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Abstract
Simulations of domains with large differences in length scales across different directions are often
computationally expensive because they require high mesh resolution, leading to long simulation
times. This master’s thesis was done in collaboration with FS Dynamics Sweden AB and addressed
the high computational cost associated with fully resolved 3D simulations. Inspired by semiconduc-
tor and electronics applications, with pressure-induced laminar fluid flow occurring within narrow
gaps with sudden expansions, this thesis aimed to develop a model with reduced dimensionality,
specifically adhering to the narrow section of the domain.

As a result, models with reduced dimensionality, referred to as the Pseudo 2D-C and Pseudo 2D-
C2 models, were constructed within the confined thin section, featuring one cell in the orthogonal
direction of the main flow. A more complex and substantially different geometrical configuration
was also evaluated. Due to the dissimilar methodology employed, the developed reduced dimen-
sional model was referred to as the Pseudo 2D-CX. The research focused on validating the reduced
dimensional models against full 3D simulations for low Reynolds number laminar air flows, using
the STAR-CCM+ computational fluid dynamics software. The main properties of interest were
the pressure within the confined domain and the velocity at the entrance to the connected larger
space. To enhance the accuracy of the reduced dimensional model and conserve the desired flow
properties, user-defined field functions were integrated based on theoretical and analytical deriva-
tions. Various geometrical configurations were incorporated including parallel plates and ducts
with different geometrical features along with a pin-fin geometry, to evaluate the model’s applica-
bility and cell reduction possibilities for various representations of industrial occurrences.

The study revealed that the reduced dimensional model for all geometrical components in this
project accurately represented the results of the 3D simulations, given the appropriate methodol-
ogy, conditions, and field function implementation. It also revealed a significant reduction in mesh
count, consequently reducing computational cost and increasing time efficiency.
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Latin Letters
a [m] Width of a general duct

A [m2] Area

af [m2] Surface area vector of face f

b [m] Height of a general duct

Dh [m] Hydraulic diameter

f [−] Mesh stretching factor

h [m] Distance between the plates

J [ Wm2 ] Convective or diffusive flux

l [m] Length of the plates

L [m] Length

Lchar [m] Characteristic length

LDSM [m] Length of denser mesh region

Le [m] Hydrodynamic entrance length

ṁ [ kg
m·s ] Mass flow rate per unit length

Ṁ [kgs ] Mass flow rate

n [−] Normal surface vector

p [Pa] Pressure

pdiff [Pa] Pressure difference

p′2D [kgs2 ] Momentum flow rate per unit width (Pseudo 2D)

p′3D [kgs2 ] Momentum flow rate per unit width (3D model)

P [m] Perimeter of geometry

P2D∗ [m] Pressure of concerned Pseudo 2D model

P3D [m] Pressure of 3D model

r [m] Radius

Re [−] Reynolds number

S [−] Source term

SM [−] Momentum source term

t [s] Time

u [ms ] Velocity x-component
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U [ms ] Velocity

U2D∗ [ms ] Velocity of concerned Pseudo 2D model

U3D [ms ] Velocity of 3D model

Udiff [ms ] Velocity difference

Umag [ms ] Velocity magnitude

Umax [ms ] Maximum velocity

Umax,2D [ms ] Maximum velocity for Pseudo 2D model

Umax,3D [ms ] Maximum velocity for 3D model

ub [ms ] Bulk velocity

u [ms ] Velocity vector

ub [ms ] Bulk velocity vector

v [ms ] Velocity y-component

V [m3] Volume

w [ms ] Velocity z-component

Greek Letters
α [−] Correction factor in Pseudo 2D-C2

γ [−] Mean free path

Γ [−] Diffusion coefficient

ϵmo [−] Momentum residual

ϵv [−] Maximum velocity residual

ϵ∗ [−] Pressure residual

µ [Pa · s] Dynamic viscosity

ξ [−] Minor loss coefficient

ρ [ kgm3 ] Density

τ [ N
m2 ] Shear stress

ϕ [−] Generic variable
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1 Introduction
The background, motivation, and goals of the project are presented in the following sections,
focusing on the development of a reduced dimensional model. The aim is to create a generalized,
highly applicable model for a wide range of industries, relevant to Computational Fluid Dynamics
(CFD). This is done to enhance computational efficiency by reducing the mesh count used in
simulations.

1.1 FS Dynamics
This master’s thesis is done in collaboration with FS Dynamics Sweden AB, a company specializing
in providing consulting services in Computer Aided Engineering (CAE), a field that combines
fundamental physics, mathematics, and advanced computing. FS Dynamics offers expertise in the
areas of Computational Fluid Dynamics (CFD) and Structural Dynamics using Finite Element
Analysis (FEA). They work within various industries and areas, including automotive, fossil-free
power production, marine, offshore, and semi-conductors [1].

1.2 Background and Motivation
Simulations of domains with significant differences in length scales in different dimensions are
computationally expensive due to the inevitable high cell count. FS Dynamics has undertaken
projects of this nature, particularly in the semi-conductor industry, where pressure-induced airflow
is present in narrow gaps, such as between closely spaced plates and within long, narrow channels
with different geometrical configurations. Due to high computational cost, FS Dynamics proposed
the idea to investigate if it is possible to simulate this type of flow using a reduced dimensional
model. The model would consist of one cell in the orthogonal direction of the main flow, instead
of a fully resolved 3D model. This would have the aim to save mesh count and, consequently,
simulation time, while still maintaining good accuracy.

Inspired by the mentioned semi-conductor and electronics applications, where pressure-induced
laminar fluid flow occurs in small confined channels with narrow gaps, this thesis aims to develop a
model with reduced dimensionality. The primary objective is to enhance computational efficiency
by reducing the cell count, essentially decreasing the amount of data points necessary in the sim-
ulation. The model development will be enabled by the relatively simple and typically part-wise
uniform geometries encountered in the regarded industry, making the generation of a lower-order
structured mesh possible. In this project, the fluid, which is a gas (air), will be simulated utilizing
computational fluid dynamics (CFD) in the software STAR-CCM+. After performing simula-
tions, a validation between the developed simplified model and the fully resolved 3D model will
be made. To support the validity and construction of the model, analytical solutions for a few
simplified cases will be conducted by leveraging the theory of Poiseuille flows [22]. To enhance the
accuracy of the reduced dimensional model with one cell in the orthogonal direction to the flow,
user-defined field functions will be integrated to conserve the flow properties. The main properties
of interest are the pressure along the channel and the velocity of the free outflow into the larger
downstream fully resolved space. Figure 1.1 illustrates the considered domain, depicting the large
differences in scale, along with the resulting meshes, with two larger open spaces of outflow with an
interconnecting spacing comprised of a channel. The channel will be constructed in two different
configurations: a duct with finite dimensions, and a duct with infinite width, resembling parallel
plates. This will support the implementation of various geometrical features, including bends,
branching features, constrictions, and pin-fins, to establish a rigorous foundation for evaluating
the model’s performance.
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Figure 1.1: A simplified sketch illustrating the following aspects: a) the geometry and demonstrated
flow path; b) unstructured 3D mesh in the thin subdomain; and c) Pseudo 2D mesh, all respectively
viewed in an xz-plane.

The above figure also depicts the flow path of air, which will be simulated for Reynolds numbers
below 100. This was decided to consistently maintain laminar steady-state conditions, for sim-
plicity and conformity with the industrial application. In the applications serving as inspiration
for this project, where geometries in the scale of micrometers are common, molecular-level gas
movement and the Knudsen number become too significant to neglect. As a result, the continuum-
based Navier-Stokes equations are commonly replaced by the Boltzmann equation to govern the
fluid motion for sub-continuum physics [21]. However, for this project, the geometrical size will be
enlarged and generalized. This will be done to enable application for various pressure-induced flows
occurring within confined spaces of low Reynolds numbers for an extended range of applications
such as heating, ventilation, and air conditioning (HVAC) as well as the automotive industry.

The motivation of the project from a larger perspective is represented by the following factors:

• Deeper understanding for 2D-models: By constructing a 2D model for flow between
plates, the understanding of how reduced dimensional models compared to more detailed 3D
models is enhanced. This can provide insight into when such a model is sufficient and when
limitations exist.

• Optimize Simulations: By quantifying the savings in cell count, it is easier to get an
understanding of how to utilize resources more efficiently for other similar problems. This is
particularly important in cases where speed and resource efficiency are crucial.

• Identify limitations and applications: When comparing reduced dimensional models
with a more detailed 3D model, limitations can be quantified for various factors such as
geometry type or flow velocity. This can provide insights into the models applicability.

1.3 Goals and Objectives
The goals and objectives underpinning this project include:

• Development of reduced dimensional models, with one cell between the walls in the thin
spacing.

• Validation of the models against full 3D simulations.

• Implementation of, e.g., field functions to assist the simplified model.

• Quantification of the savings in terms of cell count.

• Quantification of potential limitations in terms of performance and applicability of the re-
duced dimensional models.
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2 Theory
This section addresses the physics, tools and the underlying background information necessary for
the succeeding discussions. These aspects are presented concerning the flow features, transporta-
tion of fluid properties, quantifying measures, and previous works.

2.1 Literature Review
This section provides an overview of existing research and developed techniques relevant to the
topic of reduced dimensional/order models and overall reduction of computational cost. This is
highly relevant for the project conducted in this thesis and has served as an inspiration for the
development of the models. On the topic of reduced dimensionality/order, Sun et al. [28] presents
a way to transition from a three-dimensional model to a reduced planar model based on fully
developed flow assumptions. A reduced planar model is a simplified two-dimensional representa-
tion of a system, decreasing the complexity of its three-dimensional nature. The paper discusses
how to accurately analyze stacked plate heat exchangers in thermal energy storage systems for
optimal performance. Due to the plate surface complexity, it is computationally expensive to
make a full three-dimensional simulation. A reduced-dimensional model is utilized which is de-
scribed by complex mathematical models and is an extension of that proposed by Alexandersen
[2]. The reduced-dimensional model is extended to consider transient flows and works well for
simulations between stacks of plates. This model displayed satisfactory results compared to the
three-dimensional model while reducing computational cost.

Others like Haertel et al. [12] have used so-called "Pseudo 3D models". In this particular case
the "Pseudo 3D model" was used for the optimization and simulation of finned heat sinks. The
full 3D model was replaced with the "Pseudo 3D model" which is comprised of a 2D modeled con-
ducting metal base layer and a thermally coupled 2D model representing the thermofluid design
layer. Simulations were conducted in the study and the results showed strong agreement between
the optimized model and the validation models, which confirms the validity of the "Pseudo 3D
model". This demonstrates an indication of the applicability of these types of models.

The literature review has also been extended to provide a foundation of the topic of the flow
present in this thesis project’s simulations. The reviewed studies have extensively investigated
steady laminar flows in sudden expansions, especially in the field of industrial processing applica-
tions. Experimentally sudden expansion flows have been the focus of several studies, e.g., those of
Hung and Macagno [14], Macagno and Hung [18] and Durst et al. [8]. A study made by Baloch
et al. [3] aims to investigate flows with low Reynolds numbers to maintain steady-state solutions,
as higher Reynolds numbers lead to time-dependent, unsteady solutions. This study explores phe-
nomena like separation and reattachment behaviors where different expansion ratios are considered.

This literature review highlights important aspects in terms of modeling simplification and re-
duction of computational costs in various applications. These insights resultingly contributed to
the conceptual development of the reduced dimensional model

2.2 Computational Fluid Dynamics
Computational fluid dynamics (CFD) is the main tool used to analyze the fluid behavior in this
project. It approximates equations that govern the motions of fluids. The steps required to analyze
a fluid problem are the following: A mathematical formulation describing the fluid flow is written.
This is done using partial differential equations. Secondly, these equations are discretized to obtain
a numerical representation of the equations. In the third step, the domain is divided into system
of small elements, often referred to as a grid system or mesh. The equations are then solved
using initial and boundary conditions for the specific problem. A program to solve CFD problems
consists of three main elements which can be divided following Zawawi et al. [31]:

• A pre-processor is used for inputting the desired geometry, generating the grid, and defining
the boundary conditions.

• A discretization method is used to solve the governing equations of the problem. The dis-
cretization method can differ between applications. The most common examples are the finite
element method, finite difference method, and the finite volume method. In this analysis,
the finite volume method is employed.
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• Lastly a post-processor, which is used to present the data and the different results of the
simulation.

Computational fluid dynamics involves analyzing systems where heat transfer, fluid flow, and other
types of phenomena occur through computer-based simulations. In this thesis, CFD was used to
conduct numerous simulations to gain a better understanding of the gas flows within narrow gaps
subject to sudden expansion.

2.3 Governing Equations
The governing equations that are used in CFD are based on the conservation law of physics and
the equations of state. The conservation laws of physics state [29]:

• The total mass of a fluid element is conserved.

• The sum of the forces acting on a fluid element equals the change of momentum.

• The rate of change in thermal energy and the work that is done on a fluid element is equal
to the total energy change for the element.

These, are called the conservation of mass, momentum, and energy and are the basis of the gov-
erning equation called the Navier-Stokes equations. The cases examined in this thesis assume
isothermal and incompressible conditions. Resultingly, the energy equation is irrelevant and also
decoupled from the mass and momentum equations. Thus, it is excluded as a governing equa-
tion. One of the first requirements that arises for the Navier-Stokes equations to apply is that the
fluid is Newtonian, meaning that the viscosity is unaffected by the shear rate. The previous, in
combination with the assumption of incompressible flow, yields the following relations:

2.3.1 Mass Equation

The equation of mass is based on the mass balance for the examined fluid. By comparing the rate
of increase of mass in a fluid element to the net rate of mass flow into the fluid element, the mass
equation can be formulated according to Equation (2.1) [29]:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2.1)

Equation (2.1) can also be rewritten to a more compact vector notation form:

∇ · u = 0, (2.2)

where both forms are commonly interpreted as the divergence of the velocity vector.

2.3.2 Momentum Equation

The momentum equation is equivalent to Newton’s second law. Herein the sum of forces on a fluid
particle is equal to the rate of increase of momentum of the fluid particle [29]. Represented by
vector form, the final equation becomes:

ρ
Du
Dt

= ∇τ −∇p+ SM , (2.3)

where SM is the momentum source term, ∇τ the stress components, ∇p the pressure gradient and
ρDu

Dt the product of mass and acceleration per unit volume.

2.4 Numerical Discretization
The finite volume (FV) discretization, discretizes a domain into a mesh that contains cells. In this
method, the governing partial differential equations (PDEs) are integrated over a control volume.
By applying Gauss’ divergence theorem, the resulting volume integrals are converted into surface
integrals. The fluxes on the faces of the control volumes are then calculated, making it possible to
improve the exchange of mass and momentum between adjacent cells.

Equations (2.1) and (2.3) in Section 2.3 can also be written as a vector transport equation where
a generic variable ϕ is introduced:

∂ρϕ

∂t
+∇ · (ρϕu) = ∇ · (Γ∇ϕ) + Sϕ. (2.4)
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The generic variable ϕ can be substituted with transported variables, in this case mass (ρ) and
momentum (ρu). Γ is a diffusion coefficient and Sϕ the source term due to rate of increase of ϕ.
The physical meaning of the different terms from Equation (2.4) are described as follows [29]: rate
of increase of ϕ of fluid element + net rate of flow of ϕ out of fluid element = rate of increase of ϕ
due to diffusion + rate of increase of ϕ due to sources.

To perform a finite volume discretization, the transport equation needs to be integrated over
the three-dimensional control volume (CV) [29]:∫

CV

∂ρϕ

∂t
dV +

∫
CV

∇ · (ρϕu)dV =

∫
CV

∇ · (Γ∇ϕ)dV +

∫
CV

SϕdV. (2.5)

Gauss’s divergence theorem is applied and resultingly converts the volume integrals into surface
integrals. The general form of Gauss’s divergence theorem for a vector a can be seen in Equation
(2.6). ∫

CV

∇ · (a)dV =

∫
A

n · adA, (2.6)

where n ·a is the component of vector a in the direction of vector n, which is normal to the surface
element dA. Applying Gauss’s divergence theorem to Equation (2.5) results in Equation (2.7).

∂

∂t

(∫
CV

ρϕdV

)
+

∫
A

n · (ρϕu) dA =

∫
A

n · (Γ∇ϕ) dA+

∫
CV

SϕdV. (2.7)

The first term on the left-hand side describes the rate at which ϕ increases within the control volume
and the second term illustrates the net decrease of ϕ through convection across its boundaries. The
first term on the right-hand side represents the net increase of ϕ due to diffusion across the control
volume boundaries and the second term describes the net generation of ϕ within the control volume.

2.4.1 Steady-State Problems

In steady-state problems, which will encompass the simulations in this project, the change in time
is zero, because the properties in the system are constant over time. This makes the first term in
Equation (2.7) redundant, which results in the following steady state transport equation:∫

A

n · (ρϕu) dA =

∫
A

n · (Γ∇ϕ) dA+

∫
CV

SϕdV. (2.8)

2.4.2 Transient Problems

Transient problems are time dependent problems, thus it is essential to integrate over a small time
interval, ∆t, from a starting time, t, to a slightly later time, t + ∆t. Applying this to Equation
(2.7) gives the following:∫ t+∆t

t

∂

∂t

(∫
CV

ρϕdV

)
dt+

∫ t+∆t

t

∫
A

n · (ρϕu) dAdt =

∫ t+∆t

t

∫
A

n · (Γ∇ϕ) dAdt

+

∫ t+∆t

t

∫
CV

SϕdV dt,

(2.9)

where all variables are defined in Section 2.4 for both Equation (2.8) and (2.9).

2.4.3 Discretization Schemes

Since discrete values are stored at the cell centers, interpolation is necessary for handling convec-
tion and diffusion terms. The following sections outline the most frequently used schemes in CFD.
In STAR-CCM+, the primary discretization schemes employed are upwind, second-order upwind
and central differencing.

To illustrate how the different schemes are formulated, Figure 2.1 is used and depicts the adopted
cell-related notations. Face values are denoted by lowercase letters and cell centers are named with
uppercase letters. W , E, P stand for west, east and the cell center value of interest, respectively.
The distance between the faces is assumed to be the same. For simplicity, the elements are assumed
to be uniform but the same discretization schemes can also be applied for an unstructured mesh.
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Figure 2.1: Illustration of cells and faces with quadrilateral elements.

2.4.4 Upwind

The upwind differencing scheme, also known as the "donor cell" differencing scheme, considers the
direction of flow when calculating the value at a cell face [29]. It assigns the convected value of ϕ
at a cell face to be the same as the value at the upstream node. With the adoption of the notations
displayed in Figure 2.1, this means that when a flow has a direction from west to east, the upwind
scheme becomes:

ϕe = ϕP , ϕw = ϕW .

This scheme is first-order accurate and relies on backward difference and is widely considered
simple compared to others. As a consequence, a significant limitation is the entailing numerical
diffusion, and also the susceptibility to false diffusion. The latter, discussed further by Versteeg
and Malalasekera [29], is caused by a misalignment between the flow and grid system, resulting in
inaccurate outcomes.

2.4.5 Second-Order Upwind

The linear upwind scheme can be viewed as a second-order equivalent of the previously discussed
upwind scheme, with an added correction. The scheme incorporates an additional term which is
the gradient of the upstream cell multiplied by the distance from the center of the upstream cell
to the center of the face. A second order upwind differencing, with the notations from Figure 2.1,
involving two upstream values yields the following for ϕe [29]:

ϕe = ϕP +
(ϕP − ϕW )

δx

δx

2
= ϕP +

1

2
(ϕP − ϕW ) . (2.10)

2.4.6 Central Differencing

The central differencing scheme calculates the value of a cell center by interpolating linearly be-
tween the two neighboring cell center values, east and west, which makes it second-order accurate.
There are some instances where this scheme experiences stability issues due to it being susceptible
to dispersive error. This is prominent in simulations based on Reynolds-averaged Navier-Stokes
equations (RANS) for convective terms, where the central differencing scheme is not a suitable
method. Despite having major drawbacks for flows with a high ratio between convective to diffu-
sive transport rate (high Peclet number) [21], it performs well for large-eddy simulations (LES).
The main reasons are that the turbulent kinetic energy is preserved when discretizing the convec-
tive term [24], and as the scheme is second order and free of numerical diffusion, it supports the
sub-grid modelling used in large eddy simulations [16].

