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Abstract

This thesis explores the simplifications the chirality-flow formalism brings the calculations
of scattering amplitudes in massless QED. We explain Feynman diagrams and chirality-
flow diagrams to emphasize how the calculations of scattering amplitudes differ. It is
studied how applying the chirality-flow formalism simplifies the calculations. The work
focuses on calculations with and without external photons, separately. The probability
of a diagram contributing to the amplitude is calculated for different cases - including
varying the number of photons and fermions. The results from the thesis offers a deeper
understanding of interactions in massless QED.

Populärvetenskaplig beskrivning

Inom partikelfysik, g̊ar de teoriska och experimentella aspekterna hand i hand. För att
först̊a hur partiklar växelverkar med varandra och kunna först̊a experimentella resultat,
behövs en teoretisk modell av interaktionerna. Feynmandiagram erbjuder exakt detta, ett
verktyg för att simpelt visualisera partikelporcesser. Med Feynmandiagram är det möjligt
att först̊a vilka processer som är möjliga och räkna ut sannolikheten att de sker, med en
s̊akallad spridningsamplitud. Till varje process existerar det ett eller flera Feynmandia-
gram som alla inkluderas till beräkningen av spridningsamplituden. Beräkningarna med
Feynmandiagram kan bli väldigt komplexa för processer med många partiklar. I ett försök
att förenkla beräkningarna, används kiralitetsflödesformalismen.

Kiralitetsflödesformalismen handlar, förenklat, om att studera hur en partikels höger- och
vänster-hänthet ändras när den växelverar med andra partiklar. Teorin baseras p̊a spinn-
helicitet formalismen och ger nya regler för hur olika partiklar representeras grafiskt. Detta
genererar nya slags diagram som, likt Feynmandiagram, alla inkluderas i spridningsampli-
tuden. Däremot, minskar antalet bidragande diagram när dessa regler tillämpas, vilket i
sin tur förenklar beräkningarna av spridningsamplituden.

Genom att effektivisera beräkningar av spridningsamplituder är det möjligt att studera
mer komplexa processer som annars skulle ta för l̊ang tid eller inte vara möjliga. Effek-
tiviseringen gör det möjligt för forskare att utvidga de omr̊aden de studerar och bidra till
en djupare först̊aelse av partikelfysik. Att först̊a partikelfysik är en fundamental del av att
först̊a universums byggstenar. Människan har ständigt letat efter svar kring varför och hur
universum ser ut som det gör idag. Inom partikelfysik finns det många fr̊agor som inte är
besvarade ännu och alla effektiviseringar är ett steg närmare dessa svar.
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1 Introduction

In this thesis, the simplifications that the chirality-flow formalism [2] brings to theoretical
particle physics are explored. Traditionally, Feynman diagrams are used to visualize inter-
actions and calculate scattering amplitudes [3]. A scattering amplitude gives a measure of
how probable an interaction is to happen. It gives the probability of a certain outcome with
respect to the incoming particles. When considering processes including many particles,
the calculations given by a Feynman diagram become very complex.

Algorithms used to calculate scattering amplitudes based on Feynman diagrams have pre-
viously been optimized [2]. The optimization consists of minimising the number of con-
tributing diagrams and re-using parts of calculations to streamline the calculation time.

The purpose of this thesis is to study and quantify if and how the calculations can be sim-
plified. This is done by using the chirality-flow formalism. Firstly, the rules of building di-
agrams depicting the flow of chirality are explained. This includes fermions, anti-fermions,
external photons and propagators. This thesis is limited to massless fermions in QED,
which makes the correlation between helicity and chirality very simple. By considering
the left- and right-handness of massless fermions, this thesis studies how the number of
contributing diagrams can be reduced. This is done by introducing the basic concepts
of the chirality-flow formalism, based on the spinor-helicity formalism. Furthermore, the
difference between including and excluding external photons is noticed and the work is
divided, accordingly. Simple examples are considered to give an understanding of how the
chirality-flow formalism is applied and simplifies calculations.

