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Abstract

The aim of this project is to establish a workflow that transforms CT-scanned
images of paperboard into a calibrated Representative Volume Element (RVE). A
RVE is defined as the smallest volume that accurately captures the macroscopic
behavior of the material.

First, CT-scanned images are converted into a finite element model that rep-
resents the microstructure of the paperboard. Secondly, a discrete field of fiber
orientations are established by using Structure Tensor analysis. Thereafter, trans-
verse isotropic material parameters of fibers are calibrated using the Hill yield
criteria and Ramberg-Osgood relation to describe plastic deformation. This is
done through iterative adjustments of material parameters until agreement with
experimental data is reached. Finally, a sensitivity study is conducted to evaluate
the effects of different RVE sizes and resolutions on the accuracy and efficiency of
the model.

The findings of this study suggest that the proposed workflow serves as a base
for calibrating anisotropic material properties at the micro-scale to match macro-
scale data. The derived material properties of fibers indicate a longitudinal elastic
modulus on the order of 50 GPa and a transversal elastic modulus of approximately
4 GPa. For the plastic characteristics of fibers the calibrated properties closely
approximate ideal plasticity.

The sensitivity analysis reveals that a volume of at least 0.33x0.33x0.12 mm
is required to be considered representative of the paperboard investigated in this
study. However, due to material inhomogeneities, the model is influenced by the
location of extraction. Moreover, the conducted studies show a clear dependence
on tested voxel resolutions.
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1 Introduction

With the goal of minimizing the environmental footprint of carton packages [14],
advancement of the proportion of renewable materials, particularly wood fiber,
are necessary. The mechanical performance of cellulose materials is influenced
by various factors, including their inherent inhomogeneity and stochastic nature.
Understanding the relationship between the microstructure and mechanical prop-
erties of these materials is crucial for optimizing their performance in practical
applications.

1.1 Problem Formulation

The aim of this project is to characterize and quantify the micro-structure of
paperboard. This involves identifying fibers and their orientations using X-ray
Computerized Tomography scans, more commonly known as CT-images, as well as
calibrating microscopic material properties. The smallest volume that accurately
reflects the macroscopic behavior of the material, knows as the Representative
Volume Element (RVE), should be investigated. The steps included are:

• Create a Finite Element model, including fiber orientations, based on X-ray
tomography scans of paperboard

• Calibrate material properties of the fibers towards experimental macro-scale
data

• Perform sensitivity studies on RVE sizes and image resolutions

Ultimately, the objective is to establish a systematic workflow for generating vir-
tual models based on CT-scans, of paperboard.

1.2 Introduction to Paper Materials

In the paper making process, wood fibers are mixed and stirred with water to
achieve fiber suspension. The mixed liquid is later sprayed on a wire or forming
fabric. Excess water is removed by vacuum suction or drainage through the wire
mesh and the paper material is pressed and dried. During this process, bonds are
formed between the fibers [17].

The characteristics of the flow significantly influence the properties of paper as
most of the fibers align in the direction of the flow, known as the manufacturing
direction (MD). The ratio of fibers in the MD to those in the cross direction (CD)
is referred to as fiber orientation anisotropy and affects the paper properties on
macroscopic level. The orientation ratio is also influenced by factors such as the
velocity and acceleration of the paper machine [36].
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Figure 1: Manufacturing directions of paper [7]

Paperboard is a porous material that consists of a fiber network surrounded
by air [33]. Under moderate mechanical loading its mechanical behavior can be
described by anisotropic linear elasticity, and under high loading a non-linear
plastic response. In previous work by Borgqvist [7], a 3D-continuum elasto-plastic
model for paperboard was presented. The experimental data by Borgqvist will be
used for calibration later in this study and is presented in Figure 2. The stress-
strain response illustrates the typical behavior of paperboard and its anisotropy.

Figure 2: In-Plane uniaxial tension tests of paperboard in MD, CD and 45◦ direc-
tions [7, Figure 4].

In order to properly model the material behavior, knowledge about fiber ori-
entation and fiber anisotropy are of importance. One aspect in modelling fiber
materials is the characteristics related to the fiber-fiber bonds. To correctly cap-
ture and analyze these effects it is essential to segment and track individual fibers
[33]. Fiber tracking is also of importance to examine the effects of moisture and
temperature on individual fibers [17].

Softwood and hardwood fibers are commonly utilized in the pulp making pro-
cess. Hardwood are stronger and more hard-wearing than softwoods. The mean
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length and average fiber diameter of softwood typically ranges from 2 to 6 mm and
20-40µm respectively. In contrast, hardwood fibers possess mean lengths within
the range of 1 to 2 mm and average fiber diameter ranging from 10-50 µm [9]
Moreover, the physical properties of wood fibers such as density, Young’s modulus
and tensile strength are important characteristics that influence the mechanical
behavior of paper products [9].

Direct testing of individual fibers is the most straightforward method for char-
acterizing individual fiber properties. Due to the size of the fibers this method is
rather complex and is rarely used. Macroscopic methods, such as compression or
tensile testing of paperboard, combined with appropriate mechanical models, are
commonly used.

Neagu et al. [19] used two different methods to determine the stiffness of wood
fibers. They used one compression method combined with a statistical model based
on first order beam-theory to describe the deformation. The second method was
based on tensile testing and back calculation to predict fiber stiffness. For softwood
kraft fibers, Young’s modulus was 20.1 GPa with the compression method, and
17.4-19.0 GPa with the tensile method. In a different study Neagu et al. [25]
used a similar approach to back calculate the fiber stiffness’s from tensile testing
of laminate composites. They concluded that industrially pulped hardwood fibers
have higher stiffness than the corresponding softwood fibers. Young’s modulus of
40 GPa was found for hardwood. Shaler [34] performed tension tests on individual
fibers aiming to compare the strength and stiffness of earlywood and latewood
fibers, which are a softwood fiber formed during different parts of the growing
season. The earlywood fibers had an average modulus of elasticity of 14.8 GPa
and an ultimate tensile stress of 604 MPa. The examined latewood fibers exhibited
modulus of elasticity and ultimate tensile stress values that were 33% and 73%
higher, respectively. Czibula et al. [8] addresses that existing literature primarily
focuses on uniaxial tensile testing of single fibers, they often tend to neglect the
effects of real process history on fiber properties when pulp fibers are used in paper
materials. To address this, their study employs nanoindentation (NI) techniques
on pulp fibers within paper sheets. Comparisons were made with longitudinal
single fiber tensile testing data and inverted network models. Results from the
NI provided an estimation of Young’s modulus of 8-9 GPa, which was consistent
with single fiber tensile testing result where the mean modulus was 8.3GPa. This
result deviated slightly when compared to result from previous studies, which
reported mean values ranging from 12 to 20 MPa. The network model showed
higher estimation of 15.2 GPa.

The properties of the fibers in the shear and transverse direction are as previ-
ously stated not easily determined by experiments. The modulus of elasticity in
transverse direction is commonly approximated to be about one-tenth as great as
in the longitudinal direction [23]. The properties of fibers found in previous works
are summarized in Table 1 and 2.
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Table 1: Young’s modulus of fibers in longitudinal direction.

EF [GPa] Source
Softwood

17.4-20.1 Neagu et al. [19]
14.8-25.6 Shaler [34]
8-9 Czibula et al. [8]

Hardwood
40 Neagu et al [19]

Table 2: Young’s modulus of fibers in transverse direction.

ET [GPa] Source
0.1EF Persson [23]

1.3 Image Acquisition and Image Processing

This section explains how CT equipment can be used to obtain 3D representations
of paperboard. It explains the process of X-ray computed tomography, and the
subsequent segmentation to distinguish fiber and void within the scanned images.

1.3.1 X-ray Computerized Tomography

X-ray tomography is a non destructive method for extracting data about the
structure of a sample on different scales. The principle of X-ray tomography is
that a specimen is placed on a rotating stage, in the trajectory of an X-ray beam,
between a source and a detector as seen in Figure 3. Some X-rays are absorbed by
the specimen, and some are transmitted. The transmitted X-rays are captured by
the detector, and converted to visible light using a scintillator. As the specimen
rotates, several hundred or thousands of projections are recorded. [13].
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Figure 3: Cone beam system, typically used in laboratory equipment [24]

By utilizing mathematical algorithms and stacking the series of two dimen-
sional images taken from different angles around the sample, a three dimensional
reconstruction of reality is obtained including both the exterior and interior of the
scanned object. The information about the structure is stored in cubic elements,
called voxels [24]. Each voxel contains a value representing a grey shade. The
shade depend on how much of the X-rays that have been transmitted, which in
it’s turn depend on the density of the structure. The features to be characterized
have to be significantly larger than the size of the voxels to be properly distin-
guished. A smaller voxel size enables the analysis of finer details, but limits the
area encompassed in the image. The scale of the captured features depends on the
spatial resolution, which is the shortest linear distance between distinguishable
points in a reconstructed image [24].

1.3.2 Segmentation

The method of separating structures and constituents from the reconstructed vol-
ume from each other, is called segmentation. Different approaches can be applied,
including one of the most simple methods called thresholding. When applying
thresholding segmentation, pixels in the 2D image are separated into groups based
on their grey scale values [28]. Threshold values can be set manually or automat-
ically, where one automatic approach is Otsu’s method. Otsu’s method picks the
threshold value by maximizing the separation between different gray scales in the
image and relies only on basic statistical information from the image’s histogram
of intensity distribution [21].

