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Abstract

The existence of a baryon number violating process is one of Shakarov’s conditions

to explain the observed baryon asymmetry in the universe. The Standard Model is

nearly symmetric with respect to the baryon number, and hence we are motivated to

look for physics beyond the Standard Model. In this thesis, we consider an effective

field theory operator that couples the neutron to a proposed dark fermion X, leading

to decay channels containing mesons and photons. The unpolarized width for these

decays is computed analytically. The model is subsequently implemented in CalcHEP

via the definition of a new effective vertex. This allows for a Monte Carlo simulation

of the three-body decay n → X + γγ, where the off-shell meson decays into a pair of

photons. The narrow width of the mesons is seen in the invariant mass reconstruction

of the photons in this channel. The case of a small mass gap between the neutron and

the decay products is considered, where these channels are kinematically forbidden

for bound neutrons in stable nuclei. We conclude that the analyzed decays are less

experimentally constrainted for free neutrons, and argue that searches for exotic neu-

tron decays with a small mass gap could take place at the upcoming HIBEAM and

NNBAR experiments at the European Spallation Source.
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Popular Science Summary

Everything around us is made of matter, consisting of three fundamental building blocks: the

positively charged proton, the negatively charged electron and the neutron without any charge.

All types of matter have twins with opposite electric charge, called antimatter. The three funda-

mental building blocks of antimatter are the negatively charged antiproton, the positively charged

positron and the neutral antineutron. When a matter and antimatter particle come together, they

annihilate each other in a big burst of energy.

The current leading theory of particle physics, called the StandardModel, is nearly symmet-

ric with respect to matter and antimatter. This means that every interaction allowed within the

Standard Model creates nearly equal amounts of matter and antimatter. However, in everyday

life we only encounter matter. After all, if there would be any antimatter around us, it would

collide with the ordinary matter and annihilate into pure energy.

One of the current questions in physics is why there is somuchmatter, and so little antimatter

in the universe. This observation has led physicists to speculate that there might be interactions

beyond the Standard Model. These interactions would violate the matter-antimatter symmetry,

allowing for a process that creates an excess of matter.

In this thesis, we consider such a process and analyze its consequences. Namely, we consider

a model where the neutron decays to a new stable particle and an unstable particle, which can in

turn decay to rays of energy. The new particle would not interact with particles in any other way,

and hence it would create a different type of matter called dark matter.

This process would destroy a neutron, leading to matter disappearing instead of appearing.

However, in the dense conditions of the early universe, the inverse of this process could occur fre-

quently, leading to the creation of matter. In contrast, the process would be rare in the conditions

of a laboratory. Many experiments have searched for such exotic neutron decays, putting very

strict experimental limits on this model.

However, most of these experiments deal with bound neutrons, neutrons tied to othermatter.

If the difference between the mass of the neutron and the mass of the particles that it decays into

is small, this decay cannot happen for bound neutrons. In contrast, the decay is possible for free

neutrons.

The upcoming HIBEAM/NNBAR experiments at the European Spallation Source (ESS)

analyze large amounts of free neutrons, and hence could observe this decay. In this thesis, we

consider this case of a small mass difference and compute how rare the processes allowed by the

model would be under this condition. Additionally, we run numerical simulations which allows us

to see what it would be like to observe these interactions in experiments. We conclude that this

model is a candidate for observation at HIBEAM/NNBAR and that the possibility of observing

such exotic neutron decays should be further investigated.
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1. Introduction

The universe contains an observed asymmetry, with the amount of matter vastly exceeding the

amount of antimatter. This asymmetry may be quantified by the concept of the baryon number B.
In the Standard Model (SM) framework, quarks are assigned B = 1

3 with all other particles having

B = 0. Consequently, baryons such as the proton and the neutron have B = 1. Corresponding

antiparticles carry a baryon number of the opposite sign.

The existence of a process that violates baryon number is required to explain the baryon

asymmetry of the universe, as formulated by Sakharov [1]. However, the SM admits an accidental

global symmetry, leading to B being conserved as a Noether charge [2]. This symmetry only exists

on a classical level, with non-perturbative quantum effects leading to baryon number violation

within the Standard Model [3]. However, these effects are heavily suppressed at low temperatures.

This has been proposed as a source of baryogenesis in the early universe [4], but it is also argued

that it is insufficient to explain the amount of matter in the universe [5]. Hence, we are motivated

to look for processes beyond the Standard Model (BSM).

In this thesis, we consider a baryon number violating process where the neutron n decays

into a dark fermion X and SM particles. The term dark refers here to the absence of other

interactions with the SM, leading to missing energy in particle detection. If no further interactions

are postulated, such a fermion could also be a candidate for cosmological dark matter. We will

analytically calculate the lifetime of such exotic decays as a function of the free parameters of

the theory. Furthermore, we will also discuss the implementation of this model in the CalcHEP

software [6] which can be used for extended phenomenology. Using CalcHEP, we will then analyze

the three-body n→ X + γγ decay.

1.1 The mass gap and free neutrons

Large mass experiments such as Super-Kamiokande [7] have put strict experimental constraints on

exotic neutron decays like the ones discussed in this thesis. These constraints will be even further

improved by future experiments such as the Deep Underground Neutrino Experiment (DUNE)

[8] and Hyper-Kamiokande [9].

However, these large mass experiments only deal with bound neutrons. When the total

mass of the decay products is close to the neutron mass, bound neutrons in stable nuclei do not

have sufficient energy available to escape their potential well. This is the mechanism that forbids

β-decay for most bound neutrons. Free neutrons are not in a potential well, and hence they do

have the possibility of β-decay.

