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Abstract

Wave power is a type of renewable energy which holds great potential, but this potential remains
largely unused due to difficulties in implementing commercially viable wave energy converters. This
study uses Monte Carlo integration to optimize and estimate the electrical power output of a Simulink
model based on a real wave energy converter developed by Waves4Power. For 78 sea states defined
by their significant wave heights and wave energy periods, we find the optimal choices of which
electrical generators to set as active, as well as the optimal generator rotation speeds, using randomly
generated wave height time series. These optimal settings are then used on new time series to find
estimates of the resulting mean power output and minute-to-minute variance. The optimization is
performed with regards to a statistic consisting of the sample mean minus two times the standard
deviation, favoring generator settings which give high mean output while simultaneously having little
variability. Finally, we fit a logistic regression model to the optimal choices of active generators and
linear regression models to the optimal rotation speeds and estimated mean outputs, in all three
cases using the significant wave height and wave energy period as predictor variables.

The study finds a mean output of 21.74 kW when taking a weighted average of all sea states by
frequency of occurrence, which is a 9% decrease from the mean when optimizing the settings with
regards to only the sample mean (23.90 kW). However, the minute-to-minute standard deviation is
also reduced by 37% when including standard deviation in the optimization statistic. The efficiency
of the wave energy converter, found by dividing the output in each sea state by the theoretical energy
potential of that state, also has its mean and standard deviation reduced, though in both cases by
less than the unscaled power output. The regression models are successfully fitted and tested on
validation data, and in the case of the generator settings give potentially useful decision rules for
practical uses of the wave energy converter.





Populärvetenskaplig sammanfattning

V̊agkraft är en energikälla som p̊a m̊anga sätt sticker ut fr̊an andra förnybara energikällor. Å ena
sidan har havsv̊agor en helt annan regelbundenhet än till exempel vind eller solsken och har därför
potentialen att utgöra en mycket mer tillförlitlig energikälla än dessa. Energiinneh̊allet i världens
havsv̊agor är dessutom oerhört stort och jämförbart med världens totala förbrukning av elektricitet.
Å andra sidan är teknologin för v̊agkraft l̊angt ifr̊an lika utvecklad som den för sol- eller vindkraft,
och än idag finns mycket f̊a exempel p̊a lyckade kommersiella implementeringar av v̊agkraftverk.
Samtidigt som energipotentialen i havsv̊agor är oerhört stor är det en resurs som är mycket sv̊ar att
utnyttja effektivt.

Denna masteruppsats i matematisk statistik studerar energiproduktionen i ett v̊agkraftverk, hur
den kan optimeras, vad medelvärdet blir och hur mycket effekten varierar kring detta medelvärde.
Studien använder sig av en simulator i MathWorks verktyg Simulink, vilken i sin tur är baserad p̊a
ett verkligt v̊agkraftverk som tidigare använts p̊a en teststation i Runde i Norge och som är p̊a väg
att sjösättas igen under 2024. Kraftverket best̊ar av en flytande boj med en cylinder som g̊ar djupt
ner i vattnet, och i vilken en kolv rör sig upp och ner i otakt med bojens guppande p̊a vattenytan.
Denna otakt skapar en pumpande rörelse som genom ett hydrauliskt system och tv̊a generatorer
skapar elektrisk energi som kan skickas in i ett elnät.

V̊agor slumpgenereras som tidsserier där de förenklas till v̊aghöjder över tid p̊a den punkt p̊a havsy-
tan där bojen befinner sig. Detta sker för 78 olika s̊a kallade havstillst̊and, kategorier som beskriver
havets beteende i kraftverkets närhet och ger olika mönster i v̊agserierna. Genom simulatorn kan vi
sedan f̊a fram den elektriska effekten som följer av de givna v̊aghöjderna under ett visst tidsspann,
men p̊a grund av den stora komplexiteten i omvandlingsprocessen fr̊an v̊aghöjd till effekt är det
praktiskt omöjligt att exakt beräkna parametrar s̊asom den förväntade effekten eller variationen i
effekt. Istället görs s̊adana beräkningar approximativt genom att för varje havstillst̊and simulera en
mycket l̊ang v̊agserie, köra den genom simulatorn för att f̊a fram effekten, och använda medelvärdet
över tid som en skattning av den ”sanna” förväntade effekten för havstillst̊andet.

Inledningsvis genomförs dock en optimeringsprocess där effekten av inställningarna p̊a kraftverkets
generatorer undersöks. För varje havstillst̊and genomförs en maximeringsalgoritm för att se vilket
val av generatorer – endast den ena (50 kW), endast den andra (100 kW) eller b̊ada – som ger
bäst effekt, och vilket varvtal generatorn eller generatorerna bör h̊alla för att maximera effekten.
Eftersom det finns ett intresse av att effekten inte bara ska ha ett högt medelvärde utan ocks̊a
vara stabil kring medelvärdet utan för mycket variation används inte medelvärdet i sig som det
värde som ska maximeras, utan medelvärdet minus tv̊a g̊anger standardavvikelsen. Optimeringen
genomförs dock ocks̊a med endast medelvärdet som måltal, för att resultaten fr̊an den huvudsakliga
optimeringen ska kunna jämföras med denna.

Efter att ha tagit fram dessa optimala generatorval och varvtal genomförs en skattning (p̊a nya
v̊agserier) för att hitta den skattade medeleffekten och variansen för varje havstillst̊and, givet dessa
inställningar. Dessutom beräknas ett viktat medelvärde av de olika havstillst̊andens medeleffekter
(och varianser) för att f̊a fram en skattning av den generella medeleffekten när vi inte betingar p̊a



ett särskilt havstillst̊and.

Den obetingade medeleffekten, med alla havstillst̊and sammanvägda, är knappt 22 kW, och kraftver-
kets effektivitet (för varje tillst̊and beräknad som medeleffekten delad p̊a den teoretiska energipo-
tentialen i det tillst̊andets v̊agor) ca 21.5%. Drygt en femtedel av den v̊agenergi som träffar bojen
omvandlas allts̊a till elektrisk energi. Om generatorval och varvtal optimeras enbart utifr̊an att
medeleffekten ska maximeras ökar dessa siffror till 24 kW respektive 23%, men detta innebär ocks̊a
en markant ökning av variansen i effekt och effektivitet.

Slutligen genomförs regressionsanalyser p̊a s̊aväl generatorval och varvtal som p̊a medeleffekterna
för att hitta lämpliga regler för hur dessa värden kan förklaras av havstillst̊andens karakteristika –
med andra ord av v̊agornas höjd och längd. Dessa analyser leder, i generator- och varvtalsfallen, till
regler som potentiellt skulle kunna användas för att i verkligheten anpassa ett v̊agkraftverk efter de
r̊adande förh̊allandena.
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Notation and definitions

Meaning of shorthands used in the thesis, unless another local meaning is explicitly stated.

Non-letters

ā Arithmetic average of a, ā = 1
N

∑N
i=1 ai.

â Estimate of â.

a∗ Complex conjugate of a.

Roman letters

C[X,Y ] Covariance of random variables X and Y .

CIθ Confidence interval for parameter θ.

Corr[X,Y ] Correlation of random variables X and Y .

E[X] Expected value of random variable X.

ei Residual of observation i in a linear regression, ei = yi − ŷi.

F = (F⃗ , M⃗) The force vector enacted upon a body by a wave, in six different modes: Surge, sway,

heave, roll, pitch and yaw. The first three components (F⃗ ) are translational and the last three

(M⃗) are rotational.

g The gravity acceleration constant.

H Hat matrix, the matrix linking the predicted and observed response values in a regression analysis.

H0 Null hypothesis.

Hs The significant wave height in meters of a wave state, defined as the average of the highest third
of the waves, from trough to crest. Estimated as 4

√
m0 where m0 is the zeroth moment of the

wave state’s spectral density.

H(ω) Frequency response function.

h(t) Time-domain impulse response function.

I The intensity of a wave, time-average energy transport per unit time and per unit area in the
propagation direction.

i The imaginary unit, i =
√
−1.

J The wave-energy transport, in kW/m. The wave energy transported along a vertical strip parallel
to the wave front.

Jα(x) Bessel function of the first kind.

K Number of segments created in a segmentation of a stochastic process, N = KNsub.

m Sample mean.

mn The n:th moment of a spectral density, mn =
∫∞
−∞ ωnS(ω)dω.

N Total number of observations.
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n Number of separate processes, N = nT .

Nsub Number of observations in a segment, N = KNsub.

OWC Oscillating Water Column, the type of wave energy converter used in the study.

p = p(x, z, t) Dynamic pressure of a plane harmonic wave.

P The power received by an oscillating body.

Pout The power output of a WEC.

P(A) Probability of event A.

Qt,k The volume flow of the water surface oscillating within an OWC type WEC.

R[X] Coefficient of variation for random variable X, defined as the ratio between standard deviation
and expected value.

R2 Coefficient of determination in a linear regression model, R2 = 1− SSE/SST where SSE and
SST are the residual and total sums of squares.

R2
adj Adjusted coefficient of determination in a linear regression model, R2

adj = 1 − SSE/(N−p)
SST/(N−1)

where SSE and SST are the residual and total sums of squares, while N is the number of
observations and p the number of model coefficients including the intercept.

r(τ) The covariance function of a stationary stochastic process for lag τ .

ropt Optimal generator rotation speed for a sea state.

Re{a} The real part of complex number a.

S(f) The spectral density of a stationary stochastic process for frequency f , with period 2π.

S(ω) The corresponding spectral density with period Te, for frequency ω.

s2 Unbiased estimator of the variance σ2.

T Number of observations in a single stochastic process, with in total N = nT observations for n
processes.

Te The energy period, in seconds, of a wave state, ”the mean wave period with respect to the
spectral distribution of energy” (Mollison, 1994, p. 207).

Tp The peak period, in seconds, of a wave state, meaning the time between the peaks of the most
dominant waves. Tp = 2π/ωp.

tα(f) The α quantile of a Student’s t-distributed random variable X with f degrees of freedom,
such that P(X ≤ tα(f)) = α.

u = (U⃗ , Ω⃗) The velocity vector of a wave for the six different modes: Surge, sway, heave, roll, pitch

and yaw. Three components (U⃗) are translational and three (Ω⃗) are rotational.

V[X] Variance of random variable X.

W Weight matrix in a weighted least squares regression model.

WEC Wave Energy Converter.

Greek letters

8



β Vector of coefficients corresponding to the p predictorsXj in a regression model, j = 0, 1, 2, . . . , p−
1. β0 is the model’s intercept corresponding to the constant X0 = 1.

Γ(a) The gamma function.

Γ(a, b) The upper incomplete gamma function.

ϵi The random error of observation i in a regression model, ϵi = yi − ŷi.

ζj The j:th intercept in an ordinal logistic regression model.

η Wave elevation.

λ The penalty strength on the standard deviation in an optimization statistic which seeks to achieve
high mean and low variance.

µ See E[X].

νg The group velocity of a water wave.

νp The phase velocity of a water wave.

ρ The mass density of a fluid, specifically sea water.

Σ Covariance matrix of multiple random variables.

σ2 See V[X].

τ Lag between two different time points.

ϕ The velocity potential of a wave.

ϕα The α quantile of a standard Gaussian random variable Z, such that P(Z ≤ ϕα) = α.

χ2
α(f) The α quantile of a χ2-distributed random variable X with f degrees of freedom, such that

P(X ≤ χ2
α(f)) = α.

ψX(t) Moment generating function of random variable X.

ωp The peak frequency of a spectral density, ωp = 2π/Tp.
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Chapter 1

Introduction

Wave power, also known as wave energy, is the conversion of the energy in the ocean’s wind-generated
waves into electrical power (United States Energy Information Administration, 2022). In a time
when the climate crisis amplifies the need for cheap renewable energy (United Nations, 2024), wave
power stands out as being a ”highly concentrated energy resource” with power density many times
higher than that of solar or wind power (CorPowerOcean, 2024). Barstow et al. (2008, p. 93) write
that the global energy resource in water waves has an effect of approximately 2 TW, which over a
year becomes approximately 18 000 TWh. This is of the same order as the total global electricity
consumption, which in 2022 was estimated to 25 530 TWh (Statista, 2024). Even though the same
authors also estimate a limit of 10-25% to the proportion of this energy that could be used (Barstow
et al., 2008, p. 93), that proportion could still be a great contribution to the world’s energy resources.
Furthermore, water waves also have much greater consistency and predictability than other renewable
energy sources such as wind or solar, potentially enabling much greater stability in an electrical grid
using wave energy (Wu, 2023).

However, at present wave power makes up a vanishingly small percentage of the world’s energy
production (Ritchie and Rosado, 2024). Problems with implementing wave power at a large scale
include the challenge of producing conversion systems which can handle extreme wave conditions,
and overcoming the currently high costs of the implementation (Burke and Petraviciute, 2021).
These costs are further augmented by the need for frequent maintenance of the devices due to
exposure to the sea, and there is also the concern that large-scale implementation of wave energy
devices would disturb the marine life (Wu, 2023).

Nevertheless, the energy potential in water waves is too great to ignore and wave energy conversion is
the subject of intense study and development today (United States Energy Information Administra-
tion, 2022; Wu, 2023; Burke and Petraviciute, 2021). The European Commission (2024) furthermore
estimates that ocean energy (wave, tidal and others) could make up 10% of the EU’s energy pro-
duction in 2050. The study of the effects of wave energy converters is of great practical interest for
the energy sector and, by extension, the world at large.

1.1 Aims

This thesis aims to study the case of a particular model of wave energy converter (WEC) of the
oscillating water column (OWC) type, and its power output under various marine conditions called
sea states. Five fundamental questions are asked, explored and answered:

10



Chapter 1 – Introduction

1. What is the optimum speed for each sea state, in rotations per minute, of the generators which
convert hydraulic energy to electrical energy in the WEC?

2. With two available generators in the WEC, for which sea states is it optimal to use one, the
other, or both?

3. Given these optimal rotation speeds and generator choices, what is the mean power output of
the WEC, for each sea state and overall?

4. Under the same conditions, what is the variance of the power output of the WEC, for each sea
state and overall?

5. How can linear and logistic regression be used to explain the generator choice, optimal rotation
speed and mean power output, conditionally on the sea state’s significant wave height and
energy period?

Due to the complexity of the power output as a function of the wave height, questions 1 through 4
will be explored using Monte Carlo methods, and therefore only be answered approximately.

The reader is assumed to know the basics of probability theory and statistics such as expected
values, variances and covariances, probability density functions and cumulative density functions,
confidence intervals and statistical inference. Basic mathematical knowledge is also expected.

1.2 Historical background

1.2.1 Wave power

Wave power has been theoretically envisioned since at least 1799, when a first patent application for
wave energy technology was made by the Frenchman Pierre-Simon Girard (Li, Sun, and Zhou, 2022,
p. 2-3). After the 1799 initiative, the development was at a relative standstill until the early 1960’s
when the japanese naval commander Yoshio Masuda invented a WEC system (Aderinto and Li,
2019, p. 2). Masuda, by some named ”the father of modern wave energy technology” (Falcão, 2010,
p. 899) was also the first to develop the concept of an oscillating water column (OWC) type WEC
in the 1940’s, a type of WEC which is one of the most popular (Alves, 2016, p. 28). After a period
of slower development, during the 1970’s the oil crisis led to increased research in renewable energy
including wave power, and new WEC:s were developed (Li, Sun, and Zhou, 2022, p. 3). However, the
early WEC:s based on Masuda’s designs still had low power output due to the very limited available
knowledge on wave energy absorption (Aderinto and Li, 2019, p. 2). Though the funding of wave
energy projects decreased as oil prices dropped in the 1980’s, the decade saw the testing of several
WEC prototypes in Scotland, India, Japan and Norway, but proper marine energy testing centers
were not established until the early 21st century (Li, Sun, and Zhou, 2022, p. 3). The world’s first
floating WEC to provide electricity to a national grid, the Pelamis 750 device, was implemented in
2004 at Billia Croo on the island of Orkney north of Scotland (European Marine Energy Centre,
2022b; European Marine Energy Centre, 2024). Ahamed, McKee, and Howard (2020, p. 1) describe
the research on wave energy as having happened in two periods, first during the 1970’s and then
during the ”present”, presumably meaning the 21st century.
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Chapter 1 – Introduction

Despite estimations that the theoretical energy potential of wave power globally could be as high
as 29 500 TWh in a year (Edenhofer et al., 2011, p. 504), according to Our World in Data (Ritchie
and Rosado, 2024) the category ”other renewables” (which includes both wave and tidal power)
only produced 89.81 TWh of electricity in 2023 – 0.304% of the potential above and 0.305% of the
electricity produced from all sources globally. Astariz and Iglesias (2015, p. 6) cite the levelized cost
of energy for wave power as between 90 and 140 €/MWh for nearshore plants, and between 180 and
490 €/MWh for offshore ones. This is a high cost in comparison to other energy sources, renewable
and non-renewable, which generally range from 30 to 70 €/MWh with offshore wind power being
an outlier at 101 €/MWh (Astariz and Iglesias, 2015, table 8), thus explaining the current lack of
incentive for commercialized wave power.

1.2.2 Monte Carlo methods

The statistical methodology that has come to be known as Monte Carlo methods can be traced back
to Stanislaw Ulam, a mathematician working at the Los Alamos National Laboratory. In 1946, while
playing solitaire, Ulam asked himself what the probability was of a successful solitaire outcome, and
considered the notion that it might be easier to play 100 times and check the number of successful
outcomes, rather than calculate the probability explicitly through combinatorics (Eckhardt, 1987,
p. 131). This notion, as well as the possibility of applying the same type of method to nuclear
energy research, was soon communicated to fellow Los Alamos mathematician John von Neumann
(Metropolis, 1987, p. 126-127). The idea was made all the more relevant by two events which
occurred in 1945: the first successful test detonation of an atomic bomb at Alamogordo, and the
building of the first electronic computer, ENIAC (Metropolis, 1987, p. 125).

Two letters between John von Neumann and Robert Richtmyer in March-April 1947 mark the first
known written documentation of the method. In the first, von Neumann highlights the usefulness
of statistical methods for solving neutron diffusion and multiplication problems using ENIAC for
simulation and computing. The idea he expresses is to follow the simulated paths of 100 neutrons
and through their empirical behaviour draw conclusions on the general behaviour of neutrons (Neu-
mann and Richtmyer, 1947). The method quickly garnered interest and was, according to Nicholas
Metropolis (1987, p. 127), named by himself after the Monte Carlo casino in Monaco which Ulam’s
uncle used to frequent.

1.3 Previous studies

This thesis owes a great deal to the article ”Optimizing the Hydraulic Power Take-Off System in a
Wave Energy Converter” by Zeinali et al. (forthcoming), which uses the same methods and Simulink
model for generating random waves and simulating their conversion into electrical energy through a
WEC. The aim of that study is to optimize the hydraulic pressure in the accumulator tank, which
it does for 78 different sea states. This thesis aims to use these optimal pressures as initial values
in its simulations, and furthermore try to optimize the rotation speed of the generator(s) involved
in converting the hydraulic energy into electrical energy. It is also a goal to estimate the expected
electrical outputs for each sea state, given that the rotation speed is optimal, where Zeinali et al.
concern themselves with the retension of the waves’ energy into the WEC:s hydraulic system but
not the subsequent conversion into electrical energy.

There are many studies investigating the power efficiency of different WEC:s, defined in (Aderinto
and Li, 2019, p. 4) as the ratio between the power absorbed by a device and the power available
within the width of its primary wave-interacting part. Aderinto and Li (2019) published a review
study in 2019 which evaluated the efficiency of three different types of WEC devices, including
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the OWC type. They found efficiencies ranging from 5% to 40% for the OWC devices based on
ten studies, with six of them showing efficiencies in the 20-25% range. 20-30% seemed to be the
normal efficiency range in most studies, though a few studies of heaving or pitching oscillating body
devices reached the range 40-50% (Aderinto and Li, 2019, Fig. 3a). An average efficiency of 24%
was reported by Zeinali et al. (forthcoming, p. 8) for the same WEC studied in this thesis, though
this varied heavily (between 90 and almost 0%) for different sea states.

Ren, Tan, and Xing (2023) use a Kriging Machine Learning approach to estimate the power output
matrix (for different sea state parameters) of an oscillating body WEC, predicting the mean output
conditionally on the sea state parameters and reaching very low prediction errors through an active
learning approach. The article does not present results regarding the power output or efficiency of
its WEC, instead focusing on the methodology and the effectiveness of their algorithm in making
accurate predictions.

Babarit, Hals, et al. (2021) take a more empirical approach in a review study on the annual absorbed
energy of eight WEC:s of different types, at five different locations. One of the locations is the
European Marine Energy Centre on Orkney north of Scotland (Babarit, Hals, et al., 2021, fig. 9),
the centre which provides the sea state data for this thesis. The study finds annual mean absorbed
power values between 1.6 and 981 kW for the various devices and locations, while also comparing
the power relative to the mass of each device, its surface area and its root mean square power take-
off force (Babarit, Hals, et al., 2021, fig. 12-19). One of the devices is a floating oscillating water
column WEC with a characteristic mass of 1800 tonnes and a characteristic external surface of 6500
m2 (Babarit, Hals, et al., 2021, p. 47). This WEC gave yearly mean values between 147 and 745 kW
depending on location, with 262 kW being the value for EMEC (Babarit, Hals, et al., 2021, fig. 19).

Shao et al. (2023) study the same WEC as in this article, comparing two different versions of the
device in regards to their power performance and the fatigue enacted upon the buoy’s mooring lines.
They use both regular harmonic waves with different periods and amplitudes, and irregular waves
from three different sea states based on empirical wave data from the Runde test site (Shao et al.,
2023, p. 450, 453). For the irregular waves, however, only the strain upon the mooring lines is
studied, while the power output is primarily studied for the regular waves. The power is found to be
greatest for high wave amplitudes (3 meters from still water line to crest) and wave periods of 4 or 5
seconds for the 3.0 and 4.0 versions of the WEC, respectively (Shao et al., 2023, p. 454, fig. 10) while
the hydrodynamic efficiency of the device – how well it utilizes the energy in the waves which pass
through it – is clearly highest for those same 4- and 5-second wave periods (around 40%, compared
to 0-20% for most other periods), with smaller differences depending on wave amplitude (Shao et al.,
2023, p. 454, fig. 11).
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Theoretical background

2.1 The dynamics of water waves

The waves which we observe on the ocean are generally known as water waves or surface waves
(Encyclopaedia Britannica, 2023), to distinguish them from other types of waves such as the move-
ment of sound, light and subatomic particles (Encyclopaedia Britannica, 2024). Water waves may
be further categorized as either tsunamis, wind surges, wind waves or swell. The former two are
connected to rare and extreme events such as seismic disturbances causing tsunamis or wind surges
travelling in front of cyclones, while the latter two are more commonly occurring and both caused
by the wind acting upon the ocean surface. Wind waves are the waves directly generated by the
wind, while swell is their further gravitational propagation after the wind has abated (Encyclopaedia
Britannica, 2023).

