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Abstract

This Master’s thesis evaluates and validates a newly developed risk as-
sessment tool designed for performance guarantees in the sales of rock
crushing solutions at Sandvik Rock Processing Solutions, Stationary Crush-
ing & Screening (Stat. C&S). The research aims to compare the new
tool against the current expert-based method, assess the relevancy of the
variables included, and propose necessary adjustments to improve the
accuracy and usability of the tool.

The study was conducted in three phases: a quantitative analysis com-
paring the new tool’s risk scores with those of the current method, qual-
itative interviews with experts to evaluate the scope and relevance of
the variables used, and a final discussion to propose improvements and
an implementation plan. Statistical tests revealed significant differences
between the risk scores of the two methods, indicating the need for ad-
justments in the new tool.

Key findings from the investigation highlighted the necessity of adding
new variables into the risk assessment tool such as feed material charac-
teristics and machine-specific factors. The current method of calculating
individual risk scores by treating variables as independent was generally
supported, but the approach for calculating the final risk score requires
some refinement to better reflect the system’s complexity.

The thesis concludes with recommendations for adjusting the variable
scope, refining calculation models, and developing an implementation
plan to transition the risk assessment process to the sales areas. These
adjustments are important for ensuring the tool’s effectiveness and accu-
racy, improving Stat. C&S risk assessment capabilities, and promoting
a more efficient and customer-centered sales process.
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1 Introduction

Making informed decisions about the uncertain future is something all

people, organizations, and societies have difficulty doing. Macro-level

uncertainties include economic and geopolitical uncertainties and the de-

velopment of public health crises such as the recent COVID-19. Uncer-

tainty is also always apparent on a smaller scale, such as in our daily lives

or the day-to-day operations of a company. While uncertainty is closely

connected to risk, there is a distinct difference between the two defini-

tions. The terminology uncertainty is used when potential outcomes and

the connected probabilities to each outcome are unknown or cannot be

reliably estimated (Park and Shapira, 2017). In contrast, the term risk

is used in decision-making situations where all potential outcomes and

their corresponding probabilities of occurrence are known or can be es-

timated. A concrete definition of risk is given by Rausand and Haugen

(2020), who defines risk as:

“The combined answer to the three questions: (1) What can go wrong?

(2) What is the likelihood of that happening? and (3) What are the con-

sequences?”

When assessing a single unfortunate event, where the consequences are

known, the remaining task is to answer question number two. The pur-

pose of a risk assessment tool for a known event with known consequences
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is to give an accurate estimate of the likelihood of the occurrence of

that event. In this project, likelihood and probability will be used inter-

changeably. Referring to the distinction between uncertainty and risk,

a successful risk assessment converts uncertainty to a risk, where the

likelihood becomes known.

1.1 Background

The purpose of this master thesis project is to evaluate a newly developed

risk assessment tool for performance guarantees related to the sales of

rock crushing solutions, as well as discuss recommended changes and

adjustments to the new tool together with a proposal of how to implement

the risk assessment tool within the organization.

This Master’s thesis is performed at Sandvik AB for Sandvik Rock Pro-

cessing Solutions, later referred to as SRP, in Svedala, Skåne. Sandvik

Rock Processing Solutions is one of three Business Areas at Sandvik,

the other two being Mining and Rock Solutions and Manufacturing and

Machining Solutions. The Master’s thesis is written at the Stationary

Crushing and Screening division of SRP, specifically with the division’s

Performance and Innovation Excellence department. The former will

hereby be referred to as Stat. C&S, and the latter as PIE.

1.1.1 Sandvik Group
Sandvik is a global industrial manufacturing group providing products

and solutions for mining and rock excavation, rock processing, and metal

cutting. Founded in 1862 in Sandviken, Sweden, by Göran Fredrik

Göransson, Sandvik was the first company to commercialize the famous
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Bessemer process, the first relatively inexpensive method to mass-produce

steel (Sandvik Group, 2020). Today, the company manufactures a wide

variety of products and has grown to have around 41,000 employees and

sales in 170 countries. In 2023, the company had a total revenue of 126.5

billion SEK with an EBITA margin (earnings before interest, tax, amor-

tization relative to revenue) of 19.4%. SRP is the smallest of the three

divisions, having had a 9% share of the revenue in 2023. The two other

divisions, Mining and Rock Solutions and Manufacturing and Machin-

ing Solutions had 52% and 39% share of the total revenue, respectively

(Sandvik Group, 2023).

1.1.2 Sandvik Rock Processing Solutions
SRP is the business area of Sandvik Group that manufactures and sells

machines and complete solutions for mineral and rock processing. Founded

in 1882 in Svedala, Sweden, the company originally manufactured agri-

cultural machines, but over time started to prioritize machines for rock

and mineral processing. In 2001, the Finnish company Metso Corpo-

ration aspired to purchase the entire business, which at the time was

called Svedala Industri. However, competition regulations enabled Sand-

vik Group to acquire its production units in Sweden and France. The

acquired units, which totaled 900 employees and a yearly revenue of 1.4

billion SEK, were viewed as a natural complement to Sandvik’s existing

business within construction and infrastructure (Sandvik Group, 2001).

Today, SRP consists of 2 946 employees and had a revenue of around

11.5 billion SEK in 2023 (Sandvik Group, 2023). As shown in Figure

1.1, SRP has three divisions, Attachment Tools, Stationary Crushing &

Screening, Mobile Crushing & Screening. Stationary Crushing & Screen-
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ing sells rock crushing systems designed to stay in one place during their

entire life cycle. The new risk assessment tool mentioned previously in-

volves only Stationary Rock Crushing solutions, which is why this thesis

will solely focus on performance related risk involving Stationary Crush-

ing & Screening’s product line.

Customers for these products are mainly found in two industries, infras-

tructure and mining. The infrastructure industry involves all activities

regarding the construction of roads, railways, bridges, and tunnels. In

2022, infrastructure accounted for 61% of SRP’s revenues and mining

accounted for the remaining 39% (Sandvik Group, 2023). While sales

of individual products occur, Stat. C&S’s customers usually demand a

complete rock-crushing solution where crushers, screens, and feeders are

combined.

Figure 1.1: An organizational chart over Sandvik Group and Sandvik SRP.
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1.1.3 Products
The performance guarantees and risk assessments only evaluate the risk

of certain products in the entire product portfolio that Stat. C&S has.

These are the rock crushers and screens that are sold relatively frequently

and contribute risk to the performance of a system of machines. Crushers

is the collective name for machines that disintegrate rocks and minerals

into smaller parts and screens separate the rocks into different sizes. An-

other machine sold with these two is feeders, which ensure that material

into the crusher and screens has a regular flow. The feeders are not in-

cluded in the new risk assessment tool. A more in-depth description of

the crushers and screens is available in Chapter 3.

1.1.4 Performance Guarantee
When selling a single piece of equipment or a crushing and screening

process, the sales units of Stat. C&S uses an internal digital design

tool called PlantDesigner to produce a flowsheet of the system. The

flowsheet includes the crushers, screens, and feeders needed, together

with information such as output capacity and product specifications, see

Figure 1.2 for an example. After inputting the customer’s specifications

into the design tool and reaching a preliminary agreement, the customer,

in some cases, requests a performance guarantee for the solution.
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Figure 1.2: An example of a flowsheet from PlantDesigner with flow of
material, crushers, and screens included.

The performance guarantee involves minimum performance criteria for

the product or system. In this thesis, the term product can refer to one

of two things: the machines that Sandvik Stat. C&S sells or the output

from a crusher or screen, i.e. crushed or screened rock. The term ’final

product’ specifically refers to the output from the final crusher or screen

in a crushing and screening plant. The most common performance crite-

ria are output capacity, product size grading, particle shape, the maxi-

mum degree of over- and undersize of particles, or a combination of these

criteria. The criteria will be further explained in Chapter 3. If the above-

mentioned criteria are not being met under the test conditions specified
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in the performance guarantee. Sandvik can be held liable according to

the conditions in the performance guarantee. The crushers at Stat. C&S

have settings that are allowed to be changed in order to meet the speci-

fied performance criteria. For example, if the crushers are not reaching a

performance criterion such as a specified capacity, the crusher’s original

settings can be changed to enhance the capacity of the crusher in order

to reach the minimum performance criteria after it is sold. While the fine

can be costly for Sandvik, the largest driver for meeting the criteria is

avoiding missing out on future engagements or damaging the company’s

reputation due to a dissatisfied customer.

Before a system is sold, the performance guarantee is created at the

respective sales areas, along with a risk assessment which is created cen-

trally at PIE. Different systems have different levels of volatility in terms

of performance and subsequently a higher risk of not meeting the per-

formance criteria in the guarantee. The purpose of the risk assessment

is to estimate the risk that the system will not perform to the specifica-

tions of the performance guarantee. The estimated risk serves as useful

information when deciding whether to sell the system along with the

performance guarantee or not. If the estimated risk is deemed too high,

the sale either does not happen, or further adjustments to the system or

performance guarantee have to be done.

1.1.5 Risk assessment tool
This section will explain the current- and new risk assessment tools at

Sandvik Stat. C&S. As will be detailed in Chapter 2, the current risk

assessment tool will be used as a comparison benchmark for the risk
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scores given by the new method.

Current risk assessment tool

The current risk assessment tool used at Stat. C&S is built on experience-

based inputs for the risk-dependent variables briefly detailed below and is

therefore highly dependent on the expertise of the centrally located evalu-

ators at PIE. Currently, the person who is performing the risk assessment

grades the estimated risks for a number of different variables divided into

separate aspects. Some of these aspects are for instance related to the

raw material characteristics, output from the equipment, accuracy, and

quality. The grading of the risk-dependent variables gives an overview

of the risk, which is taken into account together with an expert’s opin-

ion regarding these factors when determining the final risk score. In the

current risk assessment tool, the risk score is given as an integer between

1 and 5, 5 meaning a high risk of not meeting the performance criteria,

and 1 meaning little or no risk of not meeting it.

New Risk Assessment Tool

Stat. C&S aims to have the entire sales process performed decentrally

at the different sales areas. That means that the entire sales process

from solution design to the creation of performance guarantees and risk

assessments will be performed by the respective sales areas. The reason

for this is that Stat. C&S wants the expertise surrounding the entire

sales process to be located closer to customers in order to promote a

more efficient process and better communication with customers. Stat.

C&S has been content with the accuracy of the current risk assessments,

but to obtain consistency between sales areas, a new tool is required that
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is not dependent on the expertise and knowledge of the person who is

evaluating the system.

The new tool has been developed but not yet validated and it uses only

inputs from Stat. C&S’s solution design tool called PlantDesigner. While

currently requiring manual inputs for the new tool, the ambition is to

automate the risk assessments more in the future.

In the new tool, the user first inserts the crushers and screeners included

in the guarantee. The user also inserts the configuration of the machines

and the values for the variables that will affect the machine’s perfor-

mance. These numbers are obtained from the flowsheet that is attached

to the specified guarantee. The user also inserts the raw material charac-

teristics that are stated in the flowsheet from PlantDesigner and obtained

through tests done at Stat. C&S’s testing facility in Svedala.

When a value for a variable is inserted in the assessment tool, an individ-

ual probability that the machine will meet the performance guarantee is

calculated by the method. After all values are inserted for one single ma-

chine, these probabilities are then multiplied to provide a final risk score

of a certain screen or crusher. In the new tool, this number is presented

as a percentage and could be interpreted as the probability that the ma-

chine will perform as specified given the values of the variables. After

the percentages for all machines are calculated, the tool then calculates

the arithmetic mean of the percentages, which is the final risk score.
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1.2 Problem formulation

When approaching a formulation of the problem, it is important to un-

derstand the risk that the tool aims to estimate. Referring to the defini-

tion of risk in the early introduction, what can go wrong is that a sold

product or solution that has a performance guarantee does not meet at

least one of the performance criteria included in the performance guar-

antee. An estimate of the likelihood of this happening is the output of

the risk assessment method and the consequence of this outcome taking

place is that Sandvik can be held liable. To understand the likelihood

of not meeting the performance guarantee, an effective approach is to

start by describing the unpredictable nature of real-life values for the

previously mentioned performance criteria, which are capacity, product

grading, shape, and over- and undersize. These will be further explained

in Chapter 3.

The values for capacity and product grading are calculated in PlantDe-

signer based on assumptions of optimal operating conditions. As such,

real-life values can sometimes deviate from this. In contrast to capacity

and product grading, the values for shape and over- and undersize are

not given upfront in PlantDesigner but can be calculated using other

internally developed tools. The real-life value of these variables can also

deviate from the values calculated in the tools.

The real-life probability density function of the values for the perfor-

mance criteria is unknown and different for different crushing solution

configurations. The relevant configuration settings are aimed to be in-

cluded in the new risk assessment tool to enable the tool to reflect the
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risk accurately. To explain with a simple example, a favorably configured

crusher might have a nearly deterministic real-life capacity value while

a badly configured crusher might have a widely spread normal distri-

bution around the same capacity number. An effective risk assessment

tool should observe the included minimum performance criteria and the

values for all the relevant configuration settings displayed in PlantDe-

signer, also referred to as variables from now on. It should also have an

appropriate computational model to arrive at a number that accurately

reflects the likelihood that the system will meet these criteria. The new

risk assessment method is currently in the prototype stage and needs to

be verified and evaluated.

1.3 Research purpose and questions

The purpose of the master thesis project is to evaluate a newly developed

risk assessment tool for performance guarantees related to the sales of

rock crushing solutions, as well as critically discuss changes and adjust-

ments to the new tool. The master thesis project will also propose a plan

for the tool’s implementation. Following are the questions that the new

risk assessment method will be evaluated and verified from:

1. How does the new tool compare against the current risk assessment

done by an expert?

2. Does the tool include the right scope of variables affecting the risk?

3. Does it have an appropriate model to compute the risk from the

variables?

11
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2 Methodology

This chapter explains the research approach that has been used through-

out the thesis. It will also introduce the research procedure, described

in Section 2.2 in which the three phases of the master’s thesis are in-

troduced. In Section 2.2, the data collection and analysis methodologies

used in the master thesis are also described.

2.1 Research Approach

While there is no one-size-fits-all method for research, Denscombe (2010),

outlines various approaches tailored to specific contexts, such as case

studies or experiments. In this thesis, a mixed-method approach is used,

integrating quantitative and qualitative data collection methods to an-

swer the research questions effectively.

The advantage of a mixed-method approach lies in its ability to provide

a complete perspective, utilizing the strengths of both quantitative and

qualitative data while compensating for their limitations. For this thesis,

combining methods can help to validate quantitative findings through

qualitative data gathered from interviews, and the other way around.

With this approach it’s crucial to distinguish between different methods

of data collection and use each to validate the other’s findings, a process

known as triangulation (Denscombe, 2010).

13



2.2 Research Procedure

This thesis project was performed in three separate phases. The first

phase aimed to answer the first research question stated in 1.3, which

is to analyze how the new risk assessment method compares against the

previous assessments performed by an expert. The second phase aimed

to answer the research questions regarding the scope of variables, risk

model, and variable weighting. The final phase aimed to critically discuss

changes to the method as well as a potential proposal for a final method.

