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Den brusiga diffusionen av värme som utsätts för
slumpmässig energi
Elmir Nahodovic, Erik Karlsson Strandh

Energi och dess spridning har förutom dess otaliga applika-
tioner inom fysiken och teknologi, en väldigt djup matematisk
skönhet som visar sig i ekvationen som beskriver diffusionen.
Arbetet har studerat vad som händer när ett system som be-
skrivs av värmeledningsekvationen påverkas av slumpmässiga
fluktueringar, ett så kallat vitt brus.

Figur 1. Simulation av värmediffundering i en stav som hettas upp enligt en
initial temperaturdistribution och som sedan diffunderar ut över tiden.

Idén bakom vitt brus (förutom en del tekniska krav) är att
den totala tillförslade energin är 0, och att energin i två sepa-
rata regioner i mediet är oberoende av varandra. Fälten som
beskriver diffusionen visar sig ha distinkta fraktalbeteenden
med kopplingar till andra välkända slumpmässiga processer
som kan liknas till slumpvandringar, som exempelvis den
Brownska rörelsen och dess generaliseringar.

Figur 2. Simulation av värmediffundering i en stav som hettas upp enligt
en initial temperaturdistribution och som sedan diffunderar ut över tiden med
tillslag av vitt brus.

Dessa resultat gäller även för en del brus som är färgat, vil-
ket innebär att energitillförseln i mediet är inte helt oberoende.

Fokuset för den här rapporten ligger i att räkna på variatio-
nen över tid och rum för diffusionen som påverkas av brus.
Variationen är ett slags mått på hur mycket fältet studsar fram
och tillbaka, och det vi sammanställer i arbetet är de statistiska

egenskaperna för variationen, samt hur datorn kan simulera
dessa ytterst ojämna fält.

När det kommer till datorsimuleringarna visar det sig att
många av de standardmetoderna som används för att simulera
värmeledning och allmän diffusion inte kan fånga den korrekta
variationen. Vi demonstrerar att av dessa standardmetoder,
finns det endast en som kan fånga de korrekta fraktalegen-
skaperna. Resten av dem antingen slätar ut fältet för mycket,
eller gör dem ännu mer irreguljära.

Eftersom fälten däremot är slumpmässiga processer i tid
och rum, fås ytterligare en till metod att simulera diffusionens
vägar med hjälp av verktyg från sannolikhetsteorin, och denna
metod lyckas fånga rätt variation.

Figur 3. De vägvisa fraktalerna av temperaturdiffundering över tid och rum.

Vi belyser dessutom de statistiska egenskaperna av fälten
med hjälp av simuleringarna, som bekräftar den härledda
teorin.
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Abstract

The field of stochastic partial differential equations (SPDEs) has been extensively stud-
ied the past decades, with the stochastic heat equation ∂

∂tu(t, x)−α∆u(t, x) = σṀ (t, x)
driven by a Gaussian noise that is white in time but perhaps correlated in space being
an important example of such SPDEs. The solution u and its exact q-variations is the
object of consideration. This thesis rigorously defines the solution u as an isonormal
Gaussian process, and we present how it is up to C1 perturbations a scaled fractional
Brownian motion cFH (fBm) with c > 0 and some Hurst parameter H. The 1/H
variations of u and cFH will agree, such that with the known variations, estimations of
the drift α and diffusion σ can be constructed, by sampling the variation at equidistant
points in time and space separately as well as jointly. The solution to the stochastic
heat equation is simulated both with the known covariance structure, along with finite
difference schemes. We demonstrate how the only one step finite-difference scheme ap-
proximation that obtains the correct limiting q-variations is a specific Crank-Nicolson
scheme with CFL number 1

π−2 . The drift and diffusion estimators’ asymptotic normal-
ity is illustrated using the simulations.
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Chapter 1

Introduction

1.1 Background

Consider a rod of length L > 0 that is heated up according to some initial temperate at
starting time t0 = 0, and let u(t, x) denote the temperature distribution of the rod at a
point x between 0 and L and time t > 0. The change of the temperature at the point
t is proportional to the second derivative in space at the point x ∈ (0, L); in equation
form

∂

∂t
u = α

∂2

∂x2
u, (1.1)

which reflects how the heat diffuses through the rod, where α > 0 is a constant de-
scribing the rate of diffusion. The solutions to the heat equation are known for their
smoothness and regularity. Given sufficiently smooth initial conditions and for exam-
ple constant periodic Dirichlet boundary conditions u(t, 0) = u(t, L) = C ∈ R, the
solution u spreads out to a steady state due to the diffusive nature of the equation. An
illustration of this can be seen in the below Figure 1.1.
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Background Chapter 1

Figure 1.1: Illustration of the solution to the heat equation 1.1 with α = 1 on the ”rod”
with length L = 1, constant boundary temperature u(t, 0) = u(t, 1) = 0 for all t > 0,
and initial condition u(0, x) = sin(2πx) for 0 < x < 1.

The above heat equation (with derivation found in e.g. [Baehr and Stephan, 2011,
Chapter 2]) was first introduced by Joseph Fourier in his book ”Théorie analytique de
la chaleur” (The Analytical Theory of Heat). Addition of a driving term f(t, x, u(t, x))
on the right hand side of 1.1 allow us to consider the diffusion in a medium that is
provided thermal energy in both time and space according to f .

Applications of the heat equation 1.1 with some driving term are plenty, the obvious one
being the description of how heat diffuses in a medium where the solutions u enable
us to predict the temperature at a given time and space. Other applications of the
heat equation include describing and modelling the following, current flow in electrical
conductors, the diffusion of gases, flow in groundwater basins, and option pricing,
among many others (see e.g. [Narasimhan, 1999] for a comprehensive exposition of
applications and history of the heat equation).

For our thesis, we also aim to consider the heat equation, but with the addition of a
noisy driving term. We will firstly consider the randomness as a white noise in time
and space,Ẇ (t, x), which (heuristically), is Gaussian, adds on average 0 energy to the
system, and the energy added in two disjoint regions are independent. An illustration
of the solution to the heat equation driven by a space-time white noise can be seen in
Figure 1.2 below. Compare it with the smooth solution given in 1.1 above.

2
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Figure 1.2: Illustration of the solution to the heat equation 1.1 driven by a space-time
white noise Ẇ (t, x) with α = 1 on the ”rod” with length L = 1, constant boundary
temperature u(t, 0) = u(t, 1) = 0 for all t > 0, and initial condition u(0, x) = sin(2πx)
for 0 < x < 1.

After developing the necessary tools to study this stochastic heat equation, we will be
able to consider more general noise, which is still independent over time, but has some
spatial correlation, which we denote as Ṁ (t, x). This thesis emphasises the path-wise
roughness of the solutions to the stochastic heat equation, along with the regularity of
its simulations.

1.2 Stochastic processes and their roughness

Let (Ω,F ,P) be a probability space. With the measurable space (R,B(R)) and some
arbitrary index set T , a stochastic process is given by the real-valued stochastic variables
X(t) := {X(ω, t) , t ∈ T }, where ω ∈ Ω is any basic event for all t.

1.2.1 The (Fractional) Brownian motion

The solutions to the stochastic heat equation are heavily related to the Brownian
motion and the fractional Brownian motion (fBm), the latter being a generalisation
of the former. The Brownian motion is named after the botanist Robert Brown who

3
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observed this process as a jittery motion of pollen grains in water. Brownian motion has
since then become a fundamental concept in various scientific fields, including physics,
chemistry, biology, and finance. It is used to describe and model the random movement
of particles, stocks, and to understand diffusion processes, as well as other phenomena
influenced by random fluctuations. Both Louis Bachelier in 1900 and Albert Einstein
in 1905 have made rigorous definitions of Brownian motion [Narasimhan, 1999]. For
a standard1 Brownian motion we will use the following definition (see [Björk, 2005,
Chapter 4, section 1]).

Definition 1.2.1. A stochastic process W is called a standard Brownian motion if the
following conditions hold,

1. W (0) = 0.

2. The process W has independent increments, i.e. if r < s ≤ t < u then W (u) −
W (t) and W (s)−W (r) are independent random variables.

3. For s < t, the stochastic variable W (t)−W (s) ∈ N(0, t− s).

4. The process W has continuous sample paths, i.e. for a fix ω ∈ Ω, the function
t 7→W (ω, t) is continuous.

It is specifically the last point in the above definition that warrants some attention.
The standard Brownian motion has continuous sample paths indeed, but the path
t 7→ W (ω, t) is almost surely nowhere differentiable as a function of t [Björk, 2005,
Theorem 4.2]. See Figure 1.3 below for a plot of a sample path, demonstrating the
rugged trajectory.

1The emphasis on standard is to highlight the continuous trajectories of the Brownian motion. For
general Gaussian processes (and Brownian motions) continuity is not always guaranteed.

4
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Figure 1.3: A sample path of the standard Brownian motion.

Even though the paths are non-differentiable, they are at least almost 1/2−Hölder
continuous.

Definition 1.2.2 (Local Hölder continuity). A function f : D → R, where D some
normed space is locally γ-Hölder continuous with Hölder exponent γ ≥ 0 if there exists
C > 0 such that

|f(x)− f(y)| ≤ C∥x− y∥γ

for x, y ∈ K for all compact sets K ⊆ D.

The noise we talked about earlier can be seen in some weak sense to be the deriva-
tive of the Brownian motion Ẇ (t) = dW

dt (t), and for space-time white noise we would

have Ẇ (t, x) = ∂W
∂t∂x(t, x), whereW (t, x) is the Brownian sheet, a higher dimensional

generalisation of the Brownian motion.

The solutions to the stochastic heat equation will have many of the same properties
as the Brownian motion and the fractional Brownian motion (which does away with
the independent increments). The fractional Brownian motion was originally defined
in [Kolmogorov, 1940] by Kolmogorov in a Hilbert space framework. An example is
the usage of fractional Brownian motion for modelling the Nile by Hurst who created
the so called Hurst phenomena. The usage of the fractional Brownian- instead of the
Brownian motion was because of the fact that they wanted long range dependence in
the model [Mason, 2016].

The fBm is denoted FH , where H ∈ (0, 1) is called the Hurst parameter, and with

5
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H = 1/2 the fBm becomes the Brownian motion. We will give a rigorous definition
of an fBm process later in Chapter 3, however we state now that the fBm is also
Hölder-continuous, with Hölder-exponent that is almost H. See Figure 1.4 below which
shows the irregularity of the fBm for different Hurst parameters H and how its Hölder
exponent is connected to the roughness of the paths. The smaller the parameter H,
the smaller the Hölder-exponent and the more bumpy the paths become.

(a) Fractional Brownian Motion with Hurst parameter H = 1
4

(b) Fractional Brownian Motion with Hurst parameter H = 1
2

(c) Fractional Brownian Motion with Hurst parameter H = 3
4

Figure 1.4: Fractional Brownian Motion with different Hurst parameters, simulated
using the same underlying independent standard Gaussian variables.

6
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1.3 Stochastic Partial Differential Equations (SPDEs)

Often scientists and applied mathematicians use differential equations to model complex
interactions in nature, but these equations have a hard time taking into account the
inherent randomness that we often perceive when measuring physical phenomenon.
One way to mathematically consider this is by the concept of noise, which captures
the intricacies of randomness present in nature and society. Noise can be observed by
the noise in transmitting voice by telephone, mechanical noise from machines, or noise
in the temperature from random fluctuations in weather, among others.

By adding noise terms to differential equations, and particularly partial differential
equations (PDEs), we obtain what is called stochastic partial differential equations
or SPDEs for short. We will see that we can solve a subset of SPDEs, with the
same methods as for deterministic PDEs. The solutions to SPDEs often have many
interesting mathematical and statistical properties, for instance the roughness of their
paths, which our thesis emphasises.

1.3.1 What is an SPDE?

In the most general setting, an SPDE of order k ∈ N is a formal2 equation that involves
the unknown multivariate function (stochastic process) u : Ω×D → R and its Jacobian
derivatives Diu, i = 1, . . . , k such that, for all x ∈ D and ω ∈ Ω,

ϕ
Ä
ω,Dku(x), . . . ,Du(x), u(x), y

ä
=

ψ
Ä
ω,Dku(x), . . . ,Du(x), u(x), x

ä
Ṁ (ω, x). (1.2)

With initial- and boundary conditions if applicable. Here we have

ϕ, ψ : Ω× Rdk × · · · × Rd × R× D → R.

The factor Ṁ is called the noise in the system and is often symbolically denoted ∂M
∂t∂x ,

furthermore, the initial- and boundary conditions may also be stochastic. The space
Ω is the sample space from a complete probability space (Ω,F ,P) while D is usually
some subspace of the Euclidean space Rd for some integer d ≥ 1.

2Because the noise and randomness of the system often does not admit a point-wise (let alone
differentiable) solution to 1.2, we call the equation formal. It will become clear later what we mean by
a rigorous solution to an SPDE and how it connects to the corresponding PDE without randomness.
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1.3.2 Linear SPDE’s

To study general equations of the type given in 1.2 require very heavy mathematical
machinery that is beyond the scope of this thesis. Instead, the theory we present will
be able to handle SPDE’s of the unknown process u : Ω× R+ × D → R of the form

Lu(t, x) = a
Ä
t, x, u(t, x)

ä
+Ṁ (t, x), t > 0, x ∈ D ⊆ Rd, (1.3)

with deterministic initial conditions and if necessary also boundary conditions. In
the equations and calculations we usually omit the variable ω ∈ Ω. The operator
L = ∂

∂t − A is a linear partial differential operator, where A is a second order dif-
ferential operator in space with the property of uniform ellipticity, see for example
[Polyanin and Nazaikinskii, 2016, Section 16.2.2]. The driving term Ṁ is a Gaussian
noise, where we start with what is called white noise and later expand to a noise which
is white in time but ”coloured” in space.

The SPDEs of the form 1.3 are often called linear SPDEs driven by additive noise.
In contrast with SPDEs driven by multiplicative noise, which instead would contain a
term b(t, x, u(t, x))Ṁ (t, x) on the right hand side. Equations with multiplicative noise
require heavier theory which we will not look at. However we will consider the case of
b ≡ σ > 0 being constant, with σ being the diffusion parameter. For the differential
operator we will mainly focus on L = ( ∂

∂t − α∆), with α > 0 being called the drift
parameter. We will study the solution on two spaces, D is either the bounded interval
(0, L) for some L ∈ R or the entire space Rd where the integer d ≥ 1.

From PDE theory (see e.g. [Polyanin and Nazaikinskii, 2016]), if we assumed that
equation 1.3 did not contain any stochastic elements and with some further integrability
conditions on the functions, we know that there exists a mild solution formula for
equation 1.3 of the form

u(t, x) = I0(t, x) +

∫ t

0

∫
D
Ψ(s, y; t, x)a(s, y, u(s, y))dyds

+

∫ t

0

∫
D
Ψ(s, y; t, x)M (dyds). (1.4)

I0 contains the data from the initial- and boundary conditions and Ψ(s, y; t, x) is the
fundamental/Green solution to the deterministic PDE version of equation 1.3. When
L = ( ∂

∂t − α∆): Ψ(s, y; t, x) = Ψ(t − s, x, y) and furthermore for the fundamental
solution on D = Rd: Ψ(t− s, x, y) = Ψ(t− s, x− y). This is because of the translation
invariance in time and space respectively for the Green and fundamental solution to
the heat equation.

One big conundrum of this thesis is to give a rigorous meaning to the stochastic

8
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integral term above, ∫ t

0

∫
D
Ψ(s, y; t, x)M (dyds).

We will see that the solutions to an SPDE will be given by the same formula as for
the deterministic case, as long as all stochastic integrals in the mild solution are well
defined. The definition of the stochastic integral is the big focus of chapter 2.

Remark 1.3.1 (Note on naming convention). When we are explicitly looking at the
solution on D = Rd we will denote Ψ = Φ and call it the fundamental solution. If we
consider the solution on D = (0, L) or some other bounded interval we write Ψ = G
and call it the Green function.

1.3.3 The (Stochastic) Heat Equation

This section aims to lay down all the needed results for the later analysis of the stochas-
tic heat equation (SHE).

To get an intuition for the noise, first let

∂M

∂t∂x
(t, x) = σ

∂W

∂t∂x
(t, x),

where σẆ := σ ∂W
∂t∂x(t, x) is a white noise process in time and space scaled by the

diffusion σ > 0. The idea is that Ẇ ∈ L2(Ω) is a zero mean Gaussian stochastic
process with finite second moment equal to 1, where the ”white” of the noise means
thatẆ (t1, x1) andẆ (t2, x2) are independent for (t1, x1) ̸= (t2, x2). However, a process
like Ẇ (t, x) cannot exist. A short motivation is that if it did exist then from these
Ẇ (t, x) we could construct uncountably many random variables in L2(Ω) that are
mutually orthogonal. But the Hilbert space L2(Ω) is separable, and therefore any
orthonormal set of vectors has to be at most countable. Which implies that there are
no such processes Ẇ (t, x). This suggests some careful treatment of the noise to make
equation 1.5 below rigorous. Nevertheless, we proceed heuristically.

The general heat equation that is the topic for the majority this thesis, on the spatial
domain D = Rd for some integer d ≥ 1, or D = (0, L) where L ∈ R is,

∂
∂tu(t, x)− α∆u(t, x) = σẆ (t, x) t > 0, x ∈ D

u(0, x) = u0(x) x ∈ D

+ Homogeneous BC if applicable x ∈ ∂D .

(1.5)

With ∆ :=
∑d

k=1
∂2

∂x2
k
and u0 : D → R is some sufficiently integrable deterministic

function.

9
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Some important properties that we will show later when we have defined the solution
u(t, x) to 1.5 with white noise forcing include that the u(t, x) does not exist point-
wise in dimensions d ≥ 2. And for d = 1, u will almost surely not be a differentiable
function anywhere. Its sample paths are incredibly rough but they are at least almost
1/2-Hölder continuous in space and almost 1/4-Hölder continuous in time.

One way to force solutions in higher dimensions is to consider a more smooth driving
noiseṀ in the right hand side, by for example, introducing some homogeneous spatial
correlation of the noise.

1.3.3.1 Solutions on D = Rd

The equation we consider will be{
∂
∂tu(t, x)− α∆u(t, x) = σẆ (t, x) t > 0, x ∈ Rd

u(0, x) = u0(x) x ∈ Rd.
(1.6)

We give a formal proof of the below proposition in the case of a deterministic and more
regular driving term in Appendix C.

Proposition 1.3.2. The solution to 1.6 is by the superposition principle,

u(t, x) =

∫
Rd

e
−|x−y|2

4αt

(4παt)d/2
u0(y)dy +

∫ t

0

∫
Rd

e
−|x−y|2
4α(t−s)

(4πα(t− s))d/2
f(s, y)dyds

With f(t, x) = σẆ (t, x) = σ ∂W
∂t∂x(t, x) and using properties of the Riemann-Stiltjes

integral we can write the solution as

u(t, x) =

∫
Rd

e
−|x−y|2

4αt

(4παt)d/2
u0(y)dy + σ

∫ t

0

∫
Rd

e
−|x−y|2
4α(t−s)

(4πα(t− s))d/2
W (dyds). (1.7)

The function Φ(s, y; t, x) = Φ(t− s, x, y) = Φ(t− s, x− y) := e
−|x−y|2
4α(t−s)

(4πα(t−s))d/2
for t > s and

x, y ∈ Rd is the fundamental solution to 1.5 above. It solves the differential equation

∂Φ

∂t
(s, y; t, x)− α∆Φ(s, y; t, x) = 0.

With initial condition Φ(s, y; t, x) = δ(x− y) for t > 0 and x ∈ Rd where s ∈ [0, t) and
y ∈ Rd are free parameters for above equation. The Dirac-δ initial condition should be
seen in a distributional sense, i.e. that∫

Rd

u0(y)Φ(s, y; t, x)dy → u0(x) as t→ 0.

10



Stochastic Partial Differential Equations (SPDEs) Chapter 1

We emphasise again that the integral
∫ t
0

∫
Rd

e
−|x−y|2
4α(t−s)

(4πα(t−s))d/2
W (dyds) is not yet defined.

This is the aim of chapter 2.