A fundamental demarcation of this thesis is that it is not concerned with the modelling of extreme
wave events, which may instead be of interest in e.g. risk modelling for the construction of sea walls.
Extreme waves are naturally characterized by occurring very rarely and are thus of little interest
when the goal is to model the mean energy output of a WEC, though they are highly relevant to
the study of its durability and maintenance costs (Falnes and Kurniawan, 2020, p. 1). Extreme
waves affect the WEC buoy in completely different ways than linear theory can capture (ITTC,
2002, p. 507-508), and for this reason, tsunamis and wind surges are not of interest and this thesis
will only deal with wind waves and swell.

Wind waves are a form of gravity waves (Encyclopaedia Britannica, 2023) in the sense that though
they are initialized by wind, their further propagation is also caused by gravity trying to restore the
disturbed equilibrium of the water surface (Lighthill, 1978, p. 205). In the same way, swell is also a
type of gravity waves. The remainder of this subsection deals with the stochastic modelling of wind
waves and swell as well as their physical dynamics and energy content.

2.1.1 Stationary stochastic processes and Fourier series

The most straightforward and regular way to model water waves is as one-dimensional, one-directional
regular harmonic waves which are defined only by a wave height and a wave period. This kind of
waves may easily be theoretically envisioned, and might be realistic to observe in a controlled en-
vironment (Chakrabarti, 2005, p. 1019-1020). Real ocean waves, however, particularly wind waves,
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are stochastic and irregular due to the randomness of the winds that create them (Falnes and Kur-
niawan, 2020, p. 87). Therefore, a regular and deterministic process such as a simple harmonic wave
is not an efficient way of capturing them, though it might be more successful in the case of swell. A
more apt way of modelling real wind waves may be as stochastic processes, which may be considered
stationary provided that there is reasonably constant wind over some time interval (G. Lindgren,
Rootzén, and Sandsten, 2014, p. 88). Using such a model makes modelling much more convenient
since it allows for random variation over time, while also having certain short-term consistencies
such as time-invariant mean and autocovariance.

A very important representation of a stationary stochastic process is its spectral density, which is
the inverse Fourier transform of the process’s covariance function (provided that said function is
integrable) while the covariance function, in turn, is the regular Fourier transform of the spectral
density (G. Lindgren, Rootzén, and Sandsten, 2014, p. 82). Expressed mathematically,

r(τ) =

∫ ∞

−∞
ei2πfτS(f)df (2.1)

S(f) =

∫ ∞

−∞
e−i2πfτr(τ)dτ (2.2)

where S(f) is the spectral density for frequency f and r(τ) the covariance function for time lag τ
(G. Lindgren, Rootzén, and Sandsten, 2014, p. 82-85).

An alternate way of viewing the wind waves is as a superposition of multiple simple harmonic
waves which may each have differing frequencies and (stochastic) phases and amplitudes (Falnes
and Kurniawan, 2020, p. 87). In fact, as will be shown, this perspective does not contradict that of
waves as stationary stochastic processes since certain such processes may themselves be seen as a
superposition of several harmonic processes with random phase and amplitude.

A more complicated periodic function f(x) may be expressed as a weighted sum of simpler periodic
functions (sine and cosine functions) in what is known as a Fourier series:

f(x) =

∞∑
n=0

αn sin

(
2πnx

a

)
+

∞∑
m=0

βm cos

(
2πmx

a

)
(2.3)

where a is the period of the functions and αn, βm are the Fourier coefficients (Chong, 2021, p. 77).
The Fourier series expression for a periodic function is always valid provided that the function is
square-integrable, meaning ∫ a/2

−a/2

|f(x)|2dx (2.4)

has to exist and be finite (Chong, 2021, p. 78). Now, uniting the two summations and using Euler’s
formula, eq. (2.3) may be rewritten to

f(x) =

∞∑
n=−∞

ei2πnx/afn (2.5)

where fn are new, complex Fourier coefficients (Chong, 2021, p. 78). We immediately see how similar
this is to a Fourier transform from spectral density to covariance function, becoming identical if we
replace 1/a with fτ , fn with S(f) and the summation with an integral. In fact, the Fourier transform
is a version of the Fourier series which is valid for functions defined over the entire real line, not just
the interval [−a/2, a/2] (Chong, 2021, p. 80). f(x) is then the covariance function r(τ), which itself
is of a periodic nature.

The results above indicate that besides rewriting eq. (2.3) to be an alternate expression for the
(deterministic) covariance function, we should also be able to rewrite it to be an expression for
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the stochastic process itself. We may introduce stochasticity both through the Fourier coefficients,
corresponding to a random amplitude of the sine and cosine functions, and through the sine and
cosine arguments with either random frequencies or random phases. Such an approach is used
by Zeinali et al. (forthcoming, p. 4), using only the cosine terms while letting the frequency be
deterministic and the amplitude and phase random, and having the amplitude also depend on a
spectral density. Since it is not possible in practice to have an infinite number of superimposed
processes, any empirical realisation of such a superimposition must necessarily be an approximation.

In summation, for a limited time period during which stationarity may be assumed, it seems reason-
able to model random wind waves as a periodic stationary stochastic process which may be expressed
as the sum of multiple random sine and cosine functions.

2.1.2 Sea states and the Bretschneider spectrum

Outside of a limited time period, the behaviour of wind waves may differ significantly in a way that
violates the assumption of stationarity and makes a stationary stochastic process unfit to model the
wave height. One way to handle this problem is to use sea states, a way of classifying the conditions
of the sea and its waves so that the sea may shift from one state to another over time and in that
way inform the behaviour of the stochastic process. Stationarity may then be assumed during the
time that the sea remains in the same state.

A classical description of sea states is the Beaufort scale, which measures wind speeds and corre-
sponding sea states on a scale from 0 to 12, defining the states by wave heights (Service, 2024).
However, height is not the only measure of waves. The Sea State Code developed by the World
Meteorological Organization uses both the wave height and the length of the wave energy periods
to assign a state from 0 to 9 (Industry, 2023). Since wave height naturally varies throughout the
trajectory of the wave, a common measure is the significant wave height (Hs), defined as ”the av-
erage height of the highest one-third of the waves within a wave group or record, measured from
the trough to the crest” (Industry, 2023). The energy period (Te), on the other hand, is described
by Mollison (1994, p. 207) as ”the mean wave period with respect to the spectral distribution of
energy”. This thesis will use these two measures, significant wave height and wave energy period,
as state-defining parameters, but will use a greater number of states with cross-combinations of the
two. The combinations used will be taken from the sea states defined by European Marine Energy
Centre (2022a), describing the wave conditions at the Billia Croo test site on Orkney, a group of
islands to the north-east of Scotland.

To describe the conditional wave behaviour for a certain sea state, the significant wave height and the
wave period may be used as parameters of a wave spectral density S(f) or S(ω), for the frequency
f or angular frequency ω (ITTC, 2002, p. 512) and with ω = 2πf (Wave Generation and Analysis,
1989, p. 795). This spectral density may then be used to generate random waves through Fourier
sums. The spectrum also provides an alternate definition of the significant wave height to the one
given above, namely by estimating it as 4

√
m0 where m0 is the zeroth moment of the spectrum

(Wave Generation and Analysis, 1989, p. 800). A common formulation of the general-case spectral
density is

S(f) =
A

f5
exp(−B/f4) (2.6)

where A and B are constants (ITTC, 2002, p. 517). This is the form often used for the Bretschneider
spectrum, also known as the Generalized Pierson-Moskowitz spectrum, which may more specifically
be written as (Zeinali et al., forthcoming, p. 2, eq. 1)

S(ω) = m0
5

ωp

(
ω

ωp

)−5

e
− 5

4

(
ω
ωp

)−4

(2.7)

16



Chapter 2 – Theoretical background

where f = ω/ωp, A = m0
5
ωp

, B = 5/4 and ωp = 2π/Tp. ωp is the peak of the spectral density,

corresponding to the most dominant frequency of the sea state (Zeinali et al., forthcoming, p. 2).
Since the waves of the very highest frequencies oscillate so quickly that the mechanical system may
barely react to them, it may also be valid to use a truncated version of this spectrum which sets the
spectral density to zero above a certain threshold. Zeinali et al. (forthcoming, p. 2) set this cutoff
point to five times the spectral peak ωp, preserving 99.8% of the spectral energy. The density then
becomes (Zeinali et al., forthcoming, p. 2, eq. 1)

S(ω) =

m0
5
ωp

(
ω
ωp

)−5

e
− 5

4

(
ω
ωp

)−4

, 0 ≤ ω ≤ 5ωp

0, ω > 5ωp.

(2.8)

The moments of the GPM spectrum, as written by Zeinali et al. (forthcoming, p. 2, eq. 2), are

mn = ωn
pm0

(
5

4

)n/4

Γ

(
1− n

4

)
(2.9)

mtrunc
n = ωn

pm0

(
5

4

)n/4

Γ

(
1− n

4
, 500

)
(2.10)

for the standard and truncated spectrum, respectively. Γ(a) is the standard gamma function while
Γ(a, b) is the upper incomplete gamma function (Zeinali et al., forthcoming, p. 2-3).

When using the expression from (Zeinali et al., forthcoming, p. 3, eq. 3) for the energy period Te,
this gives

Te = 2π
m−1

m0
(2.11)

Te = 2π
ω−1
p m0(5/4)

−1/4Γ(5/4)

m0

=
2π

ωp
(4/5)1/4Γ(5/4)

(2.12)

Te =
2π

ωp
· 0.8572225

= 0.86Tp

(2.13)

where in the last equality we use that the peak period Tp = 2π/ωp (Zeinali et al., forthcoming, p. 3).

2.1.3 Pressure and energy content of waves

In general, water waves are not propagated on a line or in a space but on a surface. They are
therefore two-dimensional unlike, for example, guided electromagnetic waves along a cylinder (one-
dimensional) or acoustic waves in a fluid (three-dimensional) (Falnes and Kurniawan, 2020, p. 46).
Plane harmonic waves along the water surface have a dynamic pressure p = p(x, z, t) dependent on
the horizontal position along which the wave propagates (x), as well as the height z and the time t.
On a surface above deep water, this pressure has the complex amplitude

p̂ = p̂(x, z) = A(z)e−ikx +B(z)eikx (2.14)

(Falnes and Kurniawan, 2020, p. 48, eq. 3.5). The phase velocity of water waves, meaning the rate
of propagation of a single wave (Brillouin, 1960, p. 1), may be written as

νp ≡ ω

k
=
g

ω
=

√
g

k
(2.15)
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(Falnes and Kurniawan, 2020, p. 48, eq. 3.9) where g is the acceleration of gravity, k = 2π/λ is the
angular repetency and λ is the wavelength (Falnes and Kurniawan, 2020, p. 47-48). Superimposing
several waves gives a group velocity (Brillouin, 1960, p. 2) which is written as

νg =
dω

dk
= − ∂F/∂k

∂F/∂ω
(2.16)

with F (ω, k) = 0 being the dispersion relationship (Falnes and Kurniawan, 2020, p. 49, eq. 3.10).
On deep water, the group velocity becomes νg = g/(2ω) = νp/2 (Falnes and Kurniawan, 2020, p. 49,
eq. 3.12).

Having defined the velocity, we move on to the intensity of the wave, meaning the ”time-average
energy transport per unit time and per unit area in the direction of the wave propagation” (Falnes
and Kurniawan, 2020, p. 49). For harmonic waves, the intensity is

I = Ix = Ix(x, y, z) = pνx =
1

2
Re{p̂ν̂∗x} (2.17)

(Falnes and Kurniawan, 2020, p. 50, eq. 3.16) where p and νx are the dynamic pressure and the
x-directional component of the particle velocity. For deep water the intensity becomes Ix = I0e

2kz

with I0 being the intensity at the surface level, z = 0 (Falnes and Kurniawan, 2020, p. 50).

Finally, we have the wave-energy transport

J =

∫ 0

−∞
Ix(z)dz = I0

∫ 0

−∞
e2kz =

I0
2k

(2.18)

defined as the wave energy transported along a vertical strip parallel to the wave front, per unit
of time (Falnes and Kurniawan, 2020, p. 50, eq. 3.19). For a superposition of N random harmonic
waves, the energy transport becomes

J = ρg

N∑
m=1

1

2
|ηi(ωm)|2νg(ωm) = ρg

N∑
m=1

∆ωSω(ωm)νg(ωm)

= ρg

∫ ∞

0

Sω(ω)νg(ω)dω = ρg

∫ ∞

0

S(f)νg(f)df

(2.19)

where η is the wave elevation (Falnes and Kurniawan, 2020, p. 67, eq. 4.31). On deep water,

J =
ρg2

2

∫ ∞

0

Sω(ω)ω
−1dω =

ρg2

4π

∫ ∞

0

S(f)f−1df (2.20)

=
ρg2

64π
TeH

2
s . (2.21)

where Te is of course the wave energy period, here equivalently defined as

Te =
2π
∫∞
0
Sω(ω)ω

−1dω∫∞
0
Sω(ω)dω

=

∫∞
0
S(f)f−1df∫∞

0
S(f)df

(2.22)

(Falnes and Kurniawan, 2020, p. 90-91, eq. 4.186-190) and ρ above is the mass density of the fluid
(Falnes and Kurniawan, 2020, p. 62). Hs is, naturally, the significant wave height, here defined as

η2(x, y, t) =

∫ ∞

0

S(f)df =
H2

s

16
(2.23)

(Falnes and Kurniawan, 2020, p. 88, eq. 4.170), which agrees with our previous definition since∫∞
0
S(f)df = m0 is the zeroeth moment of the spectral density. The result in eq. (2.21) above is also
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used by Zeinali et al. (forthcoming, p. 3, eq. 5), derived in an alternate way through the negative
first moment of the GPM spectrum and eq. (2.11) for the energy period:

J =
ρg2

2

∫ ∞

0

ω−1Sω(ω)dω =
ρg2

2
m−1 (2.24)

=
ρg2

2

m0Te
2π

=
ρg2

2

(
Hs

4

)2
Te

2π
(2.25)

=
g2ρ

64π
TeH

2
s . (2.26)

The unit of J is W/m (Falnes and Kurniawan, 2020, p. 82, eq. 4.132). With all the above, the
energy content of a wave has been derived as a function of the gravity acceleration, the fluid’s mass
density, the wave energy period and the significant wave height. The first of these two parameters
are constant given the geographical location, while the latter two may vary between sea states.
However, all of this energy is not necessarily possible to absorb.

2.2 Wave-body interactions

Having discussed both the stochastic modelling and energy content of wind waves, we move on to
the interaction between these waves and an immersed body such as a WEC buoy.

In general, a body immersed in water may oscillate in six different modes. Three of these are
translational along a particular axis – surge (x), sway (y) and heave (z) – and three are rotational
around an axis – roll (x), pitch (y) and yaw (z) (Falnes and Kurniawan, 2020, p. 121-122). The

six-dimensional velocity vector u ≡ (u1u2u3u4u5u6) ≡ (Ux, Uy, Uz,Ωx,Ωy,Ωz) = (U⃗ , Ω⃗) (Falnes
and Kurniawan, 2020, p. 122, eq. 5.3) has components corresponding to these modes, and with a
corresponding normal vector n we may write the derivative of the wave’s velocity potential ϕ – or
its complex amplitude ϕ̂ – as

∂ϕ

∂n
= uTn (2.27)

∂ϕ̂

∂n
= ûTn (2.28)

on the wet body surface (Falnes and Kurniawan, 2020, p. 122-123, eq. 5.7-8). A body’s oscillation
generates a superposition of radiated waves in the six modes:

ϕ̂r =

6∑
j=1

φj ûj (2.29)

with φj as a complex proportionality coefficient which satisfies

∂φj

∂n
= nj (2.30)

(Falnes and Kurniawan, 2020, p. 123, eq. 5.9-10).

To define the force enacted upon a body by a wave, we define the force vector F ≡ (F1, F2, F3, F4, F5, F6) ≡
(Fx, Fy, Fz,Mx,My,Mz) = (F⃗ , M⃗) with the F components being translational force and theM com-
ponents rotational force (Falnes and Kurniawan, 2020, p. 125, eq. 5.20). These components and their
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complex amplitudes are

Fj = −
∫∫

S

pnjdS (2.31)

F̂j = iωρ

∫∫
S

ϕ̂njdS (2.32)

(Falnes and Kurniawan, 2020, p. 125, eq. 5.21-22) and give us the power received by the oscillating
body:

P (t) = F⃗ (t) · U⃗(t) + M⃗(t) · Ω⃗(t) =
6∑

j=1

Fjuj (2.33)

(Falnes and Kurniawan, 2020, p. 126, eq. 5.24). If the body doesn’t oscillate on its own and the

velocity potential ϕ̂ is therefore only the result of an incident wave, the force vector F is equal to
the excitation force vector Fe = (F⃗e, M⃗e) (Falnes and Kurniawan, 2020, p. 126, eq. 5.25), where

F̂e,j = iωρ

∫∫
S

(ϕ̂0 + ϕ̂d)njdS, (2.34)

ϕ̂0 is the undisturbed incident wave and ϕ̂d the diffracted wave (Falnes and Kurniawan, 2020, p. 126,
eq. 5.26).

If the body oscillates, however, specifically in the heave mode, two more forces act upon it: the
radiation force Fr and Fb and the hydrostatic buoyancy force Fb. Besides this, there may also be
a viscous force Fv, a control or load force Fu and a friction force Ff (Falnes and Kurniawan, 2020,
p. 189-190). In linear theory, the buoyancy force is assumed to be proportional to the displacement
of the body from its equilibrium position so that

Fb = −Sbs (2.35)

where the buoyancy stiffness matrix Sb is made up of proportionality constants (Falnes and Kurni-
awan, 2020, p. 189-190, eq. 5.337). In a similar way, the friction and viscosity forces are assumed to
be proportional to the differentiated displacement,

Ff = −Sfu = −Sf
ds

dt
(2.36)

Fν = −Sνu = −Sν
ds

dt
(2.37)

(Falnes and Kurniawan, 2020, p. 190, eq. 340).

Considering only the heave motion, the matrices and vectors above become scalars, and the heave-
mode buoyancy stiffness for small displacement is

Sb = ρgSw (2.38)

where Sw is the area of the submerged body at the point where it crosses the water surface (in
equilibirum) (Falnes and Kurniawan, 2020, p. 190).

2.3 Oscillating Water Column type WEC:s

Wave Energy Converters often involve some kind of oscillating body in water, but over the years
many different specific types of WEC’s have been conceptualized. One of the most efficient is the
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Oscillating Water Column WEC (OWC), originally envisioned by Yoshio Masuda in the 1940’s
(Alves, 2016, p. 28). Physically, the classical version of this device is built around a chamber which
contains both water and air, the water flowing into the WEC directly from the surrounding sea and
the air connected to the outside air through a turbine. As the water level rises and falls, the air
pressure in the chamber changes, which then causes air to flow either in or out, passing the turbine
which transfers energy to a generator (Alves, 2016, p. 27-28).

If we let ϕ be the velocity potential of the wave after meeting with the WEC. This velocity potential
can be decomposed as

ϕ = ϕ0 + ϕd + ϕr (2.39)

where the terms represent the velocity potentials from the incident wave (ϕ0), the diffracted wave
(ϕd) and the radiated wave (ϕr) (Falnes and Kurniawan, 2020, p. 243, eq. 7.7). Correspondingly,
the volume flow of the water surface oscillating within the WEC may be written and decomposed
as

Qt,k =

∫∫
Sk

νzdS =

∫∫
Sk

∂ϕ

∂z
dS

= Qe,k +Qr,k

(2.40)

Qe,k =

∫∫
Sk

∂

∂z
(ϕ0 + ϕd)dS (2.41)

Qr,k =

∫∫
Sk

∂ϕr
∂z

dS (2.42)

where the two terms Qe,k and Qr,k represent excitation and radiation volume flow, and νz = ∂ϕ
∂z is

the velocity (Falnes and Kurniawan, 2020, p. 244, eq. 7.15-18).

We now get to the absorbed power of the OWC type WEC. This may be written as the difference
between excitation and radiated power (Falnes and Kurniawan, 2020, p. 245-246, eq. 7.25-27):

P = Pe − Pr (2.43)

Pe =
1

2
Re{p̂kQ̂∗

e,k} =
1

2
Re{p̂kq∗e,kA∗} (2.44)

Pr =
1

2
Gkk|p̂k|2 (2.45)

where Gkk = Re{Ykk} = 1
2 (Ykk + Y ∗

kk) is the radiation conductance (Falnes and Kurniawan, 2020,
p. 245, eq. 7.22), pk is the air pressure fluctuation (Falnes and Kurniawan, 2020, p. 243), * signifies
complex conjugate (Falnes and Kurniawan, 2020, p. 13) and A is ”the complex amplitude of the
incident wave’s elevation at the origin” (Falnes and Kurniawan, 2020, p. 208).

2.4 Hydraulic power take off

After the power of the wave has been absorbed into the WEC, it needs to somehow be converted into
electrical energy through a power take off (PTO) system. The ”most suitable device for generating
useable electricity from wave energy” (Ahamed, McKee, and Howard, 2020, p. 3) is the hydraulic
motor-based system. This system typically works through a hydraulic cylinder which is set in motion
by the waves, and in turn changes the pressure in a working medium such as hydraulic oil. This
hydraulic motor can take both translational and rotational energy as input, and in turn drives a
generator which outputs electrical energy (Ahamed, McKee, and Howard, 2020, p. 3).
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The pressure in the hydraulic system is the pressure in its accumulator tank, which may prevent
energy output either if it’s too high (in which case the pressure may counteract and cancel out the
force of the incident wave) or if it’s too low (which may lead to a very low PTO force) (Babarit,
Guglielmi, and Clément, 2009, p. 1015). Given a certain wave input, there should be a causal
relation between the hydraulic pressure and the rotation speed of the connected generator, since the
wave input will determine the medium flow into the accumulator tank while the rotation speed will
determine the flow out of it. Since this thesis aims to optimize the generator speed, the hydraulic
pressure will not be controlled but simply be allowed to fluctuate as the wave input varies but
the rotation speed remains constant. Optimization of the hydraulic pressure has been studied in
detail by Zeinali et al. (forthcoming), and the optimal values found there inform the design of the
accumulator tank (Zeinali et al., forthcoming, p. 2).