In STAR-CCM+, the central differencing scheme is defined as follows:

ϕf = (fϕ0 + (1− f)ϕ1) , (2.11)

where ϕf is the face quantity and V the cell volume, while index 0 and 1 refers to the cells sharing
the same face. f refers to the mesh stretching and is defined as f = ∆V1

∆V0+∆V1
. For a uniform grid

f = 0.5, the face property ϕe according to Figure 2.1 can be written as [29]:

ϕe =
(ϕP + ϕE)

2
. (2.12)

2.4.7 Temporal Discretization

Time becomes an additional dimension for transient simulations. It is divided into small time steps,
similar to the division in space. Solving the governing equations involves calculating a solution at
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various time steps, where each solution at time t requires solutions from one ore more previous
time steps.

The Euler implicit-scheme, which is a first order temporal scheme, approximates the transient
term in semi-discrete transport equations as follows [24]:

∂

∂t
(ρϕ∆V ) ≈ (ρϕ∆V )

n+1 − (ρϕ∆V )
n

∆t
. (2.13)

Here, n+1 denotes the solution at the current time step and n the solution from the previous time
step.

For a basic second order temporal discretization, the current time step is used, n + 1 as well as
the previous, n and the solution from two previous time steps, n− 1. The second order temporal
discretization is defined as follows [24]:

∂

∂t
(ρϕ∆V ) ≈

3
2 (ρϕ∆V )

n+1 − 2 (ρϕ∆V )
n
+ 1

2 (ρϕ∆V )
n−1

∆t
. (2.14)

In addition to the schemes described above, there are numerous others of higher order or with
different constructions, examples of some of these schemes can be found in Huynh et al. [15].
These schemes are adequate for providing the reader with a fundamental understanding of CFD
methods, particularly concerning this thesis.

2.5 Flow Between Plates and Confined Spaces
In this section, fundamental information regarding flow dynamics between plates and confined
spaces such as ducts is presented. Concepts that are explained in this section are hydraulic diame-
ter, Reynolds number, wall-boundary conditions, hydrodynamic entrance length, and head losses.
These fundamental principles give valuable insights into the fluid behavior which is essential for
the subsequent analysis.

2.5.1 Hydraulic Diameter

Hydraulic diameter is a characteristic length used in many engineering applications when analyzing
flows in non-circular channels and tubes. The hydraulic diameter is calculated using the following
formula, which is described by Embiale et al. [9]:

Dh =
4A

P
, (2.15)

where A is the duct cross sectional area and P the perimeter of the geometry. For a rectangular
duct, the hydraulic diameter becomes:

Dh =
2ab

a+ b
. (2.16)

Figure 2.2: Rectangular duct.

Here, a is the width of the duct and b the height of the duct. In the case of an infinitely wide duct,
e.g., in the span-wise direction where a ≫ b, the hydraulic diameter is given by:

Dh = lim
a→∞

2ab

a+ b
= 2b. (2.17)
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2.5.2 Reynolds Number

The Reynolds number is a dimensionless number widely used in the analysis of fluid dynamics.
Dimensionless quantities aids the removal of dependencies on specific geometrical parameters and
the overall scaling of different cases. The explanation found in this section resembles that of Rapp
[21]. It is most often used to determine the type of flow regime and by extension the applicability
of governing mathematical and numerical concepts. The physical interpretation can be expressed
as the ratio between the forces of inertia and the viscous forces, in mathematical terms:

Re =
ρULchar

µ
,

where ρ, U , Lchar and µ are the density, velocity, characteristic length, and the dynamic viscosity
of the fluid, respectively. In internal flow analysis, particularly in the discussion of pipes or ducts
the characteristic length is often referred to or replaced by a hydraulic diameter Dh, see Section
2.5.1. This results in the finalized format of the Reynolds number used in this analysis:

Re =
ρUDh

µ
. (2.18)

Small values of Re indicate that the viscous forces are predominant and for large values, the inertial
forces become the main driving agent of the fluid. Laminar flows are governed by the viscous forces
such that the acceleration of the fluid is sufficiently small, i.e., small Re. Conversely, turbulent
flows are dominated by inertia and cause instabilities in the flow field, i.e., large Re. In this thesis,
the critical Reynolds numbers governing laminar-to-turbulent transition experimentally deduced
by Chang et al. [5] are adopted. For flow between parallel plates, considered for an infinitely wide
duct, the critical Reynolds number is:

• Re <∼ 2689.

Correspondingly, with an aspect ratio of b/a = 1/1.5 for the duct, the cross-sectional area-
dependent critical value becomes:

• Re <∼ 1200.

2.5.3 Wall Boundary Conditions

The employment of various wall boundary conditions proved to be highly essential for the devel-
opment of the reduced dimensional model and the need to theoretically clarify the conditions thus
became evident. The two conditions employed as wall boundary conditions are the no-slip bound-
ary condition and the slip boundary condition. The first, states that the velocity at the walls is
assumed to be zero. The speed of the fluid layer that directly touches the boundary matches the
boundary itself, resulting in no relative movement between the boundary and the fluid layer [21].
Resultingly, a parabolic velocity profile is formed. The second, the slip condition, assumes that
the fluid and the wall experience a relative movement. This means that for perfect slip conditions,
which are assumed, the shear stress between the fluid and the wall is zero [4]. Ultimately, this
results in a planar flow front equal to the inlet boundary condition. For visualization of both
boundary conditions see Figure 2.3.

Figure 2.3: Illustration of the difference between the no-slip and (perfect) slip condition for a
velocity profile.
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2.5.4 Entrance Length

The hydrodynamic entrance length is of importance in CFD applications. As described by Okiishi
et al. [7], the hydrodynamic entrance length is the distance over which the flow profile in a channel
transitions from the inlet to a region where the flow is fully developed. When a fluid enters a
channel there is initially a behavior of unsteadiness until it reaches the entrance region. At this
point, the flow achieves a near-uniform state, leading to a uniform velocity distribution. As the
fluid flows through the channel, viscous effects cause it to stick to the channel walls, which is known
as the no-slip condition, see Section 2.5.3. A boundary layer is then formed along the channel,
changing the velocity profile until the fluid reaches the end of the entrance region and transitions
to the fully developed region. In this domain, the velocity profile becomes fully established and
does not change further as the fluid moves along the channel, see Figure 2.4.

Figure 2.4: The velocity profile of various developing stages: a) velocity profile at the inlet; b)
developing velocity profile; c) fully developed velocity profile.

The hydrodynamic entrance length Le, is a function of the Reynolds number Re, and the hydraulic
diameter Dh. Thus it is dependent on the flow velocity and the channel size. In the case of laminar
flow, the entrance length is expressed by Equation (2.19):

Le = 0.06 ·Re ·Dh. (2.19)

2.5.5 Head Loss in a Confined Domain

The forthcoming discussion is relevant to this thesis, as it addresses the origin of one of the main
result features later observed: the pressure distribution throughout the domain. Following the
theory established by Young et al. [7], the discussion aims to clarify the contributing aspects
to pressure drop throughout a confined space. In the mentioned literature the classification of
losses in terms of major and minor ones is initially presented. The first includes the (head) loss
due to the viscous friction-related effects of the fluid flowing in straight geometries, and the lat-
ter, the (head) loss due to the changes in geometry. Further, drawing from the discussion by
Nguyen et al. [20] on laminar flows; the minor losses are commonly formulated as comprised of
a loss coefficient, ξ(Re) and a factor proportional to U2. This ultimately demonstrates that the
loss is largely velocity-dependent. The contributions stemming from various geometrical compo-
nents vary in significance for the later analyzed cases and are addressed respectively in each section.

Additionally, the pressure drop for larger than micro scale flows has been found by Moody [19] to
be unaffected by the roughness of the surface of the confining walls for laminar flows. This justifies
the modeling of assumed infinitely smooth walls for all the laminar simulations.

2.6 Laminar Jets
The phenomenon that is formed due to the presence of the sudden geometrical expansion and
thereby flow separation, is a laminar jet. It governs the essential resulting velocity image in the
larger spacing beyond the channel flow. The theory serving as foundation for this is thus highly
relevant for the remaining result feature: the velocity of the fluid in the sudden expansion, which
is discussed in this section.

For laminar jets in sudden expansions, the solution becomes time-dependent and unsteady for
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higher Reynolds numbers. In a study conducted by Hajji et al. [13], Reynolds numbers up to
Re = 40 were examined in steady-state simulations. Another study covered Reynolds numbers
ranging from 1 ≤ Re ≤ 75 for 2D simulations and 10 ≤ Re ≤ 200 for 3D simulations [3]. The
study also demonstrated that the flow starts experiencing oscillatory behaviors at Reynolds num-
bers exceeding 50 for both the 2D and 3D simulations. This suggests that the jet in the expansion
region becomes unsteady at low Reynolds numbers, even if the jet is laminar. These oscillations
likely arise due to an instability known as Kelvin-Helmholtz instability. Following an explanation
proposed by Lee and Kim [17], the phenomena occurs at the interface between two fluid layers of
different velocities (or densities). In the case of jet formation due to sudden expansion, the jet of
air moving through the surrounding air creates a velocity difference at the interface. When the
velocity difference between the static fluid and the jet is sufficiently high and overcomes the desta-
bilizing effect of surface tension, the Kelvin-Helmholtz instabilities start to develop, characterized
by the formation of rolling vortices or waves along the interface. These instabilities have also been
claimed by Fletcher et al. [11] to be highly dependant on the conditions of the nozzle and by
equivalence for this study, the channel to room expansion. Herein, a Reynolds number of Re = 90
is presented to provide stable results.

In conclusion, the studies referenced shed light on the dynamic and unpredictable behavior of
laminar jets in sudden expansions, particularly concerning the tendency of unsteadiness and os-
cillatory behavior at higher Reynolds numbers. While the literature suggests that even as low
Reynolds numbers as Re < 50 may lead to the onset of what is believed to be Kelvin-Helmholtz
instabilities, the conducted analysis indicates that stability and steadiness can be safely assumed
and achieved for Reynolds numbers up to Re = 100. As mentioned previously, it is important
to note that the stability and steadiness of such jets may still be influenced by various factors
including channel or nozzle geometries, as highlighted by Fletcher et al. [11].
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3 Computational Setup and Method
This section details the configuration of the initial computational domain of the Simple Geometry
case. This later served as the domain of the development of the reduced dimensional model. The
section also covers the boundary conditions, physics, and solver settings used in the simulations.
The construction and setup of the meshes are described, including details of the mesh configu-
rations, volumetric controls, and specific meshing techniques. Lastly, a mesh sensitivity analysis
was performed to ensure an accurate representation of the solution while maintaining optimal
computational efficiency.

3.1 Computational Domain - Simple Geometry
The initial aim was set on constructing a simple geometry for the development of Pseudo 2D
model, which denotes the initial uncorrected version of the reduced dimensional model. The
Simple Geometry was created to serve as a reference for the reduced dimensional model, as well
as a foundation for the later implemented geometrical features. It was constructed to conform
with the initial sketch motivating this project, see Figure 1.1. Nonetheless, levels of generality
were still intended, due to the purpose of the study being applicable for multiple applications and
fields. Below are the geometry and resulting dimensions of the Simple Geometry case for both the
parallel plate and duct configurations:

Figure 3.1: Dimensions of analyzed geometry, xz plane (parallel plates and duct).

Figure 3.2: Dimensions of analyzed geometry, side view (parallel plates and duct, respectively).

Figure 3.3: Channel height in xz plane for parallel plates and duct.

The construction of the geometry was performed based on fulfilling the following criteria:
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• The channel subdomain should be long enough such that a fully developed flow can be
attained for a wide range of inlet and gas conditions. The height and length were set to
0.01m and 1m respectively, see Figure 3.1 and 3.3, resulting in an aspect ratio of 1 : 100.
Thus, conforming with the corresponding encountered in the semi-conductor industry.

• The aspect ratio between the channel height and the height of the room should be large
enough to fully capture the flow entering the room subdomain. This allows proper accommo-
dation of the jet without interference from any walls and enables observation of the outflow
from the channel.

• The flow after the transition between the subdomains of the channel and the room should be
able to fully develop without being affected by the boundaries of the latter. This condition
was fulfilled in an iterative manner, where the domain of the room was expanded in both
the main flow direction, but also in the direction perpendicular to the flow for both the
3D and Pseudo 2D model. In later simulations involving ducts, the third depth dimension,
y, was similarly expanded for these geometries. For cases containing parallel plates, it was
necessary to have the channel and room subdomains of the same width, since the concept
of an infinitely wide channel subdomain thus must align with the notion of an equally wide
or wider room. This was no issue for the low range of Reynolds numbers analyzed, as it did
not influence the steadiness of the jet. The two main aspects under consideration during this
process were maintaining a small enough domain to limit the computational cost while still
preserving the required space for the outflow without it being obstructed by, e.g., undesired
back-flow. After several attempts, the dimensions of the room for the Simple Geometry
were established as 0.81 m for the height, and 2 m for the length, see Figure 3.1. For the
studies regarding the modeling of parallel plates, the y-dimension was set to 0.015m for the
channel and the room subdomains. However, in the studies focusing on duct modeling, the
channel subdomain maintained a depth of 0.015m, while the room subdomain’s depth was
set to 0.12m, see Figure 3.2. Furthermore, to avoid large levels of potential non-laminar flow
and jet instabilities, in the room, the inlet velocity was set significantly below the Reynolds
number threshold for unstable jets. For a more detailed description of this, see Section 2.6.
As mentioned in Section 1, this also conforms with the industrial application serving as
inspiration for this project. The resulting aspect ratio was set to 1 : 81.

• To initially consider the simplest possible flow-case, steady-state laminar, imposed some con-
straints to the inlet velocity and the geometry in terms of Reynolds number. This resulted
in the inlet velocity, and bulk velocity, being 0.02 m/s for the parallel plate geometries to
maintain low local Reynolds numbers in both subdomains so that the flow can be infalli-
bly considered as laminar and steady. The prior approach was solely determined by the
constraints imposed by the undesired jet instabilities. This led to the following Reynolds
number for the channel:

Re =
ρUDh

µ
=

ρub2h

µ
=

1.184 · 0.02 · 2 · 0.01
1.855 · 10−5

≈ 25, (3.1)

with the properties of air taken at approximately 25 ◦C atmospheric pressure, for the density
ρ, dynamic viscosity µ, bulk velocity ub and hydraulic diameter Dh. Subsequently, the
hydraulic entrance length was computed using Equation (2.19), which gives:

Le = 0.06 · 25 · 2 · 0.01 = 0.031m. (3.2)

To maintain consistency between the two types of considered geometries, the inlet velocity
for configurations involving ducts was determined based on the Reynolds number for parallel
plates, i.e., Re ≈ 25. Using the Reynolds number equation together with the equation for
hydraulic diameter, see Equation (2.17), resulted in an inlet velocity of 0.033m/s. Addition-
ally, the hydraulic entrance length was calculated using Equation (2.19), which led to the
following:

Le = 0.06 · 25 · 2 · 0.015 · 0.01
0.01 + 0.015

= 0.018m. (3.3)

3.2 3D Model - Boundary Conditions
Figure 3.4 is used to visualize the various boundaries in the Simple Geometry scenario for both
the parallel plate and duct models.
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Figure 3.4: Boundary names in the xy plane for the front side (top) and back side
(bottom), respectively.

The set boundary conditions for the Simple Geometry are presented in Table 3.1.

Table 3.1: Type of boundary conditions for Simple Geometry for parallel plates.
Boundary Condition

Inlet Velocity Inlet
c, d, h, i Symmetry Plane

a, b, e, f, g Wall, No-Slip
Outlet Pressure Outlet

In the initial setup, the velocity inlet was set to U = 0.02m/s, as previously mentioned, while the
pressure outlet was maintained at a static (relative) pressure of p = 0 Pa to imitate atmospheric
conditions.

Symmetry boundary condition assumes that the same physical processes exist on both sides of
the boundary and are described in more detail by Denton and Hu [6]. The choice of using the
symmetry boundary condition was motivated by the fact that the geometry is considered to be
infinitely wide but also fully uniform and thereby symmetrical. However, the specified wall bound-
ary condition is set to the no-slip condition, see Section 2.5.3. The choice of using this boundary
condition for the channel walls/plates was motivated by the fact that the plates are considered
stationary, featuring a Poiseuille flow. Additionally, the room subdomain was considered large and
stationary, serving as the outlet of the flow.

The boundary conditions for the Simple Geometry, when the channel is regarded as a duct, are
outlined in Table 3.2.

Table 3.2: Type of boundary conditions for Simple Geometry for ducts.
Boundary Condition

Inlet Velocity Inlet
d, h Symmetry Plane

a, b, c, e, f, g, i Wall, No-Slip
Outlet Pressure Outlet
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The difference between Table 3.1 and 3.2 is that the symmetry boundary condition was applied for
the parallel plate scenario within the channel, while the no-slip boundary condition was employed
for the duct cases. This is highlighted by the bold-faced letters "c" and "i", representing the
channel wall boundaries comprising the height dimension. The reason for this is that the depth is
assumed to be infinite for the parallel plate case, which means that it is symmetrical and the same
physical processes exist on both sides of the boundary. For the duct scenario, viscous effects are
present in all faces of the channel, except the inlet. This means that viscous effects are present
along the depth and height, leading to the implementation of the no-slip condition on the faces
that were considered symmetrical in the parallel plate analysis. This adjustment accounts for the
relative motion between the boundary and the fluid layer within the channel.

3.3 Physics Modeling and Solver Settings
The last unaddressed aspect, serving as a prerequisite for CFD simulations, is the incorporated
physics. The following settings, displayed in Figure 3.5, were used to model the physics continuum:

Figure 3.5: A flow chart illustrating the physics continuum settings in STAR-CCM+.

Herein, the gas was set as air. Incompressible flow and constant density were initially assumed,
as they align well with the approach to attain simple flow characteristics as well as the targeted
industrial applications. The velocities observed in the domain are significantly lower than the
threshold for where gases are considered compressible, Mach number ≈ 0.3 [25], thus justifying the
simplifying assumption.

3.4 Mesh
The construction and setup of the meshes, both the reduced dimensional model and 3D, were done
concurrently, ensuring that some of the constraints of the reduced dimensionality were accounted
for in both meshes. An example of this was to verify that the mesh in the room attained high
conformity between the two models without negatively impacting, e.g., element quality and the
mesh transition between the two sub-domains.

3.4.1 3D Model

A mesh study was conducted for the Simple Geometry of the parallel plates, for the 3D mesh. This
was done to obtain a mesh-independent solution, as well as a balance between accuracy and com-
putational efficiency. The resulting chosen mesh was later implemented in the 3D model, which
in turn served as verification to the reduced dimensional models. The former was also of value for
quantification reasons, such that the comparison between the reduced dimensional model and the
full 3D model is performed without bias in terms of computational resources.