Even though automatic segmentation such as thresholding is widely used, a
semi-automated interactive segmentation method may be beneficial for more com-
plex tasks, for example separating individual fibers. However, to segment individ-
ual fibers in a composite is challenging as the bundles are in contact over large
areas [29]. Li et al. performed a graph-based segmentation for individual fibers by
sampling intensities along each fiber centre line and segmenting the surfaces using
binary optimization [16]. Lately, deep learning approaches have shown promis-
ing results in segmenting complex structures from volumetric data such as CT-

5



scans. The deep-learning based segmentation methods require manual labeling of
fibers and as training data could be difficult in low resolution images, it requires
high resolution images [26]. Individual bundle segmentation can be performed
by some commercial softwares, such as AvizoTM from Thermo Fisher Scientific
and VGStudio Max by Volume Graphics, but is computational expensive and re-
quire high resolution images [27]. The software package AvizoTM reconstructs
the fibers by applying a cylindrical template to CT-data, computing local cross-
correlations to identify regions resembling fibers, and tracing their center lines for
three-dimensional reconstruction [27]. AvizoTM also has a package for AI-assisted
segmentation [2].
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2 Theory

Theory providing the foundation for the current work is presented. The establish-
ment of a virtual finite element (FE) model from X-ray Computerized Tomogra-
phy will be explained, involving image processing and the mapping of voxels to
finite elements. Additionally, the derivation of fiber orientation computations and
anisotropic material models will be provided.

2.1 RVE - Representative Volume Element

A Representative Volume Element (RVE) is the smallest volume of a material with
invariant constitutive properties. The requirement for an RVE is that it should
exhibit statistically representative material properties, maintaining consistent be-
havior as its size increases. Additionally, for a homogeneous material, the material
properties within the RVE should be statistically independent of the location from
where the sample is extracted. Thus, the average behavior of the RVE should be
representative of the entire material [17].

Because there are more bindings in MD than CD and ZD the critical size in MD
is expected to be the largest [17]. However, to overcome computational challenges
the RVE is often approximated as a unit- cell with certain repeating patters, even
though capturing the micro-structure features less accurately. The main reasons
are simplicity and computational efficiency [5].

Common metrics for determining the size of RVEs in composites include the
number of fibers or the ratio of RVE characteristic length to fiber radius (δ). Stud-
ies on RVE size have explored various factors such as microstructural features, con-
stituent materials, finite element model setup, and damage/failure criteria. These
studies have reported diverse RVE sizes, ranging from 9 to 60 for δ - values and
from 30 to 200 number of fibers, typically within a 60% fiber volume fraction [5].
Balasubramani et al. [5] studied the size and shape effects of random 3D statis-
tical volume elements by performing simulations on fiber reinforced polymers at
approximately 60% fiber-volume fraction. Their analysis focused on the statistical
convergence of geometric features and the predicted structural properties in com-
parison with commonly used unit-cell models. Their findings suggest that models
with more than 11 fibers must be considered to properly capture the properties
of interest. Koohbor et al. [6] investigate the size of RVE length scale in fiber
composites using SEM and digital image correlation. By analyzing average strain
fields they found that the RVE size were equivalent to an area encompassing 15 to
30 randomly distributed fibers. Additionally, the study revealed that the RVE size
increases with higher global stress. Prior studies have adopted multiscale method-
ologies to analyze fiber properties. For example, Sevenois et al. [32] employed a
multiscale approach to determine the 3D transverse isotropic elastic properties of
carbon fibers. Their investigation involved a RVE containing 30 fibers. The RVE
sizes found in previous works are summarized in Table 3.
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Table 3: RVE sizes used in previous studies.

RVE size Source
Number of fibers

>11 Balasubramani et al. [5]
15-30 Koohbor et al. [6]
30 Sevenois et al. [32]

Ratio length to fiber radius, δ
9-60 Balasubramani et al. [5]

2.2 Meshing and Finite Element Modelling

To transform the data from the CT-images to a finite element model, a mesh of the
geometry have to be created. Fiber orientations are then calculated and mapped
to the elements. There are two common approaches for creating a finite element
mesh, voxel to mesh mapping, and geometry segmentation based meshing [31]. A
voxel based mesh can easily be generated from CT-data and does not require as
much manual work and preparation as the geometry based mesh. The method is
based on creating a finite element from each voxel [3]. The disadvantage of the
approach is that it can lead to large model sizes, and that there is not an accurate
representation of the boundary between the constituents of the micro structure
[30]. The geometry based segmentation method is based on meshing the geometry
of the structures related to segmented surfaces.

Doitrand et al. [10] studied the accuracy of voxel- and geometry based meshing.
The study showed that the voxel mesh resulted in a less precise approximation of
the geometry and leading to differences in damage prediction compared to the
geometry based mesh. The authors stated that voxel based mesh is suited for
calculations of the average elastic behavior of the composite, but not if local stress
concentrations are of interest. Ewert et al. [3] did a similar comparison between the
two meshing techniques and came to a similar conclusion. The authors concluded
that voxel based meshing can be a good substitute to geometry based meshing
when estimating the overall thermo-elastic properties of 3D woven composites. It
was also stated that high resolution voxel models have a great number of degrees
of freedom, resulting in a long computational time. Nevertheless, since mesh
preparation is quicker, the overall time required may still be less than that for
geometry-based meshing.

2.3 Orientation Analysis

There are different methods for determining the material directions, and they can
be categorized into direct- and indirect methods. The direct method is based
on tracking individual fibers, and therefore require high resolution images. One
commonly used indirect method for fiber tracking is structure tensor analysis.

8



Karamov et al. [27] compared the results of two high-fidelity, direct methods with
the structure tensor approach for a short fiber composite. The high-fidelity meth-
ods used were ellipsometry and 3D fiber assembly reconstruction. Ellipsometry, is
a method based on measuring the ellipsoidal cross section of individual fibers by
analyzing changes in polarization state. The method may result in a large amount
of data and normally requires some manual work. Ellipsometry-based methods
are limited by challenges in accurately determining fiber orientation from ellip-
tical cross-sections and reduced precision for fibers near normal or parallel to
the cross-section plane. The second method, 3D fiber assembly reconstruction,
is based on individual bundle segmentation. The center line traced in the seg-
mentation process, can be imported as the direction of the fiber. This method is
for example used by the Avizo software. The structure tensor approach yielded
similar results as the high-fidelity methods for images with resolution allowing
individual fiber recognition. For lower resolution images, with pixel size close to
the fiber diameter, only the structure tensor method could generate orientations,
which where consistent with the results from the high-fidelity methods on high
resolution images [27].

The structure tensor approach for orientation analysis will be explained in
section 2.3.4. The basis on the structure tensor involves analyzing image gradients,
which often employs filtering to reduce noise and to enhance image quality. In
section 2.3.1 and 2.3.2 two different methods to filter the image and establish the
gradients of intensities will be explained.

2.3.1 Gradients with Gaussian Kernel

In this section, a voxel-based approach is utilized to compute the image gradients.
A commonly used method in this domain is the Gaussian derivative kernel ap-
proach, which computes filtered voxel gradients using derivatives of the Gaussian
kernel. This kernel includes a parameter denoted as σ > 0, representing the noise
scale, which determines the deviation of the Gaussian Kernel as seen in Figure 4
[20].

Figure 4: Filtering effect of sigma on Gaussian Kernel [4].

The value of the noise scale should be large enough to suppress high frequency
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noise, but small enough to compute gradients locally [30]. Jeppesen et al. chose a
noise scale related to the average fiber radius rf [20]

σ =
rf√
2

(2.3.1)

A stack of gray scale images, representing a three dimensional geometry is
mapped to a matrix. The matrix contain values representing the intensity in each
voxel, I(x0). The Gaussian kernel method is then used to smooth the intensity
by calculating the convolution within a neighbourhood of each image point, x0.
For a three dimensional space it results in the following integral

Ĩ(x0) =
1

Vσ

∫
V

Kσ(|x0 − x|)I(x)dV (2.3.2)

with Kσ representing the Gaussian Kernel function.
The equation expresses filtering of the intensities over a volume, where Ĩ(x) is

the filtered intensity. x0 is the voxel for which the function is to be evaluated and
x the voxels in a surrounding region R3 [12]. [11]. In this context, Vσ denotes the
volume of all surrounding voxels included in the filtering for a specific voxel. Due to
the focus on intensity gradients, considerations pertaining to normalized intensities
are unnecessary. Consequently, the subsequent derivation will not incorporate the
constant 1

Vσ
. The volume integral is approximated by a sum of the weighted

intensities

Ĩ(x0) =

∫
V

Kσ(|x0 − x|)I(x)dV ≈
k∑
i

Kσ(|x0 − xi|)I(xi) (2.3.3)

where the parameter k represents all elements xi to be accounted for [20]. The
Gaussian Kernel, Kσ(|x0 − x|) function is given by [12]

Kσ(|x0 − x|) = 1

2πσ2
e−

|x0−x|2

2σ2 (2.3.4)

Given a constant intensity I per voxel, the gradient of the smoothed function
is given below, and the format of the gradient is obtained as [20]

∇Ĩ = [Ĩx Ĩy Ĩz]
T =

k∑
i

∇Kσ · I(x0 − xi) (2.3.5)

To ensure that the gradient vectors accurately point in the intended direction,
the surrounding volume of point x0 must be spherical. Otherwise, asymmetry in
the contribution to the kernel derivative may occur, causing the gradient vector
to extend outward from the volume rather than in the direction of maximum
intensity change. To prevent nonphysical boundaries in the model, the gradients
are computed over a larger volume. After the gradient calculations, this volume is
cropped to the region of interest, and the structure tensor is calculated specifically
within this region of interest
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2.3.2 Gradients with Abaqus Transient Heat Equation

A different approach to calculating gradients of intensity involves utilizing built
in functions in Abaqus. The basics of this method is to use the transient heat
equation to examine heat flux. By setting the temperature analogous to pixel
intensity and applying a time dependent heat equation to the image, the pixel
values will be smooth. The result is similar to when applying Gaussian filter to
the image.