This argument also extends to the case of exotic decays. Large mass experiments therefore

have a blind spot in their phase space when the total mass of the final state particles is approx-

imately equal to the neutron mass. However, since the mass of the dark fermion X is unknown,

such decays can always be hypothesized. If the operator that would induce a small mass gap decay

would also induce decays with a larger mass gap, one could further speculate that the coupling of
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this operator falls off quickly at large momenta of the outgoing particles, as is the case for decays

with a large mass gap.

This narrow area of the phase space can only be explored by experiments with free neutrons.

The proposed HIBEAM [10] and NNBAR [11] experiment at the European Spallation Source

(ESS) are potential candidates to explore this area. Although the amount of neutrons observed at

large mass experiments exceeds the amount of neutrons observed at HIBEAM/NNBAR by several

orders of magnitude, HIBEAM/NNBAR handles free neutrons.

This thesis is written with the HIBEAM/NNBAR experiments in mind, and as a source for

future publications on the possibility of measuring exotic decays at HIBEAM/NNBAR. We will

therefore also consider the case of a small mass gap for the decays analyzed in this thesis.

2. Theory and Methodology

This chapter discusses the effective Lagrangian under consideration, as well as the theoretical

framework used to calculate an unpolarized decay width Γ (and lifetime τ = ℏ/Γ) from a Feynman

amplitudeM. A brief overview of vertex implementation in the CalcHEP software is also given.

Throughout this thesis, we will work in natural units such that ℏ = c = 1.

2.1 The effective Lagrangian

In this thesis, we postulate an effective field theory operator that violates baryon number conser-

vation by one unit
(Xudd)R
M2

(2.1)

where X is a stable new dark fermion field and u, d denote the fields of the up- and down-quark,

respectively. All fields involved have right-handed chirality, as denoted by the subscript R. The

constant M ≫ 1TeV is the unknown new physics scale. As we only postulate a single operator,

any coupling constant is absorbed in the definition ofM [12, 13].

This effective field theory operator couples the right-handed neutron PRn = 1
2(1 + γ5)n

to the dark fermion and the π0 and η meson fields. The Lagrangian governing this interaction

is

L = X̄c(Cmix + iCXπ0π0 + iCXηη)PRn. (2.2)

which naturally also violates baryon number conservation by one unit [13, 14]. Here, C denote

real constants that we define below. Notice that this Lagrangian allows right-handed neutrons to

mix with the dark fermion, but we have not assumed that the dark fermion mass is equal to the

neutron mass. Hence, this mixing only occurs via off-shell neutrons.

Additionally, we may add a Lagrangian that couples the neutron to the π0 and η meson

fields, as well as the photon field Aµ with four-momentum q via the magnetic dipole moment of

the neutron. In contrast to equation (2.2), this Lagrangian conserves the baryon number. It is

given by

L = (Cnπ0∂µπ
0 + Cnη∂µη)n̄γ

µγ5n+ iCnγn̄σ
µνqνF2(q

2)nAµ (2.3)
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where F2(q
2) is a form factor [13]. If the photon is created on-shell, then q2 = 0 and F2(0) =

−1.9130427(5), the magnetic moment of the neutron [15]. Together, these terms give rise to the

Feynman rules displayed in table 2.1.

Table 2.1: Feynman rules for the Lagrangians in equations (2.2) and (2.3) (ϕ = π0, η).

Vertex Factor

pϕ
n ϕ

n

−Cnϕ/pϕγ
5

q
n γ

n

−Cnγσ
µνqνF2(q

2)

n X iCmixPR

n ϕ

X

−CXϕPR

In equations (2.2) and (2.3), we have defined the constants

Cnπ0 ≡ −
D + F

2fπ
(2.4)

Cnη ≡
3F −D
2
√
3fπ

(2.5)

Cnγ ≡
√
πα

mp
(2.6)

Cmix ≡
β

M2
(2.7)

CXπ0 ≡
β

2fπM2
(2.8)

CXη ≡ −
√
3β

2fπM2
(2.9)

where D = 0.80(1), F = 0.47(1), β = 0.0120(26)GeV3 are parameters determined via lattice
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QCD methods [16], fπ ≈ 130.2(8)MeV/
√
2 is the pion decay constant [15], α is the fine-structure

constant and mp is the proton mass. Notice that in this framework, the only undetermined

parameters are the mass of the dark fermion mX and the new physics scaleM .

2.2 The coupling of π0 and η to photons

The π0 and η mesons are unstable particles, which can decay into a state containing two photons.

The branching ratio for this decay is approximately 98.823(34)% and 39.36(18)%, respectively

[15]. These photons are a good candidate for detection, as they have a relatively high momentum

of mϕ/2 in the rest frame of the meson.

ϕ

γ

γ

Figure 2.1: The effective vertex of a meson ϕ = π0, η decaying into two photons.

The decay of the π0 and η mesons into two photons is governed by relevant terms of the

Wess-Zumino-Witten Lagrangian

LWZW = − α

8πfπ
ϵµνσρF

µνF σρ(π0 +
1√
3
η8) (2.10)

where ϵµνσρ denotes the Levi-Civita symbol and Fµν is the electromagnetic field strength tensor

[17]. Expanding the field strength tensors and rearranging the indices according to the Levi-Civita

symbol, we obtain

LWZW =
α

2πfπ
ϵµνσρ(i∂

µAν)(i∂σAρ)(π0 +
1√
3
η8). (2.11)

The physical η meson is a combination of the η8 and η1 eigenstates

η = η8 cos θ − η1 sin θ (2.12)

with a mixing angle θ. The term in the Lagrangian can be multiplied by a factor to compensate

for this, which can be derived from η− η′ mixing and fitted to experimental data [18, 19]. For our

present purposes, it suffices to approximate this factor as
√
3 and simply replace η8/

√
3→ η.