The construction of the grid system and the study were carried out by implementing different
volumetric controls and decreasing the mesh size within those volumetric controls. The elements
used in the mesh are of tetrahedral type for both the room and channel subdomains. In the channel,
five inflation layers, referred to as prism layers in STAR-CCM+, were applied to the walls. This
was to ensure a precise representation of near-wall features and maintain the y+ value, which is
the dimensionless distance from the wall to the first grid point, within acceptable limits. However,
due to the relatively low Reynolds number for all simulations, sufficiently accurate results can be
achieved without specific near-wall treatment. The resulting choices for the Automated Mesher are
displayed in Figure 3.6.
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Figure 3.6: A flow chart illustrating the mesh configuration in STAR-CCM+ for 3D model.

Three volumetric regions were implemented on the mesh, serving as cell-size controls. The initial
control extended from the channel to half of the room. The second control spanned from the room
entrance to half of the room but covered a larger area in the room compared to the first volumetric
control. The third control covered a big part of the remaining room subdomain. These were denoted
as: VC-CA (volumetric control channel A), VC-CR (volumetric control channel-room), and VC-
R (volumetric control room), conforming with the above order. The objective was to accurately
capture the flow in the channel and the resulting jet, hence the use of volumetric controls. They
were also implemented to make sure of a smooth transition between smaller element sizes to bigger
ones, especially in the vicinity of the sudden expansion. Seven meshes were generated with a base
size of 0.05m with varying volumetric control settings, each set as a percentage of the base size.
Table 3.3 illustrates the mesh settings for the different volumetric controls and Table 3.4 shows the
number of cells for the different mesh configurations.

Table 3.3: Volumetric control settings for different mesh types.
Mesh Type Base Size VC-CA VC-CR VC-R

mesh1 0.05m 9% 18% 72%
mesh2 0.05m 6% 12% 48%
mesh3 0.05m 4.5% 9% 36%
mesh4 0.05m 3% 6% 24%
mesh5 0.05m 2.5% 5% 20%

mesh5.5 0.05m 2.25% 4.5% 18%
mesh6 0.05m 2% 4% 16%

Table 3.4: Number of cells for different mesh types.
Mesh Type Number of cells: channel Number of cells: Total

mesh1 27 690 340 847
mesh2 70 838 579 959
mesh3 134 260 886 432
mesh4 342 457 2 025 383
mesh5 539 311 3 197 726

mesh5.5 723 562 4 126 512
mesh6 987 266 5 437 440

Figure 3.7-3.8 illustrates the meshes: the coarsest mesh with 340 847 cells; and the finest one with
5 437 440 cells.
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Figure 3.7: mesh1, internal mesh in xz plane for full mesh and channel.

Figure 3.8: mesh6, internal mesh in xz plane for full mesh and channel.

3.4.2 Pseudo 2D Model

The construction of the mesh for the Pseudo 2D model, was performed concurrently with its 3D
counterpart, as mentioned. The enforcement of one cell in height along the channel limits the choice
of meshers to Tetrahedral Mesher and Thin Mesher with the Automated Mesher as a predecessor.
Consequently, to avoid bad mesh transitions, the grid-system type of the latter subdomain was
permitted to comprise a small section of the channel in the near region of the sudden expansion,
see Appendix A. The mesh configuration of the Automated Mesher is displayed in Figure 3.9.

Figure 3.9: A flow chart illustrating the mesh configuration in STAR-CCM+ for Pseudo 2D model.

The other aspects and features of the Pseudo 2D model, mostly in terms of the latter subdomain,
were constructed as similarly as possible to the mesh of the 3D model. This was to provide as
much of the mesh independence achieved from the preceding mesh sensitivity study and conformity
between models.

16



3.5 Mesh Sensitivity Analysis
The overall mesh is based on an unstructured algorithmic generation approach. Thus, in the sense
of quantifying the mesh convergence, no direct measurement or index is employed. Instead, plots
and chosen data values throughout the domain are used in the analysis of the mesh convergence.

To ensure that the results are mesh-independent, different grid system types were evaluated and
analyzed. The physics and solver settings used for conducting the simulations regarding the sen-
sitivity analysis are described in Section 3.3. Since the regions of interest are comprised of the
channel and jet, a specific focus was placed on analyzing results within these areas. Pressure distri-
bution along the channel, shown in Figure 3.11, was examined using values obtained at the channel
center line along the flow direction, see Figure 3.10. Furthermore, the velocity magnitude in the
flow direction was analyzed along the entire domain and is represented by the a-line in Figure 3.10.
Additionally, the velocity profile spanning the height dimension in the channel was analyzed. This
was captured, orthogonal to the flow direction, just before entering the room, along the b-line in
Figure 3.10. All this was done on the Simple Geometry for the flow between plates. Comparisons
with the exact solution of the Poiseuille show the differences among the different mesh types which
are illustrated in Figure 3.13.

Figure 3.10: A sketch illustrating where the datasets are taken from: a) Position along center-line
s; b) position between the plates z, before entering the room subdomain. Both views are in the
xz-plane.

Figure 3.11: Pressure p along channel and a small section of the room.
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Figure 3.12: Velocity magnitude Umag along domain.

Figure 3.13: Velocity magnitude Umag between plates 0.01m before entering the room subdomain.

To ensure result convergence, assessments were made on regions of importance for the different
meshes. These assessments included evaluating the above plots, such as the pressure drop in Figure
3.11, and the maximum velocity normal to the flow direction at distances of 0.01 m and 0.05 m
beyond the channel exit, in the room. The data regarding the former are shown in Figure 3.14-3.15.
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Figure 3.14: Maximum velocity Umax at 1.01m. Figure 3.15: Maximum velocity Umax at 1.05m.

In CFD (analyses), it is important to have a balance between computational cost and accuracy.
Having a coarse mesh can result in inaccuracies due to poor resolution of flow features. On the
other hand, an excessively fine mesh can result in a significant increase in computational time
without necessarily improving the solution.

In this thesis, the evaluation between the different meshes indicated that mesh5.5, seen in Fig-
ure 3.16, offers the best results, considering accuracy and computational time. This was based on
the observation of the consistent decrease in change between the finer meshes, indicating conver-
gence. However, both mesh4 and mesh5 displayed sufficiently good results, but choosing mesh5.5
was justified by the reason that the analyzed problem was of a steady-state nature which results
in manageable and acceptable computational time. Despite the higher computational expense
associated with simulating this mesh compared to coarser ones, the decision to proceed with it
was supported by the need to ensure strictly accurate results. Since other geometrical features
were to be evaluated in this project, choosing a fine mesh was concluded to ensure that the same
configuration would be sufficient.

Figure 3.16: mesh5.5, internal mesh in xz plane for full mesh and channel.

3.6 Mesh Generation - Duct
To achieve a stable, converged steady-state solution, the room subdomain had to be widened in the
duct models to ensure full accommodation of the three-dimensional jets forming. Since the room
subdomain was significantly extended compared to the parallel plate models, the mesh settings
had to be adjusted so that the maintained mesh count was reasonable. Changes to the volumetric
controls were made. First, the VC-CA volumetric control was reduced, it now extended from the
channel to a quarter of the room because it was evident that the jet did not extend beyond one-
fifth of the room in the flow direction. The other volumetric controls, the VC-CR and the VC-R
spanned the same length downstream compared to the parallel plate case but were extended in the
depth direction, conforming with the widening of the room subdomain. The size of the volumetric
controls was adjusted to maintain sufficient accuracy while simultaneously reducing the total cell
count. Table 3.5 illustrates the mesh size for the different volumetric controls as a percentage
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of the base size and Table 3.6 shows the number of cells in the channel and the whole domain
respectively.

Table 3.5: Volumetric control settings for Simple Geometry - Duct.
Base Size VC-CA VC-CR VC-R

Simple Geometry - Duct 0.05m 2.5% 6% 18%

Table 3.6: Number of cells for Simple Geometry - Duct.
Number of cells: channel Number of cells: Total

Simple Geometry - Duct 629 116 6 541 842
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4 Development of Reduced Dimensional Model
This section presents the general theory of the Poiseuille flow, detailing how it is derived for
the configuration of parallel plates and ducts respectively. The theoretical pressure drops were
calculated for both cases and served as benchmarks for the simulated results. The theoretical
pressure drop between two parallel plates with one cell between the plates was also computed.
Lastly, the implementation of the momentum source, to artificially correct the pressure in the
reduced dimensional model, is detailed.

4.1 Poiseuille Flow
A fundamental part of the methodology and model development relies on the implementation of
mathematical relations to the Simple Geometry. From a theoretical perspective, this provides the
need to discuss some aspects regarding the simulated flows. The focus of this thesis, in line with
the aforementioned industrial applications, is exclusively on pressure-induced flows. This leads to
the classical example of Poiseuille flow which mathematically governs one of the simplest possible
pressure-induced flows, theoretically applicable in thin domains, such as in the channel subdomain
for both configurations.

4.1.1 Parallel plates

The discussion and the general notation in this section highlight the most essential aspects of
Poiseuille flows and follow the description of Rowe [22]. Poiseuille flow is a flow induced by a
pressure at one end of a, typically, elongated geometry in the form of a pipe, or, as considered in
this thesis, between two parallel plates. The laminar flow which occurs is withstood by the stresses
in the fluid caused by shear. Additionally, as the velocities orthogonal to the flow direction are
zero, i.e., v = w = 0; and with the flow is laminar, no significant lateral forces in the fluid exist [30].
Thus, the pressure across the flow is constant, i.e., ∂p

∂z = 0. Along with the assumption of no-slip
along the walls, the force balance can be seen in Figure 4.1. Noteworthy is that the following
derivations can be conducted from the governing momentum equation directly, but for illustratory
reasons, are herein instead based on the graphical representation of the force balance below.

Figure 4.1: Poiseuille flow, with forces acting on a fluid element (adaption of [22]).

Based on Figure 4.1, the following (force) equilibrium equation of a fluid element of depth y takes
the following form:

pyδz − (p+
dp

dx
δx)yδz − τyδx+ (τ +

dτ

dz
δz)yδx = 0, (4.1)

where p is the pressure and τ the shear stress. Simplification of Equation (4.1) gives:

dτ

dz
=

dp

dx
. (4.2)

By utilizing that τ = µ(du/dz), where µ is the dynamic viscosity of the fluid, the following is given:

µ
d2u

dz2
=

dp

dx
. (4.3)

With the use of the following boundary conditions du/dz = 0 for z = h/2 and u = 0 for z = 0
and z = h and subsequently integration twice, the velocity distribution along the channel height
becomes:

u =
1

2µ

dp

dx
(zh− z2). (4.4)
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Integration of Equation (4.4), w.r.t., z from 0 to h and subsequently dividing by h, the final
expression for the bulk velocity ub is given:

ub =
h2

12µ

dp

dx
. (4.5)

Thus, concluding and displaying the simplest expressions of the governing physics for Poiseuille
flow.

4.1.2 Duct

A similar derivation is made for the Poiseuille flow in a duct. While it draws upon the principles
of flow in a pipe, the duct scenario employs the concept of the hydraulic diameter, see Section
2.5.1. Therefore, the discussion and the general notation follow the description of the flow in a
pipe [7], with the hydraulic diameter being integrated at the end of the analysis. Similarly to the
flow between plates, the pressure across the flow is constant, i.e., ∂p

∂r = 0. Following the no-slip
assumption for the walls, the illustration below applies.

Figure 4.2: Cylinder flow, with acting forces (adaption of [7]).

Based on Figure 4.2, a force balance is made between the pressure p and shear stress τ acting on
the fluid, which can be written as:

pπr2 − (p−∆p)πr2 − τ2πrl = 0, (4.6)

where l is the cylinder length and r the radius. After simplification, the following relation is
obtained:

∆p

l
=

2τ

r
. (4.7)

With the previously mentioned dynamic viscosity µ and by utilizing that τ = µ(du/dr), which is
the general notation associated with flow in a pipe, and Equation (4.7), the following is obtained:

du

dr
=

∆p

2µl
r. (4.8)

By integrating and utilizing the boundary condition that the fluid sticks to the pipe wall, so that
u = 0 at r = D/2, the following expression is obtained:

ub =
D2

32µ

dp

dx
, (4.9)

where ub is the bulk velocity. The final expression, upon replacing the pipe diameter with the
hydraulic diameter of a duct Dh, transforms into:

ub =
D2

h

32µ

dp

dx
. (4.10)

4.1.3 Analytical Solution of Pressure Drops

For validation purposes, the exact analytical solution to the Poiseuille flow, concerning both parallel
plates and duct, was computed in the initial stages of the analysis. The calculation was initiated

22



by computing the pressure drop using Equation (4.5) for the scenario involving flow between the
plates. After rearrangement, this equation provides the following relation:

dp

dx
=

12µub

h2
, (4.11)

where h = 0.01 m and µ = 1.855 · 10−5 Pa · s. The bulk velocity was set to u = 0.02 m/s,
which corresponds to the inlet velocity. This is based on the incompressibility assumption, i.e.,
negligible density change of the fluid and preservation of mass throughout the channel. Meaning,
that the inlet velocity is equal to the mean (bulk) velocity of the fully developed flow. Inserting
into Equation (4.11) yields the following value:

dp

dx
=

12µub

h2
=

12 · 1.855 · 10−5 · 0.02
0.012

≈ 0.045 Pa/m. (4.12)

Further, with the use of the obtained result from Equation (4.12) the exact analytical velocity
profile for the flow was computed. It was done by generating a large data series of z-values ranging
from 0 to 0.01 m. By inserting the dynamic viscosity of air into Equation (4.4) along with the
previously discussed variables, the velocity profile was obtained, see Appendix B.

The exact analytical solution of the Poiseuille flow in the duct was also computed. Equation
(4.10) was used to calculate the pressure drop in the channel. For this case, the inlet velocity was
set to u = 0.033m/s, to maintain consistency between the two configurations in terms of Reynolds
number of Re ≈ 25. The width of the channel y was set to 0.015m and the height of the channel
h was set to 0.01 m according to Section 3.1. The hydraulic diameter is denoted by Dh. This
provided the following pressure drop in the channel for the duct-related case:

dp

dx
=

32µub

D2
h

=
32µub

( 2·h·yh+y )
2
=

(
32 · 1.855 · 10−5 · 0.033

( 2·0.01·0.0150.01+0.015 )
2

)
≈ 0.136 Pa/m. (4.13)

Here, the room subdomain was assumed to be large enough to impose a negligible minor head loss,
see Section 2.5.5, and that the pressure would be almost equal to the outlet conditions of p = patm.
This leads to the assumption that the fluid flowing into the room is essentially a free jet. This
supports the exclusion of the room subdomain in the above pressure drop calculations.

4.1.4 Pressure Drop for Pseudo 2D - Parallel Plates

In the Pseudo 2D model, featuring one cell between the plates within the channel, a force equilib-
rium equation was derived in a similar way as in Section 4.1. This was performed to gain insight
into how the pressure drop is approximated with reduced dimensionality. In STAR-CCM+, the
values are extracted from the midpoint of the cell [24], consequently forming the triangular velocity
profile in Figure 4.3.

Figure 4.3: Flow between plates with one cell along the height.

Based on Figure 4.3, the equilibrium equation of a fluid element with depth y is described by the
following:

pyh− (p−∆p)yh− 2τy∆x = 0, (4.14)

where p is the pressure and τ the wall shear stress. Simplification and reformulation of the expres-
sion gives:

∆p =
2τ∆x

h
→ dp

dx
=

2τ

h
, (4.15)
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with the reoccurring general definition of the wall shear stress τ = µdu
dz . By applying the no-slip

boundary condition: u = 0 for z = 0 and z = h, and utilizing the bulk velocity: ub for z = h/2,
the slope of the velocity profile du/dz in the z-direction becomes:

du

dz
=

2ub

h
. (4.16)

Combining equation (4.16) with the expression of the shear stress and Equation (4.15) gives the
following:

dp

dx
=

4µub

h2
. (4.17)

This shows that the pressure drop along the channel with the resolution of the Pseudo 2D mesh
is one-third of that in the full 3D model. This validated the later achieved results of the Pseudo
2D model, during the early stages of the model development, which differs significantly from the
final version of the reduced dimensional models. The approach after the conclusion in this section
is further addressed in Section 4.3.

4.2 Field Function Implementation
The pressure drop approximated by the Pseudo 2D model proved to be fundamentally inaccurate,
as derived in the previous section, due to the poor resolution in the channel. This was remedied
with the implementation of field functions, specifically to correct the momentum equation. The
explored options rely on modification of the source terms in the regarded Navier-Stokes equation,
enabled by user-defined field functions in STAR-CCM+. The initial idea was to add the missing
pressured drop contribution via a field function specified to govern the whole channel subdomain.
Through evaluation of both mass source and momentum source, the prior resulted in undesired
features and proved to be more complex in its implementation due to its volume dependence in
terms of its specification in the software. Furthermore, since the mass was already conserved
properly, the approach to modify the momentum conservation became more feasible. In Sections
4.2.1 and 4.3 the implementation of momentum source is described in more detail, concerning
its mathematical formulation and the adaption of boundary conditions. Where the latter aspect
specifically supports the adopted mathematical formulation of momentum source, presented below,
as it is fundamentally based on reformulating the standard form of the momentum conservation
law, see Section 2.3.2.

4.2.1 Momentum Correction for Flow between Parallel Plates

The momentum source SM for flow between plates, implemented in the momentum source field
function in STAR-CCM+, is mathematically derived based on the conservation of momentum in
the Navier-Stokes equations, see Section 2.3.2. Utilizing the following:

(1) :
Du
Dt

= 0, (2) : τ = 0.

Here (1) is based on steady-state assumption and (2) on the implementation of slip along the walls
and laminar flow, resulting in no shear occurring. This is addressed in Section 4.3. Based on
Equation (2.3) this leads to the following:

−∇p+ SM = 0

SM = ∇p = −12µu
h2

, (4.18)

Here, h is the distance between the plates, u the velocity vector and µ the dynamic viscosity.
Furthermore, the local velocity vector u conforms with the syntax of the momentum source in
STAR-CCM+ [26]. The corresponding momentum source derivative, w.r.t., velocity, needing spec-
ification in STAR-CCM+, becomes:

∂SMx

∂u
= −12µ

h2

∂u

∂u
= −12µ

h2
, (4.19)

∂SMy

∂v
= −12µ

h2

∂v

∂v
= −12µ

h2
, (4.20)

∂SMz

∂w
= −12µ

h2

∂w

∂w
= −12µ

h2
. (4.21)
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Equations (4.18) and (4.19)-(4.21) were employed for the channel subdomain only, performed by
utilizing the range of the x-axis and limiting it to apply only for x ∈ [0, a], where a is the point
where the denser mesh region begins.

An example illustrating the resulting formulation for the Simple Geometry case, is detailed in
the following. Due to the flow direction being consistently aligned with a x-axis throughout the
domain, the following is attained for the momentum source:

SM = [SMx, SMy, SMz]
T
=

[
−12µu

h2
, 0, 0

]T
,

and the corresponding momentum source derivative becomes:

∂SMx

∂u
= −12µ

h2

∂u

∂u
= −12µ

h2
.

∂SMy

∂v
= 0,

∂SMz

∂w
= 0.

4.2.2 Momentum Correction for Flow in Ducts

Following the same approach as for parallel plates, the momentum source SM for flow in ducts is
mathematically expressed by the following:

SM = ∇p = −32µu
D2

h

, (4.22)

once again leveraging that the loss of momentum is equal to the pressure drop. Here, the previ-
ously addressed variables, Dh is the hydraulic diameter, u the velocity vector, and µ the dynamic
viscosity. Herein, Equation (4.22), governing the loss of momentum, is also equated to the derived
pressure drop, see the above in Section 4.2.1 for full derivation. It is also applied for all three
orthogonal directions in a similar way as the case with parallel plates, see Section 4.2.1.