Remark 1.3.3. The function

Φ(t, x) =
e

−|x|2
4αt

(4παt)1/2

for t > 0 and x ∈ R can be seen as the probability density function of a zero mean
Gaussian variable with variance 2αt.

A useful property is that for d = 1, the function (s, y) 7→ Φ(t − s;x − y) lies in
L2((0, t)×R) for all t > 0. To see this note that by a change of variables t− s to s and
the translation invariance in y we have∫ t

0

∫
R
Φ(t− s, x− y)2dyds

=

∫ t

0

∫
R

(
e

−|x−y|2
4α(t−s)

(4πα(t− s))1/2

)2

dyds =

∫ t

0

∫
R

e
−|y|2
2αs

(4παs)
dyds.

We split the integral over space and time in the following way.

=

∫ t

0

∫
R

e
−|y|2
2αs

(
√
2 · 8

√
πsα

2
)
dyds =

∫ t

0

1√
8πsα

Ñ∫
R

e
−|y|2
2αs

(
√
2πsα)

dy

é
ds.

We know that the fundamental solution e
−|y|2
2αs

(
√
2πsα)

above can be seen as a probability

density of a Gaussian variable, and hence the integral over y is equal to 1. This gives∫ t

0

1√
8πsα

ds =
1√
2πα

∫ t

0

1

2
√
s
ds =

…
t

2πα
<∞.

The above result actually follows from the semi-group property (cf. [Samuil D. Eidelman, 1998,
Property VI.1]) of Φ over Rd.

Proposition 1.3.4. For all x, z ∈ Rd, we have

Φ(s+ t, x− z) =

∫
Rd

Φ(t, x− y)Φ(s, y − z)dy.

Where we also note the symmetry Φ(t, x− z) = Φ(t, z − x).

11
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1.3.3.2 Solutions on D = (0, L)

We prescribe vanishing Dirichlet boundary conditions u(t, 0) = u(t, L) = 0 along with
the initial condition u(0, x) = u0(x).

∂
∂tu(t, x)− α∆u(t, x) = σẆ (t, x) t > 0, x ∈ (0, L)

u(0, x) = u0(x) x ∈ [0, L]

u(0, t) = u(L, t) = 0 t > 0.

(1.8)

Where u0(x) is some sufficiently integrable function. We look at the corresponding
weak formulation and mild solution (cf. [Walsh, 1986, Chapter 3]). Multiply by a test
function ϕ(x) and integrate up over the domain [0, t]× [0, L] gives us weak formulation,∫ L

0
u(t, x)ϕ(x)dx−α

∫ t

0

∫ L

0
u(s, x)

d2ϕ

dx2
(x)dxds

=

∫ L

0
u0(x)ϕ(x)dx+σ

∫ t

0

∫ L

0
ϕ(x)W (dxds).

The above weak form implies a so called mild solution of 1.8, for a derivation see for
example [Dalang et al., 2009, Chapter 1. Section 6] or [Walsh, 1986, Chapter 3].

u(t, x) =

∫ L

0
G(0, y; t, x)u0(y)dy +

∫ t

0

∫ L

0
G(s, y; t, x)W (dyds). (1.9)

Where G(t−s, x, y) := G(s, y; t, x) := 2
L

∑∞
n=1 e

−αn2π2

L2 (t−s) sin
Ä
nπx
L

ä
sin
Ä
nπy
L

ä
for t > s

and x, y ∈ (0, L) is called the Green function associated to the differential equation

∂G

∂t
(s, y; t, x)− α∆G(s, y; t, x) = 0.

With initial condition (in distributional sense) G(s, y; t, x) = δ(x − y) for t > 0 and
x ∈ (0, L) and vanishing Dirichlet boundary conditions. The parameters s ∈ [0, t) and
y ∈ (0, L) are free parameters for the above equation.

Remark 1.3.5 (When D = (−L,L)). We can find the solutions on (−L,L) by con-
sidering the equation on (0, 2L) and utilising translation invariance on 1.9. Shift the
space one step to the left to get the solution on (−L,L). Effectively replacing all the
L’s to 2L and all the x and y’s to x+ L and y + L respectively in 1.9.

For G(t, x, y) := G(0, y; t, x), an important inequality is that

G(t, x, y) ≤ Φ(t, x− y) ≤ 1√
4παt

. (1.10)

The Green function also satisfies a semi-group property.
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The goal of this thesis Chapter 1

Proposition 1.3.6. For all x, z ∈ (0, L), we have

G(t+ s, x, z) =

∫ L

0
G(t, x, y)G(s, y, z)dy. (1.11)

Proof. Recall that

G(t, x, y) :=
2

L

∞∑
n=1

e−
αn2π2

L2 t sin

Å
nπx

L

ã
sin

Å
nπy

L

ã
.

Then ∫ L

0
G(t, x, y)G(s, y, z)dy

=
4

L2

∞∑
n=1

∞∑
k=1

e−
απ2

L2 (n2t+k2s) sin

Å
nπx

L

ã
sin

Å
nπz

L

ã∫ L

0
sin

Å
nπt

L

ã
sin

Å
kπy

L

ã
dy.

equation 1.11 follows since,∫ L

0
sin

Å
nπy

L

ã
sin

Å
kπy

L

ã
dy =

{
L/2, n = k

0, n ̸= k.

1.4 The goal of this thesis

One important object of study is the sample path ((t, x) 7→ u(ω, t, x)) regularity of
the solution u(t, x) to the stochastic heat equation. One such regularity is the before
mentioned Hölder-continuity of u. For the case of the stochastic heat equation with
additive white noise, we will show how the solution is almost 1/2-Hölder continuous in
space and almost 1/4-Hölder continuous in time. In particular the solution u to the
stochastic heat equation has similarly rough paths to the sample paths of the fractional
Brownian motion, with the regularity of F

1
2 corresponding to x 7→ u(t, x) and F

1
4 to

t 7→ u(t, x). Below in Figure 1.5 is a simulation of the solution on R+ × [0, 1] with
homogeneous Dirichlet conditions- and initial condition.

13



The goal of this thesis Chapter 1

Figure 1.5: Simulation of the random field solution to the stochastic heat equation 1.8.

Fixing one variable we can look at u as a function of one variable, we have the following
simulated paths in figures 1.6 and 1.7 (which are from the same simulation as 1.5),

Figure 1.6: Simulation of the random field solution to the stochastic heat equation 1.8
as a function of time.

14



The goal of this thesis Chapter 1

Figure 1.7: Simulation of the random field solution to the stochastic heat equation 1.8
as a function of space.

Of course it doesn’t tell us that much to just look at the paths in figures 1.5, 1.6 and
1.7 on their own. For a function f (which can be stochastic) we calculate the exact
q-variation V q

[a,b] [f ] which exists if the limit

V q
[a,b] [f ] = lim

n→∞

n−1∑
i=1

(f(xi+1)− f(xi))
q

converges in probability for xi in a uniform partition of the interval [a, b]. The function
t 7→ u(t, x) has non-trivial (not equal to zero or ∞) exact 4-variation, which is directly
linked to the almost 1/4 Hölder continuity. And x 7→ u(t, x) has non-trivial 2-variation,
which again is thanks to the almost 1/2-Hölder continuity. The variations will depend
on the parameters defining the SPDE, especially the drift α and diffusion σ. From
these we can construct statistical estimators of the drift and diffusion parameters from
observing the field solution by measuring the variations in discrete sampled points.

The main goal of this thesis is to consider the exact q-variation of the true solutions
as well as the simulated solutions to the stochastic heat equation.

In Chapter 2 we will give the necessary theory and results needed to study the properties
of the solution u. Chapter 3 will show the theory behind the distributions of the
solution, how this is connected to the variations, stating and proving the values of
the exact q-variations of the solutions, how we can construct estimators of the drift-
and diffusion parameters, as well as stating their statistical properties. Chapter 4 will

15
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contain the methods to simulate the stochastic processes that make up the solution,
like we saw in figures 1.4, 1.5, 1.6, and 1.7. An interesting result here is that many
standard ways of simulating solutions to PDEs work for the SPDEs we are considering,
the approximations will converge, in the sense that the error goes to zero. But the
exact q-variations do not converge for general approximation schemes. We finish the
thesis with Chapter 5 where we show how to construct the white-coloured noise and
its respective stochastic heat equation with solution.

16



Chapter 2

SPDEs with Gaussian White
Noise

This chapter aims to give the central definitions and properties needed to study the
stochastic heat equation and its exact q-variations. We will start with some basics on
stochastic processes and Gaussian random fields. The presentation is heavily inspired
by [Dalang et al., 2009, Chapter 1]. We will be working on the complete probability
space (Ω,F ,P). Let L2(Ω) be the set of real-valued random variables with finite second
moment, i.e. E[X2] < ∞. L2(Ω) is a Hilbert space with norm ∥X∥L2(Ω) :=

√
E[X2]

for X ∈ L2(Ω).

2.1 Gaussian processes

Definition 2.1.1 (Gaussian random vector). Let g = (g1, . . . , gd) be a random vector.
We say that the distribution of g is Gaussian if υ · g :=

∑d
j=1 υjgj is Gaussian random

variable for all υ ∈ Rd.

Recall that for a given probability space (Ω,F ,P) and the measurable space (R,B(R))
with some arbitrary index set T , a stochastic process is given by the real-valued stochas-
tic variables X(t) := {X(ω, t) , t ∈ T }, where ω ∈ Ω is any basic event for all t.

Definition 2.1.2 (Gaussian random field). The stochastic process X = {X(ω, t) , t ∈
T } is called a Gaussian random field or Gaussian stochastic process if for all integers
k ≥ 1 and t1, . . . , tk ∈ T , the random vector (X(t1), X(t2), . . . , X(tk)) is Gaussian.

The finite dimensional distributions are the collection of probabilities obtained as fol-

17



Gaussian processes Chapter 2

lows,
pt1,...,tk(A1, . . . , Ak) := P(X(t1) ∈ A1, . . . , X(tk) ∈ Ak) (2.1)

Definition 2.1.3 (Non-negative Definite Kernel). Let T be an arbitrary index set. A
symmetric function K : T × T → C is called a non-negative definite kernel on the set
T if given n ∈ N it holds that

n∑
k=1

n∑
l=1

ckK(tk, tl)c̄l ≥ 0, (2.2)

for each c1, . . . cn ∈ C and t1, . . . , tn ∈ T .

Remark 2.1.4. The above definition is equivalent to that every matrix K = (K(tk, tl))
created for every t1, . . . , tn ∈ T and n ∈ N is a non-negative definite matrix, or equiv-
alently that the eigenvalues to K are greater than or equal to zero.

Remark 2.1.5 (Note on naming convention). If the index set T = Rd then the non-
negative definite kernel is called a non-negative definite function. If we also require that
2.2 is equal to zero if and only if all ck = 0 then we call the function/kernel positive
definite.

The idea of non-negative definite kernels is especially important for covariance func-
tions. For s, t ∈ T , the covariance function C(s, t) := E(X(s)X(t))−E(X(s))E(X(t)) is
a symmetric (C(s, t) = C(t, s))- and non-negative definite kernel. There is a well known
result thanks to Kolmogorov, that guarantees the existence of a Gaussian random field
with a given covariance- and mean function.

Lemma 2.1.6. (1) Let X be a Gaussian random field. The probability measures pt1,...,tk
defined in 2.1 are determined by the mean function m(t) = E(X(t)) and the covariance
function C(s, t)
(2) Given functions m : T → R and a symmetric non-negative kernel C : T × T → R,
then there exists a Gaussian random field X(t) with mean function m and covariance
function C.

By the above lemma, we have that two Gaussian processes are equal in distribution, if
their mean- and covariance functions agree.

Our goal is to represent stochastic integrals with respect to Gaussian random fields.
We want to integrate functions h from a separable Hilbert space H with inner product
⟨·, ·⟩H and induced norm ∥ · ∥H .

Definition 2.1.7. Let (H , ⟨·, ·⟩H , ∥·∥H ) be a separable inner product space. A stochas-
tic process I(h) indexed by T = H on a complete probability space (Ω,F ,P) is called
an isonormal Gaussian process if for all h, g ∈ H , then I(h) ∈ N(0, ∥h∥2H ), and

E
Ä
I(h)I(g)

ä
= ⟨h, g⟩H .

18



Stochastic calculus with white noise Chapter 2

We will see that the isonormal Gaussian processes I(h) indexed by separable Hilbert
spaces are a natural interpretation of the stochastic integral of deterministic processes
with respect to some Gaussian noise process. Symbolically we want I(h) =

∫
E hdW

where E is some measure space with measure µ and we have a white noiseW that is
based on µ.

Proposition 2.1.8. If I(h) is an isonormal Gaussian process, then the map I : H →
L2(Ω) such that h 7→ I(h), is a linear isometry.

Proof. By definition 2.1.7, V(I(h)) = ∥I(h)∥2L2(Ω) = ∥h∥2H . Now we show that it is
linear in the sense that

I(ah+ bg) = aI(h) + bI(g) a.s

for a, b ∈ R and h, g ∈ H . Both left- and right-hand side have zero mean. It suffices
to show that the difference I(ah+ bg)− (aI(h) + bI(g)) has zero variance.

E
Ä
(I(ah+ bg)− aI(h)− bI(g))2

ä
= ∥ah+ bg∥2H + a2∥h∥2H + b2∥g∥2H

−2a⟨ah+ bg, h⟩H − 2b⟨ah+ bg, g⟩H + 2ab⟨h, g⟩H = 0

Proposition 2.1.8 guarantees that an isonormal Gaussian process is indeed a Gaussian
random field, since the linear combination aI(h) + bI(g) ∈ N(0, ∥ag + bh∥2H ). This
proposition will later also give us the natural property that stochastic integrals are
almost surely linear.

2.2 Stochastic calculus with white noise

We first make the definition of stochastic integrals with respect to a white noiseW
based on a measure.

2.2.1 White noise

For our presentation we will use a σ-finite measurable subspace (E,B(E), µ) of Rd. Let
Bb(E) be the collection of Borel-measurable subsets of E with finite measure.

Definition 2.2.1 (White Noise). A white noise based on a positive measure µ is a
Gaussian random field W = {W (A), A ∈ Bb(E)} defined on some probability space
(Ω,F ,P) with E

[
W (A)

]
= 0 and covariance function

C(A,B) = E
[
W (A)W (B)

]
= µ(A ∩B).
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The function C above is indeed a covariance function. It is obviously symmetric
C(A,B) = C(B,A). To see that it is non-negative definite, take x1, . . . , xn ∈ R and
A1, . . . , An ∈ Bb(E). Then

n∑
k,l=1

xkxlC(Ak, Al) =
n∑

k,l=1

xkxlµ(Ak ∩Al)

=
n∑

k,l=1

xkxl

Ç∫
E
1Ak

(y)1Al
(y)µ(dy)

å
=

∫
E

Ñ
n∑

k=1

xk1Ak
(y)

é2

µ(dy) ≥ 0.

Thus the existence of the Gaussian random field W (A) with index set T = Bb(E)
follows from Lemma 2.1.6.

Remark 2.2.2. An important note is that the ”white” in ”white noise” refers to the
covariance structure of the Gaussian random fieldW . Notice how

C(A,B) = µ(A ∩B) =

∫
E
1A(y)1B(y)µ(dy) = ⟨1A,1B⟩L2(E).

Therefore there exists a natural harmony between the finite second moment space L2(Ω)
and the Hilbert space L2(E). This will conclude with the fact that the only functions
we will be able to integrate are precicely those which lie in L2(E).

Proposition 2.2.3. Let A,B ∈ Bb(E) be two disjoint subsets of E. ThenW (A) and
W (B) are independent and

W (A ∪B) =W (A) +W (B) a.s.

Proof. Since A and B are disjoint, C(A,B) = µ(A ∩ B) = µ(∅) = 0. Therefore they
are uncorrelated, and hence independent, sinceW (A), andW (B) are Gaussian.

To show additivity we check thatW (A ∪ B)− (W (A) +W (B)) has zero variance. By
linearity of expectation and the definition of covariance for white noise,

E
î
(W (A ∪B)−W (A)−W (B))2

ó
=E
î
(W (A ∪B)2

ó
+ E
î
W (A)2

ó
+ E
î
W (B)2

ó
− 2E

[(
W (A ∪B)W (A)

)2]
−2E

[(
W (A ∪B)W (B)

)2]
+ E

[
W (A)W (B)

]
=µ(A ∪B) + µ(A) + µ(B)− 2µ(A)− 2µ(B) + 0 = 0.
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Definition 2.2.4 (The Brownian Sheet). Let t = (t1, . . . , tn). The Brownian sheet
{W (t), t ∈ Rd

+} defined by W t := W {(0, t]} := W {(0, t1] × . . . × (0, tn]}. This is a
zero mean, Gaussian process with covariance function E{W sW t} = min(s1, t2) · . . . ·
min(sn, tn).

For example if d = 2, the Brownian sheet over rectangles R = (s, t]× [x, y] (by Propo-
sition 2.2.3) is equal toW (R) =W ty −W tx−W sy −W sx.

2.2.2 The stochastic integral

We take a general Lebesgue/Measure theory approach to the construction of a stochas-
tic integral. Starting with integrals of simple functions, and extending with a density
argument because of the linear isometry that will be created. Let our integrands come
from the Hilbert space H = L2(E,µ). We can now construct an isonormal Gaussian
process I(h) on H , given a white noiseW based on µ.

Definition 2.2.5. For simple functions h =
∑n

k=1 ak1Ak
∈ L2(E,µ) with ak ∈ R, and

Ak ∈ Bb(E) pairwise disjoint. Then

I(h) = I

Ñ
n∑

k=1

ak1Ak

é
:=

n∑
k=1

akW (Ak).

Proposition 2.2.6. The process I(h) from the set of simple functions on L2(E) to
random variables in L2(Ω) is an isonormal Gaussian process.

Proof. I(h) is a finite sum of zero-mean normal variables, and hence it is also normal
with zero mean. To see that E(I(h)I(g)) = ⟨I(h), I(g)⟩L2(Ω) = ⟨h, g⟩L2(E), we first
observe that I is an isometry,

∥∥I(h)∥∥2
L2(Ω)

=

∥∥∥∥∥∥∥I
Ñ

n∑
k=1

ak1Ak

é∥∥∥∥∥∥∥2
L2(Ω)

= E

ÑÄ n∑
k=1

akW (Ak)
ä2é

=

n∑
k=1

a2kE
Ä
W (Ak)

2
ä
=

n∑
k=1

a2kµ(Ak) =

n∑
k=1

∫
E
a2k1Ak

(y)dµ(y)

=

∫
E

n∑
k=1

Ä
a2k1Ak

(y)
ä
dµ(y) =

∫
E

(
n∑

k=1

a2k1Ak
(y)

)2

dµ(y)

=

∫
E
h2dµ = ∥h∥2L2(E) .
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Since the map h 7→ I(h) is an isometry between two inner products spaces, we know
that the inner products are preserved in the mapping. Therefore E

(
I(h)I(g)

)
=〈

I(h), I(g)
〉
L2(Ω)

= ⟨h, g⟩L2(E).

By the preceeding proposition as well as Proposition 2.1.8 we obtain the following
important corollary.

Corollary 2.2.7. The isonormal Gaussian process I(h) is a linear isometry from the
set of simple functions on L2(E) to L2(Ω).

Remark 2.2.8. The definition in 2.2.5 is well defined in the sense that if we have
another representation of h̃ =

∑m
l=1 bl1Bl

with bl ∈ R and pairwise disjoint Bl ∈ Bb(E),
such that h = h̃, then I(h) = I(h̃) a.s.

Proof. (of remark 2.2.8) We show that the difference I(h)− I(h̃) has zero variance.

E

(Ä n∑
k=1

akW (Ak)−
m∑
l=1

bkW (Al)
ä2)

= E

(Ä n∑
k=1

akW (Ak)
ä2)

+E

(Ä m∑
l=1

blW (Bl)
ä2)

− 2E

(Ä n∑
k=1

m∑
l=1

akblW (Ak)W (Bl)
ä2)

=

∫
E

(
n∑

k=1

a2k1Ak
+

m∑
l=1

b2l 1Bl
− 2

n∑
k=1

m∑
l=1

akbl1Ak∩Bl

)
dµ

=

∫
E

(
n∑

k=1

ak1Ak
−

m∑
l=1

bl1Bl

)2

dµ =

∫
E

Ä
h− h̃

ä2
dµ = 0.