2.2.1 Phase 1: Quantitative Analysis
In this thesis’ first phase, the aim was to evaluate how the new risk as-

sessment compared to the current one. Initially, this comparison was

intended to be against real-life situations and their outcomes. However,

a lack of real-world outcomes (situations where, for example, the perfor-

mance guarantee was not met) led to a change where the result of the

risk assessment tool was compared against the result of a benchmark,

which in this thesis is the result from the current risk assessment tool.

Observational techniques were utilized to acquire data related to how

well the new risk assessment tool works. Observations mean that the

researcher watches what happens in a certain setting, such as using their

senses to collect information directly (Denscombe, 2010). The focus of

observations in this thesis was on watching how the risk assessment tool

was used, collecting data for comparison with the benchmark risk assess-

ment, and identifying knowledge gaps within the tool.

For this, systematic observations were used. Systematic observations

14



mean that the researcher records every observation in the same way or

as part of a bigger system of observations. This method is mostly used

to gather quantitative data for statistical research. The most important

aspects to consider when gathering data in this way are that the pro-

duced data is consistent between different observers and that the data is

recorded systematically and thoroughly (Denscombe, 2010).

The benchmark in this case was the risk score from the current qualita-

tive risk assessment tool. The results from the current method and the

related evaluated systems were identified through secondary data collec-

tion in the archive of previous projects at Sandvik Stat. C&S. Secondary

data is data collected for purposes that may or may not relate directly to

the researcher’s current problem. This involves gathering data that have

already been recorded and can be used in combination with or to sup-

port primary data gathered from other sources (Tashakkori and Teddlie,

2003). This included previous risk assessments using the current method,

performance guarantees, and flow sheets of crusher and screener plants

from previous projects.

The comparison involved observing and recording the risk scores from

the new risk assessment tool, using the same values and setup as in the

projects found in the internal database. This was achieved through the

following procedure. Firstly, previously performed risk assessments with

the current method, along with the related performance guarantee and

flowchart from the sold system, were collected from the internal database.

Then, using the data from the flow sheet in PlantDesigner, a risk assess-

ment with the new tool was performed. The score from the current
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risk assessment along with the score from the new method was recorded.

Various characteristics of the system in question and the performance

guarantee were documented. Additionally, certain characteristics and

observations that were identified through this process, such as aspects

and factors causing large deviations in risk score and the presence of

aspects in the old assessment method that were absent in the new risk

assessment tool, were recorded.

After completing the recording and observation, a statistical analysis was

conducted to analyze which characteristics had the highest impact on the

risk score of the new tool. Also, which of these characteristics affected the

score difference between the two methods was analyzed. This analysis

aimed to identify different aspects or factors that were not consistent

with the benchmark or with interview results. This process, along with

the statistical analysis and tools used will be further discussed in Chapter

4.

2.2.2 Phase 2: Interviews and Evaluation
Using insights from Phase 1 combined with interviews, the new method

was further evaluated based on the variable scope, risk model, and the

weighting of variables.

Interviews are commonly used to gather data for thesis projects, espe-

cially to gather qualitative data. There are three main types of inter-

views: structured, semi-structured, and unstructured. Structured in-

terviews have predetermined questions with limited room for discussion,

while unstructured interviews have no predetermined questions and focus

on open-ended discussion. Semi-structured interviews fall between these
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two, allowing some flexibility for discussion based on the predetermined

questions (Hurst, 2023).

In this thesis project, semi-structured interviews were conducted to gather

data for evaluating the risk assessment tool. This approach was chosen

for its balance between providing a consistent set of questions for all inter-

viewees, ensuring a level of reliability and validity, and allowing flexibility

for follow-up questions based on individual expertise and experience with

rock processing solutions within the organization of Sandvik Stat. C&S.

The interviews were held with employees at Sandvik who had a high

level of knowledge about the performance of Stat. C&S’s machines and

solutions. This primarily included employees at PIE and Sales at Stat.

C&S with insight into the scope of variables needed to accurately estimate

performance variability and the relative importance of these variables. It

was important that the interviews fully capture the experts’ knowledge

on the matter since available data and publicly available research on the

subject of rock crushing were limited.

Insights from Phase 1, such as the inclusion of certain performance crite-

ria leading to an increase in the risk score, were used when formulating

the questions in the interview in order to analyze further and find an

explanation of what the deviations against the benchmark came from as

well as gather knowledge based on the previous observations of the risk

assessment tool.
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2.2.3 Phase 3: Discussion and Implementation
In Phase 3, the insights from Phase 1 and Phase 2 were used to discuss

recommended changes for the new method. This was handled through

the process of triangulation, where the results from the comparison with

the benchmark and the interviews were used. The focus of this phase was

to find evidence of aspects that were problematic within each source and

establish a relationship between the qualitative and quantitative data to

find key areas in which the new risk assessment method could improve.

Based on the results, an implementation plan for using the new risk

assessment tool within Stat. C&S was formulated. This plan outlines

key activities required to improve the tool’s accuracy and usability and

to ensure that the objective of conducting performance guarantees in the

sales areas is achieved.

The result of this phase will be further discussed in Chapter 7. In the

discussion, aspects were highlighted such as what changes can be made

directly to the risk assessment tool, and what changes can be made in

the future if the circumstances change. Emphasis of this discussion was

held on the feasibility of usage according to Stat. C&S’s needs.
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3 Rock Crushing and Screening

Multiple aspects impact how well rock crushers and screens perform in

real-life scenarios. This chapter aims to provide an overview of some of

the performance criteria used at Stat. C&S, including the characteristics

of the crushers and screens, and the factors related to the machines and

rocks that influence these performance criteria. Special emphasis will

be placed on explaining what can be changed in the machining setup if

issues arise, as this will affect the level of risk which is higher when there

is less flexibility in the system setup.

3.1 Rock Crushers

The product portfolio of Sandvik SRP has many different types of crush-

ers that vary depending on the use case, level of performance required,

crushing mechanism, and selection criteria. The new risk assessment tool

is developed to assess the risks associated with the CH, CS, CV, and CJ

crushers at Stat. C&S (Sandvik Group, 2024).

The main difference between the crushers lies in the crushing mecha-

nism used within each crusher, which in turn influences the properties

that affect performance and the associated risks of meeting performance

criteria. There are two primary crushing mechanisms for rock crushers:

impact crushing and compression crushing. Impact crushing involves, for
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example, a hammer striking the material passing through the crusher to

cause breakage, while compression crushing occurs when, for instance,

an iron mantle compresses the rock to induce breakage (Wills and Finch,

2016).

Depending on the size of the rock, applications are commonly categorized

as primary, secondary, and tertiary crushing. Primary crushing refers

to the crushing of larger rock, usually right after quarrying. Secondary

crushing refers to the crushing that occurs after primary crushing is done

and naturally involves smaller rock. Fine crushing, sometimes referred to

as tertiary crushing, refers to the crushing step after that, and is usually

the last step before collecting the final product. Figure 3.1 illustrates

the appearance of a CH crusher at Stat. C&S. In Table 3.1 there is a

summary of the different crushers included in the risk assessment tool.

Feed size refers to the size of rock that is put through the crushers, and

max feed size is the maximum size possible to put through the crusher.

Capacity refers to the amount of feed material that the crusher can handle

per hour.
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Figure 3.1: A Sandvik cone crusher of the model CH440. (Sandvik Group,
2024)

Table 3.1: The different types of crushers in the new risk assessment tool
scope and their main application, max feed size in mm, and max
capacity in metric tons per hour.

Crusher type Main application
Max feed

size (mm)

Capacity

(MTPH)

CH and

CS crushers

Secondary and

Tertiary crushing
18-310 23-2000

CJ crusher Primary crushing 460-1170 75-1160

CV crusher
Secondary and

Tertiary crushing
40-55 37-585
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3.1.1 CH and CS Crushers
The CH and CS models at Stat. C&S are cone crushers that rely on

crushing between a stationary concave and a rotating mantle within the

machine. The steel mantle rotates at high speeds to crush the rocks,

moving in a conical pendulum motion that is off-center. As the mantle

rotates, it alternately moves closer to and farther away from the concave,

creating larger and smaller openings in the crushing chamber where the

rocks are crushed. These openings are known as the closed-side setting

(CSS) and the open-side setting (OSS). The CSS refers to the distance

between the mantle and the concave when the mantle is in its closed

position, while the OSS refers to this distance when the mantle is in the

open position (Wills and Finch, 2016), see Figure 3.2 for an illustration.

Figure 3.2: An illustration of a cone crusher with OSS, Eccentric Throw
(ECC), and CSS (modified from Evertsson, 2015).
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When the feed passes through the crusher it will be subjected to several

repeated compressions because of the cyclic oscillation of the mantle,

and this compression between the mantle and a fixed concave creates a

reduction of the size of the feed material. With each compression, the feed

material adjusts slightly upwards by being pressed within the chamber of

the crusher, and after each compression, the material falls downward due

to gravitation. The length of this upward movement defines the number

of crushing zones within the crusher (Wills and Finch, 2016).

As can be seen in Table 3.1, the main application of CH and CS crushers

is in the secondary or tertiary crushing stages. But in some cases, it can

be used in the primary crushing stage, replacing a CJ crusher.

There are two settings on a CH and CS crusher that can be adjusted if the

system fails to meet the desired performance criteria. This is the eccentric

throw (ECC) and the closed side setting (CSS) of the crusher. The ECC

is the difference in length between the CSS and OSS, representing the

length of the mantle oscillations within the crushers (see Figure 3.2 for an

illustration). The eccentric throw can be altered by adjusting the mantle

height, which affects the length of the mantle oscillations (Sandvik, 2024).

Similarly, the CSS can be adjusted by changing the horizontal position

of the mantle. Due to there being a limit to how much the mantle can

move in height and to the sides, there is an upper and lower bound of

the value of both CSS and ECC. So, although these settings could be

modified, there exists a limit to how much these settings can change

before they create issues with the functionality of the machines (Wills

and Finch, 2016).
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3.1.2 CJ Crushers
The CJ crusher, commonly referred to as the jaw crusher at Stat. C&S, is

a compression-based crusher that functions by having one stationary and

one moving plate of steel. The breakage is caused by the moving plate

moving back and forth toward the fixed plate to compress the material

passing through the crusher. Gravity then pushed the material toward

an opening at the bottom, with the final size of the material being the

same or smaller than the outlet at the bottom. Like the CH- and CS

crushers, the jaw crusher has a CSS which is a measurable distance and

decides the size of the end product. For the jaw crusher, this distance is

the length between the two plates at the bottom outlet when the moving

plate is as close as possible to the stationary plate, see Figure 3.3 for

an illustration. The main application of a jaw crusher is within primary

crushing stages and the jaw crusher is most effective with size reduction

of blasted feed material with a top size of at least 150 mm (Wills and

Finch, 2016).

The jaw crusher has primarily one setting that can be adjusted if the

crusher is not meeting a performance criterion, this is the value of CSS.

The value of the CSS can be adjusted by moving the plates toward or

further away from each other, but there is a limit to how much this can

be done. The jaw crusher thus has a minimum and a maximum CSS that

it can achieve (Wills and Finch, 2016).
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Figure 3.3: Schematic illustration of a jaw crusher by J.Quist, modified to
include CSS (Johansson, 2019).

3.1.3 CV Crushers
Sandvik SRP’s CV crushers are mainly used in applications where the

customer desires a greater shape of the product. The crusher relies on

impact crushing to cause breakage. This works by having a high-speed

rotor throwing the feed material into a crushing chamber that is lined

by the same material. This causes rock-on-rock collisions within the

crusher, commonly referred to as interparticle crushing, which aids in

providing products with better shape compared to other crushing mech-

anisms (Wills and Finch, 2016). The CV crusher is most commonly used

in tertiary crushing stages.
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There is mainly one setting that can be adjusted if the system is not

working to the desired specification. This is the Bi-Flow system in the

CV crusher. The Bi-Flow works by letting some material flow through

the Bi-Flow gates and channel into the crushing chamber, hitting the

material coming from the rotor in the opposite direction to create further

breakage. The main application of this setting is increasing capacity.

3.1.4 Common Crusher Aspects
One of the most important aspects that customers have to consider when

choosing which of these crushers to use is the raw material characteristics

and the total reduction ratio of the system. The total reduction ratio of

the system is the size ratio between the blasted rock or feed material that

goes into the system of crushers and the desired size of the end product.

Commonly, the reduction ratio is calculated as:

Reduction ratio =
F80

P80
(3.1)

where F80 is the 80th percentile by size in the feed material and P80 is

the 80th percentile by size in the end product material (Wills and Finch,

2016).

In some cases, one crusher can handle the entire crushing process but in

most cases, multiple crushers are required to get the desired reduction

ratio and end product. Thus, all of the crushers must perform well as

the input of one crusher can depend on the output of another.

An additional important property to consider is the configuration of
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the crusher system, e.g. how the connections between the crushers and

screens work. Usually, there is a system of conveyors and feeders that

transport the rocks between the machines. There are two standard config-

urations for this: the crusher can either be in a closed- or an open circuit

(Wills and Finch, 2016). If the crusher is in an open circuit it means that

the rock only goes through the crusher once and then continues on its

journey to a secondary- or tertiary crushing stage. This configuration is

usually utilized in primary- and secondary crushing stages. If the crusher

is in a closed circuit it means that the output product that is larger than

a certain size circles back and is fed back into the crusher until it reaches

the desired size. This configuration is most common in tertiary crushing

stages and when a final product is desired. Both of these configurations

will impact how well the crushers and machines will function, but differ-

ent properties are important depending on the configuration.

3.2 Screens

This section aims to provide an overview of the screen models at Stat.

C&S. The selection of which screen type should be used in a crushing

plant depends on multiple different factors. Most importantly, the desired

screening accuracy together with the capacity of feed material that the

screen should be able to handle (Wills and Finch, 2016).

Screens separate rock into different sizes. To do this, screens have multi-

ple decks containing screening media with differently-sized holes for some

of the rock to pass through. As an example, a screen for fractioning final

products might have two decks for three final products sized 0-4 mm, 4-8
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mm, and larger than 8 mm respectively. Depending on the characteris-

tics of the raw material and the output requirements, different materials,

hole shapes, and thicknesses for the screening media are used. As an ex-

ample, for highly abrasive raw materials, a thicker screening panel made

of rubber is preferable. If higher accuracy is demanded, steel wire is the

better option.

Stat. C&S offers a wide range of different screens to their customers.

This thesis will cover the SA screens, SJ screens, and SL screens sold at

Stat. C&S (Sandvik Group, 2024). See Figure 3.4 for an image of an

SJ screen. While many factors are important when choosing the right

screen, three of the most important factors are the maximum feed size,

the maximum separation size, and the movement mechanic. Rock smaller

than the separation size of a deck will (in optimal conditions) fall to the

deck below. Movement mechanic is the movement the screen uses to

move the rocks over the screening media. Table 3.2 below summarizes

the characteristics of each type of screen covered in this thesis.
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Figure 3.4: A Sandvik SJ Screen (Sandvik Group, 2024)

29



Table 3.2: Table 2: Different types of screens and their main application,
max feed size in mm and movement mechanic and max
separation size in mm. Scalping refers to the removal of material
that is difficult to process.