This thesis begins with explaining Feynman diagrams in QED, where a simple process
is used as an example in Section 2. Section 3 explains the basics of the spinor-helicity
formalism, including the notation needed to understand the chirality-flow formalism. Con-
cluding the theory, the notation for vertices and propagators is explained. Additionally,
the chirality-flow formalism is applied to a simple process to calculate the scattering ampli-
tude, which is presented in Section 3.4. The work is done considering one fermion-line and
is divided into two parts: Section 4.1 which only includes external fermions and Section 4.2
which includes external photons. In both sections, the number of contributing diagrams is
calculated. The result when considering external photons is then generalized in Section 4.3,
as it is summed over all possible helicities. Finally, Section 4.4 consideres more than one
fermion-line. The conclusion is then presented, whoch states that there is a simplification
due to applying the chirality-flow formalism. The calculations become further simplified
for many photons and many fermion-lines.
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2 Feynman diagrams in QED

Quantum electrodynamics include interactions between charged fermions via the exchange
of a virtual photon. In general, fermions in QED are identified as particles with spin
1
2
. An interaction between fermions can result in a number of final states. All possible

interactions are commonly described by Feynman diagrams, following the set of rules given
in Table 1. Given a Feynman diagram and properties, such as electric charge of included
particles, the scattering amplitude can be calculated. The scattering amplitude is a measure
of probability of the final state relative to the incoming state. Considering the process
e+e− −→ µ+µ−

e−

p

µ−

k

e+

p′ p+ p′

µ+

k′

,

the amplitude is given by

M =
e2

q2
(v(p′)γµu(p))× (u(k)γµv(k

′)), (1)

where γµ is given by

γµ =

[
0 σµ

σ̄µ 0

]
, (2)

in the chiral representation. The new object σ is introduced, which represents the Pauli
matrices defined as

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, (3)

σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (4)
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Dirac propagator = i�p
p2+iϵ

Photon propagator = −iqµν

p2+iϵ

QED vertex = iQeγµ

Initial, external fermion = u(p)

Final, external fermion = ū(p)

Initial, external anti-fermion = v̄(p)

Final, external anti-fermion = v(p)

Initial, external photon = ϵµ(p)

Final, external photon = ϵ∗µ(p)

Table 1: Table containing the Feynman rules for QED. Here, ’final’ refers to the particle
being a result of process and ’initial’ refers to the particle entering the process. Further,
u(p) and v(p) are spinors, Q is the electric charge of the particle and p is the momentum
of the particle. Finally, ϵ is the polarization vector and �p = γµpµ.

Additionaly, σ̄ is defined as

σ̄0 = σ0 , σ̄i = −σi. (5)

6



As seen in Eq. (2), γµ and γµ are 4x4-matrices. The spinors u and v are 4-vectors and the
multiplications have to be done for every µ. The result from Eq. (1) is summed over all
values of µ, resulting in a complex calculation.

The Feynman rules for QED are summarized in TAble 1.As seen in Table 1, each fermion-
line has an arrow indicating if it is a fermion or an anti-fermion. The arrow goes parallell
to the momentum of a fermion but in the opposite direction for an anti-fermion. Since
quantum numbers, such as lepton number and charge, need to be conserved, the direction
of the arrows becomes crucial. The number of incoming arrows has to equal the number
of outgoing arrows [1]. Finally, momentum is conserved in each interaction vertex.

The process e+e− −→ µ+µ− is very simple and has only one contributing diagram. How-
ever, processes normally have multiple contributing diagrams when considering all possible
variations of interactions. The total amplitude is obtained by summing all contributing
diagrams. At last, the sum is squared to calculate the probability amplitude of the process
[1].

3 The chirality-flow formalism

3.1 Helicity and Chirality

The helicity of a particle is defined as the projection of its spin onto its momentum and
defines if the particle is right-handed or left-handed:

σ · p
|p|

= 1 =⇒ right-handed,

σ · p
|p|

= −1 =⇒ left-handed.
(6)

Equation 6 gives the spin of the particle projected onto the momentum, p̄. In general,
an object is said to be chiral if it is distinct from its mirror image. The chirality of a
particle is divided into left- and right-chiral, but it is a different property from the helicity.
A fermion can be divided into a left-chiral part and a right-chiral part using projection
operators given by the fifth gamma-matrix;

PR =
1

2
(1 + γ5), PL =

1

2
(1− γ5), (7)

where

γ5 = iγ0γ1γ2γ3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
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Considering the massless case, the fermions will travel at the speed of light allowing the
chirality to be given by the helicity [3]. This means that the direction of the momentum
will be the same for all observers.