After differentiation, w.r.t., velocity, the momentum source derivative becomes:

∂SMx

∂u
= −32µ

D2
h

∂u

∂u
= −32µ

D2
h

, (4.23)

∂SMy

∂v
= −32µ

D2
h

∂v

∂v
= −32µ

D2
h

, (4.24)

∂SMz

∂w
= −32µ

D2
h

∂w

∂w
= −32µ

D2
h

. (4.25)

The Equations 4.22 and 4.23-4.25 were then employed in exact same way as in Section 4.2.1.

4.3 Modification of Boundary Conditions in Pseudo 2D-C Model
For the resulting reduced dimensional model, denoted as Pseudo 2D-C model, a slip boundary
condition was implemented along the channel walls/plates, along a distance where the channel
maintained a single cell configuration before it transitioned to the denser mesh region, see Fig-
ure 4.4. For the parallel plate analyses, the slip boundary condition was employed on two faces
within the channel, while the remaining two faces retained the symmetry boundary condition. For
geometries involving ducts, the slip boundary condition was implemented on all four faces in the
single-cell configured region. This means that all four no-slip faces in the 3D model were replaced
with the slip boundary condition in the Pseudo 2D-C model in the single cell region. This resulted
in the removal of the contribution gained from the Pseudo 2D model in regards to pressure drop,
seen in Section 4.1.4 and instead based on theory, the contribution being solely integrated based
specified field functions. This aids the accuracy for cases where the generated Pseudo 2D mesh
is not fully comprised of a one-cell structure between the spacing, as the improved resolution will
potentially deviate from the demonstrated one-third of value in terms of pressure. In the slip
boundary condition region, the momentum source and momentum source derivative were applied,
thus fully comprising the above conditions necessary for the loss of momentum to be equal to
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the pressure drop in Equations (4.18) and (4.22). However, in the smaller region, denoted as the
denser mesh region, which is characterized by more cells in the z-direction, a no-slip condition was
employed, see Figure 4.5. In consequence, the channel was divided into two segments, the denser
mesh region, and the region containing one cell in the z-direction. The field functions were then
implemented in the latter region while a no-slip condition was maintained in the former.

Figure 4.4: Implementation of slip boundary condition and momentum source.

Figure 4.5: Implementation of no-slip boundary condition at denser mesh region.
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5 Case Study - Parallel Plates
In the following section, the simulated results of the parallel plate configurations are presented.
The conducted evaluation is presented in terms of the Simple Geometry and the results of the
developed model, followed by the implementation of the following geometrical features: Single
Sharp Bend, Single Smooth Bend, Multiple Sharp Bends, and Multiple Smooth Bends.

5.1 Mesh Density Adjustment for Momentum Conservation
Given the significance of conserving momentum to the greatest extent possible in the developed
reduced dimensional model, a segment of the channel near the sudden expansion region needed a
denser mesh region to suffice. This adjustment was also necessary to prevent poor mesh transition
at the interface between the channel and room subdomain, as mentioned previously in Section
3.4.2. In the following analysis, the Pseudo 2D, i.e., the uncorrected version, was chosen to repre-
sent the reduced dimensional model variants, as the velocity aspects are virtually identical to the
ones with implemented field functions and boundary conditions alterations.

The analysis was initially conducted for the parallel plates, to determine the optimal position
for transitioning from a single cell configuration to multiple cells for the Pseudo 2D model (denser
mesh region), ensuring that the maximum velocity and momentum residual remain within accept-
able limits in comparison to the full 3D model. Four different inlet velocities were set for the
simulations: 0.02, 0.04, 0.06, and 0.08m/s, corresponding to Reynolds numbers ranging from ap-
proximately 25 to 100. The conducted simulations were specifically carried out for a case where the
length of the denser mesh region was minimal. The critical length was determined to be 0.0133m,
meaning that the channel maintained a single cell configuration between the plates for roughly
0.9867 m, along the domain before transitioning to a denser mesh region for the final length of
0.0133 m. Accordingly, the channel mesh composition resulted in 98.67% of reduced dimension
and 1.33% of a 3D mesh. The velocity profiles between the reduced dimensional models and 3D
models were then analyzed for various velocities just before leaving the spacing between the paral-
lel plates, see Figure 5.1. Specifically 0.001m before entering the room subdomain, where Figure
3.10 illustrates the position between the plates where the datasets are taken from. These depict
the simulations for various inlet velocities from U = 0.02 m/s to U = 0.08 m/s, illustrating the
gradually increasing residual of the velocity when approaching higher Reynolds numbers. Further
detail, in regards to the increasing residual value, is addressed below.
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Figure 5.1: Velocity profiles for several inlet velocities: a) U = 0.02 m/s; b) U = 0.04 m/s; c)
U = 0.06m/s; and d) U = 0.08m/s.

To provide a clearer depiction of the discrepancies between the Pseudo 2D and 3D models, Tables
5.1 and 5.2 are presented. These tables outline the following parameters: the Reynolds number
Re; entrance length Le; maximum velocity for Pseudo 2D, denoted as Umax,2D, and for the 3D
model, denoted as Umax,3D; momentum flow rate per unit width for Pseudo 2D, represented as
p′2D, and for the 3D model, represented as p′3D; maximum velocity residual ϵv; and momentum
flow rate residual ϵp′ . These parameters were used as the basis of the comparison of the models.
The momentum was calculated by establishing velocity functions based on the points that define
the velocity profiles. The velocity functions, derived from polynomial regression from the datasets,
were subsequently used in the integration, in Equation (5.1), along the channel length by utilizing
the conservation of momentum integral which was inspired by [7]:

p′ = ρ

∫ h

0

u(z)2dz. (5.1)

Here, p′ is the concerned momentum flow rate per unit width, ρ the density of the fluid, u(z) the
velocity as a function of the position between the plates z, and h the distance between the plates.

Table 5.1: Parameter values for U = 0.02m/s and U = 0.04m/s.
Velocity inlet 0.02m/s 0.04m/s

Re 25.53 51.07
Le 3.06 cm 6.13 cm

Umax,2D 0.029m/s 0.057m/s
Umax,3D 0.029m/s 0.058m/s

p′2D 5.196e-6 kg/s2 2.016e-5 kg/s2

p′3D 5.258e-6 kg/s2 2.114e-5 kg/s2

ϵv 0.645% 2.35%
ϵp′ 1.18% 4.64%
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Table 5.2: Parameter values for U = 0.06m/s and U = 0.08m/s.
Velocity inlet 0.06m/s 0.08m/s

Re 76.6 102.13
Le 9.19 cm 12.26 cm

Umax,2D 0.083m/s 0.109m/s
Umax,3D 0.087m/s 0.115m/s

p′2D 4.363e-5 kg/s2 7.445e-5 kg/s2

p′3D 4.742e-5 kg/s2 8.390e-5 kg/s2

ϵv 4.08% 5.8%
ϵp′ 8% 11.26%

The maximum residuals in velocity and momentum within the velocity range of U = 0.02−0.08m/s
are plotted in Figures 5.2-5.3 as a function of the entrance length, which is directly related to
Reynolds number according to Equation (2.19). The following plots display the simulated results
with a denser mesh region length of 0.0133m.

Figure 5.2: Maximum velocity residual ϵv as a
function of entrance length.

Figure 5.3: Momentum residual ϵmo as a func-
tion of entrance length.

It is evident that the maximal velocity residual, as well as the momentum residual follow a linear
trend. The linear function, attained based on linear regression, approximates the residual of the
maximal velocity, and the momentum residual as a function of the entrance length. By analyzing
these trends, the relationship between the length of the channel’s end, where the transition from
a single cell to more cells occurs, and the entrance length can be determined depending on the
desired accuracy of the results. The residuals as a function of the entrance length for Reynolds
numbers up to 100 are described in Equations (5.2) and (5.3). This range is chosen because the
applications of interest, discussed in Section 1, experience low Reynolds numbers:

ϵv(Le) = 0.56Le − 1.069, (5.2)

and
ϵmo(Le) = 1.096Le − 2.174, (5.3)

where ϵv and ϵmo denote the residual of maximum velocity and momentum, respectively, based
on the entrance length for a denser mesh region length of 0.0133 m at the channel end in the
reduced dimensional model. To consistently obtain a residual below 5% of the regarded values, the
following should be adopted, based on Equation (5.2) and (5.3):

LDSM ≥ 1

5
Le, (5.4)

where LDSM is the denser mesh region length and Le the entrance length. The proposed relation
was further validated for a higher Re in Section 5.2. Aside from the maximum residuals concerned,
the overall influence of the velocity profile on the jet formation was considered. The evaluation is
discussed in Appendix C, where a brief comparison between a planar and a parabolic velocity profile
with equal mass flow was conducted. This demonstrates an attempt to evaluate the differences
between the desired profile and a planar equivalent. Ultimately, displaying the need for the denser
mesh region, in contrast to a full slip-condition along the whole channel subdomain.
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5.2 Validation of Denser Mesh Region for Higher Reynolds Numbers
Based on the study presented in Section 5.1, using a denser mesh region length equivalent to 1/5
of the entrance length at the end of the channel is sufficient to maintain a maximum deviation of
approximately 5% for both momentum and maximum velocity before entering the room subdomain
when compared to the fully resolved 3D model. To ensure that this relation also applies to higher
velocities characterized by a high laminar Reynolds number, a test simulation was performed for
an inlet velocity of U = 0.5m/s with the following specifications:

Table 5.3: Data for U = 0.5m/s.
Velocity inlet 0.5m/s

Re 638.33
Le 76.6 cm

Based on Table 5.3, the denser mesh region was utilized at a distance of 0.153m across the channel
end, equivalent to 1/5 of the entrance length. Figure 5.4 shows the velocity profile in the channel,
between the plates, 0.001m before entering the room, see Figure 3.10.

Figure 5.4: Velocity profile for U = 0.5m/s.

The maximum velocity Umax,2D for Pseudo 2D and Umax,3D for 3D model; momentum flow rate
per unit width p′2D for Pseudo 2D and p′3D for 3D model; maximum velocity residual ϵv; and
momentum flow rate residual ϵp′ , is for both models depicted in Table 5.4 respectively.

Table 5.4: Data for U = 0.5m/s.
Velocity inlet 0.5m/s

Umax,2D 0.692m/s
Umax,3D 0.680m/s

p′2D 3.024e-3 kg/s2

p′3D 2.923e-3 kg/s2

ϵv 1.71%
ϵp′ 3.46%

The results confirm that the residuals for both momentum and maximum velocity are below the
specified limit of 5%. This demonstrates that the applied relationship of 1/5 of the entrance length
also applies to laminar flows with higher Reynolds numbers for parallel plate configurations.
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5.3 Simple Geometry
After concluding the specific parallel plates model development aspects, this section presents the
simulation results for the Simple Geometry case. The highlighted results are based on Re ≈ 25 in
the channel subdomain, corresponding to an inlet velocity of U = 0.02 m/s. In this analysis, all
models, i.e., the 3D, Pseudo 2D and Pseudo 2D-C are evaluated and discussed.

5.3.1 Evaluation and Discussion

The results show that the Pseudo 2D-C model closely aligns with the results obtained from the 3D
model. This is particularly evident in the plots for the pressure along the channel and the velocity
in the room subdomain. Figure 5.5 illustrates the velocity distribution in the xz plane along
the whole domain for the 3D model. Most of the room subdomain has velocities close to 0m/s,
therefore the part of the room where the velocity is very close to zero is excluded. Consequently, all
models and analyses in the subsequent sections will reflect this adjustment, as illustrated in Figure
5.6. Figure 5.7 displays the results of the pressure contour plots in the channel subdomain for the
3D model, Pseudo 2D model and Pseudo 2D-C model. The pressure in the room subdomain is
negligible, due to its large size, thus only the pressure in the channel subdomain is displayed. This
holds for all models and analyses in the subsequent sections.

Figure 5.5: Contour plot; Velocity magnitude for 3D model.

Figure 5.6: Contour plot; Velocity magnitude for 3D model (top), Pseudo 2D model (middle) and
Pseudo 2D-C model (bottom), respectively.
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Figure 5.7: Contour plot; Static pressure for 3D model (top), Pseudo 2D model (middle) and
Pseudo 2D-C model (bottom), respectively.

To provide a clearer representation of the results, graphs depicting the pressure and velocity along
the center-line of the domain were generated, see Figures 5.8-5.9. The center-line of the domain is
illustrated in Figure 3.10.

Figure 5.8: Pressure p along center-line of do-
main.

Figure 5.9: Velocity magnitude Umag along
center-line of domain.

The depicted results show that the Pseudo 2D model has a pressure three times lower than the
3D model. This outcome is, however, expected based on the theory describing the pressure drop
for the Pseudo 2D model configuration in Section 4.1.4. Furthermore, the results also indicate
that the pressure diminishes to zero before the sudden expansion, which is expected considering
the static pressure set to zero (relative to atmospheric pressure) at the room outlet and its large
size compared to the precursor. To further evaluate the pressure, due to the superimposition
of data between the 3D and the Pseudo 2D-C, a residual plot was created, as shown in Figure
5.10, illustrating the pressure residuals compared to the 3D model. The pressure residuals were
calculated by computing the absolute difference between the model under consideration and the
3D equivalent and dividing by the pressure value of the 3D model, accordingly:

Pressure Residual =
|P2D∗ − P3D|

P3D
, (5.5)

where P2D∗ is the pressure of the concerned reduced dimensional model and P3D the pressure value
of the 3D simulation.

All three models display similar results for velocities along the center line of the domain. In
the channel, the velocity across the center-line is U = 0.02 m/s for the Pseudo 2D cases, which
is expected because of the one cell configuration between the plates. With only one cell existing
between the plates, all cells get assigned the same value based on continuity. In this case, it means
that they attain the mean (bulk) velocity value, corresponding to the specified inlet condition of
U = 0.02 m/s. A conclusion that can be drawn is that the velocity profiles across the room are
similar across all three cases. The Pseudo 2D case performs notably well due to the low veloci-
ty/Reynolds numbers analyzed. Since there is a significant deviation in pressure, it is of utmost
importance to artificially correct it which was done in alignment with the method described in
Section 4.3. This method ensures that the Pseudo 2D-C model closely aligns with the obtained
results of the full 3D model in terms of both pressure and velocity. See Figure 5.11 for a more
accurate representation of the velocity residual compared to the 3D model. The velocity residuals
are calculated by computing the difference between the model under consideration and the 3D
equivalent and dividing by the velocity value of the 3D model, accordingly:

Velocity Residual =
|U2D∗ − U3D|

U3D
, (5.6)
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where U2D∗ is the velocity of the concerned reduced dimensional model and U3D the velocity value
of the 3D simulation.

Figure 5.10: Pressure residuals, w.r.t., 3D. Figure 5.11: Velocity residuals, w.r.t., 3D.

The pressure residual plot for the Pseudo 2D-C model is nearly zero throughout the entire channel
subdomain, except near the end where the pressure values are very close to zero. This confirms
the effectiveness of the momentum source and momentum source derivative correction applied
in the Pseudo 2D-C model. The numerical pressure difference in terms of absolute values is also
plotted, see Figure 5.12. The pressure numerical difference is calculated by computing the absolute
difference between the model under consideration and the 3D equivalent, accordingly:

pdiff = |P2D∗ − P3D| , (5.7)

where pdiff is the pressure numerical difference, P2D∗ is the pressure of the concerned reduced
dimensional model and P3D the pressure value of the 3D simulation.

It is evident from the velocity residual plot, see Figure 5.11, that the residuals are small for
the reduced dimensional models, for positions below 1.5m, which is considered satisfactory. This
further confirms that the denser mesh region is sufficiently large for the flow to develop before
entering the room subdomain. However, the residuals start to increase beyond 1.5m. This is due
to the velocity dropping close to zero after this position. Relying on percentage deviation when
dealing with small numbers can be misleading since it is sensitive to small changes. The result is
that the residual in percent could appear to be very large but the actual numerical difference could
still be very low. To avoid misrepresentation, the actual numerical difference is displayed alongside
the residual. The numerical velocity difference in terms of absolute value is thus plotted in Figure
5.13. The velocity numerical difference is calculated by computing the absolute difference between
the model of consideration and the 3D equivalent, accordingly:

Udiff = |U2D∗ − U3D| , (5.8)

where Udiff is the velocity numerical difference, U2D∗ is the velocity of the concerned reduced
dimensional model and U3D the velocity value of the 3D simulation.

Figure 5.12: Pressure diff. pdiff , w.r.t., 3D. Figure 5.13: Velocity diff. Udiff , w.r.t., 3D.

As observed, the numerical velocity difference is low, in the order of 10−4 across the entire room
subdomain. Looking at the pressure difference plot, it becomes evident that there is a significant

33



difference between the Pseudo 2D and Pseudo 2D-C model. The pressure difference between the
3D and Pseudo 2D-C model is nearly zero throughout the entire channel subdomain. The overall
results are thus satisfactory for the reduced dimensional model, with a resulting significant cell
count reduction compared to the 3D model. Table 5.5 demonstrates the mesh count for the 3D
and Pseudo 2D model in the channel subdomain, which is the same as the Pseudo 2D-C model. It
also shows the relative cell amount, i.e., the number of cells in the Pseudo 2D divided by the number
of cells in the 3D model. It is important to highlight that the relative cell amount is small, less than
1%, meaning that the number of cells in the Pseudo 2D is substantially lower than the 3D mesh.
Despite this, the results for the Pseudo 2D-C align well with the 3D model. This demonstrates
that significant computational resources and time can be saved while still maintaining a high level
of accuracy, at least concerning the evaluated flow features: the pressure drop throughout the
domain and the velocity of the jet.

Table 5.5: Cell count comparison (channel) - Simple Geometry.
3D Pseudo 2D Relative cell amount [%]

713 668 3 225 0.45

5.4 Single Sharp Bend
To evaluate and explore the applicability of the Pseudo 2D-C model, a geometrical component in
the form of a 90◦ bend, elbow, was implemented. The geometry contains the same characteristics
as the Simple Geometry but with the mentioned elbow at half the channel center-line length,
totaling the center-line length to 1m, see Figure 5.14 for full details. The previous explaining its
earned name, Single Sharp Bend.

Figure 5.14: Single Sharp Bend geometry in xz plane.

5.4.1 Mesh Generation

The mesh was generated based on the results derived from the performed mesh convergence study
on the Simple Geometry. Thus, the resulting choice of mesh settings was assumed to be suitable and
were thereby adopted for the new geometry. The control volume set on the channel subdomain,
VC-CA, in the 3D model was adjusted to incorporate the vertical section of the channel. The
resulting mesh with focus on the bend can be viewed in Figures 5.15-5.16. A three-dimensional
unstructured mesh was unavoidably formed in the Pseudo 2D mesh for Single Sharp Bend, as
a product of the geometrical change, and by extension the undefined thickness property of the
discontinuous, sharp feature.
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Figure 5.15: 3D mesh for Single Sharp Bend in
channel subdomain.

Figure 5.16: Pseudo 2D mesh for Single Sharp
Bend in channel subdomain.

Table 5.6 shows the cell count and relative cell amount in the channel subdomain. Herein, the
relative cell amount is small, less than 1%, meaning that the number of cells in the Pseudo 2D is
substantially lower than the 3D mesh.

Table 5.6: Cell count comparison (channel) - Single Sharp Bend.
3D Pseudo 2D Relative cell amount [%]

730 097 5 275 0.72

The configuration in regard to the physics and solver settings and field function implementation is
identical to the ones used for the Simple Geometry case. As the momentum source is specified as a
vector, the bending of the pipe, and the resulting flow direction change, is automatically accounted
for in the correction. Meaning, that the momentum resistance is modelled for all directions at all
points along the channel subdomain. Such that, if there is an existing velocity component there
is resultingly a modelled (negative) contribution to the momentum. For specific details of the
employment of field functions, see Section 3.3 and 4.2, respectively.