Type of

screen

Movement

mechanic

Main ap-

plication

Max feed

size (mm)

Max sepa-

ration size

top deck

(mm)

SA Screen Medium

and fine

screening

Circular

motion

150 80

SJ Screen Medium

and fine

screening

Circular

motion

400 140

SL Screen Mining du-

ties

Linear mo-

tion

300 100

Screens vibrate at high frequencies to promote the stratification of the

rocks. In screening processes, the term ’stratification’ describes the phe-

nomenon where fine particles move downward through a bed of coarser

particles on a vibrating screen bed. Generally, the more successful the

stratification of the material is on the screen bed, the better the results

will be in terms of screening accuracy and throughput. The promotion

of stratification depends on multiple factors, including material density,

particle shape, distribution of particle size, and material humidity. The

stratification process is most effective when the size of the material is

non-homogeneous, for example, when the feed material consists of a mix
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of large and small materials (Shen and Tong, 2020).

Two main aspects are important to consider when configuring a screen

within a crushing- and screening plant. That is the size of the screening

area and the separation difference of decks (Wills and Finch, 2016). The

screening area decides the screening efficiency, where the capacity of feed

material needs to be handled while the bed depth needs to be of the

right size. The bed depth refers to the height of the material that is on

the screening deck. The bed depth should neither be too large, which

would mean that rocks smaller than the holes would not have time for

effective stratification and fall through the screening media, or too small,

which would mean that the material would vibrate on the screening me-

dia without it being pressed downwards by larger rocks above it. The

separation difference of decks is important due to the same reasoning,

if the separation difference between decks is narrow, e.g the holes are

20 mm on one deck and 18mm on the next, it will be difficult to make

sure that the bed depth is consistent and the screening process would be

ineffective.

The main difference between the different models included in the risk

assessment tool is the type of motion and the inclination of the screen.

For example, the SA Model has a circular motion, and a steeper incli-

nation between 15-18 degrees, which means that the capacity is higher,

but the material will have less time on the screen and the effective hole

size reduces. This means that the screening accuracy is lower. This can

however be compensated by having a longer screen and a larger screen

area. The SL model uses linear motion and the deck vibrates back and
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forth with inclination between 0-10 degrees. This means that the mate-

rial will move slower over the screen providing greater accuracy but at

the cost of capacity.

3.3 Performance Criteria

Multiple different performance criteria are used in the performance guar-

antees given by Stat. C&S. These criteria are in most scenarios specified

by a numerical value that the system or product should achieve. This sec-

tion aims to give an overview of some of the performance criteria utilized

and the most important aspects that impact the values of the criteria.

3.3.1 Capacity
In most performance guarantees an output capacity is specified. Capac-

ity in this context refers to the output quantity of crushed rock and is

measured in metric tons per hour (MTPH). This performance criterion

depends on how well the crusher functions and certain settings available

in the crusher. The settings that have the largest impact on how the

capacity of a crusher varies are the crusher’s CSS and ECC. If the CSS is

changed to be larger, e.g. there is a longer distance between the mantle

and the concave, the capacity of the crusher will be higher as more mate-

rial can pass through in a given amount of time. Likewise, a higher value

of ECC leads to a greater capacity of the crusher due to more material

being able to pass through per second compared to a lower ECC setting

(Wills and Finch, 2016). However, in most scenarios, the ECC will likely

be the first setting to be adjusted if the specified capacity is not reached.

This is due to the CSS impacting other factors such as product size grad-
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ing and shape, and an adjustment of the CSS to reach a capacity can

mean that these other criteria would not be reached.

In a performance guarantee, the capacity is in most scenarios viewed

either as the total output capacity or the output capacity of a certain

product range. The first case takes the entire crushing and screening

plant into account. This means that the output capacity is the same as

the capacity of feed material into the system. In the other case where

a certain product range is guaranteed, the customer desires an output

capacity of rocks within a specific product size, for example, 400 MPTH

of rocks between 8-12mm in size. This criterion is referred to as product

and capacity.

3.3.2 Particle Size Distribution
In some performance guarantees a particle size distribution (PSD), is

given as a performance criterion. The PSD is a description of how the

sizes of the material into and out of the crushers and screens vary. It is

given as a cumulative percentage of the total weight divided by the total

weight over a certain size (Wills and Finch, 2016), see Figure 3.5 for an

example of how a PSD curve can look. The PSD curve is calculated in

PlantDesigner after each crushing- or screening stage and is also utilized

to describe the feed of blasted rock that goes into a system.
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Figure 3.5: An example of a PSD curve, in this case, the curve describes
the feed material going into a crushing and screening plant.

Generally, customers want a certain percentage of the feed out of the

crushers to be smaller than a predetermined size instead of the entire

PSD curve. This is depicted within the industry as PX, where X is

indicative of a percentage within the PSD curve and P stands for the

product. As an example, a performance criterion could be P40, which

means that 40% of the material out of the crusher should be smaller than

the size that comes with the criteria. Thus, a P40 of the PSD curve in

Figure 3.5 means that 40% of the product should be smaller than about

125mm. In some cases, multiple product ranges could also be included

within a single guarantee.
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The PSD of the feed is affected by values of multiple characteristics of

the crushers. The PSD curve is directly related to the reduction ratio. In

the context of PSD as a performance criterion, it is usually preferred to

have a higher percentage of material below the specified size after each

crushing stage. The calculation of the PSD of the product in a cone

crusher is based on two different calculation models. The first of which

is a model that describes the flow of material that passes through the

crusher and the second model describes the size reduction and breakage

process (Evertsson, 2015).

According to Evertsson (2015), three main factors affect the size reduc-

tion process for a CH- or CS-crusher. These are the breakage modes,

the number of crushing zones, and the compression ratio. These factors

in turn depend on eccentric speed, CSS, and the raw material breakage

characteristics (Evertsson, 2015). The CSS setting is the only factor that

can be adjusted if there are issues with the size of the product. However,

there are risks associated with achieving the desired PX or PSD because

the CSS setting has a theoretical minimum and maximum value. For ex-

ample, if the CSS was at its minimum theoretical value and the system

still had issues with reaching a certain reduction, there would be a need

to switch the chamber of the crusher or the entire machine to correct it

and get the desired size of the product.

3.3.3 Product Shape
In some cases, a particular shape is promised with a performance guaran-

tee. Shape, in this case, refers to how similar the dimensions of a rock are

to a cube’s dimensions, in the sense that the depth, width, and length of
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the rock are of equal length. The shape is not related to the PSD curve or

the actual size of the rock and instead refers to the cubicity of the rock.

This can be measured in several different ways depending on where the

crusher is sold and the regional norm for shape. The most common

measurements are the Flakiness Index (FI) and the Shape Index (SI)

according to European standards EN 933-3:2012 and EN 933-4:2008. FI

is calculated as

FI =
W2

W1
· 100, (3.2)

where W2 refers to the total weight of tested particles whose shortest

dimension is less than 60% of its mean dimension, and W1 refers to the

total weight of all particles. SI is calculated as

SI =
M2

M1
· 100, (3.3)

where M2 is the weight of particles whose length-to-thickness ratio ex-

ceeds 3. Length refers to the longest side of a rock and thickness refers

to the longest measure perpendicular to the length. M1 is the weight of

all tested particles.

The shape is dependent on multiple factors. As mentioned in section 3.1.3

the more interparticle crushing there is in a system, the better the shape

will be. As such, the CV crusher is generally preferred compared to other

crushers if the product shape of the final product is the most important

factor in a system. While this is true, the CH and CS crushers can
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provide a good product shape too but it’s harder to predict the expected

value of SI or FI out of a system.

3.3.4 Oversize and undersize of particles
The degree of oversize and undersize of particles refers to the allowed

percentage by weight of particles within a given size range that is either

too large or too small (Wills and Finch, 2016). Oversize indicates that

the rocks exceed the specified size in the performance guarantee, while

undersize means that the rocks are too small. This criterion is primarily

impacted by screens in a plant. If the performance guarantee is not met,

the solution would be to adjust the screen configuration or the shape or

size of the holes on the screening media.

In most cases, the screen holes are slightly larger compared to the diam-

eter of the rock. For instance, if a customer requests a product size of

15mm, the holes typically have diameters of 17-18mm. As such, there’s

a possibility that material between 16-18mm will pass through to a lower

screening deck, resulting in oversized material. The reason for having

slightly larger holes than the product size is to enhance screening effi-

ciency in terms of capacity and to prevent undersized material in the

final product.

The presence of undersized material in the product is due to insufficient

time for stratification of all materials, causing them to not pass through

the holes in the screening media when they should.

See Table 3.3 for an illustrated example where there is a depiction of

four different product ranges and an example of what a typical over-
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size/undersize of these particles could be in the respective ranges.

Table 3.3: An example of allowed oversize and undersize for different size
ranges of particles.

Product size (mm) Allowed Undersize/Oversize (%)

0-4 0/20

4-8 15/20

8-12 15/15

12-20 10/15
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4 Theory

In this chapter, all theory used in the master thesis are presented. The

theory comprises statistics and data analysis, including regression and

statistical tests.

4.1 Multiple linear least-squares regression

A linear regression model is a statistical model that estimates the linear

relationship between a single response variable and a set of explanatory

variables. When the model includes more than one explanatory vari-

able, the model is commonly called a multiple linear regression model.

(Fox, 2024). Multiple regression is used in this thesis to predict the effect

of certain crushing system characteristics on the risk score for the new

tool. Ordinary least squares (OLS) is used to estimate the slope coef-

ficients β0, β1, . . . , βk in the model presented below in (4.1). Given the

assumptions described in Subsection 4.1.2, OLS is the best linear unbi-

ased estimator (Gujarati and Porter, 2009). In short, OLS estimation

is an optimization problem where the sum of the squared error terms

is minimized with respect to the betas. The estimation process will be

detailed in Appendix A.2.
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4.1.1 Terminology
The multiple regression equation can be written as:

Yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi, i = 1, . . . , n, (4.1)

where Yi is the response variable, xi1,xi2, . . . , xik are the explanatory vari-

ables, β1, β2, . . . , βk are the slope coefficients for the explanatory vari-

ables, β0 is the intercept, and εi is the error term (Fox, 2024). In this

master’s thesis, Yi will be related to the risk scores, and xik will refer to

the kth characteristic for crushing solution i, or in other terms the ith

collected data row. For convenience, matrix notation will be used, where

the equation can be written as:

Y = Xb+ e (4.2)

with:

Y =


Y1

Y2

...

Yn

 ,X =


1 x11 . . . x1k

1 x21 x2k

... . . .

1 xn1 xnk

 ,b =


β0

β2

...

βk

 , e =


ε1

ε2
...

εn


(4.3)

4.1.2 Assumptions
Underlying assumptions for the model concern the error terms in e. The

error terms are assumed to be independently normally distributed with

constant variance and mean zero, expressed as εi ∼ N (0, σ2
ϵ ). Further-
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more, explanatory variables xij are assumed to be fixed or measured

without error, as well as independent of εi. This means that no compo-

nent of εi is related to the measuring error of xij. Also, non-linearity is

assumed, meaning that there is no linear relationship between explana-

tory variables (Fox, 2024). An explanation for why this is important is

given in subsection 4.4.4.

4.1.3 Parameter estimation using OLS
Ordinary least squares (OLS) is used to estimate the slope coefficients

β0, β1, . . . , βk in the model presented below in (4.1). Given the assump-

tions described in Subsection 4.1.2, OLS is the best linear unbiased es-

timator (Gujarati and Porter, 2009). In short, OLS estimation is an

optimization problem where the sum of the squared error terms is mini-

mized with respect to the betas. The estimation process will be detailed

in Appendix A.2.

4.2 Multinomial logistic regression

In contrast to multiple linear regression, a multinomial logistic regres-

sion model approximates the relationship between multiple explanatory

variables and a categorical response variable (Fox, 2024). A categorical

variable can take on a limited, usually fixed set of values. Logistic regres-

sion will be used in this thesis to model the effect of certain variables on

the absolute difference in risk scores between the new tool and the current

one. The main reason for using logistic regression instead of linear regres-

sion for this scenario is that the absolute difference of the scores can take

on discrete values 0, 1, 2, 3, 4, and 5. A value of 5 represents the highest
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difference in risk, and 0 is no difference. This data type is called ordinal

data because it implicates a hierarchical order. Ordered logistic regres-

sion is commonly used when the response variable is of ordinal type. To

arrive at the ordered logistic regression model, the simpler case of logistic

regression for a dichotomous response variable will first be explained. A

dichotomous variable is a categorical variable that can only take on two

possible values, for example, 0 and 1. This type of logistic regression is

formally called binary logistic regression. The model is then generalized

to apply to ordered response variables. Approximation of the coefficients

is done using maximum likelihood estimation, or MLE in short. Because

of the dichotomous nature of the response variable for some logistic re-

gression models, MLE is used instead of least squares (Fox, 2024). This

is because OLS assumes a linear model and therefore is based on the

assumption in 4.1.2 of normally distributed errors. This assumption is

not justified theoretically with a dichotomous response variable (Schield,

2017). MLE estimates the slope coefficients that maximize the likelihood

of observing the data given that the data follows the logistic regression

model. While still an optimization problem, it is distinctly different from

OLS which assumes a linear regression model and normally distributed

errors and therefore will not provide the same estimation results (Fox,

2024). For interested readers, the estimation method of MLE will be

detailed in A.3.

4.2.1 Binary multinomial logistic regression
The purpose of the logistic regression is to classify an outcome variable

based on a probability of occurrence. First, let Yi take on value 1 with

probability πi and 0 with probability 1−πi. Furthermore, the one-variable
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logistic distribution function is defined as (Fox, 2024):

Λ(z) =
1

1 + e−z
, z ∈ R (4.4)

Now, let us assume πi to be the probability returned by the logistic

distribution function of a linear predictor of several regressors. This is

called the linear logistic regression model (Fox, 2024):

πi = Λ (α + β1Xi1 + β2Xi2 + . . . βkXik)

=
1

1 + e−(α+β1Xi1+β2Xi2+...βkXik)

(4.5)

For interpretability reasons, we want to write the linear predictor on one

side of the equation. The inverse linearizing transformation, also known

as the log-odds of the model, is given by (Fox, 2024):

ln

(
πi

1− πi

)
= α + β1Xi1 + β2Xi2 + . . . βkXik (4.6)

4.2.2 Ordered logistic regression
As mentioned a logistic regression model can be formulated to produce

an ordered response instead of a dichotomous one. Let ξi denote a prob-

ability that is a linear function of the included Xis plus a random error

εi (Fox, 2024):

ξi = β0 + β1Xi1 + β2Xi2 + . . .+ βkXik + εi (4.7)
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In the case of ordered logistic regression, instead of dividing ξ into two

sections like the dichotomous case, one can divide them into m cases,

defined by numbers αi, i = 1, . . . ,m. The response variable Yi is therefore

defined as:

Yi =



1 if ξi ≤ α1

2 if α1 < ξi ≤ α2

...

m if αm < ξi

(4.8)

Using (4.8), the cumulative distribution function of Yi can be written as:

Pr(Yi ≤ k) = Pr(ξi ≤ αk)

= Pr(α + β1Xi1 + β2Xi2 + . . .+ βkXik + εi leqαk)

= Pr(εi ≤ αk − α− β1Xi1 − β2Xi2 − . . .− βkXik)

(4.9)

Assuming errors εi are distributed according to the logistic distribution

presented in (4.4), the log-odds of the model can be formulated using

(4.9) (Fox, 2024):

ln
Pr(Yi > k)

Pr(Yi ≤ k)

= (α− αk) + β1Xi1 + · · ·+ βkXik

(4.10)

for k = 1, 2, . . . ,m − 1. As is clear from (4.10), slopes are the same for

all m cases of Yi, the only thing that varies is the intercept (Fox, 2024).

