoost and PyTorch libraries were used to implement XGBoost and the MLP.
For TabNet, an open source solution implemented in PyTorch, called pytorch-
tabnet (17), was used, chosen for its simplicity and PyTorch compatibility.

5.1 Preprocessing

The data used in this thesis was given in raw form. As a consequence, the data
needs to be processed before it can be used. This chapter will explain the steps
taken to transform the data into a representation that can be used with machine
learning methods.

5.1.1 Combining datasets
This section explains how the multiple datasets used in this thesis were combined.
The raw data for vital signs and laboratory results are sequential, with each row
associated with the time the result was taken. The models used in this thesis
can not make predictions on sequential data. To make the data compatible with
the models, each row should be associated with a patient episode, containing all
relevant results taken during that episode. The following steps were taken to
remove irrelevant data and change the data format.

1. Splitting the data by patients: The data was divided into parts, each
containing data for a specific patient.

2. Splitting patients data by episode: Each patient’s data was further
divided into parts containing data for a specific episode.

3. Removing irrelevant data: Only the data collected during the time frame
when a patient typically waits for a blood culture test is considered useful.

23



24 Method

This time frame was determined to start six hours before baseline and last
until 48 hours after.

After following the steps described above, the data could be combined based on
patient episodes. Additional information, such as sex, age, and the blood culture
outcome corresponding to the episode, was also added.

The next step is to structure the data so that each row corresponds to a specific
episode, and the columns represent the features. The data for each episode is
transformed into a feature vector defined as follows:

x =
⇥
f1 · · · fn

⇤
, (5.1)

where n is the total number of possible features that a patient can have. The
feature value f is either the value of an available result or missing.

The feature vectors are then combined into a feature matrix X, defined as follows:

X =

2

64
x1
...

xm

3

75 , (5.2)

,

where m is the total number of patient episodes.

In the same way, the ground truth vector y was created where the value in each
row corresponds to the outcome of an episode:

y =

2

64
y1
...
ym

3

75 (5.3)

,

This step concludes that the matrix X and vector y have been created and are in
a format suitable for machine learning models. The values are still in raw form,
meaning that values are the same as those in the raw data.

5.1.2 Parsing
Apart from the datasets being combined, additional steps must be taken to trans-
form X and y to only include numerical or missing values. Furthermore, the values
in the dataset have entry errors, such as misspellings or inconsistent use of deci-
mal separators. As the dataset is quite large, a systematic approach is required to
handle values in the data.

After analyzing the data, a few cases were decided on that must be dealt with.
The cases can be summarized as follows:

• Handle cases where commas are used instead of dots.
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• Values contain not only numerical values but also extra text such as units
of measurement.

• Value is misspelled.

• Value contains logical operator.

If cases cannot be handled, the value should be replaced with a missing value.

This step concludes that the matrix X and vector y contain values that are either
numerical or missing.

5.1.3 Outlier removal
The parsing of values may result in unreasonable values that are not valid. For
instance, there may be patients with temperatures exceeding 1000 �C after parsing,
mainly due to faulty input or typographical errors.

An expert was consulted to review the values of the features in the dataset, as
most of them require medical expertise to be interpreted. After examination, the
expert determined that most features contain reasonable values. However, certain
features contain outliers. The expert then provided a range of valid values for
each feature that includes outliers. If a value falls outside of the range, then it is
replaced with a missing value. The provided ranges can be seen in Table 5.1.

Table 5.1: Ranges for valid values in selected features.

Feature Min Max
Temperature 30 42

Oxygen saturation 40 100
Total points NEWS 0 25

Systolic blood pressure 30 300
Diastolic blood pressure 20 200

Pulse 10 300
Respiratory rate 5 80

P-sodium 90 –

5.1.4 Data reduction
The models should be trained on features that are present in many patient episodes.
Figure 5.1 shows a histogram of the ratio of missing values in patient episodes. It
can be noted that most of the episodes contain few non-missing values.

After consulting with an expert, it was decided to remove features not present
in at least 20% of the patient episodes. The percentage is set quite low to keep
features that are rarely used but might be important for prediction. After filtering
the features based on this constraint, only 47 of approximately 900 features were
kept.
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Figure 5.1: Distribution of the ratio of missing values in patient
episodes

5.1.5 Data split
Finally, the dataset was divided into a training and a test set, used for final
validation and evaluation. The training set consisted of data from the years 2021
and 2022 while data from 2023 was selected as test set. The former set contained
65,210 patient episodes compared to 34,070 episodes in the latter, with an almost
identical proportion of positive outcomes.