2.3 Kinematics of two-body decays

Using the Feynman rules, the invariant amplitudeM for a given process can be computed via

a set of Feynman diagrams. The width integrated over the angular distribution for a two-body

decay of a particle of massM as a function of |M|2 is given by

Γ =
|p|

8πM2
|M|2 (2.13)

where p is the three-momentum of one of the decay products in the rest frame of the decaying

particle. By conservation of four-momentum, |p| may be expressed as

|p| = 1

2M

√
λ(M2,m2

1,m
2
2) (2.14)
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wherem1 andm2 are themasses of the decay products andλ(x, y, z) = x2+y2+z2−2xy−2xz−2yz
is the Källén function [15].

Furthermore, conservation of four-momentum also implies that

M2 = p2M = (p1 + p2)
2 = m2

1 +m2
2 + 2(p1 · p2) (2.15)

m2
1 = p21 = (pM − p2)2 = m2

1 +m2
2 − 2(pM · p2) (2.16)

m2
2 = p22 = (pM − p1)2 = m2

1 +m2
2 − 2(pM · p1) (2.17)

where pM denotes the four-momentum of the particle of mass M and p1, p2 denote the four-

momenta of the particles with mass m1 and m2, respectively. Hence we see that all products of

four-momenta can be expressed in terms of the invariant masses of the involved particles.

2.4 Summing over fermion spin states

The Feynman amplitudeM assumes that the spin states of the incoming and outgoing particles

are known. This leads to the decay width of a polarized process. In practise, the involved particles

are often unpolarized. Hence, we wish to average over the spin states of the initial state particles

and sum over the spin states of the final particles.

Suppose thatM ∼ [s̄aΓsb], where sa = ua, va is a spinor of a particle a with mass ma and

four-momentum pa. Here ua (va) denotes the spinor of an (anti)fermion. Then for any 4 × 4

matrix Γ, ∑
spins

|M|2 ∼
∑
spins

[s̄aΓsb][s̄aΓsb]
∗ = Tr[Γ(

∑
spins

sbs̄b)Γ̄(
∑
spins

sas̄a)] (2.18)

where Γ̄ ≡ γ0Γ†γ0. For ordinary spinors, we have∑
spins

sas̄a = /pa ±ma (2.19)

where the mass term is positive when sa = ua, and negative when sa = va [20].

Suppose that instead of an ordinary spinor s, we have the charge conjugated spinor sc = Cs̄T ,

where C = iγ2γ0 is the charge conjugation matrix. It satisfies the properties [21]

Cγµ = −(γµ)TC (2.20)

C = −C−1 = −C† = −CT . (2.21)

We also note that

s̄c = (sc)†γ0 = (Cs̄T )†γ0 = −sTC†. (2.22)

For the spin sum in equation (2.19), we then obtain∑
spins

scas̄
c
a = −

∑
spins

Cs̄Ta s
T
aC

† = −
∑
spins

C(sas̄a)
TC†

= −C(/pa ±ma)
TC† = −C((γµ)T (pa)µ ±ma)C

† = /pa ∓ma.

(2.23)

We see that if the spinor is charge-conjugated, the mass term changes sign in comparison with

equation (2.19).
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2.5 The CalcHEP software

In order to do extended phenomenology, it is beneficial to implement the model in the CalcHEP

software. CalcHEP allows for the automatic calculation of cross sections and decay widths, as well

as Monte Carlo event simulation [6]. Furthermore, the generated events can subsequently be used

as input to detector simulations such as Geant4 [22–24].

To implement a model governed by a Lagrangian L in CalcHEP, one takes the functional

derivative of the action

S =

∫
L dx4 (2.24)

in momentum-space with respect to the fields involved. The resulting expression has a prefactor

in the form of a (potentially complex) scalar, and a Lorentz factor comprising of tensor expressions

and the γ-matrices. These two components, as well as the fields involved, are entered into a table

in CalcHEP.

Note that for this functional derivative, CalcHEP works directly with the charge conjugated

fields, not the Dirac conjugated fields. The functional derivatives for these fields relate to each

other via [6]
δ

δψc
= (C−1)T

δ

δψ̄
. (2.25)

The momentum-conserving δ-function and the (C−1)T term are implied in CalcHEP and do not

need to be entered explicitly [6]. All CalcHEP tables used in this thesis will be listed in appendix

A.

3. Results

This chapter covers the results obtained in this thesis. First, the width of the two-body decays

enabled by the Lagrangians in equations (2.2) and (2.3) is computed analytically. Then, the

implementation of these Lagrangians in CalcHEP is discussed, which is used to analyze the n →
X + γγ decay channel.

3.1 Two-body decays

The Feynman rules outlined in table (2.1) give rise to the neutron decaying to a dark fermion with

a photon or a meson in the final state. In this section, we calculate the widths for these two-body

decay channels in the case of unpolarized particles.

