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Abstract

Machine learning has been growing in popularity for many years now and is
currently popular among both businesses and private individuals. Running ma-
chine learning models takes a lot of computational resources, which means a large
amount of energy is consumed.

The aim of this thesis is to investigate the usage of machine learning model
specific hardware on Field Programmable Gate Arrays (FPGAs) as a potential
solution to low-latency machine learning inference. However, as FPGAs have
limited resources, not all models can fit on one FPGA. Therefore, the model has
to be partitioned to be run over two or more FPGAs to distribute the need for
resources.

It was found that partitioning the machine learning model over multiple FP-
GAs introduces a few challenges, such as an unbalanced resource utilization over
the FPGAs and a possible bottleneck of inter-FPGA communication when the goal
is high throughput. The main difficulty when designing the hardware accelerator
is how to store all the millions of parameters. On the other hand, the introduced
latency of the inter-FPGA communication is negligible, which means focus can
be placed on reducing the computational latency. Top-1 inference accuracy is also
close to the fully floating-point model, while top-5 accuracy is slightly higher when
implementing the convolutional neural network in hardware.
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Chapter 1
Introduction

1.1 Thesis goals and questions

The goal of this thesis is to design and investigate a scalable system that would
allow for running Machine Learning (ML) inference on Field Programmable Gate
Arrays (FPGAs) in the cloud. This includes the system to send data to and
between the FPGAs, the machine learning model itself implemented on one or
multiple FPGAs, and a way to receive the inference results of the machine learning
model.

1.1.1 Questions and challenges

During the planning phase, it was predicted that a few challenges would arise.

• How can hardware implemented on FPGAs in the cloud be debugged?

• What protocols should be implemented to reduce latency and keep high
throughput while keeping flexibility in the partitioning of the models?

• Multiple cloud providers — Different architectures and topologies lead to
different interconnect setups.

• Latency calculation and optimization.

1.1.2 Thesis scope

The scope of this thesis is to develop, benchmark, and investigate the viability of a
system to send data from a host system to the FPGA, to create a hardware design
for a ML model that can be factored to occupy multiple FPGAs, and similarly,
create a system that can receive the inference result from the hardware design.
Furthermore, a system that can transfer data between FPGAs is to be realized.

Focus is placed on the implementation of the hardware accelerator, transfer
between host and FPGA, and inter-FPGA communication. Latency calculations
for these sections are as such in the scope of this thesis. Other performance
metrics for the neural network and transfer system are included. Cloud debugging
is explored briefly. Due to hardware limitations by the cloud providers, specific
protocol investigation is outside the scope of this work. Exploring different cloud
provider architectures and topologies is also left outside the scope.

1



2 Introduction

1.1.3 Tools and infrastructure

All hardware implementations are done in Constructing Hardware in a Scala Em-
bedded Language (Chisel). Simple Build Tool (sbt) is used to run the Scalable
Language (Scala)/Chisel code which generates Verilog that can be imported into
Vivado where the block diagram feature is used to connect the design to the cloud
FPGA shell. Vivado is also used to perform the synthesis and implementation.
Because of the restrictions placed on the cloud FPGAs, bit stream generation from
the implementation checkpoints is done using the cloud Command Line Interface
(CLI).

Ninja is used as the primary build system. It is used to generate verification
data and manage scripts that depend on other scripts. Several shell scripts are
also created to reduce manual input of repeatedly used commands. GNU Com-
piler Collection (GCC) is used to compile the software driver to interact with the
FPGA. The software driver utilizes the fpga_pci library from Amazon Web Ser-
vices (AWS) and the Xilinx Direct Memory Access (XDMA) drivers provided by
Advanced Micro Devices (AMD) through the cloud provider.

An instance of Vivado hosted in the cloud is also used to debug the imple-
mented hardware using the System Integrated Logic Analyzer (ILA). To enable
debugging on the FPGAs attached to the virtual instances in the cloud, a virtual
Joint Test Action Group (JTAG) interface is used. This virtual interface is de-
ployed on the instance hosting the FPGA and attached to a specific FPGA slot.
Vivado connects to this virtual JTAG interface to read and configure the System
ILA. The System ILA is configured to trigger on certain conditions.

1.2 Previous work

During the course of the thesis, some relevant literature was reviewed. The lit-
erature relates to using a hardware construction language like Chisel to create
parameterizable hardware generators [1]. How to interconnect multiple FPGAs
was also investigated [2], [3], along with the partitioning of neural networks and
distribution of computation workload [4].

1.2.1 Chisel

Using Chisel to create hardware generators that generate hardware based on input
parameters has been done previously and shows promise [1]. Chisel allows for the
usage of parameters propagating through multiple layers of such generators to
create highly customizable logic. Chisel also helps avoid excess boilerplate and
contains a substantial amount of ready-made components that can be instantiated
in a design, speeding up development. Since Chisel is based on Scala, it allows
for the use of both object-oriented and functional programming when creating the
hardware constructors.
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1.2.2 Interconnecting multiple FPGAs

Previous work has proposed custom interconnect strategies that allow for high
throughput and low latency. PlasticNet is one such system. When compared to
Ethernet, PlasticNet promises lower latency [2]. However, PlasticNet integrates
into a High Level Synthesis (HLS) environment, while the goal presented in this
thesis requires an integration into Register Transfer Level (RTL). Furthermore,
these systems would not work in the cloud environment where only certain inter-
faces are available for use.

1.2.3 Factoring neural networks

There have been multiple studies done on distributing ML models on FPGAs.
Mazraeli et al. explored distributing a transformer model over multiple FPGAs
and found success in optimizing for different cost functions [4]. Different ways of
distributing Deep Neural Network (DNN) models over multiple FPGAs have been
explored by Johnson et al. [5]. Johnson et al. made use of a reconfigurable general
accelerator and did not explore inter-FPGA communication.

1.2.4 Contributions of this thesis

This thesis explores a purpose-built neural network accelerator with full register
level control over the hardware design, which is in contrast with the previous work,
where further layers of abstraction are present. Furthermore, the goal of this thesis
is to explore the interconnection of FPGAs and to investigate an optimal way to
factor the neural network, taking into account multiple parameters to maximize the
utilization of the FPGAs and the servers they are connected to by also investigating
heterogeneous computing.

1.3 History of neural networks

Artificial neural networks are models inspired by the layout of biological neural
networks, such as the ones found in animal brains. These networks typically have
a number of input and output nodes. Hidden between these interfaces, there are
layers of nodes that connect to each-other in various configurations. Historically,
neural networks were simpler in design and at first they were used to describe
logical expressions [6]. The method called back-propagation, used for training
modern neural networks, was first discovered in 1974, but popularized years later
in 1986 [7]. One of the first Convolutional Neural Networks (CNNs) was presented
in 1998 where it was used for handwriting recognition [8].

1.3.1 Convolutional neural networks

CNNs implement the neural network layout where the hidden layers are primarily
made up of convolutional layers. Pooling layers are typically present and is one
way to reduce the amount of data through down-sampling. Another way to down-
sample is to use convolutional layers with a stride larger than one. Following
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all the convolutional and pooling layers, there are typically one or more Fully-
Connected (FC) layers that do the actual classification after all the features have
been extracted [9].

VGG

VGG is a very deep convolutional neural network used for classification. The
architecture of VGG is built up of blocks of a few convolutional layers followed by
a max-pooling layer, reducing the feature map size. To achieve high accuracy, 16
or 19 weight layers are used. Following the convolutional layers, there are three
FC layers [10].

The final FC layer contains 1000 channels used for representing 1000 classes,
each indicating a different subject. VGG16 contains 138 million parameters and is
one of the larger convolutional neural networks. VGG16 uses a configuration which
consists of two main block types, as shown in Figure 1.1a. The network consists
of three Type 1 blocks and two Type 2 blocks. For the implementation presented
in this thesis, the final FC layer representing 1000 classes has been replaced with
a FC layer representing ten classes to correspond to the Imagenette dataset [11].
See Figure 3.1 for an overview of the full model.