5.2 Models

Three different machine learning models were implemented and evaluated. These
were XGBoost and two different ANNs, MLP and TabNet, all three described in
Sections 3.1, 3.2.4 and 3.2.5 respectively.

The XGBoost model was optimized and validated for three different imputation
methods, in addition to using no imputation. In turn, each method was tested
both with and without a missing indicator. The MLP and TabNet models were
solely tested with median imputation and with missing indicator. The motivation
for these decisions were that since XGBoost was the fastest and most efficient
model to train by far, it was used to evaluate and compare the impact of the
different imputation methods. Similarly, the same imputation method was used
for both the MLP and TabNet, so that they could be compared with XGBoost
and each other.
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The first section below describes the setup stage, while the second one gives more
detail to the evaluation.

5.2.1 Setup
Cross validation was used in the training phase for each model. The data from 2021
and 2022 was split into training and validation data for five folds. Additionally,
the cross validation was implemented to generate stratified folds, meaning that
the ratio between positive and negative samples were preserved.

The Optuna framework (18) was utilised for all models to find the optimal hy-
perparameters. In short, an upper and a lower bound is provided and then a so
called study is created which iteratively finds the optimal hyperparameter values
between the boundaries.

Binary cross entropy was the loss function of choice for the models. This function,
described in Section 3.2.2, was chosen because of its suitability for binary classifiers.

5.2.2 Evaluation
After the models had been implemented, optimized and trained on all data from
2021 and 2022, they were evaluated on unseen data from 2023, and finally evalu-
ated.

To compare the three models and the imputation methods, AUROC and AUPRC
were used as metrics, defined in Sections 3.3.2 and 3.3.3. Additionally, several
plots were generated to provide visualisation of the respective performances.
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Chapter 6
Results

In this chapter, our results will be presented in subsections for each model. Each
subsection is then divided into two parts, results related to model performance
and results related to interpretability.

6.1 XGBoost

This section will present the results from the evaluation and the figure used for
interpretability, for XGBoost. The figures included are for the imputation method
that provided the best results on the test data.

6.1.1 Performance
Here, the AUROC and AUPRC are presented in both tables and figures, for both
the training and test sets. In Table 6.1 it can be seen that the results are similar
for all imputations methods, with overlapping standard deviations.

Table 6.1: Cross-validation results for XGBoost on the training data.
The table shows the AUROC and AUPRC values for varying
imputation methods, including the standard deviation for the
folds.

Imputation method Missing indicator AUROC AUPRC
Mean No 0.756 ± 0.008 0.360 ± 0.012
Mean Yes 0.759 ± 0.007 0.365 ± 0.010

Median No 0.759 ± 0.007 0.363 ± 0.011
Median Yes 0.759 ± 0.008 0.366 ± 0.010

MICE with Bayesian Ridge No 0.754 ± 0.008 0.354 ± 0.012
MICE with Bayesian Ridge Yes 0.758 ± 0.007 0.361 ± 0.009

No imputation Not applicable 0.758 ± 0.007 0.366 ± 0.011

Figure 6.1a and Figure 6.1b show that XGBoost perform considerably better than
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a random model. Similarly, the calibration plot in Figure 6.1c points to a well
calibrated model.

(a) ROC curve. The red curve represents the

performance of a model which randomly

classifies samples.

(b) PR curve. The red curve represents the

performance of a random model.

(c) Calibration and histogram plot. This plot shows how well-calibrated a model is. The

histogram divides the predictions into bins, where the height of a bin represents the

number of predictions for a certain probability. The axes represents the predicted and

true probability of each bin.

Figure 6.1: ROC, PR, and calibration plots for XGBoost with median
imputation and missing indicator. The plots are for the training
data.
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The results in Table 6.2 are fairly similar for the different imputation methods.
Although, imputing with median and utilising missing indicators obtain marginally
higher scores, while MICE got slightly worse results.

Table 6.2: Results for the XGBoost model on the test data. The
table shows the AUROC and AUPRC values for varying impu-
tation methods.

Imputation method Missing indicator AUROC AUPRC
Mean No 0.762 0.359
Mean Yes 0.762 0.359

Median No 0.762 0.360
Median Yes 0.763 0.361

MICE with Bayesian Ridge No 0.761 0.360
MICE with Bayesian Ridge Yes 0.762 0.358

No imputation Not applicable 0.762 0.360
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Similarly to the plots for the training data, the XGBoost model performed com-
parably well on the test set, as seen in Figure 6.2a and Figure 6.2b. Once again,
the calibration plot in Figure 6.2c shows a well calibrated model, especially for
predictions with lower probabilities.