Preceding from the energy equation with body forces and gravitational forces
neglected, and constant density assumed [35],

ρ
DE

Dt
= − ∂

∂xi

(pvi) +
∂

∂xj

(τijvi) +
∂

∂xi

(k
∂T

∂xi

) + SE (2.3.6)

Neglecting viscous stresses (τij = 0), assuming no heat source (SE = 0) and no
net rate of flow ( ∂

∂xi
(pvi) = 0), the energy equation is reduced to

ρ
DE

Dt
=

∂

∂xi

(k
∂T

∂xi

) (2.3.7)

Here, the specific energy E is defined as the sum of internal energy Ei and kinetic
energy, represented by Ek = 1

2
(u2 + v2 + w2). With no velocity components the

system specific energy is equal to its internal energy Ei

Ei = cT (2.3.8)

where c is the specific heat and T the temperature. Inserting into equation (2.3.7)
results in

ρc
dT

dt
= div(k∇T ) = div(−q) (2.3.9)

where Fourier’s law q = −k∇T [35] has been used.
By declaring the element type in Abaqus as purely diffusive 8 node linear

brick elements (DC3D8) [1], Abaqus will solve the transient heat equation. When
setting the specific heat c and density ρ to 1 , and solving the heat equation with
implicit, Euler backward time discretisation scheme it results in

T − Tn

∆t
= div(k∇T ) (2.3.10)

The equation can be solved for one step, ∆t = 1, resulting in the short expression

T = Tn + k∇2T (2.3.11)

Here, Tn represents the initial intensities and T the intensities solved for t=1.
The thermal diffusivity depends on the thermal conductivity coefficient k. A higher
k results in faster diffusion, and when k approaches zero T is approaching Tn which
indicates a minimal diffusion and less smoothing. The heat flux vector q = −k∇T
representing the smoothed image gradients can be displayed and retrieved with
Abaqus. In conclusion, in terms of intensity equation (2.3.11) takes the format
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Ĩ = I + k∇2I (2.3.12)

In order to address the heat equation, it is essential to set boundary condi-
tions, typically involving either insulated surfaces or a temperature distribution.
However, these choices may not accurately represent the intensity gradients at
the boundaries. Similar to the challenge encountered when computing Gaussian
Kernel Gradients, this issue can be resolved by determining gradients over a larger
volume compared to the one used for establishing orientations.

2.3.3 Comparison of Gradient Methods

To be able to compare the gradient method, equations (2.3.3) and (2.3.12), it is of
interest to find the relation between the conductivity coefficient, k and the noise
scale, σ, controlling the filtering.

The intensity at a point x about a point x0 in space can be approximated by
its second order Taylor expansion

I(x) ≈ I(x0) +∇I(x0)(x − x0)+
1

2!
∇2I(x0)(x − x0)

2 +H.O.T (2.3.13)

Combining equations (2.3.2) and (2.3.13) an expression for the averaged intensities
is obtained as

Ĩ(x0) =

∫
V

KσI(x0)dV +

∫
V

Kσ∇I(x0)(x − x0)dV +
1

2!

∫
V

Kσ∇2I(x0)(x − x0)
2dV

(2.3.14)
Due to isotropy of Kσ the integrals of odd terms vanish [11],

Ĩ(x0) =

∫
V

KσI(x0)dV +
1

2!

∫
V

Kσ∇2I(x0)(x − x0)
2dV (2.3.15)

This expression using index notation with the point to be evaluated, x0, and the
points in its surrounding, x is given as

Ĩ(x0) =

∫
V

KσI(x0)dV +
1

2!

∫
V

Kσ
∂2I

∂xi∂xj

∣∣∣∣
x0

(xi − x0
i )(xi − x0

i )dV (2.3.16)

With the pixel intensity at the current point, I(x0), being constant it can be
moved outside the integral.

The first term in (2.3.16) describing the integral of the weight function Kσ over
a infinite volume is expressed with the constant Vr∫

V

KσdV · I(x0) = Vr · I(x0) (2.3.17)

computed as

Vr =
σπ3/2

√
2

π
(2.3.18)
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Considering the second term (2.3.16), the integrals will vanish when i ̸= j due
to the isotropy of Kσ,

1

2!

∫
V

Kσ
∂I

∂xi∂xj

∣∣∣∣
x0

(xi − x0
i )(xi − x0

i )dV =
1

2!

(∫
V

Kσ(x1 − x0
1)

2dV · ∂
2I

∂x2
1

∣∣∣∣
x0

+

∫
V

Kσ(x2 − x0
2)

2dV · ∂
2I

∂x2
2

∣∣∣∣
x0

+

∫
V

Kσ(x3 − x0
3)

2dV · ∂
2I

∂x2
3

∣∣∣∣
x0

)
(2.3.19)

The three integrals in equation (2.3.19) can be expressed as a constant Q,

Q =
1

2!
(

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Kσ(x1 − x0

1)
2dx1dx2dx3) =

1

2!
(

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Kσ(x2 − x0

2)
2dx1dx2dx3) =

1

2!
(

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Kσ(x3 − x0

3)
2dx1dx2dx3)

(2.3.20)

with

Q =
σ3π3/2

√
2

2π
(2.3.21)

The simplified format of the filtered intensities (2.3.14) evaluated at x0 is now

Ĩ = VrI +Q(
∂2I

∂x2
1

+
∂2I

∂x2
2

+
∂2I

∂x2
3

) = VrI +Q(div(grad(I))) (2.3.22)

which is equivalent to

1

Vr

Ĩ = I +
Q

Vr

div(grad(I)) (2.3.23)

As 1
Vr
, by which the filtered intensity is multiplied, remains constant, it uniformly

scales all filtered intensities and can be disregarded. Equation (2.3.23) can now
be written on the same format as the heat equation

Ĩ0 = I + k∇2I (2.3.24)

where the constant k in (2.3.24) is equal to the conductivity in the heat equa-
tion. The conductivity can from the expressions for Vr (2.3.18) and Q (2.3.21) be
expressed as

k =
Q

Vr

=
1

2
σ2 (2.3.25)

To yield the same amount of filtering, conductivity k and noise scale σ, should be
related according to this relation.
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2.3.4 Structure Tensor

Once the image gradients have been established the Structure Tensor approach can
be used to find the fiber orientation. A structure tensor is a 3- by- 3 matrix that
captures the local orientation around a point in space. In the voxel based approach
the structure tensor is computed for each voxel in the image. The summation is
performed in a certain neighbourhood around the point. [18]. Once again using the
Gaussian Kernel, but this time with ρ, known as the integration scale, controlling
the standard deviation of the filter[20],

S =
k∑

i=1

Kρ ∗ (∇Ĩ(∇Ĩ)T ) (2.3.26)

with

Kρ(|x0 − x|) = 1

2πρ2
e
− |x0−x|2

2ρ2 (2.3.27)

The size of ρ is chosen as small enough to reduce the influence of the surround-
ing fibers, but large enough to capture the structural direction. Jeppesen et al.
[20] suggested a size related to the noise scale:

ρ = 4σ (2.3.28)

Given a unit vector u, the product uTSu measures the squared intensity change
for a small displacement in the direction u. By determining the eigenvalues to S
both the direction corresponding to the smallest and largest intensity variation
can be identified. The eigenvector corresponding to the smallest eigenvalue coin-
cide with the the least change in intensity, which indicates the fiber longitudinal
direction. In turn, the eigenvector of the largest eigenvalue corresponds to the
largest change in intensity, perpendicular to the fiber axial direction [18]. The
eigenvectors and eigenvalues for a two dimensional elliptical example is presented
in Figure 5.

Figure 5: Eigenvectors with corresponding eigenvalues for an elliptical model in two
dimensions. v1 represents the eigenvector corresponding to the smallest eigenvalue
λ1. v2 represents the eigenvector corresponding to the largest eigenvalue λ2
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2.4 Material Models

In the following derivation of the material model for fibers transversal isotropic
behavior is considered, meaning the material will behave differently along and
perpendicular to the fiber axis. The total strain in the material can be divided
into elastic and plastic strains

ϵ = ϵe + ϵp (2.4.1)

written in voigt notation, and the stress in the material can from Hooke’s law can
be expressed as

σ = Dϵe = D(ϵ− ϵp) (2.4.2)

Before the yield stress, σy0, is reached, the material will only have an elas-
tic contribution to the total strain and behave in a linear manner. For stresses
above the yield stress, the material behaves non-linearly as plastic deformations
are present. The two regions are referred to as the elastic and plastic regions, and
their material models are derived in this section.