Since we have a linear isometry from the (dense) set of simple functions on L2(E) to the
complete normed space L2(Ω), the map h 7→ I(h) can be extended uniquely to L2(E).
Take h ∈ L2(E) and a sequence of simple functions hn such that ∥h − hn∥L2(E) → 0.
Then we define ∫

E
hdW := I(h) := lim

n→∞
I(hn).

The above definition does not depend on the sequence of simple functions approximat-
ing h. To see this, let hn → h and gn → h be two sequences of simple functions that
converge to h. Then by the linear isometry (Corollary 2.2.7), we have

∥I(hn)− I(gn)∥2L2(Ω) = ∥I(hn − gn)∥2L2(Ω) = ∥hn − gn∥2L2(E) → 0.

That I(h) for h ∈ L2(E) is an isonormal Gaussian process follows directly from the
isometry ∥I(h)∥L2(Ω) = ∥h∥L2(E) for h ∈ L2(E) in the same way that we proved it in
Proposition 2.2.6.
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Remark 2.2.9. It is vital to note that the stochastic integral I(h) is well defined if and
only if h ∈ L2(E).

We will use both
∫
E hdW , and

∫
E h(x)W (dx), to mean the stochastic integral I(h)

with respect to space-time white noiseW , of the L2(E) function h, such that x 7→
h(x). We obtain the following important formula, called Wiener’s isometry, that shows
symbolically how the inner product is preserved,

Theorem 2.2.10 (Wiener’s isometry). For any h, g ∈ L2(E),

E

(∫
E
h(x)W (dx)

∫
E
g(x)W (dx)

)
=

∫
E
h(x)g(x)dx.

The following corollary can be useful.

Corollary 2.2.11. Assume A1, . . . , An are disjoint sets in Bb(E), then for f ∈ L2(E)

E

Ö n∑
i=1

∫
Ai

f(x)W (dx)

2
è

=
n∑

i=1

∫
Ai

f(x)2dx.

Proof. Expand the sum and note that the cross-term multiplications are independent
Gaussian variables, then use Wiener’s isometry on the square terms.

Corollary 2.2.7 gives us the almost sure linearity of the stochastic integrals,

Proposition 2.2.12. The stochastic integral is almost surely linear,∫
E
h+ gdW =

∫
E
hdW +

∫
E
gdW a.s.

2.2.2.1 The case of white noise on R+ × D

In the coming presentation, E = R+ × D , where D ⊆ Rd for some integer d ≥ 1, and
for g = h(s, y)1(0,t)×D(s, y) where h ∈ L2((0, t)× D), we will write∫

E
gdW =

∫
R+×D

gdW =:

∫ t

0

∫
D
h(s, y)W (dyds).

The following identity is often useful.
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Proposition 2.2.13. If 0 < t1 < t then∫ t

0

∫
D
h(s, y)W (dyds) =

∫ t1

0

∫
D
h(s, y)W (dyds) +

∫ t

t1

∫
D
h(s, y)W (dyds) a.s

Proof. Let h(s, y) = 1[0,t1](s)h(s, y) + 1(t1,t](s)h(s, y) and use the almost sure linearity
of the stochastic integral.

2.2.3 Solution to an SPDE driven by white noise

We are now ready to give a definition of a solution to a simplified SPDE of the form
presented in the introduction, equation 1.3 with a driving noiseẆ represented by the
white noiseW based on the Lebesgue measure λ. We again consider the space R+×D
where D ⊆ Rd. A linear SPDE with additive white driving noiseẆ is the equation,

Lu(t, x) = σẆ (t, x), t > 0, x ∈ D , (2.3)

with deterministic initial conditions and if necessary also boundary conditions. The
operator L = ∂

∂t −A is a linear partial differential operator, where A is a second order
differential operator in space with the property of uniform ellipticity, see e.g.
[Polyanin and Nazaikinskii, 2016, Section 16.2.2]. The diffusion σ > 0 is a constant
that scales the white noise.

Definition 2.2.14 (Solution to 2.3). Suppose that there exists a fundamental/Green
solution Ψ = Ψ(s, y; t, x) to L such that as a function of s and y, Ψ ∈ L2((0, t) × D).
Then the SPDE 2.3 has a solution and it is the random field given by

u(t, x) = I0(t, x) + σ

∫ t

0

∫
D
Ψ(s, y; t, x)W (dyds), t > 0, x ∈ D .

I0 is the solution to the homogeneous problem Lu = 0 with the same initial- and
boundary conditions as 2.3.

2.3 The Stochastic Heat Equation

We consider the stochastic heat equation on D = Rd for some integer d ≥ 1, or
D = (0, L) where L ∈ R, driven by a white noise processW based on the Lebesgue-
measure λ on R+ × D . Formally the equation is,

∂
∂tu(t, x)−∆u(t, x) =Ẇ (t, x) t > 0, x ∈ D

u(0, x) = 0 x ∈ D

+ Homogeneous Dirichlet BC if D = (0, L) x ∈ ∂D .

(2.4)
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With ∆ :=
∑d

k=1
∂2

∂x2
k
. We note that for the rest of this chapter we will have the drift

term α = 1 and diffusion σ = 1.

Let Ψ(s, y; t, x) = Ψ(t − s, x, y) represent the fundamental and Green solution re-
spectively to 2.4 above. We recall the semi-group property of Ψ stated in chapter 1
propositions 1.3.4 and 1.3.6.

Proposition 2.3.1. For x, z ∈ D and s, t > 0

Ψ(s+ t, x, z) =

∫
D
Ψ(t, x, y)Ψ(s, y, z)dy.

And we have the symmetry Ψ(t, x, z) = Ψ(t, z, x).

By definition 2.2.14, the solution to 2.4 is given as

u(t, x) =

∫ t

0

∫
D
Ψ(t− s, x, y)W (dyds). (2.5)

The above solution is defined for a given t > 0 and x ∈ D ⊆ Rd as long as the function
(s, y) 7→ Ψ(t − s, x, y) lies in L2((0, t) × D), which is by definition equivalent to the
condition that

∥Ψ∥2L2((0,t)×D) <∞.

This holds for D = (0, L) with Ψ = G: indeed by the semi-group property 2.3.1 of the
Green function (s, y) 7→ G(t− s, x, y) and that G(t, x, y) = G(t, y, x), then∫ L
0 G(t− s, x, y)2dy = G(2t− 2s, x, x). By inequality 1.10 we have that

G(2t− 2s, x, x) ≤ 1√
4π(2t− 2s)

.

And consequently

∥G∥2L2((0,t)×(0,L) =

∫ t

0
G(2t− 2s, x, x)ds

≤
∫ t

0

1√
4π(2t− 2s)

ds <∞.

On D = Rd we have the fundamental solution

Ψ(t− s, x, y) = Φ(t− s, x− y) =
e
− |x−y|2

4(t−s)

(4π|t− s|)d/2
.
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By the semi-group property 2.3.1

∥Φ∥2L2((0,t)×Rd) =

∫ t

0

∫
Rd

Φ(t− s, x− y)2dyds

=

∫ t

0
Φ(2t− 2s, 0)ds =

∫ t

0

1

(8π|t− s|)d/2
ds =

∫ t

0

1

(8πs)d/2
ds.

The integral
∫ t
0

1
(4πs)d/2

ds < ∞ if and only if d/2 < 1. Therefore the solution given in

2.5 to equation 2.4 on D = Rd exists if and only if d = 1. We proceed with the solution
for d = 1.

It will useful to calculate the integral
∫

e
−|x|2

ct

t1/2
dt for some c > 0 when we work with the

solution on the entire real line. We have,

∫
e

−|x|2
ct

t1/2
dt = 2

Ñ
√
te

−|x|2
ct − x2

∫
e

−|x|2
ct

ct3/2
dt

é
.

By the variable substitution s = x/
√
ct.

∫
e

−|x|2
ct

ct3/2
dt = − 1

x
√
c

∫
2e−s2ds = −

√
π

x
√
c

∫
2√
π
e−s2ds

= −
√
π

x
√
c
erf(s) = −

√
π

x
√
c
erf

Ç
x√
ct

å
.

Hence ∫
e

−|x|2
ct

t1/2
dt = 2

(
√
te

−|x|2
ct +

√
πx√
c

erf

Ç
x√
ct

å)
.

We therefore have the following.

Proposition 2.3.2. For the fundamental solution Φ(t, z) = e−
|z|2
4αt

(4παt)1/2
,

∫
Φ(t, z)dt =

1√
πα

(
√
te−

|z|2
4αt +

z

2

…
π

α
erf

Ç
z

2
√
αt

å)
. (2.6)

2.3.1 Covariance structure for the solution

By construction, the stochastic integrals I(h) given by the isonormal Gaussian process
h 7→ I(h) =

∫ t
0

∫
D h(s, y)W (dyds) for h ∈ L2(R+ × D) are Gaussian. Therefore the
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solution u(t, x) at a point (t, x) ∈ R+ × D , which itself is a stochastic process indexed
on R+ × D , is a Gaussian variable, with E(u(t, x)) = 0 and V(u(t, x)) = E(u(t, x)2) =
∥Ψ∥2L2((0,t)×D). For two points (t1, x1), (t2, x2) ∈ R+×D we can explicitly calculate (at

least for D = R) the covariance function E
[
u(t1, x1)u(t2, x2)

]
. Once again recall that

the solution is

u(t, x) =

∫ t

0

∫
D
Ψ(t− s, x, y)W (dyds).

Assuming t1 ≤ t2, the covariance can be written as

E
[
u(t1, x1)u(t2, x2)

]
=E
ñ∫ t1

0

∫
D
Ψ(t1 − s, x1, y)W (dyds)

∫ t2

0

∫
D
Ψ(t2 − s, x2, y)W (dyds)

ô
E
ñ∫ t2

0

∫
D
Ψ(t1 − s, x1, y)1(s ≤ t1)W (dyds)

∫ t2

0

∫
D
Ψ(t2 − s, x2, y)W (dyds)

ô
.

By Wiener’s isometry, the above expected value becomes the below Lebesgue integral∫ t2

0

∫
D
Ψ(t1 − s, x1, y)Ψ(t2 − s, x2, y)1(s ≤ t1)dyds

=

∫ t1

0

∫
D
Ψ(t1 − s, x1, y)Ψ(t2 − s, x2, y)dyds.

If we instead assumed t2 < t1, we would integrate to t2. This gives us that the
covariance can be simplified to

E
[
u(t1, x1)u(t2, x2)

]
=

∫ t1∧t2

0

∫
D
Ψ(t1 − s, x1, y)Ψ(t2 − s, x2, y)dyds. (2.7)

Looking at
∫
D Ψ(t1−s, x1, y)Ψ(t2−s, x2, y)dy we can use the semi-group property 2.3.1

to obtain ∫ t1∧t2

0

∫
D
Ψ(t1 − s, x1, y)Ψ(t2 − s, x2, y)dyds

=

∫ t1∧t2

0
Ψ(t1 + t2 − 2s, x1, x2)ds.

For D = R, we have Ψ(t1+ t2−2s, x1, x2) = Φ(t1+ t2−2s, x1−x2) = e−
|x1−x2|

2

4αu

(4πα(t1+t2−2s))1/2
.

We make the substitution τ = t1 + t2 − 2s and utilise Proposition 2.3.2:∫ t1∧t2

0
Φ(t1 + t2 − 2s, x1 − x2)ds =

1

2

∫ t1+t2

|t1−t2|
Φ(τ, x1 − x2)dτ

=
1

2
√
π

[
√
τe−

|x1−x2|
2

4τ +

√
π(x1 − x2)

2
erf

Ç
x1 − x2
2
√
τ

å]t1+t2

|t1−t2|

.
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And there we have

= E
[
u(t1, x1)u(t2, x2)

]
=

1

2
√
π

Ç
√
t1 + t2e

− |x1−x2|
2

4(t1+t2) −
»
|t1 − t2|e

− |x1−x2|
2

4|t1−t2|

å
+

(x1 − x2)

4

(
erf
Ä x1 − x2
2
√
t1 + t2

ä
− erf

Ä x1 − x2

2
√

|t1 − t2|

ä)
.

2.3.2 Sample path regularity

We gave the definition of local Hölder-continuity in the introduction, we restate it here.

Definition 2.3.3 (Local Hölder continuity). A function f : D → R, where D some
normed space is locally γ−Hölder continuous with Hölder exponent γ ≥ 0 if there exists
C > 0 such that

|f(x)− f(y)| ≤ C∥x− y∥γ

for x, y ∈ K for all compact sets K ⊆ D.

Definition 2.3.4. Let X : Ω × T → R be a stochastic process on the index set T .
A stochastic process X̃ is called a modification of X if for all t ∈ T it holds that
P
Ä
X(t) = X̃(t)

ä
= 1.

Two stochastic processes that are modifications of each other have the same finite
dimensional law.

The solution to the stochastic heat u(t, x) = u(ω, t, x) is a stochastic process. Our goal
for this section is to show that there exists modifications of the processes x 7→ u(t, x)
and t 7→ u(t, x) that are Hölder continuous. This was shown for D = (0, L) in Walsh’s
lecture notes in [Walsh, 1986, Chapter 3.]. We give a proof of Hölder-continuity in the
case of D = R. We will need Kolmogorov’s continuity theorem (statement and proof
can be found in e.g [Bell, 2015]).

Theorem 2.3.5. Let {X(t) : t ∈ T } be an R-valued stochastic process on the 1-
dimensional normed index set T . If there exists constants α, β,C > 0 such that for all
s, t ∈ T

E
[
|X(t)−X(s)|α

]
≤ C|t− s|1+β.

Then there exists a modification of X(t) which is a.s. continuous and even further a.s
locally Hölder γ-continuous for every γ ∈ (0, βα).

If a function is γ-Hölder continuous for every γ ∈ (0, βα), we will often call it almost
β
α -Hölder continuous.
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Theorem 2.3.6. The solution (t, x) 7→ u(t, x) to the stochastic heat equation 2.4 has
a modification which is locally Hölder continuous function with exponent almost 1

4 in
time and almost 1

2 in space.

Lemma 2.3.7. For Z ∼ N(0, σ2) we have

E
[
|Z|α

]
=

2α/2√
π
Γ

Å
α+ 1

2

ã
E
î
Z2
óα/2

.

Proof. (Of Theorem 2.3.6)

In the proceeding calculations, the value of the constant C may change from line to
line. Let α > 1. We will look at the Hölder continuity in space and time separately,
i.e. look at,

E
[
|u(t, x+ h)− u(t, x)|α

]
and, E

[
|u(t+ k, x)− u(t, x)|α

]
. (2.8)

We will estimate these two terms separately starting with the first expression, fix t > 0,

E
[
|u(t, x+ h)− u(t, x)|α

]
=

2α/2√
π
Γ

Å
α+ 1

2

ã
E
ïÄ
u(t, x+ h)− u(t, x)

ä2òα/2
=

2α/2√
π
Γ

Å
α+ 1

2

ãÇ∫ t

0

∫
R
(Φ(t− s, x+ h− y)− Φ(t− s, x− y))2dyds

åα/2

.

Which is motivated by the fact that E
[
|u(t, x+ h)− u(t, x)|α

]
is simply is the α:th

moment of a zero mean Gaussian random variable, so the constant comes from the
calculation of E

[
|Z|α

]
where Z ∼ N(0, σ2) from Lemma 2.3.7. Looking at the integral∫

R(Φ(t− s, x+ h− y)− Φ(t− s, x− y))2dy, we have that the integrand is equal to(
Φ(t− s, x+ h− y)− Φ(t− s, x− y)

)2
=Φ2(t− s, x+ h− y)− 2Φ(t− s, x+ h− y)Φ(t− s, x− y) + Φ2(t− s, x− y).

Since we are integrating with respect to y over Rd, we can use the semigroup property

in Proposition 2.3.1. Let C = 2α/2
√
π
Γ
Ä
α+1
2

ä
(which, again, can can change from line to
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line), we have

C

Ç∫ t

0

∫
R
(Φ(t− s, x+ h− y)− Φ(t− s, x− y))2dyds

åα/2

= C

Ç∫ t

0
Φ(2t− 2s, 0)− 2Φ(2t− 2s, h) + Φ(2t− 2s, 0)ds

åα/2

= C

Ç∫ t

0
2Φ(2t− 2s, 0)− 2Φ(2t− 2s, h)ds

åα/2

= {τ = 2t− 2s} = C

Ç∫ 2t

0
Φ(τ, 0)− Φ(τ, h)dτ

åα/2

.

We note that by Proposition 2.3.2,∫ 2t

0
Φ(τ, 0)− Φ(τ, h)dτ

=

 1√
π

(
√
τ −

√
τe−

|h|2
4τ − h

2

√
π erf

Ç
h

2
√
τ

å)2t

0

=C1 + C2h ≤ Ch,

because the erf-and exponential functions are bounded. Hence the expected value of
an increment in x is bounded in the following way,

E
[
|u(t, x+ h)− u(t, x)|α

]
≤ Chα/2.

For the second expression in 2.8 a similar argument is used. We utilise that we know
the α-th moment of a zero mean Gaussian variable, fix x ∈ R

E
[
|u(t+ k, x)− u(t, x)|α

]
=CE

Ç∫ t+k

0

∫
R
Φ(t+ k − s, x− y)W (dyds)−

∫ t

0

∫
R
Φ(t− s, x− y)W (dyds)

å2
α/2

.

We continue with the expected value of the increment squared, where we use Wiener’s
isometry, the semi-group property of Φ, and that we know the primitive function of
Φ(τ, z) with respect to τ . Below we have C,C1 and C2 being constants that may change
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from line to line.

E

Ç∫ t+k

0

∫
R
Φ(t+ k − s, x− y)W (dyds)−

∫ t

0

∫
R
Φ(t− s, x− y)W (dyds)

å2


=C1

∫ t+k

0

∫
R
Φ2(t+ k − s, x− y)dyds

+C2

∫ (t+k)∧t

0

∫
R
Φ(t+ k − s, x− y)Φ(t− s, x− y)dyds+ C3

∫ t

0

∫
R
Φ2(t− s, x− y)dyds

=C1

∫ 2t+2k

0
Φ(τ, 0)dτ + C2

∫ 2t

k
Φ(τ, 0)dτ + C3 ≤ C1 + C2

√
k ≤ C

√
k.

In the second to last inequality we used
√
a+ b ≤

√
a+

√
b for positive numbers a and

b. And hence
E
[
|u(t+ k, x)− u(t, x)|α

]
≤ Ckα/4.

This completes the proof by using Kolmogrov’s Theorem 2.3.5 with 1-dimensional index
space, 1+β equal to α/2 and α/4 in space and time respectively. Therefore the solution
has a modification that is Hölder-continuous with Hölder-exponent γ ∈ (0, 1/2− 1/α)
and γ ∈ (0, 1/4 − 1/α) for every α > 0. Consequently, the Hölder-exponent is almost
1/2 in space and almost 1/4 in time. This is the upper bound of Hölder-continuity.

For the coming discussions, assume that we are working with the Hölder-continuous
modification of u with Hölder-exponent almost 1/2 in space and almost 1/4 in time.

2.3.3 Localisation error

This thesis focuses primarily with the solution on D = R, but the solutions on D = R
and D = (0, L) are closely linked. Because we simulate solution on both bounded D and
D = R we have the following nice property that was shown by Candil [Candil, 2022]. As
the bounded domain increases to the whole real line, both solutions become arbitrarily
close to one another. If we consider D = (−L,L) for some L ∈ R, then as L→ ∞, the
solution to 1.8 actually converges to the solution of the stochastic heat equation on the
entire real line, subject to the same initial conditions (where the initial condition can
be stochastic as well). First let u0 satisfy

sup
x∈R

E(|u0(x)|p)1/p <∞. (2.9)

For some p ≥ 2. Below is the localization error, see [Candil, 2022, Theorem 2.4 page
21].
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Theorem 2.3.8. Let uL(t, x) be the solution to the stochastic heat equation on R+ ×
D = R+ × (−L,L), L > 0, driven by white noise, drift parameter α = 1, and diffusion
σ = 1, and let u(t, x) be the solution to the same differential stochastic heat equation
on R× R+ subject to the same initial conditions as uL. Fix T > 0, then

E(|u(t, x)− uL(t, x)|p)1/p ≤ c̃

Å
e

−(L−x)2

8t + e
−(L+x)2

8t

ã
.