5.4.2 Evaluation and Discussion

The simulation of the Pseudo 2D-C model indicate that it is in close alignment with the results
obtained from the 3D model. To offer a clear depiction of the findings, graphs showing the velocity
and pressure along the center-line of the domain are shown in Figure 5.17-5.18. Furthermore,
Figure 3.10 illustrates the center-line position for the Simple Geometry case, which is similarly
applicable here. The results show that the pressure and velocity are similar to the ones obtained
for the Simple Geometry, see Section 5.3.1, particularly evident for the concerned properties along
the center-line. In terms of pressure, this is partially due to the feature-imposed minor losses being
negligible, attributable to the low velocity, discussed further in Section 2.5.5. This means that
the resulting pressure drop is almost exactly equal to that of the Simple Geometry case and is
expectedly captured accurately by the reduced dimensional model. The data in terms of velocity
along the center-line jet-region shows a superimposed feature, indicating in detail that the formed
jet is highly accurate.
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Figure 5.17: Pressure p along center-line of do-
main.

Figure 5.18: Velocity magnitude Umag along
center-line of domain.

The data plots indicate that the Pseudo 2D-C model achieves good results in comparison to the 3D
model concerning both flow aspects. This ultimately suggests that the constructed Pseudo 2D-C
model is applicable to geometries featuring sharp bends in channels for low Reynolds number flows.

5.5 Single Smooth Bend
For further exploration and identification of potential inherent features in the sharp 90◦ bend, a
continuously smooth bend equivalent was constructed, termed Single Smooth Bend. The geome-
try was constructed from the Simple Geometry and incorporates its elbow at approximately half
the channel length. The room subdomain is geometrically identical to the Simple Geometry for
consistency and simplification purposes. From the room, the channel extends by a horizontal part
of 0.5m, where the bend connects the perpendicular, vertical section via a channel center-line arc
length of 0.0157 m. The vertical section of the channel contains the remaining length 0.4843 m
which totals the channel center-line length to 1m. The bend is based on a radius of 0.01m and
90◦ turn, resulting in its aforementioned center-line length. The geometry can be seen in Figure
5.19.

Figure 5.19: Single Smooth Bend geometry in xz plane.

5.5.1 Mesh Generation

After the construction of the geometry, the mesh generation was done in accordance with the sharp
bend geometry. The generated mesh in the channel subdomain differed as a result of the Thin
Mesher, explained in Section 3.4.2, functioning properly and enabling the formation of a consistent
configuration of Pseudo 2D mesh along the whole subdomain. This is because the channel thickness
is constant and, by the algorithmic program used to generate the mesh, identifiable throughout
the whole subdomain. The mesh, with focus on the geometrical feature, can be seen in Figures
5.20-5.21. For information regarding the difference in amount of cells for the channel subdomain,
see Table 5.7.
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Figure 5.20: 3D mesh for Single Smooth Bend
in channel subdomain.

Figure 5.21: Pseudo 2D mesh for Single Smooth
Bend in channel subdomain.

Table 5.7: Cell count comparison (channel) - Single Smooth Bend.
3D Pseudo 2D Relative cell amount [%]

707 011 3 132 0.44

The setup, encompassing physics, solver settings, and field function formulation follow the same
implementation as in the Simple Geometry case, explained in Section 4.2. However, inevitable and
evident adaptations exist, as a result of new boundaries arising due to the implemented geometrical
feature, see Figure 5.19. For example, the previously implemented field functions now have to be
extended to function for a larger range of z-values due to the vertical section of the channel.

5.5.2 Evaluation and Discussion

Similar to the sharp bend, the results show no significant difference. Theoretically, this is expected
as smooth bends have a lower minor loss coefficient than sharp equivalents [7]. In terms of the
formed jet and the pressure along the domain, the Pseudo 2D-C model and the 3D are equivalent.
It is also evident that the velocity and pressure closely match those of the 3D model, indicating
that whether it is a sharp or smooth bend, the overall results remain unaffected. The graphical
representation of the pressure and velocity is presented along the center-line in Figure 5.22-5.23.
The extraction of the data is similar to the Simple Geometry case, see Figure 3.10, where data is
collected from the center-line position along the domain.

Figure 5.22: Pressure p along center-line of do-
main.

Figure 5.23: Velocity magnitude Umag along
center-line of domain.

As mentioned previously, it is, for the considered geometrical case, apparent that the pressure and
velocity plots along the domain of the Pseudo 2D-C model exhibit satisfactory outcomes. Similarly
to the previous bend-related geometrical feature, the momentum source, included in Pseudo 2D-C
model, is applied for all directions throughout the whole channel subdomain, except for the denser
mesh region. The momentum source, specified as a loss of momentum along the channel, thus
accurately computes the pressure drop throughout the domain. Despite the minor losses being
negligible, a demonstration of applicability is still exhibited in the previous and the reduced di-
mensional model shows potential for smooth bend geometries as well, especially in terms of meshing.
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A deviant feature was noted in the Pseudo 2D model in the initial stages of the study concerning
Single Smooth Bend. This affected the velocity magnitude of the flow beyond the channel bend.
Ultimately, later realized, this had no impact on the corrected reduced dimensional model, Pseudo
2D-C, due to the change of boundary conditions to slip. For more information concerning this, as
well as some meshing aspects worth consideration, see Appendix D.

5.6 Multiple Sharp Bends
To evaluate the applicability of the developed correction method and reduced dimensional model,
a second geometrical feature was implemented. As insinuated by its name, Multiple Sharp Bends,
it incorporates several sharp bends consecutively, with equal channel lengths after each bend. The
specific details with regards to the geometry can be seen in Figure 5.24.

Figure 5.24: Multiple Sharp Bends geometry in xz plane.

The purpose of this geometry is to examine the effect of consecutive bends as the previous geomet-
rical feature imposed a negligible minor head loss. Specific interest is reserved to evaluate if the
effect is too substantial to not specifically address or correct, by determining if the Pseudo 2D-C
model deviates significantly from the 3D model.

5.6.1 Mesh Generation

The meshing follows an identical implementation as the one described for Single Sharp Bend and
Single Smooth bend, except for the needed repositioning of the channel volume control, VC-CA, in
the 3D model to increase the resolution of the mesh. The result is displayed in Figure 5.25, and,
as expected, exhibits a similar tendency towards three-dimensional unstructured cell-formation in
the bends for the Pseudo 2D mesh, as seen in Section 5.4. See Table 5.8 for an illustration of the
cell count and relative cell amount in the channel subdomain.
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Figure 5.25: Multiple Sharp Bends for 3D and Pseudo 2D mesh in channel subdomain.

Table 5.8: Cell count comparison (channel) - Multiple Sharp Bends.
3D Pseudo 2D Relative cell amount [%]

727 531 7 222 0.99

Even for this case, the relative cell amount, i.e., the number of cells in the Pseudo 2D model
divided by the number of cells in the 3D model is low, ≈ 1%. Despite this, the results for the
Pseudo 2D-C align well with the 3D model, see Section 5.6.2.

The solver settings, physics, and field functions are implemented in the same way as for the
previous geometrical feature, with the natural exception of the change in treatment of some of the
channel boundaries as a result of the geometrical alteration.

5.6.2 Evaluation and Discussion

The analysis for the multiple bend configuration showed that employing the same methodology as
for the single bend yields satisfactory results. The findings indicate similar behavior between the
two characteristically similar geometries: single and multiple bends. This can be noted by obser-
vation of the pressure and velocity, along the center-line of the channel and the room subdomain,
depicted in Figure 5.26-5.27. This further validates the demonstrated negligible contribution from
the minor losses for the simulated laminar airflow. The extraction of the data is similar to the
Simple Geometry case, see Figure 3.10, where data is collected from the center-line position along
the domain.

39



Figure 5.26: Pressure p along center-line of do-
main.

Figure 5.27: Velocity magnitude Umag along
center-line of domain.

The graphs illustrate that the Pseudo 2D-C model is in close alignment with the 3D model in
terms of pressure distribution and velocity along the domain. Minor discrepancies or irregularities
occur at positions x = 0.2, 0.4, 0.6, 0.8 m, corresponding to the locations of the bends. This is
anticipated in terms of velocity, as the center-line velocity is no longer equal to the center value
of the parabolic profile in a straight section. However, the irregularities do not affect the overall
outcome of the simulations and the evaluation.

5.7 Multiple Smooth Bends
In alignment with previously considered geometrical features, a smooth bend equivalent was con-
structed for the analysis of multiple bends. The geometrical configuration differs slightly from
the Multiple Sharp Bends geometry as the rounded bends contribute to the total length of the
center-line. It was decided to construct the geometry such that it would contain part-wise straight
sections of the length 0.2m, originating from the room, and consequently, the last horizontal sec-
tion would be comprised of the remaining center-line length to reach a total length of 1 m. For
visualization of the geometry, see Figure 5.28.

Figure 5.28: Multiple Smooth Bends geometry in xz plane.

5.7.1 Mesh Generation

The mesh construction followed a similar approach to that of the Multiple Sharp Bends equivalent,
and the mesh used can be seen in Figure 5.29.
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Figure 5.29: Multiple Smooth Bends for 3D and Pseudo 2D mesh in channel subdomain.

The attained reduction in cell amount for the channel subdomain is displayed in Table 5.9. Dis-
playing that the Pseudo 2D mesh contains ≈ 1% of cells required in the 3D.

Table 5.9: Cell count comparison (channel) - Multiple Smooth Bends.
3D Pseudo 2D Relative cell amount [%]

719 219 6 942 0.97

The resulting generated grid system displays, to some degree, a more inconsistent meshing at-
tribute, as seen by comparing the different cell configurations in the various bends. The mesh in
the bends closer to the room consists of the desired 2D meshing pattern. Whereas the irregularity
and unstructuredness seem to increase the further away from the room subdomain, in the channel.

Similarly, as mentioned previously, the momentum source is permitted to act freely in all di-
rections for the vast part of the channel subdomain, see Section 4.2.1, providing the appropriate
setup for accurately capturing the pressure drop.

5.7.2 Evaluation and Discussion

The results exhibited no novel features in relation to its single-bend equivalent. As expressed
previously, this also serves as a practical application illustrating that the geometrical features
impose negligible minor losses. In terms of pressure and velocity along the center-line, the graphical
representation can be seen in Figure 5.30-5.31. In this case the extraction of the data is similar to
the Simple Geometry case, see Figure 3.10, where data is collected from the center-line position
along the domain.

41



Figure 5.30: Pressure p along center-line of do-
main.

Figure 5.31: Velocity magnitude Umag along
center-line of domain.

In this instance, in alignment with the previous results, the Pseudo 2D-C model performs satis-
factorily compared to the 3D model. In terms of the pressure plot, larger irregularities can be
noted compared to the sharp bend configuration at the location of the bends. The reason is that
the lines constructed to serve as data extraction in STAR-CCM+, are not fully contiguous in the
vicinity of the bends. Thus only the data from the straight sections of the channel are shown in
the plots. Including data from the bends would have entailed needless complexity and was deemed
unnecessary for the conducted analysis. Overall, based on examination of the sharp and smooth
bend configurations for single and multiple bends, it was evident that the same momentum correc-
tion utilized in the Simple Geometry case, in Section 4.3, can be employed while achieving highly
accurate results in terms of pressure drop and jet formation.
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6 Case Study - Ducts
This section highlights the simulated results of the duct configurations. The conducted evaluation is
presented in terms of the Simple Geometry and the results of the developed model using momentum
correction, followed by the implementation of the geometrical features: Multiple Bending Duct,
Branching Duct and Constricted Duct.

6.1 Evaluation of Momentum Corrections
An analysis, in accordance with the configuration of the parallel plates, was initially performed
for the Simple Geometry case concerning ducts. This was done to evaluate if the correction of
momentum in Section 4.2.2 is sufficient and yields satisfactory results in comparison to the 3D
model. The analysis was made for Re ≈ 25 − 100 conforming with the applications of interest
of Reynolds numbers typically below 100, see Section 1. To assess the validity of the initial
momentum correction, i.e., the Pseudo 2D-C model, the obtained pressure along the channel
using the momentum correction was analyzed and compared with the 3D model. This was done
by comparing the pressure gradients for various Reynolds numbers, specifically Re ≈ 25, 50, 75, 100.
The pressure gradient residual between the Pseudo 2D-C model, described in Section 4.2.2, and
the 3D model is depicted in Figure 6.1.

Figure 6.1: Pressure gradient residuals of Pseudo 2D-C, w.r.t 3D for several Reynolds numbers.

As Figure 6.1 illustrates, there is a slight variation in pressure between the Pseudo 2D-C model
and the 3D model, particularly noticeable at lower Reynolds numbers. It is also evident that the
residuals follow a linear trend for 25 ≤ Re ≤ 100, but likely asymptotically approach zero for
higher Reynolds numbers. This linear trend represents the pressure residual between the initial
Pseudo 2D-C model and the 3D model as a function of the Reynolds number with the range
Re ≈ 25 − 100. The resulting function, denoted as α, which is the pressure gradient residual of
Pseudo 2D-C model w.r.t 3D model, see Equation (6.1), serves as a correction factor additional
to the field function in Section 4.2.2 to obtain better results:

α = −0.07Re+ 9.33. (6.1)

The correction factor α was then used together with Equations (4.22) and (4.23)-(4.25), and
resulted in the following momentum source and momentum source derivative:
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Using the above, Equations (6.2)-(6.5) and implementing the corresponding field functions, resulted
in the following pressure along the center-line of the channel (Figure 3.10), for Re ≈ 25, 50, 75, 100,
see Figure 6.2:

Figure 6.2: Pressure along domain for several Reynolds numbers: a) Re ≈ 25; b) Re ≈ 50; c)
Re ≈ 75; and d) Re ≈ 100.

It is evident that the updated momentum corrected model, denoted as Pseudo 2D-C2 model, is
more in line with the 3D model compared to the initial applied correction. This is anticipated
as the correction is fundamentally based on the deviation between the prior model and the 3D
equivalent. It is worth noting that the 3D data points are unseen due to the overlay of the Pseudo
2D-C2 model data points. The slight deviation occurring for increasing Reynolds number becomes
evident by comparing the figures, and the 3D data points become revealed. The pressure residuals
were plotted, based on Equation (5.5), to determine the extent of the improvement offered by the
new momentum correction for the analyzed models against the 3D model for different Reynolds
numbers, see Figure 6.3.
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Figure 6.3: Pressure residuals w.r.t 3D, for several Reynolds numbers: a) Re ≈ 25; b) Re ≈ 50; c)
Re ≈ 75; and d) Re ≈ 100.

Based on the residual plots, it becomes evident that the Pseudo 2D-C2 model showcased better
performance compared to the Pseudo 2D-C model, especially for lower Reynolds numbers. It is
also evident that the residuals are very small, below 5% for positions below x = 0.7 m in the
channel for all cases, which is considered satisfactory. However, beyond approximately x = 0.8m,
the residuals start to increase significantly. This is due to the pressure dropping significantly after
this position, close to zero. The pressure numerical difference in terms of absolute value is thus
plotted in Figure 6.4, see Equation (5.7) on how the pressure difference is computed.
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Figure 6.4: Pressure difference, pdiff , w.r.t 3D for several Reynolds numbers: a) Re ≈ 25; b)
Re ≈ 50; c) Re ≈ 75; and d) Re ≈ 100.

Expectedly, the pressure difference graphs further verifies that the Pseudo 2D-C2 model behaves
best in comparison to the 3D model. As can be noted, the numerical pressure difference is signif-
icantly lower for both corrected versions in relation to the Pseudo 2D model. Additionally, these
plots validate that the numerical pressure difference between the Pseudo 2D-C2 model and the 3D
model is low for all cases, less than 0.01 Pa along the entire channel subdomain.

Lastly, a brief evaluation for the influence of the denser mesh region was conducted for the case
where the channel is modeled as a duct. It revealed that the length of the denser mesh region
should be equal to the entrance length of the parallel plates or approximately one and a half times
the entrance length of the duct configuration, in order to get satisfactory results. Meaning, that
the velocity in the room shows little to no difference when comparing the Pseudo 2D-C model and
Pseudo 2D-C2 model with the 3D model. Consequently, it implies that the denser mesh region
must be extended further for ducts than parallel plate geometries.

In conclusion, the initial momentum corrected model, the Pseudo 2D-C model, was evaluated
and compared with the 3D model. The comparison was made for Re ≈ 25 − 100 and the results
showed minor differences between these two models with regards to pressure and velocity along the
domain. These differences were especially evident for lower Reynolds numbers. This is potentially
due to the the viscous effects in the denser mesh region of the duct being of higher significance
for lower Reynolds numbers, see Section 2.5.2, resulting in a higher pressure gradient. In order to
compensate for this and achieve higher accuracy for the reduced dimensional models, the initial
corrected version in Section 4.2.2 was adjusted using a correction factor α. The updated mo-
mentum correction, denoted as Pseudo 2D-C2 model, demonstrated closer alignment with the 3D
model for all evaluated Reynolds numbers, as expected due to its derivation originating from the
residual difference. Visualization of residual plots were compared and revealed satisfactory results,
with residuals below 5% throughout most of the channel subdomain. Numerical pressure difference
plots confirmed once again the advantage of using the updated correction model over the initial
one. Overall, the updated model confirmed its effectiveness in giving satisfactory results that align
well with the results obtained from the 3D model. Lastly, a brief evaluation of the influence of
the denser mesh region was conducted. It revealed that the length of the region should be equal
to three halves times the hydraulic entrance length for ducts, in Section 2.5.4, to maintain a high
accuracy.
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6.2 Simple Geometry
This section highlights the findings of simulations for the Simple Geometry case, focusing on
Re ≈ 25 in the channel subdomain, which corresponds to an inlet velocity of U ≈ 0.033m/s. In
this analysis, all models, i.e., the 3D, Pseudo 2D, Pseudo 2D-C and Pseudo 2D-C2 are evaluated
and discussed.

6.2.1 Evaluation and Discussion

For this case, the obtained contour plots show that the Pseudo 2D-C2 model is in close alignment
with the 3D model for the pressure in the channel subdomain, demonstrated in Figure 6.6. It
can also be noted that the Pseudo 2D model shows considerable deviation from the "correct"
pressure, which is anticipated given the coarse mesh. However, upon examining Figure 6.5, it
becomes apparent that the jet entering the room does not behave the same for all cases. The jet in
the 3D model deflects downwards relative to the flow direction compared to the other two cases.
Several factors could contribute to this disparity, for example, undesired variation in the room’s
mesh or incomplete convergence of the results. Nevertheless, these differences do not affect the
overall analysis and conclusions, since the deflected part of the jet is comprised of almost negligible
velocity values, and the specifically evaluated data is the center-line velocity.

Figure 6.5: Contour plot; Velocity magnitude for 3D model (top), Pseudo 2D model (middle) and
Pseudo 2D-C2 model (bottom), respectively.

Figure 6.6: Contour plot; Static pressure for 3D model (top), Pseudo 2D model (middle) and
Pseudo 2D-C2 model (bottom), respectively.

To provide a more detailed representation of the obtained results, graphs depicting the pressure
and velocity along the center-line of the domain (Figure 3.10) were created, see Figure 6.7-6.8.
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Figure 6.7: Pressure p along center-line of do-
main.

Figure 6.8: Velocity magnitude Umag along
center-line of domain.

The pressure values along the channel in the Pseudo 2D model are significantly lower in compar-
ison to the 3D model. This is however expected because the pressure cannot be fully resolved
when employing one cell between the walls/plates, as described in Section 4.1.4. From the pressure
graphs, it becomes evident that the Pseudo 2D-C2 model exhibits the most accurate behavior,
which is consistent with the expected value along the channel subdomain. See Figure 6.9 for a
more accurate representation of the pressure residual, w.r.t., the 3D model.