While the material parameters are set locally in the fiber direction, the global
response of the RVE can be approximated by the engineering stress and strain

σ =
F

A0

(2.4.3)

ϵ =
∆L

L0

(2.4.4)

2.4.1 Elastic Material Model

In the elastic region, the behavior is defined using the Abaqus ’engineering con-
stants’ for orthotropic materials. This requires setting the elastic moduli (E11, E22, E33)
in respective directions, along with the corresponding Poisson’s ratios (ν12, ν13, ν23)
and shear moduli (G12, G13, G23).

The independent stiffness parameters in the constitutive matrix for a transverse
isotropic material can be derived from the coordinate transformation x′ = Ax
with symmetry about the 1-axis. The transformation matrix A is given by,

A =

1 0 0
0 cos(α) sin(α)
0 −sin(α) cos(α)

 (2.4.5)

Using the relationships σ′ = AσAT and ϵ′ = AϵAT alongside Hooke’s law in
equation (2.4.2), and computing the stresses and strains resulting from rotations
about the 1-axis, combined with major symmetry properties, reveals that trans-
versely isotropic materials exhibit six independent stiffness components,
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D =


D11 D12 D12 0 0 0
D12 D22 D23 0 0 0
D12 D23 D22 0 0 0
0 0 0 D44 0 0
0 0 0 0 D44 0
0 0 0 0 0 D66

 (2.4.6)

The 2-3 plane is defined as the plane of isotropy, denoting the direction perpen-
dicular to the fibers, i.e the transverse direction T . Additionally, the longitudi-
nal direction L is specified as the 1- direction, and the unknown parameters can
then be reduced to E11 = EL, E22 = E33 = ET , ν12 = ν13 = νLT , ν23 = νTT ,
G12 = G13 = GLT and G23 = GTT .

The constitutive matrix D for a transverse isotropic material can now be ex-
pressed as

D =



ELET (νTT−1)
∆

−ELET νLT

∆
−ELET νLT

∆
0 0 0

−ELET νLT

∆
−ET (ET−ELν

2
LT )

(νTT+1)∆
−ET (ET νTT+1+ELν

2
LT )

(νTT+1)∆
0 0 0

−ELET νLT

∆
−ET (ET νTT+1+ELν

2
LT )

(νTT+1)∆
−ET (ET−ELν

2
LT )

(νTT+1)∆
0 0 0

0 0 0 GLT 0 0

0 0 0 0 GLT 0

0 0 0 0 0 GTT


(2.4.7)

where ∆ is given as
∆ = 2ELν

2
LT − ET + ETνTT (2.4.8)

As one of the aims of this project is to calibrate material parameters it is of
interest to simplify the constitutive relation by reducing the number of independent
parameters. Therefore the approximation is made that νLT = νTT = 0.3. For
simplification GTT is set equal to GLT given by Lekhnitskii approximation [15],

GLT =
1

4 1
E45

− 1
EL

(1− νLT )− 1
ET

(1− νLT )
(2.4.9)

where E45 is the elastic modulus in the 45-degree direction of a fiber and is ap-
proximated by [36],

E45 =
1

1
2
( 1
ELET

)1/2 + 1
4
( 1
EL

+ 1
ET

)
(2.4.10)

This leaves two independent elastic parameters to be calibrated, EL and ET .
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2.4.2 Plastic Material Model

Initial yielding is assumed to be characterized by the symmetric fourth-order tensor
which in matrix format can be represented by P in the following yield criterion
[22],

σTPσ − 1 = 0 (2.4.11)

Due to symmetry properties, the 6x6 matrix P consists of 21 independent param-
eters in its general, anisotropic case. The stress can be split into its two parts, its
deviatoric component s and hydrostatic component e

σ = s+ e, s =


s11
s22
s33
s12
s13
s23

 , e =
1

3
I1


1
1
1
0
0
0

 , (2.4.12)

where I1 is the first invariant of the stress tensor.
By assuming that the material behaves orthotropically and that only deviatoric

stresses influence initial yielding [1] (Pe = 0), the initial yield criterion (2.4.11)
can be written as [1]

sTPs− 1 = 0 (2.4.13)

and P is reduced to include only 6 independent material parameters and is given
by [22] [1],

P =


F +G −F −G 0 0 0
−F F +H −H 0 0 0
−G −H G+H 0 0 0
0 0 0 2L 0 0
0 0 0 0 2M 0
0 0 0 0 0 2N

 (2.4.14)

By inserting (2.4.14) into (2.4.13) the Hill orthotropic yield criterion is given
by [22],

f(sij, Kα) = F (s11−s22)
2+G(s11−s33)

2+H(s22−s33)
2+2Ls212+2Ms213+2Ns223−1 = 0

(2.4.15)
which is equal to zero at the onset of plastic strains.

From equation (2.4.15) it can be determined that F, G, H, L, M, N is dependent
on the initial yield stress in each direction aligned with the material axes, and can
be expressed as [22]
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F =
1

2

(
1

σ11
y0

2 +
1

σ22
y0

2 − 1

σ33
y0

2

)

G =
1

2

(
1

σ11
y0

2 +
1

σ33
y0

2 − 1

σ22
y0

2

)

H =
1

2

(
1

σ22
y0

2 +
1

σ33
y0

2 − 1

σ11
y0

2

)
L =

1

2τ 12y0
2

M =
1

2τ 13y0
2

N =
1

2τ 23y0
2

(2.4.17)

As the material is assumed transverse isotropic, it holds that σ22
y0 = σ33

y0 = σT
y0

and consequently F=G. The same holds for σ12 = σ13 = σLT resulting in L = M .
The consitiutive matrix is now reduced to four unknowns, F, H, L and N

P =


2F −F −F 0 0 0
−F F +H −H 0 0 0
−F −H F +H 0 0 0
0 0 0 2L 0 0
0 0 0 0 2L 0
0 0 0 0 0 2N

 (2.4.18)

Material hardening characteristics can be represented by rewriting the initial
yield criterion (2.4.13) [22],

f(σij, K) = (σ2
y0s

TPs)1/2 − σy = 0 (2.4.19)

where σy represent the current yield stress. Assuming isotropic hardening, meaning
that the yield stress increases uniformly in all directions as plastic deformation
occurs, the yield stress can be represented by

σy = σy0 +K(κ) (2.4.20)

σy0 is the user defined reference initial yield stress, Kα denotes the hardening pa-
rameters and κ represent the internal variables describing the state of the material
dependent on the plastic loading history.

In Abaqus the Hill Anisotropic yield criterion is defined by the yield stress
ratios (

σ̄ij

σy0
) called potential parameters, where τy0 = σy0√

3
[1]. The definitions of

the potential parameters are [1],
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R11 =
σ11
y0

σy0

R22 =
σ22
y0

σy0

R33 =
σ33
y0

σy0

R12 =
σ12
y0

τy0

R13 =
σ13
y0

τy0

R23 =
σ23
y0

τy0

(2.4.22)

With these definitions the yield criteria (2.4.19) can be expressed in potential
parameters. In this project the longitudinal direction of the fiber will be chosen as
the reference direction, resulting in that R11 = RL will be set to 1. It also follows
that the the reference yield stress correspond to σy0 = σ11

y0 = σL
y0. Reduction of

the potential parameters with respect to transverse isotropy is expressed as

R11 = RL = 1

R22 = R33 = RT

R12 = R13 = RLT

R23 = RTT

(2.4.24)

The evolution equation for plastic strain is given by

ϵ̇pij = λ̇
∂f

∂σij

(2.4.25)

For an orthotropic material undergoing isotropic hardening it can be shown
that the plastic multiplier

λ̇ = ϵ̇peff (2.4.26)

with the effective plastic strain rate (denoted equivalent plastic strain rate in
Abaqus) defined as

ϵ̇peff =

√
2

3
ϵ̇pij ϵ̇

p
ij (2.4.27)

The remaining parameters to be determined is then the relation between the
yield stress and plastic strain. The material behavior in the plastic region for
in-plane tensile test directions MD, CD and 45◦ respectively are modelled using
the Ramberg-Osgood relation.

ϵ =
σ

E
+ (

σ

E0
)N (2.4.28)
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The aim is to utilize the same relationship for setting transverse isotropic mate-
rial parameters at the fiber level while striving to minimize the error between the
simulated global stress-strain curve and the data from tensile tests in MD and CD
directions. A power type hardening function also known as the Ramberg-Osgood
relation will therefore be used to capture the fiber hardening characteristics, de-
scribing the relation between the yield stress and plastic strains

ϵp = (
σy

E0

)N (2.4.29)

The relation between yield stress at a given equivalent plastic strain ϵpeff is
inputted as tabular data in Abaqus

σy = σy0 +K(ϵPeff ) (2.4.30)

with
K(ϵPeff ) = (E0ϵ

p
eff )

1/N (2.4.31)

with the reference yield stress σy = σy0 as initial value when ϵpeff = 0. When the
yield stress is equal to the reference yield stress σy = σy0, it marks the the onset
of plastic deformation, indicated by ϵpeff > 0.

To model the fibers as transversely isotropic there are now 6 independent pa-
rameters to be defined. The potential parameters

• RT

• RLT

• RTT

to define the material anisotropy and

• σL
y0

• E0

• N

to define the initial yielding and the hardening function. To reduce the number of
unknowns further RTT is approximated as

RTT =
σ̄TT

τ0
=

√
3

2

σ̄T

σ0

(2.4.32)

where it is assumed that σ̄TT = 1
2
σ̄T .
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2.5 Abaqus Solver

There are primarily two solvers available in Abaqus for solving system equilibrium:
the implicit and explicit solver. Generally the implicit solver is most suitable for
static or quasi-static simulations, where the response of the system evolves grad-
ually over time and events with long duration’s. In such cases the implicit solver
is unconditionally stable meaning that it is independent on the time step cho-
sen. In dynamic simulations, with rapidly changing system or large deformations
the implicit solver may require smaller time steps to accurately capture the dy-
namic behavior of the system. In such cases the explicit solver is more stable and
computationally efficient.