3.2 Basics of spinor-helicity formalism

All fermions can be described using Dirac spinors [1], which solve the Dirac equation

(iγµ∂µ −m)ψ = 0. (8)

Here, ψ is the plane-wave solution containing the Dirac spinors, m is the mass of the
particle and ∂µ is the derivative-operator with respect to the µth n n n component. Since
only massless fermions are considered in this paper, Eq. (8) simplifies to

i∂µσµψ = 0 and i∂µσ̄µψ = 0, (9)

which are known as the Weyl equations. In the chiral representation, the Dirac spinors are
given by

u(p) =

[
uL
uR

]
=

[
λ̃α̇p
λβ,p

]
, v(p) =

[
vL
vR

]
=

[
λ̃α̇p
λβ,p

]
, (10)

where λ̃α̇ transforms under the left-chiral representation,
(
1
2
, 0
)
, and λβ transforms under

right-chiral representation
(
0, 1

2

)
.

In the massless case, Eq. (9) gives a different solution for each chirality [1]. The Dirac
spinors are simplified further in the massless limit. The solutions in Eq. (10) then become

u+(p) = v−(p) =

[
0
|p⟩

]
, u−(p) = v+(p) =

[
|p]
0

]
,

ū+(p) = v̄−(p) =
[
[p| 0

]
, ū−(p) = v̄+(p) =

[
0 ⟨p|

]
, (11)

where the bra-ket notation has been introduced to easily differentiate between fermions
of different chirality [2]. Here, + and − denote right-handedness and left-handedness,
respectively. The following holds:

λαp ←→ ⟨p| λ̃p,α ←→ |p⟩

λp,α̇ ←→ [p| λ̃α̇p ←→ |p]

Here it is seen that the dotted indices are used to denote left-chiral fermions and undotted
indices are used to denote right-chiral fermions. The Weyl spinors are related by the
Hermitian conjugate,

|p⟩† = [p|, |p]† = ⟨p|. (12)
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A new graphic representation for the spinors is now introduced [2]:

⟨pi| = ⟨i| = i ⟨pj| = ⟨j| = j,

[pi| = [i| = i [pj| = [j| = j.

The dashed lines in a diagram now represent either a fermion or an anti-fermion with left
chirality. The solid line in a diagram represent either a fermion or an anti-fermion with
right chirality.

It is now possible to define what we call the ’flow’ of chirality.

i j = ϵαβλi,βλj,α = ⟨ij⟩.

i j = ϵα̇β̇λ̃
β̇
i λ̃

α̇
j = [ij].

In this step, we introduced the Levi-Civita tensor to lower and raise indices,

ϵab = ϵȧḃ =

[
0 1
−1 0

]
(13)

ϵab = ϵȧḃ =

[
0 −1
1 0

]
(14)

Thus, the amplitude for a given process is given by combinations of the contractions [ij]
and ⟨ij⟩, as the contractions are the basic Lorentz invariant quantities [2]. As seen in Eq.
(13) and Eq. (14), the Levi-Civita tensor is anti-symmetric. Consequently, [pp] = ⟨pp⟩ = 0.

3.3 Vertices and Propagators

Consider the following fermion-photon vertex given by the Feynman rules

f

γ

f̄

= ieQfγ
µ = ieQf

[
0 σµ

σ̄µ 0

]
.

In the chiral representation of the γ-matrices, it is divided into two parts, one with σµ and
one with σ̄µ [2].
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ieQf

√
2

α

β̇

and ieQf

√
2

α̇

β

Since the included fermions can have different chiralities, only the diagram with the correct
chirality contributes to the amplitude. Intuitively, fermion propagators are also divided
into two parts in the chiral representation. Consider the fermion propagator

← p =
ipµγ

µ

p2
=

i

p2

[
0 �p

�̄p 0

]
Here, a new notation is introduced to simplify the expression,

��̄p = pµσ̄
µ,

�p = pµσ
µ. (15)

The first part of the fermion propagator in chiral-representation contains the factor i
p2 �p,

while the second part contains i
p2 �̄p. Introducing the momentum-dot notation [2], the

fermion propagators are given by

pµσ
µ −→ i

p2 α̇ β
p

,

pµσ̄
µ −→ i

p2 α β̇
p

.