The velocity distribution along the center-line of the room subdomain, seen after position x = 1m
shows similar results for all the models. This indicates that the corrected models align with the
fully resolved 3D model. To further assess the velocity, a residual plot was created, see Figure
6.10, which displays the velocity residual for all models compared to the 3D model. However, an
additional, new exhibited behavior in the duct has risen, this regards the velocity magnitude for
the Pseudo 2D model in Figure 6.8 for x ≤ 1m. The difference in velocity magnitude between the
models is minor, as the concern of velocity is scoped around the jet region and also reserved for
the Pseudo 2D-C model. The noticeable difference, however, is due to one main reason. Namely,
that the y-direction comprising the depth dimension is (at least) partially resolved. This means
that the flow will develop a pseudo-parabolic profile in the regarded dimension due to the no-slip
condition. Consequently the velocity magnitude at the center of the Pseudo 2D model is higher
than the mean (bulk) velocity of the Pseudo 2D-C/C2 model.

Figure 6.9: Pressure residuals, w.r.t., 3D. Figure 6.10: Velocity residuals, w.r.t., 3D.

Regarding the pressure, the Pseudo 2D-C2 showcased better performance compared to the Pseudo
2D-C model based on the residual plots. The residuals are also within acceptable margins, below
5% for positions below 0.9m. However, at the channel end the residuals start to increase exponen-
tially due to the pressure dropping to values near zero. The velocity residuals are also within an
acceptable limit, below 3% for all models from position x = 1m (where the jet enters the room)
until position x = 1.6m, 0.6m downstream in the room from the jet entrance. After this point,
the residuals start to increase significantly since the velocity values drop near zero. In order to get
a representation of the actual numerical difference for the pressure and velocity by comparing the
Pseudo 2D-C/C2 models and the 3D model, Figures 6.11- 6.12 are shown.
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Figure 6.11: Pressure diff., pdiff , w.r.t., 3D. Figure 6.12: Velocity diff., Udiff , w.r.t., 3D.

The graphs depicting the numerical difference for the pressure and velocity further validate that
the Pseudo 2D-C2 model is an appropriate replacement of the 3D model. As can be noted, the
numerical pressure difference is significantly lower for both corrected versions compared to the
Pseudo 2D model. The plot illustrating the pressure difference shows that the numerical pressure
difference between the Pseudo 2D-C2 model and the 3D model is minimal, meaning that it could
be considered negligible. It is also worth noting that the velocities across all models are identical
as a consequence of the same mesh settings employed within the room subdomain. This is also
supported by having a sufficiently large denser mesh region. This allows the flow to develop fully
for the Pseudo 2D models before entering the room subdomain. The cell count in the channel
subdomain is significantly lower for the Pseudo 2D mesh compared to the 3D counterpart, as
shown in Table 6.1.

Table 6.1: Cell count comparison (channel) - Simple Geometry.
3D Pseudo 2D Relative cell amount [%]

629 116 9 023 1.43

In summary, this section presents an analysis conducted for Re ≈ 25 in the channel subdomain,
corresponding to an inlet velocity of U ≈ 0.033 m/s. The contour plots illustrating the pressure
show that the Pseudo 2D model deviates significantly compared to the 3D model. The Pseudo
2D-C2 does, however, match the 3D model with high accuracy. The velocity contour plots reveal
that the jet for the 3D model experiences a downward deflection compared to the other models,
but this does not affect the overall analysis. This was confirmed after evaluating the velocity
values along the center-line of the domain. Residual plots were also constructed and showcased the
residuals (in percent) between the analyzed models in comparison with the 3D model. According
to these plots, the Pseudo 2D-C2 model displayed a slight increase in accuracy compared to the
Pseudo 2D-C model. Graphs illustrating the numerical difference of the velocity and pressure in
comparison to 3D model were also plotted, revealing the advantage of using the Pseudo 2D-C2
model over both the Pseudo 2D-C and the Pseudo 2D model, see Figures 6.11-6.12 . The low
relative cell amount also shows promise of a potential in attaining high computational efficiency
and faster simulations for this type of geometrical configuration.

6.3 Multiple Bending Duct
To evaluate the performance of the developed models for duct-related features, a new geometrical
component was constructed. This feature incorporates four smooth bends, where all three dimen-
sions are utilized. Here, the multi-dimensional aspect serves as the unexplored attribute between
this geometry and the ones incorporated in Section 5.6 and 5.7. The main reason of utilizing all
three dimensions is to assure that all arbitrarily bent channel-related geometries are applicable
for the Pseudo 2D-C/C2 models and that no novel undesired features are attained. The chan-
nel subdomain contains part-wise straight sections of 0.25m in length, originating from the room
and consequently, with an exception of the last section’s length corresponding to the remaining
center-line length of 1m. The details in regards to the geometry can be seen in Figure 6.13.
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Figure 6.13: Multiple Bending Duct geometry.

6.3.1 Mesh Generation

The mesh implementation is similar to that of the Simple Geometry for the duct, see Section 3.6.
The same settings in the channel and room subdomain were employed herein and the same mesh
aspects apply. Namely, that the 3D and Pseudo 2D mesh for the Multiple Bending Duct case
contain matching mesh settings for the room subdomain. Furthermore, in the Pseudo 2D mesh,
one cell was attained between the walls, in the orthogonal direction of the flow, through most
of the channel except in the bends, where small tetrahedral elements were unavoidably obtained.
The unstructured characteristic in the mesh is potentially stemming from the increased coherent
geometrical channel complexity. This feature was also exhibited in the bend-related geometries of
the parallel plates configuration, to various extents, varying between the Single Smooth Bend and
the Multiple Smooth Bends geometries. The resulting mesh is visualized in Figure 6.14. See Table
6.2 for an illustration of the cell count and relative cell reduction in the channel subdomain.

Figure 6.14: Multiple Bending Duct, 3D and Pseudo 2D mesh in channel subdomain.

Table 6.2: Cell count comparison (channel) - Multiple Bending Duct.
3D Pseudo 2D Relative cell amount [%]

639 235 9 304 1.46

50



The momentum source and momentum source derivative field functions were applied within the
channel subdomain except the intermediate denser mesh region, consistent with the equivalent
utilized in the Simple Geometry for the duct, as described in Section 6.1.

6.3.2 Evaluation and Discussion

The analysis of multiple bends in a three-dimensional setting, showed, in alignment with the
previously tested geometries, that the same method employed in the Simple Geometry for the duct
produces good results for the Pseudo 2D-C/C2 models. The Pseudo 2D-C2 model is in close
alignment with the 3D model both in terms of pressure and velocity along the center-line of the
channel and the room subdomain, as illustrated in Figures 6.15 and 6.16. These graphs also confirm
that the corrected versions are applicable even when the flow is exerted by all three directions. The
difference between the corrected models and the 3D model is depicted by the maximum residual
at the inlet pressure. This is calculated using Equation (5.5). For the Pseudo 2D-C model, the
calculated residual is ϵ∗ ≈ 7.4%, while for the Pseudo 2D-C2 model, it is approximately 0.4%,
showing that the correction factor α improves the accuracy of the approximated pressure drop.
In this case, the data displays the center-line properties, similar to the Simple Geometry case, see
Figure 3.10 for an illustration of the domain location of the data.

Figure 6.15: Pressure p along center-line of do-
main.

Figure 6.16: Velocity magnitude Umag along
center-line of domain.

6.4 Branching Duct
Further evaluation of the developed model’s applicability was conducted. A branching duct-system
was modeled to extend the perspective of the tests as it is entailed by a feature unseen in the prior
configurations, namely a division of mass flow. This idea was believed to provide new insights to
the reduced dimensional modeling. Consequently, the Branching Duct geometry was created.

For preserving generality and a high degree of applicability, a simple T-junction with a bend was
constructed. As a result of this, the room subdomain was widened to ensure full accommodation
of the, two three-dimensional jets forming. The details regarding the geometrical configuration are
displayed in Figure 6.17.

Figure 6.17: Branching Duct geometry.
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6.4.1 Mesh Generation

The construction of the mesh was performed in alignment with that of the Simple Geometry for
the duct. However, due to the branching of channels and the slight alterations in terms of the room
subdomain, the control volumes were adjusted to encompass the important regions. Through an
iterative process, involving readjustment of the mentioned controls and observation of the formed
jets, significant reductions in cell count were attained, mainly in the jet regions. Resultingly,
the computational resources were optimized for the significantly smaller jets. The resulting mesh
and specific details can be found in Figure 6.18. The resulting Pseudo 2D mesh displayed, to a
varying extent, regions of unstructured characteristics. Despite having a continuously identifiable
thickness, due to its increased geometrical complexity, it failed to retain a single cell configuration
in the z-direction throughout large parts of the channel subdomain. The reduction of cell amount is
highlighted in Table 6.3 and shows that the required amount of cells in the 3D mesh becomes higher
as the total volume of the channel increases as a result of the branching of the duct. However, a
slight increase in both meshes can be seen and the resulting relative cell amount becomes similar
to the previously seen statistics for the other geometrical features.

Figure 6.18: Branching Duct, 3D and Pseudo 2D mesh showing branched part.

Table 6.3: Cell count comparison (channel) - Branching Duct.
3D Pseudo 2D Relative cell amount [%]

811 505 6 797 0.84

The momentum source and momentum source derivative field functions were applied throughout
the channel subdomain with the exception of the denser mesh region, consistent with the one
utilized in the Simple Geometry for the duct, described in Section 6.1. The implemented momentum
source in the Pseudo 2D-C2 model, is displayed in the Section 4.2.2. Noteworthy, is that no specific
concern to the geometrical feature was taken and thus remained identical to the Simple Geometry
of the duct in the regarded aspect.

6.4.2 Evaluation and Discussion

The results of the conducted simulations are graphically depicted in this section. Due to the
branching of the duct, the display of data differs from the other analyzed geometrical features.
Instead, the data are presented for each flow path; the straight path and the curved path, see
Figure 6.19.
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Figure 6.19: Sketch of Branching Duct with an illustration of flow paths. The composition, w.r.t.,
path is as follows: the straight path of a) and b); the curved path of a) and c).

Figures 6.20-6.21 show the data extracted from the straight flow path, the data for the curved flow
path are displayed in Figures 6.22-6.23.

Figure 6.20: Pressure p along center-line of
straight path.

Figure 6.21: Velocity magnitude Umag along
center-line of straight path.

From the above plots, displaying the pressure and velocity distribution along the straight path, it
can be concluded that both Pseudo 2D-C/C2 models are similar in comparison to the 3D model.
The Pseudo 2D-C2 model which utilizes the correction factor α, described in Section 6.1, further
improves the obtained results in terms of pressure and almost fully coalign with the benchmarking
data points of the simulated 3D model. The difference between the corrected models and the 3D
model is further depicted by the maximum residual at the inlet pressure. This was calculated
using Equation (5.5). For the Pseudo 2D-C model, the calculated residual became ϵ∗ ≈ 7.8%,
while for the Pseudo 2D-C2 model it was approximately 0.3%, showing that the correction factor
α improves the accuracy of the approximated pressure drop in this case as well.

Figure 6.22: Pressure p along center-line of
curved path.

Figure 6.23: Velocity magnitude Umag along
center-line of curved path.
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For an asymmetrical pipe system, with transitions from one to two pipes, the mass flow must be
conserved [30]. Mathematically, this can be expressed by the following:

Ṁ1 = Ṁ2 + Ṁ3, (6.6)

where Ṁ denotes the mass flow. The indices 1, 2, and 3 represent: the upstream section of the
pipe before the branching, the straight section downstream of the branching, and the curved path
downstream of the branching, respectively. The distribution of mass flow between the pipes is
displayed in Table 6.4 for the 3D model and in Table 6.5, respectively.

Table 6.4: Mass flow at different positions for 3D model.
Position Mass flow [kg/s]

Single Pipe Section, s = 0.5m 5.84 · 10−6

Straight Pipe Section, ss = 0.8m 3.05 · 10−6

Curved Pipe Section, sc = 0.8m 2.76 · 10−6

Table 6.5: Mass flow at different positions for Pseudo 2D-C/C2 model.
Position Mass flow [kg/s]

Single Pipe Section, s = 0.5m 5.86 · 10−6

Straight Pipe Section, ss = 0.8m 3.07 · 10−6

Curved Pipe Section, sc = 0.8m 2.79 · 10−6

The distribution caused by the asymmetry and the configuration in the pipe junction is also ap-
parent by the different velocity magnitudes in the paths along the center-lines and the resulting
jet formations. This can be seen by observation of, e.g., the two peaks in velocity magnitude, of
≈ 0.035m/s and ≈ 0.031m/s at x = 1m in Figures 6.21 and 6.23. With concern to the mass flow
beyond the branching feature it is evident that the Pseudo 2D-C/C2 models capture this attribute
as well. Thus, concluding that the division of mass flow sufficiently by the reduced dimensional
model. This further supports the downstream desired features in terms of the peak of velocity at
the exit but also the ability to maintain accuracy along the jet center-line.

From observation of Equation (6.6) and Table 6.4-6.5 it becomes evident that the data does not per-
fectly match the presented relation. Although, this in-equivalency is due to a minor data extraction
intricacy. Namely, that the data averaged over the cross-sectional area to compute the mass flow,
is taken from the intersected cell-centered values and not space-interpolated ones. Consequently,
the mass flow from the simulations, denoted Ṁ1,sim, Ṁ2,sim and Ṁ3,sim, are still perceived to hold
for the mass conservation and align with the theoretical values such that

Ṁ1,sim = 5.84 · 10−6 ≈ Ṁ1,

and
Ṁ2,sim + Ṁ3,sim = 3.05 · 10−6 + 2.76 · 10−6 ≈ Ṁ1,sim.

The decrease in the gradient of the pressure drop, displayed for both paths in Figures 6.20-6.22,
can both be attributed to the decrease in flow velocity and consequently less momentum loss
throughout each path respectively. As the fluid travels along the path with the least resistance,
the straight and curved path are ensured to reach an equal state in this regard. Consequently, the
pressure drops for both paths become equal.

6.5 Constricted Duct
To improve upon the knowledge of the applicability of the developed correction-based models, a
final duct-related geometry was constructed. This is motivated by the fact that the previously
tested configuration required no specific geometrical treatment in the Pseudo 2D-C/C2 model,
and the accuracy without the inclusion of the correction factor α was considered good enough. It
was initially suggested that large variations in cross-sectional area along the channel could spark
the need to put specific concern in the employed momentum source. The main reason is that a
decrease in cross-sectional area leads to local steep velocity and pressure gradients. Resultingly,
the Constricted Duct was created.
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Due to the limitations of the Thin Mesher, the highest cross-sectional area ratio achieved be-
tween the until now used duct and the constricted section with a consistent Pseudo 2D mesh was
4:1. This was attained without the specific adjustments of Thin Mesher Expert settings. The
encountered limitations and justification are addressed in Appendix F. The geometry used for
evaluation of the constricted feature can be seen in Figure 6.24.

Figure 6.24: Constricted Duct geometry in xz and channel subdomain, respectively.

6.5.1 Mesh Generation

Due to the expected local velocity increase in the constricted region, a mesh control volume for the
3D model was set, encompassing the concerned section of the channel. This was done to ensure an
appropriate resolution mainly in the transitions between large-to-small and small-to-large cross-
sectional areas, as these regions exhibit high velocity and pressure gradients. This lead to the
exclusion of prism layers in the mesh generation as the enforced tetrahedral cells are smaller than
specified inflation layer settings for the constricted section. Graphical depictions of the mesh in
the constricted part can be seen in Figure 6.25.

Figure 6.25: Constricted part mesh for 3D and Pseudo 2D.

For more information regarding the achieved cell amount reduction, Table 6.6 details the regarded
mesh statistics, w.r.t., the Pseudo 2D mesh and the 3D*. Herein, the 3D* denotes the mesh with
the refinement encompassing the constricted section. With no mesh improvement in the region of
decreased cross-sectional area and consequently not an established mesh-independence, the total
channel cell amount was 544 360.

Table 6.6: Cell count comparison (channel) - Constricted Duct.
3D* Pseudo 2D Relative cell amount [%]
855 343 8 942 1.05
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The correction of the model in terms of field function implementation differs slightly from the
Simple Geometry for ducts. Here, specific concern was put on one additional aspect, namely the
variations in hydraulic diameter. This was achieved by formulating an additional field function that
specifies the cross-sectional variations, w.r.t., x. Here, x and s are interchangeable as the channel
subdomain starts at x = s = 0 and is aligned with the x-axis. With the standard hydraulic
diameter value Dh,0 = 0.012m and the constricted section’s reduced equivalent Dh,con = 0.006m
the following piece-wise function was constructed:

Dh =

{
Dh,0, x < 0.6 or x > 0.7,
Dh,con, 0.6 ≤ x ≤ 0.7.

The above relation was used in the momentum source and momentum source derivative, in Equation
(6.2).

6.5.2 Evaluation and Discussion

Figures 6.26-6.27 display the velocity and pressure contour plots, while Figures 6.28-6.29 display
the simulated results for the 3D model and the reduced dimensional models, the Pseudo 2D-C
and the Pseudo 2D-C2 model. The first showcases the pressure along the domain, and the latter
displays the velocity for the transitioning region between channel to room, both following the
center-line. The extraction of the data is similar to the Simple Geometry case, see Figure 3.10,
where data is collected from the center-line position along the domain.

Figure 6.26: Contour plot; Velocity magnitude for 3D model (top), Pseudo 2D model (middle)
and Pseudo 2D-C2 model (bottom), respectively.

Figure 6.27: Contour plot; Static pressure for 3D model (top), Pseudo 2D model (middle) and
Pseudo 2D-C2 model (bottom), respectively.
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Figure 6.28: Pressure p along center-line of do-
main.

Figure 6.29: Velocity magnitude Umag along
center-line of domain.

Both corrected models show good behaviour in terms of similarity to the 3D model. Regarding the
velocity along the center-line in the jet region, the simulated data from the models are graphically
indistinguishable.

As previously explained, a substantial reason of the inclusion of this geometrical feature was to
induce stress onto the model, and enforce a need of the specified momentum source to achieve de-
sirable accuracy. However, when considering variations in hydraulic diameter throughout the duct,
specified as a field function and incorporated in the field function for the momentum source and
momentum source derivative, both the corrected models perform well. Another concluding remark
is that the correction factor α is necessary for achieving desirable accuracy. This can be noted by
observing the vertical displacement of the Pseudo 2D-C in comparison to the Pseudo 2D-C2 in
the above pressure-plot. Without the inclusion of it, for x ∈ [0, 0.6] prior to the constricted section,
the pressure values deviate by ϵ∗ ≈ 9% for the Pseudo 2D-C. The correction factor α improved
the accuracy to ϵ∗ ≈ 0.2%. The computed residuals are both based on Equation (5.5) with the
evaluation based on inlet pressure.
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7 Pin-Fin: Application and Analysis
The analysis of the Pin-Fin geometry demonstrates the previously developed methods’ imple-
mentation onto more advanced and complex geometrical features. This was done to extend the
perspective of the testing and provide new insights, in terms of, e.g., velocity and pressure distri-
bution. Furthermore, it was also conducted to evaluate the applicability of a momentum source
correction in cases involving abrupt changes in velocity along the channel subdomain. This new
geometrical feature was evaluated by the construction of a detailed mesh and by developing a
reduced-order model, i.e., a small section of the channel subdomain. A momentum correction
analysis was conducted by analyzing the pressure drop for Re ≈ 25 − 100. Lastly, a comparison
of the simulation results was made for the fully resolved 3D model, Pseudo 2D model, and the
corrected reduced dimensional model, respectively.