The hydraulic energy converted to electrical energy through the generator is measured in kW,
meaning that in order to compare it with the energy potential J from eq. (2.26), we must multiply
J both by 10−3 (to convert from W/h to kW/h) and by the diameter of the WEC at the water
surface level.

2.5 Monte Carlo integration

With the theory above, it becomes feasible to both generate random waves as stationary stochastic
processes and to convert the resulting wave oscillations to electrical energy through transformations
in a simulated WEC. It should also be possible to calculate expected values for, for instance, the wave
amplitude explicitly given a particular sea state. However, the expected electrical output would, due
to the very complex low-pass filtering transformation in the WEC simulator, be all but impossible
to calculate analytically. It is for this reason the thesis will instead use Monte Carlo methods, or
more specifically Monte Carlo integration, the history of which was presented in section 1.2.2.

The basic premise of Monte Carlo is ”the statistical estimation of the value of an integral using
evaluations of an integrand at a set of points drawn randomly from a distribution with support
over the range of integration” (Givens and Hoeting, 2013, p. 151). This is relevant to our problem
since the expected value or variance of any continuous random variable (such as the electrical energy
output of a WEC) may be defined as an integral (Gut, 2009, p. 7, eq. 5.1).

If we let X be a continuous random variable of arbitrary dimension, and define Y = h(X) as a
deterministic function of X, we may then express the expectation of Y as

µY = E[Y ] = E[h(X)] =

∫
h(x)f(x)dx (2.46)

where f(x) is the probability density function of X. Monte Carlo integration is required when h(X)
is such that this integral is not analytically solvable, at least not practically solvable due to the
extreme complexity. This method generally uses the distribution of X to generate N independent
random samples Xi, which are then entered into the function h. The sample mean µ̂MC is then
used as an estimate for µ. Basic probability theory gives the expected value and variance of µ̂MC :

E[µ̂MC ] = E
[ 1
N

N∑
i=1

h(Xi)
]
=

1

N

N∑
i=1

E[h(Xi)] =
1

N
NE[h(X)] = µ (2.47)

V[µ̂MC ] = V
[ 1
N

N∑
i=1

h(Xi)
]
=

1

N2

N∑
i=1

V[h(Xi)] =
N

N2
V[h(X)] =

1

N
V[h(X)] (2.48)

where in the variance calculation we use that the samples are independent and identically distributed.
What the calculations above show is that on average, µ̂MC will estimate µ correctly – it is an unbiased
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estimator – and its variance will decrease linearly as the sample size N increases. In other words,
the estimator is consistent.

While we know that the variance of this estimate will decrease with N , the actual value of the
variance V[h(X)] = σ2 is unknown to us. A possible estimator of this variance would be the sample
variance

σ̂2
MC =

1

N − 1

N∑
i=1

(h(Xi)− µ̂MC)
2 =

1

N − 1

( N∑
i=1

h2(Xi)−
1

N

( N∑
i=1

h(Xi)
)2)

(2.49)

which is an unbiased estimator of σ2 (Blom et al., 2017, p. 251, thm. 11.2). Furthermore, the
central limit theorem gives that the estimator µ̂MC will converge (in the distribution sense) to a
Gaussian distribution N (µ, σ2/N) and therefore the transformation µ̂MC−µ

σ/
√
N

converges to a standard

Gaussian distribution (Gut, 2009, p. 162-164). This means that we could, given a large enough
sample size, construct a confidence interval of degree 1 − α using the quantiles ϕ of the standard
Gaussian distribution:

CIµ = (CIlower, CIupper)

=

((
µ̂MC + ϕα/2

√
σ̂2
MC

N

)
,
(
µ̂MC + ϕ1−α/2

√
σ̂2
MC

N

)) (2.50)

where P(Z > ϕα/2) = α/2 (Z being standard Gaussian) (Blom et al., 2017, p. 397) and P(CIlower <
µ < CIupper) = 1− α (Blom et al., 2017, p. 288).

Besides being used to make an approximate confidence interval for the mean estimate, σ̂2
MC being an

unbiased estimator of σ2 = V[h(X)] means that we may use it as a point estimate if the variance itself
is the parameter of interest. If the variable h(X) is assumed to be Gaussian (not just approximately
as N increases), then we know the distribution of σ̂2

MC to be χ2(N − 1), which may then be used to

construct an asymmetric confidence interval for σ =
√
σ2 (Blom et al., 2017, p. 296). This interval

is written (Blom et al., 2017, p. 297)

CIσ =
(
k1

√
σ̂2
MC , k2

√
σ̂2
MC

)
k1 =

√
f/χ2

α/2(f)

k2 =
√
f/χ2

1−α/2(f)

(2.51)

where f = N − 1 are the degrees of freedom. Squaring, we get the corresponding confidence interval
for the variance:

CIσ2 =
(
k1σ̂

2
MC , k2σ̂

2
MC

)
k1 = f/χ2

α/2(f)

k2 = f/χ2
1−α/2(f).

(2.52)

which agrees with the results in (Blom et al., 2017, p. 296). In both these intervals, we have that
k1 > k2 since the χ2 quantile is in the denominator, and therefore we have that k1 gives the upper
interval limit when multiplied with either σ̂MC or σ̂2

MC , and k2 gives the lower.

If h(X) is not Gaussian, one may use a version of the central limit theorem for the sample vari-
ance which is proven by Hannig (2008, p. 44, thm. 5.3.2). The statement is that the asymptotic
distribution of the sample variance s2 is Gaussian as the sample size N goes to infinity,

s2
asymp.∼ N (σ2, σ4(κ− 1)/N), (2.53)
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where κ = µ4/σ
4 and µ4 is the centralized fourth moment of h(X), i.e.

µ4 = E
[
(h(X)− µ)4

]
. (2.54)

This agrees with the fact that even for a Gaussian random variable X which has χ2-distributed
sample variance, since the sample variance is a random variable the mean of multiple such variables
should be asymptotically Gaussian as the sample size increases, in accordance with the general cen-
tral limit theorem. For a large enough sample, we should therefore be able to construct confidence
intervals for the variance estimate σ̂2

MC using either the Gaussian or Chi-square distribution, de-
pending on which distribution the observed variances seem to agree best with. For a sample which
is not small enough, however, neither type of confidence interval may be applicable.

It is possible, given a sample from a random variable, to test an empirical distribution’s adherence
to a normal distribution. Razali and Wah (2011) investigate the power of four different formal tests
of normality through Monte Carlo simulation. They find that the Shapiro-Wilk test performs better
than the others (Kolmogorov-Smirnov, Anderson-Darling and Lilliefors tests), reaching power 1 (for
significance level α = 5%) at 200-300 observations when the true distribution is asymmetrical, and
power 0.9937 for 1000 observations when the true distribution is Student’s t with seven degrees of
freedom (Razali and Wah, 2011, p. 28-30).

The Shapiro-Wilk test uses the test statistic

W =

(∑N
i=1 aiyi

)2∑N
i=1(yi − ȳ)2

=
b2

S2
(2.55)

where yi are the ordered random observations (order statistics) and a′ = (a1, . . . , aN ) = m′V −1

(m′V −1V −1m)1/2
,

m′ being the vector of expected values for the N order statistics and V being their covariance matrix.
If the sample is from a normal distribution, b2 and S2 are both estimates of the variance σ2, whereas
for non-normal distributions they estimate different things (Shapiro and Wilk, 1965, p. 592-593).
The statistic has a value between zero and one, and the null hypothesis of normality is rejected for
small values (Razali and Wah, 2011, p. 25).

2.5.1 Ergodicity

When estimating a measure of a stochastic process, such as the mean, one option is to simulate
multiple iterations of the process, calculate the sample mean of each one and use the average of
averages as an estimator for the true mean of the process. Since each iteration of the process
should unconditionally have an equal expected trajectory, this would lead to an unbiased estimate
(provided that each process is itself unbiased) and increasing the number of iterations would increase
the estimate’s accuracy – thereby making the estimator consistent. Corresponding approaches should
also be valid for other measures such as the covariance structure of the process, though there is no
guarantee that one can find a consistent estimator for every conceivable measure.

Under certain conditions it would also be an option to replace the multiple iterations with a single
iteration of much greater length. The mean of this process is an unbiased estimator of the mean,
but might not increase in accuracy as the length of the process increases.

If for a stochastic variable X the expected value, here called the ensemble average, is defined as

µ = E[X] (2.56)

then the law of large numbers tells us that as long as X has finite expectation, the average of N
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independent samples of X will converge (in probability) to µ as the sample size increases,

µ̂N =
1

N

N∑
i=1

xi
P→ µ, as N → ∞ (2.57)

(G. Lindgren, Rootzén, and Sandsten, 2014, p. 47, eq. 2.15; Gut, 2009, p. 149, ex. 1.3). If this
is expanded to an entire stochastic process X(t) sampled N times, then the expected value of the
process at each time t may be estimated by the mean of the N processes’ values at that time, that
is,

µ̂N (t) =
1

N

N∑
i=1

xi(t)
P→ µ(t), when N → ∞ (2.58)

and if the process is stationary then the means are equally µ(1) = µ(2) = · · · = µ(t) = · · · = µ (G.
Lindgren, Rootzén, and Sandsten, 2014, p. 48). This means that an arbitrary observation at any
time t, or an average of N such observations at identical or different points in time, is an unbiased
estimator of µ since

E
[ 1
N

(
x(t1) + · · ·+ x(tN )

)]
=

1

N

(
E[x(t1)] + · · ·+ E[x(tN )]

)
=

1

N
(µ+ · · ·+ µ) =

1

N
·N · µ = µ

(2.59)

and if all observations used are also from pairwise independent realisations of the stochastic process
(but from arbitrary times t for each observation) then the average will also be more accurate for
larger N and therefore a consistent estimator.

However, if the observations are taken from the same realisation of the stochastic process then their
mean

µ̂T =
1

T

T∑
t=1

x(t) (2.60)

is not sure to be a consistent estimator. If it is, however, the process is said to be ergodic, specifically
linearly ergodic (G. Lindgren, Rootzén, and Sandsten, 2014, p. 48). The definition may be expanded
to second-order ergodicity if the process’s covariance function r(τ) = E[(X(t) − µ)(X(t + τ) − µ)]
may also be estimated analogously, and complete ergodicity if this type of consistent estimation from
a single realisation is possible for the expected value of any arbitrary function g(Xt1 , . . . , Xtp) (G.
Lindgren, Rootzén, and Sandsten, 2014, p. 53). An intuitive explanation of the concept is that all
possible outcomes of a process will eventually occur, with the respective probabilities the outcomes
would have for independent realisations, as the length of the single realisation approaches infinity
(G. Lindgren, Rootzén, and Sandsten, 2014, p. 48).

For a stationary stochastic process, G. Lindgren (2013, p. 67, cor. 2.2) states that the time-mean will
converge in quadratic mean to the stationary mean of the process if the average covariance function
over lags τ goes towards zero with increased process lengths. Mathematically,

1

T

∫ T

0

r(τ)dτ → 0, as T → ∞ (2.61)

implies

1

T

∫ T

0

x(t)dt
q.m.→ µ. (2.62)

Lindgren states this only for µ = 0, but adding a constant to an entire process should not have any
effect on its ergodicity.
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2.6 Regression

2.6.1 Linear regression

Regression analysis is described by Olive (2017, p. 17, def. 2.2) as ”the study of the conditional
distribution Y |x of the response variable Y given the p× 1 vector of predictors x = (x1, . . . , xp)

T ”.
A response variable Y is assumed to be a function of p predictor variables X1, X2, . . . , Xp, in the
case of (multiple) linear regression simply as a linear combination,

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ϵ = Xβ + ϵ (2.63)

where the coefficients β are fixed but unknown and ϵ is a random error (Olive, 2017, p. 18). We
choose to redefine this slightly so that the intercept β0 corresponding to X0 = 1 is included in the
p parameters, and thus the vector of p coefficients is β = [β0, β1, . . . , βp−1].

If the values of the predictor variables and the coefficients are known, the conditional expected value
of the response variable may be calculated as

Ŷ |X1 = x1, . . . , Xp−1 = xp−1 = E[Y |X1 = x1, . . . , Xp−1 = xp−1] = β0 + β1x1 + · · ·+ βp−1xp−1

(2.64)

since the errors are assumed to have expected value zero (Olive, 2017, p. 18). In the constant variance
multiple linear regression model, other central assumptions are that when multiple observations are
made, the conditional variances of the error (and therefore of the observed Y values) are equal,
their conditional covariances are pairwise zero and they are independent of the predictor variables
X (Olive, 2017, p. 18). Further assumptions may also be made, such as that the errors are from a
unimodal distribution without strong skewness, or even that the errors are i.i.d. Gaussian N (0, σ2)
(Olive, 2017, p. 19).

It is well known that the least squares estimate of the matrix β is

β̂ = (X′X)−1X′y (2.65)

and that predicted y values are then expressed as

ŷ = Xβ̂ = X(X′X)−1X′y (2.66)

(Sheather, 2009, p. 132). The relation between the observed values y and the predicted values ŷ is
called the hat matrix, H:

ŷ = Xβ̂ = X(X′X)−1X′y

= Hy
(2.67)

H = Xβ̂ = X(X′X)−1X′ (2.68)

(Olive, 2017, p. 19).

Using the previous assumptions on the variance and covariance of the residuals, their covariance
matrix may be written as σ2I, where I is the n-by-n-dimensional identity matrix (Sheather, 2009,
p. 134). If this is the case, and if also the residuals are Gaussian, it is easy to construct confidence
intervals for the β estimates as well as prediction intervals for unobserved values of y.

The β estimator above has the following expected value and variance:

E[β̂] = β (2.69)

V[β̂] = σ2(X′X)−1 (2.70)
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where the error variance σ2 may be estimated as

MSE = s2e =
SSE

N − p
=

1

N − p

N∑
i=1

e2i (2.71)

(Sheather, 2009, p. 135). If the model assumptions are fulfilled, one may then construct confidence
intervals for the coefficients:

CIβj = [β̂j + tN−p(α/2) · se(β̂j), β̂j + tN−p(1− α/2) · se(β̂j)] (2.72)

where tN−p(a) is the a:th quantile of the Student’s t distribution with N −p degrees of freedom and

standard error se(β̂j) is the j:th diagonal element of s2e(X
′X)−1. This confidence interval follows

from the fact that

Tj =
β̂j − βj

se(β̂j)
∼ tN−p (2.73)

(Sheather, 2009, p. 135) which may then also be used to test whether a particular coefficient is
significantly different from zero by comparing Tj to relevant t distribution quantiles. Other tests
such as full or partial F tests may be carried out using the regression, residual and total sums of
squares,

SSR =

N∑
i=1

(Ŷi − Ȳ )2

SSE =

N∑
i=1

(Yi − Ŷi)
2

SST =

N∑
i=1

(Yi − Ȳ )2 = SSR+ SSE

(2.74)

to check whether the model as a whole is significant or whether one model is significantly better
than another (Olive, 2017, p. 29-30 and 45-46)(Sheather, 2009, p. 136). From these sums of squares
we may derive the coefficient of determination R2, which is between 0 and 1 (Olive, 2017, p. 31,
def. 2.15). This coefficient may be interpreted as the proportion of the variation in Y which is
explained by the regression model, but Olive (2017, p. 31) points out, among other warnings, that
the coefficient is not meaningful unless the residual diagnostics look good and that small N generally
lead to overestimation of R2.

It is also important to note that generally, R2 increases as more predictors are added to the model,
even if the contribution of the added predictors is very small and they are functionally irrelevant. In
the interest of not having the model be unnecessarily complex, one may replace R2 by an adjusted
version, which is defined in (Sheather, 2009, p. 137) as

R2
adj = 1− SSE/(N − p)

SST/(N − 1)
(2.75)

and is more appropriate to use in comparisons between models with different numbers of parameters.

2.6.2 Residual diagnostics

It is necessary to investigate whether the model assumptions are fulfilled by the data set before
drawing conclusions based on any of the model’s associated tests. For instance, Olive (2017, p. 21,
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rem. 2.1) stresses the importance of making scatterplots of the predicted values ŷ against the ob-
served values y as well as against the residuals e. The observed values should be scattered randomly
above and below the fitted identity line with no clear patterns or large outliers and the residuals
should show the same kind of behaviour around zero. These plots could show non-linear patterns
in the data, differing residual variance for different levels of ŷ (heteroscedasticity) or large outliers
(Olive, 2017, p. 22-24), which all in some way imply violations of the model assumptions. One may
also check the Gaussianity of the residuals through a normal probability plot which compares the
ordered residuals to the expected values of order statistics from a normal distribution (Olive, 2017,
p. 29). Since an important assumption is that the errors are also uncorrelated with the predictor
variables, the residuals should also be plotted against these.

The residuals used in these plots could be the crude residuals e = ŷ − y, but it is generally more
informative to use either the standardized residuals,

ei,std =
ei√
s2e

(2.76)

or the (internally) studentized residuals (Olive, 2017, p. 130),

ei,stud =
ei√

s2e(1− hii)
, (2.77)

where s2e is the estimated variance of the residuals (as per eq. (2.71)) and hii is the i:th diagonal
element of the hat matrix H (as per eq. (2.68)). Both types of transformations divide the crude
residuals by an estimate of their standard error, where the studentized residual uses a more accurate
estimate since the covariance matrix of the residual vector is

V[e] = V[y− ŷ] = V[y−Hy]

= V[y] +H′HV[y]− 2HV[y] = V[y](I− 2H+H′H)

= V[y](I−H) = σ2(I−H)

(2.78)

which follows from the fact that

H′H =
(
X(X′X)−1X′)′X(X′X)−1X′

= X(X′X)−1X′X(X′X)−1X′

= X(X′X)−1X′ = H.

(2.79)

This covariance matrix has the i:th diagonal element

V[ei] = σ2(1− hii) (2.80)

which is the denominator used, with σ̂2 =MSE, in the expression for the studentized residuals.

Another potential problem which may be discovered upon residual analysis is that the (studentized)
residuals ei,stud are not entirely Gaussian. Since the tests mentioned above for the significance of
the β coefficients – individually (t test), all together (F test) or a subset (partial F test) – are
based on probability distributions derived from the normal distribution (Soch, 2024a; Soch, 2024b),
the tests’ validity depends on the Gaussianity of the errors ϵi. non-Gaussian residuals imply non-
Gaussian random errors and therefore invalidate the tests. Other diagnostics such as the coefficient
of determination and its adjusted variant should still be useful, howeve, as long as the other model
assumptions are fulfilled.

2.6.3 Handling violations of the model assumptions

If all investigations of the residuals show good agreement with the model assumptions, no further
adjustments are needed and the regression model’s associated tests, coefficient of determination,
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and predictions are valid. If the assumptions are violated, however, there are different strategies
available for handling these violations.

When there are clear signs of heteroscedasticity in the residuals, meaning that different predictor
values lead to different variation in the response variable, Sheather (2009, p. 71) suggests either
transformations or the weighted least squares method for handling this problem. The transformation
method applies a transformation g to the predictors, the response variable, or both. The regression
model is then one of the following:

g(y) = βX+ e (2.81)

y = β × g(X) + e (2.82)

g(y) = β × g(X) + e (2.83)

with two possible transformations being the square root and the logarithm (Sheather, 2009, p. 77-79).
Transformations may also be useful to handle non-linearity in the relation between the predictors
and the response variable (Sheather, 2009, p. 83).

Weighted least squares regression is another option for handling heteroscedasticity. Here, we modify
the model assumptions so that the errors ϵi are still pairwise independent and zero-mean, but have
differing variances σ2

i = σ2/wi (Sheather, 2009, p. 115). This then also means that wi = σ2/σ2
i , or

1/σ2
i if we assume the ”standard” variance to be unit. The corresponding β coefficients are then

found by minimizing the weighted sum of squares:

WSSE =

N∑
i=1

wi(yi − ŷi,w)
2 =

N∑
i=1

wi(yi − β0 − β1x1,i − · · · − βpxp,i)
2 (2.84)

(Sheather, 2009, p. 115). In matrix form, this becomes

WSSE = (y− ŷw)
′(y− ŷw)

= (y− βX)′W(y− βX)
(2.85)

where W is an N-by-N matrix with the weights wi on the diagonal and zeros everywhere else. The
solution β̂ that minimizes this sum of squares is

β̂WLS = (X′WX)−1X′Wy (2.86)

(Olive, 2017, p. 165, def. 4.8). However, Olive (2017, p. 165) also states that this approach requires
the weights to be fully known, and suggests the feasible weighted least squares (FWLS) method
as an approach if the weights are unknown, replacing the wi in the weight matrix by estimates
ŵi = wi(θ̂), θ being some unknown vector of parameters on which the weight estimates are based.
Regardless, the estimated response values are

ŷWLS = Xβ̂WLS (2.87)

ŷFWLS = Xβ̂FWLS (2.88)

(Olive, 2017, p. 165). This means that we may also define a WLS hat matrix,

HWLS = X(X′WX)−1X′W (2.89)

which may be used to studentize the residuals resulting from a WLS or FWLS fit. However, in this
context standardization should not be done by dividing the residuals by their common variance,
since this is not assumed to be equal. Instead, we standardize and studentize as follows:

ei,std =
ei√
s2e,i

(2.90)

ei,stud =
ei√

s2e,i(1− hii)
, (2.91)
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where s2e,i is the estimated variance for that particular observation. If the weights are defined as

wi = 1/s2e,i, this may also be written as

ei,std = ei
√
wi (2.92)

ei,stud =
ei
√
wi√

1− hii
. (2.93)

2.6.4 Logistic regression

Linear regression is fit for modelling continuous numerical variables, but if one wishes to model the
outcome of a categorical variable it is more reasonable to use logistic regression. In its most common
form, logistic regression is binary and used to find a classification rule for two categories (Hosmer,
Lemeshow, and Sturdivant, 2013, p. 1). One may also use multinomial logistic regression when there
are more than two categories (Hosmer, Lemeshow, and Sturdivant, 2013, p. 269), and ordinal logistic
regression when the multiple categories have a distinct order (Hosmer, Lemeshow, and Sturdivant,
2013, p. 289).