The value of the momentum-dot is the sum of all contributing momenta.

Moreover, the factor given by a propagating photon with momentum p is defined as

−igµν
p2
.

The chirality-flow formalism of the propagating photon is, like a fermion, divided into two
parts [2]. However, only the part with allowed chirality contributes to the amplitude. The
allowed chiralities depend on the chiralities of the fermions in the process.
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Figure 1: Figure of one fermion line with two external photons. The figure depicts how the
chirality of a fermion changes because of photons and where the momentum-dot is located.

− i
p2

and − i
p2

Only the diagram with allowed arrow direction will contribute to the amplitude. An
interaction can also contain external photons, that interact through a vertex. Figure
1 shows how an external photon changes the chirality along the fermion line through
a momentum-dot. The external photon is denoted by its momemtum p and its reference
vector r [2]. The reference vector can be chosen arbitrarily given it follows the requirements

r2 = 0 , p · r ̸= 0. (16)

The reference vector is directly related to the polarization vector. The polarization vector
is given by

ϵµL(p, r) =
|r⟩[p|
⟨rp⟩

or
|p]⟨r|
⟨rp⟩

, (17)

ϵµR(p, r) =
|r]⟨p]
[pr]

or
|p⟩[r|
[pr]

, (18)

where ϵµL denotes an incoming photon with negative helicity or an outgoing photon with
positive helicity. Similarly, ϵµR denotes an incoming photon with positive helicity or an
outgoing photon with negative helicity.

3.4 Applying the chirality-flow formalism

It is now possible to calculate the amplitude of an interaction using the chirality-flow
formalism. When studying any interaction of massless fermions, each fermion can have
either left or right chirality, as explained in Section 2. Hence, the calculations are done by
assuming the chirality of each fermion. As explained in Sections 3.3 and 3.2, the chirality of
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an outgoing fermion-line is dependent on the chirality of the connected incoming fermion-
line. As shown in Figure 1, an incoming right-chiral fermion changes to a left-chiral fermion,
and vice versa.

Re-visiting the example calculated in Section 2, the chirality-flow diagram can now be
defined.

e−

e+

µ−

µ+

−−−−→

1L

2R

3L

4R

In this case, the fermions are assumed to be left-chiral and the anti-fermions are assumed
to be right-chiral. The calculations become

(
√
2ei)2 × −i

s12
× [13]⟨24⟩,

where s12 = (p1 + p2)
2 = (p3 + p4)

2 comes from momentum conservation. Dissecting the
calculations, each vertex contributes with a factor (

√
2ei)2 where the electric charge of the

included particle is e. The factor −i
s12

comes from the propagating photon, [13] comes from
following the chirality-flow of the dashed line and ⟨24⟩ comes from following the chirality-
flow of the un-dashed line [2]. This is an extreme simplification from using the standard
Feynman rules.

Now, consider an interaction involving external photons. Re-using the example from Sec-
tion 3.4 with defined chiralities,

r3 p3 r4 p4

p1, R p2, L

p1 + p3

The calculation of the scattering amplitude becomes

(
√
2ei)2 × 1

(p1 + p3)2
× 1

⟨3r3⟩[r44]
× ⟨1r3⟩ ×

(
⟨31⟩[1r4] + ⟨33⟩[3r4]

)
× [42]. (19)
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Figure 2: Depiction of process only including external fermions, showing the direction of
the chirality-flow arrows.

Letting r3 = p1 would make the Eq. (19) equal zero and the diagram would not contribute
to the total scattering amplitude. This is a consequence of the Levi-Civita tensor being
anti-symmetric.

4 Reducing the number of diagrams using chirality-

flow

Considering the previously presented theory, the number of contributing diagrams can be
reduced. The interesting question is, how many diagrams can be removed?