For all x ∈ (−L,L) and t ∈ (0, T ). Where c̃ is independent of t, x and L. The p is the
same as for the initial condition 2.9.
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Chapter 3

Distribution, Exact q-Variation,
and Inference of the Solution

Inference on the stochastic heat equation will focus on the estimation of the drift and
diffusion of the field solution to the stochastic heat equation,{

∂
∂tu(t, x)− α∆u(t, x) = σẆ (t, x) t > 0, x ∈ R
u(0, x) = 0 x ∈ Rd.

(3.1)

Given the field, one can look at the solution for a fixed x or a fixed t which results in
a stochastic process whose distribution depends on α and σ. Now let V : C[a, b] →
R+ ∪ {+∞} be the functional called the exact q-variation. Throughout, Kolmogorov’s
continuity theorem will be used such that the sample paths are a.s. continuous and
hence in the domain of the functional. One of the most important results in this chapter
is that the exact q-variation of our solution in time and space will be a known value
that depends on the drift and diffusion.

We will have the important property that the functional V is invariant to Lipschitz
perturbations, i.e. let the sample paths v be Lipschitz and u be continuous, then
V (u + v) = V (u). This is a strong property which will be needed throughout this
chapter since we only know the value of the functional V for a specific stochastic process,
the fractional Brownian motion (fBm). Hence this chapter begins by representing the
solution in time and space with the fBm, which will give us a way to calculate the
variation of u, and consequently get some information about the drift and diffusion.

Remark 3.0.1. Note that the results on the variations of the solution are proved only
over the unbounded spatial domain R. However, the results coincide for the solutions
on compact intervals D , these proofs are based on the Malliavin calculus and can be
found in e.g. [Cialenco and Huang, 2019].
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3.1 Fractional and bi-fractional Brownian motion

This chapter will heavily use the fractional- and bi-fractional Brownian motion. Both
are generalisations of the Brownian motion in the sense that they keep some properties
such as, being Gaussian, having stationary increments, being self similar and starting
from zero. The more generalised, the less properties kept.

Definition 3.1.1. The fractional Brownian motion (fBm) is a continuous time zero
mean Gaussian process denoted FH(t) with covariance

E
î
FH(t)FH(s)

ó
=

1

2
(|t|2H + |s|2H − |t− s|2H)

where H ∈ (0, 1) is the Hurst parameter.

A proof that the above covariance function is non-negative definite can be found in e.g
[Nourdin, 2012]. Thus the existence of the Gaussian process FH is guaranteed.

Note that if H = 1
2 we have normal Brownian motion. Some properties of the fractional

Brownian motion,

Proposition 3.1.2. Fractional Brownian motion is self similar for all a > 0,

FH(at)
d
= aH FH(t) for all t ∈ R+. (3.2)

Proof. Because they are zero mean Gaussian it suffices to prove that,

E
î
(FH(at))2

ó
= |at|2H = |a|2H |t|2H = E

î
(aH FH(t))2

ó
.

Proposition 3.1.3. Fractional Brownian motion has stationary increments,

FH(t)− FH(s)
d
= FH(t− s).

Proof. Since both the left- and right hand side are zero mean Gaussian processes it
suffuses to prove that,

E
î
(FH(t)− FH(s))2

ó
= |t|2H + |s|2H − (|t|2H + |s|2H − |t− s|2H)

= |t− s|2H = E
î
(FH(t− s))2

ó
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The value of H determines the regularity of the sample paths, since for every T > 0
and ϵ > 0 there exists a random variable c such that,

|FH(t)− FH(s)| ≤ c|t− s|H−ϵ (3.3)

where s < t < T . This will be proven later when needed, but it is easily visualised in
Figure 3.1 below where three different values of H are compared.

Figure 3.1: Three different values of Hurst parameter for the fractional Brownian
motion with the same underlying independent Gaussian variables.

A further generalisation of Brownian motion is the bi-fractional Brownian motion,
which was introduced by Houdré and Villa [Houdré and Morales, 2003] to generalise
even further, but importantly, it keeps the self-similarity property and lightens the
restraint of stationary increments since it was not that useful for modelling purposes.

Definition 3.1.4. The bi-fractional Brownian motion is a continuous time zero mean
Gaussian process denoted BH,K(t) with covariance

E[BH,K(t)BH,K(s)] =
1

2K

Ä
(t2H + s2H)K − |t− s|2HK

ä
(3.4)

where H ∈ (0, 1) and K ∈ (0, 1].

The covariance function is non-negative definite [Houdré and Morales, 2003, Proposi-
tion 2.1].

Note that if K = 1 we have fractional Brownian motion. Some properties of the
bi-fractional Brownian motion,
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Proposition 3.1.5. The bi-fractional Brownian motion is self similar for all a > 0,

BH,K(at)
d
= aHKBH,K(t) for all t ∈ R+. (3.5)

Proof. Because they are zero mean Gaussian it suffices to prove that,

E
î
(BH,K(at))2

ó
=

2K

2K
(at)2HK = (a)2HK(t)2HK = E

î
(aHK BH,K(t))2

ó
.

Noting that the first term in the covariance for the bi-fractional Brownian motion
inhibits it from having stationary increments since the freshman’s dream unfortunately
is not true in general, the next best thing will have to suffice.

Proposition 3.1.6. The bi-fractional Brownian motion has approximately stationary
increments for small increments.

Proof. Because they are zero mean Gaussian it suffices to prove that for n > 0 and
s = t+ 1

n , then

E
î
(BH,K(t)−BH,K(s))2

ó
= |t+ 1

n
|2HK + |t|2HK − 21−K

Ä
|t+ 1

n
|2H + |t|2H)K +

21−K

n2HK

which converges to 21−K

n2HK = 1
2K

|t− s|2HK as n→ ∞ and since 1
2K

|t− s|2HK =

E
î
(BH,K(t))2

ó
this completes the proof.

3.2 Distribution of u(t, x)

Since the goal is to calculate the variation of the stochastic processes given by either
fixing t or x, they need to be perturbed such that they have the same distribution as
the fractional Brownian motion. To be able to know which process to perturb with, we
need to know the distribution of the solution with α = 1 and σ = 1 in time and space.

3.2.1 In time

By fixing x, the solution varying over time will be shown to have the distribution of a
known process, the bi-fractional Brownian motion.
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Proposition 3.2.1. The solution u(t, x) to the stochastic heat equation 3.1 with α = 1
and σ = 1 has the same distribution modulo a constant to the bi-fractional Brownian
motion with H = 1

2 and K = 1
2 ,

u(t, x)
d
= (2π)−

1
4 B

1
2
, 1
2 (t) for all t ∈ R+.

Proof. Recall the covariance to the solution of equation 3.1 with a fixed x, α = 1 and
σ = 1,

E
[
u(t1, x)u(t2, x)

]
=

1√
4π

((t1 + t2)
1
2 − |t1 − t2|

1
2 ),

and the covariance for bi-fractional Brownian motion is,

E[BH,K(t)BH,K(s)] =
1

2K
(t2H + s2H)K − |t− s|2HK).

Hence they match if K = 1
2 , H = 1

2 and the covariance for bi-fractional is scaled by
a factor 1√

2π
. Since the covariance of the solution above is the same as the one for

the bi-fractional Brownian motion, they have the same distribution by Lemma 2.1.6
(1).

Remark 3.2.2. The fact that two Gaussian processes are equal in distribution when
their mean and covariance coincide thanks to Lemma 2.1.6 (1) will not be stated
throughout the rest of this chapter.

3.2.2 In space

In space we will stumble upon the fractional Brownian motion instantaneously. The
following is inspired by [Foondun et al., 2014, Proposition 3.1],

Theorem 3.2.3. The solution u(t, x) to the stochastic heat equation with α = 1 and
σ = 1 perturbed by the stochastic process

St(x) :=

∫
(t,∞)×R

Φ(s, y; 0, 0)− Φ(s, y; 0, x)W (dyds) (3.6)

has the same distribution modulo a constant as the fractional Brownian motion with
Hurst parameter H = 1

2 (i.e. a Brownian motion),

u(t, x)− St(x)
d
=

1√
2
F

1
2 (x) for all x ∈ R. (3.7)

The stochastic process St(x) is a zero mean Gaussian process in C1.
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Proof. The process St(x) is a zero mean Gaussian random field since the kernel is in
L2((t,∞)× R). We define the derivative of St(x) as,

d

dx
St(x) :=

∫ ∞

t

∫
R

d

dx
Φ(0, x; s, y)W (dyds). (3.8)

The process d
dxSt(x) has finite second moment (and hence exists in L2(Ω)),

E
ñ∣∣∣∣ ddxSt(x)∣∣∣∣2ô = ∫ ∞

t

∫
R
| d
dx

Φ(0, x; s, y)|2dyds = 1

2π

∫ ∞

t

∫
R
|ξ|2|F (Φ(0, 0; s, y))(ξ)|2dξds,

where the last equality is motivated by the invariance of a change of variable in space
and Plancherel’s theorem. Continuing,

1

2π

∫ ∞

t

∫
R
|ξ|2e−

s|ξ|2
2 (ξ)dξds =

2

π

∫ ∞

0
e−

t|ξ|2
2 dξ <∞.

The derivative defined in 3.8 is a.s. the true derivative in an L2 sense, let

St(x+∆x)− St(x)

∆x
=

∫ ∞

t

∫
R

Φ(0, x+∆x; s, y)− Φ(0, x; s, y)

∆x
W (dyds),

then,

lim
∆x→0

E

∣∣∣∣∣St(x+∆x)− St(x)

∆x
−
∫ ∞

t

∫
R

d

dx
Φ(0, x; s, y)W (dyds)

∣∣∣∣∣
2


= lim
∆x→0

E

∣∣∣∣∣
∫ ∞

t

∫
R

Φ(0, x+∆x; s, y)− Φ(0, x; s, y)

∆x
− d

dx
Φ(0, x; s, y)W (dyds)

∣∣∣∣∣
2


=

∫ ∞

t

∫
R

lim
∆x→0

∣∣∣∣∣Φ(0, x+∆x; s, y)− Φ(0, x; s, y)

∆x
− d

dx
Φ(0, x; s, y)

∣∣∣∣∣
2

dyds = 0.

The process d
dxSt(x) has a continuous modification, with Kolmogorovs continuity the-

orem,

E
ñ∣∣∣∣ ddxSt(x2)− d

dx
St(x1)

∣∣∣∣2
ô
=

1

2π

∫ ∞

t

∫
R
|F (

d

dx
Φ(0, 0; s, y))(ξ) (e−ix2ξ − e−ix1ξ)|2dξds

=
1

2π

∫ ∞

t

∫
R
|ξ|2e−

s|ξ|2
2 |e−ix1ξ(1− e−iξϵ)|2dξds

where ϵ = x2 − x1. Continuing with the fact that |1 − exp(θi)|2 = 2(1 − cos(θ)) and
Fubinis theorem,

1

2π

∫
R

∫ ∞

t
|ξ|2e−

s|ξ|2
2 (1− cos(ϵξ))dsdξ =

1

π

∫
R

|ξ|2e−
t|ξ|2
2

|ξ|2
(1− cos(ϵξ))dξ.
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The fact that 1− cos(θ) ≤ θ2 and symmetry is used,

≤ 1

π

∫
R
e−

t|ξ|2
2 (ϵξ)2dξ =

1

π

∫ ∞

0
ξ2e−2t|ξ|2dξ ϵ2 = C|x2 − x1|2.

Now the process B(x) := u(t, x) − St(x) can be identified, using the fact that u(t, x)
and St(x) are integrated over disjoint sets (and hence independent) the following is
true,

E
î
|B(x2)−B(x1)|2

ó
= E
î
|u(t, x2)− u(t, x1)|2

ó
+ E
î
|St(x2)− St(x1)|2

ó
which by the Wiener isometry is equal to

1

2π

∫ t

0

∫
R
|F (Φ(0, 0; s, y))(ξ) (e−ix1ξ − e−ix2ξ)|2dξds

+
1

2π

∫ ∞

t

∫
R
|F (Φ(0, 0; s, y))(ξ) (e−ix1ξ − e−ix2ξ)|2dξds

=
1

π

∫ ∞

0

∫
R
e−s|ξ|2(1− cos((x2 − x1)ξ))dξds =

1

π

∫ ∞

0

(1− cos((x2 − x1)ξ))

ξ2
dξ.

A change of variables z = (x2 − x1)ξ gives

|x2 − x1|
π

∫ ∞

0

(1− cos(z))

z2
dz =

|x2 − x1|
2

via Contour Integration and hence the process B(x)
√
2 is a Brownian motion.

3.3 Distribution of σuα(t, x)

The distributions for the solution with α = 1 and σ = 1 have been calculated. Now
the effects of changing the drift α and the diffusion σ needs to be understood. Since
we are working with the heat equation a powerful technique which shifts the drift to
the diffusion can be utilised, even in the stochastic case.

The solution to the stochastic heat equation 3.1, is by definition

σuα(t, x) =

∫ t

0

∫
R
Φ(αs, y;αt, x)σW (dyds). (3.9)

Where Φ(s, y; t, x) is the fundamental solution to the SHE 3.1 with α = σ = 1. We
denote solution to the SPDE 3.1 with σ = 1 and general drift as uα(t, x), and u1(t, x)
is the solution with α = 1 and σ = 1. Just like in the last part the distributions to
σuα(t, x) must be known such that they can be perturbed into fractional Brownian
motions. The shift of drift to diffusion is stated more precisely below. The calculations
are inspired by [Mahdi Khalil and Tudor, 2019].
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Proposition 3.3.1. Suppose that the process σuα(t, x) for all t ∈ R+ and x ∈ R is the
solution to 3.1. Define

σvα(t, x) := σuα(
t

α
, x) for all t ∈ R+, x ∈ R

then the process vα(t, x) satisfies the stochastic partial differential equation

∂

∂t
vα(t, x)−∆vα(t, x) = α− 1

2
˙̃W (t, x)

where ˙̃W is a space-time white noise.

Proof. Let t ∈ R+, x ∈ R, then by equation 3.9,

vα(t, x) = uα(
t

α
, x) =

∫ t
α

0

∫
R
Φ(αs, y; t, x)W (dyds) =

¶
s =

s′

α

©
∫ t

0

∫
R
Φ(s, y; t, x)W (d

s

α
dy) = α− 1

2

∫ t

0

∫
R
Φ(s, y; t, x)W̃ (dyds)

(3.10)

where the second to last equality is motivated by approximating the integrand with a
step-function and scaling the rectangles over which we integrate and the last equality
is motivated by the self similarly property of Brownian motion.

3.3.1 In time

Proposition 3.3.2. For every x ∈ R the drift α > 0 and diffusion σ > 0 scales the
solution by σα− 1

4 , i.e.

σuα(t, x)
d
= σ(2απ)−

1
4 B

1
2
, 1
2 (t) for all t ∈ R+.

Proof. Let x ∈ R, σ > 0 and α > 0, then we have the following equality in distribution

E
[
σuα(t, x)σuα(s, x)

]
= σ2E

[
vα(αt, x)vα(αs, x)

]
= σ2α−1E

[
u1(αt, x)u1(αs, x)

]
,

(3.11)

where the second equality is motivated by same change of variable as in the proof of
equation 3.10 and seen below

vα(αt, x) =

∫ t

0

∫
R
Φ(αs, y;αt, x)W̃ (dyds)

=

∫ αt

0

∫
R
Φ(s, y;αt, x)W̃ (d

s

α
dy) = α− 1

2u1(αt, x).

(3.12)
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Continuing on equation 3.11 firstly with the distribution given in Proposition 3.2.1 and
secondly the self-similarity property of bi-fractional Brownian motion,

σ2α−1E
[
u1(αt, x)u1(αs, x)

]
= σ2α−1(2π)−

1
2E
ï
B

1
2
, 1
2

αt B
1
2
, 1
2

αs

ò
= σ2(α2π)−

1
2E
ï
B

1
2
, 1
2

t B
1
2
, 1
2

s

ò
.

3.3.2 In space

Proposition 3.3.3. For every t ∈ R+ the drift α > 0 and diffusion σ > 0 scales the

perturbed solution by σα− 1
2 , i.e.

σuα(t, x)− σSαt(x)
d
= σ(2α)−

1
2 F

1
2 (x) for all x ∈ R.

Proof. Let t > 0,

σuα(t, x) = σvα(αt, x)
d
= σα− 1

2u1(αt, x) for all x ∈ R

where the last equality is motivated by equation 3.12. Continuing the calculations
using the distribution given in Lemma 3.2.3,

σα− 1
2u1(αt, x)− σSαt(x)

d
= σ(2α)−

1
2F

1
2 (x) for all x ∈ R.

3.4 Decomposition of the bi-fractional Brownian motion

Since the distribution of the solution in time is the bi-fractional Brownian motion we
want to perturb it into the fractional Brownian motion such that the variation can be
calculated. The following is inspired by [Lei and Nualart, 2009, Proposition 1].

The theorem is motivated by the decomposition of the covariance function for bi-
fractional Brownian motion,

RH,K(t, s) = 2−K((t2H + s2H)K − |t− s|2HK) =

2−K [((t2H + s2H)K − t2HK − s2HK) + (t2HK + s2HK − |t− s|2HK)] (3.13)

where the second term is the covariance for the fractional Brownian motion. Now the
first term needs to be identified.
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Theorem 3.4.1. The bi-fractional Brownian motion with parameters H and K per-
turbed by the stochastic process

XK(t) :=

∫ ∞

0
(1− e−tα)α

−1−K
2 W (dα)

has the same distribution modulo a constant as the fractional Brownian motion with
Hurst parameter H ·K,

BH,K(t) + C1X
K(t2H)

d.
=

√
21−KFHK(t) for all t ∈ R+

where, C1 =
√

2−KK
Γ(1−K) . The process XK(t2H) is a zero mean Gaussian process in C1.

Proof. The definition of XK(t) comes from the fact that the covariance matches the
sought after covariance structure in the first term of the decomposition 3.13 with a sign
change which can be seen by,

E
î
XK(t)XK(s)

ó
=

∫ ∞

0
(1− e−tα)(1− e−sα)α−1−Kdα

=
Γ(1−K)

K
(tK + sK − (t+ s)K).

Now since these variables are Gaussian the behaviour is governed by the expectation

and covariance. Hence the process F (t) = BH,K(t) +
√

2−HKHK
Γ(1−HK)X

K(t2H) has the

following covariance,

E
[
F (t)F (s)

]
=E
î
BH,K(t)BH,K(s)

ó
+

2−KK

Γ(1−K)
E
î
XK(t2H)XK(s2H)

ó
=

1

2K
((t2H + s2H)K − |t− s|2HK) +

1

2K
(t2HK + s2HK − (t2H + s2H)K)

=
1

2K
(t2HK + s2HK − |t− s|2HK).

Therefore, the process F (t) is a fractional Brownian motion with Hurst parameter HK,
i.e. FHK(t).

To prove thatXK(t2H) has a.s. differentiable sample paths, let Y (t) :=
∫∞
0 θ

1−K
2 e−θtW (dθ)

which is well defined since

E
î
Y (t)2

ó
=

∫ ∞

0
θ2−K−1e−2θtdθ = Γ(2−K)2K−2tK−2 <∞.

Applying Fubini and then Cauchy Schwartz inequality with the the moment coefficients
from Lemma 2.3.7, we note that Y (t) is locally integrable,

E
ñ∫ t

0
|Y (s)|ds

ô
≤
…

2

π

∫ t

0

»
E
[
|Y (s)|2

]
ds =

 
2Γ(2−K)2K−2

π

∫ t

0
s

K−2
2 ds <∞.
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Applying stochastic Fubini (see e.g. [Protter, 2010, Theorem 64 page 210]),∫ t

0
Y (s)ds =

∫ t

0

Ç∫ ∞

0
θ

1−K
2 e−θsW (dθ)

å
ds =

∫ ∞

0
θ

1−K
2

Ç∫ t

0
e−θsds

å
W (dθ)

=

∫ ∞

0
θ

−1−K
2 (1− e−tθ)W (dθ) = XK(t).