(a) ROC curve. The red curve represents the

performance of a model which randomly

classifies samples.

(b) PR curve. The red curve represents the

performance of a random model.

(c) Calibration and histogram plot. This plot shows how well-calibrated a model is. The

histogram divides the predictions into bins, where the height of a bin represents the

number of predictions for a certain probability. The axes represents the predicted and

true probability of each bin.

Figure 6.2: ROC, PR, and calibration plots for XGBoost with median
imputation and missing indicator. The plots are for the test
data.
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The confusion matrix in Figure 6.3 shows that while many labels are incorrectly
classified as positive, the amount of true negatives are relatively high while the
percentage of false negatives are low. A threshold of 5% was chosen in accordance
to previous work (4). The significance of this value is further discussed in Section
7.

Figure 6.3: Confusion matrix corresponding to a threshold of 5%.
This plot shows the predicted and true labels for all data points
in the test set.
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6.1.2 Interpretability
The motivation for this section is to provide interpretability. This will be carried
out through SHAP values, showing the importance and influence of the features,
presented in Figure 6.4 below. Notably, P-CRP, P-Kreatinin and age ranks among
the top three features with the highest influence over the predicted values, where
high values for these features are shown to contribute to positive outcomes, with
exception of a few cases of low age.

Figure 6.4: The figure shows the features corresponding the the
20 largest SHAP values. It can be seen that the three most
important features for prediction on the test set is P-CRP ,P-
Kreatinin and age.
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6.2 Multilayer Perceptron

The results from the evaluation of the MLP will be presented in this section. Due
to the inherent lack of interpretability of a MLP, there will be no such section for
this model, contrary to XGBoost and TabNet.

6.2.1 Performance
This section will present the AUROC and AUPRC scores in plots, for the training
and test datasets, with the results for the test set summarized in a table in Section
6.4 further down. The imputation method being used will be median and missing
indicator.

MLP obtained mean AUROC and AUPRC scores of 0.749 and 0.350 on the training
data, as seen in Figure 6.5a and Figure 6.5b. Regarding the calibration curve and
histogram in Figure 6.5c, MLP had no predicted labels with probabilities above
approximately 0.6, which is why the curve stops at this value. Nonetheless, the
model proved itself slightly worse calibrated than XGBoost.
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(a) ROC curve. The red curve represents the

performance of a model which randomly

classifies samples.

(b) PR curve. The red curve represents the

performance of a random model.

(c) Calibration and histogram plot. This plot shows how well-calibrated a model is. The

histogram divides the predictions into bins, where the height of a bin represents the

number of predictions for a certain probability. The axes represents the predicted and

true probability of each bin.

Figure 6.5: ROC, PR, and calibration plots for MLP with median
imputation and missing indicator. The plots are for the training
data.
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Evaluated on the test set, MLP achieved an AUROC of 0.754 and an AUPRC of
0.345, as displayed in Figure 6.6a and Figure 6.6b respectively. Once again, as
presented in Figure 6.6c, the calibration plot has no values for probabilities higher
than 0.6. Below this value, the model is decently calibrated.

(a) ROC curve. The red curve represents the

performance of a model which randomly

classifies samples.

(b) PR curve. The red curve represents the

performance of a random model.

(c) Calibration and histogram plot. This plot shows how well-calibrated a model is. The

histogram divides the predictions into bins, where the height of a bin represents the

number of predictions for a certain probability. The axes represents the predicted and

true probability of each bin.

Figure 6.6: ROC, PR, and calibration plots for MLP with median
imputation and missing indicator. The plots are for the test
data.
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Figure 6.7: Confusion matrix for MLP with a threshold of 5 %. This
plot shows the predicted and true labels for all data points in
the test set.

As a consequence to performing similarly to XGBoost, the confusion matrix in
Figure 6.7 looks similar to the one from XGBoost, with a low amount of false
negatives but many false positives.

6.3 TabNet

In this section, the evaluation metrics for TabNet will be presented in plots. As
with MLP, the scores will be summarized in a table in Section 6.4. Addition-
ally, a figure showing feature importances will be included in the section about
interpretability.

6.3.1 Performance

Here, the AUROC and AUPRC scores will be given for the training and test
datasets. Median imputation and missing indicator will be utilised.

The cross-validation results for TabNet on the training data can be seen in Figure
6.8a and Figure 6.8b. Notably, TabNet performed considerably better than a
random model, obtaining an AUROC of 0.735 and an AUPRC of 0.327. Figure
6.8c shows that the model is well calibrated for lower probability values but less
so for higher values.
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(a) ROC curve. The red curve represents the

performance of a model which randomly

classifies samples.