ResNet

ResNet, similarly to VGG, makes use of a very deep network architecture. One
major difference in the design is the utilization of the residual path [12]. The
residual path can be seen as a skip connection, bypassing a few convolutional
layers before being added back to the feature map. It was found that using the
residual path in the network reduced the degradation problem seen when training
very deep neural networks, and as such a deeper network could be achieved. The
residual path block is illustrated in Figure 1.1b.

ResNet50 contains 25 million parameters, but uses 48 convolutional layers,
far deeper than VGG. With the degradation problem solved, deeper models that
perform better than for example VGG can be built, while keeping the parameter
count down. ResNeXt was built on top of the ResNet architecture and introduced
”cardinality”, increasing classification performance [13].

MobileNet

MobileNet is designed to be used in mobile applications and edge devices. Mo-
bileNet makes use of depthwise convolutions followed by pointwise convolutions.
The depthwise convolution does the filtering and the pointwise convolution does
the combining. The structure of one of these Depthwise Separable (DS) blocks is
depicted in Figure 1.1c.

The architecture proposed as MobileNet in [14] reduces both the parameters
and operations needed by about 33 times, while the accuracy loss is around one
percentage point when compared to VGG16 in a general benchmark.

Several other network designs have been built on top of the MobileNet architec-
ture. MobileNetV2 introduced inverted residual blocks to the network [15]. Effi-
cientNet further enhanced the performance of mobile-sized networks while showing
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state-of-the-art accuracy [16]. While mobile neural networks tend to have substan-
tially fewer parameters than networks like VGG and ResNet, they often have more
complicated operations and architectures.

Conv2D

Conv2D

MaxPool

Type 1 Conv2D

Conv2D

MaxPool

Type 2

Conv2D

(a) VGG Block Structure.

Conv2D

Conv2D

+

Identity

(b) ResNet Block Structure.

Depthwise Conv

Batch Normilization

ReLu

Pointwise Conv

Batch Normilization

ReLu

DS

(c) MobileNet Block Structure.

Figure 1.1: CNN architectures.

1.3.2 Transformer neural networks

Transformer neural networks were first proposed by researchers at Google and util-
ize multi-head attention to relate tokens to each other. The transformer structure
is showcased in Figure 1.2c. Previous to the solely attention based transformer,
convolutional and recurrent neural networks were used in conjunction with en-
coders and decoders in order to achieve similar results.

The scaled dot-product, as seen in Figure 1.2a, is used in the multi-head atten-
tion block depicted in Figure 1.2b. The transformer architecture lowers training
cost and improves performance when compared to previous machine transduction
models [17]. This is because it does not need to do recurrent evaluation during
the training forward pass. Thanks to the self-attention, it also obtains a global
perspective field that would otherwise require deep CNNs to be implemented.
Transformer networks are a precursor to the Generative Pre-trained Transformer
(GPT).
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The architecture of transformer neural networks is more complex than the
CNNs presented in Section 1.3.1, which is the main reason for not investigating
transformer models further in this thesis.

Generative Pre-trained Transformer — GPT

In 2018, OpenAI introduced the first widely recognized GPT. The idea behind
making a Transformer model generative is a two stage training process that begins
with training on unlabeled data, before being fine-tuned to solve specific tasks [18].

SoftMax

Scale

MatMul

MatMul

Q K V

(a) Scaled Dot-Product Attention.
Adapted from [17]

Scaled Dot-Product Attention

Linear Linear Linear

Concat

Linear

Q K V

(b) Multi-head Attention. Adapted
from [17]

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

+

Input
Embedding

Masked 
Multi-Head
Attention

Add & Norm

+

Output
Embedding

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Linear

SoftMax

Inputs Outputs

Positional
Encoding

Positional
Encoding

Output
Posibilities

(c) Transformer Structure. Adapted from [17]

Figure 1.2: Transformer architecture.
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1.3.3 Quantization of neural networks

Neural networks are typically computed using Institute of Electrical and Electron-
ics Engineers (IEEE) 754 floating-point 32 which is appropriate for use on Graphics
Processing Units (GPUs). It is possible to quantize the models to use a smaller
data-width for the parameters in order to reduce the memory footprint. Full 8-bit
integer quantization is supported by most ML frameworks, which is a good start-
ing point when quantizing a model. A representative dataset is needed to fully
quantize a model to 8 bits. Furthermore, lower-resolution integer quantization is
showing promising results [19], and can aid in reducing resource utilization when
constructing custom hardware. Quantization can sometimes improve accuracy,
but it is typical to see a slight loss in accuracy when the quantization is pushed to
a substantially lower data-width than the original floating-point representation.

1.4 Cloud providers

Cloud providers such as AWS and Microsoft Azure have instances with powerful
FPGA devices connected to servers. This makes it possible to rent FPGAs and
upload custom hardware onto them. Moreover, the FPGAs are interconnected,
allowing for inter-FPGA communication and transfer of data. The architecture
can be slightly different between different providers. AWS has instances with one,
two, or eight FPGAs, while Azure has instances with one, two, or four FPGAs.
Other providers can have different setups and architectures of inter-FPGA com-
munication, server hardware, and amount of FPGAs connected.

1.4.1 Amazon Web Services — AWS

AWS provides instances with one, two, and eight FPGAs. The FPGA is AMD
Virtex VU9+. For the instances with two FPGAs, the FPGAs are connected
together in a group, allowing for high-speed Direct Memory Access (DMA) inter-
FPGA communication. Instances with eight FPGAs have two groups of four
FPGAs. Within each group, high-speed DMA is available. For communication
between groups, higher latency and lower throughput can be expected [20]. AWS
advertises that their FPGAs are connected in a ring structure with high-speed
transceivers, but this feature is unfortunately not yet supported. AWS provides
two GitHub repositories with information and support [20], [21].

1.4.2 Azure

Azure FPGA instances make use of AMD Alveo U250 FPGA accelerators con-
nected to the instances via Peripheral Component Interconnect Express (PCIe).
Up to four FPGA devices are connected together in a single instance. These FP-
GAs have around twice as many Digital Signal Processors (DSPs), slightly more
UltraRAM (URAM), and a similar amount of Block RAM (BRAM) as the ones
offered by AWS. Azure refers to AMD documentation for most information about
the FPGAs. The accelerators have two Quad Small Form-factor Pluggable (QSFP)
ports that are not available for use.
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1.4.3 VMAccel

VMAccel is a cloud provider that has more customizability when it comes to
FPGA device choice compared to both AWS and Azure, providing many models.
The increased flexibility allows for more precise factoring of the ML model. The
storage heavy part of the network can be placed on an FPGA with a large amount
of memory, while the compute intensive part can be placed on an FPGA with
more computational resources, such as an FPGA with more DSP blocks and Look
Up Tables (LUTs). This allows for a more tailored system architecture. VMAccel
is a FPGA- and GPU-focused cloud platform and is considerably smaller than the
likes of AWS and Azure.

1.5 Different inference hardware types

There are different types of hardware that can be used for neural network inference.
The differences mainly lie in how general the hardware is, how energy efficient it
is, and the unit cost.

1.5.1 Central Processing Units — CPUs

Central Processing Units (CPUs) are one of the more general pieces of hardware.
They can do many tasks well, but do not excel at any specific task. CPUs typically
have an order of magnitude fewer cores than GPUs, which leads to GPUs outper-
forming CPUs when running inference with many operations in parallel and for
large batch sizes. Since neural networks consist of mostly arithmetic operations
and almost no branching, inference makes poor use of the CPU’s power.

1.5.2 Graphics Processing Units — GPUs

GPUs are less general than CPUs, and can provide performance and efficiency
gains with the tasks they are designed for. GPUs are traditionally designed for
computer graphics, but both training and inference of neural networks can make
use of most of the same instructions that are used in computer graphics, resulting
in higher performance compared to using CPUs. GPUs excel with large batch size
processing during neural network inference, but lack when the batch size is small.