3.1.1 Decay with mesons

For the decayn→ ϕ+X (ϕ = π0, η), there is one contributionwithoutmixing and one contribution

with mixing. These are depicted in figures 3.1a and 3.1b, respectively. The Feynman amplitudes

for these diagrams are given by

Mnomix = −iCXϕv̄
c
XPRun (3.1)

Mmix = iCmixCnϕv̄
c
XPR

/pX +mn

m2
X −m2

n
/pϕγ

5un (3.2)

6



where we have used that the four-momentum of the off-shell neutron in the mixing diagram must

be equal to the four-momentum of the outgoing dark fermion by momentum conservation.

pϕ

n
ϕ

X

(a)

pϕ

pX

n

ϕ

n∗
X

(b)

Figure 3.1: Feynman diagrams of the two-body decay of the neutron n to a dark fermion X and
a meson ϕ = π0, η, (a) without mixing (b) with mixing of an off-shell neutron n∗ to the dark
fermion.

Using equations (2.18), (2.19) and (2.23) we can sum over the spin states of the total ampli-

tude ∑
spins

|M|2 =
∑
spins

|Mnomix +Mmix|2 = Tr[A(/pn +mn)γ
0A†γ0(/pX +mX)] (3.3)

where we have defined the 4× 4 matrix

A ≡ −iCXϕPR +
iCmixCnϕ

m2
X −m2

n

(PR(/pX +mX)/pϕγ
5). (3.4)

Using that γ5 is hermitian and anticommmutes with the other γ-matrices, we compute

γ0A†γ0 = iCXϕPL +
iCmixCnϕ

m2
X −m2

n

(γ5/pϕ(/pX +mX)PL) (3.5)

where PL = 1
2(1− γ

5).

With the use of the FeynCalc software in Mathematica [25–27], the trace of equation (3.3)

can be evaluated. The input to FeynCalc for this is given in appendix B. After simplifying with

four-momentum conservation, one obtains∑
spins

|M|2 = 1

(m2
n −m2

X)

(
−2CmixCnϕCXϕ

(
−m4

n(3m
2
X +m2

ϕ) + 3m2
nm

4
X +m6

n

+m4
Xm

2
ϕ −m6

X

)
+ C2

mixC
2
nϕ

(
−m4

n(m
2
X +m2

ϕ)−m2
n(6m

2
Xm

2
ϕ +m4

X)

+m6
n −m4

Xm
2
ϕ +m6

X

)
+ C2

Xϕ(m
2
n −m2

X)2(m2
n +m2

X −m2
ϕ)
)
.

(3.6)

Note that we wish to average, not sum, over the spin states of the incoming neutron. Hence

wemultiply by a factor 1
2 and use equations (2.13), (2.14) and (3.6) to obtain the decaywidth

Γ(n→ ϕ+X) =
1

32πm3
n(m

2
n −m2

X)2

√
−2m2

n(m
2
X +m2

ϕ) +m4
n + (m2

X −m2
ϕ)

2(
−2CmixCnϕCXϕ

(
−m4

n(3m
2
X +m2

ϕ) + 3m2
nm

4
X +m6

n +m4
Xm

2
ϕ −m6

X

)
+C2

mixC
2
nϕ

(
−m4

n(m
2
X +m2

ϕ)−m2
n(6m

2
Xm

2
ϕ +m4

X) +m6
n −m4

Xm
2
ϕ +m6

X

)
+C2

Xϕ(m
2
n −m2

X)2(m2
n +m2

X −m2
ϕ)
)

(3.7)

where it is implied that if mϕ +mX > mn, Γ(n → ϕ +X) = 0 due to the fact that the mass of

the final state of a particle decay cannot exceed the mass of the original particle by momentum

conservation.

ForM = 1015GeV, the width and corresponding lifetime as a function of the dark fermion
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mass are displayed in figures 3.2a and 3.2b, respectively. The propagation of the uncertainties in

the involved constants from section 2.1 is shown by the shaded region in figure 3.2b. The kink in

the graph is wheremη +mX = mn, and the decay channel with the η meson becomes disallowed.

The results derived here match with the results of reference [13].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
mX (GeV)

0.0

0.5

1.0

1.5

2.0

2.5

W
id

th
 (G

eV
)

1e−64
ϕ= π0

ϕ= η
Total width

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
mX (GeV)

1

2

3

4

5

Lif
et

im
e 

(y
ea

rs
)

1e32

(b)

Figure 3.2: (a) Decay width and (b) total lifetime of the n → ϕ + X (ϕ = π0, η) decay for
the new physics scale M = 1015GeV. The shaded region in (b) corresponds to the propagated
uncertainties from the involved constants. At the kink in the graph, the decay channel to an η
meson becomes disallowed due to the total mass of the final state particles exceeding the neutron
mass.

To simulate the small mass gap scenario, we may fixmX = mp +me −mϕ, whereme is the

electron mass. This creates a mass gap similar to that of ordinary β-decay. In this case, equation

(3.7) is a function of M alone and Γ(n → ϕ + X) ∝ M−4. The lifetime as a function of M is

displayed in figure 3.3.

108 109 1010 1011 1012 1013 1014 1015

M (GeV)

108

1012

1016

1020

1024

1028

1032

Lif
et

im
e 

(y
ea

rs
)

ϕ= π0

ϕ= η

Figure 3.3: Lifetime of the n→ ϕ+X (ϕ = π0, η) decay as a function of the new physics scaleM
for a mass gap similar to that of β-decay (mX = mp +me −mϕ).
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3.1.2 Decay with photons

The relevant diagram for the n→ γ +X decay is depicted in figure 3.4. The Feynman amplitude

for this process is given by

M = iCmixCnγ v̄
c
XPR

/pX +mn

m2
X −m2

n

σµνqνF2(0)unϵ
∗
µ (3.8)

where ϵµ denotes the polarization state of the photon with four-momentum q.

q

pX

n

γ

n∗
X

Figure 3.4: Feynman diagram of the two-body decay of the neutron to a dark fermion X and a
photon.