This result is found by calculating the probability of all photons having the correct chirality
for the diagram to contribute to the amplitude. All diagrams are not contributing since
each fermion and photon can be either left- or right chiral.

As seen in Eq. (19), the calculations are more involved when considering a process with
external photons. Only including external fermions results in simpler calculations and
the number of contributing diagrams is reduced because the chirality-flow arrows have to
match. When including external photons, the reference vector can be chosen arbitrarily,
which means that it can be chosen such that diagrams equal zero and do not contribute
to the amplitude.

4.1 Reducing the number of diagrams including external fermions

Here, the amount of simplification using the chirality-flow formalism compared to standard
Feynman rules is calculated, considering processes with only external fermions. A visual
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presentation of the process is given in Figure 2. Considering the chiralities of the interacting
fermions limits the number of possible diagrams.

In Section 3.2, it was explained how the fermions are contracted and how the chirality of
a fermion changes in an interaction. Another way of formulating this is by stating that
the number of incoming arrows has to equal the number of outgoing arrows. An incoming
fermion will change chirality once when interacting with a photon. In the case of multiple
photons, there will always exist a momentum-dot that also changes the chirality once. This
applies for any interaction between the particles. This means

nL,in = nR,out, nR,in = nLout . (20)

Without applying the chirality-flow formalism, the number of possible diagrams is given
by the possible outcomes, for a given set of incoming particles. This means the number of
contributing diagrams is given by the number of ways the incoming arrows can be arranged
in. Without considering the chirality of fermions, this becomes the factorial of the number
of incoming fermions,

(nf,in)!, (21)

Since each incoming arrow can connect to any outgoing arrow, the number of possible
diagrams is instead given by

(nL,in)!× (nR,in)!. (22)

The result could be given in terms of nR,out and nL,out, but the result is symmetric under
nL ↔ nR. This means, the only case where the number of contributing diagrams is not
decreased is when all incoming particles have the same chirality. Additionally, there is no
simplification if all fermions have different flavor since it would limit the number of ways
the fermions can be arranged in. The effect of hacing different flavors is seen in the example
used in Section 3.4, e−e+ −→ µ−µ+. Since this process has only one diagram, there will
be no simplification.

4.2 Reducing the number of diagrams using chirality of photons

Here, the simplification that the chiralty-flow formalism brings to processes including ex-
ternal photons, is calculated. Unless stated otherwise, the calculations are done for one
fermion-line. Let nL be the number of left-chiral photons and nR the number of right-chiral
photons. nγ is defined as nγ = nL + nR. To confirm that the results are correct, they are
obtained using two different methods.

Method 1

The first method entails identifying the probability of a diagram being non-vanishing and
contributing to the amplitude. It is assumed that external photons and one propagating
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photon are included in the interaction. Although the calculations could be done for many
propagating photons, only one is included for simplicity. The interaction has the following
form,

1L 2R

r3 p3 p4 r4

The gray circle is used to show that the propagating photon could be connected to anything.
Although only one fermion-line is considered, it could be part of a bigger process. The gray
circle could be ignored and the result would be the same, but it is used to make it clear that
one photon is a propagating photon. Since the fermions have fixed chiralities, the chiralities
of the left and right photons, on the fermion-line, are already determined for the diagram
to be non-vanishing. Following the flow of chirality, the first requirement for the diagram to
be non-vanishing is for the left photon to be left-handed. This comes from setting r3 = p1.
The reference vector is chosen to equal the momentum it is connected to, such that the
contraction becomes 0. This choice of reference vector is specific for this interaction and
the optimal choice of reference vector would change if any involved momenta change. The
probability of this happening is calculated by identifying which photons could be the left
photon to give a non-vanishing diagram. A non-vanishing diagram is called a surviving
diagram and a diagram with a left-handed left photon is said to survive the left side.