1.5.3 Application Specific Integrated Circuit — ASIC

Creating an Application Specific Integrated Circuit (ASIC) especially made for
a single neural network implementation, would most likely result in exceptional
performance at the expense of flexibility, upfront cost, and time to market. If
a change is made to the neural network model, an entirely new ASIC will have
to be made, with the same cost and time to market as before. Developing for
ASICs is slightly different than developing for FPGAs, since a lot of focus has to
be placed on area utilization, while for FPGA design focus has to be placed on
unit utilization. ASICs like the ones found in Google’s Tensor Processing Units
(TPUs) have a very high power efficiency and show promising performance, but are
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limited by performance in floating point arithmetic [22]. However, since floating
point is mostly useful during training, this limitation does not influence the usage
of ASICs in edge devices performing inference.

1.5.4 Field Programmable Gate Arrays — FPGAs

FPGAs are customizable hardware that are composed of different units for data
storage, computation, and inputs and outputs. These units can be connected
together to create custom hardware, but there is a limited amount of each unit.
There are, for example, a limited number of BRAM, DSP, and URAM units that
can be instantiated. This results in having to design with respect to the available
number of units whereas with ASIC design, focus lies more on area utilization.
However, compared to both GPUs and Neural Processing Units (NPUs), FPGAs
can be made to have higher performance and lower energy utilization because they
can be specialized in one type of computation. Compared to GPUs, FPGAs can
provide higher performance with lower batch sizes and are especially efficient with
a batch size of 1 since GPUs are made to process data in parallel with many cores.
Within the restrictions of utilization and routing, FPGAs can reach performance
close to that of ASICs, with a lower barrier of entry and more flexibility in case of
a neural network model upgrade.
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Chapter 2
Background

2.1 Neural networks

With the recent explosion in neural networks, trying to design hardware to keep
up with the ever evolving complexity and scale of the networks is not an easy task.
As networks become larger, the need for new techniques to handle the vast amount
of layers and parameters increases with every new model. Since the architectures
of neural networks change rapidly, a streamlined process to create and deploy
hardware accelerators is necessary to keep up.

2.1.1 Selecting an appropriate network for multi FPGA inference

Selecting a network that is big enough where multiple FPGAs could justifiably
be used while keeping the implementation minimal is not easy, every network has
different requirements and requires a tailored approach when implementing.

• ResNet18 is a small network that has a repeating pattern of convolutional
layers where every second or third layer has a skip connection. Implementing
the skip connections in hardware means that data has to be temporarily
stored in memory before being added back to the output of a convolution.
The skip connections could be challenging to implement in hardware due to
the low amount of available memory.

• MobileNetv2 is another small network with very few parameters, making it
a little too small to be implemented as a single network across two FPGAs.
It also uses strode convolution as its method to reduce feature map size,
which is a harder problem to solve than simple convolution since utilizing
all clock cycles efficiently can become an issue.

• VGG16 is a quite large network consisting mostly of simple convolutions
and a few FC layers. VGG uses max-pooling layers to reduce the size of
the feature maps, which is simpler to implement efficiently than strode con-
volution. It has many convolutions, each of which produce small feature
maps that are perfect for transmitting between FPGAs. The FC layers can
however be difficult to implement because of the large number of weights.

VGG16 is selected for its simple architecture and its large size. However, the FC
layers are omitted and instead computed using a CPU.

11
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2.1.2 Quantization

One way to introduce noise into the network is to quantize the model. It has been
shown that introducing noise can improve accuracy by avoiding local minima [23].
By quantizing a model, resolution is reduced and subsequently noise is introduced.
Even low bit quantization can improve classification accuracy when compared to
the full-precision model [24]. One issue with the noise introduced by quantization
is that it often follows a pattern and can introduce bias in the network, which can
greatly be reduced by using heuristic based quantization methods [25].

Since computers operate on finite quanta of information, the smallest being
the bit, quantization is well suited for computers, since it reduces the amount of
data the computer has to store and operate on. It also reduces the memory pres-
sure, both in terms of space and throughput. Quantization removes the complex
floating-point arithmetic used in GPUs and makes use of integer arithmetic, which
is not as complex and can be implemented with high efficiency on FPGAs.

2.2 FPGA

Since most computer architectures are addressed in bytes, the smallest quanta of
information a computer can compute with at a reasonable speed is usually 8 bits;
a byte. This is an inherent limit in modern computer architectures for neural
networks. Many studies have shown that neural networks can operate as good or
even better on fewer than 8 bits for certain tasks [26], [27]. The FPGA, in contrast
to the classical computing approach, has no architectural limit when it comes to
word width, as they can be programmed to operate on 2 bit integers just as well
as 8 bit, if not better [28].

In comparison to ASICs, FPGAs have some limitations inherent to their
design. These limitations include, but are not limited to, the memory and DSP
blocks are fixed resources and have to be utilized efficiently. The internal structure
is also fixed, so routing between blocks that are distant from each other has to be
pipelined more to compensate for the added path delay in the critical path. These
limitations have to be kept in mind when designing logic for the FPGAs to ensure
efficient utilization of the FPGA resources.

2.3 Cloud infrastructure

Even if a model can be quantized down to a single bit, the larger models like some
Large Language Models (LLMs) will still not fit on the FPGAs of today. Some
way to interconnect FPGAs is needed to leverage the power of multiple FPGAs
working together to solve an inference problem. FPGAs available in the cloud
solve just that problem, they can be interconnected to solve inference together
[20]. Depending on the cloud provider, there are different methods to intercon-
necting the FPGAs, each with their upsides and downsides. The interconnect
methods available typically either use DMA to transfer data over PCIe or some
other protocol like AMD Aurora [29]. The FPGAs available in the AWS cloud are
used in this thesis.
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Running FPGAs on-premise is great for some tasks but can become an issue
as soon as the deployment needs to be scaled up. Having the ability to scale up as
needed is imperative for keeping up with the rate in which neural networks evolve.
The ability to scale puts pressure on the cloud providers to provide efficient ways
to interconnect FPGAs to be able to leverage their potential in the cloud compute
market.

2.4 Choosing an appropriate hardware design language

Developing large scale digital systems can get convoluted. For example, if a small
change that has a drastic impact on the architecture has to propagate through the
entire system. Traditional RTL design languages like Very High Speed Integrated
Circuit Hardware Description Language (VHDL) and Verilog do not offer a scalable
enough way to parameterize a design like a neural network. Neural networks come
in many shapes and sizes, but usually consist of the same core components. Being
able to truly customize these components to fit any model while still being able
to easily connect components is crucial.

Chisel is an RTL language, much like Verilog or VHDL, but utilizes a soft-
ware programming language to do the parameterization to generate the hardware.
Chisel removes boilerplate that is taken for granted to reduce development time.
Chisel also retains the designer’s the ability to have cycle-accurate control over
the design. Unlike HLS, Chisel does not abstract away the underlying wires and
registers. This gives the designer the ability to control every connection in the
hardware, while still providing larger composite building blocks than Verilog or
VHDL. Chisel is the language of choice in this thesis.

2.5 Selecting the right hardware to perform inference

The hardware of choice to implement neural network inference in this work are
FPGAs. Unlike GPUs and CPUs which are general compute architectures, FPGAs
provide a mix of flexibility and performance by giving the designer the ability to
create hardware that is specific to the intended use case while maintaining a level
of re-programmability that ASICs do not.

FPGAs also provide a faster time to market compared to ASICs since no new
chip fabrication is needed when implementing a new design. Time to market is
especially important when designing for neural networks, since the landscape is
evolving rapidly. Furthermore, since FPGAs have a fixed number of resources,
novel techniques need to be applied to maximize performance within the resource
constraints. Because FPGAs can be programmed to suit each network individu-
ally, the latency of inference can be reduced drastically compared to conventional
approaches such as GPUs.
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Chapter 3
Implementation

In this section, the different parts of the neural network inference system are
presented. Some design considerations like utilization constraints, network parti-
tioning, and scheduling are introduced and illustrated along with the performance
metrics and other figures that will be presented in the results section.