When summed over, the polarization states satisfy the replacement [20]∑
polarizations

ϵ∗µϵν → −gµν . (3.9)

With equations (2.18), (2.19) and (2.23) we therefore obtain∑
spins

∑
polarizations

|M|2 =
∑

polarizations

C2
mixC

2
nγF2(0)

2

(m2
X −m2

n)
2

Tr[Aαϵ∗α(/pn +mn)γ
0(Aβ)†γ0ϵβ(/pX +mX)]

(3.10)

= −
C2
mixC

2
nγF2(0)

2

(m2
X −m2

n)
2

Tr[Aβ(/pn +mn)γ
0(Aβ)†γ0(/pX +mX)]

(3.11)

where we have defined

Aµ ≡ iPR(/pX +mn)σ
µνqν . (3.12)

Using that (σµν)† = γ0σµνγ0, we find

γ0(Aµ)†γ0 = −iσµνqν(/pX +mn)PL (3.13)

which allows us to evaluate this trace with FeynCalc to obtain∑
spins

∑
polarizations

|M|2 = 2F2(0)
2C2

mixC
2
nγ

(
m2

n +m2
X

)
. (3.14)

The FeynCalc input used can be found in appendix B.

Note that the on-shell photon has no mass, so equation 2.14 simplifies to

|p| = 1

2mn
(m2

n −m2
X). (3.15)

Multiplying equation (2.13) by 1
2 to average over the spin sates of the incoming neutron, we obtain

the decay width for the channel containing a photon

Γ(n→ γ +X) =
C2
mixC

2
nγF2(0)

2

16πm3
n

(m4
n −m4

X). (3.16)
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The lifetime of this decay as a function of mX when M = 1015GeV is shown in figure 3.5a.

The propagation of the uncertainties in the physical constants from section 2.1 is shown by the

shaded region in this figure. The obtained expression matches the results of reference [13]. The

lifetime of this decay as a function ofM for the case of a mass gap similar to that of β-decay with

mX = mp +me is displayed in figure 3.5b. Note that Γ(n→ γ +X) ∝M−4.

The lifetime of the n→ γ+X is roughly 103 years longer than the lifetime of the n→ ϕ+X

decay. Additionally, in the case of a small mass gap, the photonwill have a very lowmomentum and

thus be hard to detect. Hence we focus on the n→ ϕ+X channel in the rest of this thesis.
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Figure 3.5: Lifetime of the n → γ + X decay (a) at the new physics scale M = 1015GeV as
a function of mX and (b) as a function of the new physics scale M for the case of a mass gap
similar to that of β-decay (mX = mp +me). The shaded region corresponds to the propagated
uncertainties from the involved constants.

3.2 Implementation in CalcHEP

This section discusses the implementation of the n→ ϕ+X and ϕ→ γγ vertex in CalcHEP. These

vertices will be used to analyze the n→ X + γγ decay.

3.2.1 The n→ ϕ+X vertex

The Lagrangian in equation (2.2) contains a term which mixes the neutron to the dark fermion.

Such a two-particle vertex is not allowed in CalcHEP. However, since we do not assume that

mX = mn, the mixing term is only relevant for off-shell neutrons. Hence we define the effective

vertex

10



pϕ

pX

n
ϕ

X

≡

pϕ

pX

n
ϕ

X

+

pϕ

pX

n

ϕ

n∗
X

= −CXϕPR +
CmixCnϕ

m2
X −m2

n

PR(/pX +mn)/pϕγ
5

(3.17)

which is a three-particle vertex that includes both the mixing and no-mixing contributions. The

Lagrangian corresponding to this effective vertex is given by

Leff = X̄c

(
iCXϕPR − i

CmixCnϕ

m2
X −m2

n

PR(γ
µ(i
←−
∂ µ) +mn)γ

ν(i∂νϕ)γ
5

)
n (3.18)

where
←−
∂ denotes the four-derivative acting on the fermion field to the left.

Besides the vertex given above, CalcHEP also requires the conjugate vertex. Hence we

compute the hermitian conjugate of equation (3.18)

L†eff = n†
(
−iCXϕPR + i

CmixCnϕ

m2
X −m2

n

γ5(−i∂νϕ)γ0γνγ0(γ0γµγ0(−i
−→
∂ µ) +mn)PR

)
γ0Xc

= n̄

(
−iCXϕPL − i

CmixCnϕ

m2
X −m2

n

γ5(−i∂νϕ)γν(γµ(−i
−→
∂ µ) +mn)PL

)
Xc

(3.19)

where
−→
∂ denotes the four-derivative acting on the fermion field to the right.

The relevant functional derivatives for the action

Seff =

∫
Leff + L†eff dx

4 (3.20)

are then given by
δSeff

δXδnδϕ
=

δSeff
δ(Xc)cδnδϕ

= (C−1)T
δSeff

δX̄cδnδϕ
(3.21)

and
δSeff

δncδXcδϕ
= (C−1)T

δSeff
δn̄δXcδϕ

(3.22)

where we have used equation (2.25). Additionally, in CalcHEP the momentum is taken to go in

to the vertex, whereas we have derived the Feynman rules for momenta going out of the vertex.

Hence we flip the sign of all momenta when implementing the vertices in CalcHEP. The full CalcHEP

tables with these vertices are given in appendix A.