In this project the rate of deformation is sufficiently small for the system to be
analyzed under static equilibrium condition

fint − fext = 0 (2.5.1)

and therefore the implicit solver, ABAQUS/Standard will be used. Displacement
controlled loading will be applied meaning that the applied loads will be adjusted
to maintain the prescribed displacements.

In ABAQUS/Standard, the Static General analysis typically employs Newton’s
method to solve the nonlinear static equilibrium equation implicitly [1]. This
method iteratively computes stresses and strains based on displacements using
constitutive equations. These calculated stresses and strains are then compared
to the applied loads and boundary conditions to update the nodal displacements.
This iterative process continues until the solution converges. For nonlinear prob-
lems, each increment usually requires several iterations to achieve a converged
solution. The convergence is also dependent on factors such as mesh size and
material properties.

Small deformations and an elastoplastic material model will be mainly be con-
sidered in this project and ABAQUS/Standard Static General providing solutions
at static equilibrium implicitly will be employed.
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3 Method- From Paperboard to RVE

The process of transitioning from a physical paperboard to a virtual finite ele-
ment (FE) model is presented. The process consists of image aquisition, voxel
based meshing, assigning material orientations to the elements and calibration
of anisotropic material properties. Moreover, a sensitivity study is performed to
analyze the effects of volume size and image resolution.

3.1 Image Acquisition and Analysis

Images for analysis are acquired with a X-ray Tomograph Phoenix Nanotome M.
Three samples are created by cutting out pieces of the paperboard in MD, CD
and 45◦ as in Figure 6. However, only images from the MD and 45◦ directions
will be used later on. The paperboard used as the basis of analysis in this project
consists of 100% softwood fibers.

Figure 6: Samples of paperboard

All three samples are positioned within a small holder, which is placed onto
a rotating stage inside the tomograph. The setup is shown in Figure 7. Care is
taken to ensure that the distance between the X-ray source and the sample does
not hinder rotation.
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Figure 7: Setup with samples in the industrial nanofocused X-ray CT-scanner
Phoenix Nanotome, available at Tetra Pak in Lund.

Scans with two different pixel sizes, 2µm and 4µm, are performed. The number
of pixels are 3072 in x-direction and 2400 in y-direction, and the distance between
the source and the sample controls the size and resolution of the image. By bring-
ing the sample closer to the source, the pixel size decreases while simultaneously
reducing the size of the captured area. The settings for image acquisition are
presented in Table 4.

Table 4: Parameter settings on X-ray Tomograph

Parameter Value
Timing 500 ms
Average 2
Skip 1
Images 3000
Time 01:27:46

[h:min:s]

Timing represents the time to take one image. Images is the number of images
taken for all three samples and corresponds to the number of angles from which
the images are taken. Average represents the number of pictures taken at each
position, and the final picture is represented by the average of these. To reduce
noise and improve image quality, the averaging is set to two. Skip determines the
wait interval before a new image is taken at each rotation. When skip is set to 1
it waits 1∗timing, i.e the tomograph waits 500ms before taking a picture at each
new rotation. Time represents the total time to finalize the image acquisition.
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The images are imported as Tagged Image File Format (TIF) into the software
MATLAB. 214 stacked 2D images are imported for the 4µm resolution and 321
images for the 2µm resolution. The voxel intensities are mapped to a 2D- matrix
using MATLAB imread- function. A lower value of intensity is represented by a
darker shade of grey, due to less light hitting the detector. A 3D representation of
the sample is reconstructed by stacking the two dimensional images in z-direction,
resulting in a three dimensional matrix. The 3D reconstruction of the paperboard
with 4µm pixel size is presented as 2D slices in all planes in Figure 8.

(a) Slice in XZ-plane.

(b) Slice in YZ-plane.

(c) Slice in XY-plane.

Figure 8: Data from X-ray Tomography presented as slices in different planes.

A histogram of intensity distribution can be plotted. A peak in the histogram
may correspond to a phase or constituent in the structure. Otsu’s method is used
to automatically compute the threshold value used to separate the fibers from the
surrounding matrix. The image is binarised by assigning the pixels with a value
above the threshold, the value one, and the pixels with values below threshold, the
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value zero. Segmentation is validated by comparing the mass of the paperboard
with an estimation of the total fiber mass of the mesh. The mass fraction is
calculated by computing the total weights of the fiber elements in the RVE with
the fiber density approximated as 1.5 g/mm3, against the weight of the scanned
paperboard.

Figure 9: Histogram of intensities in volume and the Otsu threshold value.

3.2 Meshing

A voxel based mesh of the volume is created using MATLAB. This is done by
mapping image coordinates to nodes and elements as Abaqus inp-file format. Bi-
narisation is performed and element sets are created for fibers and the surrounding
matrix. All elements with ones are assumed to be part of fibers, and all elements
with zeros are assumed to be air. The voxel based mesh and the element sets
obtained from segmentation are presented in Figure 10. In addition to the fiber
and void element sets, node sets are created for each side of the volume where
boundary conditions will be applied.
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(a) Reconstructed image of 150x150x30 voxels with MD along horizontal direction.

(b) 150x150x30 mesh with element size 4 µm.

(c) Fiber and void sets highlighted.

Figure 10: Process of creating a finite element mesh and fiber- void element sets.
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3.3 Orientation Study using Structure Tensor Analysis

To produce a finite element model with anisotropic material properties, each ele-
ment have to be assigned a local material direction. The orientations are calculated
using the structure tensor method. Gradients are calculated for each voxel, this is
done with both the Gaussian Kernel method and the Abaqus heat flux method.
To prevent nonphysical boundaries in the model, the gradients are computed over
a larger volume. After the gradient calculations, this volume is cropped to the
region of interest, and the structure tensor is calculated specifically within this
region of interest

The Gaussian Kernel derivative is computed for each voxel using equation
(2.3.5) where σ defines the standard deviation. The surrounding volume around
the averaged voxel is defined by the radius rσ. The equations of the parameters
are given in Table 6 and they are determined in relation to an estimated fiber
radius rf defined in Table 5.

Table 5: Fiber radius approximation.

Parameter Value
rf 8.5µm

Table 6: Parameters included in the gradient calculation using Gaussian Kernel
method.

Parameter Expression
σ

rf√
2

rσ rf

The other approach for determining the gradients of the intensity field using
Abaqus transient heat equation, is also evaluated. To map the intensities as tem-
peratures, a predefined temperature field is created. As the field must be defined
at the nodes, an average intensity is computed of the adjacent elements. To make
sure that Abaqus solves the intended equation (2.3.11), a transient step of one
second is created and the density ρ and specific heat c from equation (2.3.9), are
set to one. The relation between the conductivity k and the noise scale σ are set
as presented in equation (2.3.25). The input parameters are summarized in Table
7.
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Table 7: Material and step parameters for gradient calculations using Abaqus tran-
sient heat equation.

Parameter Value
Density, ρ 1
Specific Heat, c 1
Conductivity, k 1

2
σ2 = 1

4
r2f

Time, t 1
Number of increments 1

To compute the gradients in Abaqus, an input file containing the voxel based
mesh with element type DC3D8, a predefined temperature field, a conductive
material, and step definition is written and imported to Abaqus CAE. A job is
submitted and heat flux vector corresponding to the intensity gradient, is saved
as a report (rpt) file. The report file is then imported into MATLAB to be used
for the final orientation computation.

The structure tensor is calculated from the gradients for each element within
the region of interest with equation (2.3.26). The filter radius rρ is set equal to
the fiber radius. The standard deviation of the kernel is defined by the integration
scale ρ and the volume considered is determined by the filter radius rρ .

Table 8: Parameters included in the orientation analysis.

Parameter Expression

ρ 2σ =
√
2rf

rρ rf

The filtering parameters in Tables 6 and 8 are validated based on the accuracy
of the gradients and orientations. This is first done by creating fibers in MATLAB.
The fibers are placed in different directions, diagonally, and crossing each other
to understand the influence of the parameters. One example of a created fiber is
presented in appendix (section 6.2). When the algorithm accurately captures the
fiber directions for the created fiber a test is also performed on a small volume of
the real CT-data. The value of σ was suggested by equation (2.3.1) and the value
of ρ was chosen as half of what was suggested in (2.3.28). Both of the filtering
radius, rσ and rρ, are set equal to the fiber radius to be as small as possible to
reduce computation cost but large enough capture intensity change at the fiber
boundaries.

When the parameters are validated the structure tensor is computed for each
voxel at a larger volume. The eigenvector corresponding to the smallest eigenvalue,
considered the fiber longitudinal direction, is written as a discrete orientation field
to a Abaqus inp-file. The input file also contains the voxel based mesh with
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element type C3D8, the element sets corresponding to fiber- and void elements
and the node sets. The input file is then imported to Abaqus to visualize the
orientation vectors. The MD/CD ratio is computed and used to ensure that the
distribution of the cropped out volume lies within a reasonable range. The ratio is
approximation based on considering the ratio of elements with orientation vectors
closest to MD and CD respectively.