Now, it is being studied in how many ways the diagram can survive the left side. The left
photon can either be a left-chiral photon or the propagating photon. This results in nL+1
possibilities for the left photon. Without requiring the diagram to survive the left side,
the left photon could be any of the external photons, nγ or the propagator. This gives a
total of nγ + 1 possibilities. Hence, the probability of the diagram surviving the left side
is given by

Psurvive,left =
nL + 1

nγ + 1
. (23)

Assuming the diagram survives the left side, the diagram needs to survive the right side
as well. Thus, the right photon needs to be right-handed. Which photon the right photon
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could be depends on the left photon, since the propagating photon could be either of them
in the case of a surviving diagram. This can be divided into two cases:

First case: The left photon is assumed to be one of the external photons, nL. Assuming
the diagram survives the left side, the total number of possibilities for the left photon is
nL + 1. The probability of the left photon being an external photon becomes

Pleft,case 1 =
nL

nL + 1
. (24)

The right photon could be one of nR or the propagating photon. Requiring the diagram to
survive, the total number of possibilities for the right photon is nR +1. Without requiring
the diagram to survive the right side, it could be any of the remaining photons, nγ. The
probability of the diagram surviving the right side then becomes

Pright,case 1 =
nR + 1

nγ

. (25)

The probability of the diagram surviving the right side after surviving the left side, in the
first case, becomes

Pcase 1 = Pleft,case 1 × Pright,case1 =
nL

nL + 1
× nR + 1

nγ

. (26)

Second case: The left photon is assumed to be the propagating photon. As in the first
case, there are nL + 1 possibilities for the left photon. The probability of the left photon
being the propagating photon is

Pleft, case2 =
1

nL + 1
. (27)

The right photon can now be one of the nR photons, for the diagram to survive the right
side. Without requiring the diagram to survive, the right photon could be any of nγ

photons. The probability of the diagram surviving the right side is

Pright, case 2 =
nR

nγ

. (28)

The probability of the diagram to survive the right side after surviving the left side, in the
second case, becomes

Pcase 2 = Pleft, case 2 × Pright, case 2 =
1

nL + 1
× nR

nγ

. (29)

The probability of the diagram surviving the right side in any of the cases is given by the
sum

Psurvive,right = Pcase 1 + Pcase 2 =
nL(nR + 1)

nγ(nL + 1)
+

nR

nγ(nL + 1)
. (30)
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For a diagram to survive in a process both sides need to survive simultaneously. Requiring
this, the total probability of a diagram being non-vanishing is given by

Psurvive = Psurvive,left × Psurvive,right =
nL + 1

nγ + 1
× nLnR + nL + nR

nγ(nL + 1)
=
nLnR + nγ

nγ(nγ + 1)
. (31)

Throughout the calculations, we note that the chiralities of the photons are assumed.
However, the result in Eq. (31) is symmetric under the change nL ↔ nR, as it must be.

Method 2

The second method is to calculate the probability of a diagram being non-vanishing by
considering the configuration of photons with assumed chiralities. That is, calculating

Psurvive =
# of non-vanishing diagrams

total # of diagrams
. (32)

On one fermion-line, the number of possible diagrams is given by the number of ways the
photons can be arranged. Assuming there is only one propagating photon apart from the
external photons, the total number of diagrams is (nγ + 1)! in all cases.

To obtain the number of diagrams that are non-vanishing the chiralities of the fermions
have to be considered. For a diagram to survive both sides, the left photon needs to be
left-handed and the right photon needs to the right-handed. The remaining photons can
be arranged in any order. As in Method 1, the propagating photon can be either the left-
or right photon in the case of a surviving diagram. This means that the right photon is still
dependent on how the left side survives and the calculations are divided into two cases,
accordingly.

First case: The left photon is assumed to be an external photon, nL, meaning there are
nR + 1 possibilities for the right photon. After fixing the left and right photons, there
are nγ − 1 left that can be arranged in any order. Hence, the total number of surviving
diagrams, in this case, is given by

# of surviving diagrams = nL(nR + 1)(nγ − 1). (33)

The probability of a diagram surviving, in this case, becomes

Psurvive,1 =
nL(nR + 1)(nγ − 1)!

(nγ + 1)!
. (34)

Second case: The left photon is assumed to be the propagating photon, leaving nR

possibilities for the right photon. As in case 1, there are nγ − 1 photons remaining that
can be arranged in any order. The total number of diagrams, in this case, is given by

# of surviving diagrams = 1 · nR(nγ − 1)!. (35)
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The probability of a diagram surviving, in this case, becomes

Psurvive,2 =
1 · nR(nγ − 1)!