Hence, XK(t) is absolutely continuous and by the fundamental theorem of Lebesgue
integral calculus, this is equivalent to the fact that the sample paths of XK(t) is C1

with the derivative Y (t) a.s.

3.5 Variation of perturbed stochastic processes

The functional V mentioned before is called the exact q-variation of a stochastic process
over an interval [a, b]. Let us define it more precisely.

Definition 3.5.1. For all n ≥ 1, let ti = A+ i
n(B −A) for i = 0, ..., n. A continuous

real valued stochastic process X(t) with t ∈ T ⊆ R admits the exact q-variation

V q
[A,B]

[
X(t)

]
= lim

n→∞
V n,q
[A,B]

[
X(t)

]
= lim

n→∞

n−1∑
i=0

|X(ti+1)−X(ti)|q

if the sequence V n,q
[A,B]

[
X(t)

]
converges in probability as n→ ∞.

The importance of the fact that the additive processesXHK(t) and St(x) from Theorem
3.3.3 and Theorem 3.4.1 respectively are in C1 is that they have Lipschitz sample paths
and hence do not change the exact q-variation for q > 1. The variation in either time
or space of the perturbed solution, u(t, x)+XHK(t) or u(t, x)+St(x) respectively, are
equal to the variations of the solution, i.e.

V q
[t1,t2]

[u(t, x)+XHK(t)] = V q
[t1,t2]

[u(t, x)], and V q
[x1,x2]

[u(t, x)−St(x)] = V q
[x1,x2]

[u(t, x)].

This is formalised in the theorem below which is inspired by [Lei and Nualart, 2009,
Proposition 4].

Theorem 3.5.2. Let q > 1, then a stochastic process Y (t) with finite exact q-variation
perturbed by A(t) which is a zero mean Gaussian process with Lipschitz sample paths
has the same exact q-variation as Y (t) itself,

V q
[a,b]

[
Y (t)

]
= V q

[a,b]

[
Y (t) +A(t)

]
.
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Proof. Firstly,

n−1∑
i=0

|Y (ti+1) +A(ti+1)− Y (ti)−A(ti)|q =
n−1∑
i=0

|Y (ti+1)− Y (ti) +A(ti+1)−A(ti)|q.

The Minkowski inequality can be used to create the following enclosureÄ n−1∑
i=0

|Y (ti+1)− Y (ti)|q
ä1/q

−
Ä n−1∑

i=0

|A(ti+1)−A(ti)|q
ä1/q

≤
Ä n−1∑

i=0

|Y (ti+1) +A(ti+1)− Y (ti)−A(ti)|q
ä1/q

≤
Ä n−1∑

i=0

|Y (ti+1)− Y (ti)|q
ä1/q

+
Ä n−1∑

i=0

|A(ti+1)−A(ti)|q
ä1/q

.

(3.14)

Continuing by using the fact that A(t) is a.s. Lipschitz continuous where C can change
between inequalities,

n−1∑
i=0

|A(ti+1)−A(ti)|q ≤ C
n−1∑
i=0

|ti+1 − ti|q = C
n−1∑
i=0

Ä 1
n

äq
= Cn1−q.

Hence, since the above sum converges to 0 a.s. as n → ∞ since 1 − q < 0. This
completes the proof because the exact q-variation of Y (t) is finite combined with the
enclosure in equation 3.14.

3.6 Variation of the fractional Brownian motion

A specific value of q needs to be chosen for the exact q-variation to have some meaning
and not converge to zero or diverge to infinity. This value is one over the Hölder
continuity constant γ, i.e. q = 1

γ . The reason is that the variation of a γ-Hölder
continuous process Y (t), again let C be changing,

n−1∑
i=0

|Y (ti+1)− Y (ti)|q ≤ C

n−1∑
i=0

(|ti+1 − ti|)γq = C

n−1∑
i=0

∣∣∣B −A

n

∣∣∣γq = C
n

nγq
, (3.15)

goes to infinity if γq < 1 and to zero if γq > 1. Hence to actually get some information
about the variation of a γ-Hölder continuous function one needs to use the exact 1

γ -
variation.

Kolmogorovs continuity theorem can be applied to the fractional Brownian motion
since because of the stationary increments,

E
î
|FH(t)− FH(s)|q

ó
≤ |t− s|qHE

î
|FH(1)|q

ó
.
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Let q := 1+R
H and ϵ := qH − 1 = R which gives that FH(t) is γ-Hölder continuity

for 0 < γ < q/ϵ = H R
1+R , and since R was arbitrary, γ ∈ (0, H). Hence the exact

1
H -variation of the fractional Brownian motion is non trivial and can be seen below (cf.
[Rogers, 1997]).

Theorem 3.6.1. The exact 1
H -variation of c times a fractional Brownian motion with

Hurst parameter H is,

V
1
H

[a,b]

î
cFH(t)

ó
= c

1
H (b− a)E

[
|Z|

1
H

]
,

where Z ∼ N(0, 1).

The proof is located in the appendix A since it requires some prerequisites which would
disturb the flow of the text. In this appendix the theorem which provides the exact 1

H -
variation of the fractional Brownian motion FH will be proved. The reasoning behind
perturbing into fractional Brownian motion is because it has stationary increments,
since if a sequence is constructed from these increments, it is a stationary sequence
which enables us to use tools from ergodic theory.

3.7 Exact variation of σuα

Using everything constructed above the exact q-variation can be calculated.

3.7.1 In time

In time, the solution has the distribution as the bi-fractional Brownian motion with
parameters H = 1

2 and K = 1
2 given in Proposition 3.3.2. Perturbing this solution

with the stochastic process given in Theorem 3.4.1 results in the fractional Brownian
motion with Hurst parameter H = 1

4 .

The connection between Hölder continuity and variation implies that the exact 4-
variation of the solution should be used. The variation is not changed by the pertur-
bation stated in Theorem 3.5.2. This sum is the fractional Brownian motion and the
variation is given by Theorem 3.6.1. In summary,

V 4
[s1,s2]

[
σuα(t, x)

]
=︸︷︷︸

3.5.2

V 4
[s1,s2]

ñ
σuα(t, x) + σ

C1

(2απ)1/4
X

1
4 (t)

ô
=︸︷︷︸

3.6.1

V 4
[s1,s2]

[
2

1
4σ

(2απ)1/4
F

1
4 (t)

]
=︸︷︷︸

3.6.1

σ4E
[
|Z|4

]
(s2 − s1)

απ
.

(3.16)
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3.7.2 In space

Almost exactly the same argument can be used for the solution in space. The only
difference is that the perturbed solution is the fractional Brownian motion with Hurst
parameter H = 1

2 given in Theorem 3.2.3 with coefficients from Theorem 3.3.3. All of
which can be expressed in the following equation,

V 2
[y1,y2]

[
σuα(t, x)

]
=︸︷︷︸

3.5.2

V 2
[y1,y2]

[
σuα(t, x)− σSαt(x)

]
=︸︷︷︸

3.6.1

V 2
[y1,y2]

ñ
σ

(2α)1/2
F

1
2 (x)

ô
=︸︷︷︸

3.6.1

σ2E
[
|Z|2

]
(y2 − y1)

2α

(3.17)

3.8 Estimators

Now that the variation is known and how it depends on the drift and diffusion, estima-
tors can be constructed. We will construct four estimators, two for each path in time

and space respectively, α̂
(n)
time,α̂

(n)
space, σ̂

(n)
time, and σ̂

(n)
space.

Recall the theorems 3.5.2 and 3.6.1, for a stochastic process X with Lipschitz sample

paths, V
1
H

[a,b]

î
cFH(t) +X(t)

ó
= V

1
H

[a,b]

î
cFH(t)

ó
= c

1
H (b− a)E[|Z|

1
H ] and hence

E[|Z|
1
H ] =

1

c
1
H (b− a)

V
1
H

[a,b]

î
cFH(t) +X(t)

ó
.

Consider therefore the sequence of stochastic variables V
n, 1

H

[a,b]

î
cFH(t) +X(t)

ó
for n ≥ 1.

Replacing V
1
H

[a,b]

î
cFH(t) +X(t)

ó
by the sequence V

n, 1
H

[a,b]

î
cFH(t) +X(t)

ó
should give an

approximation for the value E[|Z|
1
H ]. The lemma given below is a special case of

[Mahdi Khalil and Tudor, 2019, Lemma 1] which shows how well this approximation
holds through a central limit type theorem.

Lemma 3.8.1. Let cFH(t), with t ≥ 0, be a fBm with H ∈ (0, 12 ] scaled by the constant
c > 0. Let X be a zero mean stochastic process with Lipschitz sample paths. Then as
n→ ∞ we have the following convergence in distribution

√
n

V n, 1
H

[a,b]

î
cFH(t) +X(t)

ó
c1/H(b− a)

− E[|Z|
1
H ]

→ N

Å
0, ρ2

H, 1
H

ã
.

Where ρ2
H, 1

H

is an explicit positive constant.
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The variance ρ2
H, 1

H

for the Hurst parameters H = 1
4 and H = 1

2 are calculated in

appendix B. We present the results here. Let,

κ2l := lim
n→∞

1

n

n−1∑
i=1

n−1∑
j=1

rl(|i− j|), where, rl(k) :=
Ä
|k + 1|2H + |k − 1|2H − 2|k|2H

äl
.

For Hurst parameter H = 1
2 and H = 1

4 , the variance from Lemma 3.8.1 is,

ρ21
2
,2
= 2κ22, and ρ21

4
,4
= 72κ22 + 24κ24.

3.8.1 Path estimation of drift and diffusion separately

The above lemma will give us a method of determining the asymptotic normality of
our estimators of α and σ. By utilising that we know the variations as function of α
and σ we can ”solve” for one of them if we have the other.

Motivated by equality 3.16, if we calculate the quartic variation over t ∈ [0, s] for some
s > 0, the estimator of α can be constructed,

α̂
(n)
time :=

σ4sE[|Z|4]
π
∑n−1

i=0 |σuα(ti+1, x)− σuα(ti, x))|4
.

We show the explicit method of computing the asymptotic normality of estimators by

utilising Lemma 3.8.1 only for estimator α̂
(n)
time above. The asymptotic normality of the

rest of the estimators α̂
(n)
space, σ̂

(n)
time, and σ̂

(n)
space will follow by the same procedure and

are omitted. We know from equation 3.16 that

E[|Z|4] = πα

σ4s
V 4
[0,s]

[
σuα(t, x)

]
=
V 4
[0,s]

[
σuα(t, x)

]
σ4

παs
. (3.18)

We can perturb the solution t 7→ σuα(t, x) to some fractional Brownian motion,

σuα(t, x) = σuα(t, x)−X(t) +X(t)
d
= cFH(t) +X(t).

Applying Lemma 3.8.1 then gives that the stochastic variable

Vn :=
πα

σ4

V n,4
[0,s]

[
σuα(t, x)

]
s

,

which admits the following asymptotic normality

√
n
î
Vn − E[|Z|4]

ó
→ N

Å
0, ρ21

4
,4

ã
.
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Multiplying Vn by 1
E[|Z|4]α gives that

√
n

ñ
Vn

E[|Z|4]α
− 1

α

ô
→ N

Å
0, ρ21

4
,4
(αE[|Z|4])−2

ã
.

The variable‘α−1
(time) :=

Vn
E[|Z|4]α is an estimator for 1/α. The well known Delta method

(see e.g. [Doob, 1935]) states that if An is a sequence of random variables such that√
n(An − a0) → N(0, σ2) and if g is a function such that g′(a0) exists and is not equal

to zero, then
√
n(g(An)− g(a0)) → N(0, σ2g′(a0)

2). In our case we are looking to take
the reciprocal of the variable Vn

E[|Z|4]α , by

g(
Vn

E[|Z|4]α
) :=

1
Vn

E[|Z|4]α
=

σ4sE[|Z|4]
π
∑n−1

i=0 |σuα(ti+1, x)− σuα(ti, x))|4
.

By definition, σ4sE[|Z|4]
π
∑n−1

i=0 |σuα(ti+1,x)−σuα(ti,x))|4
=: α̂

(n)
time and with g(a) = 1

a , g
′( 1α)

2 = α4,

we have as n→ ∞ the following convergence in distribution,

√
n(α̂

(n)
time − α) → N

Å
0, ρ21

4
,4

Ä
α−1E[|Z|4]

ä−2
ã
.

We collect all results on the estimators below. First for α estimations,

Proposition 3.8.2. Let

α̂
(n)
time :=

σ4sE[|Z|4]
π
∑n−1

i=0 |σuα(ti+1, x)− σuα(ti, x))|4
,

be the estimator of the drift α over a path in time t ∈ [0, s] of the solution σuα(t, x) of
equation 3.1. Then as n→ ∞, the following limit converges in distribution

√
n(α̂

(n)
time − α) → N

Å
0, ρ21

4
,4

Ä
α−1E[|Z|4]

ä−2
ã
.

Proposition 3.8.3. Let

α̂(n)
space :=

σ2E
[
|Z|2

]
(y2 − y1)

2
∑n−1

i=0 |σuα(t, xi+1)− σuα(t, xi))|2
.

be the estimator of α over a path in space x ∈ [y1, y2] of the solution σuα(t, x) of
equation 3.1. Then as n→ ∞, the following limit converges in distribution

√
n(α̂(n)

space − α) → N

Å
0, ρ21

2
,2

Ä
α−1E[|Z|2]

ä−2
ã
.

The estimations of σ follow by the same procedure.
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Proposition 3.8.4. Let

σ̂
(n)
time :=

(
απ
∑n−1

i=0 |σuα(ti+1, x)− σuα(ti, x))|4

sE[|Z|4]

)1/4

be the estimator of the diffusion σ over a path in time t ∈ [0, s] of the solution σuα(t, x)
of equation 3.1. Then as n→ ∞, the following limit converges in distribution

√
n(σ̂

(n)
time − σ) → N

Å
0,

1

16
ρ21

4
,4

Ä
σ−1E[|Z|4]

ä−2
ã
.

Proposition 3.8.5. Let

σ̂(n)space :=

(
2α
∑n−1

i=0 |σuα(t, xi+1)− σuα(t, xi))|2

E[|Z|2](y2 − y1)

)1/2

be the estimator of σ over a path in space x ∈ [y1, y2] of the solution σuα(t, x) of
equation 3.1. Then as n→ ∞, the following limit converges in distribution

√
n(σ̂(n)space − σ) → N

Å
0,

1

4
ρ21

2
,2

Ä
σ−1E[|Z|2]

ä−2
ã
.

3.8.2 Joint estimation of drift and diffusion

Noting that the two estimators estimate the different ratios σ4

α and σ2

α in time and
space respectively gives that both σ and α can be estimated from one stochastic field
[Cialenco and Huang, 2019, Section 5].

Let Vs be the exact 2-variation of sample paths of the solution in space given in equation
3.17, then

Vs =
σ2E

[
|Z|2

]
(y2 − y1)

α2
⇐⇒ σ2

α
=

2Vs

E
[
|Z|2

]
(y2 − y1)

.

Let Vt be the 4-variation of sample paths to the solution in time given in equation 3.16,
then plug in the equation above,

Vt =
σ2

α

σ2E
[
|Z|4

]
(s2 − s1)

π
=

2Vsσ
2E
[
|Z|4

]
(s2 − s1)

πE
[
|Z|2

]
(y2 − y1)

.

Again equation 3.17 gives,

σ4

α
=

α4V 2
s

E
[
|Z|2

]2
(y2 − y1)2

.
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Plugging this ratio into equation 3.16,

Vt =
σ4

α

E
[
|Z|4

]
(s2 − s1)

π
=
α4V 2

s E
[
|Z|4

]
(s2 − s1)

E
[
|Z|2

]2
(y2 − y1)2π

.

Algebraic operations gives the two estimators,

α̂ =
VtπE

[
|Z|2

]2
(y2 − y1)

2

4V 2
s E
[
|Z|4

]
(s2 − s1)

, and σ̂2 =
VtπE

[
|Z|2

]
(y2 − y1)

2VsE
[
|Z|4

]
(s2 − s1)

. (3.19)

According to [Cialenco and Huang, 2019, Section 5] the asymptotic normality of the
above estimators remains an open problem. Using finite difference schemes we will
simulate a field of our solution in chapter 4 and show that asymptotic normality seems
reasonable.
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Simulations of the Stochastic
Heat Equation

We will employ two ways to simulate solutions to the stochastic heat equation. Since
we have studied the covariance structure in detail, we have been able to find the explicit
mean and covariance in time and space separately for the SHE on the entire real line.
Therefore, the first method is to utilise that we know how the solution is distributed.

We can use the well known procedure of factorising the covariance matrix C (with for
example a Cholesky decomposition) such that RR⊺ = C. Then u = Rz, is a way to
simulate the solution, where z ∈ N(0, I) are i.i.d normal variables. The draw-back of
this method is the computational cost. One would be tempted to simulate a covariance
matrix in time and space together (since we have calculated the full covariance for all
pairs (t1, x1) and (t2, x2)). The problem is that if we want to simulate, say, 100 time
points and 100 space points, then the covariance matrix C would be of the huge size
(100 ·100×100 ·100). Only simulating the paths t 7→ u(t, x) and x 7→ u(t, x) separately
is much less demanding. Therefore we can use the paths in time and space separately
to calculate the variations and in turn estimate the drift and diffusion.

The second method of simulating consists of utilising the one-step Θ finite difference
schemes, which is much more computationally effective if we aim to simulate the entire
field of the solution to the stochastic heat equation. These simulations can in turn be
employed for the joint estimation of α and σ explained in the previous chapter. The
finite-difference schemes are sadly restricted to the SHE on bounded intervals, but the
localisation error presented in Theorem 2.3.8 suggests that these approximations will
also represent the solution on the entire real line, as long as we make the interval large
enough and consider spatial points far away from the boundary. Luckily we also have
many shared properties for both the solution on bounded and unbounded domain that
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we can use. One of these properties is that the exact q-variations agree noted in remark
3.0.1.

We once again state the equations we are considering for the coming simulations. We
have the SHE driven by white noise on a compact domain D = [a, b],

∂
∂tu(t, x)− α∆u(t, x) = σẆ (t, x) t > 0, x ∈ (a, b)

u(0, x) = u0(x) x ∈ [a, b]

u(t, a) = u(t, b) = 0 t > 0.

(4.1)

As well as the corresponding equation for x ∈ R (without boundary conditions),{
∂
∂tu(t, x)− α∆u(t, x) = σẆ (t, x) t > 0, x ∈ R
u(0, x) = u0(x) x ∈ R.

(4.2)

4.1 Simulations using the distribution

Recall for α = σ = 1, the solution u(t, x) to equation 4.2 above has the covariance
structure,

E
[
u(t1, x1)u(t2, x2)

]
=

1

2
√
π

Ç
√
t1 + t2e

− |x1−x2|
2

4(t1+t2) −
»
|t1 − t2|e

− |x1−x2|
2

4|t1−t2|

å
+

(x1 − x2)

4

(
erf
Ä x1 − x2
2
√
t1 + t2

ä
− erf

Ä x1 − x2

2
√

|t1 − t2|

ä)
.

The solution σuα(t, x) with general drift and diffusion, by Proposition 3.3.1, has the
covariance function

E
[
σuα(t1, x1)σuα(t2, x2)

]
=

σ2

2
√
απ

Ç
√
t1 + t2e

− |x1−x2|
2

4α(t1+t2) −
»
|t1 − t2|e

− |x1−x2|
2

4α|t1−t2|

å
+
σ2(x1 − x2)

4α

(
erf
Ä x1 − x2

2
√
α(t1 + t2)

ä
− erf

Ä x1 − x2

2
√
α|t1 − t2|

ä)
.

Considering the path in time, t 7→ u(t, x), for a fixed x ∈ R, let x1 = x2 = x, we
create the covariance matrix for the paths in time Ctime

ij = E
[
σuα(ti, x)σuα(tj , x)

]
.

Similarly by fixing t > 0, and t1 = t2 = t we get the covariance matrix Cspace
ij =

E
[
σuα(t, xi)σuα(t, xj)

]
for the paths in space, x 7→ u(t, x).
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4.1.1 Paths of the solution

The covariances where calculated for N = 2000 uniformly spaced points in the interval
[0, 1] for both space and time respectively. An illustration of the simulated paths is
found in Figure 4.1 below.