3.1 Deconstructing the quantized Tensorflow Lite (TFLite)
model

Extracting the weights and biases from the TFLite model can be done using tools
like Netron, which provides a graphical interface to view the computational graph
of the network and the ability to download the weights and biases from all the
layers. While this approach works, it is tedious and not programmatic, which
means it quickly becomes unfeasible when implementing large networks like VGG.
Each node that represents a layer in the graph also contains scaling values for each
input, output, weight, and bias, which can only be copied by hand from Netron.

Looking through the TFLite models’ structure using a script provided by the
developers of TFLite, the structure and relations in the TFLite file can be reverse-
engineered to extract all the data necessary and compile the numbers into a format
better suited for the implementation.

3.2 Quantization

When quantizing a neural network model using the TFLite framework, all the
weights and biases are quantized into integers. For the network not to lose too
much accuracy, each layer has some floating-point scales that need to be applied
for the network to keep the results in the same domain. There are scales for the
weights, the bias, the input, and the output. Applying these scales can be done
in a few different ways. One way is pre-scaling the weights and biases to a fixed
point number using the floating-point scale provided by TFLite. Another way is
to create a hardware quantizer that quantizes the 32-bit convolution result into
an 8-bit integer. By pre-scaling the weights and biases, there is no need for a
hardware quantizer, which saves DSP-slices at the expense of increased memory
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usage. The quantizer method uses more DSP-slices, but does not require as much
memory to store the parameters.

3.2.1 Pre-scaling the weights and biases

To pre-scale the weights and biases to a fixed-point number, first the input, weight,
and output scales are applied to all the weights and biases. The smallest abso-
lute weight and bias after the scaling is found for each layer. Then the resulting
floating-point number is scaled by some power of two and rounded until the error
between this new fixed-point representation and the floating-point representation
is less than 0.1 %. With errors less than 0.1 %, the bit-width explodes in size.
Furthermore, extracting the largest absolute values from the newly created fixed-
point representation yielded the maximum number of bits required to store the
weights and biases. The resulting scaled weights and biases can then be used as
fixed-point numbers in hardware with the extracted binary-point and bit-width.

3.2.2 Quantizer

When using a quantizer, the floating-point scales have to be converted to a fixed-
point number to avoid implementing costly floating-point hardware. By realizing
the constraints on the combined scale, referred to as M in [30], the floating-point
number can be scaled by a constant factor and turned into a fixed-point repres-
entation of the floating-point scale. The method proposed in the paper combines
the input, output, bias, and weight scales into one using Equation 3.1, it then
multiplies the combined scales by some power of two in order to turn it into a
fixed-point number representation using Equation 3.2. These fixed-point num-
bers can later be used in hardware to perform fixed-point multiplication, and a
fixed-point rounding algorithm can be used to remove the decimals to produce the
quantized result. The method proposed is much cheaper in terms of utilization
and faster in terms of logic delay than using integer-floating-point multipliers.

M :=
SiSw

So
(3.1)

M = 2−nM0 (3.2)

Rounding

Rounding by truncation is a trick used to perform rounding quickly in hardware
while only introducing a small bias. The rounding is performed on fixed point
numbers by first adding the equivalent of 0.5 and then truncating the decimals.
This achieves rounding that rounds towards infinity when the decimal places are
[0.5, 1) and rounds towards zero when [0, 0.5), when the number is positive. The
same is true for negative numbers, except for when the decimal is 0.5, which
rounds towards zero. The small difference this method introduces can subsequently
introduce a small bias in the calculations and is an undesired side effect from this
method of rounding.
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In classical computing using the floating-point IEEE 754 standard, the round-
ing method mentioned above is not used. The IEEE 754 uses the ”bankers’ round-
ing” algorithm to avoid introducing bias [31]. The method works by rounding
towards the closest even number instead of rounding towards zero or infinity.
Other methods, like stochastic rounding, can be used to reduce bias even further.
Stochastic rounding is done using a weighted probability to round the fraction
towards whichever whole number the fraction is closest to, thus removing any
systematic bias [32].

3.3 Hardware Design

The VGG16 CNN is composed of several similar blocks, consisting of convolu-
tion layers and max-pooling layers. Following these blocks, there are three fully-
connected blocks before a soft-max activation function. In Figure 3.1, the archi-
tecture of VGG16 is shown with the feature map sizes labeled (Batch Size x Width
x Height x Depth) in parameters. The convolutional layers each have a Rectified
Linear Unit (ReLU) activation function.

Due to dataset limitations, the final FC layer with dimensions of 4096 x 1000
is replaced by a FC layer with dimensions of 4096 x 10, classifying images to ten
classes. This influences the accuracy and will give a higher accuracy than expected
for VGG16 with 1000 classes [33].

3.3.1 Scheduling

To minimize back-pressure in the design, it is important to create a hardware
schedule such that each following layer can process all the output from the previous
layer, which allows for a more consistent flow of data through the graph. The
schedule is set by considering the input data rate on a 24-bit bus and making sure
each layer is able to process a sufficient amount of data by changing the parallelism
of the hardware convolutional blocks.

As can be seen in Figure 3.1, the feature maps decrease in size while the
number of feature maps increase. The max-pooling layers reduce the feature map
size to one quarter of their original size. The locations in the graph after max-
pooling layers make for perfect places to factor the model to spread across multiple
FPGAs, while keeping the data rate needed to transfer the feature maps between
the FPGAs low.

3.3.2 Partitioning the network

When partitioning the network, it is also important to consider the BRAM required
to store the weights of the layers. As the number of channels grow, the storage
required for the weights increases exponentially. The storage required for the
weights in the final three layers (block 5) is around the same as the storage required
for the rest of the convolutional blocks (blocks 1-4) of the network. This is shown
in Figure 3.2.

The exponential increase in storage requirement causes the place to partition
the network to shift further down the graph to account for the limited BRAM



18 Implementation

Conv2D

Conv2D

Conv2D

MaxPool2D

Quantize

Input

Conv2D

MaxPool2D

Conv2D

Conv2D

Conv2D

MaxPool2D

Conv2D

Conv2D

Conv2D

MaxPool2D

Conv2D

Conv2D

Conv2D

MaxPool2D

FullyConnected

FullyConnected

FullyConnected

Softmax

Quantize

Output

1x224x224x3

1x224x224x3

1x224x224x64

1x224x224x64

1x112x112x64

1x112x112x128

1x112x112x128

1x56x56x128

1x56x56x256

1x56x56x256

1x56x56x256

1x28x28x256

1x28x28x512

1x28x28x512

1x28x28x512

1x14x14x512

1x14x14x512

1x14x14x512

1x14x14x512

1x7x7x512

1x4096

1x4096

1x25088

1x10

1x10

1x10

1x10

Block #1

Block #2

Block #3

Block #4

Block #5

Figure 3.1: Architecture of VGG16.
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resources. This can result in one of the FPGAs being more utilized than the other,
especially with respect to DSP and LUT utilization. For this thesis, the network
is split after block 4, making use of the small feature map after the max-pooling
layer and taking the memory constraints into consideration.

block2: 1.5%

block3: 10.0%

block4: 40.1%
block1: 0.3%

block5: 48.1%

Percentage of parameters per block

Figure 3.2: Storage required to store the convolution layer kernel
values.

3.3.3 Utilization

To utilize the most of the FPGA it is important to take FPGA-specific design
considerations into account when designing. The FPGA consists of different blocks
that each contain some logic that can be routed together to create some circuit.
These blocks mostly consist of DSPs, LUTs, and different kinds of memories.