Figure 11 shows the final results from gradient calculations using Gaussian
Kernel filtering and the corresponding fiber orientations.

(a) Intensity gradients.

(b) Fiber orientations

Figure 11: Gradients of intensities computed with Gaussian Kernel method, and
the corresponding fiber directions for a 2D cut.

The gradients and orientations for the whole volume are presented in Figure
12. Figure 12c is the final model used for material calibration.
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(a) 3D gsradients (b) Gradients, 2D cut

(c) 3D orientations (d) Orientations, 2D cut

Figure 12: Gradients of intensities computed with Gaussian Kernel method, and
the corresponding fiber directions for full volume.

The orientations from gradients obtained using Abaqus transient heat equation
are presented in Figure 13
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(a) Intensity gradients.

(b) Fiber orientations.

Figure 13: Gradients of intensities using Abaqus heat flux vector and the corre-
sponding fiber direction for a 2D cut.

The difference in the gradient plots is mainly due to that in Figure 11a the
gradients are plotted as material orientations, while in Figure 13a they are plotted
as heat flux vectors. Figure 14 presents the gradients and orientations for the full
volume when using Abaqus transient heat equation.
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(a) 3D gradients (b) Gradients, 2D cut

(c) 3D orientations (d) Orientations, 2D cut

Figure 14: Gradients of intensities computed with Abaqus transient heat equation,
and the corresponding fiber directions for full volume.

3.4 Material Calibration

Two different materials are set for the finite element model, following the ele-
ment set fiber and void subdivision. The void is represented as elastic with a
low modulus of elasticity of 10 kPa to closely resemble air. The fibers are mod-
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eled as elasto-plastic transversely isotropic and its material parameters are to be
calibrated.

The calibration process involves performing two tension test simulations, one
in the MD and one in the CD, to calculate the error function. Subsequently,
this error is utilized within the Python minimize function to optimize the material
parameters. The global response from varying the material parameters is obtained
from equations (2.4.3) and (2.4.4), where F is the sum of the reaction forces on the
node set subjected to displacement controlled load and ∆L is the displacement.
The final parameters are validated against a tension test in 45◦ direction. The
elastic and plastic material calibration are treated separately. Experimental yield
points are manually determined and constitute the strain delimiter between the
elastic and plastic error computation.

The original experimental data consists of multiple tensile tests in MD, CD
and 45◦ directions. The curves from which the calibration is conducted are chosen
manually and are plotted in Figure 15.

Figure 15: Experimental data from multiple tensile tests and curves chosen for
material calibration.

3.4.1 Elastic Calibration

Firstly, the elastic modulus, EL in the fiber direction and ET in transverse direc-
tion, are calibrated to the experimental curve by modelling the fibers as elastic.
The error is calculated as the absolute difference between the elastic modulus
obtained from the simulated data and the experimental data, both derived from
linear regression in the MD and CD directions. Using the Nelder-Mead Simplex

33



algorithm in Python, iterations are performed to find the elastic modulus resulting
in an error considered small enough. EL and ET are then set as fix throughout
the rest of the calibration process.

3.4.2 Plastic Calibration

The transverse isotropic behavior in the plastic region is defined using the potential
parameters (2.4.21) in Hill plasticity model. The yield stress at the corresponding
plastic strain is tabulated according to Ramberg-Osgood relation (2.4.30). In
the plastic region the error is computed as difference between the interpolated
experimental stresses at specified strains.

As the material model is transverse isotropic and 1-direction is considered as
the reference direction the three potential parameters to be determined are R22,
R12 and R23. In equation (2.4.23), these parameters are denoted as RT , RLT and
RTT respectively. From the approximation in equation (2.4.32), R23 is calculated,
leaving R22 and R12 as the potential variables to be calibrated.

There are multiple ways to perform the plastic calibration. One of the methods
suggested in this report is to first calibrate σy0, N and E0 to the MD-curve and
then set those values as the initial guess when calibrating MD and CD simultane-
ously. The other approach is to bypass this step and directly calibrate MD and CD
simultaneously. Which method is most time efficient depend on the initial guess.
Calibrating MD separately involves setting R22 and R12 reasonably to accurately
represent the relationship between CD and MD. If these parameters are not prop-
erly set, the initial guess from the MD simulation may not effectively represent the
CD curve in subsequent calibration steps. However, if the initial guess for these
values is good, a separate MD calibration can provide a solid starting point for
simultaneous calibration in a relatively short time frame.

The efficiency of the simultaneous calibration relies on having a good initial
guess for all parameters. However, both methods can operate entirely automat-
ically without requiring manual adjustments, given that the time taken to reach
convergence is not a critical factor. The choice between the methods is based
on personal preference. A scale factor is also included to determine the order of
magnitude that each parameter should be changed during calibration.

3.5 Sensitivity Study

The ability of the calculated orientations to represent the macro characteristics is
crucial for ensuring the validity of the model.

A comparison of the two orientation methods is conducted. The gradients
computed using Gaussian Kernel filtering is then chosen in further sensitivity
studies analyzing the effects of voxel size and model volume to study if the RVE,
defined as the smallest volume that effectively captures the macro-level behavior
of the paperboard, can be identified. The volumes and voxel sizes studied are
presented in Table 9. The volumes in the same column will be used for analyzing
impact of volume size, while models in the same row will be used to study the
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influence of voxel size. The reference volume that will later be used for material
calibration is marked in red.

Table 9: Volumes that will be used in sensitivity study to analyze the influence of
size and resolution.

Volume size [mm] 2µm 4µm 6µm 8µm
0.12x0.12x0.12 X

(27,000)
0.16x0.16x0.12 X

(50,000)
0.23x0.23x0.12 X

(100,000)
0.33x0.33x0.12 X

(1,600,000)
X
(200,000)

X
(90,000)

X
(25,000)

0.4x0.4x0.12 X
(300,000)

X
(97,000)

X
(37,500)

0.52x0.52x0.12 X
(500,000)

0.61x0.61x0.12 X
(700,000)

0.69x0.69x0.12 X
(900,000)

3.5.1 Material Orientations and Calibration

The two finite element models obtained from the two image gradient approaches
are compared. The ratio of fiber alignment in MD/CD are studied as well as
the simulation tensile test response. This is achieved by calibrating the mate-
rial parameters on the reference volume, obtained with Gaussian Kernel filtered
gradients, and then compare the response after applying these same material pa-
rameters to the RVE with orientations computed using the Abaqus transient heat
equation.

To verify the material, the calibrated parameters are applied to a volume where
the fibers are aligned in 45◦ direction. Important to keep in mind is that the 45◦

volume comes from a different sample. It is therefore not possible to get the exact
same fiber alignment in this test as for the calibrated volume used in MD and
CD testing. On the other hand it is possible to make sure that the mass and the
orientation ratio are approximately equal.

A simple ideal plastic material model for the fibers is simulated to determine
its accuracy in capturing the mechanical behavior of the paperboard, using the
potential R23 as a variable instead of hardening parameters. Additionally, large
deformations are simulated to investigate the differences in results between small
and large deformations.

35



3.5.2 Voxel Size

As reducing the voxel size highly affects the computational cost it is of interest to
study at which voxel size a physically plausible result of the model is obtained.
To be able to draw a conclusion, different voxel sizes are simulated with con-
stant material parameters. To make sure that the exact same fiber composition is
studied, the 2µm image obtained from the CT-scanning is used as reference. By
binning the voxels together using MATLAB imresize, lower resolution images
can be obtained. The voxel sizes are studied on the volumes 0.33x0.33x0.12 mm
and 0.4x0.4x0.4 mm as seen Table 9.

3.5.3 RVE Size

Different volume sizes are with constant voxel size, 4µm are studied. The simu-
lations conducted in the study are given in the column corresponding to 4µm in
Table 9. The volumes are obtained by expanding and shrinking about the same
center point. An additional study where the reference volume size is moved to dif-
ferent regions is also performed. The positions examined include volumes located
immediately adjacent to the reference volume on the right side and above. It also
includes a volume at a random position, further away from the reference volume.
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4 Results

Results from the development of a Finite Element Model, material calibration and
sensitivity studies are presented in tables and figures.

4.1 FE Model

The final Finite Element Model is presented in the following section. Intensity
gradients are computed and fibre orientations are assigned to the elements. In
Figures 16 and 17 a cross section of the mesh with gradients computed with the
two different filtering methods are presented. Observe that the difference in the
gradient plots is mainly due to that in Figure 16, the gradients are plotted as
material orientations, while in Figure 17, they are plotted as heat flux vectors. The
gradients at the boundaries differ. The gradients plotted as heat flux vectors are
plotted over a larger volume, while the Gaussian kernel gradients are plotted within
the region of interest. To avoid non-physical boundary conditions the orientations
are only determined based on gradients within the regions of interest.
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(a) 2D cut with Gaussian Kernel gradients.

(b) 2D cut zoomed in.

Figure 16: Gradients of intensities computed with Gaussian Kernel filtering
method. 38



(a) 2D cut with Abaqus heat flux gradients.

(b) 2D cut zoomed in.

Figure 17: Gradients of intensities obtained with Abaqus transient heat simulation.39



In Figures 18 and 19, a cross section of the resulting element orientations
computed from the different gradients are presented.

(a) 2D cut with orientations from Gaussian Kernel gradients.

(b) 2D cut zoomed in.

Figure 18: Orientations computed from intensity gradients given by Gaussian Ker-
nel filtering method.
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(a) 2D cut with orientations from heat flux vectors.