Logistic regression, like its linear counterpart, uses the linear combination of several predictor vari-
ables Xj , each associated with a coefficient βj . However, this linear combination is not the predicted
value of the response variable Y , but rather a log-odds transformation of the predicted probability
of Y taking a certain value. For the binary logistic model with outcomes 0 and 1, the equation is
(Hosmer, Lemeshow, and Sturdivant, 2013, p. 35, eq. 2.1)

log
( P(Yi = 1|xi)

1− P(Yi = 1|xi)

)
= xiβ (2.94)

or equivalently (Hosmer, Lemeshow, and Sturdivant, 2013, p. 35, eq. 2.2),

P(Yi = 1|xi) =
exiβ

1 + exiβ
. (2.95)

In the ordinal logistic model, specifically the continuation-ratio logistic model, the β coefficients
associated with a predictor are the same for each response category, but the intercept terms ζ are
different. For q response categories and p− 1 non-intercept predictors, we have

log
P̂(Yi = 1)

P̂(Yi > 1)
= ζ1 − β1x1,i − · · · − βp−1xp−1,i = ζ1 − xiβ

log
P̂(Yi ≤ 2)

P̂(Yi > 2)
= ζ2 − xiβ

. . .

log
P̂(Yi ≤ q − 1)

P̂(Yi = q)
= ζq−1 − xiβ

(2.96)

which requires special software to solve (Hosmer, Lemeshow, and Sturdivant, 2013, p. 291). After
fitting the ζ and β values, we may use the equations above to recursively find the predicted proba-
bilities for outcomes k = 1, . . . , q. We rewrite the probabilities in the numerator and denominator
and take the exponential function of both sides of the equation to get

P̂(Yi ≤ k − 1)

P̂(Yi > k − 1)
=

1−
∑q

j=k P̂(Yi = j)∑q
j=k P̂(Yi = j)

= exp(ζ̂k−1 − xiβ), (2.97)
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which may then be rewritten as

q∑
j=k

P̂(Yi = j) =
1

1 + exp(ζ̂k−1 − xiβ)

P̂(Yi = k) =
1

1 + exp(ζ̂k−1 − xiβ)
−

q∑
j=k+1

P̂(Yi = j),

(2.98)

meaning that we first calculate the predicted probability of the highest category q and then continue
downwards, eventually calculating the predicted probabilities of the lowest categories by subtracting
the other categories’ probabilities from 1 (A. Lindgren, 2023, p. 8).

The general assumption in logistic regression is not that the true value of Yi is equal to the linear
combination xiβ plus a Gaussian random error ϵi, but rather that the categorical outcome of Yi
is binomially or multinomially distributed with probabilities P(Yi = k) depending on the predictor
values for observation i (Hosmer, Lemeshow, and Sturdivant, 2013, p. 7). For this reason, the
same diagnostics are not valid, but one may instead define a confusion matrix which compares the
frequencies at which each category is observed (on one axis) and predicted (on the other) (Ting,
2010). This gives an idea of the precision of the model at predicting particular outcomes, which is
calculated as the number of correctly predicted instances of an outcome divided by the total number
of predicted instances of that outcome, as well as its overall accuracy, meaning the overall ratio of
correct predictions (Jayaswal, 2020).

In the case of a binary logistic regression, a common visualization tool is the ROC-curve (receiver
operating characteristic), which plots the true positive rate (precision for one of the categories)
against the false positive rate (one minus the precision for the other category) and investigates how
they change when one adjusts the decision threshold for how high the estimated probability for one
category must be in order for that category to be predicted (Sahngun Nahm, 2021, p. 25-26).
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Methodology

In order to estimate the target values of the project, two main operations need to be performed.
Firstly, a great number of random wave data needs to be simulated for each wave state. Secondly,
this wave data needs to be entered as input into a model which simulates the conversion process of
wave heights to electrical energy.

3.1 Wave generation

The wave generation is done through the WAFO (Wave Analysis for Fatigue and Oceanography)
toolbox in Matlab, created by Brodtkorb et al. (2000) and freely available online (WAFO-group,
2017).

We generate the waves from 78 different sea states, a subsample of the 215 wave states defined by
the European Marine Energy Centre in (European Marine Energy Centre, 2022a). The subsample
is the same one used by Zeinali et al. (forthcoming, p. 13, table 2), and covers 92.43% of the state
occurrences measured at Billia Croo, Orkney, Scotland. These states, defined by their significant
wave heights (Hs or Hs) and energy periods (Te or Te), are presented in table 3.1. The full data
set includes sea states with significant wave heights between 0.25 and 7.25 m, and energy periods
between 2.5 and 17.5 s (European Marine Energy Centre, 2022a).

For each of these states, the first step is to calculate the spectral density of the waves. We will use a
Bretschneider or Generalized Pierson-Moskowitz spectrum, truncated so that the frequencies above
5ωp are set to zero. In accordance with results already presented in section 2.1.2, this gives the
spectral density (Zeinali et al., forthcoming, p. 2, eq. 1)

S(ω) =

m0
5
ωp

(
ω
ωp

)−5

e
− 5

4

(
ω
ωp

)−4

, 0 ≤ ω ≤ 5ωp

0, ω > 5ωp

(3.1)

and the spectral moments (Zeinali et al., forthcoming, p. 2, eq. 2)

mtrunc
n = ωn

pm0

(
5

4

)n/4

Γ

(
1− n

4
,

1

500

)
. (3.2)

In order to calculate the spectral density for each wave state, we need to find how the significant
wave height and energy period values in table 3.1 translate to the parameters m0 and ωp in the
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Hs(m)/Te(s) 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 Sum
6.75 0.11 0.11
6.25 0.11 0.23 0.16 0.50
5.75 0.24 0.36 0.16 0.76
5.25 0.17 0.43 0.41 0.24 1.25
4.75 0.35 0.72 0.58 0.30 0.14 2.09
4.25 0.14 0.71 0.95 0.68 0.37 0.17 3.02
3.75 0.43 1.27 1.24 0.80 0.42 0.20 4.36
3.25 0.13 0.96 1.73 1.67 1.10 0.61 0.27 0.12 6.59
2.75 0.52 1.75 2.35 1.96 1.21 0.62 0.30 0.14 8.85
2.25 0.16 1.43 2.62 3.10 2.57 1.43 0.76 0.36 0.15 12.58
1.75 0.81 2.48 3.18 3.27 2.43 1.53 0.81 0.37 0.15 15.03
1.25 2.18 3.97 4.71 4.06 2.65 1.43 0.61 0.24 0.10 19.95
0.75 3.16 4.65 4.49 2.77 1.40 0.64 0.23 17.34
Sum 6.31 13.18 18.28 19.78 16.37 10.51 5.29 2.05 0.66 92.43

Table 3.1: 78 of the 215 wave states defined by European Marine Energy Centre (2022a) with wave
heights (Hs) in meters and energy periods (Te) in seconds. The sampled wave states are those used
by Zeinali et al. (forthcoming) and have been filled in with their relative frequencies of occurrence
(%).

density expressions above. We may first use the relation between spectral moments and the energy
period Te (mentioned in eq. (2.11)),

Te = 2π
m−1

m0
(3.3)

which when using the truncated spectrum becomes

Te = 2π
ω−1
p m0(5/4)

−1/4Γ(5/4, 1/500)

m0Γ(1, 1/500)

=
2π

ωp
(4/5)1/4

Γ(5/4, 1/500)

Γ(1, 1/500)

=
2π

ωp
· 0.8586184

= 0.86
2π

ωp
.

(3.4)

This differs only slightly from the energy period of the untruncated spectrum in eq. (2.13). From
this expression we may easily calculate that

ωp =
0.86 · 2π
Te

=
5.395859

Te
(3.5)

and similarly, since we know that the significant wave height is defined as Hs = 4
√
m0,

m0 =
H2

s

4
(3.6)

and have thus calculated both the parameters necessary for the spectral density from the two defining
wave state parameters. We may now visualize the spectral density in fig. 3.1 for the most common
sea state, with Hs = 1.25 meters and Te = 7.5 seconds.

The next step is to use the resulting spectral density to generate the time series of a wave. In
accordance with Zeinali et al. (forthcoming, p. 4, eq. 8), we will simulate a linear Gaussian time-
series Zt (representing the height of the sea surface without the buoy interaction) as a Fourier series
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Figure 3.1: The spectral density of the truncated Bretschneider spectrum, following eq. (3.1) with
m0 = H2

s /4 = 1.252/4 ≈ 0.39 and ωp ≈ 5.396/Te = 5.396/7.5 ≈ 0.72.

(see section 2.1.1)

Zt =

N−1∑
i=0

√
S(ωi)∆ωRi cos(ωit+ θi) (3.7)

where S(ωi) is the truncated spectral density, ∆ω = 2π
N−1 is the frequency step size, ωi = i∆ω, θi

are independent uniform random phases on the interval (0, 2π) and Ri are independent Rayleigh
distributed random amplitudes.

In sine-cosine form, the Fourier series may be expressed as

Zt =

N−1∑
i=0

√
S(ωi)∆ω

(
Xi cos(ωit) + Yi sin(ωit)

)
(3.8)

where Xi and Yi are independent random variables with expected value E[Xi] + E[Yi] = 0 and
variance V[Xi] + V[Yi] = σ2

i (G. Lindgren, Rootzén, and Sandsten, 2014, p. 116). Introducing

the random amplitude Ri =
√
X2

i + Y 2
i and the random phase θi (such that cos θi = Xi/Ri and

sin θi = −Yi/Ri (G. Lindgren, Rootzén, and Sandsten, 2014, p. 116), we see through trigonometric
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identities that

N−1∑
i=0

(
Xi cos(ωit) + Yi sin(ωit)

)
=

N−1∑
i=0

(cos θi
cos θi

Xi cos(ωit) +
sin θi
sin θi

Yi sin(ωit)
)

=

N−1∑
i=0

( Xi

Xi/Ri
cos(θi) cos(ωit)−

Yi
Yi/Ri

sin(θi) sin(ωit)
)

=

N−1∑
i=0

Ri

(
cos(θi) cos(ωit)− sin(θi) sin(ωit)

)
=

N−1∑
i=0

Ri cos(ωit+ θi).

(3.9)

Since Ri cos(ωit+ θi) = Xi cos(ωit)+Yi sin(ωit), we may then scale both sides by the (non-random)
factor

√
S(ωi)∆ω to get

N−1∑
i=0

√
S(ωi)∆ω

(
Xi cos(ωit) + Yi sin(ωit)

)
=

N−1∑
i=0

√
S(ωi)∆ωRi cos(ωit+ θi) (3.10)

and thus have equality for the two expressions. The proof of the distributions of Ri (Rayleigh)
and θi (uniform) is excluded for brevity. As already stated, the wave at a certain time t is a sum
of Gaussian random variables, making the wave height Gaussian as well, with expected value zero
(since all terms in the sum have zero expected value) and variance

V[Zt] =

N−1∑
i=0

S(ωi)∆ω

(
cos2(ωit) + sin2(ωit)

)
σ2
i

= ∆ω

N−1∑
i=0

S(ωi)σ
2
i

(3.11)

since all the Gaussian random variables Xi and Yi, i = 1, . . . , N − 1 are independent, and Xi and Yi
have the same variance σ2

i . However, the wave heights for different times t will be highly correlated
since they are constructed from the same weighted sum of random Gaussian variables, with only t
being different. The covariance between the wave height at times t and t+ τ may be rewritten as:

C[Zt, Zt+τ ] = C
[N−1∑

i=0

√
S(ωi)∆ω

(
Xi cos(ωit) + Yi sin(ωit)

)
,

N−1∑
i=0

√
S(ωi)∆ω

(
Xi cos(ωi(t+ τ)) + Yi sin(ωi(t+ τ))

)]

=

N−1∑
i=0

S(ωi)∆ωC
[
Xi cos(ωit) + Yi sin(ωit), Xi cos(ωi(t+ τ)) + Yi sin(ωi(t+ τ))

]
(3.12)

due to the independence of each harmonic wave. Further,

C[Zt, Zt+τ ] = ∆ω

N−1∑
i=0

S(ωi)
(
cos(ωit) cos(ωi(t+ τ)) · V[Xi] + sin(ωit) sin(ωi(t+ τ)) · V[Yi]

+
(
cos(ωit) sin(ωi(t+ τ)) + sin(ωit) cos(ωi(t+ τ))

)
· C[Xi, Yi]

)

C[Zt, Zt+τ ] = ∆ω

N−1∑
i=0

S(ωi)σ
2
i

(
cos(ωit) cos(ωi(t+ τ)) + sin(ωit) sin(ωi(t+ τ))

)
(3.13)
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due to X and Y being uncorrelated with equal variance. Using trigonometric identities,

C[Zt, Zt+τ ] = ∆ω

N−1∑
i=0

S(ωi)σ
2
i

(
cos(ωit)

(
cos(ωit) cos(ωiτ)− sin(ωit) sin(ωiτ)

)
+ sin(ωit)

(
sin(ωit) cos(ωiτ) + sin(ωiτ) cos(ωit)

))
(3.14)

C[Zt, Zt+τ ] = ∆ω

N−1∑
i=0

S(ωi)σ
2
i

(
cos2(ωit) cos(ωiτ)− sin(ωit) cos(ωit) sin(ωiτ)

+ sin2(ωit) cos(ωiτ) + sin(ωit) cos(ωit) sin(ωiτ)
)

(3.15)

C[Zt, Zt+τ ] = ∆ω

N−1∑
i=0

S(ωi)σ
2
i cos(ωiτ)

(
cos2(ωit) + sin2(ωit)

)
= ∆ω

N−1∑
i=0

S(ωi)σ
2
i cos(ωiτ)

= ∆ω

N−1∑
i=0

S(ωi)σ
2
i cos(i∆ωτ) =

2π

N − 1

N−1∑
i=0

S(ωi)σ
2
i cos(i

2π

N − 1
τ)

(3.16)

which as we see depends on the time lag τ and not the time t, confirming the process’s stationarity.
The normalized covariance, or correlation, is then found by dividing with the variance:

Corr[Zt, Zt+τ ] =
C[Zt, Zt+τ ]

V[Zt]

=
∆ω

∑N−1
i=0 S(ωi)σ

2
i cos(i∆ωτ)

∆ω

∑N−1
i=0 S(ωi)σ2

i

=

∑N−1
i=0 S(ωi)σ

2
i cos(i∆ωτ)∑N−1

i=0 S(ωi)σ2
i

.

(3.17)

To see how the covariance structure develops as the time lag increases, we plot the correlation
function using N = 10000 and τ from 0 to 30 with step size 0.1. We also assume the variances
σ2
i to be equal for all superimposed waves i = 0, . . . , N − 1. This plot is seen in fig. 3.2 for four

different sea states and we see that the correlation function is harmonic, as expected due to the
harmonic nature of the process itself, and that the amplitude of the correlation gets progressively
weaker as the lag increases. The speed of the correlation’s disappearance seems to depend on the
energy period Te but not on the significant wave height Hs, which agrees with our intuition as waves
with longer periods should have longer-lasting covariance structures. The absolute value of the
autocorrelation stays below 0.05 after lag 18 for energy period 7.5, and after lag 28 for energy period
11.5. The corresponding lag for all energy periods in the sample may be found in table 3.2, and
the trend is clearly linear: an increase of 1 second in the energy period increases the lag threshold
by approximately 2.5 seconds. The highest threshold for these sea states is 34.1 seconds, or 341
observations.

We may also get the energy content in the waves for each sea state by applying eq. (2.26). First,
we need values for the fluid density and the gravity acceleration constant, which we will base on the
geographical locations where the wave states were identified and where the WEC is located – that
is, Billia Croo on Orkney and Runde in Norway, both adjacent to the northernmost North Sea. The
mass density for sea water is between 1020-1030 kg/m3 depending on location in the world, and
approximately 1027 around both the Billia Croo and Runde test sites (Webb, 2019, p. 135), and we
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Figure 3.2: Theoretical autocorrelation of the wave heights Zt and Zt+τ for time lags τ =
0.1, 0.2, 0.3, . . . , 30, using sample size N = 10000, for four different sea states. Blue and yellow
lines (Te = 7.5 s) agree perfectly with each other, as do the red and purple lines (Te = 11.5 s).
Dashed green lines are at ±0.05.

Energy period (Te) Lag (τ)
5.5 13.9
6.5 16.4
7.5 18.9
8.5 21.4
9.5 24.0
10.5 26.5
11.5 29.1
12.5 31.6
13.5 34.1

Table 3.2: Time lag τ after which the absolute autocorrelation never exceeds 0.05, for each energy
period Te.
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will thus use that as our ρ value. The global average gravity acceleration is 9.807 m/s2 (Conférence
Générale des Poids et Mesures, 1901, p. 68) but the figure at Runde is about 10 mGal greater and
thus closer to 9.82 m/s2 (NASA Earth Observatory, 2003), which we will therefore use. This gives
an approximate energy content of J = 0.493TeH

2
s . The contents for the different sea states range

from 1.524 J/(ms) (Hs = 0.75, Te = 5.5) to 235.65 J/(ms) (Hs = 6.75, Te = 10.5).

The lengths of the generated time series will vary between different uses, but regardless we will
always add a burn-in period of 500 observations (50 seconds) which are discarded, in order for the
WEC:s simulated mechanics to start moving and oscillating from the standstill which they are in
before the incident wave. In practice, different sea states will replace one another and the WEC:s
components being completely stationary should never occur. Therefore, we discard the period which
would reasonably be affected the most by the initial stillness of the Simulink model. The burn-in
period is also the same one used by Zeinali et al. (forthcoming).

Having generated waves based on the sea state parameters, we now discuss the interaction between
the wave and the WEC buoy.

3.2 WEC simulator

The WEC system which forms the basis of the simulink model is the WaveEL buoy, a real OWC-
type WEC which is owned by Waves4Power and located near the Runde Environment Center AS
in Norway. The previous version of this buoy, the WaveEl 3.0, was placed in water in February
2016 and was connected to the Norwegian electricity grid in June 2017, remaining active for five
months until November when two mooring lines were cut off by unknown means. The installation
of a new version, the WaveEL 4.0, is currently an ongoing project and is meant to be implemented
commercially in 2024 (Waves4Power, 2024a).

The WaveEL 4.0 buoy consists of a large vertical cylindrical tube which extends deep enough in the
water (28-38 meters) to make the effect of surface waves upon the internal water tube negligible.
The interior of the tube has a diameter of 3.5 meters, but the WEC also has an upper part at
the surface level which is 8 meters in diameter (Waves4Power, 2024a). Within the tube, which is
hollow throughout the entire structure, a floating water piston is attached to a vertical rod and
connects to a hydraulic system. Furthermore, the water piston is equipped with dampers, ensuring
that it somewhat follows the movement of the buoy and forcing the water column up and down
(Waves4Power, 2024b). In terms of the modes discussed in section 2.2, the buoy oscillates in a
heave motion along the z axis. If the dampening force is either zero (the piston always in line with
the water surface, moving freely) or maximized (no movement at all), there will be no electricity
produced. In other cases, as a wave hits the buoy, the hull and the water piston shift vertically to
different degrees and with different phase, causing the piston to move relative to the buoy and thus
also moving the hydraulic rod to which it is connected (Waves4Power, 2024b). Effectively, there are
two bodies oscillating – the WEC buoy and the water column – and the piston movement is caused
by the phase difference between these two, making the water piston a form of pump (Waves4Power,
2024a). The hydraulic piston also has bumpers at each end, to soften the impact of the piston in
case the pumping motion causes it to reach either extreme of its oscillation range.

The movement of the hydraulic piston increases the pressure in the accumulator tank, and this
pressure also influences the movement of the water piston and water column, while at the same time
the hydraulic accumulator tank is connected to a generator which converts the pressure to electrical
power (Zeinali et al., forthcoming, p. 5). The flow of hydraulic fluid out of the accumulator tank is
what drives the generator, and one of the main goals of this thesis is to investigate what generator
rotation speed is optimal for the sea state. A too low speed will underutilize the hydraulic pressure
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Figure 3.3: Conceptual sketch of the WEC model in Simulink.

and a too high speed leave the accumulator tank too empty and thus decreasing the pressure faster
than it can be reaccumulated from the waves’ kinetic energy – in other words, there needs to
be a balance between the in- and outflows of energy in the tank. The accumulator tank has an
initial pressure when the simulation starts, which for shorter wave processes may have a significant
impact on the produced power. Therefore, we will use the optimal pressures found by Zeinali et al.
(forthcoming) as our initial pressures for each sea state, since these should be close to the pressure
levels acquired throughout the simulation. A sketch of the components of the WEC Simulink model
is featured in fig. 3.3.

It is of note that the waves generated as above are treated as one-dimensional, only varying vertically.
We assume that this represents their amplitude when hitting the buoy, where if the wave’s horizontal
dimensions are large in comparison to the buoy’s diameter, this one-dimensional approximation
should be valid. Waves4Power themselves describe the WaveEL WEC as a point absorber due to
its small dimensions compared to the passing water waves (Waves4Power, 2024a).

However, Zeinali et al. (forthcoming, p. 4) argue that the shape of the buoy in its entirety needs to
be taken into account since it may well affect the dynamics of the wave. They suggest a frequency
response function H(ω) which may be used to transform the wave amplitude Aω to a ”phantom
amplitude” Ãω = Aω ×H(ω) which would have the property that a wave Ãω cos(κx− ωt) has ”the
same hydrostatic buoyancy variation at the origin as the original wave gives on average over the ring”
(Zeinali et al., forthcoming, p. 4). This frequency response function is (Zeinali et al., forthcoming,
p. 4, eq. 10)

H(ω) =
2g

ω2(R2
2 −R2

1)

(
R2J1

(
R2ω

2

g

)
−R1J1

(
R1ω

2

g

))
(3.18)

where g is gravity (Zeinali et al., forthcoming, p. 3), R1 and R2 are the inner and outer radii of the
buoy’s opening ring and J is a Bessel function of the first kind (Zeinali et al., forthcoming, p. 5),
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meaning

Jα(x) =

∞∑
m=0

(−1)m

m! Γ(m+ α+ 1)

(
x

2

)2m+α

(3.19)

J1

(
Rjω

2

g

)
=

∞∑
m=0

(−1)m

m! Γ(m+ 2)

(
Rjω

2

2g

)2m+1

, j = 1, 2 (3.20)

as defined by Abramowitz and Stegun (1964, p. 360).

The time version of this filter, meaning the impulse response, is defined by Zeinali et al. (forthcoming,
p. 5, eq. 11-12) as

h(t) =
g|t|

48(R2
2 −R2

1)

(
f(t, R2)− f(t, R1)

)
(3.21)

where
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(3.22)

After using the impulse response function to filter the generated waves, we simulate their input into
the WEC system. This is done using a Simulink model provided by Zeinali et al. (forthcoming). To
find the optimal rotations per minute, a maximization algorithm is run on this simulink model, for
each sea state finding the rotation speed which gives the highest mean power output. This is done
through an iterative procedure which takes several minutes for each state. We set the tolerance
for both the output value (mean power) and the input value (rotation speed) to 10−2, meaning the
algorithm will stop if either |(ri−ri+1)| < 10−2 ·(1+ |ri|) or |(m(ri)−m(ri+1))| < 10−2 ·(1+ |m(ri)|)
(MathWorks, Inc., 2024). Also of note is that the Simulink model contains adaptive solvers which
lead to the output data (including the power) being non-equidistantly sampled. For this reason,
linear interpolation is used in the Simulink to produce final output data with the same sampling
frequency as the input, i.e. 0.1 s (Zeinali et al., forthcoming, p. 6).