The fitting of the model is done by the method of maximum likelihood,
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similar to the binomial case, as first shown by McCullagh (1980).

4.3 Dummy variable regression

Dummy variables are qualitative explanatory variables that take on two

or more categories, e.g. they represent either a dichotomous or poly-

tomous factor. A polytomous factor is one that can take on multiple

discrete values, e.g. more than two like in the dichotomous case.

4.3.1 Terminology
When including a dichotomous variable, for example whether a perfor-

mance guarantee includes the criteria PSD or not, a multiple linear re-

gression model can be formulated as (Fox, 2024):

Yi = α + β1xi1 + β2xi2 + . . .+ βkxik + γDi + ϵi, (4.11)

where Di, commonly called the dummy variable regressor, is coded as:

Di =

1 when PSD included

0 when PSD is not included
(4.12)

In the case of a polytomous factor, there are multiple ways of coding

the different factors into the regression model. In the case of a dummy

variable with three different categories, let’s call them category 1, 2 and

3, they can be represented by introducing two dummy variable regressors
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to the model, D1 and D2 (Fox, 2024):

Category D1 D2

1 1 0

2 0 1

3 0 0

(4.13)

The regression model is now formulated as:

Yi = α + β1xi1 + β2xi2 + . . .+ βkxik + γ1D1i+ γ2D2i+ εi (4.14)

It is clear that γ1 represents the increase in Y between the baseline cat-

egory 3 and category 1 and that γ2 represents the increase between cat-

egory 3 and category 2. It is also clear that for a polytomous dummy

variable with n categories, n−1 regressors need to be added to the model

using this coding technique (Fox, 2024).

4.4 Statistical inference

Statistical inference is the method of analyzing quantitative data and

drawing certain conclusions about the characteristics of the population

from which the data originates. In the case of this master’s thesis, an

example of that would be the conclusion that the risk scores from the

current and new method are equally distributed. In this section, the

statistical tests and calculations that are used for inference in Phase 1 of

the research procedure are explained. As with every statistical test, a null

hypothesis and an alternative hypothesis are formulated regarding some

property of the underlying population from which a sample is collected.
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A test statistic with a known distribution is subsequently calculated,

and depending on whether this value falls within or outside the rejection

region in regards to a certain significance level, the null hypothesis is

either rejected or retained.

4.4.1 Wilcoxon signed rank test
Wilcoxon signed rank test is the non-parametric equivalent of the paired

samples t-test and should be used when the sample data is severely non-

normally distributed. One example of this would be if the data is ordi-

nal (see explanation of ordinal data in subsection 4.2.2). The Wilcoxon

signed rank test can for example be used to tell whether the distribution

of two paired samples is significantly different or not (Rice, 2007). In the

case of this master’s thesis, this test will be used to conclude whether

the current risk score and the new risk score have equal distributions or

not. Since the formats of the risk scores are ordinal, the Wilcoxon test

is the right fit for this purpose.

Let (Xi, Yi) , i = 1, . . . , n, be the subcollection of sample data pairs where

Xi − Yi ̸= 0. Furthermore, let Di = Xi − Yi and compute |Di| and sort

the list containing |Di| , i = 1, . . . , n, in ascending order. After this is

complete, ranks Ri, i = 1, . . . , n are assigned to the list where the smallest

has rank 1, the second smallest has rank 2, etc. Now let:

T+ =
∑

1≤i≤n,Di>0

Ri (4.15)

T− =
∑

1≤i≤n,Di<0

Ri (4.16)
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The Wilcoxon Signed Rank test statistic is given by (Rice, 2007):

W = min
(
T+, T−) (4.17)

If the null hypothesis is that there is no difference in the rank sum, e.g.

the two samples have an equal median value, then the following z-value

can be computed:

z =
W − µW

σW

(4.18)

Here, µW under the above-mentioned null hypothesis is calculated as:

µW =
n(n+ 1)

4
(4.19)

n is the sample size, n = 177 in this thesis. The standard error σW is

calculated as:

σW =

√
n(n+ 1)(2n+ 1)−

∑k
i=1

t3i−ti
2

24
(4.20)

Here, k is the number of tied ranks, e.g. where multiple samples have

the same rank. ti is the number of tied samples for the ith tied rank

(DATAtab, 2024). The z-statistic in (4.19) is standard normally dis-

tributed under the null hypothesis and is used to calculate a correspond-

ing P-value for the test.

4.4.2 McNemar’s test
Similar to the Wilcoxon signed rank test, McNemar’s test is also a statis-

tical test suitable for inference paired sample data, specifically dichoto-

mous data. It is commonly used to test whether a before and after effect

48



on the same sample is distinctly different in terms of a dichotomous out-

come. In the context of this master’s thesis, that would be whether

the new risk tool recommends proceeding with sales of certain crushing

system (e.g. the risk score is sufficiently low) significantly differently

compared to the current tool’s risk scores on the same flowsheets (see

variable definitions for sales recommendations in (5.6) and (5.5)). For a

sample size of N, a 2x2-contingency table can be displayed as (Fagerland

et al., 2013):

Table 4.1: An example of a 2x2 contingency table representing before and
after test results. a, b, c, d refer to the frequency of the different
outcomes.

Test 2 positive Test 2 negative Row Total

Test 1 positive a b a+ b

Test 1 negative c d c+ d

Column Total a+ c b+ d N

The null hypothesis would be that the total probabilities for each outcome

are the same for both tests:

Pa + Pb = Pa + Pc (4.21)

Pc + Pd = Pb + Pd, (4.22)

where Pj denotes the theoretical probability of outcome j in the contin-

gency table, j = a, b, c, d. After simplification of the equations, the null

and two-sided alternative hypotheses are formulated as (Fagerland et al.,
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2013):

H0 : Pb = Pc (4.23)

H1 : Pb ̸= Pc (4.24)

The McNemar test statistic is given by:

χ2 =
(b− c)2

b+ c
(4.25)

With sufficiently large b and c, χ2 has a chi-squared distribution with one

degree of freedom under the null hypothesis. If b + c < 25, a variant of

the McNemar’s test, commonly called the exact McNemar’s test or the

mid-p McNemar’s test, is preferable. In this test, b is compared to an

exact binomial distribution with n = b + c and p = 0.5. The two-sided

exact p-value is calculated as (Fagerland et al., 2013):

Pexact = 2
n∑
i=b

 n

i

 0.5i(1− 0.5)n−i (4.26)

To obtain a more conservative result, half of the probability of reaching

b under the null hypothesis (the binomial distribution under the null

hypothesis) can be subtracted from Pexact to calculate what is commonly

referred to as the mid P-value (Fagerland et al., 2013):

Pmid = 2

 n∑
i=b

 n

i

 0.5i(1− 0.5)n−i − 0.5

 n

b

 0.5b(1− 0.5)n−b


= Pexact −

 n

b

 0.5b(1− 0.5)n−b

(4.27)
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4.4.3 Coefficient of determination
The coefficient of determination, commonly referred to as R2, is a mea-

sure of the goodness of fit of a linear model to its observed data sample.

R2 is defined as the ratio between the sum of squares (more precisely

the sum of the squared error terms) of the fitted model and the sum

of squares of the observed data and is therefore a measure of what de-

gree the fitted model explains the variance of the observed data. The

mathematical definition is (Fox, 2024):

R2 =
RegSS

TSS
=

TSS −RSS

TSS
= 1− RSS

TSS
(4.28)

RegSS is defined as the sum of squares for the predicted values of the

regression, which is calculated by taking the difference between the total

sum of squares, TSS, and the sum of squares from the residuals. The

total sum of squares, TSS is given by:

TSS =
n∑

i=1

(
Yi − Ȳ

)2 (4.29)

Yi and Y are the observed values and mean value for the dependent

variable. The residual sum of squares RSS is given by:

RSS =
n∑

i=1

(
Yi − Ŷi

)2

=
n∑

i=1

Ê2
i (4.30)

Ŷi are the fitted values from the regression. Clearly, a value close to 1

is indicative of a well-fitted model to the observed data. Adding more

variables to a fitted model will always increase R2. To prevent an overfit-

ted model, the adjusted R2, denoted as R2 can be used instead (Gujarati
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and Porter, 2009):

R̄2 = 1− (1−R2) (n− 1)

n− k
, (4.31)

where k is the number of explanatory variables in the model and n is the

data sample size (number of rows in the sample data).

4.4.4 Variance inflation factor
To analyze the correlation of an explanatory variable, Xj, with other

explanatory variables Xi, i ̸= j, a common measure is the variance infla-

tion factor, or VIF in short. The mathematical definition for the variance

inflation factor for Xj, denoted V IFj, is as follows:

V IFj =
1

1−R2
j

(4.32)

R2
j is the coefficient of determination (see definition at 4.4.3) from the

regression of Xj on all other explanatory variables Xi, i ̸= j in the model

(Fox, 2024). Let us use X1 as an example. To calculate R2
1, first per-

form ordinary least squares regression, OLS, for the following model (see

section 4.1 for an explanation of OLS):

X1 = α0 + α2X2 + α3X3 + · · ·+ αkXk + ε, (4.33)

where α0 is the intercept and ε is the error term. Then, the coefficient

of determination is calculated using (4.28) but for the regression model

in (4.33) instead of the ordinary linear regression model defined in (4.1).

A high value for V IFj implies a strong correlation between Xj and the

other explanatory variables. In the case of perfect multicollinearity, e.g.
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when two or more variables have a perfect linear relationship, the VIF

is infinite (Fox, 2024). When performing regression modeling in this

thesis, an aim is to have a low VIF for the included variables, because

the model’s explanatory power is higher when the explanatory variables

have low correlation.

4.4.5 Wald’s test
Wald’s test is a common statistical test for an individual coefficient in a

logistic regression model to test the null hypothesis H0 : βj = β0. The

Wald statistic is calculated as (Fox, 2024):

Z0 =
β̂j − β0

SE
(
β̂j

) , (4.34)

where β̂j is the MLE of coefficient βj and SE
(
β̂j

)
is the asymptotic

standard error of β̂j.

SE
(
β̂j

)
is commonly estimated using Fisher’s information matrix (Fox,

2024):

I(β̂) = − ∂

∂2
ln(L(β̂)), (4.35)

where L(β̂) is the likelihood function for the parameters in the model

(Lixoft, 2024). Inserting the likelihood function from Equation (A.6), we

have:
I(β̂) = − ∂

∂2

(
L
(
α, β̂1, β̂2, . . . , β̂k

))
=

∂

∂2

 n∏
i=1

e(α+β̂1Xi1+β̂2Xi2+...β̂kXik

)yi

1 + eα+β̂1Xi1+β̂2Xi2+...β̂kXik

 (4.36)
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The inverse matrix is the variance-covariance matrix C(β̂)

C(β̂) = I(β̂)−1 (4.37)

The standard error of the MLE coefficient can now be calculated by

taking the square root of the corresponding variance in the variance-

covariance matrix (Lixoft, 2024):

SE
(
β̂j

)
=

√
Cjj(β̂) (4.38)

The Wald test statistic follows an asymptotic standard-normal distri-

bution under the null hypothesis. While the Wald’s test is usually rel-

atively accurate for large sample sizes, a Type-2 error can sometimes

occur under certain circumstances in logistic regression. A type-2 corre-

sponds to wrongfully retaining the null hypothesis. Combining it with

the more computation-heavy likelihood-ratio test is therefore preferred

(Fox, 2024).

4.5 Stepwise regression

An important aspect of regression modeling is selecting the appropriate

variables to include in the models. One common method for variable

selection is stepwise regression. This method iteratively compares differ-

ent models based on predefined criteria to arrive at a satisfactory model

(Iain, 2024).

While multiple variable selection criteria can be chosen in the stepwise

regression, such as increased R2 and adjusted R2, a common criterion
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is the partial F-test or t-test for an individual slope coefficient. First, a

significance level is decided for when a variable gets to enter the model,

denoted αE. Also, a significance level for when to remove a variable is

decided, denoted αR. The model starts off empty with no explanatory

variables included. (Iain, 2024) The iterative procedure is explained in

Appendix A.4.
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5 Quantitative results

As mentioned in Chapter 2, the initial phase of the research procedure is

the quantitative comparison between the risk scores from the current risk

assessment method and the new method. The quantitative comparison

can be separated into two levels. The first level is a high-level comparison

between the risk scores of the two methods, where some of the statistical

tests described in Chapter 4 are utilized to determine whether the current

and new methods provide similar risk scores to a statistically significant

degree. If the new method provides a risk score similar to the benchmark,

that is a good indicator that the new method is well-performing.

Secondly, an analysis of the variables that affect the performance of the

new risk method is conducted. To enable this, values of certain chosen

variables were recorded simultaneously as the risk scores were recorded.

This has been described in detail in Chapter 2. Using linear and logistic

regression models, the impact of certain variables on the deviation of the

new model to the current model is assessed. Finally, how well the model

fits the data is also analyzed.

5.1 Data collection

The data that was recorded and saved when performing the risk assess-

ment comparison is presented in this section.
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Table 5.1: All variables recorded in the quantitative comparison between
the current and new risk assessment methods.

Variable Meaning Notation Type Values

New risk rating NRR Continuous [0, 1]

Current risk rating CRR Discrete {1, 2, 3, 4, 5}

Capacity included CI Binary {Yes, No}

Product and capacity

included
PCI Binary {Yes, No}

PX included PXI Binary {Yes, No}

PSD included PSDI Binary {Yes, No}

Over and undersize

included
OUI Binary {Yes, No}

Shape included SI Binary {Yes, No}

Number of CJ crushers CJ Discrete {1, 2, 3, 4}

Number of CH crushers CH Discrete {1, 2, 3, 4}

Number of CS crushers CS Discrete {1, 2, 3, 4}

Number of CV crushers CV Discrete {1, 2, 3, 4}

Number of

conventional screens
SCR Discrete {1, 2, 3, 4}

The variables presented in Table 5.1 have been chosen in collaboration

with people at Stat. C&S. The logic for this is that including these

variables in a statistical model would give further insight into the per-

formance of the new tool for different types of assessed rock crushing

systems. For example, suppose the new tool has a substantially lower
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risk than the current risk assessment method for systems where PSD is

included in the performance guarantee. That indicates that something

should be changed to adjust the impact that PSD has on the risk score

of the new tool. A more detailed description of these variables can be

found in Chapter 3. In the case of NRR, the lower the value the lower

the probability to reach the performance guarantee and the higher the

risk. For CRR, the lower the value the lower the score, e.g. a score of

1 would denote a very low risk while a value of 5 represents a very high

risk. So the two tools have an opposite scale used to denote the risk.