(b) 2D cut zoomed in.

Figure 19: Orientations computed from intensity gradients given by Abaqus tran-
sient heat simulation.

The orientations observed in the figures appear to be visually almost identical.
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4.2 Material Calibration

The reference volume for which the material parameters are calibrated, measures
400x400x120µm with a pixel size of 4µm, totaling 300,000 elements. The im-
age gradients are computed with Gaussian Kernel method. The simulations are
performed with Abaqus Standard- small deformations and element type=C3D8.
As a reminder, the mass fraction is calculated by computing the total weights of
the fiber elements in the RVE with the fiber density approximated at 1.5g/mm3,
against the weight of the scanned paperboard. The MD/CD ratio is an approxi-
mation based on considering the ratio of elements with orientation vectors closest
to MD and CD respectively. Since it is only an approximation, it does not pro-
vide detailed information about the precise fiber alignment. The properites on the
reference volume are presented in Table 10.

Table 10: Properties on reference volume used for material calibration.

Parameter Measured value
Volume size [mm] 0.4x0.4x0.12
Volume size [pixels] 100x100x30
Pixel size 4 µm
Number of elements 300,000
MD-CD ratio 0.62 : 0.38
Mass fraction 0.9635
Ratio length to fiber radius, δ 47

The final calibrated values are displayed in Table 11 and the corresponding
stress-strain curve is presented in Figure 20.
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Table 11: Calibrated material parameters.

Parameter Small deformations
Elastic material parameters

Elastic modulus, fibers, E1 = EL 48.4 GPa
Elastic modulus, fibers, E2 = ET 3.99 GPa
Elastic modulus, air, Eair 10 kPa
Poissons ratio, fibres,
ν12 = ν13 = ν23

0.3

Poissons ratio, air, νair 0.3
Plastic material parameters

Yield stress, σy0 519.6 MPa
Hardening modulus, E0 1.98 GPa
Hardening exponent, N 1.25
Potential parameter, R12 0.36
Potential parameter, R22 0.04

Figure 20: Stress-strain curves corresponding to the calibrated values presented in
Table 11.
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Figure 21: Hill yield surface in fiber longitudinal-transversal plane.

Findings:

• The derived material properties indicate a longitudinal elastic modulus of
approximately 50 GPa and a transverse elastic modulus of about 4 GPa.

• The elastic modulus in the longitudinal direction is slightly higher than pre-
vious findings, in Table 1. The ratio of transverse to longitudinal modulus
aligns with a suggested 10% relation found in Table 2.

• The yield strength in the fiber’s longitudinal direction is estimated to be
around 500 MPa, while in the transverse direction it is approximately 20
MPa.

• The stress-strain curve does not perfectly match experimental data. It can
be due to assumptions, initial guess and the chosen material model.

The von Mises stress distributions for a cross section at the maximum strains
for both MD and CD are presented in Figures 22 and 23 respectively. von Mises
stress does not include anisotropy, but might give an indication of where the higher
stresses can be observed.

44



Figure 22: Stress distribution at the maximum strain of tensile test in MD (hori-
zontal direction). Stresses are given in MPa.

Figure 23: Stress distribution at the maximum strain of tensile test in CD (vertical
direction). Stresses are given in MPa.

From the figures above it is observed that the model experiences shear stresses
and strains. More figures of the whole deformed volume are therefore presented
for tensile in MD and CD.
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Figure 24: Deformed volumes from tensile test simulations in MD.

Figure 25: Deformed volumes from tensile test simulations in CD.

The stress-strain response for a simulated tensile tests of a single fiber element
with calibrated material parameters is presented in Figure 26.
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Figure 26: The blue and orange curves represent the stress-strain response of single
fiber tensile simulations in the longitudinal and transverse directions, respectively,
using the calibrated values presented in Table 11. The experimental data correspond
to experimental tension tests performed on paperboard.

Findings:

• The longitudinal E-modulus of the fiber is about ten times greater than the
paperboard E-modulus in MD, measuring approximately 50GPa and 5.5GPa
respectively. In contrast, elastic responses in transverse fiber direction and
paperboard CD have closer values, around 4GPa and 2.7GPa, respectively.

In Figure 27 a validation simulation with a 45 degree tension test is presented.
Note that the 45 degree sample used for validation was cut out from a different area
of the paperboard. MD/CD ratio and mass fraction i therefore used as comparison.

Table 12: Properties of volumes in MD and 45◦ image

Method MD-CD ratio Mass fraction
MD image, Gaussian Kernel gradients 0.60 : 0.38 1.004
45◦ image, Gaussian Kernel Gradients 0.63 : 0.37 0.9712
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Figure 27: Validation of calibrated material parameters with a with 45◦tension
test.

Findings:

• Even though no calibration were performed on 45◦, the validation simulation
gave a relatively good fit. This suggests that the calibrated parameters are
representative for the tested paperboard.

• The results should be interpreted with caution because the 45◦ test is per-
formed on a different volume and the stress-strain performance is dependent
on region of extraction.

4.3 Sensitivity Study

In the following section results from sensitivity studies are presented to examine
the impact of the gradient method, volume-size and voxel-size (resolution). The
material parameters in the simulations are held constant, as specified in Table
11. The reference image, with 4 µm voxels is used when comparing the gradient
methods. When studying volume and resolution a 2 µm image with binning to 4
µm voxel size is the new reference.

4.3.1 Material Orientation

In Figure 28 the resulting stress-strain curves obtained for identical volumes, with
orientations computed using Abaqus- heat flux gradients and those computed using
Gaussian-Kernel gradients, are shown. The MD/CD ratios are presented in Table
13. As stated in the above section, the ratio is only an approximation to give an
indication on the distribution of fibers, it does not provide detailed information
about the precise fiber alignment.
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Table 13: MD-CD ratio of orientations computed from the two different gradient
methods.

Method MD-CD ratio
MD image, Gaussian Kernel gradients 0.62 : 0.38
MD image, Abaqus heat equation gradients 0.59: 0.41

Figure 28: Comparison of stress-strain response when the gradients are computed
with Gaussian Kernel filtering method and Abaqus Heat Flux simulations.

Findings:

• A slight deviation between the orientations and the macromechanical behav-
ior obtained from the different gradient methods is observed.

• The deviation is likely due to the fact that, in establishing the relationship
between the filtering parameters (2.3.25), approximations were made leading
to a small difference in the final orientation calculations.

4.3.2 Impact of Volume Size

The influence of volume size on the RVE is tested. All volumes have the same
centerpoint and thickness, but vary in side lengths. The resolution is kept constant
at 4µm. The reference volume for which the material parameters were calibrated
is marked in red in the the Table 14. Volume number 1 is the largest volume
tested while number 8 is the smallest volume.
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Table 14: Volume sized tested. The reference volume is marked in red.

Volume Size [mm] Resolution Elements MD-CD ratio Mass frac
1 0.69x0.69x0.12 4 µm 900.000

(173x173x30)
0.60 : 0.40 0.9931

2 0.61x0.61x0.12 4 µm 700.000
(153x253x30)

0.60 : 0.40 0.9859

3 0.52x0.52x0.12 4 µm 500.000
(129x129x30)

0.61 : 0.39 0.9923

4 0.4x0.4x0.12 4 µm 300.000
(100x100x30)

0.62 : 0.38 0.9635

5 0.33x0.33x0.12 4 µm 200,000
(82x82x30)

0.60 : 0.40 0.9896

6 0.23x0.23x0.12 4 µm 100.000
(58x58x30)

0.58 : 0.42 0.9927

7 0.16x0.16x0.12 4 µm 50,000
(41x41x30)

0.53 : 0.47 1.0114

8 0.12x0.12x0.12 4 µm 27,000
(30x30x30)

0.5 : 0.5 1.0157

The first sensitivity study on size is performed by comparing the response of
the reference volume with one smaller (volume 6) and three larger (volume 1-3)
volumes.
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Figure 29: Stress-Strain comparison for volumes larger and smaller than reference
volume. Volume sizes are given in Table 14.

As the response showed no clear dependence on volume size, a similar study
comparing the reference volume with only smaller volumes (volume 5-8) is per-
formed.

Figure 30: Stress-Strain comparison for volumes smaller than reference volume.
Volume sizes are given in Table 14.
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Findings:

• It is suggested that Volume 5 is a Representative Volume Element for the
chosen center point. Volume 5 was the smallest volume to give a response
closely aligned with the larger volume’s responses.

• To capture the full range of deviation more simulations with volumes ex-
tracted from different locations should be performed.

• To truly determine when a volume is representative an acceptable level of
deviation in the stress-strain curves should be defined.

Table 15: Data on volume 5 in Figure 30, which is the smallest volume indicating
mechanical representative behavior.

Parameter Measured value
Volume size [mm] 0.33x0.33x0.12
Volume size [pixels] 82x82x30
Pixel size 4 µm
Number of elements 200,000
MD-CD ratio 0.60 : 0.40
Mass fraction 0.9896
Ratio length to fiber radius, δ 38.8

Besides maintaining consistent properties as its size increased the RVE- defini-
tion also states that the RVE should be independent on the location of extraction.
The response from different location of the paperboard is therefore investigated.
Volume 4 in Table 14 is used as a reference. Two volumes are extracted from
the nearest adjacent locations to the reference volume placement. One volume is
positioned directly above the reference placement, and another to its right. The
third volume is randomly placed at a further distance from the reference.
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Table 16: Different placements of the reference volume. The positions are given
with respect to the reference placement marked in red.