Figure 4.1: Simulated paths t 7→ σuα(t, x) and x 7→ σuα(t, x) of the solution to equation
4.2 with α = π, σ = e. Simulated with covariance matrix for the paths.

4.1.2 Estimations of drift and diffusion

We can check the normality assumption of employing the estimators α̂
(N)
time,α̂

(N)
space, σ̂

(N)
time,

and σ̂
(N)
space, that were defined in the previous chapter, from propositions 3.8.2, 3.8.3,

3.8.4, and 3.8.5. We made K = 20000 independent simulated paths in time and space
for the solution σuα with σ = e and α = π (N = 2000 points). The results of these
estimations can be found in Table 4.1.
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Table 4.1: Estimated mean and variance along with true asymptotic variance of estima-
tors. N = 2000 points for simulated path in time [0, 1] and space [0, 1] with K = 20000
independent paths respectively. The true variance is calculated from the central limit
type convergence given in propositions 3.8.2, 3.8.3, 3.8.4, and 3.8.5, with a scaling fac-
tor of 1/N to compare it to the estimated variance.

Parameter Path Est. Mean True Mean Est. Variance True Variance

Drift Estimate α̂ Time 3.1424 3.1416 0.0621 0.0599
Diffusion Estimate σ̂ Time 2.7208 2.7183 0.0029 0.0028
Drift Estimate α̂ Space 3.1462 3.1416 0.0098 0.0099
Diffusion Estimate σ̂ Space 2.7173 2.7183 0.0018 0.0018

All variances seem to agree. We can even see this in a histogram plot of our simulations
found in figures 4.2 and 4.3 below.
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(a) Drift Estimate - Time

(b) Drift Estimate - Space

Figure 4.2: Asymptotic normality check for drift estimators α̂
(N)
time, and α̂

(N)
space of α from

the simulated paths t 7→ σuα(t, x) and x 7→ σuα(t, x) of the solution to equation 4.2
with α = π, σ = e. Simulated in total K = 20000 different paths in space and time
respectively, with N = 2000 points simulated. The normal distributions given by the
red lines are created with mean being the true drift and variance from the central limit
type convergences given in propositions 3.8.2 and 3.8.3, with a scaling factor of 1/N to
compare it to the estimated variance.
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(a) Diffusion Estimate - Time

(b) Diffusion Estimate - Space

Figure 4.3: Asymptotic normality check for diffusion estimators σ̂
(N)
time, and σ̂

(N)
space of σ

from the simulated paths t 7→ σuα(t, x) and x 7→ σuα(t, x) of the solution to equation
4.2 with α = π, σ = e. Simulated in total K = 20000 different paths in space and time
respectively, with N = 2000 points simulated. The normal distributions given by the
red lines are created with mean being the true diffusion and variance from the central
limit type convergences given in propositions 3.8.4 and 3.8.5, with a scaling factor of
1/N to compare it to the estimated variance.
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4.2 One step Θ finite-difference schemes

We will consider the solution on the space [0, T ]× [a, b], with T > 0 and a, b ∈ R. We
discretize the time [0, T ] and space [a, b] into rectangles Am

j = [xj−1, xj ] × [tm−1, tm],
with j = 1, 2, . . . , N + 1, and m = 1, 2, 3, . . . ,M . The desired number of points of the
solution in space and time being N+2 andM respectively, and ∆t = T/M , ∆x = b−a

N+1 ,
such that xj = a + j∆x and tm = m∆t. We let x0 and xN+1 be the boundaries [a, b]
with known values, and t0 = 0 being the initial time where we have an initial condition.

Space

Time

A1
1

A2
1

A1
2

A2
2

A1
3

A2
3

A1
4

A2
4

A1
5

A2
5

A2
1 A2

2
. . . Am+1

j Am+1
j+1

(xj+1, tm+1)

(xj , tm+1)

∆t

∆x

x0 x1 x2 x3 x4 x5

t0

t1

t2

t3

= xN+1

Figure 4.4: Illustration of the grid scheme

We discretize equation 4.1 in the following way,
um+1
j −um

j

∆t = α

Å
Θ

um+1
j+1 −2um+1

j +um+1
j−1

∆x2 + (1−Θ)
um+1
j+1 −2um+1

j +um+1
j−1

∆x2

ã
+ σ‘∂W∂t∂x(tm, xj)

um0 = umN+1 = 0, m = 0, 1, . . . .

u0j = u0(xj), j = 1, 2, . . . , N.

(4.3)
Note that the time points m = 1, 2, . . . continue on forever. In our simulations however
we will look at some fixed number of time points M .

We will see how
Wm

j

∆t∆x
:= ‘∂W∂t∂x(tm, xj), where Wm

j ∈ N(0,∆t∆x), is a suitable dis-
cretization of the white noise for equation 4.3 above.

Rewriting the equations, with r1 = Θα∆t
∆x2 and r2 = (1−Θ)α∆t

∆x2 we have for every j =
1, 2, . . . , N and m = 0, 1, . . . ,M .

−r1um+1
j−1 + (1 + 2r1)u

m+1
j − r1u

m+1
j+1

= −r2umj−1 + (1− 2r2)u
m
j − r2u

m
j+1 +

Wm
j

∆x
. (4.4)
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Let Um =
(
um1 , u

m
2 , . . . , u

m
N

)
and Wm =

(
Wm

1 , . . . ,W
m
N

)
. We can also write the system

4.4 in matrix form.

(I+ r1A)Um+1 = (I− r2A)Um +
Wm

∆x
.

With A being the N ×N tridiagonal matrix,

A =



2 −1 0 . . . 0
−1 2 −1 . . . 0

0 −1 2
. . .

...
...

...
. . .

. . . −1
0 0 . . . −1 2

 .

4.2.1 Approximating the noise

First our goal is to find a suitable discretisation of the noise processW . The approxi-
mations presented here are the ones that are used for the papers in the literature study
below.

Employing the following approximation of the mixed derivative ∂W (t,x)
∂x∂t . The white

noiseW at point (xj , tm) can be approximated as

Wm
j :=

∫ tm

tm−1

∫ xj

xj−1

dW (t, x) =W (Am
j ).

And we have that
Wm

j ∈ N(0,∆t∆x),

are i.i.d for every j = 1, 2, . . . , N and m = 1, 2, . . . ,M . Assume for a moment thatW
is a continuously differentiable function (it is certainly not). Taking inspiration from
properties of the Riemann-Stiltjes integral and the mean value theorem, we would find
that, ∫ tm

tm−1

∫ xj

xj−1

dW (t, x) =

∫ tm

tm−1

∫ xj

xj−1

∂W

∂x∂t
(t, x)dxdt

= ∆x∆t
∂W

∂x∂t
(ξ, η).

For some (ξ, η) ∈ [xj−1, xj ] × [tm−1, tm]. Since the intervals are small, a reasonable
approximation for the white noise is therefore

∂W

∂x∂t
(xj , tm) ≈ 1

∆x∆t

∫ tm

tm−1

∫ xj

xj−1

dW (t, x) =
1

∆x∆t
Wm

j .
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4.2.2 Known results on finite-difference schemes for the stochastic
heat equation

Finite difference schemes with a one-step Θ method on the solutions to SPDEs is often
studied by looking at the error : E

î
|umj − u(tm, tj)|p

ó
, for some p ≥ 2. The convergence

of the error has been widely studied. It started with Gaines work in [Gaines, 1995],
which contained numerical experiments indicating convergence of finite-difference ap-
proximations to solutions of the stochastic heat equation driven by white noise. Gyöngy,
I. and Nualart, D. in [Gyöngy and Nualart, 1995] showed that the Euler finite-difference
schemes for SPDEs with space-time white noise actually converge. Davie and Gaines
in [Davie and Gaines, 2001] discovered a universal lower bound for the error of numer-
ical schemes applied to parabolic SPDEs. They found that regardless of whether the
scheme is implicit or explicit, the error of the scheme, in terms of space step (∆x) and
time step (∆t), will be at least on the order of O(∆x1/2 +∆t1/4) (note the exponents
and compare it to the Hölder continuity in space and time respectively). This lower
bound matches the one proposed by Gyöngi, indicating that even the simple Euler
scheme achieves the optimal rate of convergence.

All the mentioned papers demonstrated convergence, but it’s important to verify if the
numerical approximation accurately reflect the true solution. This was precisely the
focus of the paper by Walsh and Chong in [Yuxiang and B, 2012]. They show that
the quadratic and quartic variations of the simulations converge to a function of Θ and
∆t/(∆x)2. However, since the true values are unique, it’s evident that most schemes do
not achieve the correct limit. It is perhaps surprising, but there is only one scheme that
produces the correct limiting quadratic and quartic variations. It is the Crank-Nicolson
scheme (Θ = 1/2) with CFL number α∆t/∆x2 = 1

π−2 .

4.2.3 Variations for Simulations of SHE with white noise

The simulation umj , for j = 0, 1, 2, . . . , N + 1 (space) and m = 0, 1 . . . ,M (time) is an
approximation of the solution u(tm, xj) for tm and xj in the grid (see Figure 4.4 of the
grid). Like in chapter 3 we can define the corresponding q-variations of the numerical
approximation umj .

Definition 4.2.1 (Variations for the numerical approximation.). Assume umj is the
approximation for j = 1, 2, . . . , N and m = 1, 2, . . . . Let T > 0 and ⌊T ⌋ be the
greatest integer less than T . Assume we have approximated time up to time step number
M := ⌊T ⌋/∆t. Then

Q
(2)
N (T ) :=

N∑
i=0

∣∣∣uMi+1 − uMi

∣∣∣2 .
Let y be a lattice point, i.e. a rational number such that y = j/(N + 1) for some
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j = 1, 2, . . . , N . Then

Q
(4)
N (y, T ) :=

M−1∑
m=0

∣∣∣um+1
j − umj

∣∣∣4 .

The idea is that the q-variations of the simulated solution umj will be the limits (if they
exist)

Q(2)(T ) := lim
N→∞

Q
(2)
N (T ).

The quartic limit would be defined analogously,

Q(4)(y, T ) := lim
N→∞

Q
(4)
N (y, T ).

With the note that there are infinitely many N such that y = j/(N + 1) for some j,
so the quartic limit is inevitably along such a subsequence. Although, for the quartic
variation, we first need to have

Q(4)(y, T, δ) := lim
N→∞

Q
(4)
N (y, T )−Q

(4)
N (y, δ). (4.5)

And then
Q(4)(y, T ) := lim

δ→0
Q(4)(y, T, δ).

This is because the numerical approximation fluctuates excessively near t = 0 for some
schemes, so this corrects it. A reason for this instability could be because of the
correlation of two nearby points in time around zero. Recall the covariance structure
over two time points t and t + h for a fixed x1 = x2 = y is 1

2
√
π

√
2t+ h −

√
|h|. As

t→ 0 and h sufficiently small we have that the derivative of the covariance approaches
infinity. This could suggest these fluctuations in the scheme.

The important object of study for this section is the CFL number,

c =
α∆t

(∆x)2
.

Let the space domain be [a, b] with boundary conditions u(t, a) = u(t, b) = 0, and also
assume that u0 = 0. The higher order variations of the simulations actually don’t
depend on the initial condition but it takes some work to show. For a proof of this see
[Yuxiang and B, 2012, Section 8].

Remark 4.2.2. These are some important points for the discussion of convergence of
variation for the numerical scheme,

1. We will heavily study the CFL number, cN = α∆t
(∆x)2

, where the subscript N denotes

the dependence of N in ∆x = b−a
N+1 . The time step ∆t is then (∆x)2cN

α as a
consequence of the choice of sequence (cN ).
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2. The convergence of the variations are with respect to N .

3. We will see that the limiting value (as N → ∞) of the variation for the numerical
approximations depends on Θ, T , and c∞ := limN→∞ cN .

4. Spoiler, The only scheme that converges in both variations will be the Crank-
Nicolson (Θ = 1/2) with c∞ = 1

π−2 .

5. Although (important): According to [Yuxiang and B, 2012] it is an open prob-
lem if the conditions we will set on cN in definition 4.2.3 below actually suffice
for convergence of solution. They only show converge of variation. It will con-
verge if c∞(1−Θ) ≤ 1/4 ([Gyöngy and Nualart, 1995]), so it is not certain if the
approximation will converge to the correct solution when c∞ = 1

π−2 . Although it
is conjectured that they will.

Definition 4.2.3. The sequence (cN ) is said to be a good sequence, if

1. cN > 0;

2. if 0 ≤ Θ < 1/2 then there exists an ϵΘ > 0 such that cN ≤ 1
2−4Θ − ϵΘ := cΘ;

3. if Θ = 1/2, then cN ≤
√
N ;

4. if 1/2 < Θ ≤ 1, then cN ≤ N ;

The following two theorems 4.2.4 and 4.2.5 are the main results stating what the
limiting variations are for the approximations to the stochastic heat equation. The
theorems are only stated here, the proofs can be found in [Yuxiang and B, 2012, Section
5.1].

Theorem 4.2.4 (Convergence of Quadratic Variation). Let 0 ≤ Θ ≤ 1 and T > 0.
Assume (cN ) is a good sequence with cN → c∞ ∈ [0,∞] (extended). Then the following
limit exists in probability

Q(2)(T ) := lim
N→∞

Q
(2)
N (T ) =

σ2(b− a)

2α
√
1 + 2c∞(2Θ− 1)

.

Theorem 4.2.5 (Convergence of Quartic Variation). Let 0 ≤ Θ ≤ 1, t > 0 and y a
rational number between a and b. Assume (cN ) is a good sequence with cN → c∞ ∈
[0,∞] (extended). For Θ = 1/2 suppose also that cN/

√
N → 0 and for Θ > 1/2 that

cN/N
3/2 → 0. Then the following limits exist in probability

Q(4)(y, T ) := lim
d→∞

Å
lim

N→∞
Q

(4)
N (y, T )−Q

(4)
N (y, 1/d)

ã
=

3c∞σ
4T

α

(
1− 2Θ√

1 + 2c∞(2Θ− 1)
+

2Θ√
1 + 4c∞Θ

)2

.

(4.6)
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For Θ > 1/2, if c∞ = ∞ then 4.6 is seen as a limit, such that

lim
c→∞

3cT

α

(
1− 2Θ√

1 + 2c(2Θ− 1)
+

2Θ√
1 + 4cΘ

)2

=
3T

α

(√
Θ−
»
Θ− 1/2

)2
.

4.2.4 True variations

We restate the true variations of the solution to the stochastic heat equation 4.2 (so-
lution on the real line), they will agree with the variations for the solution on bounded
space of equation 4.1 (see e.g [Cialenco and Huang, 2019]).

V 2
[a,b]

[
σuα(t, x)

]
=
σ2(b− a)

2α
, and V 4

[0,T ]

[
σuα(t, x)

]
=

3Tσ4

απ
. (4.7)

Now we aim to find for which c∞ that the variations in theorems 4.2.4 and 4.2.5 match
the variations in 4.7.

For the quadratic variation we can see that Q(2)(T ) = σ2(b−a)

2α
√

1+2c∞(2Θ−1)
= σ2(b−a)

2α =

V 2
[a,b] if and only if c∞(2Θ− 1) = 0. The approximation’s quadratic variation Q(2) will

therefore agree with the true quadratic variation V 2 if we employ the Crank-Nicolson
scheme (Θ = 1/2), or we let c∞ = limn→∞ cN = 0.

If c∞ = 0, the quartic variation vanishes; Q(4) = 0. Assuming that Θ = 1/2, the
limiting quartic variations will match if

Q4(y, T ) =
3c∞σ

4T

α

(
1− 2Θ√

1 + 2c∞(2Θ− 1)
+

2Θ√
1 + 4c∞Θ

)2

=
3c∞σ

4T

α(1 + 2c∞)
= V 4

[0,T ] =
3Tσ4

απ
⇐⇒ c∞ =

1

π − 2
.

The only finite difference scheme that provides both the correct quadratic- and quartic
variation that match 4.7 is therefore the Crank-Nicolson scheme (Θ = 1/2) with c∞ =
α∆t
∆x2 = 1

π−2 .

4.2.5 Simulations

First we make an approximation of the stochastic heat equation 4.1 with [a, b] = [0, 1],
u0 ≡ 0, and α = σ = 1. using a Crank-Nicolson scheme (Θ = 1/2) as well as
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Θ = 0.25 and Θ = 1, we have M = 5000 time points and N = 4999 space points

with c = 1
π−2 = ∆t

(∆x)2
, such that ∆t = (∆x)2

π−2 and the final stopping time is T =M∆t.

The computed values of the variations and their theoretical values from theorems 4.2.4
and 4.2.5 can be seen in Table 4.2 below. The true variations for the solution u(t, x) to
the stochastic heat equation 4.2 with drift and diffusion α = σ = 1 and space domain
[0, 1] are

V 2
[0,1]

[
u(t, x)

]
= 0.5, and V 4

[0,T ]

[
u(t, x)

]
= 0.0008. (4.8)

Table 4.2: Comparison of theoretical values Q(2)(T ) and Q(4)(y, T ) (given in theorems
4.2.4 and 4.2.5) for the higher order variations of simulated solutions in limit N → ∞,

and estimated values Q
(2)
N (T ) and Q

(4)
N (y, T ) of quadratic and quartic variation for

simulations usingM = 5000 points in time, and N = 4999 points in space. ∆t/(∆x)2 =
1

π−2 . With T =M∆t and y = N∆x
2 .

Θ Q
(2)
N (T ) Q(2)(T ) (Theoretical) Q

(4)
N (y, T ) (Est.) Q(4)(y, T ) (Theoretical)

0.25 1.4031 1.4197 0.0054 0.0073

0.5 0.4914 0.5000 0.0007 0.0008

1 0.2899 0.3014 0.0003 0.0003

We can actually see how the different Θ-schemes smooth the solution, which will reflect
on the variations. The paths that created the values in Table 4.2 above are seen in
figures 4.5, 4.6 (for a path in time), 4.7, and 4.8 (for a path in space) below. Note
once again that if c∞ = 1

π−2 and Θ = 1 the condition that c∞(1 − Θ) ≤ 1
4 holds and

hence the schemes will converge to the correct solution. However, we can not guarantee
convergence to the correct solution when Θ = 0.25 and Θ = 0.5 since this is still an
open problem. Although, it should be noted that the simulated paths seem to coincide
except for the variation in the figures below.
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Figure 4.5: Path of solution using Θ = 0.25, 0.5, and Θ = 1 over the time variable at
x = 0.5.

Figure 4.6: Path of solution using Θ = 0.25, 0.5, and Θ = 1 over the time variable at
x = 0.5. Zoomed in to show the difference in amplitudes.
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Figure 4.7: Path of solution using Θ = 0.25, 0.5, and Θ = 1 over the space variable at
T =M∆t.

Figure 4.8: Path of solution using Θ = 0.25, 0.5, and Θ = 1 over the space variable at
T =M∆t. Zoomed in to show the difference in amplitudes.
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4.2.5.1 Estimations of drift and diffusion

We made another Crank-Nicolson simulation with c = 1
π−2 with M = 1000, N =

999, with α = π and σ = e and simulated these approximations K = 1000 times.
See Table 4.3 below for the estimations of drift and diffusion. Note that the true
asymptotic variances of the joint estimations seems to still be an open problem (see
[Cialenco and Huang, 2019]).

Table 4.3: Estimates of drift α = π and diffusion σ = e over paths in time, space, and
jointly respectively, with discretisationM = 1000, N = 999 and K = 1000 independent
simulations. The true variance is calculated from the central limit type convergence
given in propositions 3.8.2, 3.8.3, 3.8.4, and 3.8.5, with a scaling factor of 1/N to
compare it to the estimated variance.