5.2 Initial high level analysis

As mentioned, the first step in the analysis is to compare the two methods

based on the risk score. One problem is that the new risk rating is given

on a continuous scale between 0 and 1, while the current risk rating is

discrete and can take on numbers between 1 and 5. Another issue is that

the two methods have opposing scales, meaning that a 1 for the new risk

score is a low risk, and a 5 is a high risk for the current risk score. To

compare the two variables in a way that makes sense, the new risk rating

is translated to a discrete scale using Stat. C&S’s pre-defined translation

of the risk from the new format to the current. The reason for doing this

instead of translating the current risk score to the new format is that

Stat. C&S already has the pre-defined translation from new to current.

We define a new variable NAC (New As Current) to represent the new
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risk rating in the current format:

NAC =



1 if 0.8 < NRR ≤ 1

2 if 0.6 < NRR ≤ 0.8

3 if 0.4 < NRR ≤ 0.6

4 if 0.2 < NRR ≤ 0.4

5 if 0 ≤ NRR ≤ 0.2

(5.1)

Having defined NAC, one can perform the Wilcoxon signed rank test

to evaluate whether there is a substantial difference between NAC and

CRR. The Wilcoxon test is used because of the variable type being

discrete. Let

∆i = NACi − CRRi, (5.2)

where i stands for the ith observation, i = 1, . . . , 178. The null hypothesis

and the two-sided alternative hypothesis are set as:

H0 : The median of ∆i equals 0 (5.3)

H1 : The median of ∆i does not equal 0 (5.4)

Running the test Wilcoxon Signed Rank Test in SPSS returns the fol-

lowing output:
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Figure 5.1: Test summary for the Wilcoxon Signed Rank Test for related
samples.

Figure 5.2: The nominal and standardized values of the Wilcoxon test
statistic for the Wilcoxon Signed Rank test along with sample
size and standard error.

As can be seen in Figure 5.1 and Figure 5.2 the null hypothesis that the

median of Zi equals 0 is rejected at the significance level of .999 and it

can therefore be concluded that the median for the current and new risk

scores are different.

Viewing the column charts for the respective risk scores in Figure 5.3,

the conclusion can further be made that the distributions of risk scores

are different. Viewing Figure 5.3, it is clear that no risk ratings from

the current risk assessment tool have a rating of 1 or 5. A possible

explanation for this is that the expert performing the risk assessment

makes necessary adjustments to the flowchart before giving a risk score

of 5, a very high risk. On the other hand, the expert always determines
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there to be some level of risk of not achieving the performance criteria

and therefore never gives out a risk score of 1.

Figure 5.3: The top bar chart is the new risk rating scaled in the current
format. The bottom bar chart is the current risk rating. Values
are displayed on the x-axis and counts on the y-axis.

One can also look at whether or not the risk assessment tools recommend

the system to be sold. Using guidelines for Stat. C&S, two new variables
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are defined:

NRec =

1 if 0.4 ≤ NRR ≤ 1

0 if 0 ≤ NRR < 0.4

(5.5)

CRec =

1 if 1 ≤ CRR ≤ 3

0 if 4 ≤ NRR ≤ 5

(5.6)

A value of 1 refers to recommending a sold solution to proceed with

implementation, and 0 to not recommend this. Since both NRec and

CRec are dichotomous variables based on paired data, an appropriate

test to use is McNemar’s test. Referring to Chapter 4, Section 4.4.2, the

2 x 2 contingency table for NRec and CRec is given by Table 5.2.

Table 5.2: The 2 x 2 contingency table for NRec and CRec.

Nrec = 1 Nrec = 0 Row Total

Crec = 1 164 9 174

Crec = 0 4 0 3

Column Total 168 9 177

Using the notation of nij for the frequency counts of different outcomes,

where i refers to the row number in the table and j to the column num-

ber, i, j = 1, 2, it is clear that n21 + n12 = 13 < 25, and therefore the

exact McNemar’s test is used to obtain the p-value. The hypotheses are

formulated as:

H0 : P12 = P21 (5.7)

H1 : P12 ̸= P21 (5.8)
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In accordance to Equation 4.26, we calculate the exact p-value as:

Pexact = 2
13∑
i=9

 13

i

 0.5i(1− 0.5)13−i

= 2× 0.13342285 ≈ 0.267

(5.9)

Using Equation 4.27, the mid p-value is now given by:

= Pexact −

 13

9

 0.59(1− 0.5)13−9

≈ 0.267− 0.087 = 0.18

(5.10)

We see that the exact and mid p-values both are higher than 0.05 and

therefore we cannot reject the null hypothesis at a significance level of

0.05. Running the test in SPSS provides the same output (the mid p-

value is given for Figure 5.4 and the exact p-value for Figure 5.5):

Figure 5.4: Test summary for the performed McNemar’s test for related
samples.
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Figure 5.5: Test summary for the performed McNemar’s test for related
samples.

The figures 5.4 and 5.5 further confirm that the null hypothesis cannot be

rejected and we can conclude that the distributions of CRec and NRec

are statistically equivalent to a significant level.

5.3 Regression analysis

In this section, the results from multiple statistical regression analyses

will be presented. As initially mentioned in Chapter 2, the regression

analysis aims to analyze which relevant variables have an impact on the

deviation between the risk scores from the new method and the previous

method. The first step is to perform a multiple linear regression analysis

with the risk score from the new risk method as the response variable.

This aims to explain the impact of the included explanatory variables

on the risk, which will provide useful insights for triangulation with in-

terviews about which aspects of the risk method bring more risk to the

system.
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5.3.1 Initial multiple linear regression model
The discrete variables (i.e. the number of different crushers, conventional

screens, and CRR) presented in Table 5.1 do not violate any assump-

tions of the linear model described in (4.1.2). Thus, these variables can

be treated as continuous (Fox, 2024). For the binary variables, we define

dummy regressors Di,j, i = 1, . . . , 177, j = CI, PCI, PXI, PSDI,OUI, SI

as the following:

Di,j =

1 if the response for variable j is "Yes"

0 if the response for variable j is "No"
(5.11)

We now propose an initial linear regression model as:

NRRi = αi + βCIDi,CI + βPCIDi,PCI + βPXIDi,PXI + βPSDIDi,PSDI

+βOUIDi,OUI + βSIDi,SI + βCJCJi + βCHCHi + βCSCSi

+βSCRSCRi + εi, i = 1, . . . , 177

(5.12)

Submitting a model containing all the above-mentioned variables, de-

noted in (5.12), returns Table 5.3 and Table 5.4.

66



Table 5.3: Model summary for the full linear regression model containing all
proposed variables.

Table 5.4: The initial full model’s fitted coefficients and their standard
error, t-values, significance levels, and VIF values.

As is clear from the column labeled "Sig." in Table 5.3, many of the

significance levels for the t-tests of the coefficients are larger than 0.05

and are therefore deemed to be non-significant in the model. A high

p-value, or significance level as denoted in Table 5.3, indicates strong

evidence for the null hypothesis that the slope coefficient is zero. Thus,

a high p-value would imply that the slope coefficient is not significantly

different from zero. Viewing the VIF values, we can also see some values

relatively far from 1, implying collinearity. See subsection 4.4.4 for a

definition of VIF. While multiple high VIF-values and high significance

values are a clear indication that the model is overfitted, one can also

see from Table 5.4 that the R2 is 0.243. This means that 24.3% of the

variance of the dependent variable NRR is explained by the model, which
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is not a particularly great result, especially for the model containing all

variables. However, since the approach of this Master’s thesis is to find

some interesting connections from the comparisons in an environment

where noise and external factors are at play, a model with a relatively

low R2 can still provide useful insights in this context. We will however

avoid drawing any insights from this full model because of the significance

and attempt to derive a model with fewer variables and better fit instead.

To arrive at a model whose coefficients have a high significance in terms of

the t-test, stepwise regression is used (see Chapter 4.5 for a description of

stepwise regression). Stepwise regression is useful in this context because

it is a simple algorithmic approach to selecting significant variables in

the model. SPSS provides the output in Table 5.5 and Table 5.6.

Table 5.5: The four stepwise linear regression models’ fitted coefficients and
their standard error, t-values, significance levels, and VIF values.
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Table 5.6: The four stepwise linear regression models’ fitted coefficients and
their standard error, t-values, significance levels, and VIF values.

As presented in Table 5.5, the stepwise regression generated four mod-

els, with the final fourth model including the variables CI, PSDI,CH,

and SCR. As is clear from the p-values for the t-test of the coeffi-

cients presented in Table 5.6, they are all below the significance level of

0.05 and are therefore deemed significantly non-zero and of explanatory

value. Viewing the VIF values, they are all above 0.9, which indicates

low collinearity. For R2, the value is 0.205 as shown in Table 5.5. While

this is not high, the abovementioned viewpoint for the initial full model

still applies. As expected, the adjusted R2, which accounts for the num-

ber of variables included in the model, is closer to the adjusted R2 of the

initial full model. The stepwise regression model can be expressed as:

NRRi = 0.779−0.089×DCI−0.103×DPSDI+0.056×CH−0.05×SCR

(5.13)
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As one can see, we have a negative effect on the risk score from systems

where the performance criteria capacity and PSD are included. This

is logical since the inclusion of these criteria increases the difficulty of

clearing the performance guarantee and therefore increases the risk. The

model in (5.13) also reveals that the risk score is increased when including

more CH crushers in the system. This may seem like an unusual result at

first, as one may believe that a larger system of crushers should provide

a higher complexity and therefore more risk of it working as specified in

the performance guarantees. There are reasons for this result that will

be analyzed further in Chapter 6. The model also reveals a negative

relationship between the number of screens in the system and the risk

score. A negative effect on the risk score from screens makes sense from

a risk perspective for rock crushing systems and is something that will

further be confirmed in Chapter 6.

5.3.2 Regression of deviation between current and

new tool
In this section, regression models aiming to model the deviation between

the current and new risk assessment tools will be proposed and fitted.

The aim is to obtain a model that reveals which broad aspects of the

new tool lead to deviations in terms of the measured risk. We use the

definition of ∆i in (5.2) and define a variable ABSDIFFi:

ABSDIFFi = |∆i| = |NACi − CRRi| (5.14)

Since ABSDIFFi is an ordered discrete variable with possible values
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0, 1, 2, 3, 4, 5, we can fit an ordered logistic regression model presented in

(4.10). This is a full model containing all variables that are found in 5.1.

Figure 5.6: Parameter estimates for the ordinal logistic regression model as
well as Wald’s statistic values, significance level, and confidence
intervals.

As shown in Figure 5.6, no Wald’s test for individual slope coefficients

β (see Section 4.4.5) reaches a significance level below 0.05. Because of

limitations in SPSS, an automatic model selection method such as the
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stepwise method is not available in the case of ordered logistic regression.

Instead, manual trial and error is performed. After a multitude of itera-

tions, beginning with single-variable models, a subset of this model with

significant estimates and significance for the dependent variable could

not be identified. This result may be due to several factors, including an

insufficient sample size for robust regression analysis and the possibility

that the chosen variables do not significantly affect the deviation. A fur-

ther critical discussion on the validity and reliability of the results will

be held in Chapter 7.
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6 Interview Findings

As mentioned in Chapter 2, the second phase is the qualitative evaluation

of the risk assessment tool by conducting interviews. A more in-depth

discussion of the interview methodology can be found in Section 2.2.2.

This chapter will present the interview findings regarding questions 2

(Does the tool include the right scope of variables affecting the risk? )

and 3 (Does it have an appropriate model to compute the risk from the

variables? ) presented in Section 1.3. Findings related to question 2 are

found in 6.1 and findings related to question 3 are found in 6.2.

The questionnaire that was utilized can be found in Appendix A.1. The

questions were constructed to provide a more in-depth discussion of the

findings from Phase 1 and discuss the risk assessment tool. In Table

6.1, an introduction to the interviewees is found along with the title and

role. The selection was made in collaboration with Stat. C&S and the

interviewees work within SRP’s organization in different functions.
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Table 6.1: A presentation of the interviewees’ respective titles and
departments of origin within Stat. C&S.

Interviewees Title Department

Interviewee 1
Sales Application

Engineer
Sales

Interviewee 2
Sales support

Manager, Africa & LAM

Crushing

Solutions

Interviewee 3
Regional Sales

Support Manager
Sales

Interviewee 4
Project- & Lifecycle

Manager - Central Europe
Sales

Interviewee 5
Manager Plant

Solutions
Sales

Interviewee 6
Process Optimization

Expert
PIE

Interviewee 7

Group Interview with

Sales Support

Managers India Pacific

Crushing

Solutions

Interviewee 8
Performance Optimization

Expert
PIE

6.1 Scope of variables

In total, the current iteration of the risk assessment tool uses over 60

variables given by PlantDesigner to assess the risk of the system. One

goal of conducting the interviews is to determine if the current version
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of the risk assessment tool uses the correct variables when calculating

the risk score or risk probability which will be used interchangeably in

this and the subsequent chapter. These terms can refer to one of three

things: the final risk score derived from multiple crushers and screens,

the output risk score for an individual machine within a crushing and

screening plant, or the risk scores of machine-specific variables in the

tool (for example, the risk score of a certain value of CSS) that affect the

risk score of the individual machines calculated by the tool. The variables

in this case affect the risk score from the new risk assessment tool and are

not connected to the variables given in Table 5.1. This section is divided

into crushers, screens, and common variables that affect both crushers

and screens. The latter includes, for example, material characteristics

such as the percentage of clay and moisture in the feed material.

In the new risk assessment tool, the performance criteria used in the

performance guarantee affect which variables influence the risk scores of

the individual machines. For example, a screen would not be affected

by the existence of a PX criterion. Likewise, a crusher does not have as

large of an impact on an oversize/undersize criterion as a screen. This is

due to the former criterion being only affected by the performance of the

crusher and the latter criterion only being affected by the performance of

the screen. This section will not go through all variables currently used

in the risk assessment tool and instead comment on the adjustments

mentioned in the interviews.

According to Interviewee 4, the most crucial aspect to consider when

assessing the risk of not meeting the performance criteria for a crushing
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and screening plant is the number of adjustments possible within the

plant and the margins available in settings for the machine. Deviations

in usage and material can occur in a real-life crushing and screening

plant, and if more adjustments can be made, these deviations can more

easily be accounted for. Because of this, more possible adjustments for

a machine should imply a lower risk score for that machine. However, it

is important to consider that fewer adjustments can be made to a screen

than to a crusher, which implies a higher risk. Additionally, more factors

can go wrong in the screening process, making it a riskier machine for the

system (Interviewee 8). This is consistent with the findings in Table 5.6

in Chapter 5, where adding a screen decreases the risk score while adding

a crusher increases the risk score due to a crusher having more possible

adjustments in comparison with a screen, and therefore contributes with

a lower risk overall.

6.1.1 Crushers
This section is divided into the three types of crushers sold at Stat. C&S

and will present the interview findings regarding the scope of variables

that affect each of these crushers.