DSP

Each FPGA has a limited number of DSP units that can be used to perform a few
different operations at high speeds, especially for numbers with high bit-width.
Since the convolution part of the CNN is compute-heavy, a lot of DSP units are
required, and as such, careful attention has to be paid to the utilization of the
DSP units. When creating the schedule, the DSP utilization has to be taken into
consideration as to not over-utilize the available resources. Any left-over operations
after all the DSP units have been depleted will be mapped into the LUTs which
can jeopardize timing if the operations are large.

To more efficiently utilize the DSPs, it is possible to use the same DSP unit
to perform multiple low-bit operations. The DSP units in the FPGA available in
AWS can support two 8-bit operations per DSP. These optimization methods are
not implemented in this thesis.

Memory

Memory is sparse on most FPGAs. Even high-memory FPGAs only provide a few
hundred megabits of fast, low-latency memory. Because of this, storing numerous
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parameters becomes a challenge. Because the weights are stored in BRAM, only
the URAM is left over for buffers such as first in, first out buffers (FIFOs) and
other buffers needed to keep the pipeline fed at all times [34].

Because the DNN part of VGG requires a lot of memory, in the order of hun-
dreds of megabytes to store the parameters, the small amount of BRAM available
is not enough to store these parameters. The memory required to store the para-
meters of the FC layers is around 8 times larger than what is needed to store the
parameters for the convolutional layers, as seen in Figure 3.3. Since the URAM
cannot be used as a Read Only Memory (ROM) out of the box, some logic has to
be implemented to be able to load the URAMs with values as soon as the design
is loaded into the FPGA.

Convolution
11.0%

Fully-connected
89.0%

Percentage of parameters per part of network

Figure 3.3: Comparison of memory required to store weights for the
convolutional and fully-connected parts.

The FPGAs in AWS are equipped with 64 GB of Double Data Rate 4 (DDR4)
Dynamic Random Access Memory (DRAM) which is ideal for use in the DNN
because of the DNN memory access pattern being completely linear. However, the
DNN is not implemented on an FPGA to limit the scope of this thesis. Instead,
the DNN part is implemented in software on the host server CPU.

There are FPGAs available with High Bandwidth Memory (HBM) that have
higher memory bandwidth. Such devices could aid in the design of DNNs if the
DRAM does not deliver high enough performance. FPGAs with HBM are not
currently available in the cloud providers discussed.

3.3.4 Routing

Because FPGAs have a fixed layout, routing can become a difficult task for the
implementation tool when the design grows large. To reduce eventual routing is-
sues, designing units that are easily scaled without introducing long control paths
is essential. It is also important to make sure that each and every path is suffi-
ciently pipelined in order to achieve high clock speed. When paths are adequately
pipelined, the tool can perform re-timing, which can reduce timing issues for long
logic chains inside the FPGA by moving the registers between logic. Introducing
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pipelines will also reduce the route and logic delay, which in turn decrease the
clock period, thus allowing for a higher clock frequency.

3.3.5 Multiple FPGA design

Due to the limited amount of BRAM resources on FPGAs, storing many para-
meters can be difficult. The limited amount of DSP units is also a huge constraint
when designing for only one FPGA. One way to solve this is to factor the network
over multiple FPGAs and, with that, distribute the need for BRAM and DSPs.

It is important to select a suitable point for partitioning the network, since
the feature maps can be quite large in a neural network. In the case of VGG16,
splitting after a pooling layer seems to be optimal. As mentioned in Section 3.3.2,
in the case of VGG16, a good place to partition the network would be after the
fourth max-pooling layer, as can be seen in Figure 3.1. This split incurs a transfer
of about 100 kB/frame which even at 1000 Frames Per Second (FPS) would only
use 100 MB/s of throughput, a fraction of the available PCIe bandwidth.

When designing for more than four FPGAs on AWS, it is important to consider
the grouping of FPGAs. When transferring data between two groups of four
FPGAs, the transfer will need to be routed via the CPU in order to reach the
second group due to the AWS system architecture, resulting in reduced throughput
and increased latency. The logical layout of a system with eight FPGAs is shown
in Figure 3.4

Dense

Software

Server CPU

PCI Express

FPGA#2FPGA#1

Storage

FPGA#3 FPGA#4 FPGA#5 FPGA#6 FPGA#7 FPGA#8

PCI Express

Figure 3.4: Logical overview of system with eight FPGAs.

3.4 DMA

Since the FPGA is only used for doing model specific inference, loading the images
into the FPGA needs to be done on a general compute platform such as a CPU
with an accompanying operating system. To transfer data fast and efficiently,
DMA is used to map parts of the CPU’s virtual memory into the FPGA, enabling
the CPU to perform writes and reads from this memory region to interact with the
FPGA. The FPGA is attached to the computer with a 16x PCIe Gen-3 interface,
enabling high-speed data transfer between the FPGA and the CPU.
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3.4.1 Xilinx Direct Memory Access — XDMA

AMD has an already available and supported XDMA driver with an accompanying
XDMA subsystem which can translate PCIe into Advanced eXtensible Interface 4
(AXI4) transactions. The XDMA Subsystem can be configured to support many
modes, such as AXI4-Stream or AXI4 memory-mapped, with varying data widths.
The XDMA driver used in the thesis is loaded in interrupt mode. In order for the
driver to function with the FPGA, it has to be compiled with options to match
the vendor- and device-id of the FPGA.

Since the FPGA found in the F1 instances on AWS have the XDMA subsys-
tem pre-configured as 512-bit interface and in AXI4 memory-mapped mode, an
AXI4 memory-mapped to AXI4-Stream converter and a bit-width converter are
implemented in this work. These provide the necessary conversions between the
memory-mapped interface that the CPU uses to communicate with the hardware
and the streaming interface that the accelerator expects. The width converter
converts the 512-bit interface down to a 24-bit interface used by the accelerator.

3.4.2 Hardware core

The hardware core, as shown in Figure 3.5a, consists of a converter between AXI4
memory-mapped and AXI4-Stream, an input and output FIFO, and some con-
figuration registers. The FIFO blocks are AXI4-Stream compatible and serve as
temporary storage for the input and output data of the core. The DMA core
can both convert from AXI4-Stream to AXI4 memory-mapped and from AXI4
memory-mapped to AXI4-Stream. A similar Intellectual Property (IP) core is
already available through the AMD IP catalog but would not meet the require-
ments of this thesis.

The configuration and status registers are read from and written to by the
CPU, as shown in Figure 3.5a. The registers, presented in Table 3.1, have different
access restrictions, which are Read Only (RO), Read/Write (R/W), or Write Only
(WO).

The RX_FIFO register is polled by the software driver, and once it is filled
enough, a transfer can commence. The TX_FIFO register works in the same way.
The occupancy reported by the TX_FIFO and RX_FIFO is measured in words.

The FLAGS register is read from and written to by the software driver. This
register contains information and status of the system, such as, if the system has
received a last signal from the user logic. This indicates that the data inside the
RX_FIFO contains the last part of the packet. Before any more data can be received
into the RX_FIFO the CPU has to clear the FLAGS register by writing a zero to it.

The TX_LEN register is written to by the software driver and signals the packet
length of the transfer. The last word of data remains in the transmit FIFO until
the TX_LEN register has been written to and the amount of words transmitted
matches the register value. The TX_LEN register can be written to either before or
after a transfer.

In order to issue a user reset to the neural network, the RESET register can
be written to by the software. Once something other than zero is written to this
register, a reset is sent to the connected system, before the value of the register is
set back to zero, awaiting a new write.
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The final register in the DMA core is the SIGNATURE register. This register
is read from by the software driver to make sure that the DMA core has been
instantiated properly by performing a signature check. The software can only be
run once the signature check has completed successfully.

Table 3.1: Configuration and status registers for the DMA core.