(nγ + 1)!
. (36)

The total probability of a diagram surviving in either of the cases is given by the sum

Psurvive = Psurvive,1 + Psurvive,2 =
nL(nR + 1)(nγ − 1)! + nR(nγ − 1)!

(nγ + 1)!
=

=
nL(nR + 1) + nR

(nγ + 1)nγ

=
nγ + nLnR

nγ(nγ + 1)
. (37)

This is the same result as in Method 1. The results are intuitively confirmed by first letting
nL = nR, giving

nL = nR =
nγ

2
=⇒ nγ + nLnR

nγ(nγ + 1)
=
nγ +

n2
γ

4

n2
γ + nγ

. (38)

Taking the limit when letting the number of photons increase to infinity results in

lim
nγ→∞

nγ +
n2
γ

4

n2
γ + nγ

−→ 1

4
. (39)

When considering a diagram that includes a very large number of photons, the probability
of the diagram surviving is given by the probability of the left and right side surviving
simultaneously. Since each photon can be either left-handed or right-handed the probability
of a diagram surviving should approach 1

2
× 1

2
= 1

4
, in agreement with the above.

4.3 Summing over helicities

The results in Eq. (31) and Eq. (37) give the probability of a diagram surviving assum-
ing chiralities of all photons. To generalize the result and obtain a probability without
knowing the configuration of chiralities, the result is summed over all possible chirality-
configurations. Summing over all possible chiralities is equivalent to letting the number of
left-handed photons go from zero to nγ. Which photons are left-handed does not matter.

For a given number of left-handed photons, the number of ways they can be distributed,
throughout the total number of photons, is given by the binomial coefficient(

nL

nγ

)
=

nγ!

nL!(nγ − nL)!
. (40)

Here, the number of left-handed photons is still assumed to be known. The probability of
having a specific amount of left-handed photons is given by

nγ!

nL!(nγ − nL)!
× 1

2nγ
, (41)
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where 2nγ is the total number of chirality-configurations considering that each photon can
be either left- or right-handed. The probability of the diagram surviving, for any value of
nL, becomes

nγ∑
nL=0

[
nL!

nL!(nγ − nL)!
× 1

2nγ
× nγ + nLnR

nγ(nγ + 1)

]
, (42)

where nR can be expressed as nγ − nL. Summing over all possible values of nL make
the calculations only depend on nγ. As the result for a specific chirality-configuration,
this result is symmetric under nL ↔ nR. Letting nγ → ∞ and nL = nR, Eq. (42)
approaches the value 1

4
. To see the dependence on the number of photons, the probability

of a diagram surviving is plotted as a function of nγ in Figure 3. It should be mentioned
that the chiralities of the fermiosn are fixed and could differ. If the incoming fermion were
to be right-chiral the outgoing fermion needs to be left-chiral, meaning the chirality of each
photon needs to change. Thus, the calculations would be the same if the chirality of the
fermions change.

Figure 3: Plot of the probability of a diagram with one fermion-line surviving as a function
of the number of photons on the fermion-line. The plot shows the probability when the
number of external photons goes from 0 to 15. The propagating photon is not included
in the external photons, meaning there will always be at minimum one photon on the
fermion-line.
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4.4 Considering more than one fermion-line

The results in Sections 4.2 and 4.3 are true for processes with only one fermion-line. Con-
tinuing, the results can be generalized further by considering more than one fermion-line.
Such a process is shown in Figure 4.

Figure 4: Depiction of how a process with two fermion-lines could look like. The number
of photons on each line is allowed to vary.

As seen in Figure 4, there is still only one propagating photon between the lines. This
means the results in Sections 4.2 and 4.3 are true for each line. However, the photons
could be on any of the fermion-lines, which needs to be included in the total probability
of the diagram surviving. It is assumed that only the total number of photons is known,
no photons are fixed to a specific line. Let n1 be the photons on the first line and n2 be
the photons on the second line. The total number of photons is nγ = n1 + n2.