Parameter Path Mean Est. Variance True Variance

Drift Estimate α̂ Time 3.1778 0.1191 0.1199
Diffusion Estimate σ̂ Time 2.7155 0.0055 0.0056
Drift Estimate α̂ Space 3.1744 0.0212 0.0198
Diffusion Estimate σ̂ Space 2.7064 0.0039 0.0037
Drift Estimate α̂ Joint 3.2152 0.2105 -
Diffusion Estimate σ̂ Joint 2.7281 0.0260 -

For the joint estimation we have the following histogram of the K = 1000 simulations
in Figure 4.9.
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Figure 4.9: Normality check for joint estimators of α and σ from the simulated paths
t 7→ σuα(t, x) and x 7→ σuα(t, x) of the solution to equation 4.2 with α = π, σ = e.
Simulated in total K = 1000 different paths in space and time respectively, with N =
999 points in space and M = 1000 points in time simulated.
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Chapter 5

A Splash of Colour

We saw in chapter 2 how the stochastic heat equation fails to admit a point-wise solution
in d ≥ 2. This pickle arises from the definition of the stochastic integral, where we recall
that I(h) =

∫
R×Rd hdW is well defined if and only if h ∈ L2(R×Rd). In our case this is

the function h(s, y) = 1[0,t](s)Ψ(t−s, x, y) that we need to integrate over that does not
lie in this L2 space. Recall remark 2.2.2 of the white noise definition, where we saw how
we acquire an isometry to some Hilbert space depending on the covariance structure of
the noise. We finish our thesis with this chapter which aims to show a way to smooth
the noise enough to allow solutions in any dimension d ≥ 1. Our presentation here is
heavily inspired by the work of [Dalang, 1999] and [Tudor, 2014].

5.1 White-Coloured noise

Let’s restrict ourselves to the measure space (E,µ) =
Ä
R+ ×Rd,B(R+ ×Rd), λ

ä
, with

λ being the Lebesgue measure and where we use the notation (t, A) := ([0, t] × A) ∈
B(R+ × Rd). We aim show the construction of a noise processM , and consequently a
stochastic integral

∫
hdM with a bit more regularity, so that we can integrate a larger

class of functions h ∈ H , where H is this ”larger” Hilbert space. The presentation
here focuses on D = Rd, but it is not hard to adapt the discussion for rectangles
D ⊂ Rd.

For the case of white noise based on λ, using standard results on set algebra and
the Lebesgue measure we have that its covariance function C

Ä
(t, A), (s,B)

ä
can be
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factorised in a time and space component in the following manner,

C
Ä
(t, A), (s,B)

ä
= λ
Ä
([0, t]×A) ∩ ([0, s]×B)

ä
= λ
Ä
([0, t] ∩ [0, s])× (A ∩B)

ä
= λR([0, t] ∩ [0, s]) · λRd(A ∩B) = t ∧ s · λRd(A ∩B).

(5.1)

Where λR and λRd are the Lebesgue measures corresponding to R and Rd respectively.
Given a smart choice of covariance for the noise, we can extend the stochastic integrals
to a larger class of integrands.

One general idea is to establish a spatial parameter to the covariance structure, which
is done by changing the spatial factor λRd(A∩B) from calculation 5.1 above. We note
that in a generalized sense,

λRd(A ∩B) =

∫
A

∫
B
δ(x− y)dxdy.

Because we formally have that the derivative of an indicator function is the dirac-δ
such that ∫

A

∫
B
δ(x− y)dxdy =

∫
A

Ç∫
B
δ(x− y)dx

å
dy

=

∫
A
1B(y)dy =

∫
Rd

1A(y)1B(y)dy = λRd (A ∩B) .

This motivates the following choice of covariance, which was introduced in Dalang’s
paper [Dalang, 1999] on the extension of martingale measures in the Walsh sense of
SPDEs,

C
Ä
(t, A), (s,B)

ä
= t ∧ s ·

∫
A

∫
B
f(x− y)dxdy. (5.2)

We can therefore colour the spatial component by using an integrable function (or
distribution) f as a spatial parameter to the noise.

Let us discuss (a bit informally) the question, for which f is the covariance in 5.2
actually a covariance function? As long as C defined in 5.2 above is non-negative
definite and symmetric, we can guarantee by Lemma 2.1.6 that there exists a zero
mean Gaussian stochastic processM indexed on the sets (t, A) ∈ Bb(R+ × Rd). We
note that the factor t∧ s is itself a covariance function (that of the Brownian motion).
Since the product of two covariance functions is once again a covariance function, we
only require that the spatial component satisfies, for any A1, . . . , An ∈ Bb(Rd) and
x1, . . . , xn ∈ R

n∑
k,l=1

xkxl

Ç∫
Ak

∫
Al

f(x− y)dxdy

å
≥ 0. (5.3)

Let g(z) :=
∑n

k=1 xk1Ak
(z) ∈ E , where E is the vector space over R of simple functions,

and denote g̃(z) = g(−z). Then 5.3 above holds if
∫
Rd(g ∗ g̃)(y)f(y)dy ≥ 0. This can
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be seen by rewriting equation 5.3 (a bit naively) and utilising convolution formulas,

n∑
k,l=1

xkxl

Ç∫
Ak

∫
Al

f(x− y)dxdy

å
=

n∑
k,l=1

xkxl

Ç∫
Rd

∫
Rd

1Ak
(x)1Ak

(y)f(x− y)dxdy

å
=

∫
Rd

∫
Rd

Ñ
n∑

k=1

xk1Ak
(x)

éÑ
n∑

l=1

xl1Al
(y)

é
f(x− y)dxdy

∫
Rd

g(x)

Ç∫
Rd

g(y)f(x− y)dy

å
dx =

∫
Rd

g(x)

Ç∫
Rd

g(x− y)f(y)dy

å
dx

=

∫
Rd

(g ∗ g̃) (y)f(y)dy.

From [Norvidas, 2015, page 19], for any h ∈ L1(R), then if f is continuous,
∫
Rd(h ∗

h̃)(y)f(y)dy ≥ 0 is equivalent to that f itself is a non-negative definite function. Since
the simple functions g ∈ E lie in L1(Rd), condition 5.3 is fulfilled for continuous non-
negative definite functions.

Bochner’s theorem (see e.g. [I.M and N, 1964, Theorem 2, p. 155]) actually char-
acterises all non-negative definite functions as the Fourier transforms of finite non-
negative definite measures. We will actually need the concept of tempered measures.

5.1.1 Fourier transforms of tempered measures

Definition 5.1.1. A non-negative measure ν on Rd is called a tempered measure if
there exists some k > 0 such that∫

Rd

Ç
1

1 + |ξ|2

åk

dν(ξ) <∞.

We will work Borel measures of the above form since they will guarantee the existence
of solutions to our SPDEs with white-coloured noise (more on this later). For any
ϕ ∈ L1(Rd), we define the Fourier transform

Fϕ(ξ) = ϕ̂(ξ) :=

∫
Rd

e−i2πξ·yϕ(y)dy.

Let S(Rd) be the Schwartz space, which consists of the infinitely differentiable functions
which are rapidly decreasing as |x| → ∞ together with their derivatives of all orders
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and let S ′(Rd) be the corresponding dual containing the distributions on S(Rd). (Recall
that ϕ(x) is rapidly decreasing if lim|x|→∞ |xkϕ(x)| = 0 for all k.)

Let f and g be two integrable functions. Then we have the relation∫
Rd

f̂(y)g(y)dy =

∫
Rd

f(y)ĝ(y)dy.

If we have ϕ ∈ S then every integrable function f induces a distribution Af ∈ S ′

in the sense that Af (ϕ) = ⟨f, ϕ⟩ =
∫
Rd f(y)ϕ(y)dy. It is therefore natural to define

the Fourier transform on any distribution A ∈ S ′(Rd) by Â(ϕ) := A(ϕ̂) for every
ϕ ∈ S(Rd). A (tempered) measure ν can naturally be seen as a distribution on test
functions ψ ∈ S(Rd) as ψ 7→ ⟨ν, ψ⟩ :=

∫
Rd ψ(ξ)dν(ξ).

Definition 5.1.2 (Fourier transform of a tempered measure). If ψ = ϕ̂ is the Fourier
transform of ϕ, then f is called the Fourier transform of the tempered measure ν if∫

Rd

f(x)ϕ(x)dx =

∫
Rd

ϕ̂(ξ)dν(ξ) (5.4)

holds for all functions ϕ ∈ S(Rd).

Remark 5.1.3. For the proof of one implication in the Bochner theorem we will ac-
tually need the equivalent definition of the Fourier transform of a measure in the sense
of

f(x) = ν̂ :=

∫
Rd

e−i2πx·ξdν(ξ).

An important fact that will be used in several calculations is the following.

Proposition 5.1.4. For any ϕ, ψ ∈ S(Rd) it holds that∫
Rd

∫
Rd

ψ(x)ϕ(y)f(x− y)dxdy =

∫
Rd

ψ̂(ξ)ϕ̂∗(ξ)dν(ξ)

Where z∗ denotes the complex conjugate of z ∈ C.

Proof. Note g̃(x) := g(−x). We have∫
Rd

∫
Rd

ψ(x)ϕ(y)f(x− y)dxdy =

∫
Rd

Ç∫
Rd

ψ(x)ϕ(y)f(x− y)dy

å
dx =∫

Rd

ψ(x)

Ç∫
Rd

ϕ(y)f(x− y)dy

å
dx =

∫
Rd

ψ(x)

Ç∫
Rd

ϕ(x− y)f(y)dy

å
dx

=

∫
Rd

∫
Rd

ψ(x)ϕ(x− y)f(y)dxdy =

∫
Rd

f(y)

Ç∫
Rd

ψ(x)ϕ(−(y − x))dx

å
dy

=

∫
Rd

f(y)(ψ ∗ ϕ̃)(y)dy =

∫
Rd

ψ̂(ξ)ϕ̂∗(ξ)dν(ξ).
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Where the last equality follows from definition 5.1.2 and the property that the Fourier
transform of convolutions is the product of the Fourier transforms.

Below we state a variant of Bochner’s theorem [I.M and N, 1964, Section 2, Theorem
2, page 147].

Theorem 5.1.5 (Bochner’s theorem). A complex valued continuous function f defined
on Rd is non-negative definite if and only if f is the Fourier transform on S ′(Rd) of a
tempered measure ν on Rd.

Proof. For a full proof see [I.M and N, 1964, pages 145-147]. We show the simple
implication that the Fourier transform of a tempered measure is non-negative definite.
Let f be the Fourier transform of ν and recall that ν is a finite non-negative measure.

n∑
k=1

n∑
l=1

ck c̄lf(xk − xl) =
n∑

k=1

n∑
l=1

(
ck c̄l

∫
Rd

e−i2π(xk−xl)·ξdν(ξ)

)

=
n∑

k=1

n∑
l=1

(
ck c̄l

∫
Rd

e−i2πxk·ξei2πxl·ξdν(ξ)

)

=

∫
Rd

(
n∑

k=1

cke
−2πixk·ξ

n∑
l=1

c̄le
2πixl·ξ

)
dν(ξ)

=

∫
Rd

(
n∑

k=1

cke
−2πixk·ξ

n∑
l=1

cle
−i2πxl·ξ

)
dν(ξ)

=

∫
Rd

∣∣∣∣∣∣
n∑

k=1

cke
−i2πxk·ξ

∣∣∣∣∣∣
2

dν(ξ) ≥ 0.

It follows that the covariance structure defined in 5.2 is actually a covariance function
if and only if the continuous spatial parameter function f is the Fourier transform of a
tempered measure ν.

5.1.2 Definition of white-coloured noise

Definition 5.1.6 (White-Coloured Noise). A spatial coloured noise that is white in
time is a Gaussian random field indexed on the sets with bounded measure of the mea-
sure space (Rd,B(Rd), λ),

M = {M (t, A), t > 0, A ∈ Bb(Rd)}, (5.5)
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defined on some complete probability space (Ω,F ,P) with E[M (t, A)] = 0, and covari-
ance function

C
Ä
(t, A), (s,B)

ä
= E
î
M (t, A)M (s,B)

ó
= t ∧ s ·

∫
A

∫
B
f(x− y)dxdy.

Where the function f is the Fourier transform of a tempered measure ν.

A note on the naming convention: A noise that is white in time and white in space will
simply be referred to as white noise, and if it is white in time but coloured in space it
is called white-coloured noise. There are several examples of the spatial parameter f ,
as presented in for example C.A Tudor’s paper [Tudor, 2014]. Here is one that we will
use as a basis of study (See e.g. [Stein, 1970, Chapter 5, Lemma 1]).

Example 5.1.7. The Riesz kernel of order γ,

f(x) = Rγ(x) := 2d−γπd/2
Γ
Ä
(d− γ)/2

ä
Γ(γ/2)

|x|−d+γ , 0 < γ < d

with ν(dξ) = |ξ|−γdξ.

Remark 5.1.8. The reason for the enclosure 0 < γ < d of the value of γ is because
of the definition of a tempered measure. The order γ of the Riesz kernel depends on
the space D = Rd for which it is defined, such that the solution to the stochastic heat
equation exists.

Remark 5.1.9. As γ → 0, we will actually approach the white noise case, symbolically,
limγ→0Rγ(x) = δ(x).

5.1.3 Stochastic integral with white-coloured noise

Proceeding with the white-coloured noiseM we construct a stochastic integral with
respect toM . The procedure is the same as for white noise, we define the stochastic
process I(h) on deterministic functions h ∈ H where the Hilbert space H is the
completion of the set of indicator functions 1(t,A) on R+ × Rd with inner product

⟨ϕ, ψ⟩H =

∫
R+

∫
Rd

∫
Rd

ϕ(t, x)f(x− y)ψ(y, t)dydxdt. (5.6)

Call the space of simple functions E . Define the isometry mapping from E to finite
second moment space L2(Ω),

I : E → L2(Ω), g =
∑

ak1(tk,Ak) 7→
∑

akM (tk, Ak) :=

∫
gdM . (5.7)
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Proposition 5.1.10. The mapping I : E → L2(Ω) is an isonormal Gaussian process.

Proof. It suffices to show that I is an isometry. Taking a simple g =
∑n

k=1 ak1(tk,Ak)(t, x) =∑
ak1(0,tk](t)1Ak

(x) we see that

∥I(g)∥2L2(Ω) =
∥∥∥∑ akM (tk, Ak)

∥∥∥2
L2(Ω)

= E
ïÄ∑

akM (tk, Ak)
ä2ò

=

n∑
k=1

a2kEM (tk, Ak)
2 + 2

n∑
k<l

akalE
[
M (tk, Ak)M (tl, Al)

]
Proceeding with the norm of g we find

∥g∥2E =

∫
R+

∫
Rd

∫
Rd

f(x− y)
Ä n∑
k=1

ak1(tk,Ak)(t, x)
äÄ n∑

l=1

al1(tl,Al)(y, t)
ä
dtdxdy

=

∫
R+

∫
Rd

∫
Rd

f(x− y)

(
n∑

k=1

Ä
a2k1(tk,Ak)(t, x)1(tk,Ak)(y, t)

ä
+ 2

n∑
k<l

Ä
akal1(tk,Ak)(t, x)1(tl,Al)(y, t)

ä)
dxdydt

Splitting up the integral over the sum of the two sums we obtain,

=

∫
R+

∫
Rd

∫
Rd

f(x− y)(
n∑

k=1

Ä
a2k1(tk,Ak)(t, x)1(tk,Ak)(y, t)

ä
dxdydt

+

∫
R+

∫
Rd

∫
Rd

f(x− y)2
n∑

k<l

Ä
akal1(tk,Ak)(t, x)1(tl,Al)(y, t)

ä
dxdydt

=
n∑

k=1

a2k

(∫
R+

∫
Rd

∫
Rd

f(x− y)1(tk,Ak)(t, x)1(tk,Ak)(y, t)dxdydt

)

+2
n∑

k<l

akal

(∫
R+

∫
Rd

∫
Rd

f(x− y)1(tk,Ak)(t, x)1(tl,Al)(y, t)dxdydt

)

=
n∑

k=1

a2kEM (tk, Ak)
2 + 2

n∑
k<l

akalE
[
M (tk, Ak)M (tl, Al)

]
,

and hence the norms are equal.

The rest of the construction follows the white-noise case. We take the completion of
E with respect to the inner-product induced from 5.6 which is the Hilbert space H .
Since we have a linear isometry from the set of simple functions, the map h 7→ I(h)
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can be extended uniquely to H . Take h ∈ H and a sequence of simple functions hn
such that ∥h− hn∥H → 0. Then we define∫

E
hdM := I(h) := lim

n→∞
I(hn).

Like in the white noise case, the above definition does not depend on the sequence of
simple functions approximating h.

5.2 The Stochastic Heat Equation revisited

Consider the stochastic heat equation with white-coloured noise (coloured by the Riesz-
kernel in example 5.2.5).{

∂
∂tu(t, x)−

1
2∆u(t, x) =Ṁ (t, x) t > 0, x ∈ Rd

u(0, x) = 0 x ∈ Rd.
(5.8)

As before we define the solution to this equation to be

u(t, x) =

∫ t

0

∫
Rd

e
− |x−y|2

2(t−s)

(2π|t− s|)d/2
M (dsdy), (5.9)

as long as the integral above is well defined which is answered by Proposition 5.2.2
below. The following proposition guarantees that the Riesz kernel is actually a non-
negative definite function.

Proposition 5.2.1. The Riesz-kernel f with order γ is a Fourier transform of a tem-
pered measure ν, i.e. f = ν̂, if and only if

d− 2 < γ < d.

Proof. By definition 5.1.1, a tempered measure has the property that,∫
Rd

Ç
1

1 + |ξ|2

åk

dν(ξ) <∞ for some k ≥ 1. (5.10)

Let k = 1 and since 1+ |ξ|2 acts like a constant around zero and like |ξ|2 at ∞, equation
5.10 is equivalent to∫

|ξ|≤1
ν(dξ) <∞, and

∫
|ξ|≥1

1

|ξ|2
ν(dξ) <∞. (5.11)
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The fact that ν(dξ) = |ξ|−γdξ gives,∫
|ξ|≤1

1

|ξ|γ
dξ <∞, and

∫
|ξ|≥1

1

|ξ|2+γ
dξ <∞.

The change of variables to polar coordinates gives the Jacobian

Jd = (−1)d−1rd−1
d−1∏
k=2

sink−1 θk ≤ rd−1.

given in [Muleshkov and Nguyen, 2016]. Thus the conditions in equation 5.11 can be
expressed as, ∫ 1

0

1

rγ−d+1
dr <∞, and

∫ ∞

1

1

rγ−d+3
dr <∞.

From elementary calculus the above integrals are bounded if γ−d+1 < 1, hence γ < d,
and γ − d+ 3 > 1, hence d < γ + 2. Then, d− 2 < γ < d is subsequently a necessary
and sufficient condition to equation 5.10.

5.2.1 Existence of solution and covariance

The fundamental solution to the heat equation with drift α, where x ∈ Rd, t > 0,

Φ(t, x) :=
e−

|x|2
4αt

(4παt)d/2
,

has the Fourier transform,
FΦ(t, ·)(ξ) = e−4π2α|ξ|2t. (5.12)

We are ready to show the existence of solution to 5.8.

Proposition 5.2.2. The equation 5.8 with noise coloured by the Fourier transform of
a tempered measure, f = ν̂ admits a unique solution if and only if∫

Rd

1

1 + |ξ|2
dν(ξ) <∞.

Proof. We show that the variance (by isometry),

E[u(t, x)2] =
∫ t

0

∫
Rd

∫
Rd

Φ(s, y; t, x)Φ(s, y′; t, x)f(y − y′)dydy′ds,

is finite. Using Proposition 5.1.4, and a change of variables ξ̃ = (2πξ), the above
variance is equal to
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= (2π)−d

∫ t

0

∫
Rd

e−
1
2
(t−s)|ξ̃|2e−

1
2
(t−s)|ξ̃|2dν(ξ̃)ds = (2π)−d

∫
Rd

1

|ξ̃|2
(1− e−t|ξ̃|2)dν(ξ̃).

Since

c1,t
1

1 + |ξ|2
≤ 1

|ξ|2
(1− e−t|ξ|2) ≤ c2,t

1

1 + |ξ|2
,

the proof is done, since ν is a tempered measure. The thing to note is that E[u(t, x)2] =
∥Φ(s, y; t, x)∥2H by the isometry which defines the integral of Φ with respect to M .