Address Name Mode Function
0x00 RX_FIFO RO Receive FIFO occupancy in words
0x04 TX_FIFO RO Transmit FIFO occupancy in words
0x08 FLAGS R/W Flags indicating the state of the DMA
0x0C TX_LEN WO Total packet length in words
0x10 RESET WO Generates a user-reset signal
0x14 SIGNATURE RO Unique signature: 0x62696E67

3.4.3 Inter-FPGA transmitter

The inter-FPGA transmitter takes in data via an AXI4-Stream input and outputs
AXI4 memory-mapped packed data to a specified address. Figure 3.5b shows the
block diagram for this system. The input to this block is stored in an AXI4-Stream
compatible FIFO. The inter-FPGA transmitter block converts the incoming stream
to AXI4 memory-mapped and is made to emulate DMA transfers from the CPU.
The receiving FPGA receives the memory-mapped data transfer as if it would have
come from the CPU, like in Figure 3.5a.

The CPU can access AXI4-Lite configuration and status registers in the design.
In Table 3.2 the configuration registers available are listed. The inter-FPGA trans-
mitter will enter its running state once the TX_LEN is written to, the controller will
assert bit 0 in the STATUS register to indicate that the transmitter is in a running
state. The STATUS register is polled by the software driver to know when it is time
to schedule another transmission.

The PTR register is divided into two addresses with big-endian ordering. This
register is set to the physical address of the receiving FPGA. Since all FPGAs
are PCIe bus masters, they have complete access to the system’s physical memory
space. Great care has to be taken when writing to the PCIe bus, to ensure that
there is no address write violation. Writing to the wrong memory region can
corrupt the system.

It is important that the inter-FPGA transmitter can perform a full burst, since
no other transfer is allowed to happen on the bus in the middle of a burst. To
avoid stalling the whole bus, one transfer must be done as quickly as possible.
To allow this, the design waits for the FIFO to fill enough for one burst, even if
it has been commanded to start transmitting. The BURST_LEN register sets this
threshold and can be varied to accommodate different AXI4 requirements.

The SIGNATURE register indicates to the software driver which device it is. If
the register contents do not match the expected value, the whole process should
be aborted to ensure that nothing goes wrong. The SIGNATURE register also serves
as an indicator to unaware software drivers where the device is mapped. By
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Figure 3.5: DMA hardware blocks.

performing a sweep of set intervals in the bar space, the software driver can in
theory locate the device. This enables the software to be generic and portable
between different address configurations.

Table 3.2: Configuration and status registers for the inter-FPGA
transmitter.

Address Name Mode Function
0x00 PTR[63:32] R/W High bits of endpoint address
0x04 PTR[31:0] R/W Low bits of endpoint address
0x08 TX_LEN WO Total packet length in words
0x0C TX_FIFO RO Transmit FIFO occupancy in words
0x10 BURST_LEN R/W Burst length of the AXI4 transaction
0x14 STATUS RO Transmitter status
0x18 SIGNATURE RO Unique signature: 0x464D4C43

3.4.4 Software driver

To send data over PCIe from the CPU to the FPGA, a DMA software driver has to
be used. Since the AWS platform has the XDMA subsystem pre-configured with
an AXI4 memory-mapped interface, the XDMA driver available from AMD could
not directly be used to send data into the network. A software driver must be
implemented that can interact with the hardware core mentioned in Section 3.4.2.

The driver has to control the registers of the hardware core and be able to read
and write from the core at the same time to eliminate the need for large FIFOs in
the hardware core.
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The Application Programming Interface (API) for the driver provides an easy
interface for transferring data from the CPU to the neural network on the FPGA.

Architecture

The driver consists of three threads that run concurrently. The main thread that
calls the API for transferring data generates two buffers that must be page-aligned
in memory. This is done through a provided API call. These buffers are later
fed into the transfer call. Once the call has been issued, the API launches two
separate threads that have a reference to the page-aligned memory region for either
reading or writing. This ensures that the DMA can read and write at the same
time without blocking itself. It also makes it easy for the developer to run the
transfer without having to think about coherence.

When the transmit thread is in high performance mode the transmit thread
transmits the whole buffer in one transfer, which exposes the risk of the transfer
timing out if the hardware is not ready to receive the whole buffer, in such a
scenario, the API can be compiled with a flag indicating a slower performance.
Great care has to be given to ensure that the software is aware of the current state
of the hardware to not overfill the FIFOs, causing a stall in the DMA transfer.
This is solvable by reducing the DMA chunk size, which also impedes performance.
The receiving thread can be compiled with two options that specify if it should
try to read the whole buffer in one go or if it should read only the contents of
the FIFO, checking how much is available at the time before reading. This carries
with it the same issues as with the transmit thread.

Another API is also in place to handle the mediation of data between the
FPGAs. Since the CPU assigns the memory regions to the different PCIe devices,
the FPGAs have to inform each other of which memory region they got assigned.
This is done through the mediation API. The API retrieves the physical address
of the receiving FPGA and informs the transmitting FPGA of the destination
address by updating some registers in the inter-FPGA transmitter. The API is
then setup to transfer a chunk of data from one FPGA to another. When the
inter-FPGA DMA transmitter has been informed of the size of this transfer, it
enters transfer mode, where it waits for its FIFO to fill. The FIFO has to fill
so that there is enough for one full AXI4 burst. This is controlled by the burst
length register in the circuit. The burst length depends on the specific targeted
PCIe interface.

If more than two FPGAs are connected together, multiple mediation threads
have to be started, one for every inter-FPGA connection. For example, if three
FPGAs are to be connected, one mediation thread is needed between FPGA #1
and #2, and one between FPGA #2 and #3. The software architecture is shown
in Figure 3.6.

3.4.5 Inter-FPGA data transfer

To transfer the feature map of the final layer in the first FPGA, the inter-FPGA
transmitter mentioned in Section 3.4.3 is used. The output from the final layer
is streamed into the transmitter FIFO and transferred to the next FPGA once
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Figure 3.6: DMA Software Architecture.

enough data is in the FIFO. The second FPGA receives the data through the
PCIe interface. The data is converted to AXI4-stream before reaching the sub-
sequent layer in the network. Once the data reaches the final pooling layer, it
is either further processed through the FC layers or sent back to the CPU via
the hardware core described in Section 3.4.2. It is important that this transfer
introduce as little latency as possible to reduce the impact of stretching a network
across multiple FPGAs. Since one of the major drawbacks of interconnecting FP-
GAs is the overhead and added latency from whatever communication protocol is
used to transfer the data.

3.5 Figures of merit

To evaluate the design and algorithms, some figures of merit need to be established.
There are a few things that define the performance of a neural network, such as
throughput, accuracy, latency, and resource utilization.

3.5.1 Throughput

The throughput of the network is decided by the network schedule and the clock
frequency. Since the schedule is fixed to use a nominal amount of resources suit-
able for slicing; only the clock frequency can change the throughput. The clock
frequency is chosen to be low to reduce the need for heavy pipelining, which leads
to extra work. This thesis is not aiming to improve on throughput, so these op-
timizations are left out.
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3.5.2 Accuracy

The accuracy of a neural network can realistically only be measured in end-to-
end accuracy. Creating an implementation that is 100 % bit accurate with the
TensorFlow model is not a usable merit, as explained in Section 3.2. The accuracy
reported is end-to-end accuracy, meaning how accurately the network can perform
inference. Accuracy is measured with the Imagenette validation dataset over 1000
images [11]. Top-1 accuracy is defined as when the predicted result is the same as
the correct result. Top-5 accuracy is defined as when the correct result is within
the top-5 of the predicted results. The dataset contains 10 classes instead of the
1000 classes VGG16 was trained on initially, increasing the classification accuracy
[33].

3.5.3 Latency

Doing any kind of computing will introduce latency. The latency introduced is
a combination of clock frequency, architecture, and schedule. The frequency of
the network will be locked at 125 MHz, so any latency will be inherent to the
architecture and schedule. The latency is measured as the time from the first byte
being transferred from the CPU into the FPGA until the first byte is received by
the CPU from the FPGA.

3.5.4 Resource utilization

When using FPGAs there are good definitions of resource utilization since the
resources are limited in function and not in area as with ASIC design. These
definitions are LUT, Flip-Flop (FF), BRAM, URAM, Look Up Table RAM (LUT-
RAM), and DSP. These are represented as percentages of the maximum utilization
of the used FPGA.