Firstly, the probability of surviving the first and second fermion-line is calculated. Within
n1 and n2 there are a number of left-handed and a number of right-handed photons. The
probability to survive one of the lines is given in Eq. (37). The probability of the first line
surviving, for any number of left-chiral photons, is

Pline1 =

n1∑
nL=0

[
nL!

nL!(n1 − nL)!
× 1

2n1
× n1 + nLnR

n1(n1 + 1)

]
, (43)

and the probability of surviving the second line is

Pline2 =

n2∑
nL=0

[
nL!

nL!(n2 − nL)!
× 1

2n2
× n2 + nLnR

n2(n2 + 1)

]
, (44)

In Equation 43 and Equation 44, nL and nR are different for each fermion-line. Next, the
possible ways the photons can be distributed between the fermion-lines is calculated. Since
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Figure 5: Depiction of a configuration with n1 = 1 photons on the first fermion-line.

n2 = nγ−n1, it is enough to calculate how many values n1 can take. Without caring about
the order of the photons, the numbers of ways n1 photons can be picked out from nγ is(

n1

nγ

)
=

nγ!

n1!(nγ − n1)!
. (45)

Since each photon can be on one of two fermion-lines, the total number of configurations
is 2nγ . The probability of having a specific configuration becomes

nγ!

n1!(nγ − n1)!
× 1

2nγ
. (46)

For a diagram to survive with a certain configuration of photons, the probability becomes

Pline1 × Pline2 ×
nγ!

n1!(nγ − n1)!
× 1

2nγ
. (47)

Finally, the result is summed over all possible values of n1. The result becomes

nγ∑
n1=0

(
Pline1 × Pline2 ×

nγ!

n1!(nγ − n1)!
× 1

2nγ

)
. (48)

Figure 5 shows a process when nγ = 1, where each photons could have any chirality. The
result of Eq. (48) for nγ = 1 is 1

2
, which is reasonable and expected. The limit when

letting nγ grow to infinity is
(
1
4

)2
, as expected. Again, to see the dependence on the

number of photons, the probability of a diagram surviving is plotted as a function of the
total number of photons on the fermion-lines in Figure 6. If the chiralities would change
on both fermion-lines, the calculcations would be the same, following the same reasoning
as for one fermion-line.
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Figure 6: Plot of the probability of a diagram with two fermion-lines surviving as a function
of the total number of photons on the fermion-lines. The plot shows the probability when
the number of external photons goes from 0 to 20.

As explained earlier, including two fermions-lines means performing the same calculations
twice, for different number of photons. Including three fermion-lines would become more
complicated since there are two propagators attached to one of the fermion-lines. Such
a configuration is shown in Figure 7. The factor (n + 1), which is seen in Eq. (43) and
Eq. (44), would become (n + 2) for the third fermion-line. Hence, there is an additional
configuration the third fermion-line could have for the diagram to survive. Considering a
larger number of fermion-lines, the same reasoning would be applied for each line.
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Figure 7: Depiction of a configuration with three fermion-lines, showing one of the lines
must have two propagators attached to it.
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5 Conclusion

In conclusion, this thesis has given a way to understand and calculate the simplifications
the chirality-flow formalism brings to massless QED. This has been done by calculating the
number of contributing diagrams when using the chirality-flow formalism compared to the
standard Feynman rules. The work began with noticing the calculation of the scattering
amplitude look different when including and excluding external photons. This meant the
calculations can be simplified in different ways. For fermions, the number of contributing
diagrams is reduced due to the constraints on their chirality. When including photons, the
number of contributing diagrams reduces due to a limited number of chiralities resulting
a contributing diagram. The results are first presented by assuming a configuration of
photons and chiralities of fermions and later summed over all possible configurations.

The results presented in this thesis prove that using the chirality-flow formalism brings
significant simplifications. However, the work only considers simplification through reduc-
ing the number of contributing diagrams and does not explore how the algorithms used
to calculate the scattering amplitudes can be simplified for the surviving diagrams. The
applications of the chirality-fow formalism in QCD has not been considered in this thesis.
Including QCD would result in very complex diagrams and involved calculations because
the diagrams can become much more involved when including gluons.
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