CH and CS crushers

For the CH and CS crushers, the ECC and CSS are most likely to be ad-

justed rather than the layout of the plant or the chamber of the crusher.

Due to this, the margin for these settings to their maximum and mini-

mum theoretical values is one of the most critical variables to consider

for these types of crushers (Interviewee 4). According to Interviewee 3,

this depends on what is specified in the performance guarantee. As the
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CSS affects the output PSD curve when changed, Interviewee 3 would

rather not change this setting if other adjustments can be made in place,

especially by changing the CSS to a higher value and opening up the

crusher to reach a higher capacity.

As the risk score currently depends on both the margins to the minimum

and maximum value of the CSS, Interviewee 3 believes that the margin

between the actual value of the CSS and the maximum CSS is not as im-

portant as the margin between the actual ECC setting and the maximum

ECC setting. The argument is that CSS in reality is not something that

is adjusted to increase capacity unless it is necessary. While opening up

the crusher increases capacity, it has the opposite effect on the reduction

ratio and PSD, where the reduction ratio is lowered and it will be harder

to obtain the desired PX out of the crusher. In the current tool, the mar-

gins for these settings have equal importance, an aspect that Interviewee

3 would like to change with the risk assessment tool.

Interviewees 1, 2, and 6 believe that all the variables included in assessing

the risk of the CH and CS crushers in the risk assessment tool contribute

to the risk in some form. However, the marginal impact that some of

the variables have on the risk score can be too high. One example would

be the risk of having too little finished material in a CH or CS crusher

located within a closed circuit. A smaller percentage of finished mate-

rial in a closed circuit is reflected by a low risk score in the new risk

assessment tool. The risk score of this variable is currently too low, as

a smaller percentage of finished material does not necessarily mean the

performance will be much lower than anticipated outside of extreme val-
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ues. The reason for this is that the machines are designed to be able to

handle higher percentages of unfinished material (Interviewee 1). Inter-

viewee 2 says that this aspect is more of a "rule of thumb", where it is

inefficient and costly to have too much unfinished material in a closed

circuit but that it doesn’t necessarily mean that the performance criteria

wouldn’t be met.

None of the interviewees believe that any new variables need to be added

to the risk assessment tool for the CH and CS crushers as the currently

included risk-dependent variables capture the risk well.

CJ Crushers

The most important aspect that will affect a CJ crusher’s performance

and ensure its consistency with the values from PlantDesigner is not the

settings available for the machine. Rather, it is the ability to ensure that

the crusher is fed correctly. Ideally, the feed composition should consist

of a mix of small and large rocks to fill the gaps within the crusher

(Interviewee 6). However, this aspect is hard to quantify and depends

on how the machine is fed. A CJ crusher is almost exclusively utilized

in the primary crushing stage and is mostly fed with blasted rocks. For

example, an excavator can be used for feeding the crusher, and if that

is the case, the performance of the crusher can be dependent on the

operator of said excavator. PlantDesigner assumes that the machines are

fed optimally in its calculations. Because of this, there can be variations

between the simulation and the real-life case. This should be accounted

for in the risk assessment tool, which it currently isn’t (Interviewee 6).

78



This could be accounted for through a guideline for how the machine

should be fed or by adding another variable. An example of an added

variable could be if there are certain feeder arrangements, where some

arrangements affect the risk score of the machine (Interviewees 4 and 6).

The second aspect that must be accounted for in the risk assessment tool

is the percentage of fines in the feed material (rocks between 0-5 mm in

size) (Interviewees 1, 2, 3, and 4). If the percentage of fine material is

too high, it can cause the material to compress together and decrease the

available capacity of the crusher. In turn, this can also impact the crush-

ing capabilities of the crusher. Therefore, fine material in the feed should

increase the risk of not meeting the performance guarantee (Interviewee

3). This can, for example, be accounted for by using the percentage of

fine material in the feed into the crusher or state in the tool whether

there is an existing screen that separates the fine material from the ma-

terial to be crushed somewhere before the CJ crusher in the crushing and

screening process (Interviewees 2 and 6).

None of the interviewees believe that any of the variables currently in-

cluded in the new risk assessment tool should be excluded when assessing

the risk.

CV crushers

Similar to the case of the CJ crushers, the risk assessment tool should

include a variable that describes the percentage of fine material in the feed

for a CV crusher. A high percentage of fine material could cause issues

within the crusher. As mentioned in 3.1.3, this type of crusher relies on

79



interparticle crushing to break the stone and the collisions between fine

material and normal size feed material will not cause as much breakage

as if the feed material only consists of rocks of a similar size. Because

of this, a large percentage of fine material can cause issues with the size

reduction of material and shape (Interviewees 6 and 7).

There should also be an inclusion of a variable that provides the top size

of the feed material into the crusher (Interviewee 6) and a variable that

describes the flakiness of the feed material. Flaky material in the feed

can cause the material to shift and change direction in the air which in

turn affects the maximum capacity of the crusher (Interviewee 6).

Similar to the CJ crusher, none of the interviewees considered any of the

utilized variables as redundant when assessing the risk.

6.1.2 Screens
For screens, some new aspects should be accounted for in the risk as-

sessment tool to reflect the actual risk of the machines not working as

specified by PlantDesigner.

The first aspect is the introduction of more options for the performance

criterion degree of oversize/undersize. Currently, three options can be

chosen in the risk assessment tool: low, medium, or high accuracy desired.

The options should better reflect the actual requirements in the perfor-

mance guarantees (which are, for example, expressed as 10/15 where

10 means 10% oversize allowed and 15 means 15% undersize allowed).

Table 3.3 shows further examples of typical ranges within performance

guarantees. In general, finer margins or lower numbers are harder to

80



achieve, and this should be accounted for better in the risk assessment

tool (Interviewees 5 and 6).

Interviewee 3 believes that the variable that describes the relationship

between the feeder and screen capacity should be omitted from the risk

assessment tool. The difference between them is not important, rather,

it is important how the screen is fed (Interviewee 3). In a crusher and

screening plant, it is rare to have a separate feeder for a screen in the first

place. If one exists, the most important thing is that the feed material

is correctly distributed across the screen to ensure that the feed depth is

consistent in terms of the width across the deck. However, this aspect

cannot be quantified as it is outside the scope of the performance guar-

antee and can only be checked when the plant is running (Interviewees 3

and 5).

When screens separate rocks with similarly small sizes, such as when one

deck has a hole size of 4mm, it affects the screening accuracy. This should

increase the risk because the performance guarantee is based on PlantDe-

signer, which does not consider the potential inaccuracy in its simulation.

This is reflected in the risk assessment tool for separations under 2mm

but should be extended to separation sizes under 5mm (Interviewee 2).

In the new risk assessment tool, if the screen is using wet screening, it

increases the risk with the screen. Wet screening is when water is sprayed

over the feed material or by adding water to the feed material. This is

usually done to increase the capacity and improve the sizing efficiency

of the screen (Nelson, 1965). Wet screening should not increase the risk

of guaranteeing the screen, as wet screening increases the performance
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and thus reduces the risk rather than increasing it (Interviewees 1, 2,

3, 5, and 7). However, there are some aspects related to wet screening

that are hard to reliably estimate. This is why it can in certain cases

be correct to attribute increased risk to systems where wet screening is

present (Interview 7).

Another important factor for screening accuracy is the time that material

is on the screen. This ensures that the feed material has time for effective

stratification and mostly depends on the screen’s length. At every time

unit, the material has some chance of falling through the holes of the

screen, and if the screen is longer, the total chance of this happening is

higher as the material has more time for stratification. Currently, this

is partly accounted for by having the angle of the screen as a variable,

Interviewee 5 would like the addition of the length of the screen as it

better reflects the risk of not meeting a prespecified screening accuracy.

This does not implicate that the angle of the screen should be omitted as

a variable because the angle of the screen impacts other aspects such as

the probability that a rock would fall through a screening deck at every

vibration (Interviewees 5 and 8).

Interviewee 2 would like the addition of a variable that describes the

margin to the maximum capacity of the screens, called carry-over capac-

ity. If there are variations in the amount of material passing the screen

and the screen goes over the maximum capacity it can handle, it could

cause the screen to not vibrate correctly, reduce the screening accuracy,

or make the screen deck break.

Lastly, a variable that describes the amount of flaky material should
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be added to the risk assessment tool, as flaky material is harder to get

through the holes of the screen and thus causes more oversized material

in the product. This aspect is partly accounted for by PlantDesigner

which uses the percentage of flaky material in its calculations. However,

the variable could still be included in the risk assessment tool to provide

a more accurate risk assessment (Interviewee 2).

6.1.3 Common variables for crushers and screens
The moisture content of the feed material is a crucial factor affecting the

performance of all crushers and screens. Very high moisture levels can

cause failure in the entire process (Interview 1). However, high moisture

levels do not affect wet screening processes, so the risk that high moisture

levels bring to these is eliminated. The amount of moisture in the feed

material affects the risk score given by the new risk assessment tool, but

only moisture levels up to a given limit are considered. The crushers

at Stat. C&S behave predictably at moisture levels within a certain

range. There is no significantly increased likelihood of not reaching the

performance criteria for feed material with a low moisture level. However,

high moisture levels should therefore pose a higher risk to the system in

comparison to what it currently does (Interviewee 4). However, aspects

such as the amount of moisture in the feed material can be hard to

reliably predict, as they can deviate from values given by PlantDesigner

in real-life scenarios. This can be due to seasonal aspects or a variety of

moisture in the blasted rock material (Interviewee 1). This is especially

critical in a case where fine material exists within the feed material, as

this makes the process more unpredictable due to the moisture sticking

to finer particles in the feed. This causes issues with reaching a specified
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capacity or PX by impacting the flowability of the material through the

crusher (Interviewee 3).

Moisture in the feed material is calculated as a percentage of the entire

feed for the crushers and screens. For a screen, the same moisture levels

are used for each screen deck. It is said that the "moisture follows the

fine material", which implies that a lower separation screen deck will

have a higher percentage of moisture in the material passing through the

screen deck. As fine material combined with a percentage of moisture in

the feed material affects the performance to a greater level, Interviewee

3 means that the risk associated with moisture in the feed material for

screens should be calculated per screen deck instead of using the same

percentage and impact for every deck of the screen (Interviewee 3).

This is even more important when there is a combination of clay and

moisture in the feed material. This affects the flowability of the material

and can lead to blockages of the screen holes as the clay adheres to the

feed material or the machinery. This issue impacts all types of crushers

and screens. Clay is currently considered to have a significant impact on

the risk score of individual machines. However, clay alone is not prob-

lematic in a crushing and screening plant. Dry clay is easily crushable

by the crushers sold at Stat. C&S and does not cause unpredictability

in the machines’ performance. Therefore, if there is no moisture in the

feed material, there is no significant added risk that the system will not

perform as specified with high percentages of clay (Interviewees 3, 6, and

7). In the risk assessment tool, the percentage of clay and moisture in the

feed material are accounted for separately. Because of this, Interviewee 6
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would like to see the inclusion of a combined factor that takes both clay

and moisture levels of the feed material into account.

6.2 Risk Score Calculation Model

This section will go through the calculation model of the new risk as-

sessment tool and verify if this model is appropriate when assessing the

risk of a crushing and screening plant. Currently, different risk score cal-

culation models are used based on what is being assessed. For a single

crusher or screen, the risk scores of the variables are considered indepen-

dent and multiplied to give the machine’s individual risk score. For an

entire crushing and screening plant, the final risk score is calculated by

taking the arithmetic mean of the individual risk scores of all the crushers

and screens in the plant.

One goal of the interviews was to find out if the variables can be treated

as independent of each other when assessing the risk or if any important

correlations are missing, and if the current method of calculating the final

risk score is the best practice to assess the risk of a system of machines.

This section will also discuss the models used for calculating variability in

performance for the machines, in the cases where ranges of performance

are used when calculating the individual risk score of a machine.

6.2.1 Individual risk scores
In the initial risk assessment conducted in Phase 1, it was observed that

when variables affecting capacity reached their maximum values, the risk

score for achieving the specified capacity in the performance guarantee

remained high. This trend extended to other variables where ranges were
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employed to determine the final risk score. The current risk assessment

tool’s ranges are derived from testing data from Stat. C&S and other

divisions of Sandvik SRP. Within the tool, these ranges are established

based on the minimum and maximum values observed during testing. For

example, suppose one test showed a maximum capacity of 1100 MTPH

for a crusher and another showed 900 MTPH for the same crusher. In

that case, the tool takes the difference between these values when assess-

ing the variability of the crushers performance.

This is expressed as a percentage difference between the minimum value

from testing and the mean value of all tests in the sample. Using the ex-

ample provided above, this means the tool would assess a 10% variability

in the crusher’s performance, given that the mean capacity in the exam-

ple is 1000 MTPH. So, if all variables used to calculate a predetermined

capacity were at their maximum, the risk score reduction is currently

only 10%. As such a crusher that would have no margins available for

capacity would still return a risk score of 90%, which would imply that

the risk of guaranteeing this crusher is next to none.

For the new risk assessment tool, all instances where ranges are used are

treated this way. This is incorrect according to Interviewees 3 and 4, if

there are no margins and no adjustments possible, the system should be

attributed a very high risk of not meeting the performance criteria and a

low risk score. Due to how the ranges are used, in about half of the cases

the performance criterion would not be met, if the real-life performance

falls in the bottom half of the range (Interviewees 3 and 4).

Regarding the method for calculating the individual risk scores of one
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crusher or screen, an initial hypothesis was formed regarding the current

assumption of independence when calculating it. The initial hypothesis

was that the different variables should be weighed instead of considered

completely independent due to potential correlations between variables

and that the addition of new variables to the risk assessment increases

the assessed risk of the crushers and screens. One of the interviewees

agreed with this hypothesis, as some variables can be viewed as more

important than others, and that when adding variables the assessed risk

score should not be decreased (Interviewee 6).

In contrast, Interviewee 4 means that all variables in the risk assessment

tool have critical values for when it can cause complete failure and disrupt

the crushing and screening process, due to this, the risk assessment tool

needs the variables to have independence. Interviewee 4 says the current

model is correct but could use adjustments for calculating the individual

values. Interviewees 1, 2, and 3 agree that the current method used for

calculating the individual risk scores is correct when assessing the risk of

a machine because the variables can be considered mostly independent.

Regarding potential correlations and relationships between variables, as

mentioned in 6.1.3, the real-life performance issues are more impacted

when moisture and clay in the feed material are at higher values. Out-

side of this, when product and capacity are used in the performance

guarantee, more adjustments can be made within the system for the CH

and CS crushers, as the CSS can be adjusted to a lower value to produce

finer products or the ECC can be increased to increase capacity of the

crusher. Due to this, the assessed risk should be lower in comparison to
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when total capacity and PSD are guaranteed separately (Interviewee 1).

6.2.2 Calculating final risk score
The current method of calculating the final risk score for a crushing

and screen plant is by taking the arithmetic average of the individual

risk scores for the crushers and screens included in the risk assessment.