Proposition 5.2.3. Given the Riez kernel of order γ, the solution u(t, x) to 5.8 has
the covariance in time for a given x ∈ Rd,

E[u(t, x)u(s, x)] = C0

Ä
(t+ s)−

d−γ
2

+1 − (t− s)−
d−γ
2

+1
ä

where

C0 =
î
(2π)−d

∫
Rd

e−
1
2
|ξ|2 1

−d−γ
2 + 1

ν(dξ)
ó

Proof. Let s ≤ t, starting with the Fourier transform from 5.1.4 and a change of
variables to scale away the (2π)2 from the Fourier transform of the fundamental solution
given in equation 5.12,

E[u(t, x)u(s, x)] =
∫ t∧s

0

∫
Rd

∫
Rd

Φ(τ, y; t, x)Φ(τ, y′; s, x)f(y − y′)dydy′dτ

= (2π)−d

∫ s

0

∫
Rd

e−
1
2
(t−τ)|ξ|2e−

1
2
(s−τ)|ξ|2dν(ξ)dτ

= (2π)−d

∫ s

0

∫
Rd

e−
1
2
(t−τ)|ξ|2e−

1
2
(s−τ)|ξ|2 |ξ|−γdν(ξ)dτ.

With the change of variables letting ξ̃ =
√
t+ s− 2τξ, the functional determinant gives

the scaling (t+ s− 2τ)−d/2.

E[u(t, x)u(s, x)] = (2π)−d

∫ s

0
(t+ s− 2τ)

−d+γ
2

∫
Rd

e−
1
2
|ξ|2dν(ξ)dτ

= (2π)−d

∫
Rd

e−
1
2
|ξ|2ν(dξ)

1

−d−γ
2 + 1

Ä
(t+ s)−

d−γ
2

+1 − |t− s|−
d−γ
2

+1
ä
.

Where we let C0 := (2π)−d
∫
Rd e

− 1
2
|ξ|2ν(dξ) 1

− d−γ
2

+1
.

The covariance given in Proposition 5.2.3 is the same as a bi-fractional Brownian motion
defined in 3.1.4, with H = 1

2 and K = 1− d−γ
2 . This proves the following proposition,
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Proposition 5.2.4. Fix x ∈ Rd. The solution u(t, x) to the stochastic heat equation
5.8 has the same distribution modulo a constant to the bi-fractional Brownian motion
with H = 1

2 and K = 1− d−γ
2 ,

u(t, x)
d
=

»
2−1+ d−γ

2 C0B
1
2
,1− d−γ

2 (t) for all t ∈ R+.

Proceeding with the above we can utilize the exact same methods as in chapter 3 and
4, we can calculate the exact 1

HK = 1
1
2
− d−γ

4

-variation of our solution. The distribution

from Proposition 5.2.4 can of course be calculated for different drift and diffusion in
equation 5.8, which in turn motivates the same kind of estimators as before. Simulations
of the solution u(t, x) can be created with the same methods as in chapter 4.

5.2.2 White-coloured noise approximation

The finite-difference schemes discussed in the previous chapter can be employed here
as well. These types of approximations also converge, see for example
[Millet and Morien, 2005] which show convergence of such approximations. The white-
coloured noiseM at point (tm, xj) can be approximated as

Mm
j :=

∫ tm

tm−1

∫ xj

xj−1

M (dtdx) =M
(
[tm−1, tm]× [xj−1, xj ]

)
. (5.13)

TheMm
j are dependent variables in the spatial direction. The covariance structure is

given by

E(Mm
j M

l
k) = E

Ä
M
(
[tm−1, tm]× [xj−1, xj ]

)
M
(
[tl−1, tl]× [xk−1, xk]

)ä
=λ([tm−1, tm] ∩ [tl−1, tl])

∫ xj

xj−1

∫ xk

xk−1

f(x− y)dxdy

=

∆t
∫ xk

xk−1

∫ xl

xl−1
f(x− y)dxdy m = l

0 m ̸= l.
(5.14)

And they are normally distributed.

Mm
j ∈ N

(
0,∆t

∫ xj

xj−1

∫ xj

xj−1

f(x− y)dxdy

)
. (5.15)

Like before the mixed derivative can be approximated as ∂
∂x∂tM (xj , tm) ≈ Mm

j

∆t∆x .
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To simulate the Gaussian field we need the covariance matrix which is given by the
calculation 5.14 above. Consider Figure 4.4 of the discretization scheme. The points
we are simulating the field on are (xj , tm) for each j = 1, . . . , N and m = 1, . . . ,M .

We order theseMm
j in a vector as F =

Ä
M 1

1, . . . ,M
1
N ,M

2
1,M

2
2 . . . ,M

2
N , . . .M

M
N

ä
.

Let the matrixKj,k =
∫ xj

xj−1

∫ xk

xk−1
f(x−y)dxdy be the covariance matrix over the spatial

points for a fixed time point tm. The final covariance matrix over all time and space
can be written in the block diagram form with K on the diagonals and zero matrices
everywhere else,

Q =


K 0 . . . 0

0 K 0
...

... 0
. . .

...
0 . . . . . . K

 . (5.16)

Performing a Cholesky decomposition Q = RR⊺ we can simulate the noise field as
F = Rz, where z is a vector of N ·M standard i.i.d normal random variables. To speed
up computation and save memory we note that the Cholesky decomposition can be
reduced to decomposing K = LL⊺. We then simulate the field Fm =

(
Mm

1 , . . . ,M
m
N

)
incrementally over the time m = 1, 2, . . . ,M by taking Fm = Lz[(m− 1)N + 1 : mN ]
and F = (F1, . . .FM ).

5.2.2.1 Calculating the covariance integral

We will consider the Riesz-kernel given in example 5.2.5, we state it here again.

Example 5.2.5. The Riesz kernel of order γ,

f(x) = Rγ(x) := 2d−γπd/2
Γ
Ä
(d− γ)/2

ä
Γ(γ/2)

|x|−d+γ , 0 < γ < d

with ν(dξ) = |ξ|−γdξ.

We will only look at one spatial dimension, d = 1. The goal is to calculate the covariance
given in 5.14 and to do so we find the following integral.∫ b

a

∫ d

c
|x− y|γ−1dxdy =

∫ b

a

Ç∫ d

c
|x− y|γ−1dy

å
dx.

(Note the use of Tonelli’s theorem since g(x) = |x|γ−1 is a positive measurable function
for γ ∈ (0, 1) and x ̸= 0.)
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We have two cases for our discretization, either [a, b]∩ [c, d] = ∅, or [a, b] = [c, d]. First
we assume they are disjoint, and w.l.o.g that a < b < c < d. Then x ∈ [a, b] will always
be less than y, so |x− y| = (y − x) which gives∫ d

c
|x− y|γ−1dy =

∫ d

c
(y − x)γ−1dy

=
1

γ

(
(d− x)γ − (c− x)γ

)
.

Thus we obtain for a < b < c < d.∫ b

a

Ç∫ d

c
|x− y|γ−1dy

å
dx =

∫ b

a

1

γ

(
(d− x)γ − (c− x)γ

)
dx

=
1

γ(γ + 1)

Ä
(c− b)γ+1 − (d− b)γ+1 − (c− a)γ+1 + (d− a)γ+1

ä
.

For the general case of [a, b] ∩ [c, d] = ∅ we get∫ b

a

∫ d

c
|x− y|γ−1dxdy

=
1

γ(γ + 1)

Ä
|c− b|γ+1 − |d− b|γ+1 − |c− a|γ+1 + |d− a|γ+1

ä
.

(5.17)

Now continuing with [a, b] = [c, d].∫ b

a

∫ b

a
|x− y|γ−1dxdy =

∫ b

a

Ç∫ b

a
|x− y|γ−1dy

å
dx

=

∫ b

a

Ç∫ x

a
|x− y|γ−1dy +

∫ b

x
|x− y|γ−1dy

å
dx

=

∫ b

a

Ç∫ x

a
(x− y)γ−1dy +

∫ b

x
(y − x)γ−1dy

å
dx

=

∫ b

a

1

γ

(
(x− a)γ + (b− x)γ

)
dx

=
2

γ(γ + 1)
(b− a)γ+1.

Which actually corresponds to calculation 5.17 above. For [a, b] ∩ [c, d] = ∅ or [a, b] =
[c, d] it holds that,∫ b

a

∫ d

c
|x− y|γ−1dxdy

=
1

γ(γ + 1)

Ä
|c− b|γ+1 − |d− b|γ+1 − |c− a|γ+1 + |d− a|γ+1

ä
.

(5.18)
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5.2.2.2 A simulation

We make a Crank Nicolson finite-difference scheme approximation (Θ = 0.5), with
M = 1000 points in time, N = 999 points in space, and α∆t (∆x)2 = 1

π−2 to the
stochastic heat equation 5.8 with initial condition u0 = 0.2 sin(2πx). The coloured
noise is coloured by the Riesz kernel Rγ(x) with γ = 3/4. In Figure 5.1 below are the
simulated fields. Figure 5.1a is the coloured noise approximation and 5.1b is the white
noise with the same underlying independent Gaussian variables for comparison. We
can directly see the smoothing effect of the noise.

(a) Temperature Distribution u(t, x) - Coloured Noise

(b) Temperature Distribution u(t, x) - White Noise

Figure 5.1: Approximation of the solution to the stochastic heat equation 5.8 with both
white noise and white-coloured noise, using a Crank-Nicolson scheme.
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Proof of Theorem 3.6.1

Let (Ω,F ,P) be a probability space. A map τ : Ω → Ω is called measure preserving if
P(τ−1(A)) = P(A) for all A ∈ F . For a stochastic process Y (n), we define its’ shifting
map Sk : Ω → Ω such that Y (Sk(ω), n) := Y (ω, n+ k).

Definition A.0.1. A map τ : Ω → Ω is ergodic if for every invariant set A ∈ F (i.e.
τ(A) = A), then P(A) = 0 or P(Ac) = 0.

A property which implies ergodic is mixing.

Definition A.0.2. A map τ : Ω → Ω is mixing if

lim
n→∞

P(A ∩ τn(B)) = P(A)P(B),

for all A,B ∈ F .

Mixing implies ergodic since, let A be any invariant set, we have that
limn→∞ P(τn(A) ∩A) = P(τn(A))P(A) = P(A)P(A) because of mixing and invariance.
Hence P(A) = P(A)2 which only can be true if P(A) is equal to 0 or 1.

An equivalent condition for shifting maps Sk from a stationary process Y (n) is the
following.

Theorem A.0.3. The shifting map Sk : Ω → Ω of a stationary process Y (n) is mixing
if and only if the autocorrelation function r satisfies,

lim
n→∞

r(n) = lim
n→∞

E
[
(Y (0)− E[Y (0)])(Y (n)− E[Y (0)])

]
E
[
Y (0)2

] = 0.
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Lastly, the reason for introducing dynamical systems is because of the ergodic theo-
rems that can be utilised. In this proof we will use the following theorem (see e.g.
[Pollicott and Yuri, 1998]).

Theorem A.0.4 (Ergodic Theorem of Birkhoff). Let (Ω,F ,P) be a probability space.
If the map τ : Ω → Ω is ergodic and measure preserving, then for any X ∈ L1(Ω,F ,P),

lim
n→∞

1

n

n−1∑
i=0

X(τ i(ω)) =

∫
Ω
XdP. a.s.

Now the proof of Theorem 3.6.1 can commence,

Proof. The sum can be rewritten as,

n−1∑
i=0

|cFH(ti+1)− cFH(t)|1/H = c
1
H (b− a)

1

n

n−1∑
i=0

|FH(i+ 1)− FH(i)|1/H

using the self similarity of the fractional Brownian motion. The ergodic Theorem of
Birkhoff will be used and hence the shifting map has to measure preserving and ergodic.

Let Sk be the shifting map from |FH(1 + n) − FH(n)|
1
H . For any A ∈ F , let C ⊆ R

such that P(A) = P(|FH(k + 1)− FH(k)|
1
H ∈ C), then

P(A) = P(|FH(k + 1)− FH(k)|
1
H ∈ C) = P(|FH(1)− FH(0)|

1
H ∈ C) = P(S−1

k (A)),

where the stationary increments of fractional Brownian motion motivates the second
equality. Hence the shifting map is measure preserving.

The shifting map S̃k from FH(1 + k)− FH(k) is mixing since by Theorem A.0.3,

E
î
(FH(1 + k)− FH(k))FH(1)

ó
=

1

2
(|k + 1|2H + |k − 1|2H − 2|k|2H) → 0 as k → ∞,

and hence it is ergodic. Further, the shifting map Sk from |FH(1 + k) − FH(k)|
1
H is

ergodic since x 7→ |x|
1
H is a measurable map (the definition of ergodicity rests solely

on measures).

Applying the ergodic theorem of Birkhoff with X := |FH(1) − FH(0)|
1
H = |FH(1)|

1
H ,

τ = S1, then

n−1∑
i=0

|cFH(ti+1)− cFH(t)|1/H =c
1
H (b− a)

1

n

n−1∑
i=0

|FH(i+ 1)− FH(i)|1/H

→ c
1
H (b− a)

∫
Ω
|FH(1)|

1
H dP = c

1
H (b− a)E

[
|Z|

1
H

]
.

With Z := FH(1) ∈ N(0, 1).
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Asymptotic Variance

The asymptotic variance ρ2
H, 1

H

from Lemma 3.8.1 actually follows from the below

stronger theorem, found in [Cialenco and Huang, 2019][Theorem A.1]. First we define
the probabilist Hermite polynomials,

Hej(x) := (−1)je−
x2

2
dj

dxj
e−

x2

2 . (B.1)

The first five polynomials (and the ones we need) are given as

He0(x) = 1,

He1(x) = x,

He2(x) = x2 − 1,

He3(x) = x3 − 3x,

He4(x) = x4 − 6x2 + 3.

A polynomial H(x; k) is said to have Hermite rank k if it can be expanded as

H(x; k) =

∞∑
j=k

cj Hej(x), (B.2)

with ck ̸= 0.

Theorem B.0.1. Let X(t) be a Gaussian process with the following properties,

1. X(0) = 0 and E[X(t)] = 0 for all t.

2. X(t+ s)−X(t) ∈ N(0, σ2(s)), where σ(s) is some non-random function of s.
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3. There exists a constant γ > 0 such that X(ct)
d
= cγX(t) for any c > 0.

4. For any t ≥ 0, ∆t > 0, the sequence Xn = X(t+n∆t)−X(t+(n− 1)∆t), n ∈ N
is stationary.

5. Let r be the covariance function of the stochastic process Yn := Xn−Xn−1

σ(1) , r(n) =

EYmYm+n and assume there exists some positive integer k such that
∑∞

n=1 r
k(n) <

∞.

Then we have the asymptotic normality

1√
n

n∑
j=1

H

Ç
nγ

σ(1)

Ä
Xj/n −X(j−1)/n

ä
; k

å
→ N(0, σ̃2) (B.3)

With

σ̃2 =
∞∑
l=k

c2l l!κ
2
l , and κ2l = lim

n→∞

1

n

n∑
i=1

n∑
j=1

rl(|i− j|).

For Lemma 3.8.1 by the above theorem we have

rl(k) :=
Ä
|k + 1|2H + |k − 1|2H − 2|k|2H

äl
.

And the variances are given as

ρ21
2
,2
= 2κ22, and ρ21

4
,4
= 72κ22 + 24κ24.

For ρ21
4
,4
the constants 72 and 36 comes from the fact that the x4−E

[
|Z|4

]
= x4− 3 =

6He2+He4 with coefficients c2 = 6 and c4 = 1. All this is because the terms in the sum
defining the exact 4-variation subtracted by E

[
|Z|4

]
can be written as a polynomial

with Hermite rank 2,

ρ21
4
,4
=

∞∑
l=2

c2l l! κ
2
l = 62 · 2! κ22 + 4! κ24 = 72κ22 + 24κ24.

For ρ21
2
,2
the quadratic variation minus the centring constant x2 − E

[
|Z|2

]
= x2 − 1 is

equal to He2. Hence

ρ21
2
,2
=

∞∑
l=2

c2l l! κ
2
l = 2! κ22 = 2κ22.
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Derivation of Solution to Heat
Equation

Set σẆ = f(t, x). Assume that all coming manipulations are well defined for u, u0 and
f (like the Fourier transforms, inverse transform, all integrals, etc.).

We have the equation,{
∂
∂tu(t, x)− α∆u(t, x) = f(t, x) t > 0, x ∈ Rd

u(0, x) = u0(x) x ∈ Rd.
(C.1)

To solve 1.6 we solve first the homogeneous problem{
∂
∂tu(t, x)− α∆u(t, x) = 0 t > 0, x ∈ Rd

u(0, x) = u0(x) x ∈ Rd.
(C.2)

Recall the Fourier transform

F
Ä
u(t, x)

ä
(t, ξ) = û(t, ξ) :=

∫
Rd

u(t, x)e−2πξ·xdx.

Where ξ·x is the inner product on Rd. Using that F
Ä
∆u
ä
= −|ξ|2û and the convolution

identity F (f ∗g) = f̂ ·ĝ. We will do a Fourier transform on C.2 to get the corresponding
ODE {

d
dt û(ξ, t) + |ξ|2αû(ξ, t) = 0 t > 0, ξ ∈ Rd

û(ξ, 0) = û0(ξ) ξ ∈ Rd.

We continue with an inverse transform, obtaining the homogeneous solution

uh(t, x) =

∫
Rd

e
−|x−y|2

4αt

(4παt)d/2
u0(y)dy, x ∈ Rd , t > 0.
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Chapter C

Proceed to the in-homogeneous problem with zero initial value to complete the super-
position, {

∂
∂tu(t, x)− α∆u(t, x) = f(t, x) t > 0, x ∈ Rd

u(0, x) = 0 x ∈ Rd.
(C.3)

To solve the equation above we will invokeDuhamel’s principle (see e.g. [Evans, 2010,
Page 49]. Which gives a method to solve the equation above with homogeneous initial
conditions, but with a non-zero driving term. We illustrate it like this: Consider once
again a homogeneous equation, for 0 < s < t, of the form,{

∂
∂tu(t, x)− α∆u(t, x) = 0 t > s, x ∈ Rd

u(s, x) = f(s, x) x ∈ Rd.
(C.4)

By a translation t′ = t − s we obtain a PDE of the form in C.2, which admits the
solution,

us(t, x) =

∫
Rd

e
−|x−y|2
4α(t−s)

(4πα(t− s))d/2
f(s, y)dy, x ∈ Rd , t > s.

Duhamel’s principle gives us that the solution to C.3 is simply to integrate us with
respect to s for 0 < s < t, which gives the particular solution

up(t, x) =

∫ t

0

∫
Rd

e
−|x−y|2
4α(t−s)

(4πα(t− s))d/2
f(s, y)dyds, x ∈ Rd , t > 0.

The solution is given by the superposition principle, u(t, x) = up(t, x) + uh(t, x).
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[Millet and Morien, 2005] Millet, A. and Morien, P.-L. (2005). On implicit and explicit
discretization schemes for parabolic spdes in any dimension. Stochastic Processes and
their Applications, 115(7):1073–1106.

[Muleshkov and Nguyen, 2016] Muleshkov, A. and Nguyen, T. (2016). Easy proof
of the jacobian for the n-dimensional polar coordinates. Pi Mu Epsilon Journal,
14(4):269–273.

[Narasimhan, 1999] Narasimhan, T. N. (1999). Fourier’s heat conduction equation:
History, influence, and connections. Reviews of Geophysics, 37(1):151–172.

[Norvidas, 2015] Norvidas, S. (2015). On positive definite distributions with compact
support. Banach Journal of Mathematical Analysis, 9(3):14 – 23.

89



Bibliography Chapter C

[Nourdin, 2012] Nourdin, I. (2012). Selected Aspects of Fractional Brownian Motion.

[Pollicott and Yuri, 1998] Pollicott, M. and Yuri, M. (1998). Dynamical Systems and
Ergodic Theory. London Mathematical Society Student Texts. Cambridge University
Press.

[Polyanin and Nazaikinskii, 2016] Polyanin, A. and Nazaikinskii, V. (2016). Handbook
of Linear Partial Differential Equations for Engineers and Scientists, Second Edition.

[Protter, 2010] Protter, P. (2010). Stochastic integration and differential equations.
Stochastic Modelling and Applied Probability. Springer, Berlin, Germany, 2 edition.

[Rogers, 1997] Rogers, L. C. G. (1997). Arbitrage with fractional brownian motion.
Mathematical finance, 7(1):95–105.

[Samuil D. Eidelman, 1998] Samuil D. Eidelman, N. V. Z. a. (1998). Parabolic
Boundary Value Problems. Operator Theory: Advances and Applications №101.
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