For two-body decays such as n → ϕ +X, CalcHEP computes the decay width analytically

[6]. The total width for M = 1015GeV as computed by CalcHEP is displayed in figure 3.6. The

results match the analytical calculation done in section 3.1.

3.2.2 The ϕ→ γγ vertex

The Lagrangian given by equation (2.11) can be directly implemented in CalcHEP. This vertex is

also given in the tables in appendix A. Note that we multiply the vertex by a symmetry factor of 2

due to the two identical photons. With this vertex, CalcHEP computes a π0 width of 7.78 eV and

11



Figure 3.6: Decay width of n → ϕ + X (ϕ = π0, η) as a function of mX at M = 1015GeV,
generated by CalcHEP.

a η width of 520 eV. This compares well to the experimental values of

Γ(π0 → γγ) =
ℏ

8.43(13)× 10−17 s
· 98.823(34)% = 7.72(12) eV

and Γ(η → γγ) = 516(18) eV [15]. Note that since this is a two-body decay, CalcHEP does this

calculation analytically.

3.3 The n→ X + γγ decay

Using the implementedmodel, aMonte Carlo simulation can be run in CalcHEP for the n→ X+γγ

decay. The two contributing diagrams for this process are displayed in figure 3.7. The data

displayed in this section is an average of 40 Monte Carlo sessions with 1000000 events per session

for 8 distinct values of mX .

n

X

π0

γ

γ
n

X

η

γ

γ

Figure 3.7: Feynman diagrams for the three-body decay of the neutron n to a dark fermionX and
a pair of photons γγ. The process can occur via an off-shell π0 or η meson.

The width of this decay atM = 1015GeV as a function of mX is displayed in figure 3.8, as

well as the width of the n→ X +ϕ decay computed analytically in section 3.1. The values match

closely, which can be attributed to the short lifetime (i.e. narrow width) of the η and π0 meson.

This means that the mesons are created mostly close to the mass shell, and the process is similar

to that of the meson being created fully on-shell in the n→ X + ϕ process.

The fact that the mesons are created close to on-shell can be confirmed by performing an

invariant mass reconstruction with themomenta of the two photons. If two photons withmomenta

q1 and q2 originate from the decay of a single particle of massm andmomentum p, four-momentum

conservation allows m to be expressed in terms of the photon momenta

m =
√
p2 =

√
(q1 + q2)2. (3.23)
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Figure 3.8: The width of the n → X + γγ decay as computed in a Monte Carlo simulation in
CalcHEP compared to the width of the n→ X + ϕ (ϕ = η, π0) decay computed analytically. The
new physics scale is set toM = 1015GeV.

The invariantmass reconstruction of the photons in theMonte Carlo simulation formX = 0.2GeV

andM = 1015GeV is displayed in figure 3.9. The normalization in this graph is so that the total

area under the curve integrates to the total width of the process. The graph is indeed the shape

of two narrow Breit-Wigner distributions with sharp peaks at mπ0 and mη.
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Figure 3.9: Diphoton mass of the n→ X + γγ decay atmX = 0.2GeV and a new physics scale of
M = 1015GeV.

In the case of a small mass gap equivalent to that of β-decay (mX = mp +me −mϕ), only

the respective process with the off-shell ϕ can occur. The other meson would have to be too far

off-shell to make significant contributions to the decay width. The lifetime as a function of the

cutoff scale for the small mass gap case is displayed in figure 3.10. The results closely match those
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of the n → ϕ + X decay displayed in figure 3.3 due to the narrow width of the mesons. The

invariant mass reconstruction of the two photons in the small mass gap case is displayed in figure

3.11.
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Figure 3.10: Lifetime of the n→ X+γγ decay via an off-shell meson ϕ withmX = mp+me−mϕ

as a function of the new physics scaleM .
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Figure 3.11: Diphoton mass of the n → X + γγ decay via an off-shell meson ϕ with mX =
mp +me −mϕ at a new physics scaleM = 1015GeV, (a) ϕ = π0 (b) ϕ = η.

By implementing the neutron coupling to the π0 and ηmesons via the Lagrangian in equation

(2.3) in CalcHEP, decay channels with multiple photon pairs can be analyzed. An example of such

a decay channel is depicted in figure 3.12. These CalcHEP vertices are also given in the tables in

appendix A.

For every meson ϕ emitted by the neutron before decaying, an additional pair of photons is

created (ignoring other decay channels of ϕ). To ensure a small mass gap, the mass of X is given

by

mX = mp +me −
∑
i

mϕi
(3.24)
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n

n

ϕ1

X

ϕ2

γ

γ
γ

γ

Figure 3.12: A Feynman diagrams for the n → X + 4γ decay via two off-shell mesons ϕ1 and ϕ2
(ϕ = π0, η).

where we sum over all emitted mesons. With CalcHEP, the relevant diagrams for these cases can

be selected and the width can be computed via a Monte Carlo simulation. We compute the width

for two photon pair production over 40 sessions with 100000 events per session.

As seen before, Γ ∝ 1
M4 . We hence compute the average of M4Γ for different values of

M . For two photon pairs, we use four values of M from 109GeV to 1015GeV. For one photon

pair, the same data as in figure 3.10 is used. The result for one and for two produced photon

pairs is displayed in table 3.12. Since the integration errors are of the order of a few percent,

they are discarded. We see that the production of two photon pairs is significantly rarer than the

production of a single photon pair.

Table 3.1: The possible meson combinations for one or two produced photon pairs, as well as the
mass of the X particle to ensure a small mass gap. The width Γ is computed via a Monte Carlo
simulation for different values of the new physics scale M . The standard deviation of M4Γ is
denoted by σ.