In the Simulink model, the hydraulic system is not connected to just one generator, but to two: one
with a working power of 50 kW and another with a working power of 100 kW. Theoretically, the
WEC could produce energy using only one of the generators, besides varying the rotation speed (in
rotations per minute) used. If both generators are connected, their speed should be the same to
maintain balance in the hydraulic flow – two different speeds would mean two different voltages in
the output which is difficult to deal with. It is much more convenient to, at least for a brief period,
have a constant voltage and therefore a constant rotation speed. The optimization algorithm will
therefore explore three options: An optimal rotation speed will be found iteratively for the case with
only the 50 kW generator switched on, for the case with only 100 kW, and for the case with both
generators switched on.

After optimizing the three rotation speeds, the associated mean outputs are compared to each other
to find if the maximum for that sea state is reached through only one generator (and in that case,
which one) or both. Finally, the resulting electrical output may be calculated using the optimum
rotation speed, the optimum choice of generator(s), and the random wave at hand. This output
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may also be compared to the energy potential in the wave in order to measure the WEC:s efficiency.
The energy potential is, as stated in eqs. (2.21) and (2.26),

J =
g2ρ

64π
TeH

2
s J/(ms) ≈ 492.56TeH

2
s W/m = 0.493TeH

2
s kW/m (3.23)

using the values g = 9.82 m/s2 and ρ = 1027 kg/m3. Since this energy potential is per unit width
of the wave, we need to scale it by the diameter of the buoy’s cylinder, since this is the width of
waves interacting with the WEC at the water surface. This width is 8 meters (Shao et al., 2023,
p. 448, fig. 2) which gives the energy potential per second

J ·m ≈ 8 · 0.493TeH2
s kW = 3.94TeH

2
s kW (3.24)

which may readily be compared to the simulated mean power output of each sea state.

The Simulink model is, naturally, a simplification in many respects. For instance, the mooring lines
of the WEC buoy are not taken into account, and would in reality reduce the efficiency somewhat.
Treating the WEC as a point absorber is also a simplification since the water cylinder still has a
diameter of 3.5 meters, and the upper part a diameter of 8 meters. Furthermore, the model does
not take possible non-heave movements of the buoy into consideration, even though such movement
could well have effects (though likely small ones) on the energy conversion.

3.2.1 Choice of statistic for optimization

Having a high mean is not necessarily the only desired property of the power output. We would also
like it to have a low variance so that the output is reliable given a particular sea state, and possibly
reliable even when the sea states shift, though that is outside the scope of this thesis. Another
reason to have a low variance is to have a consistent voltage on the output in the sense that it stays
within a reasonably narrow interval. We may implement variance reduction into our computations
by not using the mean itself as our target variable to maximise in the rotation speed optimization,
but rather the mean minus a rescaling of the power’s standard deviation, that is,

µ̂∗ = µ̂− λ · σ̂ (3.25)

where λ ≥ 0. An alternative could be to instead use the coefficient of variation R, but since µ may
be negative for certain data this may also give a negative coefficient of variation, making it difficult
to interpret and not useful in an optimization. Therefore, even though the potentially different
magnitudes of variance for each sea state may lead to different effects from increasing the scaling
parameter λ, we will still use the pure standard deviation in our optimization statistic. Another
distinction is that we will not calculate the standard deviation based on all observations in the
time series, but rather use sub-interval means of the time series as our data, since the short-term
variability of the energy output is not of great interest but rather the variability of the mean output
over some time interval, which we choose to be one minute or 600 observations. This measure of the
standard deviation will be smaller than the one based on individual observations, which means that
the λ coefficient needs to be larger to have a tangible effect upon the optimization statistic.

To investigate the effect of the hyperparameter λ upon the optimal rotation speed as well as the
associated mean output and standard deviation, we try running the optimization algorithm on a
smaller wave process of length 12 000 (excluding the burn-in of 500 observations), using values
λ = 0, 0.5, . . . , 4.5, 5 and always using both generators in order to save time. We then estimate the
mean output and variance on new processes of length 24 000.

The effect varies between the sea states. In fig. 3.4, we see that for the most common sea state
the effect is quite irregular. The rotation speed slowly decreases from 633 to around 500 rpm when
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Figure 3.4: The optimized rotation speed (upper left) as well as corresponding estimated mean
power (upper right) and standard deviation (lower) for various values of the hyperparameter λ in
eq. (3.25), using wave processes of length 12 000 for optimization and 24 000 for estimation from
the most common sea state (Hs = 1.25 m, Te = 7.5 s).

λ goes from 0 to 2.5, then suddenly jumps up to 1190 rpm whereafter it increases approximately
linearly to 1297 rpm. The mean power starts out with a corresponding slow decrease from around
12.75 to 12.38 kW, but then decreases rapidly to 10.07 and onwards down to 9.10 kW. The standard
deviation, finally, follows an almost identical pattern to the mean. The total decrease in standard
deviation is smaller than the one in mean (1.08 kW compared to 3.65 kW), but is somewhat larger
in relative terms (38% and 29%) when dividing the change by the respective values when λ = 0.

In fig. 3.5, the corresponding results for the second most common sea state are shown, and are similar
in some respects and different in others. The optimal rotation speed initially increases slowly, rather
than decreasing, from 500 to 903 rpm. Then, just as with the most common sea state, there is a
sudden large increase, though this one occurs for λ = 3.5 rather than λ = 3. The increase is also
even more extreme, going up to values between 2400 and 2900 rpm. The mean decreases slowly
from below 7 to around 4.5 kW, but then goes to around zero after the threshold. The standard
deviation decreases more evenly, and up to λ = 3 has a larger relative decrease than the mean (60%
compared to 34%), but its decrease at λ = 3.5 is less extreme than that of the mean. This pattern
likely follows from the second sea state generally providing less energy, meaning that as λ increases
it becomes increasingly difficult to get a high optimization statistic.

A similar visual examination of other sea states (excluded for brevity) shows that they follow their
own patterns, but in general still have some things in common: Firstly, as λ increases, both the mean
and the standard deviation of the output effect are reduced. Secondly, for most states there are
multiple ”jumps” in both rotation speed, mean and standard deviation (generally simultaneously),
increases in λ which have very large effects. The sizes and thresholds of these sudden increases or
decreases vary between the states, however. A reason for the instability of the optima may be the
higher variability of the sample variance, which tends to take more differing values depending on
the sample data than the mean does. This makes the optima more uncertain when the variance is
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Figure 3.5: The optimized rotation speed (upper left) as well as corresponding estimated mean
power (upper right) and standard deviation (lower) for various values of the hyperparameter λ in
eq. (3.25), using wave processes of length 12 000 for optimization and 24 000 for estimation from
the second most common sea state (Hs = 0.75 m, Te = 6.5 s).

included in the maximization statistic.

To get an aggregated overview of the effect of λ upon the energy output without having to show all
78 sea states separately, we take the weighted average output of the sea states using their relative
frequencies of occurrence from table 3.1 to get an estimate of the total mean power output, and
also calculate the aggregated standard deviation. We calculate these values, with the probability of
occurrence being P(k) for sea state k, as

µtotal =

N∑
k=1

P(k)∑N
j=1 P(j)

µk (3.26)

σtotal =

√√√√ N∑
k=1

(
P(k)∑N
j=1 P(j)

)2

σ2
k (3.27)

The total mean and standard deviation values resulting from different λ values are featured in
fig. 3.6, while in fig. 3.7 we find the absolute and relative changes for each λ value (compared to
when λ = 0). The absolute changes are

∆µ,abs(λ) = µtotal(λ)− µtotal(0) (3.28)

∆σ,abs(λ) = σtotal(λ)− σtotal(0) (3.29)
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Figure 3.6: Estimated mean and standard deviation for the energy output as a weighted average of
all 78 sea states.

Figure 3.7: Absolute and relative differences (compared to the case when λ = 0) for the energy
output as a weighted average of all 78 sea states.

while the relative changes are

∆µ,rel(λ) =
∆µ,abs(λ)

µtotal(0)
=
µtotal(λ)− µtotal(0)

µtotal(0)
(3.30)

∆σ,rel(λ) =
∆σ,abs(λ)

σtotal(0)
=
σtotal(λ)− σtotal(0)

σtotal(0)
. (3.31)

As was initially seen for the individual sea states, both the mean and the standard deviation decrease,
though quite slowly, as we increase λ. The changes are now much smoother than they were for the
individual sea states, without large jumps in the measures, since the jumps happen at different λ
for different sea states. Interestingly enough, the absolute changes are much larger for the mean,
likely due to the fact that the standard deviation decreases across all λ when we take the weighted
average. The relative change, however, is much larger for the standard deviation.

Overall, increasing λ all the way from 0 to 5 decreases the estimated mean output from 24.04 to 13.60
kW while the standard deviation decreases from 0.9774 to 0.3182 kW. The absolute reduction is
clearly much larger for the mean and the contrast becomes starker the higher our λ. The reduction
in standard deviation is only 0.6592 kW even for λ = 5, while the corresponding reduction for
the mean is more than 10 kW. However, the relative reduction is instead larger for the standard
deviation, particularly for λ above 1.5. With high enough λ the standard deviation may be reduced
by more than 67%, though this is also associated with the mean being reduced by 43%.
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Figure 3.8: Weighted difference (in percentage points) between the relative changes in mean and
standard deviation for different values of λ, according to eq. (3.32).

To select a value for λ, we investigate one more measure: The difference in relative change between
the mean and the standard deviation, with a possible weighting due to the fact that we would
possibly be more averse to reduction in mean than we are positive to reduction in variance. We
therefore calculate the following difference:

D = ∆σ,rel − γ∆µ,rel (3.32)

where γ increases above 1 if we want to prioritize maintaining a high mean more than reducing
variance. In fig. 3.8, we plot the value of D for λ = 0, 0.5, . . . , 5, using γ = 1, 2, 3. Since both ∆
values are negative, a low D implies a strong relative reduction of σ without making the reduction
of µ too strong.

All three plots give clear minima, and as is to be expected the minimum is at a different λ value
depending on γ, lower the higher we prioritize low mean reduction over high variance reduction:
λ = 2.5 for γ = 1, λ = 2 for γ = 2 and λ = 1.5 for γ = 3. We settle for λ = 2, which according
to fig. 3.7 gives a mean reduction of approximately 10% (2.488 kW) and a standard deviation
reduction of 40% (0.3864 kW). This seems like a fair balance between reducing the variance while
still maintaining a high mean. Therefore, the maximization statistic used in the algorithm will be

µ̂∗ = µ̂− 2σ̂. (3.33)

However, the main results will be compared to the case when λ = 0, in order to see the true overall
impact of the coefficient.
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3.3 Monte Carlo estimation

Since the optimal rotation speed and the resulting electrical output are both dependent on the
generated wave, they are random variables and the accuracy of a single sample is unknown to us.
What we would, ideally, like to know are the expected value and variance of the output given a
particular sea state. However, these values would be calculated as integrals (in accordance with
eq. (2.46))

µPout,t
= E[ht(Z)] =

∫
ht(z)f(z)dz (3.34)

σ2
Pout,t

= V[ht(Z)] =
∫
(ht(z)− µPt)f(z)dz (3.35)

which we may not evaluate explicitly due to the complexity of the function ht(Z), here meaning the
electrical output as a deterministic function of the wave height Z not only at a certain time t but
of the wave heights at multiple adjacent time points. Thus, we will use Monte Carlo integration,
as described in section 2.5 to improve the estimates both of the optimal rotation speed and of the
expected output, as well as to get an idea of the variability of these estimates.

One issue that must be taken into consideration is the computing time of these operations. One
option for optimizing the rotation speed and estimating the expected output (for each sea state)
would be to generate n1 independent wave processes of a length T , optimizing the rotation speed for
each process and using the average optimum as a fixed parameter in n2 more independent processes
of the same length. The mean outputs of these new processes are then averaged to get the point
estimate for the sea state’s expected power output. Since the computing time for the optimization
is significantly longer than for the time required for simply using the Simulink model with a fixed
rotation speed, it seems reasonable to settle for a lower n1 and a higher n2. The law of large numbers
dictates that this would give a decent approximation of the optimum rotation speed, and a better
approximation of the expected output given this speed.

An alternative would be to replace the ensemble of processes with only two processes for each
state: One of length N1 = n1 · T and one of length N2 = n2 · T . This would still give the same
number of total observations for the tasks of optimization and estimation, respectively, as if we had
multiple independent processes. Though the longer process takes more time to generate than n
shorter processes due to each observation being a sum of N = nT terms (see eq. (3.10)) and the
computation time thus increasing non-linearly, this should be made up for by only having to run
the optimization algorithm once. This should be much faster than running it n times, even though
the process has many more observations. The difference in computation time was confirmed by
empirically testing the computing times for the operations for different process lengths.

These methods do not necessarily give equivalent results, however. Firstly, in order for the time-
average of N = nT observations to be equivalent in accuracy to an ensemble average of n processes
of length T , the process must have some degree of linear ergodicity. If not, the time-average will
not be a consistent estimator. However, as stated in section 2.5.1 a stationary process will be
ergodic in the quadratic-mean sense if the average of its covariances converges to zero for large N ,
which should occur if the covariance function goes to zero for large lags τ and positive and negative
covariances occur approximately equally. Since the wave processes are stationary, we may investigate
the behaviour of their covariance functions to evaluate their degree of ergodicity. Similarly, even
though ergodic wave processes do not necessarily imply ergodic power output due to the complexity of
the Simulink model, we may investigate the ergodicity of the output through the empirical covariance
structure.

Having only a singular process also leaves us without any measure on the estimates’ accuracy. To
accommodate this, one solution might be to save the individual observations of the process rather
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than just their mean, and simply calculate the variance of these observations, but this carries with
it the problem that the individual observations are correlated to others in their proximity since they
are all based on the same N superimposed harmonic processes. If the observations are correlated,
the variance of their mean will not be proportional to the variance of the observations, and the
sample variance is then not appropriate to use when constructing a confidence interval for the mean.
Furthermore, as already stated, the exact fluctuations of the power are not of interest but rather its
mean over a time period of a set length.

Instead of using the individual observations, we may divide the process into K intervals or segments
of length Nsub, and use the interval means as our saved observations, rather than the global mean
or the original wave heights. This is similar to the division into sub-intervals of length 600 which
we used in the optimizations for different λ coefficients, but for a different purpose. As long as the
process is stationary, the expected value and covariance structure should be equal in each segment
and in this regard it should then be equivalent to simulating n = K processes. Also, as the interval
length increases, the covariance between the intervals should decrease until it is negligible, enabling
us to use the mean and variance of the interval means to construct a confidence interval for the
expected power output. If the process is stationary and sufficiently ergodic, and the covariance
between segments is negligible, the global mean will have the properties (stated for the general case
in eqs. (2.47) and (2.48))

E[Z̄Global] = E
[ 1
K

K∑
i=1

Z̄i

]
=

1

K
·K · E[Z̄] = E[Z̄] (3.36)

V[Z̄Global] = V
[ 1
K

K∑
i=1

Z̄i

]
(3.37)

=
1

K2

K∑
i=1

(
V[Z̄i] +

∑
j ̸=i

C[Z̄i, Z̄j ]
)

≈ 1

K2

K∑
i=1

V[Z̄i] =
1

K
V[Z̄]

(3.38)

making the global mean a consistent estimator. The above relations for the wave height Z also hold
for the power output Pout and its averages (local and global), as long as the power output too is
stationary and has negligible inter-segment covariance. If this is the case, the interval means for the
power output may be used to construct a confidence interval for the global mean using eq. (2.50):

CIµPout (k)
=

((
µ̂Pout

(k) + ϕα/2

√
σ̂2
Pout

(k)

K

)
,
(
µ̂Pout

(k) + ϕ1−α/2

√
σ̂2
Pout

(k)

K

))
(3.39)

where k is the sea state, µ̂Pout
(k) is the global sample mean and σ̂2

Pout
(k) is the sample variance

among the interval means.

3.3.1 Covariance and ergodicity of wave heights

It is then important to investigate what segment length is required in order for the covariance to be
negligible, as well as whether the processes are ergodic. The covariance between the average wave
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height of two adjacent segments (the first starting at observation m) may be calculated as

C[Z̄1, Z̄2] = C
(

1

Nsub

m+Nsub−1∑
k=m

Zk,
1

Nsub

m+2Nsub−1∑
j=m+Nsub

Zj

)

=
1

N2
sub

m+Nsub−1∑
k=m

m+2Nsub−1∑
j=m+Nsub

C[Zk, Zj ]

=
1

N2
sub

m+Nsub−1∑
k=m

2Nsub−k+1∑
τ=Nsub−k+2

C[Zt, Zt+τ ]

(3.40)

where we may then use eq. (3.16) to get

C[Z̄1, Z̄2] =
1

N2
sub

m+Nsub−1∑
k=m

2Nsub−k+1∑
τ=Nsub−k+2

∆ω

N−1∑
i=0

S(ωi)σ
2
i cos(i∆ωτ)

=
∆ω

N2
sub

m+Nsub−1∑
k=m

2Nsub−k+1∑
τ=Nsub−k+2

N−1∑
i=0

S(ωi)σ
2
i cos(i∆ωτ)

=
2π

N2
sub(N − 1)

m+Nsub−1∑
k=m

2Nsub−k+1∑
τ=Nsub−k+2

N−1∑
i=0

S(ωi)σ
2
i cos(i

2π

N − 1
τ).

(3.41)

The variance for a single segment mean would be

V[Z̄1] = V
(

1

Nsub

m+Nsub−1∑
k=m

Zk

)
=

1

N2
sub

m+Nsub−1∑
k=m

m+Nsub−1∑
j=m

C[Zj , Zk]

=
1

N2
sub

m+Nsub−1∑
k=m

Nsub−k∑
τ=0

C[Zt, Zt+τ ]

=
1

N2
sub

m+Nsub−1∑
k=m

Nsub−k∑
τ=0

∆ω

N−1∑
i=0

S(ωi)σ
2
i cos(i∆ωτ)

=
2π

N2
sub(N − 1)

m+Nsub−1∑
k=m

Nsub−k∑
τ=0

N−1∑
i=0

S(ωi)σ
2
i cos(i∆ωτ),

(3.42)

which then gives us a correlation equal to

Corr[Z̄1, Z̄2] =
C[Z̄1, Z̄2]

V[Z̄1]

=

∑m+Nsub−1
k=m

∑2Nsub−k+1
τ=Nsub−k+2

∑N−1
i=0 S(ωi)σ

2
i cos(i∆ωτ)∑m+Nsub−1

k=m

∑Nsub−k
τ=0

∑N−1
i=0 S(ωi)σ2

i cos(i∆ωτ)
.

(3.43)

The index m, signifying the time of the first wave height in the first segment, should not affect either
the variance or the covariance as long as the process is stationary, since the two segments should
then have the same properties regardless of their starting point. We may therefore, for simplicity,
set m = 1, having the segments contain the first 2Nsub observations of the process. The correlation
is then expressed as

Corr[Z̄1, Z̄2] =

∑Nsub

k=1

∑2Nsub−k+1
τ=Nsub−k+2

∑N−1
i=0 S(ωi)σ

2
i cos(i∆ωτ)∑Nsub

k=1

∑Nsub−k
τ=0

∑N−1
i=0 S(ωi)σ2

i cos(i∆ωτ)
. (3.44)

with the indices of the outermost summations changed. The strength of this correlation for different
choices of segment length Nsub may be calculated numerically for a given sea state and sample size
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Figure 3.9: Theoretical correlation of the segment average wave heights Z̄1 and Z̄1 for adjacent
segments with length Nsub = 10, 20, . . . , 690, 700 and sample size N = 5000. Dashed green lines are
at ±0.01.

N . The theoretical correlations for Nsub = 10, 20, . . . , 690, 700 are found in fig. 3.9, with N = 5000
and the same sea states as in fig. 3.2.

As expected, the inter-segment correlation is not affected by the significant wave height but is slightly
affected by the energy period. For energy period Te = 7.5, the correlation starts slightly above 0.03
for Nsub = 10, grows as strong as −0.06 for Nsub = 30, and then starts decreasing periodically.
For segment lengths above 120, the absolute correlation is well below 0.01, with length Nsub = 500
giving a correlation very close to zero. With energy period 11.5, the correlations degenerate slightly
more slowly, starting out above 0.1 (for Nsub = 10), remaining below 0.01 for Nsub of approximately
160 and upwards, and not being quite as close to zero at Nsub = 500 as when using the shorter
energy period. However, it is still very close to zero with values of order 10−4. Even for the longest
energy period, Te = 13.5 (presented in fig. 3.10), the inter-segment correlation is of order 10−4 for
segment length 500.

The covariances are also used to investigate the ergodicity of the wave process. As stated in eqs. (2.61)
and (2.62), for a stationary stochastic process we have second-order ergodicity if the cumulative aver-
age of the covariance function converges to zero as we add covariances for longer and longer time lags
τ . To investigate this, we calculate theoretical covariances using eq. (3.16) for τ = 0, 0.1, . . . , Tmax

and calculate the Tmax averages r̄T (τ) = 1
T

∑T
j=1 r(0.1 · j). This is plotted in fig. 3.11 for the

same sea states as in fig. 3.9, and we may clearly see that all four approach zero, though closer
analysis reveals that they do not quite reach it even for Tmax = 100. Investigating similar plots
for higher Tmax (excluded for brevity) reveals that the convergence towards zero continues, albeit
slowly. We therefore conclude that the wave height time series are indeed second-order ergodic,
making it reasonable to use only one time series each for the optimization and estimation on a given
sea state.
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Figure 3.10: Theoretical correlation of the segment average wave heights Z̄1 and Z̄1 for adjacent
segments with length Nsub = 10, 20, . . . , 690, 700 and sample size N = 5000. Significant wave
height Hs = 1.25, energy period Te = 13.5 (the highest of any wave state according to the EMEC
classification (European Marine Energy Centre, 2022b)). Dashed green lines are at ±0.01.

Figure 3.11: Theoretical cumulative average covariance of the wave heights, r̄T (τ) =
1
T

∑T
j=1 r(0.1·j),

with sample size N = 5000. The sea states used have significant wave height Hs equal to 1.25 for
the top row and 4.25 for the bottom, while the energy period Te is 7.5 for the left column and 11.5
for the right.
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3.3.2 Empirical covariance of the power output

We need to consider the risk that even though the correlation between the average wave height
segments quickly reaches a small order of magnitude, we have no way of explicitly calculating how
this translates to the covariance, variance or correlation of the segments’ mean power output – if
we did, using Monte Carlo integration for this problem would be meaningless. It can be assumed
that this correlation, too, should generally decrease for larger n, but the degree of this reduction is
unknown. Since the mean power output for a segment not only depends on the mean wave height
but on other, non-linear patterns among the wave heights, it is very possible that Nsub = 500 is not
a sufficient segment length.