(b) PR curve. The red curve represents the

performance of a random model.

(c) Calibration and histogram plot. This plot shows how well-calibrated a model is. The

histogram divides the predictions into bins, where the height of a bin represents the

number of predictions for a certain probability. The axes represents the predicted and

true probability of each bin.

Figure 6.8: ROC, PR, and calibration plots for TabNet with median
imputation and missing indicator. The plots are for the training
data.
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TabNet achieved AUROC and AUPRC values of 0.735 and 0.320, given by the
Figure 6.9a and Figure 6.9b. Once again, the model gets worse calibrated for
higher predicted probabilities, according to the curve in Figure 6.9c.

(a) ROC curve. The red curve represents the

performance of a model which randomly

classifies samples.

(b) PR curve. The red curve represents the

performance of a random model.

(c) Calibration and histogram plot. This plot shows how well-calibrated a model is. The

histogram divides the predictions into bins, where the height of a bin represents the

number of predictions for a certain probability. The axes represents the predicted and

true probability of each bin.

Figure 6.9: ROC, PR, and Calibration plots for TabNet with median
imputation and missing indicator. The plots are for the test
data.
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Figure 6.10: Confusion matrix for TabNet with a threshold of 5%.
This plot shows the predicted and true labels for all data points
in the test set.

With a threshold of 5%, the confusion matrix in Figure 6.10 is comparable to those
for XGBoost and MLP. Notably, 9313 labels are correctly classified as negative
outcomes, while 427 are incorrectly classified as the same.
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6.3.2 Interpretability
Figure 6.11 shows the global feature importances based on predictions on the
test set, which was used for comparability with XGBoost and its SHAP values.
According to the figure, age and pregnancy are the two most important features.

Figure 6.11: The figure shows the global feature importances for
predictions on the test set.
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6.4 Summary

In this section the evaluation of the three different models are summarized in a
single table, with results of median imputation and missing indicators on the test
data. The table, seen in Table 6.3, shows that XGBoost performed best on the
test set with an AUROC of 0.763 and AUPRC of 0.361. MLP performed slightly
worse, while TabNet achieved the lowest scores of the three.

Table 6.3: Summary of results for XGBoost, MLP and TabNet,
using median imputation and missing indicator, with the highest
scores in bold text.

Model AUROC AUPRC
XGBoost 0.763 0.361

MLP 0.754 0.345
TabNet 0.735 0.320
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Chapter 7
Discussion

In this chapter, we will discuss the results for the different models and imputation
methods. It will be divided into two sections. In the first one, the results of the
different imputation methods will be discussed, while the three different models
(XGBoost, MLP and TabNet), described in Section 3, will be discussed in the
proceeding section.

7.1 Imputation methods

As seen in Table 6.1, the AUROC and AUPRC scores are similar for all imputation
methods, especially when taking standard deviations into account. This indicates
that there are no significant differences between the results obtained using differ-
ent imputation methods. Due to this, a superior imputation method can not be
determined.

However, in Table 6.2, it can be noted that there is a slight drop, or at least no
improvement, in performance when imputing using MICE. Since MICE assumes
data is missing at random, and tries to impute based on data not missing, a poorer
performance in comparison to the other imputation methods may indicate that the
data in the dataset is not missing at random, explained in Section 4.1.

Additionally, as seen in Table 6.1 and Table 6.2, missing indicators seem to
marginally improve the results during validation, but have no significant impact
on the test set.

7.2 Models

This section will compare the results of the XGBoost, MLP, and TabNet models
based on the AUROC and AUPRC scores. For XGBoost and TabNet, which have
increased support for interpretability, the feature importances will be discussed.
Furthermore, since XGBoost obtained the best results, it will be used as the point
of reference when discussing applicability in practice.
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When training the models, we observed that XGBoost was noticeably faster to
train. While it took around 15 seconds to train it on all five cross-validation folds,
it took MLP and TabNet approximately 45 and 140 minutes respectively. We
believe the difference in efficiency is due to the complexity of the models and their
various training algorithms. The MLP used in this thesis consisted of 118,401
trainable parameters while TabNet had 509,732 trainable parameters. XGBoost
and its structure of tree ensembles has no direct counterpart to this measurement.
Nonetheless, its complexity is dependant on the number of trees constructed during
training and their maximum depths and number of leaves.

7.2.1 AUROC and AUPRC

As mentioned in the summary of the results in Section 6.4 and as shown in the
corresponding Table 6.3, XGBoost obtained the best results. This outcome was
to be expected, due to earlier proven results of XGBoost in varying applications,
and its suitability for tabular data (19)(20).