Photon pairs mesons mX (GeV) M4Γ (GeV5) σ (GeV5)

1
π0 0.8038 2.416× 10−6 2.793× 10−9

η 0.3909 4.798× 10−6 2.404× 10−9

2
2π0 0.6688 2.192× 10−14 3.533× 10−17

π0, η 0.2559 1.150× 10−12 2.379× 10−14

In the CalcHEP simulations, we have only implemented the ϕ→ γγ vertex for both mesons.

As a result, the width for each meson in the simulation is different than the actual width. For π0,

this difference is small since it decays to two photons the vast majority of the time. However, for

η CalcHEP uses a width of 520 eV, whereas the actual width is approximately 1.3 keV [15].

Since the propagator of an unstable particle depends on the total width of the particle [28],

the widths of the decays to photons as computed by CalcHEP are different than the actual widths.

However, figure 3.8 shows a comparison between the off-shell case computed by CalcHEP and the

on-shell case. The on-shell case does not depend on the total width of the meson. We see that

regardless of the incomplete width used by CalcHEP, these values match closely.

4. Summary and Outlook

In this thesis, we have seen how introducing a new baryon number violating operator induces

neutron decay to a proposed dark matter particle and a π0 meson, η meson or photon. We have
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found analytical expressions for the widths of these two-body decays as functions of the two free

parameters of the theory: the mass of the dark fermion and the new physics scale.

Large mass experiments have put strict experimental constraints on exotic neutron decays,

and consequently on the new physics scale for this theory. However, the neutrons in these exper-

iments are generally bound, meaning that decays with a small mass gap cannot occur. We have

therefore also analyzed the case of a small mass gap, where the new physics scale is the only free

parameter in the theory.

The neutron decay to mesons was implemented in CalcHEP via an effective vertex. The

meson decay to photons was also implemented, allowing for a Monte Carlo simulation of the

n → X + γγ decay. The width of this decay closely matches that of the decay where the meson

is created on-shell, due to the narrow width of the mesons. This was also seen by an invariant

mass reconstruction of the photons in this decay. This channel is a candidate for observation, as

the resulting photons are relatively high energy. When the two photons are detected, an invariant

mass reconstruction can be preformed to determine the meson from which they originate. The

dark fermion would show up as missing energy in the detector.

The upcoming HIBEAM and NNBAR experiments at ESS handle a large amount of free

neutrons, and could therefore observe exotic neutron decays with a small mass gap. To test the

applicability of this model to the HIBEAM and NNBAR experiments further, one could see how

the new physics scale is constrained by past neutron experiments which are sensitive to small

mass gap decays, and how the amount of expected neutrons at HIBEAM/NNBAR compares to

this.

The operator considered has not been exhausted in this thesis. For example, the mesons can

also decay to leptons or other mesons. Additionally, it is easy to imagine other BSM operators

that would induce exotic neutron decays at small mass gaps, such as operators that violate quark

family number, lepton number or operators that have different chiral structures. Furthermore,

the case of a bosonic dark matter particle can also be considered. To investigate the possibility

of observing exotic neutron decays at HIBEAM/NNBAR, one must enumerate these operators

and the decays they induce as well as investigate the ability to observe the decay products in the

detector with e.g. detector simulations.

This thesis has illustrated how such investigations can be done for one specific model, as

well as the implementation of such models in CalcHEP which can generate events for detector

simulation. With this, we hope to provide a source for future research on the possibility of

observing rare neutron decays at the HIBEAM and NNBAR experiments.
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Appendices

17



A. CalcHEP tables

vars.mdl

Name Value Comment
mx 0.2 Dark fermion mass

cutoff 1000000000000000 Interaction scale
D 0.8 Lattice Parameter
F 0.47 Lattice Parameter

beta 0.012 Lattice Parameter
fpi 0.0921 Pion decay constant
mn 0.9395654 Neutron mass

meta 0.54786 Eta mass
mpi0 0.13498 Pi0 mass
alpha 0.00729735252 fine structure constant
Pi 3.14159265358

func.mdl

Name Expression

c1 pow(cutoff,-2)
cnpi0 -(D+F)/(2*fpi)
cneta (-D+3*F)/(2*sqrt(3)*fpi)
cmix beta*c1
cxpi0 beta*c1/(2*fpi)
cxeta -beta*c1*sqrt(3)/(2*fpi)
mnmxinv 1/(pow(mx,2)-pow(mn,2))

prtcls.mdl (Columns number, width, color, LaTeX(A) and LaTeX(A+) are omitted.)

Full name A A+ 2*spin mass aux
x x X 1 mx 0

neutron n N 1 mn 0
eta eta eta 0 meta 0
pi0 pi0 pi0 0 mpi0 0

photon A A 2 0 G

lgrng.mdl (Column P4 is omitted.)

P1 P2 P3 Factor Lorentz Part
x n pi0 i/2 cxpi0*(1+G5)+cmix*cnpi0*mnmxinv*(1+G5)*(-G(p1)+mn)*G(p3)*G5
N X pi0 i/2 -cxpi0*(1-G5)-cmix*cnpi0*mnmxinv*G5*G(p3)*(G(p2)+mn)*(1-G5)
x n eta i/2 cxeta*(1+G5)+cmix*cneta*mnmxinv*(1+G5)*(-G(p1)+mn)*G(p3)*G5
N X eta i/2 -cxeta*(1-G5)-cmix*cneta*mnmxinv*G5*G(p3)*(G(p2)+mn)*(1-G5)
pi0 A A alpha/(Pi*fpi) eps(p2, m2, p3, m3)
eta A A alpha/(Pi*fpi) eps(p2, m2, p3, m3)
N n pi0 -i*cnpi0 G(p3)*G5
N n eta -i*cneta G(p3)*G5
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In[1]:= (*Import FeynCalc *)

<< FeynCalc`

FeynCalc 10.0 .0 (stable version ). For help , use the

online documentation , check out the wiki or visit the forum .