There is also the concern that even though the incident waves are Gaussian, due to the complicated
transformations of the WEC Simulink the power output could very well be non-Gaussian. Thus, in
order to construct a Gaussian (or rather, Student’s t) confidence interval we would need the central
limit theorem, which would also require the number of sub-intervals to be large in order for the global
mean to approach Gaussianity. This is, of course, not an issue if the interval means themselves are
sufficiently Gaussian, which they should be provided that Nsub is large enough. Since the estimator
of interest is the global mean power output, that is, the average over the entire process regardless of
how many segments were used, its Gaussianity should in fact not at all depend on the relative sizes
of K and Nsub. However, we could use the K interval means to get a visualization of how well the
mean output approaches a Gaussian distribution with only Nsub observations. If the interval means
are close to Gaussian, the global mean should be even closer.

We first investigate the power output’s ergodicity through the cumulative average of the sample
covariances for individual observations, to find whether it seems to converge to zero. These empirical
cumulative average autocorrelations are found in fig. 3.12 for four different sea states. For all four
of the states, the average autocorrelation quickly decreases towards zero, and for three of them
then fluctuate around zero to different degrees, showing a manner of convergence besides a random
fluctuation. For the sea state with Hs = 1.25 m, Te = 11.5 s, we see an increase in the average
autocorrelation as the maximum lag approaches 20 000. However, when investigating this sea state
further (figure excluded for brevity) we see that it too fluctuates around zero, albeit much more
slowly. Other sea states show similar patterns, with the fluctuations being slower and larger for
some states (primarily those with low significant heights and long energy periods) but small and fast
for most. We conclude that at least for the majority of sea states the process is highly ergodic, and
we continue using the time-mean in place of an ensemble mean.

We move on to investigating the correlation between segment mean power outputs. The correlation
plots in figs. 3.9 and 3.10 suggest that a segment length of 500 should be enough to get almost
zero correlation between mean wave heights, but as already stated this does not mean that the
correlation between mean power outputs will be as small. Theoretically, if we reach such Nsub that
the segment means are completely uncorrelated then the observed means will be as if they from
a white noise process with non-zero mean µ and variance σ2, which should also be asymptotically
Gaussian given a large enough K. Under such conditions, Jakobsson (2021, p. 48) states that the
empirical autocorrelation function of the segments, r̂(τ∗) will be Gaussian with mean 0 and variance
1/K, and that we may therefore classify autocorrelations with absolute value above ϕ1−α/2 ·

√
1/K

(where ϕ is a normal distribution quantile) as significant. We could therefore simulate data and
check the empirical autocorrelation using different segment lengths. However, for this to be valid n
also needs to be large enough for the interval means to be approximately Gaussian.

In order to check the segment length necessary to make the segment means uncorrelated (and thus
effectively equivalent to independent observations), we simulate data from the four sea states used
in figs. 3.2 and 3.9 and optimize generator choice and rotation speed for each one. We then try out
different lengths Nsub and make both an autocorrelation function (acf) plot and a normal probability

51



Chapter 3 – Methodology

Figure 3.12: Empirical cumulative average covariance of the momentary power output, r̄T (τ) =
1
T

∑T
j=1 r(0.1 · j), with sample size N = 240000. The sea states used have significant wave height

Hs equal to 1.25 for the top row and 4.25 for the bottom, while the energy period Te is 7.5 for the
left column and 11.5 for the right.

plot, comparing the empirical quantiles of the segment means to the theoretical ones from a normal
distribution. The resulting plots for segment length Nsub = 1000 are found in fig. 3.13, and the ones
for Nsub = 4000 in fig. 3.14. Other segment lengths were also tried.

The ACF plots show a clear difference between interval lengths 1000 and 4000. In fig. 3.13, three
out of four ACF plots show significant correlations. In one case there is only one out of 20, which
is not unreasonable since even in a white noise process 5% of the observed autocorrelations should
be outside the 95% confidence interval bounds, but in the others there are two. In the case of
the second sea state, where Hs = 1.25 and Te = 11.5, the correlation for lag 1 is as strong as
0.6, and there are also signs of periodicity in the ACF. For segment length 4000, there is only one
observed significant autocorrelation, which as stated is not unreasonable. There are also much fewer
signs of periodic behaviour in the ACF of the second sea state. It is important to note, however,
that fig. 3.14 has wider confidence intervals due to the lower number of segments, thus making its
tolerance for observed correlations higher. Nevertheless, increasing the interval length does seem to
make the segment means less correlated, and Nsub = 4000 seems to give segment means which are
close enough to zero correlation. The reader should note that segments of length 4000 are used only
for the estimation using already optimized rotation speeds. For the optimization of the rotation
speed, the covariance between segments is not of concern and we use the segment length 600 (one
minute).

Regarding the normal probability plots, the pattern is less clear. For three out of the four investigated
sea states, there seems to be good adherence to a normal distribution regardless of interval length,
though the deviation in the tails appears slightly stronger for Nsub = 1000. For the second sea state,
however, there are once again more problems. There is a clear positive skewness with the highest
means much higher than would be expected were the means Gaussian. This problem almost seems
to be accentuated for Nsub = 4000, but this could well be due to the smaller number of means in
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Figure 3.13: Empirical autocorrelation function for lag τ (left), and normal probability plot (right),
for the series of K = 240 interval means, with interval length Nsub = 1000. Sea states are: Row
1 - Hs = 1.25, Te = 7.5. Row 2 - Hs = 1.25, Te = 11.5. Row 3 - Hs = 4.25, Te = 7.5. Row 4 -
Hs = 4.25, Te = 11.5
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Figure 3.14: Empirical autocorrelation function for lag τ (left), and normal probability plot (right),
for the series of K = 60 interval means, with interval length Nsub = 4000. Sea states are: Row 1
- Hs = 1.25, Te = 7.5. Row 2 - Hs = 1.25, Te = 11.5. Row 3 - Hs = 4.25, Te = 7.5. Row 4 -
Hs = 4.25, Te = 11.5
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the plot. Nevertheless, the K segment means are not quite Gaussian, which casts doubt on whether
the global mean could be.

Empirical investigations of other sea states show that the issues of non-Gaussian interval means and
lingering autocorrelations are more prevalent when the significant wave height is low and the energy
period long. The autocorrelation problem in particular seems worst for the most extreme sea state
in this regard (Hs = 1.25, Te = 13.5), but becomes less prevalent as we increase the significant
wave height or shorten the energy period. The non-Gaussian means follow a less clear pattern,
appearing to in general increase for longer energy periods but not showing an increase or decrease as
the significant wave height changes. Unfortunately, the interval means do not seem to become more
Gaussian for these sea states as the interval length increases. Nevertheless, due to the very large
number of observations included in the mean of the full process, we will trust that in accordance
with the central limit theorem even the means for these sea states will converge sufficiently.

We choose to use a simulated process of 120 000 observations (excluding the burn-in) to optimize the
rotation speed using the maximization statistic in eq. (3.25) and calculating the sample standard de-
viation from the means of 600-observation segments. This optimization process also checks whether
the WEC should use one generator or both in the sea state at hand, based on which choice leads to
the greatest optimization statistic for the process at hand. Secondly, the optimal speed is taken as a
fixed parameter for a new process of 240 000 observations (again, excluding the burn-in). In a real-
life application, any optimized rotation speed will be derived from a random sample of waves which
may not be representative for the sea state’s average behaviour. The real waves which the rotation
speed is used on would then not be the same as those used to optimize the value. Estimating the
mean output using the same data would, in fact, lead to overestimation since the rotation speed has
been fit to that particular data set, and would likely perform slightly less optimally on new data. In
order to get more correct estimates, we therefore use a new stochastic process for the mean power
output estimation.

This new process and its sub-interval means will be used to construct a confidence interval for the
mean power output. Expressed mathematically (with k being the sea state),

r̂opt(k) = argmaxr

(
µ̂Pout(r,X(k))− λ · σ̂Pout,600(r,X(k))

)
= argmaxr

(
1

120000

120000∑
i=1

Pout(r,Xi(k))

− λ

√√√√ 1

199

200∑
j=1

(
1

600

600∑
i=1

Pout(r,X600(j−1)+i(k))−
1

120000

120000∑
i=1

Pout(r,Xi(k))

)2
)

(3.45)

msegmented(j) =
1

240000/K

240000/K∑
i=1

Pout(r̂opt(k),Xi(k)) (3.46)

µ̂Pout(k) =
1

K

K∑
j=1

msegmented(j). (3.47)
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This estimator has expected value

E[µ̂Pout
(k)] =

1

K

K∑
j=1

E[msegmented(j)] = E[msegmented(j)]

=
1

240000/K

240000/K∑
i=1

Pout(r̂opt(k),Xi(k))

= E[Pout(k)] = µPout
(k)

(3.48)

and if we assume that the covariance between sub-intervals becomes negligible as the interval length
increases, we get the asymptotic result

V[µ̂Pout(k)] ≈
1

K2

K∑
j=1

V[msegmented(j)] ≈
1

K
V[msegmented(j)]

=
1

K

1

(240000/K)2
V
[ 240000/K∑
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Pout(r̂opt(k),Xi(k))

]

=
K

2400002
V
[ 240000/K∑

i=1

Pout(r̂opt(k),Xi(k))

]
(3.49)

where the variance of a sub-interval cannot be further evaluated without fully exploring the covari-
ance structure of its N2/K terms. Instead, this variance will be estimated as

V̂[µ̂Pout
(k)] =

1

K
V̂[msegmented(j)]

=
1

K

K∑
j=1

(msegmented(j)− Ê[msegmented])
2

=
1

K

K∑
j=1

(msegmented(j)− µ̂Pout
(k))2

= s2segmented

(3.50)

and we get the confidence intervals

CIµPout (k)
=

((
µ̂Pout

(k)− λα/2

√
s2segmented(k)

K

)
,
(
µ̂Pout

(k) + λα/2

√
s2segmented(k)

K

))
. (3.51)

It should be noted that a sample of 240 000 observations is equivalent to 24 000 seconds or 400
minutes, which is an unrealistically long duration for a sea state. However, this is not relevant to
the problem since our goal is to use these samples for better estimation accuracy of the optimum
rotations per minute and the time-average power output for each state. If we want the expected
output over a period of time, we would then take a weighted average (by the probabilities of each
state) of the outputs, and multiply this by the time period.

The overall mean power output, provided that only these 78 sea states may occur and that they do
so with probabilities proportional to the ones given in table 3.1 (P(k)), is

µ̂Pout
=

78∑
k=1

µ̂Pout
(k)P∗(k) =

78∑
k=1

µ̂Pout
(k)

P(k)∑78
k=1 P(k)

=

78∑
k=1

µ̂Pout
(k)

P(k)
0.9243

(3.52)
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though since the 48 excluded sea states have not been chosen at random, this estimator will be
slightly biased. Its variance is

V[µ̂POut
] =

78∑
k=1

(
P∗(k)

)2V[µ̂POut
(k)]

=

78∑
k=1

(
P∗(k)

)2 K
N2

2

V
[N2/K∑

i=1

Pout(r̂opt(k),Xi(k))

] (3.53)

since the data for each sea state is sampled independently of the other states. The variance is
estimated as

V̂[µ̂POut
] =

78∑
k=1

(
P∗(k)

)2V̂[µ̂Pout(k)]

=

78∑
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(
P∗(k)

)2
s2segmented(k)

(3.54)

which gives the confidence interval

CIµPout
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(3.55)

The corresponding estimates for the energy efficiency are

µ̂eff =

78∑
k=1

1000µ̂Pout(k)

8J(k)

P(k)
0.9243

(3.56)

V̂[µ̂eff ] =

78∑
k=1

(
P∗(k)

)2 106s2segmented(k)

64J2(k)
(3.57)

with confidence intervals completely analogous to those for the mean power. The factors 1000 and
106 are due to the output being measured in kW and the energy potential in W.

Variance estimates and confidence intervals for the rotation speeds may not be calculated since we
only have one observation available for each sea state.

3.3.3 Variance estimation

It is also of interest to measure the variance of the power output for each sea state, given the optimal
rotation speed. As already stated, the variance of the wave process segments is not proportional
to the variance of the individual observations due to their significant autocorrelation. Since shorter
intervals likely also have correlations, we may not use the longer 4000-observation segments as our
data if we are interested in the variance between shorter segments. Instead, we will use the same
interval length as when optimizing the mean with a variance penalty – the variance between 600-
observation or 60-second intervals. Since a sea state usually lasts around 20 minutes, what we will
measure is the variance between 20 adjacent one minute long segments.

The time series of 240 000 observations will then give 400 means for each sea state, which may be
used to estimate the variance between 20 such segments, 20 times each. The 20 variance estimates
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for each state may then be averaged for a final variance estimate for that state. This should be a
consistent estimator as long as the process is stationary and second-order ergodic. If the interval
means are Gaussian we may also construct confidence intervals using the χ2 distribution as in
eq. (2.52). However, this is only valid if the segment means are indeed Gaussian. The estimator is
mathematically written as (cf. eq. (2.49))

σ̂2
minute =

1

20

20∑
l=1

1

19

20∑
j=1

(
1

600

600∑
i=1

xi+600(j−1)+12000(l−1)(k)−
1

12000

12000∑
i=1

xi+12000(l−1)(k)

)2

.

(3.58)

If the segment means are found to be Gaussian but the variance estimates seem to agree better
with a Gaussian distribution than with a Chi-square one, we instead construct Gaussian confidence
intervals. If the means are not found to be Gaussian, we do not construct confidence intervals since
we are not sure that the average sample variance will converge sufficiently to either distribution.

To investigate the Gaussianity of the power output, we will use the 400 segment means for each
sea state. In case the mean power is found to be reasonably Gaussian, we will also use them to
construct confidence intervals for the variance. The normality test used is the Shapiro-Wilk test,
using the Matlab function provided by BenSäıda (2024). Since the sample size for the test will be
60, we expect it to have a reasonably high power for an individual sea state in accordance with the
results of (Razali and Wah, 2011). However, 78 sea states are tested. A nominal significance level
of α = 5% gives a multiple-testing significance level of

P(H0 rejected for at least one sea state|H0 true for all sea states)

= 1− P(H0 rejected for zero sea states|H0 true for all sea states)

= 1−
(
P(H0 not rejected for single sea state|H0 true for single sea state)

)78
= 1− (1− α)78

= 0.9817

(3.59)

meaning there is an overwhelming risk of falsely classifying the power output distribution of at least
one state as non-Gaussian, even if all 78 are in reality Gaussian. Nevertheless, the desired result
is for the null hypothesis not to be rejected, since this is what would validate using χ2-distribution
confidence intervals for the variance. This means that we will actually be more conservative with
our application of this confidence interval method, being likely to apply it to fewer sea states than
we could have. In a situation where all sea states give Gaussian power output distributions, the
probability of misclassifying n of them as non-Gaussian is given by table 3.3. The probability
of misclassifying more than five distributions is 0.195, and the probability of misclassifying more
than ten is only 0.002. If the power outputs are generally Gaussian, we should be able to produce
confidence intervals for the variance of the vast majority of them.
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n P(N = n) P(N ≤ n)
0 0.018 0.018
1 0.075 0.093
2 0.152 0.246
3 0.203 0.449
4 0.200 0.649
5 0.156 0.805
6 0.100 0.905
7 0.054 0.956
8 0.025 0.984
9 0.010 0.994
10 0.004 0.998

Table 3.3: Probabilities (pointwise and cumulative) of n distributions being misclassified as non-
Gaussian in the Shapiro-Wilk test given that all 78 are Gaussian.

What also needs to be considered is the multiple-testing power, meaning the probability of rejecting
the null hypothesis of Gaussianity for all sea states provided that they are all non-Gaussian. This
cannot be calculated exactly since the power of the test is not known to us. Given a power 1 − βk
for sea state k, we have

P(H0 rejected for all sea states|H0 false for all sea states)

= Π78
k=1(1− βk)

(3.60)

which is unknown. However, Razali and Wah (2011) found a power equal to 1 for the Shapiro-Wilk
test when the true distribution was asymmetrical, for sample sizes much smaller than 1000. A
single-test power of 1−βk = 1 for all sea states still gives a group power of 1, and for (homogeneous)
single-test power 1 − βk = 0.999 the group power is 0.99978 = 0.925, which on average would give
six sea states mistakenly classified as Gaussian. This number would decrease as the individual tests’
powers approach 1. When Razali and Wah used the Shapiro Wilk test on a symmetric distribution,
namely Student’s t(7), the power was only 0.9937 for 1000 samples (Razali and Wah, 2011, p. 28),
which would give a group power of 0.611 and 30 expected misclassifications. Since the t distribution
is quite similar to a Gaussian distribution, misclassifying between the two might also not be as
serious as misclassifying a heavily skewed distribution as Gaussian.

For sea states where the power output is found to be Gaussian, we will construct confidence intervals
for the variances either as

CIσ2(k) =
(
k1σ̂

2
MC(k), k2σ̂

2
MC(k)

)
k1 = 399/χ2

α/2(399)

k2 = 399/χ2
1−α/2(399)

(3.61)

in accordance with eq. (2.52) or as Gaussian intervals

CIσ2(k) =
(
s2(k) + ϕα/2

√
s4(k) · (κ̂(k)− 1)/N), s2(k) + ϕ1−α/2

√
s4(k) · (κ̂(k)− 1)/N)

)
κ̂ =

µ̂4

s4

(3.62)

using the result in eq. (2.53), where κ̂ is an appropriate estimator of the kurtosis.
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3.4 Regression using the sea state parameters as predictors

Besides estimating the optimal rotation speed and its associated expected power output for each sea
state individually, it is of interest to find a general relations between these values and the parameters
of the sea states (the significant wave height and the energy period). There are three variables whose
relation to the sea state parameters are of particular interest.

• The choice of using the 50 kW generator, the 100 kW generator, or both.

• The optimal rotation speed for the generator(s), in rpm.

• The mean power output given the optimal rotation speed.

The first two of these relations are immediately relevant in the sense that they give easy ways to,
given information regarding the current sea state, change the settings of the generators to maximize
the power output, until the sea shifts to another state which then causes the generators to change
settings again. The third relation is meaningful for explaining the general effect of the sea state on
the potential power production of the WEC, but also for predicting the mean power output of other
sea states not included in this study.

The fact that we cannot calculate the optimal rotation speed or the expected power output explicitly,
even after conditioning on the sea state, makes a (linear) regression analysis appropriate for finding
this relation. If analytical and exact values of the r̂opt and µ̂Pout were available, we would be able
to find a deterministic rule, though possibly a very complicated one, for how the optimal rotation
speed and expected power relate to the sea, and there would be no random errors. In this situation,
however, the values we have may be assumed to include a random error term,

r̂opt = ropt + ϵr (3.63)

µ̂Pout = µPout + ϵm (3.64)

and for the segment means,

msegmented(i) = µPout + ϵm,i. (3.65)

Let a first model for sea state k (with observation index i) be expressed as

µ̂Pout,i(k) = β0 + β1Hs,i(k) + β2Te,i(k) + ϵi(k) (3.66)

where we assume that the errors ϵi are i.i.d. N (0, σ2) for each observation i. We then have
E[µ̂Pout,i(k)] = β0 + β1Hs,i + β2Te,i and V[µ̂Pout,i(k)] = σ2. As described in section section 2.6.1,
estimates of the β coefficients may be found easily using the least squares method. A completely
analogous approach may be utilized to find a model for the optimal rotation speed.

However, it seems reasonable that increasing the significant wave height may have a different effect
on the power (or the rotation speed) for different lengths of the energy period, or vice versa. For
this reason, we will expand the regression model to include an interaction term,

µPout,i(k) = β0 + β1Hs,i(k) + β2Te,i(k) + β1,2Hs,i(k)Te,i(k) + ϵi. (3.67)

To fit this regression model, we use the K interval means for each of the 78 sea states. Thereafter, we
run diagnostics on the residuals to check their Gaussianity, if there are any non-linear patterns, if they
seem correlated with the predicted response values or the predictor variables, and if the variances
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seem to differ. If necessary, we will redo the regression analysis with for instance transformed
variables or weighted least squares, until the model assumptions appear to be fulfilled. In case of a
weighted least squares approach, we will use the variances of the observations from each sea state to
determine estimated state-wise weights ŵi, using the fact that we have discrete categories available
for the predictor variables.

If we encounter several models which seem to fit the data well, we will compare them through their
respective adjusted coefficients of determination (R2

adj).

The model for the rotation speeds has the complication that some of the sea states might have
rotation speeds optimized for only one generator rather than two, making the values incomparable.
Therefore, we will fit separate linear regression models for those sea states using only the 50 kW
generator, the 100 kW generator, or both, respectively. It will, however, be much more difficult to
fit this regression model satisfactorily due to there only being one observation available for each sea
state. It will also not be possible to set aside a random sample of these observations as validation
data. For this reason, we will create new validation data using time series of 12 000 observations for
optimization, and 48 000 observations for output estimation (in both cases the number is without
the 500-observation burn-in period). These new data will be used to test our regression models of
all kinds and avoid overfitting to the training data.

Furthermore, the choice of active generators is a categorical variable with three possible values,
meaning a linear regression is not useful to model it. Rather, since the values are discrete but also
clearly ordered – 50kW < 100kW < 50 + 100kW – an ordinal logistic regression model seems most
reasonable. Here, the same selection of predictors are available as for the linear regressions, except
that they are used for predicting probabilities of the three generator choices in accordance with
eqs. (2.96) to (2.98). For the ordinal logistic regression model, we use the confusion matrix and its
associated statistics for evaluating the model, both on the training and the validation data. We also
plot the accuracy for different decision thresholds, as well as a ROC-curve in the case of a binary
logistic regression.
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Results

4.1 Estimation and regression analysis of the optimal rota-
tion speeds

The first result to be presented in this section is the one that is acquired first, namely the choice of
generator(s) for each sea state and the optimal speed in rotations per minute (rpm). The rotation
speed values, optimized over stochastic processes of 120 000 observations (after a 500-observation
burn-in), are found in table 4.1 and also plotted as a heat map in fig. 4.1 for a better overview. 64
out of the 78 investigated sea states get the highest optimization statistic value when using both
generators, while 13 perform best with only the 100 kW generator (marked with ∗∗ in the table) and
only one performs best with only the 50 kW generator (marked ∗). A few patterns may be seen in
the table: Firstly, among the sea states using both generators, the optimal speed increases for higher
significant wave heights Hs but decreases for longer energy periods Te, though the size of these effects
varies. The highest observed optimal rotation speeds are reached for [Hs, Te] values of [6.25, 9.5],
[4.25, 7.5] and [5.25, 8.5]. One generator alone giving better results than two generally occurs for
the lower significant wave heights and longer energy periods, and the shift from two generators to
one (and from 100 kW to 50 kW) seems to occur when the optimal rotation speed would otherwise
pass below 500, which is the minimum number of rotations per minute. The algorithm chooses the
50 kW generator only for one sea state, which has the longest included energy period for the lowest
significant wave height. However, the patterns in the table are irregular and we sometimes see an
increase in the rotation speed or a switch from one to two generators despite a decrease in Hs or an
increase in Te. The starkest irregularity occurs for Hs = 2.75 m when the energy period increases
from 12.5 to 13.5 seconds: The algorithm goes from choosing only the 100 kW generator to choosing
to use both, and also increases the rotation speed from 526 to 918 rpm.
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Figure 4.1: Heat map of the optimal rotation speed for each sea state, using the maximization
statistic eq. (3.33). Sea states marked with a red dot use only the 100 kW generator, the sea state
marked with a blue dot uses only the 50 kW generator, and all other states use both.