7.1 Set Up
The Pin-Fin geometry was created based on the Simple Geometry for the duct and thus adopted its
boundary conditions. The implementation of pin-fins was achieved by the addition of multiple holes
across the channel. The resulting circular voids, served as the Pin-Fin feature, as the constructed
geometry comprised the fluid domain, rather than the physical object itself. In the observed case,
the pin-fins were arranged in an aligned and symmetrical manner, where the distance between
each pin-fin is the same both in the y and x - direction, i.e., the perpendicular (depth) and parallel
direction of the flow, respectively. The distance between the center points of each pin-fin in the
x-direction was set to 0.01m while the distance in the y-direction was set to 0.005m. The diameter
of each pin-fin was set to 0.003m with three pin-fins along each row. For the graphical illustration,
see Figures 7.1-7.2.

Figure 7.1: 3D model demonstrating the whole channel in xy plane for Pin-Fin geometry.

Figure 7.2: Dimensions for the Pin-Fin geometry in the channel subdomain.

For this geometry, the mesh generation was different. A fine mesh was necessary to fully resolve the
Pin-Fin channel geometry. This level of detail was essential to capture the complex flow patterns
and the interactions between the flow and the pin-fins. By using the same mesh settings as the
Simple Geometry for the duct but decreasing the cell size in the channel, the number of cells in the
subdomain became 43 866 781 and the total number of cells throughout the whole domain became
48 438 131, which is a significant increase compared to the previous geometrical configurations.
The mesh of the 3D geometry can be seen in Figure 7.3. It is worth noting that there are no
prism layers in the channel subdomain. The reason for this is that the cells are very small, in
fact smaller than the prism elements used in the parallel-plate and duct cases. This resulted in
the exclusion of the prism layers during mesh generation. Due to the low Reynolds number for
all evaluated cases, it is essentially redundant to have prism layers. Commonly implemented to
provide better resolution in the boundary layers, the viscous effects are minimal and the velocity
changes uniformly according to Figure 2.4 in Section 2.5.3 near the walls for such small Reynolds
numbers.
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Figure 7.3: Inner mesh in xy plane for the full 3D model and small part of the channel subdomain.

To get a better representation of the simulation results without excessive computational expense, a
small section of the channel, with a length corresponding to the denser mesh region, i.e., LDSM ≈
0.03m for the duct geometries, was created, referred to as small section-channel. A fully-developed
interface between the inlet and the outlet of the section was created with a periodic boundary
condition, with a specified mass flow that equals the inlet velocity of v = 0.033m/s corresponding
to an inlet Reynolds number of approximately 25. The mesh was generated in an iterative manner,
ensuring convergence of pressure and velocity simulation results, leading to a mesh containing
2 798 966 cells, see Figure 7.4. Since the small section-channel is only 0.03m long, the amount of
cells needed for a similar order of accuracy would be significantly higher than the one used in the
non-periodical based 3D model. With the assumed mesh configuration settings, the grid-system
would have to be comprised of 2 798 966 · 1m

0.03m ≈ 93 million cells in the channel to ensure full
convergence of the velocity and pressure. However, to avoid such computational effort the small
section-channel will be addressed in the following.

Figure 7.4: Inner mesh in xy plane for the small section-channel model.

Since the Pin-Fin feature required a fine mesh to accurately capture the intricate details and the
circular shape, it was not possible to achieve a Pin-Fin configuration in the Pseudo 2D mesh across
the whole channel. Instead, the region with a single cell configuration maintained the same channel
shape as the Simple Geometry for duct and the Pin-Fin was geometrically included within the
denser mesh region. This denser mesh region was constructed with the identical mesh settings as
the small section-channel, see Figure 7.5. The Pseudo 2D mesh resulted in 2 694 345 cells in the
channel and 7 436 507 cells in total. Table 7.1 is included to visualize the cell count for each model
type, i.e., 3D, small section-channel and the Pseudo 2D model, respectively.

Figure 7.5: Inner mesh for the channel subdomain in xy and xz plane for the Pseudo 2D model,
respectively.
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Table 7.1: Number of cells for different mesh types of Pin-Fin geometry.
Mesh Type Number of cells: Channel Number of cells: Total
3D model 43 866 781 48 438 131

Small section-channel model - 2 798 966
Pseudo 2D model 2 794 345 7 536 507

7.2 Momentum Source Correction Analysis
Due to the higher resolution of the small section-channel and the lack of feasibility in having a
similar resolution of the full three-dimensional model, the validation was made based on the small
section-channel model. The evaluation was conducted for Re ≈ 25 − 100 for the same reason as
the previous ones, i.e., to determine the residuals’ Reynolds number dependency. After assessing
the small section, a momentum source correction was obtained by determining the pressure drop
across this section using the following relation:

∆p

∆l
=

pin − pout
L− 0

, (7.1)

where p is the pressure, l is the considered length, pin the upstream pressure, pout the downstream
pressure, both, w.r.t., the length of the small section-channel, and L the total length of the sec-
tion. Equation (7.1) calculates the pressure drop by subtracting the outlet pressure with the inlet
pressure and divides this difference with the length of this section, i.e., 0.03m.

The pressure drops acquired for varying Reynolds numbers are illustrated in Table 7.2, as fol-
lows:

Table 7.2: Pressure drop for Re ≈ 25− 100.
Re Pressure drop [(]Pa/m]
≈ 25 2.04
≈ 50 4.58
≈ 75 7.49
≈ 100 10.63

The pressure drops were then plotted, see Figure 7.6. The plot demonstrates the pressure drop
as a function of the Reynolds number, where the Reynolds number is directly dependent on the
velocity.

Figure 7.6: Pressure drop for several Reynolds numbers.

The original data, i.e., the pressure drop for different Reynolds numbers was approximated using
a polynomial fit. The polynomial fit was chosen through an iterative process, by experimenting
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with various degrees of trend lines to observe their behavior. A sufficient polynomial fit is given
by:

dp

dx
=

dp

dx
(Re) = 0.00023(Re)2 + 0.0838Re− 0.23551, (7.2)

was then implemented as a momentum source, in Equation (7.3), where SM (Re) is the mentioned
momentum source term as a function of the Reynolds number Re and L the total length of the
channel subdomain.

SM = SM (Re) = −(0.00023(Re)2 + 0.0838Re− 0.23551) · L · [1, 1, 1]T . (7.3)

The momentum source described above was applied as a vector, conforming with previous cases
because the momentum source definition in STAR-CCM+ is classified as a vector. Since the
momentum source in this case is a function of the Reynolds number which is a direct function of
the mean velocity, the momentum source derivative was set to 0 for x, y, z. The resulting reduced
dimensional model for the Pin-Fin is denoted as Pseudo 2D-CX, indicating its different developed
approach.

7.3 Evaluation and Discussion
This section highlights the results for the simulations of the Pin-Fin geometry with Re ≈ 25
at the channel inlet, corresponding to an inlet velocity of U ≈ 0.033 m/s. From observation
of the velocity contour plots, it becomes apparent that the 3D, Pseudo 2D and Pseudo 2D-CX
models closely align in regard to the jet, which verifies that the denser mesh region is sufficiently
large to facilitate complete flow development before exiting the channel subdomain. Figure 7.7
demonstrates the velocity distribution from the channel to the room subdomain, observed from
above, i.e., the xy plane for all three models, including the jet that is formed in the room subdomain.
Figure 7.8 displays a zoomed view for the velocity near the channel end and a small part of the
room subdomain. However, the pressure contour plots reveal that the Pseudo 2D model exhibits
significantly lower pressure compared to the 3D model, see Figure 7.9. The Pseudo 2D-CX model
showcases similar pressure in the channel subdomain compared to the 3D model, with a slight
variation in pattern resulting from the implementation of the new field function, see Section 7.2.

Figure 7.7: Contour plot for xy plane; Velocity magnitude for 3D model (top), Pseudo 2D model
(middle) and Pseudo 2D-CX model (bottom), respectively.
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Figure 7.8: Contour plot for xy plane; Velocity magnitude for 3D model (top), Pseudo 2D model
(middle) and Pseudo 2D-CX model (bottom), respectively.

Figure 7.9: Contour plot; Static pressure for 3D model (top), Pseudo 2D model (middle) and
Pseudo 2D-CX model (bottom), respectively.

To provide a more detailed representation of the obtained results, graphs illustrating the pressure
and velocity along the center-line of the channel and room subdomain, respectively, were generated,
see Figures 7.10-7.11.
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Figure 7.10: Pressure p along center-line of do-
main.

Figure 7.11: Velocity magnitude Umag along
center-line of domain.

The pressure values across the channel are significantly lower in the Pseudo 2D model compared
to the 3D and Pseudo 2D-CX models. In this case the pressure in the Pseudo 2D-CX model is
more reliable than the 3D model since the results in the latter have not fully converged due to
mesh limitations. In this case, the comparison is thus not strictly conducted between the reduced
dimensional model and the 3D equivalent. Instead, the 3D model is included to mainly serve as
a demonstration of a feasible fully resolved simulation. Noteworthy, is that the 3D simulation
has almost fully converged, exhibiting very low levels of mesh-dependency. Furthermore, it is
apparent that the velocity distribution along the center-line of the room subdomain, see Figure
7.11, showcases similar results for all models. This indicates that the denser mesh region is large
enough in the channel. As a result, there is a similar velocity distribution in the room subdomain.
This conclusion can be further justified based on the argument that with sufficient upstream
conditions, assuming an identical downstream setup, the results should be identical for all models.
In the same way as the previous analyses, residual plots were constructed, see Figure 7.12-7.13,
based on Equations (5.5)-(5.6).

Figure 7.12: Pressure residuals, w.r.t., 3D. Figure 7.13: Velocity residuals, w.r.t., 3D.

The pressure residual plot shows a significant difference between the Pseudo 2D and Pseudo 2D-CX
model. It is evident that the pressure residuals for the Pseudo 2D model exceed 80% across most
of the channel, whereas the Pseudo 2D-CX consistently maintains residuals below 5% throughout
most of the channel subdomain. The velocity residual plot demonstrates that the residuals along
the room subdomain for the Pseudo 2D and Pseudo 2D-CX are below 5%. Indicating, that both
the Pseudo 2D and Pseudo 2D-CX model exhibit similar velocity distribution as the 3D model.
Furthermore, it is worth noting that the residual for velocity is identical for both the Pseudo 2D
and Pseudo 2D-CX models, which is expected as identical mesh settings and denser mesh region
configuration, are employed in both models. Additionally, as the field function solely aids the
computation of pressure drop in the Pseudo 2D-CX, it does not influence the velocity. Another
thing that could be noted is that the residuals increase after approximately 1.75 m and start
decreasing after 2m. The reason is that the cells experience a change after approximately 1.75m,
transitioning from a finer mesh to a coarser one. This effect is further amplified by the numerical
issues with small numbers, supported by the velocity at positions beyond 1.5 m being close to
zero. For the same reason as the previous geometrical features, the actual numerical difference
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between the Pseudo 2D models and the 3D model were constructed, see Figure 7.14-7.15, based
on Equations (5.7)-(5.8).

Figure 7.14: Pressure diff., pdiff , w.r.t., 3D. Figure 7.15: Velocity diff., Udiff , w.r.t., 3D.

As anticipated, the pressure difference plot confirms once more that the Pseudo 2D-CX model
aligns with the 3D model. As can be noted, the numerical pressure difference is also significantly
lower for the corrected version compared to the Pseudo 2D model. The velocity difference plot
illustrates how small the numerical velocity difference is between the Pseudo 2D models and the
3D model.

Summarizing, the following steps were adopted for the Pin-Fin geometry:

1. Creation of a model of a small section of the channel, matching the length of the denser mesh
region, using a highly refined mesh. Followed by the determination of the pressure drop for
different Reynolds numbers.

2. Plot-creation of the pressure drop as a function of Reynolds number, followed by approxi-
mating it using a polynomial regression.

3. Creation of a Pseudo 2D model with a denser mesh region including pin-fins, with the same
mesh settings in the denser mesh region as step 1.

4. Application of the attained approximating regression-based function as a user-defined field
function in the momentum source and implement it in the Pseudo 2D model in the region
enclosed by slip boundaries.

5. Construction of a 3D model with a sufficiently fine mesh to compare the different simulated
models, i.e., the 3D model, Pseudo 2D model, and Pseudo 2D-CX model.

The above scheme can be used as a general methodology, and it has been demonstrated to be
suitable for analyses involving pin-fin features. Each analysis conducted based on this scheme or
methodology is inherently geometry-dependent. Thus, depending on the choice of the user, other
pin-fin-related features, e.g., staggered formations can be adopted, assuming appropriate denser
mesh region length and overall representation in the Pseudo 2D model. The most important aspect
is that the Pin-Fin geometry, follows a specific pattern in the channel, enabling channel modeling
as a small section where a periodic boundary condition can be applied. This methodology could
also be further extended to cover a broader range of Reynolds numbers, see Section 9.
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8 Concluding Discussions
Reaching the end of this thesis, the following summarizes and concludes the key findings and in-
sights obtained from the analyses. The primary aims outlined in the beginning are revisited, and
the extent to which these objectives have been achieved is addressed. The applicability of the
reduced dimensional model is also reflected concerning meshing aspects and overall results.

The primary objective of this thesis was to develop a reduced dimensional model for laminar
pressure-induced gas flows in narrow gaps subjected to a sudden expansion. This was done in
addition to the inclusion of testing the developed model on generalized geometrical configurations,
including parallel plates, ducts, and pin-fin arrangements. For all tested geometrical features,
the Pseudo 2D-C/C2/CX demonstrated a high level of accuracy compared to the fully resolved
3D model. To summarize the methodology and model development for developing the reduced
dimensional models, the following steps were adopted:

• Development of a Simple Geometry for the parallel plate and duct geometrical configurations.

• Construction of a Pseudo 2D mesh.

• Construction of a denser mesh region in the Pseudo 2D model to ensure sufficient flow
development before entering the room subdomain.

• Modification of boundary conditions and implementation of momentum source and momen-
tum source derivative by the help of user-defined field functions in the region with one cell
in the orthogonal direction of the flow, before transitioning to the denser mesh region, to
accurately resolve the pressure.

Concluding the development of the reduced dimensional model, the subsequent goal was to validate
the developed model against three-dimensional simulations. This was done, w.r.t., the observa-
tion of mainly two properties, namely, the pressure drop along the channel subdomain and the
velocity of the jet in the room. This was executed concurrently for the two configurations of Sim-
ple Geometry, namely, parallel plates and duct, along with the subjection to several geometrical
features implemented onto the channel subdomain. For the case study regarding parallel plates,
the developed Pseudo 2D-C model, accurately captured both the desired jet image as well as
consistently achieving highly accurate pressure drops. The duct-related case study includes an
improved reduced-dimensional model, the Pseudo 2D-C2, which incorporates a correction factor α
based on the deviation in pressure gradient for the Simple Geometry of the Pseudo 2D-C model.
Both reduced dimensional models attained a high accuracy in both considered regards but with
the Pseudo 2D-C2 exhibiting a slightly improved ability to capture the pressure drop.

Furthermore, the pressure drop, indicative of momentum loss throughout the domain, has not
been specifically addressed in terms of field function formulation regarding the minor losses caused
by sudden expansion and the implemented geometrical features. The theoretical pressure drop
derived and used in the field functions, is solely based on the theory of geometrically straight do-
mains, see Section 2.5.5. Meaning, that only the major losses are incorporated by field functions.
The case study regarding parallel plates showed that the implemented geometrical features impose
negligible minor losses, as a result of the low velocities and feature-dependent minor loss coeffi-
cient. This result was found by comparison of the geometries containing bends with the straight
channel in Simple Geometry. For the cases where the implemented geometrical component im-
poses a significantly large loss, e.g., Constricted Duct, the reduced dimensional models sufficiently
manage to accurately depict the pressure drop. Meaning, that they perform well in capturing the
total losses without user-related aid except for the hydraulic diameter specification. This can be
concluded by noticing that the Pseudo 2D-C2 model consistently aligns with the results of the full
3D equivalent for the exemplified case of the Constricted Duct. The division of mass flow was also
fully captured by the reduced dimensional model as displayed by the Branching Duct geometry
and thus displayed a high potential for a wide range of implemented geometries with no limiting
aspects among the tested features.

The achieved reduction in cell count was significant for the reduced-dimensional models. In parallel
plate configurations, the relative cell count within the channel subdomain was less than approxi-
mately 1%. Similarly, for duct-related cases, the relative cell count was less than approximately
1.5% for all cases. This demonstrates the potential for reduced computational cost and an increase
in time efficiency for all considered simulations. The difference in cell reduction between the con-
figurations can be attributed to the slightly larger denser mesh region as a prerequisite in the duct
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geometries. The results and discussions regarding the case study for parallel plates and the duct
are found in Sections 5 and 6, respectively.

The reduced dimensional model has thus been demonstrated to function desirably for laminar
flows of Reynolds numbers below 100 for flows in narrow gaps subject to a sudden expansion. The
applicability of the model in terms of implemented features was concluded to be absolute based on
the regarded flow features but varied in terms of meshing aspects due to discontinuous attributes
not being mesh-able with a desired Pseudo 2D configuration. For more information on some of
the modeling limitations in terms of mesh generation, see Appendix F. Additionally, there may
be unexplored limitations related to changes in physics or significant changes in geometry, such as
when examining high Reynolds numbers that lead to turbulent flow features or when the domain
is considered much smaller where adoption of the, e.g., Boltzmann equation becomes necessary
to capture the sub-continuum physics. These aspects are addressed further in Section 9. Fur-
thermore, as the developed models are of reduced order, both mass and momentum cannot be
conserved in the channel subdomain simultaneously. This is an unavoidable feature for this case
of reduced dimensional modeling. Hence, the utilization of the denser mesh region, adjustments of
boundary conditions, and implementation of user-defined field functions to regain conservation of
the properties before the flow enters the room subdomain.

Due to the different nature of the modeling of the Pin-Fin, e.g., by the geometrical exclusion
of a large portion of the fins, the vast part of the pressure drop contribution from the minor
losses is encompassed by the derived pressure gradient from the periodicity-based simulation of the
small section-channel model. The field function implementation was obtained by calculating the
pressure drops across various Reynolds numbers based on the small section-channel model, and
a polynomial fit was applied to approximate the data. The polynomial fit was implemented as a
momentum source, resulting in the Pseudo 2D-CX model. The simulation results indicated good
alignment between the Pseudo 2D-CX and the fully resolved 3D model, accompanied by a notable
reduction in cell count, see Section 7. This demonstrates the methodology applied to a feature
with increased complexity. Indicating the potential of reduced dimensional models, in a broader
context, for CFD simulations with pressure-induced laminar flows.
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9 Future Work
This thesis establishes the foundational principles for transitioning from a fully resolved 3D model
to a Pseudo 2D model in a small channel with different geometrical features. The studies and
analyses made could be further extended to include a wider range of problems. The following are
some proposed ideas that could be considered for future work:

• In this thesis, Reynolds numbers up to Re = 100 were analyzed, with a primary focus on
Re ≈ 25, as this range conforms with the application motivating the project. Because of
the low Reynolds numbers, all the analyses were conducted using a steady-state approach.
However, at higher Reynolds numbers, see Section 2.6, the jet becomes unstable which was
also noted when simulating for higher Reynolds numbers. It would therefore be interesting to
study flows with higher Reynolds numbers in the channel and see how they would affect the
outflow by using a transient approach. The studies can be conducted on the same geometrical
features presented in this thesis to compare the results. It would also be interesting to examine
high Reynolds numbers that result in a turbulent flow within the channel to determine if the
same field functions, momentum source and momentum source derivative can be used to
accurately solve the pressure in the channel. Additionally, determining which turbulence
model should be used for cases of turbulent flow would be valuable.