Please check our FAQ

for answers to some common FeynCalc questions and have a look at the supplied examples .

If you use FeynCalc in your research , please

evaluate FeynCalcHowToCite [] to learn how to cite this so�ware .

Please keep in mind that the proper academic attribution

of our work is crucial to ensure the future development of this package !

Spin sum for the meson decay channels

In[2]:= (*Four-momentum conservation relations

used for simplification of the final expression *)

ScalarProduct [Subscript [p, n], Subscript [p, X]] =

(Subscript [m, n]^2 + Subscript [m, X]^2 - Subscript [m, ϕ]^2) / 2

ScalarProduct [Subscript [p, X], Subscript [p, ϕ]] =

(Subscript [m, n]^2 - Subscript [m, X]^2 - Subscript [m, ϕ]^2) / 2

ScalarProduct [Subscript [p, n], Subscript [p, ϕ]] =

(Subscript [m, n]^2 - Subscript [m, X]^2 + Subscript [m, ϕ]^2) / 2

ScalarProduct [Subscript [p, n], Subscript [p, n]] = Subscript [m, n]^2

ScalarProduct [Subscript [p, X], Subscript [p, X]] = Subscript [m, X]^2

ScalarProduct [Subscript [p, ϕ], Subscript [p, ϕ]] = Subscript [m, ϕ]^2

Out[2]=

1

2

m
n

2
+ m

X

2
- mϕ

2

Out[3]=

1

2

m
n

2
- m

X

2
- mϕ

2

Out[4]=

1

2

m
n

2
- m

X

2
+ mϕ

2

Out[5]= m
n

2

Out[6]= m
X

2

Out[7]= mϕ
2

B. FeynCalc input for trace evaluation
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In[11]:= (* Spin sum of n→phi+X *)

Simplify [TR[(- I Subscript [C, Xϕ] (1 + GA[5]) / 2 +

I Subscript [C, mix] × Subscript [C, nϕ ] / (2 Subscript [m, X]^2 - 2 Subscript [m, n]^2)

(1 + GA[5]).(GS[Subscript [p, X]] + Subscript [m, n]).GS[Subscript [p, ϕ]].GA[5]).

(GS[Subscript [p, n]] + Subscript [m, n]).

(I Subscript [C, Xϕ] (1 - GA[5]) / 2 +

I Subscript [C, mix] × Subscript [C, nϕ ] / (2 Subscript [m, X]^2 - 2 Subscript [m, n]^2) ×

GA[5].GS[Subscript [p, ϕ]].(GS[Subscript [p, X]] + Subscript [m, n]).(1 - GA[5])).

(GS[Subscript [p, X]] + Subscript [m, X])

]]

Out[11]=

1

m
n

2 - m
X

2 2

-2 Cmix Cnϕ CXϕ -m
n

4 3 m
X

2
+ mϕ

2 + 3 m
n

2
m

X

4
+ m

n

6
+ m

X

4
mϕ

2
- m

X

6  +

C
mix

2
C

nϕ
2 -m

n

4 m
X

2
+ mϕ

2 - m
n

2 6 m
X

2
mϕ

2
+ m

X

4  + m
n

6
- m

X

4
mϕ

2
+ m

X

6  + C
Xϕ
2 m

n

2
- m

X

2 2 m
n

2
+ m

X

2
- mϕ

2

Spin sum for the photon decay channel

In[17]:= (*Four-momentum conservation relations

used for simplification of the final expression *)

ScalarProduct [q, q] = 0

ScalarProduct [Subscript [p, n], Subscript [p, n]] = Subscript [m, n]^2

ScalarProduct [Subscript [p, X], Subscript [p, X]] = Subscript [m, X]^2

ScalarProduct [q, Subscript [p, n]] =

ScalarProduct [q, Subscript [p, X]] = (Subscript [m, n]^2 - Subscript [m, X]^2) / 2

ScalarProduct [Subscript [p, n], Subscript [p, X]] = (Subscript [m, n]^2 + Subscript [m, X]^2) / 2

Out[17]= 0

Out[18]= m
n

2

Out[19]= m
X

2

Out[20]=

1

2

m
n

2
- m

X

2 

Out[21]=

1

2

m
n

2
+ m

X

2 

(* Spin sum of n→photon+X *)

2     spinsums.nb
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In[24]:= Simplify [- (Subscript [C, mix]^2 × Subscript [C, nγ ]^2 × Subscript [F, 2]^2) /

((Subscript [m, X]^2 - Subscript [m, n]^2)^2) ×

TR[

(I (1 + GA[5]).(GS[Subscript [p, X]] + Subscript [m, n]).DiracSigma [GA[β], GA[ν]].FV[q, ν] / 2).

(GS[Subscript [p, n]] + Subscript [m, n]).

(-I .DiracSigma [GA[β], GA[μ]].FV[q, μ].(GS[Subscript [p, X]] + Subscript [m, n]).(1 - GA[5]) /

2).(GS[Subscript [p, X]] + Subscript [m, X])

]]

Out[24]= 2 F
2

2
C

mix

2
C

nγ
2 m

n

2
+ m

X

2 

spinsums.nb    3
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