An additional contributing factor to the superiority of XGBoost could be that
its computational efficiency meant that many more iterations of hyperparameter
optimization could be run, potentially leading to a more well calibrated model, as
noted in the calibration plots in Figure 6.2c, 6.6c and 6.9c. On another note, the
calibration curve and histogram for MLP showed that there were no predictions
with values above approximately 0.6, while the same was true for TabNet for a
respective value of about 0.8.

Comparing MLP and TabNet, there is a trade-off between performance and inter-
pretability. While MLP obtained superior scores, TabNet provides the knowledge
of why a certain prediction was made.

7.2.2 Applicability in practice

As mentioned earlier in this thesis, the main motivation for using a machine learn-
ing model to predict BSI outcomes is to decrease the amount of redundant blood
cultures. In the confusion matrix for XGBoost in Figure 6.3, we want to increase
the amount of episodes in the upper left section, that is patients where the out-
come is correctly predicted as negative, while minimizing the values in the lower
left section, consisting of patients incorrectly classified as having no BSI.

The aforementioned confusion matrix was constructed with a threshold value of
5%. Here, 9620 patient episodes were correctly predicted to have no BSI, resulting
in a 29% decrease in blood culture testing. Meanwhile, with this threshold 361
episodes, equivalent to 1%, would incorrectly be classified to have no BSI, poten-
tially having fatal consequences for the affected patients. Therefore, the threshold
value of choice would mainly be up to the physicians, where an increased thresh-
old, up to a certain limit, would lead to a more predicatively correct model at the
expense of increased false negatives.
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7.2.3 Interpretability
The SHAP values in Figure 6.4 presents the features with the highest influences
on the output from XGBoost. According to the plot, P-CRP was established to
have the highest impact on the output, where a low content of the protein was
associated with a lower risk of having a BSI, while a high content increased the
risk. Other high influence indicators of being diagnosed with a BSI was high age
and high body temperature, while low contents of B-Trom and hemoglobin were
indicative of BSIs.

Figure 6.11 shows the global feature importances for predictions using the Tab-
Net model. It can be seen that XGBoost and TabNet seem to value features
differently, with the exception of age, which both deemed important for predicting
BSI outcomes. One notable difference between XGBoost and TabNet is that Tab-
Net seems to value missing indicators more than XGBoost. Some of the feature
importances can be questioned, such as the missing indicators for sex and age.
These variables are always zero as the sex and age of a patient are always known
in our dataset. A more well calibrated model might have weighted the feature
importances differently, and perhaps more logically.
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Chapter 8
Conclusion

In this thesis, a comparison between different imputation methods and between
XGBoost, MLP and TabNet has been carried out. The imputation comparisons
were conducted on the XGBoost, since it was the fastest model to train by far,
and since it appeared to perform the best early in the process. The models were
mainly evaluated through the evaluations metrics AUROC and AUPRC.

A considerable part of the work consisted of preprocessing the data, where missing
data was imputed with multiple methods. In conclusion, the results indicated that
the choice of method had no significant impact on the outcome. Notably, MICE
was the only method that showed a somewhat differential, slightly worse, result.
This has shown that the choice of imputation method is not arbitrary. The most
advanced method is not the solution for every application.

It was found that XGBoost was the superior model when it comes to performance,
scoring an AUROC of 0.763 and an AUPRC of 0.361 on the test set. This is no
surprise as gradient boosting trees have been the gold standard for tabular data for
a long time, proving to give good results on a variety of datasets. It was found that
using XGBoost to predict BSI outcomes could reduce the number of blood culture
tests by approximately 29%, with the drawback of predicting a false negative in
1% of the cases.

Application of this model in practice would have to be treated with care due to
the potential fatal consequences of incorrect predictions, where the aforementioned
percentage of false negatives might be regarded as unacceptable.

Using the interpretability properties of XGBoost, it was found that three most
important laboratory results for predicting was P-CRP,P-Kreatinin and P-Laktat.
The most important vital measurements were temperature, systolic and diastolic
blood pressure. In addition, the age of a patient were among the most impactful
features. The reason the model considered age an important feature may be related
to the distribution of the variable, where some age groups were more represented
than others, namely infants and elderly.

Further investigation into the preprocessing of the data could be of interest to
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potentially obtain improved results. One idea could be to further constrain which
features and patient episodes that are included in the study. Finally, it could
be interesting to keep the sequential property of the raw data with the intent of
broadening the selection of applicable models to explore.
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