Shape as performance criteria, see 3.3.3 for a description, is treated as an

individual risk score like the crushers and screens due to the theoretical

shapes being calculated in an external tool. A shape can be guaranteed

for separate product ranges, for example, an SI of 20 for products sized

10-14 mm and an SI of 25 for products sized 14-20 mm. If so, each

product range is treated as an individual machine when calculating the

final risk score.

Taking the arithmetic average of the individual risk scores has pros and

cons. When you have more machines included in a guarantee, more

adjustments can be made if one machine is not working as specified in

the simulation of the system. However, there is also a higher chance of a

machine not working in the system due to more machines being included

and hence a more complex system with more points of potential errors

(Interviewees 3 and 5). As described in the initial part of this Chapter,

this seems to be more the case when including more screens. Although

this can depend on which system is guaranteed, if only one crusher is

responsible for the final product, the risk score of the crusher should

be taken into special consideration as it affects the final product and

ultimately decides if the performance criteria is met (Interviewee 4). An

idea to combat this would be to add a larger weight to the total risk score
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for the crusher and screens used in secondary or tertiary crushing stages

compared to machines in the primary crushing stage (Interviewee 2).

Calculating the shape risk in the current manner may or may not be

accurate. It depends on how well the external tool calculates the theo-

retical value compared to the real-life value. These calculations can then

be included in the same risk assessments as the machines and treated

as individual machines, or they can be managed separately by using an

external sheet that handles the risk associated with the external tool.

(Interviewee 6).
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7 Discussion

This chapter will discuss the findings, provide key recommendations, and

present an implementation plan. If the proposed recommendations are

implemented in Stat. C&S, the tool is deemed to be validated in terms

of assessing the risk of conducting performance guarantees. The imple-

mentation plan will cover two things. Firstly, it will cover how the tool

should be implemented and used when conducting performance guaran-

tees. Secondly, it will go over how they should establish best practices

for conducting performance guarantees in the sales areas of Stat. C&S.

7.1 Key recommendations

This section will go through the key recommendations derived from the

results in Chapter 5 and 6. The recommendations consist of changes to

the new risk tool that are both needed for sufficient accuracy and are

feasible to implement for Stat. C&S. When implementing any of the

proposed recommendations to the risk tool, it is worth noting that some

risk values might need to be adjusted to balance the risk score.

7.1.1 Adjustment of variable scope
A key finding from the interviews and analysis was that there are certain

gaps in the variable scope of the new risk assessment tool. This concerns

screens, CV, and CJ crushers, where there are variables that should be
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omitted and added to the tool to better reflect the real-life performance-

related risks not accounted for by PlantDesigner.

The exact probability values associated with these variables are unclear

and need to be further researched. It is therefore important that the

variable scope will continue to be developed based on data and findings

from real-life situations. As the current scope of variables is based on

qualitative data there are still aspects related to the variable scope that

may be missing in the new tool. Because of this, the risk assessment

tool should not be static in its development after the evaluation and

validation, it should be dynamically updated based on emerging risks

or operational changes to the machine’s usage. It can thus be essential

to regularly review and update the variable scope to ensure that it is

relevant based on the situation and effective at assessing the risk of not

reaching the performance guarantee.

Adding variable for percentage of fine material

As mentioned in 6.1.1, a large percentage of fine material in the feed

material of a CJ or CV crusher can affect the performance of the crush-

ing and screening plant. This factor is currently not accounted for in

PlantDesigner or the risk assessment tool. As a large percentage of fine

material increases the risk with the system, this variable should be in-

cluded to account for this risk. Adding this variable in PlantDesigner

would be relatively straightforward since the percentage of fine material

is easily accessed from the PSD curves available in PlantDesigner. How-

ever, the risk impact of certain percentages of fine material requires an

internal discussion among departments in Stat. C&S.
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Adjusting the scope of variables affecting screens

From the results in 6.1.2, it can be observed that there are some po-

tential issues with the scope of variables affecting the screens. Multiple

variables should be added to the risk assessment tool, including one that

more accurately reflects the oversize/undersize criterion in the perfor-

mance guarantee, another for carry-over capacity, and a variable for the

percentage of flaky material, while the variable that describes the feeder

load for screens should be omitted. Additionally, the length of the screen

should be included to better describe the time the rocks stay on the

screen.

The analysis in 5.3.1 shows that including screens in the risk assessment

has a negative slope coefficient in the stepwise linear regression model.

Adjusting the variable scope will likely affect this coefficient. Adding

new variables to the risk assessment tool always decreases the average risk

score due to the calculation model for the individual machines’ risk score.

A way to counteract this could be to have a more thorough discussion

regarding the risk scores of the current variables that affect screens to

see whether the current risk scores are consistent with real-life risks. If

the risk probabilities are adjusted it can help to increase or maintain

the negative slope coefficient marginally when new variables are included

instead of lowering it even more.

Adjusting variable scope of CV crushers

For CV crushers two additional variables should be added to the risk

assessment tool. This is the top size of the feed and the flakiness of

the feed material as these can impact the performance. Using the same
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argument as earlier, one way to do this would be to adjust the risk

probabilities associated with the current scope of variables to counteract

the introduction of new variables.

7.1.2 Adjust the impact on risk for certain variables
From the interview results in Chapter 6, it is clear that the impact on

the risk score from some included variables should be adjusted to obtain

a more accurate risk score. As observed in the Wilcoxon signed rank

test conducted in 5.2, the risk scores differ substantially between the

current and new risk tools. To improve consistency with the current tool,

one approach is to adjust the risk impact of variables that experts have

deemed to be inaccurate in relation to real-life performance-related risk.

The three main adjustments identified in Chapter 6 are for adjustments

on the impact of CSS, finished material, and wet screening.

Adjustment of risk impact from CSS

As mentioned in 6.1.1, the margin between the actual CSS and the maxi-

mum CSS should not have the same risk impact as the equivalent margin

for the ECC. In this context, impact on risk refers to the marginal differ-

ence in the risk score when changing the CSS or ECC one setting larger

or smaller. Since there seems to be an agreement on having a linear effect

on the risk, (e.g. the same change in risk score per change in setting), one

quick adjustment would be to make the marginal changes in risk smaller

for the CSS than the ECC. In terms of implementation, this is a quick

fix and would not require more than a couple of minutes to actualize.
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Adjustment of risk impact from finished material

As stated in the 6.1.1, the risk impact from having a certain share of

unfinished material in a closed circuit configuration has been deemed too

negative. While it is a sign of crushing inefficiency, it does not necessarily

have a large impact in terms of increased risk. There are multiple ways

of implementing this adjustment. One possible action is to increase the

probability output for this variable. By doing this, the risk is not as

negatively affected, while the user still notices the variable and makes

sure that the degree of unfinished material is not too low. Another way

of accomplishing a similar effect is to remove the variable completely

and instead implement this as a pop-up warning in PlantDesigner. This

will ensure that the risk tool strictly covers the risks of not meeting the

specified performance criteria, under the assumption that the degree of

unfinished material bears a negligible amount of that risk.

Adjustment of risk impact from performing wet screening

Currently, performing wet screening returns a risk score of 80%, in con-

trast to dry screening returning 100%. The common opinion however

has been that wet screening, when performed correctly, leads to better

screening accuracy than dry screening and should therefore entail lower

risk. The counterargument to this, and the reason why it returns an 80%

probability, has been that there still is limited knowledge of wet screen-

ing and uncertainty around best practices. While still accounting for this

uncertainty, the positive aspects of using wet screening could balance the

risk score to potentially a 100% output for both screening methods which

would mean that this variable could be omitted from the risk assessment
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tool. As uncertainty around wet screening decreases, the future state

would be that dry screening returns the lower number out of the two.

Implementing these changes in the new risk tool would not take long.

An additional action to take for Stat. C&S could be to establish an

internal training course in wet screening for the salespeople to ensure

that everyone applies it most effectively. This training course might need

to be updated as research and internal knowledge solidifies.

7.1.3 Adjusting probabilities based on test data
As described in 6.2.1, the probability output from two variables, capacity,

and probability to reach CSS, are based on ranges of test data. As

Interviewees 3 and 4 state, treating the relative range of test data as

the probability output is not correct. To illustrate this, one can use

the example where a CH crusher has 100% load, and ECC and CSS

on the maximum settings. Furthermore, let us assume the guaranteed

capacity is 100 MTPH. The probability of reaching the capacity given in

PlantDesigner can then, for example, return 87% as a risk score. This

number comes from the range of test data in this example being 100 ±

100× 0.13 = [87, 113].

While variability and risk are closely connected, treating probabilities

in this way does not align well with theoretical principles. Instead, the

probability distribution of the capacity data needs further analysis. If

the data appears to follow a normal distribution, it will be symmetrical

around the mean (100 in this example). This means that 50% of the time,

the outcome will be below the average value shown in PlantDesigner,

which equates to not meeting the performance criteria. Therefore, the
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risk probability should be much lower than the example value of 87%.

Assuming the distribution is normal or symmetrical around the mean,

the risk probability could be around 50%. If this is not the case, the

resulting risk probability could be even lower.

While implementing this change requires some statistical knowledge, it

could be relatively straightforward. Furthermore, considering other vari-

ables’ values are in some cases based on intuition, the data analysis does

not need to be particularly rigorous. The use of test data such as in these

cases can be considered important in order to reach accurate estimates

of probabilities. Therefore, a desired future state is one where a larger

share of the included variables’ values are based on test data. It needs

to be mentioned however that performing test runs and collecting data

can be time-consuming, especially to achieve a significantly large sample

size.

7.1.4 Alternative way of handling moisture
Moisture is a variable that has been frequently discussed during inter-

views. While the inclusion of the moisture variable certainly is correct,

an alternative way of handling moisture might reflect the associated risk

better than the current state. From Chapter 6, three potential corrections

have been identified. These are to increase the risk for extreme levels of

moisture, to include moisture levels per individual deck in screens, and

to include a correlated risk between moisture and clay.
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Increase risk for extreme moisture levels

As interviewee 1 mentioned in 6.1.3, higher moisture levels in the feed

material can lead to the rock crushing system not working. Since the risk

assessment tool only has choice alternatives for moisture levels up to a

given percentage, the risk associated with higher levels is not currently

captured. If the moisture is at X%, the variable could, for example,

return a risk score of 30%. Implementing this would not be particularly

time-consuming, serve as an extra caution, and better reflect the risks of

operating in very moist conditions. Before implementation, there needs

to be a thorough discussion among experts about what probability values

to include for this factor.

Inclusion of moisture levels per individual deck

In 6.1.3 it is mentioned that moisture follows the finer material, which

leads to lower screen decks having higher moisture levels than decks posi-

tioned higher. Currently, in the new tool, there is only one moisture value

entered per entire screen. Since higher levels of moisture affect screening

performance, entering a moisture value for every deck to accurately cal-

culate the deck bearing the most risk would be advantageous. Moisture

values per screen deck have recently been added in PlantDesigner, which

allows for straightforward implementation into the risk tool.

Capture variable correlation with moisture

As described in 6.1.3, the interviewee wants a combined variable to cap-

ture the risk when higher levels of both clay and moisture are present.

When there is a substantial amount of clay in moist conditions, the clay
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sticks to the rocks and prevents effective crushing and screening. To

account for this in the risk tool, a new variable called "Moisture and

clay combined" can be created and return a low probability only if mois-

ture and clay have high enough values for stickiness to occur. Regarding

which combinations of these values cause stickiness, there is an internal

data sheet that provides a description of which values cause stickiness.

As such, the implementation of this variable should be relatively easy.

7.1.5 Adjustment of total risk score calculation
In this section, potential adjustments to the total risk score calculation

will be highlighted and critically discussed. The highlighted adjustments

for the total risk score are a possible change from arithmetic mean to

weighted average and an alternative way of including shape risk. It is

worth noting that these are not recommendations but rather adjustments

derived from Chapter 6 and 5 that are critically discussed.

Including weights for the average calculation

As mentioned in 6.2.2, the new risk assessment tool currently calculates

the arithmetic mean to determine the final risk score after calculating

the risk scores for individual machines. Additionally, as the number of

machines in the system increases, more adjustments can be made to en-

sure that the system performs as specified in the guarantee. For example,

consider a system with two crushers: a primary crusher and a secondary

crusher. In comparison to a single crusher, where the output is directly

affected by the initial feed, adjustments can be made to the primary

crusher in the two-crusher system to improve the feed curve for the sec-

ondary crusher. While this logically reduces risk, it also introduces an
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additional point of potential error. Specifically, if the primary crusher in

the two-crusher system cannot achieve the guaranteed capacity and the

input to the secondary crusher is below the required criteria, the entire

system slows down.

This matter of an increased amount of machines leading to a higher

risk might be more correct in the case of the number of screens than

the number of crushers. This is because screens are viewed as more

risky and have fewer available adjustments as seen in 6.1. In the case of

crushers, the decrease in risk from an increase in possible adjustments

may outweigh the increase in risk from increased complexity and points

of error. This may not be the case for screens.

The results in 5.13 show that there is some correlation between the

amount of crushers in a system and an increase in risk score, and the

opposite effect for screens. Assuming that the description above is true,

this is an indication that taking an average for the final risk score is a rep-

resentative measure of the real-life risk. However, the weighted average

that Interviewee 2 proposes in 6.1, might reflect the risk more precisely

than an arithmetic average where every machine has equal weight. Decid-

ing on what weights to use, however, might be difficult since it depends

on the configuration of the system and is likely to lack data support.

Alternative way of including shape risk

Another point covered in 6.2.2 was the current inclusion of individual

shape products in the average of the new tool. One initial change that

can be made is to calculate one single shape related risk. This would
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prevent inflation of the risk score if many low risk shape products are

included. Instead, a total shape risk can be calculated by taking the

average or the minimum of the separate shape products. It can then be

included in the average for the risk score as one individual component

instead of multiple.

As proposed in 6.2.2, one can also manage shape completely separately.

While this may result in a more accurate total risk score, it leads to

the current risk tool not representing the risk of the solution not meet-

ing the performance guarantee in its entirety, since shape is one of the

performance criteria.

7.2 Implementation of the Tool

The original purpose of developing the new risk assessment tool was to

ultimately enable the writing and approval of the entire process of per-

formance guarantees in the sales organization of Stat. C&S. To facilitate

this, the tool first needed to be evaluated and validated, which is one

of the purposes of this thesis project. The tool is deemed to be valid

if the proposed changes above are accounted for. The second purpose

of this thesis project was the effective implementation of the tool within

the organization. This section will go through an initial implementation

plan that ensures that the tool can be utilized effectively and does not

compromise the high quality of the currently conducted risk assessments

and performance guarantees.

When implementing a service or tool within an organization, an imple-

mentation framework should ideally be used either before or throughout

101



the implementation effort (Moullin et al., 2020). Recommendations from

Moullin et al. (2020) for approaching an implementation include select-

ing the appropriate framework, determining the factors that matter for

implementation, deciding on an effective implementation strategy, speci-

fying the outcome or goal for the implementation, and writing a proposal

that should serve as a guideline for the implementation process.