Hs(m)/Te(s) 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5
6.75 2 040.7

6.25 2 306.8 1 824.8 1 513.2

5.75 1 904.6 1 735.8 1 392.7

5.25 2 156.4 1 823.3 1 462.6 1 236.8

4.75 2 035.9 1 710.7 1 327.2 1 112.4 899.9

4.25 2 271.9 1 773.0 1 455.0 1 245.5 1 015.6 720.8

3.75 2 037.6 1 466.5 1 308.2 1 013.3 760.7 650.5

3.25 1 968.7 1 600.6 1 327.6 1 052.2 789.3 622.2 501.7 500.1

2.75 1 577.1 1 374.5 1 077.1 834.1 580.2 501.7 525.9∗∗ 918.0

2.25 1 691.1 1 270.1 1 030.1 760.9 564.4 500.5 567.3∗∗ 656.1 519.0

1.75 1 149.9 948.2 725.1 500.5 550.6∗∗ 596.7 516.2 525.6 551.8∗∗

1.25 745.1 501.0 602.6∗∗ 503.7∗∗ 500.4 500.3 519.6∗∗ 500.1∗∗ 500.2∗∗

0.75 500.7 500.1 571.2∗∗ 501.2∗∗ 500.4∗∗ 500.1∗∗ 532.2∗

Table 4.1: The optimal generator rotation speeds (in rpm) for each of the 78 sea states, optimized
from stochastic processes of length 120 000 with step size 0.1 seconds, and using eq. (3.33) as a
maximization target statistic. Unmarked values indicate that the optimization chose to use both
generators for the sea state, while those marked with ∗ and ∗∗ (both in red) are chosen to use only
the 50 kW or only the 100 kW generator, respectively.

No confidence intervals are produced for these optimum values, since we have no measure of their
variance. Getting such a variance measure would require multiple optimizations for each sea state,
which is very computationally heavy. We will, however, fit a linear regression model to the rotation
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Parameter Estimate Standard Error p value
ζ100 -6.35 2.33 0.00645
ζ150 -1.94 1.82 0.288
βHs -3.06 0.881 0.000513
βTe 0.635 0.225 0.00485

Table 4.2: Parameter estimates for the ordinal logistic regression model using only the main effects
of significant wave height and energy period.

True/Predicted generator choice 50 kW 100 kW 50+100 kW Sum
50 kW 0 1 0 1
100 kW 0 8 5 13

50+100 kW 0 3 61 64
Sum 0 12 66 78

Table 4.3: Confusion matrix for the ordinal logistic regression model for choice of generators.

speed values. Checking the relative occurrence frequencies of the single-generator sea states in
table 3.1, we find that they together make up 30.46% of the occurrences of all 126 sea states, or
24.76% of the occurrences of the 78 states included in this thesis. This is clearly not negligible and
we need to take the generator choice into account in our analysis.

4.1.1 Logistic regression models

To predict the choice of generator(s), we fit an ordinal logistic regression model and find that using
only the main effects gives a confusion matrix with an overall accuracy of 88.46%, or 69 out of
78 states correctly classified. The fit parameters are featured in table 4.2. The confusion matrix
is featured in table 4.3, and we may see there that due to there only being one sea state where
the 50 kW generator alone is recommended, this case is never predicted by the model but instead
the 100 kW generator choice is predicted. The precisions for correctly predicting the 100 kW and
double-generator choices are 61.54% and 95.31%, respectively.

We also try adding the interaction term, but this led to a decrease rather than an increase in the
model’s overall accuracy (to 87.18%), predicting one more of the double-generator observations as
only 100 kW. Adding further terms such as the squared predictors gives the exact same results.

Since the model fails to predict the 50 kW case entirely, an option might be to disregard that case
– in other words, treating it as a 100 kW case – and use a binary logistic model to predict when
to use only the 100 kW generator and when to use both. We fit this model and get an accuracy of
89.74%, only a slight improvement which follows entirely from the 50 kW case no longer counting
as misclassified. However, this model is easier to interpret and therefore easier to use for practical
decision making. It is also, as we see in the following paragraphs, easier to tune for improved
prediction. The fitted parameters are featured in table 4.4.

Associated predictor Parameter Estimate Standard Error p value
Intercept β0 1.90 1.83 0.297

Significant wave height βHs 2.80 0.831 7.38 · 10−4

Wave energy period βTe -0.589 0.221 0.00779

Table 4.4: Parameter estimates for the binary logistic regression model using only the main effects
of significant wave height and energy period.
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Figure 4.2: ROC and accuracy curves for the binary logistic model, using the training data and
decision threshold values 0, 0.01, . . . , 1.

Figure 4.3: ROC and accuracy curves for the binary logistic model, using the validation data and
decision threshold values 0, 0.01, . . . , 1.

The model’s accuracy is based on the assumption that we predict the use of two generators if
the predicted probability of two generators is above 0.5, and one (100 kW) generator otherwise.
However, choosing a different threshold and thus being more or less inclined to predict one of the
outcomes might well increase the accuracy. To investigate this, we create predicted outcomes based
on threshold values 0, 0.01, . . . , 1 and investigate the performances. In fig. 4.2, we show both the
ROC-curve for the different thresholds (false positive rate vs true positive rate) and the development
of the accuracy. The latter plot suggests that a threshold at or slightly below 0.3 gives the highest
accuracy, which is 92.31% on the training data.

In order to avoid overfitting, we also check the model’s performance on the validation data and see
that the threshold 0.3 is still optimal and gives an accuracy of 88.46%. The ROC and accuracy
curves are plotted in fig. 4.3.

We may now derive a decision rule using the threshold 0.3 and the parameter estimates in table 4.4:

• If the model gives a probability of two generators greater than 0.3, use both generators.

• The probability is above 0.5 if the odds are greater than 0.429, which occurs when the log-odds
– i.e. βX – is above -0.368.

• β0+βHsHs+βTeTe > −0.368 when βHsHs+βTeTe > −β0, i.e. when 2.80Hs−0.589Te > −2.27.
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Figure 4.4: The observed optimal rotation speeds for the sea states using only the 100 kW generator.

• If 2.80Hs(k) − 0.589Te(k) > −2.27 for sea state k, use both generators for that sea state.
Otherwise, use only the 100 kW generator.

This rule gives the most optimal decision in approximately 88.46% of cases, judging from the vali-
dation data.

4.1.2 Linear regression models for rotation speed

Having done this, we move on to the linear regression models for the optimal rotation speed, con-
ditionally on the generator choice. For the single sea state where only one generator is active, it
is meaningless to fit a regression model since there is only one observation. Furthermore, since the
decision rule established in the previous section disregards the 50 kW cases entirely and treats them
as 100 kW cases, any subsequent rule for setting the rotation speed will not be relevant for 50 kW
cases.

For only the 100 kW generator, there are 13 observations, still making it difficult to fit a model
properly, particularly since they do not vary much – they range from 500.07 to 602.64 rpm while the
ones using both generators go as high as 2306.82 rpm. The values are plotted in fig. 4.4 and we note
that the pattern looks very irregular and that it may therefore be difficult to fit a regression model
to it. Unsurprisingly, it is difficult to find a model which is at all significantly better than simply
using the mean of the observations. The only model which is barely significant is one which uses the
significant wave height, the energy period and the squared energy period, but this model does not
give satisfactory residual diagnostics. Thus, for the sea states using only the 100 kW generator we
simply use the average optimal rotation speed, which is 530.50 rpm if we also include the one sea
state where the 50 kW generator was recommended.

Finally, we have the 64 observations from the sea states where it was deemed optimal to use both
generators. For these data, the best model we are able to fit given the restriction of only having one
observation per sea state is one which uses the main effects of the two predictors, their interaction,
the squared energy period and the interaction between energy period and squared significant wave
height. The estimated parameters of this model are in table 4.5, and the residual diagnostics are
featured in fig. 4.5. While the model assumptions do not seem entirely fulfilled – particularly, there
is a large outlier for Hs = 2.75 m, Te = 13.5 s – we are not able to find a better model given
the limited data. This model still gives an adjusted coefficient of determination of 0.969, and all
parameters are highly significant. We will therefore move on to evaluating this model on validation
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Associated predictor Parameter Estimate Standard Error p value
Intercept β0 1364.88 224.8 1.04 · 10−7

Significant wave height βHs 1298.19 57.58 2.20 · 10−30

Wave energy period βTe -404.91 52.02 1.41 · 10−10

Interaction βHs,Te -110.27 8.28 2.67 · 10−19

Squared energy period βTe2 27.69 2.97 3.81 · 10−13

Interaction between period and squared height βHs2,Te 2.03 0.586 0.00102

Table 4.5: Parameter estimates for the linear regression model predicting rotation speed in the cases
using both generators.

data, to check whether it has good predictive accuracy.

On the test data, the model gives an adjusted coefficient of determination of 0.827, a clear decrease
but still a high number. The validation data diagnostics are featured in detail in appendix A. These
residuals actually seem to behave better than they did for the training data, with the exception of
a large outlier for the sea state Hs = 6.25 m, Te = 11.5 s which has predicted rotation speed 1471
rpm (and observed speed 1513 rpm in the training data), but 2548 rpm observed in the validation
data.

We then have a model for determining the rotation speed to set for any sea conditions when it is
deemed appropriate to use both generators, using the information on significant wave height and
wave energy period:

r̂opt = 1364.88 + 1298.19Hs − 404.91Te − 110.27HsTe + 27.69T 2
e + 2.03H2

sTe (4.1)

4.2 Estimation and regression analysis of the mean power
output

Using the optimal rotation speeds and generator choices from table 4.1 on 78 new stochastic processes
of 240 000 observations each (excluding the burn-in), we get power output time series for each sea
state. These are presented for four sea states, and for observations 192 000-240 000 (the last fifth
of the time series, cropped for visibility) in fig. 4.6. Clearly, the power is higher for sea states with
higher significant wave height and shorter energy period, but the variability also seems to increase
significantly for these states, as seen in particular in the bottom row of the figure (Hs = 4.25 m).

We move on to the estimation of mean power over the entire 240 000-observation process. The point
estimates and confidence intervals of the mean are presented in table 4.6, while the point estimates
along with the corresponding efficiencies are also plotted in fig. 4.7. Each confidence interval is
based on the variance of the means of 60 segments with a length of 4000 observations each. The
estimates and their confidence intervals are also seen in fig. 4.8, ordered by the sea states’ frequency
of occurrence (descending). A three-dimensional plot of the same estimates and intervals against
the sea state parameters is featured in fig. 4.9. We also compare these intervals to the mean power
values acquired for the original processes of length 120 000, and find that the optimization data’s
mean power was outside the estimation data confidence intervals for 23 out of 78 sea states, or almost
29.5%. This is reduced to 14 states, or 18%, if we widen the confidence intervals to be based on
120 000 observations rather than 240 000, but this is still more observations outside the confidence
interval bounds than we would expect. This implies that the confidence intervals are either made
too narrow, or that the optimization data systematically deviate from the estimation data. Seven
of the 14 observations are above the confidence interval, and seven are below.
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Figure 4.5: Residual diagnostics for the model predicting the rotation speed, for the 64 sea states
using both generators.
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Figure 4.6: Observations 192 000 through 240 000 of the power time series for four sea states, using
the optimized generator choices and rotation speeds. The sea states used have significant wave
height Hs equal to 1.25 for the top row and 4.25 for the bottom, while the energy period Te is 7.5
for the left column and 11.5 for the right.

Hs(m)/Te(s) 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5
6.75 65.7

[64.9, 66.6]

6.25 73.0 59.7 49.5
[72.2, 73.8] [58.9, 60.6] [48.7, 50.3]

5.75 64.6 56.1 45.7
[63.9, 65.4] [55.2, 57.1] [45.1, 46.4]

5.25 73.0 59.8 48.7 40.0
[72.0, 74.0] [58.7, 60.8] [48.0, 49.4] [39.5, 40.6]

4.75 66.7 55.0 43.0 36.0 28.6
[65.7, 67.6] [54.1, 55.9] [42.2, 43.7] [35.2, 36.7] [28.1, 29.1]

4.25 74.1 57.8 47.4 39.9 31.7 23.3
[73.1, 75.2] [56.9, 58.7] [46.6, 48.3] [39.1, 40.6] [31.1, 32.3] [22.9, 23.6]

3.75 65.1 50.4 42.0 32.4 24.4 19.9
[64.1, 66.1] [49.7, 51.0] [41.3, 42.6] [31.8, 33.0] [23.9, 24.9] [19.5, 20.3]

3.25 66.5 54.2 43.4 34.1 25.4 19.3 14.8 12.4
[65.3, 67.6] [53.3, 55.1] [42.7, 44.1] [33.4, 34.7] [24.9, 25.9] [18.9, 19.7] [14.4, 15.1] [12.1, 12.8]

2.75 54.1 44.0 34.5 26.3 18.5 14.7 10.2 8.2
[53.4, 54.9] [43.2, 44.8] [33.9, 35.2] [25.7, 26.8] [18.1, 18.9] [14.4, 15.0] [9.9, 10.4] [7.93, 8.54]

2.25 54.4 43.2 33.6 24.5 18.2 14.0 10.1 7.87 6.39
[53.5, 55.3] [42.4, 43.9] [33.0, 34.3] [24.1, 25.0] [17.8, 18.7] [13.6, 14.3] [9.8, 10.4] [7.60, 8.13] [6.19, 6.59]

1.75 37.8 31.2 22.9 15.9 11.0 9.17 6.72 4.86 3.61
[37.0, 38.6] [30.6, 31.8] [22.5, 23.4] [15.6, 16.3] [10.7, 11.3] [8.81, 9.52] [6.46, 6.98] [4.69, 5.03] [3.50, 3.72]

1.25 22.8 16.5 11.9 8.69 6.49 4.55 3.07 2.32 1.79
[22.2, 23.4] [16.2, 16.9] [11.6, 12.2] [8.45, 8.93] [6.27, 6.71] [4.40, 4.71] [2.98, 3.17] [2.25, 2.39] [1.74, 1.84]

0.75 9.85 6.88 4.77 3.31 2.04 1.40 1.05
[9.47, 10.23] [6.59, 7.18] [4.59, 4.95] [3.20, 3.43] [1.98, 2.11] [1.36, 1.43] [1.02, 1.08]

Table 4.6: The estimated mean power output in kW for each of the 78 wave states, using the optimal
rotation speeds and generator choices from table 4.1, plus corresponding 95% confidence intervals.
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Figure 4.7: Heat maps of the mean power output and the mean efficiency for each sea state, using
the rotation speeds and generator choices from table 4.1.

Overall, the mean power output follows a very similar pattern to the optimal rotation speed and
the highest values are found for short energy periods and high significant wave heights. Increasing
the energy period has a negative effect on the power whereas increasing the significant wave height
has a positive effect, with a mean power point estimate range from 1.05 (Hs = 0.75, Te = 11.5) to
74.13 (Hs = 4.25, Te = 7.5).

Next, we calculate the wave-energy transport for each state using the expression in eq. (2.26). As
stated previously, we use the fluid density 1027 kg/m3 and the gravity acceleration constant 9.82
m/s2. These energy potentials are not presented in detail, but range between 1.52 kW/m (Hs = 0.75
m, Te = 5.5 s) and 235.65 kW/m (Hs = 6.75 m, Te = 10.5 s). The power efficiency, estimated mean
power divided by energy potential times width of the wave front, may then be calculated and ranges
between 2.05% (Hs = 2.75 m, Te = 13.5 s) and 80.82% (Hs = 0.75 m, Te = 5.5 s). The efficiency
is seen in fig. 4.7 to be highest for the states with short energy periods and low significant wave
heights, reaching around 80% for Hs = 0.75 m, Te = 5.5 and then quickly dropping down to around
50-60% for the adjacent sea states. For most states, the mean efficiency seems to be below 20%
and even close to zero for the states with very long and/or high waves. This is likely due to the
drastically increased energy potential in these waves, which the WEC is only capable of capturing
to a very small degree.

The total, weighted average mean power output is estimated to 21.74 with a variance of 0.07. This
gives us the confidence interval

IµPout
= [21.68, 21.81] (4.2)

though, as stated before, this estimate has a slight bias due to the sea states excluded from the study.
The weighted average efficiency is estimated to 21.50%, with a variance of 0.004699%2. Finally, we
get the following confidence interval for the efficiency:

IeffPout
= [0.2132, 0.2168]. (4.3)

The calculations above use the rotation speeds optimized on 120 000 observations, but we also
investigate if there is any difference in results if we use the generator choices and rotation speeds
predicted by the regression models in section 4.1. We therefore try using these regression-derived
generator choices and rotation speeds on time series of length 48 000 observations, and find the
total weighted average power output. Interestingly, when estimating the output using the optimized
rotation speeds and the validation data time series, we get an estimated mean output of 21.64 kW,
a variance (between 400-second segments) of 0.0654, and a confidence interval of [21.48, 21.81] –
slightly lower than when using the training data but not significantly different.
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Figure 4.8: Point estimates and confidence intervals for the mean power output of all the 78 included
sea states, sorted by frequency of occurrence.

Figure 4.9: Point estimates and confidence intervals for the mean power output of all the 78 included
sea states, by significant wave height and energy period.
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When using the rotation speeds and generator choices given by the regression models, however, the
output actually seems to increase: The point estimate is 21.98 kW, the variance (between 400-second
segments) 0.0740 MW and the confidence interval [21.80, 22.15] kW. This is a significant increase
from the mean output when using the optimized rotation speeds, regardless of whether we look at
the training data or the validation data.

Another important comparison to make is between the above results and the ones acquired when
we set λ = 0 in eq. (3.25) and thus only maximize the mean of the power output without regard
for the variance, while using the same time series for optimization and estimation as when λ = 2.
This process led to a mean output of 23.90 kW, meaning that the inclusion of the variance in our
optimization led to an estimated decrease in the mean of 23.90 − 21.74 = 2.16 kW, or 9%. The
estimated 400-second variance is 0.1886 MW, giving a confidence interval of [23.79, 24.01] kW and
a highly significant difference.

The efficiency when using λ = 0 is estimated to 23.04%, with a 400-second variance of 0.00655%2

and a confidence interval of [0.2283, 0.2325]. Here, we have a decrease by 23.04 − 21.50 = 1.54
percentage points, or 6.68%.

4.2.1 Ordinary linear regression model

Having the data of the segments’ mean power, we now set to construct a regression model for
explaining the power with the significant wave height and energy period as predictor variables. We
use a random sample of the segment means as validation data, taking out 10 means for each sea
state and keeping 50 as training data.

Since we have established that both parameters seem to have an impact on the mean power, the
first model will include both parameters rather than only one of them. This model is thus

µ̂Pout = β0 + βHsHs + βTeTe (4.4)

and fitting it with least squares to gives the coefficients β̂0 = 46.4, β̂Hs = 12.2 and β̂Te = −5.49, all
highly significant. The values also agree with our previous observations regarding the general effects
of the two predictors, and the model has an adjusted R2 value of 0.897. However, the residuals for this
model show several problems. The residuals for this model are featured in appendix A and excluded
here for brevity, but overall show problems such as non-linear residual patterns, heteroscedasticity
and non-Gaussianity, meaning the model assumptions are not fulfilled.

Due to these problems with the initial model, and also due to the non-linear pattern observed in
fig. 4.9, it seems reasonable to also include an interaction term between the two predictors as well as
squared versions of each main predictor. We also improve the model further by adding an interaction
between the squared significant wave height and the energy period. This gives the model

µ̂Pout
= β0 + βHsHs + βTeTe + βHs2H

2
s + βTe2T

2
e + βHs,TeHsTe + βHs2TeH

2
sTe (4.5)

which when fit with least squares has coefficient estimates β̂0 = 16.9, β̂Hs = 55.7, β̂Te = −8.51,
β̂Hs,Te = −4.23, β̂Hs2 = −3.18, β̂Te2 = 0.563, and β̂Hs2,Te = 0.306. All coefficients are highly
significant and the adjusted R2 value has risen from 0.897 to 0.984. This model, however, still has
problems in its residuals similar to the ones in the main effects model, as may be seen in detail in
appendix A.

As discussed previously, these problems of heteroscedasticity and non-Gaussianity could potentially
be amended by transforming either the response variable, the predictors, or both. The transforma-
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Associated predictor Parameter Estimate Standard Error p value
Intercept β0 3.77 0.0760 0

Significant wave height βHs 5.45 0.0474 0
Wave energy period βTe -0.761 0.0135 0

Interaction βHs,Te -0.328 0.00476 0
Squared wave height βHs2 -0.513 0.00826 0
Squared energy period βTe2 0.0364 0.000685 0

Squared height and energy period interaction βHs2,Te 0.0376 0.000811 0

Table 4.7: Parameter estimates for the linear regression model predicting the square root of the
mean power using the two predictors, the interaction, the squared predictors and an interaction
between squared height and period. Studentized residuals plotted against predicted values (top
left), significant wave height Hs (top right), wave energy period Te (second row left), interaction
term Hs · Te (second row right), Hs squared (third row left), Te squared (third row right) and Hs

squared times Te (bottom left), as well as a normal Q-Q plot of the residuals (bottom right).

tion we use is taking the square root of the response µPout to get the model√
µ̂Pout = β0 + βHsHs + βTeTe + βHs,TeHsTe + βHs2H

2
s + βTe2T

2
e + βHs2,TeH

2
sTe (4.6)

or, equivalently,

µ̂Pout = (β0 + βHsHs + βTeTe + βHs,TeHsTe + βHs2H
2
s + βTe2T

2
e + βHs2,TeH

2
sTe)

2. (4.7)

The coefficient estimates are now the ones featured in table 4.7, and the adjusted R2 has risen even
further to 0.991. The model assumptions are still not entirely fulfilled, though they are closer than
the previous models. As may be seen in detail in appendix A, certain sea states still have slightly
different residual variances.