• Specific concern to the industry, for example within electronics; comprising much smaller
domains. Such that, considerations of Knudsen number and the movement on the molecular
level of the gas become too significant to neglect. Consequently, resulting in abandoning
the continuum-based Navier-Stokes equations and adopting, e.g., the Boltzmann equation to
accurately model the sub-continuum physics.

• The analysis of the last geometrical feature, i.e., Pin-Fin can be further extended and in-
clude other pin-fin related features, e.g., staggered formation. Other dimensions could also
be tested to see how well the proposed methodology in Section 7 can be employed. By
testing various features of pin-fins it might be possible to develop a general field function
describing the pressure drop for different pin-fin-related geometries. The methodology can
also be further extended to cover a broader range of Reynolds numbers. This includes higher
Reynolds numbers where it becomes necessary to use a turbulence model to capture the
turbulent effects. Since pin-fins tend to introduce disturbances and flow separation zones
with high-pressure regions and accelerated flow between the pin-fins, described by Fernandes
[10], therefore turbulence behaviors usually occur at lower Reynolds numbers due to these
additional complexities. It would also be interesting to investigate at which Reynolds number
the transition from laminar to turbulent flow occurs in the Pin-Fin geometry and compare
it to the transition in smooth channels.

• Additionally, studying bulk temperature transport and heat transfer within the channel,
especially in heat exchangers, could be valuable. Future work could explore how different ge-
ometrical features affect heat transfer efficiency and temperature distribution. For instance,
analyzing how pin-fin arrays simulated by the reduced dimensional models perform to ul-
timately study heat exchanger designs effectively. Moreover, using conjugate heat transfer
models coupled with the reduced dimensionality could provide new insights and understand-
ing of thermal behavior in the mentioned setting, enabling more efficient and time-saving
simulations involving transfer of heat.

67





References
[1] FS Dynamics — fsdynamics.eu. https://fsdynamics.eu/. [Accessed 25-05-2024].

[2] Joe Alexandersen. Topography optimisation of fluid flow between parallel plates of spatially-
varying spacing: revisiting the origin of fluid flow topology optimisation. Structural and
Multidisciplinary Optimization, 65(5):152, 2022.

[3] A Baloch, P Townsend, and MF Webster. On two-and three-dimensional expansion flows.
Computers & Fluids, 24(8):863–882, 1995.

[4] Terence D. Blake. Slip between a liquid and a solid: D.m. tolstoi’s (1952) theory reconsidered.
Colloids and Surfaces, 47:135–145, 1990.

[5] Wang Chang, Gao Pu-zhen, Tan Si-chao, and Xu Chao. Effect of aspect ratio on the laminar-
to-turbulent transition in rectangular channel. Annals of Nuclear Energy, 46:90–96, 2012.

[6] R. E Denton and Y Hu. Symmetry boundary conditions. Journal of Computational Physics,
228(13):4823–4835, 2009.

[7] Theodore H.Okiishi Wade W.Huebsch Donald F.Young, Bruce R.Munson. Introduction to
fluid mechanics. John Wiley and Sons,Inc., 2012.

[8] Franz Durst, A Melling, and James H Whitelaw. Low reynolds number flow over a plane
symmetric sudden expansion. Journal of fluid mechanics, 64(1):111–128, 1974.

[9] Melkamu Embiale, Addisu Bekele, Chandraprabu Venkatachalam, and Mohanram Parthiban.
Cfd simulation of pressure drop in turbulence flow of water through circular, square, rectangu-
lar and triangular cross-sectional ducts. Applied Engineering Letters : Journal of Engineering
and Applied Sciences, 6(1):39–45, 2021. 5.

[10] Royce Fernandes. Investigation of pin fin cooling channels for applications in gas turbines.
2016.

[11] D.F. Fletcher, M. McCaughey, and R.W. Hall. Numerical simulation of a laminar jet flow: a
comparison of three cfd models. Computer Physics Communications, 78(1):113–120, 1993.

[12] Jan HK Haertel, Kurt Engelbrecht, Boyan S Lazarov, and Ole Sigmund. Topology optimiza-
tion of a pseudo 3d thermofluid heat sink model. International Journal of Heat and Mass
Transfer, 121:1073–1088, 2018.

[13] Hassnia Hajji, Lioua Kolsi, Kaouther Ghachem, Chemseddine Maatki, Ahmed Kadhim Hus-
sein, and Mohamed Naceur Borjini. Numerical study of heat transfer and flow structure over
a microscale backstep. Alexandria Engineering Journal, 60(3):2759–2768, 2021.

[14] Tin-Kan Hung and Enzo O Macagno. Laminar eddies in a two-dimensional conduit expansion.
La Houille Blanche, (4):391–401, 1966.

[15] HT Huynh, Zhi J Wang, and Peter E Vincent. High-order methods for computational fluid dy-
namics: A brief review of compact differential formulations on unstructured grids. Computers
& fluids, 98:209–220, 2014.

[16] A.G. Kravchenko and P. Moin. On the effect of numerical errors in large eddy simulations of
turbulent flows. Journal of Computational Physics, 131(2):310–322, 1997.

[17] Hyun Geun Lee and Junseok Kim. Two-dimensional kelvin–helmholtz instabilities of multi-
component fluids. European Journal of Mechanics - B/Fluids, 49:77–88, 2015.

[18] Enzo O Macagno and Tin-Kan Hung. Computational and experimental study of a captive
annular eddy. Journal of fluid Mechanics, 28(1):43–64, 1967.

[19] Lewis F Moody. Friction factors for pipe flow. Transactions of the American Society of
Mechanical Engineers, 66(8):671–678, 1944.

[20] Manh Nguyen and ha Sang. Minor head loss analysis of laminar fluid flow in complex geome-
tries. Journal of Science and Technique, 18:5 18, 12 2023.

68

https://fsdynamics.eu/


[21] Bastian E. Rapp. Chapter 9 - fluids. In Bastian E. Rapp, editor, Microfluidics: Modelling,
Mechanics and Mathematics, Micro and Nano Technologies, pages 243–263. Elsevier, Oxford,
2017.

[22] W. Brian Rowe. Chapter 2 - Basic Flow Theory. In W. Brian Rowe, editor, Hydrostatic,
Aerostatic and Hybrid Bearing Design, pages 25–48. Butterworth-Heinemann, Oxford, 2012.

[23] Siemens Digital Industries Software. Simcenter STAR-CCM+ User Guide. In Volume Meshers,
chapter Thin Mesher Expert Properties. 2023.

[24] Siemens Digital Industries Software. Simcenter STAR-CCM+ User Guide. In Theory, chapter
Finite Volume Discretization. 2023.

[25] Siemens Digital Industries Software. Simcenter STAR-CCM+ User Guide. In Simulating
Physics, chapter Flow Regimes. 2023.

[26] Siemens Digital Industries Software. Simcenter STAR-CCM+ User Guide. In Simulating
Physics, chapter Applying Flow Sources and Sinks. 2023.

[27] Siemens Digital Industries Software. Simcenter STAR-CCM+ User Guide. In Volume Meshers,
chapter Thin Mesher. 2023.

[28] Yupeng Sun, Hafiz Muhammad Adeel Hassan, and Joe Alexandersen. Application of a
reduced-dimensional model for fluid flow between stacks of parallel plates with complex surface
topography. Fluids, 8(6):174, 2023.

[29] Henk Kaarle Versteeg and Weeratunge Malalasekera. An introduction to computational fluid
dynamics: the finite volume method. Pearson education, 2007.

[30] F.M White. Fluid Mechanics. McGraw-Hill Education. McGraw-HillHigher Education, 2016.

[31] Mohd Hafiz Zawawi, A Saleha, A Salwa, NH Hassan, Nazirul Mubin Zahari, Mohd Zakwan
Ramli, and Zakaria Che Muda. A review: Fundamentals of computational fluid dynamics
(cfd). In AIP conference proceedings, volume 2030. AIP Publishing, 2018.

69





Appendices

Appendix A

Figure 9.1: Surface mesh; transition from channel via sudden expansion into room subdomain.

Figure 9.2: Internal mesh; transition from channel via sudden expansion into room subdomain.

Appendix B

Figure 9.3: Poiseuille velocity profile - exact analytical solution for flow between plates of inlet
velocity U = 0.02m/s, computed for flow validation.

Appendix C
Comparison Between Parabolic and Planar Velocity Profile for Jet Formation

Early in the development of the reduced dimensional model, the difference between a planar and
parabolic velocity profile entering the room subdomain was concerned. The comparison was con-
ducted between two simulations, where the first solely contained the room with the channel replaced
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by an inlet, and the second, contained the full Simple Geometry. Here, the first enters the room
with a planar profile and the second with the parabolic profile. The results in terms of velocity
magnitude, extracted along the center-line of the domain can be seen in Figure 9.4.

Figure 9.4: Velocity Umag along the domain for planar and parabolic profile.

Here, it can be observed that the velocity is similar between the two profiles for 0 ≤ x ≤ 1.3m but
towards the end of the jet significantly different. For the essential jet region, i.e., approximately
−0.05 ≤ z ≤ 0.015m, the velocities also exhibit similar to almost equal values. The main difference
is that the parabolic profile contain a slightly larger center-line (maximum) velocity, as anticipated,
due to its mean (bulk) velocity resulting in a higher peak velocity but lower values of the extrem-
ities. Furthermore, the planar profile extends much further than the parabolic equivalent. This
is likely because the center-line fluid "particle" experiences a slip from its neighboring elements,
meaning that it takes longer for it to be subject to shear from top and bottom in the xz plane.
This concludes that a planar condition is not sufficiently similar to a parabolically developed profile.

The observation was performed in coherence with the adoption of the denser mesh region at the
channel end. This instead ensured, for all simulations, to accurately development the parabolic
profile and resultingly the jet. This conclusion is mainly based on observation of the center-line
velocity.

An attempt to locally influence the development of a parabolic velocity profile was performed.
This was done utilizing a user-defined field function in STAR-CCM+ to formulate a momentum
source dependent on the vertical position in the early part of the room subdomain. Based on the
attempt, it was found that the pursued locality was unable to be obtained and only larger areas
than that of the small entrance region were possible using this method. As no success was achieved,
the attempt was discarded.

Appendix D
Diminish of Vertical Velocity after Bend

This section addresses the deviant feature prominent in the Pseudo 2D model for bending fea-
tures with full 2D mesh. This attribute arose in the form of an increase in velocity magnitude
for the Pseudo 2D model after the bend. This was seen before the implementation of the Pseudo
2D-C model and negatively impacted the formation of the jet. It was found in Figure 9.5 that the
vertical velocity before the bend did not completely diminish as the channel became horizontal,
explaining the observed deviant feature. This was concluded to be due to the presence of only
one cell between the walls across the radial direction of the bend, in the cross-sectional plane xz.
Consequently, it is impossible to accurately transport flow information with the no-slip boundary
condition while being subject to directional change. However, this effect was fully mitigated in the
Pseudo 2D-C model, by the replacement of the slip boundary condition on the walls, permitting
the fluid to adopt prerequisite cell values to change direction.
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Figure 9.5: Vertical velocity component w in horizontal section of the channel.

In addition to the presented analysis, a brief validation was carried out. Performed to increase the
knowledge of the behavior of flows subject to elbows or bends. The validation was scoped around
the aim of determining how fast the flow’s perpendicular velocity components diminish and when
the straight channel flow properties are recovered after a smooth/sharp bend. The analysis is
presented in the following section.

Both the sharp and the smooth bend, found in Section 5, are considered respectively for vari-
ous inlet velocities. The inlet velocities simulated are U = 0.02, 0.04, 0.06, 0.08 (m/s) and their
corresponding Reynolds numbers Re ≈ 25, Re ≈ 50, Re ≈ 75, Re ≈ 100. Figure 9.6 and 9.7
display the vertical velocity component over a distance after the bend.

Figure 9.6: Vertical velocity component w between plates at distances from the sharp bend.
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Figure 9.7: Vertical velocity component w between plates at distances from the smooth bend.

Several conclusions can be drawn from the observation. The sharper bend exhibits a steeper
velocity gradient mainly in the range 0 ≤ sb ≤ 0.01 m due to the separating flow from the right
wall as a result of the discontinuity in the geometry and boundary influence. The smooth bend
exhibits constant influence from its continuously redirecting walls and no flow separation occurs.
Consequently, the vertical velocity component is diminishing more gradually and less steeply for
the smooth bend in comparison to the sharp bend. This impacts the rebounding, positive vertical
velocity, the distance it reaches its maximum, and ultimately the point where the flow in the
vertical direction is completely worn off. This leads to the sharp bend attaining a slightly higher
maximum and further distance at which it occurs compared to the smooth bend. The approximate
values at which the vertical flow component has diminished completely are found in Table 9.1.

Table 9.1: Positions of diminished vertical velocity component for smooth and sharp bend.
Feature Re Distance from bend, sb [m] Vertical velocity, w [m/s]
Sharp bend 25 0.020 9.8e-6
- 50 0.028 7.8e-5
- 75 0.037 8.3e-5
- 100 0.045 6.5e-5
Smooth bend 25 0.018 7.0e-5
- 50 0.024 7.8e-5
- 75 0.030 9.0e-5
- 100 0.040 9.8e-5

73



Figure 9.8: Approximate distance from bend where zero velocity in vertical direction is reached,
w.r.t., Re.

Appendix E

Figure 9.9: Surface mesh transition from structured to unstructured mesh (50 layers in the channel
between the plates).

Appendix F
Model Limitations and Meshing Aspects of Pseudo 2D in STAR-CCM+

This section highlights some of the intricacies and important aspects when generating a Pseudo
2D mesh. This is done, w.r.t., various geometries and software-specific settings to achieve a high
degree of applicability. During the construction of various geometries, employing the Thin Mesher
[27] with precision and a resulting desired configuration, proved to be rather intricate. Before
addressing the regarded aspects, some explanation of the Thin Mesher and how it functions is in
order. The Thin Mesher provides the user with, mainly, two different approaches in terms of mesh-
ing implementation. The first, being the Parts-Based Meshing used in this project, which enables
the choice of Thin Mesher, and as displayed by the Figure 3.9 in Section 3.4.2, becomes available
after choosing either Tetrahedral Mesher or the Polyhedral Mesher. This implementation enables
the automatic recognition of the geometry areas as "thin" or "bulk". The mesh, which is thereafter
constructed for the areas considered thin, is comprised of prismatic-type cells. Resultingly, as seen
in Figure 9.10, the confined space between the plates spans the elongated dimension of the cells
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of prismatic type. Thus, forming the desired Pseudo 2D mesh property with one cell between
the plates in the height direction. The second approach in terms of Thin Mesher utilization, i.e.,
Region-Based Meshing, further explained in [27], is to select the Thin Mesher as a Core Volume
Mesher. This approach was not explored as it was not found in the software, most likely due to
the prechosen Automated Mesher.

Figure 9.10: A straight section fully comprised of Pseudo 2D mesh.

After providing a brief explanation of the options and the choices made in terms of Thin Mesher,
the discussion of the various encountered aspects can be presented. Primarily, the complexity
emerged during the exploration of which geometrical features allowed non-discontinuous, valid
mesh transitions, as the dependency on both the geometrical feature and also various Thin Mesher
settings showed significant influence. To present some of the findings with regards to which cases
provided a valid mesh and which ones did not, a list and a table are displayed below. The list
includes some of the considered geometrical features evaluated, divided into Cases for ease of
referencing. Table 9.2 presents the mesh settings evaluated.

• Case 1: Bends/elbows, both smoothly bent with a continuous thickness and radius, and non-
discontinuous sharp equivalents. Real-world applications such as pipes or ducts are comprised
of the geometrical features of this case.

• Case 2: Increased or decreased plate distance for a section of the channel. Both gradual
and abrupt transitions. Real-world applications such as diffusers or mufflers for increased
space and constricted sections in ducts or valves for decreased space can be included in this
category.

• Case 3: Linearly increasing distance between plates for the end of the channel, i.e., diverging
plate spacing. Real-world applications included are diverging channel or nozzles.

• Case 4: Corrugated plates of zigzag formation. Heat exchangers are an example of a real-
world application.

Table 9.2: Description of Thin Mesher Expert Settings [23].
Thin Mesher Expert Setting Description

Thin Mesher Maximum thickness

This option removes the automatic identification
of thin areas and enables a user-specified
threshold value in the format of either a
specified size, S [m] , or as a fraction of the
Base Size of the mesh. The parts of the
geometry which are larger than specified
setting are considered bulk and
conversely, the smaller become considered as
thin.

Thin Mesher Surface Size Ratio This option allows the user to set a threshold for
the ratio of the surface cell size (local).

For Case 1, as previously mentioned, the continuous smooth bend version was completely com-
prised of the Pseudo 2D model, while the sharp bend equivalent generated an unstructured 3D.
These resulting meshes were both obtained without the inclusion of adjusting the Thin Mesher
Expert Settings and instead only relying on the automatic generation of the mesh.

For Case 2 in the above list, a thickness ratio of < 1/2 and cross-sectional area < 1/4 for both
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gradual and abrupt increases and decreases, respectively, the mesher only identified the thinner
sections as "thin". This results in constricted sections becoming the sole thin part and enlarged
sections being comprised of 3D unstructured mesh. Conversely, with a thickness ratio of > 1/2 and
>1/4 in cross-sectional area ratio, the non-discrete, gradual transitions between various thicknesses
allowed for a full Pseudo 2D mesh to form, both using either fillets or chamfers as a transitional
component. Various Thin Mesher Expert Settings were tested to achieve even lower thickness
ratios with a valid Pseudo 2D mesh. Examples of configurations that provided a full Pseudo 2D
mesh. However, due to the employment of the Parts-Based Meshing and the whole geometry being
a single part, the denser mesh region became comprised of Pseudo 2D mesh as well and lost its
desired properties. An approach to potentially avoid this issue would be to divide the geometry
into separate parts, which consequently might enable the possibility of conserving the unstructured
attribute of the denser mesh region.

Case 3, as a consequence of being directly connected to the room subdomain, became comprised
of a three-dimensional unstructured mesh in the diverging section. By modification of the Thin
Mesher Expert Settings gradually increasing/decreasing sections can be comprised of a Pseudo 2D
mesh. However, as the denser mesh region governs an important feature of the Pseudo 2D model.
Our recommendation in terms of approach for diverging nozzles would be to simply let the diverg-
ing/converging transition be comprised of a full 3D mesh with appropriate density.

The corrugation evaluated; a zigzag pattern with an inclination/declination of ≈ 11◦, displayed
good behavior in terms of Pseudo 2D meshing and is thereby likely to attain a high level of Pseudo
2D meshing for acute inclination angles.

Even though not all geometrical features were rigorously explored in terms of mesh-applicability
of the Pseudo 2D model. The above highlights some of the characteristic features, possibilities,
and suggestions to how the validity and applicability can be influenced by the user. It was found
that both the model in its full capacity and the mesh itself, are heavily dependent on geometrical
factors. Ultimately, outside of this thesis, it is left for the one performing the simulation to decide
if the attained properties are desirable, and in some aspects, simply reducing the overall mesh
count, without achieving a concise Pseudo 2D mesh, can be desirable.

Appendix G
Contributions

Here, the specific contributions each author made to this thesis are outlined. It is important
to note that both authors participated in every stage of the process, contributing to all aspects of
the thesis and writing in all sections of the report.

Abdulla Rahmah
Contributions made include but are not limited to method and generation of Simple Geometry
(duct), Single Sharp Bend, Multiple Sharp Bends, Multiple Bending Duct and Pin-Fins.

Leo Flydalen
Contributions made include but are not limited to method and generation of Simple Geometry
(parallel plates), Single Smooth Bend, Multiple Smooth Bends, Branching Duct and Constricted
Duct.
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