3.5.5 Power consumption

The FPGAs draw a specified amount of power during runtime depending on the
implemented design. However, the tools used can only provide an estimated con-
sumption figure. While the server the FPGAs are connected to also consumes
power, getting an accurate representation of its power consumption is not trivial.
Moreover, the server power consumption, while dependent on server design, will
always be present even with other types of inference hardware such as GPUs. As
such, power consumption will not be presented in this report.
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Chapter 4
Results

In this section, first the final system for inference is presented. Results from the two
different quantization techniques are presented and compared. The performance
of the hardware created for transferring data from the host system to the FPGA
is showcased along with the cross FPGA transfer. Figures of merit of the neural
network are presented along with FPGA utilization.

4.1 Final inference system

The complete system for performing inference on multiple FPGAs is shown in Fig-
ure 4.1a and Figure 4.1b. The input images are stored in Random Access Memory
(RAM) on the server. Through the software driver, the images are transferred to
the first FPGA via DMA over PCIe. The data is received by the input processing
blocks of the network and the first convolutions can begin. Once enough data has
been processed by layers one through ten in FPGA one, the inter-FPGA trans-
mitter, as seen in Figure 3.4.3, will begin transferring data to the second FPGA
where the final three layers of convolution take place, before the data is sent back
to the server CPU for further processing.

4.2 Quantization

Two different quantization schemes have been examined. The first scheme pre-
scales all the weights and biases with the M factor mentioned in Section 3.2.2.
The second scheme utilizes a quantizer which takes in the 32 bit values from the
convolution result and quantizes the result using the M factor in hardware instead
of software.

4.2.1 Pre-scaling the weights and biases

Scaling the weights and biases to fixed point numbers with a bit-width that
achieves an error less than 0.1 % results in poor accuracy in the implemented
design compared to using the quantizer method as described in Section 3.2.2.
Moreover, the pre-scaled weights and biases have an average bit-width of 12 bits,
resulting in an approximately 50 % increase in memory utilization for storing the
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weights and biases when compared to storing 8-bit weights and 32-bit biases. Due
to the limited memory resources, this method is not adequate.

Dense

Software

Server CPU

PCI Express

FPGA#2FPGA#1

Storage

(a) Block layout.

FPGA#1 FPGA#2

Storage

DenseCPU

(b) Data flow.

Figure 4.1: Inference System.

4.2.2 Quantizer

The quantizer method used in this thesis results in both fewer and smaller quantiz-
ation errors when compared to the pre-scaling method. Since this method requires
only storing 8-bit weights and 32-bit biases, it reduces the amount of memory
needed in the design substantially. One drawback of this method is that the
quantizer block requires at least one DSP-slice, reducing the DSP resources avail-
able to the rest of the design. 8-bit multiplication can be mapped to LUTs, making
up for the loss in DSP resources when using the quantizer block. A comparison
of the errors caused by the quantization method compared to the floating-point
version is shown in Figure 4.2. The error rate is shown in a logarithmic scale. As
can be seen, the quantizer method performs orders of magnitude better than the
pre-scaled method.
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Figure 4.2: Overview of quantization accuracy per layer.

4.3 DMA

Transferring data from the system memory to the FPGA devices connected to the
system is done over Direct Memory Access. The performance achieved is presented
in Table 4.1.

Table 4.1: Overview of DMA performance.

Performance Target CPU to FPGA FPGA to FPGA
Normal 0.6 GB/s 265 MB/s

High Performance 6.4 GB/s 428 MB/s

4.3.1 Host to FPGA

Transferring data from the host system to the FPGA reaches speeds of 6.4 GB/s at
most. The transfer speed depends on the chunk size used and which performance
target is selected. A chunk size of 8 MiB is seen to be the optimal for high speeds,
as shown in Table 4.2.

4.3.2 Inter-FPGA

The inter-FPGA throughput suffers due to limitations in the FIFO sizes of the
receiving DMA core and limitations in the shell logic. However, the inter-FPGA
performance is more than adequate to transfer the feature maps of the neural
network as long as a few blocks of convolution and pooling have been performed
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Table 4.2: Comparison between chunk size and transfer speed.

Chunk Size Normal High Performance
32 KiB 0.16 GB/s 0.16 GB/s
64 KiB 0.61 GB/s 1.00 GB/s

256 KiB 0.59 GB/s 2.19 GB/s
512 KiB 0.61 GB/s 3.20 GB/s
1 MiB 0.58 GB/s 4.57 GB/s
4 MiB 0.56 GB/s 5.96 GB/s
8 MiB 0.60 GB/s 6.38 GB/s

16 MiB 0.58 GB/s 6.29 GB/s
32 MiB 0.57 GB/s 6.25 GB/s
64 MiB 0.59 GB/s 5.87 GB/s
128 MiB 0.58 GB/s 5.86 GB/s

to reduce the feature map size. If the network is split after the fourth block as
described in Section 3.3.2, 100 KB per FPS would be the transfer amount. At
for example 100 FPS, the transfer speed requirement would be 10 MB/s. The
inter-FPGA performance reaches 428 MB/s, 40 times the requirement. As seen
with the inter-FPGA transfer in Table 4.3, performance depends on the chunk size
and the performance target. Due to the limitations, the chunk size is limited to
64 KiB.

Table 4.3: Comparison between chunk size and transfer speed for
the cross FPGA transfer.

Chunk Size Normal High Performance
4 KiB 25 MB/s 25 MB/s
8 KiB 54 MB/s 50 MB/s
16 KiB 94 MB/s 102 MB/s
32 KiB 202 MB/s 198 MB/s
64 KiB 265 MB/s 428 MB/s

128 KiB N/A N/A

4.4 Performance metrics

The performance achieved by factoring the network over multiple FPGAs is more
than adequate. The introduced latency as a result of transmission of data between
FPGAs is minimal and insignificant in the scope of the latency of the whole net-
work. The factoring allows for larger networks to be run on FPGA devices that
could not previously due to a limitation in FPGA resources.
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4.4.1 Throughput

The throughput achieved by the split system is low enough to not be limited by
the inter-FPGA bandwidth constraint. It is also low enough to not be limited by
the input / output data rate. The throughput achieved by the implementation is
in accordance with the selected schedule and the fixed clock frequency.

4.4.2 Accuracy

The top-1 end to end accuracy of VGG16 as implemented is 87.7 % whereas the
top-5 accuracy is 98.9 %. Compared to the TensorFlow model, this is a slight
decrease in top-1 accuracy, caused mainly by quantization. On the other hand,
the top-5 accuracy sees a slight increase.

Table 4.4: VGG16 accuracy compared on FPGA and CPU.

VGG16 FPGA INT8 CPU FP32
Top-1 87.7 % 88.5 %
Top-5 98.9 % 98.5 %

4.4.3 Latency

The latency introduced by the cross FPGA transfer is minimal. As seen in Fig-
ure 4.3, the latency for the inter-FPGA loop back is slightly higher than the single
FPGA loop back. The latency using the high speed setup is substantially lower
than when using the normal polling setup, as can be seen when comparing the res-
ults in Figure 4.3a and Figure 4.3b. It is clear from this data that the overhead of
connecting multiple FPGAs is insignificant, both when comparing to the overhead
of data transfer to a single FPGA and especially when considering the latency of
the network itself.

4.4.4 Utilization

The utilization of the FPGA resources is not evenly distributed as illustrated in
Figure 4.4. The foremost resource constraint is both the Block RAM and Ultra
RAM. The first FPGA has a lot higher utilization as shown in Figure 4.4a when
compared to the second FPGA shown in Figure 4.4b.

Block RAM

Due to the large number of 8-bit weights, the BRAM usage is the main limiting
factor of how many layers fit on a single FPGA. Since AWS has split up the floor
plan of the FPGA into two sections, one for the user logic and one for the shell,
only 78 % of the BRAM is available for use in custom logic.
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(a) Average latency for loop back DMA — High speed.
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Average latency for loopback DMA - Normal

(b) Average latency for loop back DMA — Normal.