7.2.1 EPIS Framework
A framework that can be used to examine and plan the implementation

proposal is the Exploration, Preparation, Implementation, and Sustain-

ment (EPIS) framework. This framework utilizes four well-defined phases

that can aid in planning an implementation effort. The EPIS framework

is most commonly used in healthcare practices but can be modified to fit

into other research fields as well (Moullin et al., 2019).

The exploration phase involves engaging key stakeholders to gather input

and support and exploring the potential fit of the risk assessment tool

within the organization (Moullin et al., 2019). In the context of the risk

assessment tool, this is the phase the tool is currently in. During this

phase, questions related to how the tool should be implemented and used

within Stat. C&S are gathered from stakeholders within Stat. C&S.

Interviewee 2 suggests that the tool in its current state could serve as a

"sanity check," highlighting critical risk aspects when conducting perfor-

mance guarantees. However, it needs to be continually updated to adjust

the final risk scores to be more precise in its risk assessment. The per-

formance guarantees and subsequent risk assessments conducted in the

sales organization should also be written by a process expert designated
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for that purpose by the organization (Interviewee 2). One issue with

this is that it can be time-consuming and impact the effectiveness of the

employee’s regular responsibilities.

For the preparation phase, the primary objective is to identify potential

barriers and facilitators of the implementation. It is especially important

to deliver training and technical assistance to employees (Moullin et al.,

2019). There is currently a guide that explains all variables used in the

new tool (Interviewee 8), but as the tool evolves and changes based on

the recommendations in 7.1, this guide needs to be updated to enable

easy use of the tool. The person conducting the risk assessment must

understand why there is a risk with certain variables. Interviewee 4 men-

tions that it is important for the person conducting the risk assessments

to understand the tool’s limitations and maintain a continued dialogue

with the customers to ensure that the machines are used most effectively.

The implementation phase involves putting the tool into practice and

conducting performance guarantees and risk assessments with its assis-

tance. The final phase, the sustainment phase, involves maintaining and

institutionalizing the tool (Moullin et al., 2019). This includes contin-

ually updating the tool based on the variable scope and the underlying

data obtained through testing. A good practice would also be to establish

a system where instances of unmet performance guarantees are recorded

and systematically analyzed to ensure the tool has optimal accuracy.

7.2.2 Proposed Implementation Plan
A good implementation plan should follow the four phases specified

above. This section will go through each phase and propose key ac-
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tivities that can be made within each phase based on the observations

and findings obtained throughout this thesis project.

In the exploration phase, the tool should be implemented in a pilot ver-

sion to gather initial feedback and assess its effectiveness. The tool can,

for example, initially be implemented in one sales area of Stat. C&S for

this purpose. The focus of this pilot implementation would be to col-

lect more data on how the tool performs, focusing on the accuracy and

usability of the tool.

In the preparation phase, training materials for how to use the tool should

be created, including guides that explain all variables used and construct

a guideline that describes best practices for conducting performance guar-

antees. In addition, training sessions for employees to ensure they un-

derstand how to use the tool and conduct performance guarantees and

risk assessments effectively can be arranged in this phase. The existing

guide should also be updated based on further feedback and adjustments

that have been made to the tool to ensure the existing guide remains rel-

evant and accurate. A support system can also be established, to assist

sales areas with questions when conducting performance guarantees and

handling high-risk risk assessments.

During the implementation phase, the tool should be rolled out across the

entire organization. Performance guarantees should then be conducted

entirely by the sales areas of Stat. C&S with the assistance of the tool.

It’s important to continuously monitor progress to address any issues

that may arise with the use of the tool. Additionally, ongoing support

should be provided to the sales areas through employees experienced
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in conducting performance guarantees or from employees with extensive

knowledge of risks associated with rock processing solutions if deemed

necessary.

When the implementation reaches the sustainment phase, the tool should

be regularly updated based on feedback and new data, ensuring that it

evolves to meet changes within the norms of conducting performance

guarantees. Additionally, it’s important to normalize the use of the tool

in Stat. C&S’s standard operating procedure for conducting performance

guarantees. Finally, implementing a practice of recording instances where

performance guarantees are not met and systematically analyzing these

cases will help improve the tool’s accuracy and effectiveness.

7.3 Reliability and Validity

Before moving on to the summary and conclusion of this Master’s thesis,

it is important to make a brief comment on the reliability and validity

of this report. Reliability refers to the consistency of a measure, mean-

ing the extent to which similar results can be obtained by following the

same steps of an investigation. Validity refers to the extent to which the

concept that a researcher aims to investigate is actually measured (Heale

and Twycross, 2015).

One aspect that affects the reliability of this thesis is the collection of

data for the risk assessments. As described in 2.2.1, the collection of

data for the quantitative analysis was performed systematically. How-

ever, some instructions in the new risk assessment tool could be left for

interpretation. An available user manual for the tool prevented some of
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this, but there is still a possibility that two people doing the same risk

assessment could get different risk scores. Furthermore, there is a risk of

human error when manually entering large amounts of data such as in

this case.

The conducted interviews followed a semi-structured format and touched

on different areas of the interview guide found in Appendix A.1. As such,

the interviews explored different topics based on the interviewees’ per-

ceptions of the most critical risks affecting a rock-crushing and screening

plant. Therefore, if a similar interview guide were to be used for the same

investigation, it is uncertain whether identical results would be obtained.

The interviewees were selected in collaboration with Stat. C&S and

have extensive experience, both in using PlantDesigner and in conducting

performance guarantees. However, the interviewees have varying roles

and viewpoints which must be considered when analyzing the results.

It is also not certain that a similar result would be obtained if different

interviewee candidates were selected for this Master’s thesis.

We found that drawing strong conclusions from the quantitative analysis

was somewhat challenging due to limitations in the available data. With

the different formats of the new and current risk scores, and especially

the fact that no score of 1 or 5 of the current tool was present, comparison

and further analysis of the deviation were difficult. Also, if more time

was available, a larger set of variables could be recorded which could

enable a model with higher explanatory power to be derived. On top of

that, we believe the analysis would be stronger with more than the 177

collected data rows in this thesis. However, the time-intensive nature of
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the collection method and the availability of previously performed risk

assessments unfortunately constrained the amount of data that could be

collected.
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8 Summary and Conclusion

The primary objective of this Master’s thesis was to evaluate and vali-

date a newly developed risk assessment tool for performance guarantees

related to the sales of rock crushing solutions at Sandvik Rock Process-

ing Solutions - Stationary Crushing and Screening (Stat. C&S). The re-

search and data collection was conducted through quantitative statistical

analysis and interviews, which culminated in establishing key recommen-

dations and a proposed implementation plan.

The new risk assessment tool was compared against the current expert-

based method. Statistical tests, including the Wilcoxon Signed Rank

Test and McNemar’s Test, revealed significant differences between the

risk scores of the current and new risk assessment tools. This indicates

that while the new tool provides a systematic approach, it requires ad-

justments to align more closely with the expert risk assessments. Also,

linear and logistic regression was performed to analyze the risk score

response from certain characteristics of the crushing systems.

The new risk assessment tool had a mostly correct variable scope but

interviews with experts highlighted the need for small adjustments to

this. For example, the inclusion of variables such as the percentage of

fine material in the feed for CJ and CV crushers, and the carry-over

capacity for screens, were deemed necessary.
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The current model of computing individual risk scores by treating vari-

ables as independent was generally supported. However, the model for

computing the final risk score by averaging individual scores was ques-

tioned in the interviews. It was suggested that a weighted approach

might better reflect the risk of the system.

From this, several key recommendations could be established. Firstly,

the addition of new variables into the risk assessment tool such as feed

material characteristics and machine-specific factors, and the risk impact

of several variables. Secondly, an adjustment of the calculation method

when measuring variability in capacity and considering a weighted ap-

proach for calculating the final risk score to account for the criticality

of different machines in the system. An implementation plan for transi-

tioning the risk assessment process to the sales areas was also proposed.

The plan includes training sales engineers on the new tool, establishing

best practices, and continuously updating the tool based on feedback and

real-life performance data.

The new risk assessment tool shows promise in providing a systematic

and consistent approach to evaluating performance guarantees for rock-

crushing solutions. However, to ensure its effectiveness and accuracy,

several adjustments were deemed necessary based on the recommenda-

tions. By refining the variable scope and calculation models, and im-

plementing a robust training and feedback mechanism, Stat. C&S can

improve its risk assessment capabilities and more accurately reflect the

risk associated with meeting specified performance criteria. The success-

ful implementation of these recommendations and the risk assessment
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tool will not only improve the accuracy of risk assessments but also pro-

mote a more efficient and customer-centered sales process.
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A Appendices

A.1 Interview Guide

Crushers

Scope of variables
• In your opinion, what are the most critical variables that affect how

a Sandvik crusher functions?

• Going through the variables in the new risk method:

– What variables are you missing?

– What variables are redundant?

Weighting of variables and computation of risk
• After explanation: What do you think about how the weighting

and computation of variables are handled in the new method?

• How should it be handled?

• What crusher variables are absolutely critical for the performance
of the machine?

– For capacity

– For product grading

– For shape (SI/FI index)
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• Right now the risk assessment weighs all variables equally, given
the variables presented above, how would you rank these in impor-
tance? (low-medium-high weight)

• Artificial weights (compare them against each other if necessary)

• “100 Euro-test”

• Right now variables values are multiplied, what do you think about
this way of computing risks?

Screens

Scope of variables
• In your opinion, what are the most critical variables that affect how

a Sandvik screen performs?

• Going through the variables in the new risk method:

– What variables are you missing?

– What variables are redundant?

Weighting of variables and computation of risk
• What do you think about how the weighting and computation of

variables are handled in the new method?

• How should it be handled?

• What screen variables are critical for the performance of the ma-
chine?

• Right now the risk assessment weighs all variables equally, given
the variables presented above, how would you rank these in impor-
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tance? (low-medium-high weight)

• Artificial weights (compare them against each other if necessary)

• “100 Euro-testet”

Overall
• What do you think about calculating the average of the risk scores

for the individual machines (and shapes) for the final score?

• Should shape be handled differently?

• Are there some important correlations between variables that should
be taken into consideration?

– What are those?

• What are your thoughts on potentially including over- and under-
size in the method?

• Explanation of data handling possibly needed: In the instances
when there are test data available for the risk variables, what are
your thoughts on how the data is handled?

• Right now very limited use of raw material characteristics is used in
the risk calculations (only Work Index for CV crushers), what other
risks should take into consideration raw material characteristics?

• Aside from the points discussed above: Do you see any other issues
of using the new method?

• How do you think this new risk assessment method should be im-
plemented and used in the Sandvik organization?
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A.2 OLS for multiple linear regression
In this section, the OLS approximation will be derived. Starting with
the equation in 4.2, to find the least squares coefficients we want to find
b that minimizes the residual sum of squares. (Fox, 2024). Expressed as
a function F(b), we have:

F(b) =
n∑

i=1

ε2i = e′e = (y −Xb)′(y −Xb)

= y′y − y′Xb−X′b′y + b′X′Xb

= y′y − (2y′X)b+ b′ (X′X)b

(A.1)

Vector derivation with regards to b gives:

δF(b)

δb
= 0− 2X′y + 2X′Xb (A.2)

After setting the derivative to zero we get:

X′Xb = X′y′ (A.3)

For nonsingular XX′, a unique solution for b is then found by:

b = (X′X)
−1

X′y (A.4)

It can easily be shown that the solution minimizes F(b) (Fox, 2024).

A.3 MLE for logistic regression
In this section, maximum-likelihood estimation, MLE, for binary and
ordered logistic regression will be derived. Let response variable Yi take
on values 0 and 1 with probabilities πi and 1 − πi respectively. The
probability distribution for Yi can be written as (Fox, 2024):

p (yi) = Pr (Yi = yi) = πyi
i (1− πi)

1−yi (A.5)
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Since observations are independent, the joint probability for the full scope
of n observations can be written as:

p (y1, y2 . . . , yn) = p (y1) p (y2) . . . p (yn)

=
n∏

i=1

p (yi) =
n∏

i=1

πyi
i (1− πi)

1−yi

=
n∏

i=1

(
πi

1− πi

)yi

(1− πi)

(A.6)

Using expression

πi

1− πi

= eα+β1Xi1+β2Xi2+...βkXik (A.7)

and after some rewriting

1− πi =
1

1 + eα+β1Xi1+β2Xi2+...βkXik
(A.8)

Inserting these into (A.6) we get the following expression (Fox, 2024):

p (y1, y2 . . . , yn) =
n∏

i=1

e(α+β1Xi1+β2Xi2+...βkXik)
yi

1 + eα+β1Xi1+β2Xi2+...βkXik
(A.9)

By treating the observed data as fixed instead of a variable, this func-
tion can be seen as the likelihood function L (α, β1, β2, . . . , βk) = L(β)

for the linear logistic model. Maximizing the function for the values of
α, β1, β2, . . . , βk returns the maximum-likelihood estimates, which we can
notate as α̂, β̂1, β̂2, . . . , β̂k or β̂ in vector format (Fox, 2024).

For convenience, let x′
i ≡ (1, Xi1, Xi2, . . . , Xik) be the row of the ob-

served design matrix X, defined in 4.2. Referring to Equation A.9, the
probability of independent observations of Y given the values of X is:

p (y1, y2 . . . , yn | X) = L(β) =
n∏

i=1

exiβyi
(
1 + ex

′
iβ
)−1

(A.10)
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Taking the natural logarithm on both sides returns the log-likelihood
(Fox, 2024):

lnL(β) =
n∑

i=1

Yix
′
iβ −

n∑
i=1

ln
(
1 + ex

′
iβ
)

(A.11)

Taking the partial derivatives with respect to β and setting them to max-
imize the likelihood yields the following equations (note that maximizing
the log-likelihood yields the same result as maximizing the likelihood):

n∑
i=1

[
1

1 + e−x′
iβ̂

]
xi =

n∑
i=1

Yixi (A.12)

The solution β̂ is the vector of maximum likelihood estimates (Fox, 2024).

A.4 The stepwise regression procedure
Step 1: Fit each of the one-predictor models, i.e. y regressed on x1, y
regressed on x2 etc. Of the variables xi, i = 1...n, that have a P-value
from the t-test that is lower than αE, the variable with the lowest P-value
is entered in the model. If the no model with a P-value lower than αE is
found, the procedure ends.

Step 2: In this process, suppose x1 is initially included in the model,
then every two-predictor model containing x1 is fitted and compared. For
instance, y is regressed on x1 and x2, then on x1 and x3, and so forth, up
to x1 and xn. The variables xi, i = 2, ..., n whose P-value is lower than
αE are compared and the model including the second predictor with the
lowest P-value is chosen. If no P-value is lower than αE, the procedure
stops and the one-predictor model is selected as the final model. If for
example x2 was selected as the best predictor, the procedure now goes
back and tests if x1 is significant in the chosen two predictor model. A
t-test is therefore performed for the null hypothesis β1 = 0. If the P-value
is greater than αR, remove x1 from the model. Otherwise, keep the two
predictor models.
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Step 3: Repeat Step 2 but now compare all three predictor models
including x1 and x2. When a third predictor is selected, test x1 and x2

individually for significance and remove if not significant. This iteration
continues until no more predictors are found with a P-value lower than
αE.
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