The model seems to provide a reasonably good fit to the data when we make a 3D plot of the
observed mean powers for each sea state, their confidence intervals and the plane representing the
model’s predictions. Such a plot is featured in fig. 4.10, and shows good agreement between the
Monte Carlo estimations and the fitted regression model. However, we may note that for 38 of the
78 sea states the regression model estimations fall outside the Monte Carlo confidence intervals, 19
above and 19 below.

4.2.2 Weighted least squares model

As a final model, we perform a weighted least squares fit to the data. The weights are the inverse of
the estimated variance of each sea state, but otherwise the model is identical to the one in eq. (4.6),
using the square root of the mean power as response variable and multiple interaction and squared
terms of the predictors. The residuals from this model are studentized using the square root of
the weights, in accordance with eq. (2.93). These studentized residuals are plotted against the
predictions as well as the predictor variables in fig. 4.11, together with a normal Q-Q plot.

For this model the residuals seem to agree with the model assumptions: The heteroscedasticity is
almost gone and the residuals seem Gaussian. The adjusted coefficient of determination is 0.987,
slightly lower than for the ordinary least squares model, but since that model did not quite fulfill
the model assumptions we choose the WLS one. Its coefficients are found in table 4.8. We may
also visually inspect the agreement of the predicted values to the Monte Carlo estimations and
their corresponding confidence intervals. Here, 40 of the predicted values are outside the confidence
intervals.
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Figure 4.10: Surface plot (blue) of the mean power output values estimated by the function in
eq. (4.6), together with Monte Carlo estimated mean values for each state (red dots) and corre-
sponding 95% confidence intervals (red lines).

Associated predictor Parameter Estimate Standard Error p value
Intercept β0 3.91 0.0656 0

Significant wave height βHs 5.38 0.0408 0
Wave energy period βTe -0.785 0.0108 0

Interaction βHs,Te -0.319 0.00391 0
Squared wave height βHs2 -0.496 0.00737 0
Squared energy period βTe2 0.0370 0.000511 0

Squared height and energy period interaction βHs2,Te 0.0358 0.000706 0

Table 4.8: Parameter estimates for the linear regression model using the weighted least squares
method.
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Figure 4.11: Residual diagnostics for the weighted least squares model. Studentized residuals plotted
against predicted values (top left), significant wave height Hs (top right), wave energy period Te
(second row left), interaction term Hs ·Te (second row right), Hs squared (third row left), Te squared
(third row right) and Hs squared times Te (bottom left), as well as a normal Q-Q plot of the residuals
(bottom right).

75



Chapter 4 – Results

Figure 4.12: Surface plot (blue) of the mean power output values estimated by weighted least squares
to the function in eq. (4.6), together with Monte Carlo estimated mean values for each state (red
dots) and corresponding 95% confidence intervals (red lines).

To get a final evaluation of the model, we test its predictive power on the validation data and find
that the model gives an adjusted coefficient of determination of 0.986, only marginally lower than
the corresponding statistic for the training data. We also check the residuals on the validation data
(shown in appendix A) and find that they are still satisfactory. We thus conclude that this model
is well suited to predicting the mean power, and give the prediction rule

µ̂Pout
= (3.91 + 5.38Hs − 0.785Te − 0.319HsTe − 0.496H2

s + 0.0370T 2
e + 0.0358Hs2Te)

2. (4.8)

4.3 Estimation of the power output variance

Finally, we present the estimates of the minute-to-minute variance in mean power output over a
20-minute period, found through averaging 20 initial estimates.

The Shapiro-Wilk test, run at significance level α = 0.05, rejects the null hypothesis of Gaussianity
for 77 of the 78 sea states’ interval means, where the one non-rejection may well be due to chance.
We conclude that the one-minute means are not Gaussian, and since we do not know whether the
average of 20 such means will converge sufficiently this casts doubt on the validity of both Chi-square
and Gaussian confidence intervals for the variances. We therefore refrain from writing out any such
intervals and settle with providing point estimates. These are found in table 4.9 and also plotted in
fig. 4.13 along with the corresponding variances in efficiency. The patterns in the variance estimates
are similar to those of the mean estimates: The power variance is highest for sea states with high
waves and short energy periods, reaching estimated values as high as 108 MW. The variance is clearly
largest for the sea states with waves of short height and short energy periods, having a maximum
value around 4% but ending up below 0.5% for the vast majority of sea states.
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Hs(m)/Te(s) 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5
6.75 86.88

9.32

6.25 108.04 67.42 48.30
10.39 8.21 6.95

5.75 63.29 73.84 43.44
7.96 8.59 6.59

5.25 89.63 69.10 48.04 35.13
9.47 8.31 6.93 5.93

4.75 80.26 70.23 45.84 35.31 22.87
8.96 8.38 6.77 5.94 4.78

4.25 106.46 65.65 61.34 46.81 30.79 16.27
10.32 8.10 7.83 6.84 5.55 4.03

3.75 93.23 44.41 47.06 32.90 20.78 15.01
9.66 6.66 6.86 5.74 4.56 3.87

3.25 87.70 57.93 47.70 34.96 21.79 14.46 9.11 8.62
9.36 7.61 6.91 5.91 4.67 3.80 3.02 2.94

2.75 57.18 63.82 33.30 24.80 12.26 9.38 4.56 3.35
7.56 7.99 5.77 4.98 3.50 3.06 2.14 1.83

2.25 77.64 42.76 28.93 19.27 12.50 9.26 5.10 3.23 1.94
8.81 6.54 5.38 4.39 3.54 3.04 2.26 1.80 1.39

1.75 35.18 26.47 19.26 9.57 4.94 5.56 2.40 0.870 0.323
5.93 5.15 4.39 3.09 2.22 2.36 1.55 0.933 0.568

1.25 22.59 9.64 6.65 3.72 1.86 0.640 0.232 0.0928 0.0482
4.75 3.10 2.58 1.93 1.36 0.800 0.482 0.305 0.220

0.75 6.24 2.77 0.862 0.315 0.0758 0.0216 0.0120
2.50 1.67 0.928 0.561 0.275 0.147 0.110

Table 4.9: The estimated variances (upper rows) of the power output in MW, using the optimal
rotation speeds and generator choices from table 4.1, and corresponding standard deviations (lower
rows) in kW.

Figure 4.13: Heat maps of the variance in power output (MW) and efficiency for each sea state,
using the rotation speeds and generator choices from table 4.1.
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Figure 4.14: Q-Q plots for the 20 estimates of total power variance weighted across all sea states,
comparing them the Gaussian and Chi-square (399) distributions.

The total (weighted average) variance has a point estimate of 0.349 MW. If we take the weighted
average of the segment means across the sea states, the 400 resulting averages are found by the
Shapiro-Wilk test to not deviate significantly from the Gaussian distribution (p-value 0.102). It may
therefore be valid to construct a confidence interval for this variance using either the Gaussian or
Chi-square distribution. If we take the weighted averages across all sea states to get 20 estimates
of the total variance, we may check the empirical distribution of these 20 estimates. In fig. 4.14, we
show Q-Q plots comparing it to both a Gaussian distribution and a Chi-square distribution with 399
degrees of freedom (since the estimates are based on the weighted averages of 400 segment means).

Neither distribution aligns perfectly with the observations, and there is essentially no difference
between the fit. This is logical since by the central limit theorem, a Chi-square distribution with
as many as 399 degrees of freedom should be very similar to a Gaussian distribution. Ultimately,
we choose to construct a Chi-square confidence interval for the point estimate 0.349 MW, using
eq. (2.52):

Iσ2
Pout

= [0.306, 0.404]. (4.9)

The corresponding estimate of the standard deviation is 0.591 kW, with a confidence interval of

IσPout
= [0.553, 0.635]. (4.10)

Using Gaussian confidence intervals changes the interval limits by amounts of order 10−3 for both
the variance and the standard deviation.

Rescaling the variance to efficiency as

σ̂2
eff =

106 · σ̂2
Pout

82 · J2
, (4.11)

we get the point estimate 1.37 · 10−4, with corresponding standard deviation 0.0117. Unlike with
the variance in power output, here the 400 weighted averages are found to be non-Gaussian (p-value
around 10−5) and we refrain from constructing confidence intervals just as for the individual sea
state variances.

When we instead use the generator settings (generator choices and rotation speeds) optimized on
only the mean output, the total weighted average variance becomes 0.877 MW, with standard
deviation 0.936 kW. For the efficiency, we have variance 2.08 · 10−4 and standard deviation 0.0144.
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The confidence intervals are found to be

Iσ2
Pout

= [0.767, 1.01] (4.12)

IσPout
= [0.876, 1.01] (4.13)

Iσ2
eff

= [1.82 · 10−4, 2.40 · 10−4] (4.14)

Iσeff
= [0.0135, 0.0155] (4.15)

and since the confidence intervals do not overlap with their equivalent intervals above which result
from optimization on the statistic in eq. (3.33), we conclude that the differences are significant in
all four cases and that the variability is clearly reduced when we penalize it in the optimization
algorithm. The estimated decrease in standard deviation for the power output is 0.345 kW, or in
relative numbers 36.87%. For the efficiency, the corresponding decrease is 0.272 percentage points,
or 18.91%.
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Discussion

5.1 Conclusions

5.1.1 WEC generator settings

The first set of conclusions in this thesis concerns the settings of the WEC:s generators for potential
practical use, giving rules for the use of either one or two generators as well as a way to determine
the rotation speed from the current significant wave height and wave energy period.

Optimizing the rotation speeds and generator choices based on the minimization statistic µ∗ = µ−2σ
has given us 78 estimated optima and as many associated estimated mean outputs and variances.
The results show that all three tend to decrease as we lessen the significant wave heightHs or increase
the wave energy period Te. For the rotation speeds, however, the changes are much more irregular,
frequently showing points where the optimum increases even when, for instance, the energy period
increases. It is possible that this occurs due to local minima in the optimization algorithm. These
irregularities do not propagate to the mean output estimates, but do make it more complicated to
fit regression models to the rotation speeds and generator choices. They also do not consider the
increased wear and tear upon the system resulting from using both generators rather than just one,
which we will discuss later in this chapter.

Since the ordinal logistic regression model we initially tried to fit to the generator choices failed to
ever predict the 50 kW case, we settle for the binomial logistic regression model, which after checking
the accuracies following from various decision thresholds on both training and validation data, gave
us the following decision rule which could potentially be relevant for practical implementation:

• Use both generators, 50 and 100 kW, if 2.80Hs − 0.589Te > −2.27, where Hs is the significant
wave height and Te the wave energy period. Otherwise, use only the 100 kW generator.

Furthermore, since the rotation speeds for the single-generator cases did not have a high degree of
variation and no clear patterns which a regression model could capture, we found it more reasonable
to simply use the average of all these rotation speeds for the cases where a single generator is chosen,
namely 531.88 rpm.

• If the previous rule led to only the 100 kW generator being used, set the rotation speed to
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530.50 rpm.

For the double-generator cases, it was more feasible to fit a linear regression model using the two
predictors Hs and Te as well as squared versions of them and interactions terms. The model found to
give the most well-behaved residuals, as well as a high coefficient of determination for both training
and validation data, was the following, also usable as a decision rule:

• If the generator decision rule led to both generators being used, set the rotation speed for both
to r̂ = 1398.38 + 1295.77Hs − 411.87Te − 110.06HsTe + 28.05T 2

e + 2.01H2
sTe.

It is of note that the mean output resulting from using these settings were significantly better than
those resulting from using the optimized settings, with point estimates of 21.98 and 21.64 kW on
the validation data, respectively.

5.1.2 Energy output and efficiency

Secondly, we have results on the power output from the WEC. Like the rotation speed, both the
mean and the variance of the output generally increase with higher wave heights and shorter energy
periods, though with the variance there are some minor exceptions to this pattern. Taking a weighted
average of the sea states by relative frequency of occurrence, we get point estimates and confidence
intervals for the overall power output:

• The mean power output is estimated to µ̂Pout
= 21.74 kW, with 95% confidence interval

IµPout
= [21.68, 21.81].

• The variance among 20 one-minute averages in power output is estimated to σ̂2
Pout

= 0.349
MW, with confidence interval Iσ2

Pout
= [0.306, 0.404].

• The corresponding standard deviation is then estimated to σ̂Pout = 0.591 kW, with confidence
interval IσPout

= [0.553, 0.635].

The estimated coefficient of variation is 0.591/21.73 = 0.0272.

We may compare these numbers to those found when optimizing the generators with regards to only
the mean output, and find that the inclusion of the variance in the optimization statistic through
λ = 2 led to a significant decrease in both mean output and variance. The estimated decrease in
mean is 2.16 kW (from 23.90 to 21.74 kW), or 9% of the λ = 0 result. For the standard deviation,
the decrease is estimated to 0.345 kW (from 0.936 to 0.591 kW), or 37%. We may also calculate the
coefficient of variation to 0.0392, meaning the reduction is 0.0120 percentage points or 30%. These
results agree with the preliminary ones found in section 3.2.1 and specifically fig. 3.7, where on the
shorter time series of length 12 000 we found that λ = 2 led to a decrease of 10% in mean and 40%
in standard deviation. It is of note, though, that the decrease for both statistics is slightly smaller
for the longer time series. This might be in part due to the fact that for the preliminary results, we
used both generators for all sea states to save time. Using optimized generator choices might well
lead to slightly higher mean output, and possibly also slightly higher variance.

The efficiency, meaning the power output relative to the energy potential of the relevant sea state,
is estimated to 21.51%, with a 95% confidence interval of [0.2133, 0.2169]. This is slightly lower
than the efficiency achieved by Zeinali et al. (forthcoming, p. 8), 24%. However, this efficiency is
calculated on the mechanical energy entering the hydraulic system, it stands to reason that some

81



Chapter 5 – Discussion

efficiency would be lost upon the conversion to electrical energy. A better statistic for comparison
would be the efficiency achieved when setting λ = 0 in eq. (3.25), which is estimated to 23.04%
with a confidence interval of [0.2283, 0.2325]. This is still slightly lower than the efficiency found
by Zeinali et al. (forthcoming), likely due to the additional energy conversion, but is significantly
higher than when using λ = 2. The decrease in efficiency is estimated to 1.54 percentage points, or
6.7%. The standard deviation in efficiency, on the other hand, had an estimated decrease of 0.272
percentage points (from 1.44% to 1.17%) or 19%. In other words, the relative decrease is smaller
for the efficiency than for the power output, in terms of both mean and variance but particularly
variance. This suggests that setting λ = 2 reduces the mean and variance more for those sea states
where the output is high in absolute numbers but not in relation to the energy potential. Here, the
coefficient of variation is reduced by 0.0081 or 13%.

The difference in reduction between power output and efficiency is logical since the optimization
algorithm targets the output itself, with no regard for the energy potential, thus prioritizing the
reduction of variance (and through this also slightly reducing the mean) in sea states with high
output without considering whether the energy content of those states is even higher. An alter-
native approach could indeed be to use the efficiency, rather than the pure power output, in the
optimization.

The mean output, too, was fit to a regression model. In this case, we settled for a weighted least
squares linear regression model which gave residuals that seemed to fulfill the model assumptions
and also explained a great deal of the variation in mean power among sea states – R2

adj = 0.987 for
the training data and 0.986 for the valdiation data. The model’s regression equation may be written
as

µ̂Pout = (3.90 + 5.41Hs − 0.786Te − 0.322HsTe − 0.503H2
s + 0.0372T 2

e + 0.0365Hs2Te)
2. (5.1)

5.2 Further research

This study has led to conclusions regarding the output of this particular wave energy converter, and
thus joins the ranks of other case studies examining such performances by various types of WEC
devices. Due to the great variety of solutions available in wave power, it is a challenge to draw
general conclusions applying not only for the particular device of study. What this study shows for
its own particular case is that the energy output is largest, but also has a greater variance, for higher
and shorter – that is, steeper – waves. Through changing the optimization criteria used for choosing
rotation speed of the WEC:s generator(s), one may reduce the variance of the output significantly
while not decreasing the mean to the same degree. Through this, the time-average output weighted
over all included sea states becomes very stable around its mean with a coefficient of variation no
larger than 0.0271. The variance is measured as that of twenty one-minute interval means and on a
shorter time-scale, the variance will naturally be higher.

An issue not covered in this thesis is the practical consideration of how the wear and tear upon the
WEC is affected by the generator choices and rotation speeds. Using both generators simultaneously
naturally leads to shorter lifespans for both of them, when one might get only a slightly lower effect
using only the 100 kW generator but then over time reducing the cost of maintenance for the 50
kW one. A possible approach could be to set a threshold for how much higher the mean effect with
double generators must be in order for that option to be chosen. Furthermore, a higher rotation
speed itself should wear down the generator faster, making it interesting to in the future study the
maintenance costs of the WEC in general and include these in an optimization algorithm.

One must also consider the fact that in reality, all sea states will not occur by their respective
frequencies even on a middle-length time horizon. Sea states will last a number of minutes, seconds
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or hours each and even in an entire day some states will likely be better represented due to weather
variation. For this reason, an interesting field of further study would be the patterns of when the
sea shifts from one state to another – when do we rule that the state has shifted, how often does this
occur, and what states are more likely to follow after certain other states? Studying this as a Markov
process, for instance, would give a better idea of the rate at which the time-average converges to the
total mean output, and of the stability of the output over different time horizons. This naturally
requires further study of the behaviour of the waves themselves, not only the WEC.

Another natural follow-up would be to implement the generator setting rules established in an actual
WEC and investigating the results to see whether they align with the simulated results in this study,
though this would naturally be much more costly in time and money.
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Appendix A

Additional residual diagnostics

This appendix contains the residual diagnostics for the regression models presented in chapter 4 but
not deemed relevant enough to include in the main text.

A.1 Regression models for rotation speed

Fig. A.1 shows the residuals on validation data for the linear regression model predicting the optimal
rotation speed for the sea states using both generators. The predictors are the main effects (signif-
icant wave height and wave energy period), an interaction term between them, the squared wave
energy period, and the interaction between squared significant wave height and non-squared wave en-
ergy period. The fitted coefficients for this model are β̂0 = 1364.88, β̂Hs = 1298.19, β̂Te = −404.91,
β̂Hs,Te = −110.27, β̂Te2 = 27.69 and β̂Hs2,Te = 2.03. The residuals seem to agree with the model
assumptions except for a large outlier for the sea state Hs = 6.25m,Te = 11.5s, which has predicted
rotation speed 1471 rpm (and observed speed 1513 rpm in the training data), but 2548 rpm observed
in the validation data.

A.2 Regression models for mean power output

Fig. A.2 contains the residuals for the main effects model, using only the pure predictors (significant
wave height and wave energy period) without any interactions or polynomial functions. The model

has the fitted coefficients β̂0 = 46.4, β̂Hs = 12.2 and β̂Te = −5.49. We observe that there is a clear
non-linear pattern in the residuals both for different levels of the predicted response and for different
predictor values. There are also strong signs of heteroscedasticity, and the residuals do not seem
entirely Gaussian but rather somewhat positively skewed.

Fig. A.3 shows the corresponding residual diagnostics for the regression model which includes, besides
the main effects of the model above, the interaction term between the two predictors, the squared
versions of them and the interaction between squared significant wave height and non-squared wave
energy period. The coefficients in this model are fit to β̂0 = 16.9, β̂Hs = 55.7, β̂Te = −8.51,
β̂Hs,Te = −4.23, β̂Hs2 = −3.18, β̂Te2 = 0.563 and β̂Hs2,Te = 0.306. The non-linearity in the
residuals is not as strong as in fig. A.2, but there is a very large difference in the variance of the
residuals depending on the level of the predicted response. The residuals are also still not quite
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Figure A.1: Residual diagnostics on the validation data for the model predicting the rotation speed,
for the 64 sea states using both generators.
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Figure A.2: Residual diagnostics for the model with only main effects from the two predictors.
Studentized residuals plotted against predicted values (top left), against significant wave height (top
right) and against wave energy period (bottom left), as well as a normal Q-Q plot of the residuals
(bottom right).
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Gaussian, now having heavy tails on both sides.

Fig. A.4 shows the residuals when using the same predictors as above to predict the square root of
the mean power output. The coefficients for this model are estimated to β̂0 = 3.77, β̂Hs = 5.45,
β̂Te = −0.761, β̂Hs,Te = −0.328, β̂Hs2 = −0.513, β̂Te2 = 0.0364 and β̂Hs2,Te = 0.0376. The
residuals now seem even more Gaussian with only slightly heavy tails, and the heteroscedasticity
has been much reduced. There is still a difference in the residual variance, however, perhaps most
clearly for Te = 13.5, Hs = 0.75 and generally the observations with small predicted values.

Fig. A.5 shows the residuals for the weighted least squares model on the validation data. The
corresponding plots for the training data are shown in the main text, in chapter 4, and the fitted
coefficients are β̂0 = 3.91, β̂Hs = 5.38, β̂Te = −0.785, β̂Hs,Te = −0.319, β̂Hs2 = −0.496, β̂Te2 =

0.0370 and β̂Hs2,Te = 0.0358. The residuals, like the ones from the training data, seem to agree well
with the model assumptions.
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Chapter A – Additional residual diagnostics

Figure A.3: Residual diagnostics for the model with main effects, interaction term and squared
predictors. Studentized residuals plotted against predicted values (top left), significant wave height
Hs (top right), wave energy period Te (second row left), interaction term Hs ·Te (second row right),
Hs squared (third row left), Te squared (third row right) and Hs squared times Te (bottom left), as
well as a normal Q-Q plot of the residuals (bottom right).
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Chapter A – Additional residual diagnostics

Figure A.4: Residual diagnostics for the model with main effects, interaction term and squared
predictors, where the response variable is the square root of the mean power. Studentized residuals
plotted against predicted values (top left), significant wave height Hs (top right), wave energy period
Te (second row left), interaction term Hs · Te (second row right), Hs squared (third row left), Te
squared (third row right) and Hs squared times Te (bottom left), as well as a normal Q-Q plot of
the residuals (bottom right).

92



Chapter A – Additional residual diagnostics

Figure A.5: Residual diagnostics for the weighted least squares model. Studentized residuals plotted
against predicted values (top left), significant wave height Hs (top right), wave energy period Te
(second row left), interaction term Hs ·Te (second row right), Hs squared (third row left), Te squared
(third row right) and Hs squared times Te (bottom left), as well as a normal Q-Q plot of the residuals
(bottom right).
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