Figure 4.3: Latency comparison in different configurations and
modes.

Ultra RAM

The Ultra RAM resources are rapidly exceeded and are primarily used for tem-
porary storage. This is due to this model’s architecture and the IP blocks that
were available. With some optimizing, this bottleneck can be almost completely
eliminated.

LUT RAM

Some weights can be mapped to LUT RAM when the BRAM utilization exceeds
implementable margins.

DSP

The number of DSP slices used in the design depends on the desired throughput
and the selected schedule, and with it, the number of calculations done in parallel.
Because of the implementation details, the number of operations that can be run
in parallel depends on the schedule of the layers and has to be an integer multiple
of the base schedule implemented in this design. This metric is not shown in
Figure 4.4.
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(a) Resource utilization of FPGA #1.
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(b) Resource utilization of FPGA #2.

Figure 4.4: Resource utilization of the two FPGAs.
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Chapter 5
Discussion

5.1 Conclusions

This work has shown that interconnecting multiple FPGAs can allow for larger
networks to be run on FPGAs that would previously not fit on a single FPGA.
The solution implemented shows great promise, with low overhead for inter-FPGA
communication. There are a few points of improvement that will be discussed
further.

5.1.1 How can hardware implemented on FPGAs in the cloud be de-
bugged?

Debugging FPGAs in the cloud can be done similarly to how it would be done
locally. Using an Integrated Logic Analyzer placed in the design, which can later
be attached to using a JTAG interface. The JTAG interface of the FPGA in the
cloud is virtual, and requires some special configuration to connect to. However,
once everything is set up, debugging in the cloud is set up is no more difficult than
doing it locally.

5.1.2 What protocols should be implemented to reduce latency and keep
high throughput while keeping flexibility in the partitioning of the
models?

In this thesis, the AXI4 memory-mapped and AXI4-Stream protocols have been
explored together with PCIe. Using PCIe to communicate between systems works
well, but leaves room for improvement. Using AMD’s Aurora protocol for inter-
FPGA communication could possibly reduce latency and improve performance
compared to PCIe as mentioned in Section 2.3.

5.1.3 Latency calculation and optimization

Distributing the neural network over multiple FPGA introduces a small, insigni-
ficant latency to the total inference time. Reducing the inference time can be done
a few different ways. It is important to focus attention where the largest portion
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of latency originates from. As such, creating a more latency optimized hardware
pipeline could drastically reduce first batch inference latency.

5.2 Points of improvement

• While the inter-FPGA communication implemented in this work has a high
enough throughput to support transferring the feature maps between FP-
GAs, with larger feature maps and a shorter inference time, it is possible
that future models could saturate the current link between the FPGAs.

• The hardware DMA core is designed with the available FPGA infrastructure
in mind. With future or different DMA implementations, the DMA core
might have to altered or completely removed. With a different DMA setup,
for example, re-configuring the XDMA subsystem to AXI4-Stream the DMA
core could be removed almost entirely.

• Making the inter-FPGA transmitter module smart by being able to read the
receiving DMA core’s FIFO occupancy. This could enable higher throughput
by removing the chunk size limitation discussed in Section 4.3.2 from the
software.

5.2.1 Inter-FPGA communication

The solution implemented in this work is created with the infrastructure surround-
ing the AWS cloud FPGAs in mind. However, there are other implementation that
also allow for high speed and low latency transfer between FPGAs, such as AMD’s
Aurora protocol mentioned in Section 5.1.2. Such implementations are dependent
on the cloud providers and AMD allowing access to the multi-gigabit transceiv-
ers available in the FPGAs either through some type of shell or through directly
exposing these systems to the user. Implementing an inter-FPGA communication
system using this approach has the benefit of being lower overhead while not using
up the limited PCIe bandwidth available.

One of the main issues with the current method is that data seems to drop
when back-pressure is generated by the receiving FIFO. Since the design uses
quite small FIFOs to limit the amount of RAMs used, they get filled up quickly,
especially when trying to send a lot of data through at once. For some reason, the
PCI Master (PCIM) interface in the shell does not de-assert its ready signal when
the receiving FIFO on the other FPGA is full.

5.2.2 DMA core

With further support from the leading cloud providers, the DMA core implemented
in this work could be slimmed down. Since the XDMA Subsystem is locked to
AXI4 memory-mapped mode by default in AWS F1, the implemented DMA core
is required. However, if the XDMA subsystem could be configured to support
AXI4-Stream, the entire process could be significantly simplified.
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5.2.3 Software

The DMA performance could possibly be improved if more time and energy were
to be spent optimizing the software driver. Moreover, the software driver could be
streamlined if a streaming DMA was made available, since most of the software is
in place to control the DMA Core.

5.3 Neural network hardware design

The design and architecture of the hardware implementation for the neural network
could be improved to increase throughput, reduce inference latency, and reduce
resource utilization. By employing some strategies mentioned in Section 3.1 like
DSP sharing and further model quantization, the throughput, inference latency,
and utilization can be improved.

5.3.1 Utilization

One of the main limiting factors when designing accelerators for neural networks
on FPGAs is, where to store the weights. Networks with many parameters such
as VGG quickly make use of all the available BRAM resources. To help with
this, quantization to 4-bit weights can reduce the memory requirement by half for
the same number of parameters. Further research into finding efficient ways to
initialize values into URAM could also be of great interest, since it is much more
abundant.

5.3.2 Throughput

There are a few ways to increase the throughput of the network. One way is to
increase the clock frequency of the FPGA. With increased clock frequency comes
additional work to make sure no paths fail timing. Furthermore, going down
to 4-bit quantization can allow for more operations done in parallel by way of
DSP re-utilization and mapping more multiplications to LUTs. Looking into fully
unrolling loops by employing a faster schedule could also be of interest in certain
scenarios. Larger FPGAs can allow for more operation level parallelism, resulting
in higher throughput.

5.3.3 Latency

One of the main benefits of running neural network inference of batch size one on
FPGAs is that the latency can be reduced compared to GPUs. When splitting
neural networks over multiple FPGAs, the latency increases slightly. However,
the latency of inference computation is larger than that imposed by the data
transfer between FPGAs. This makes multiple FPGA neural network inference
a worthwhile endeavor. With even larger models that require more FPGAs, the
inter-FPGA communication might have a larger impact, especially if the data
has to be routed through the CPU to reach the second grouping as explained in
Section 3.3.5.
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With future support from cloud and FPGA vendors, the data transfer between
FPGAs could be streamlined with tighter integration with the provided design
suite. If this leads to lower latency is difficult to predict, as it would depend on
the specific implementation the vendors provide.

5.4 Further research

In this thesis, simple CNNs with many parameters have been explored. Newer
neural networks for image classification make use of more complex architectures
with, for example, skip connections. Implementing such operations efficiently on
FPGAs could be an interesting research topic. Various types of transformer net-
works are quickly entering the market. Investigating the possibility of accelerating
such networks on FPGAs could prove worthwhile due to the growing need for
energy efficient computing in the Artificial Intelligence (AI) race.

5.4.1 Neural network design for efficient hardware implementation

Designing neural networks with hardware in mind could possibly aid in further im-
provement. For example, using rounding algorithms that are cheap to implement
in hardware. One could look into doing stochastic rounding instead of banker’s
rounding. Stochastic rounding could, for example, be implemented in hardware
using a Linear Feedback Shift Register. This would most likely require retraining
the model with the new rounding method.

5.4.2 Heterogeneous computing

In order to maximize the computational efficiency, it could be interesting to look
into distributing the network over various different types of acceleration media.
Some operations could be most efficiently done on FPGAs, while others could be
mapped to GPUs or maybe even use the server CPU of the FPGA instance for
some operations. In this work, the FC layers are placed on the CPU to finalize
the classification.
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