Position Resolution Elements MD-CD ratio Mass fraction
Reference
placement

4 µm 300.000
(100x100x30)

0.62 : 0.38 0.9635

Right
(adjacent)

4 µm 300.000
(100x100x30)

0.59 : 0.41 0.9850

Up
(adjacent)

4 µm 300.000
(100x100x30)

0.64 : 0.36 0.9750

Non-Adjacent 4 µm 300.000
(100x100x30)

0.63 : 0.37 0.9536

Figure 31: Volumes 4µm.

Findings:

• The reference size is dependent on location of extraction.

• Results show that the RVE must be larger than the reference volume (volume
4) to be independent of the location of extraction.

4.3.3 Impact of Voxel Size

In this section the impact of voxel size is explored by studying how a degraded
resolution affects the simulated global stress-strain behavior. Volume number 4
with 4µm voxel size is used as the reference. The 2µm resolution is not included in
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this comparison as the simulation were found to be too computationally heavy and
would have taken several days to complete. The resolutions tested for the reference
volume, corresponding number of elements, MD/CD ratio and mass fraction are
given in Table 17.

Table 17: Voxel sizes tested on reference volume size. The reference resolution is
marked in red

Voxel Size Size [mm] Elements MD-CD ratio Mass fraction
2 µm - - - -
4 µm 0.4x0.4x0.12 300,000

(100x100x30)
0.62 : 0.38 0.9674

6 µm 0.4x0.4x0.12 97,000
(68x68x21)

0.59 : 0.41 1.0060

8 µm 0.4x0.4x0.12 37,500
(50x50x15)

0.59 : 0.41 1.0225

Images of the same cross section but for the different resolutions are visualized
in Figure 32. Stress-strain response from simulating tensile tests on the models
are then revealed in Figure 33.

Figure 32: 2D cuts of tested volume with resolution 4, 6, and 8 µm.
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Figure 33: Different resolutions tested on the reference volume.

To include a 2µm resolution, the resolutions listed in Table 18 were tested on
a smaller volume (volume 5 in Table 14). The images of the cross sections can be
found in Figure 34, and the stress-strain response is shown in Figure 35.

Table 18: Voxel sizes tested on volume 5 in Table 18.

Voxel Size Size [mm] Elements MD-CD ratio Mass fraction
2 µm 0.33x0.33x0.12 1,600,000

(164x164x60)
0.61 : 0.39 0.9730

4 µm 0.33x0.33x0.12 200,000
(82x82x30)

0.60 : 0.40 0.9896

6 µm 0.33x0.33x0.12 90,000
(60x60x25)

0.58 : 0.42 1.0128

8 µm 0.33x0.33x0.12 25,000
(41x41x15)

0.58 : 0.41 1.0175
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Figure 34: 2D cuts of tested volume with resolution 2, 4, 6, and 8 µm.

Figure 35: Different resolutions tested on volume 5.
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Findings:

• The resolution of the images significantly affects the response of the RVE.

• The difference between the distinct structures of the 2D cuts in Figure 35
for voxel sizes of 2µm and 8µm may be attributed to the binning technique
used to achieve lower resolution images or simply to the larger voxel size.

• The resolution highly affects computational time. Computational time for
one function call, including two simulations, with 300 thousand elements is
approximately 2 hours, while for 1.6 million elements it is three days.

4.4 Material Calibration Large Deformations

After conducting the initial calibration, the optimized parameters presented in
Table 11 were utilized as the initial guess for a large deformation simulation. The
E-modulus for the air was increased gradually from 0.01MPa until the simulation
successfully converged. The E-modulus were then 15MPa. The initial simulation
is presented in Figure 36.

Figure 36: Intial stress-strain relation for large deformations with Eair = 15MPa

The calibration were then allowed to proceed. The calibrated parameters are
presented in Table 19 and the corresponding stress-strain curve is presented in
Figure 37.
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Table 19: Calibrated values of material parameters

Parameter Large deformations
Elastic material parameters

Elastic modulus, fibers, EL 49.6 GPa
Elastic modulus, fibers, ET 3.78 GPa
Elastic modulus, air, Eair 15 MPa
Poissons ratio, fibres,
ν12 = ν13 = ν23

0.3

Poissons ratio, air, νair 0.3
Plastic material parameters

Yield stress, σy0 483.4MPa
Hardening modulus, E0 2.09 GPa
Hardening exponent, N 1.295
Potential parameter, R12 0.38
Potential parameter, R22 0.04

Figure 37: Calibrated curve, large deformations with Eair = 15MPa

Findings:

• Simulations with large deformations are highly unstable at the current stiff-
ness of air (Eair = 15MPa). To achieve stability in the calibration, the
elastic modulus for air would likely need to be increased further.
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• The disparity between the curves in Figure 36, with large deformations,
and Figure 20, with small deformations, is minimal. The difference can
be both due to increased elastic modulus of air and due to enabling large
deformations.

4.5 Material Calibration- Ideal Plasticity

Because the calibrated material parameters with Ramberg-Osgood hardening func-
tion, were already optimized to closely approximate ideal plasticity, the decision
was made to conduct a simulation using an ideal-plastic material model, with
R23 treated as a variable. For clarification, while the initial elasto-plastic simula-
tion were conducted with five variable parameters R12, R22, N , E0, σy0 and R23

computed as a function of R22, the ideal- plastic simulations have four variable
parameters to be calibrated R12, R22, R23, and σy0. The initial guess for the ideal
plastic simulation were set as the calibrated values presented in Table 20.

Figure 38: Comparison of the reference simulation with the initial simulation using
a ideal plastic material model.

The calibration were then allowed to proceed. The final calibrated parameters
are presented in Table 20 and the corresponding stress-strain curve is presented
in Figure 39.
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Table 20: Calibrated values of material parameters

Parameter Small deformations
Elastic material parameters

Elastic modulus, fibers, EL 48.4 GPa
Elastic modulus, fibers, ET 3.99 GPa
Elastic modulus, air, Eair 10 kPa
Poissons ratio, fibres,
ν12 = ν13 = ν23

0.3

Poissons ratio, air, νair 0.3
Plastic material parameters

Yield stress, σy0 547.5 MPa
Potential parameter, R12 0.41
Potential parameter, R22 0.04
Potential parameter, R23 0.03

Figure 39: Calibrated material parameters for fibers with ideal plastic material,
with R23 treated as a variable.

Another simulation with ideal plastic material model is performed with the
same values of the calibrated parameters as in Figure 39 except for R23 that is set
to the approximated fixed value used in previous calibrations (equation (2.4.32)).
For clarification, the simulations have three variable parameters to be calibrated
R12, R22, and σy0.
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Figure 40: Calibrated material parameters for fibers with ideal plastic material
model, with R23 approximated.

Findings:

• The ideal plastic material model has been shown to fit the experimental data
very well.

• A minor difference in mechanical response can be observed between calibrat-
ing and approximating R23.

• By reducing the number of unknown plastic parameters, time for calibration
can be reduced.
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5 Conclusion and Future Work

Two methods for computing filtered gradients from a gray scale image have been
used. The first method inputs intensities as a predefined temperature field in
Abaqus and filter by performing a heat transfer simulation during 1 second. The
second filtering method is performed by computing and filtering the gradients with
a Gaussian Kernel method. The advantage of using the Abaqus heat flux method
is the possibility to visualize the gradients and determine whether the result is
reasonable directly in Abaqus CAE. On the other hand, the establishment of a
two different inp-files for the gradient and orientation computation, together with
the manual work required using Abaqus CAE computing the gradients is not very
time efficient. The fact that the Abaqus method requires more manual work, also
facilitates the occurrence of errors.

The resulting stress-strain curve comparing the two gradient methods in Figure
28 showed a slight difference. When the establishment of the relation between the
filtering parameters (2.3.25) was performed, it was assumed that the Gaussian
Kernel integral was calculated over a infinite volume. In the actual computation
a limitation radius was chosen and set equal to the fiber radius. The intensity
at a point x about a point x0 in space was also approximated by a second order
Taylor expansion (2.3.13), leading to a truncation error. Once it was established
that the computed orientations only differed slightly, the automatic MATLAB
computation was used for all volumes in this project.

Since material parameters are defined locally for the fibers, which can orient
in multiple directions, the global MD, CD, and ZD—the calibration process be-
comes highly complex. Changing one parameter will affect the macro mechanical
behavior in both MD and CD. This makes it difficult to use a gradient- based
optimization methods without finding local minima. However, using a simplex
method (Nelder-Mead was used in this study), with multiple parameters to be
optimized, is likely to result in numerous function calls. Besides the number of
function calls, the calibration time is also heavily reliant on simulation time and,
consequently, the number of elements used.

The primary challenge with the material calibration is the amount of parame-
ters to be calibrated on little data. With five independent parameters calibrated
to fit two experimental curves, different combinations can result in similar errors.
This makes the calibration very much dependent on the initial guess. However,
more work can be put into testing different minimizing algorithms to possibly
speed up the convergence. As the calibrated material parameters were optimized
to closely approximate ideal plasticity one suggestion to reduce the number of un-
knowns and speed up convergence is to simulate the fibers as ideal-plastic. Two
tests were performed, one where R23 was set as variable (Figure 39) and one
where R23 approximation (equation (2.4.32)) was used (Figure 40). Both calibra-
tions were found to give a relatively good fit to the experimental curves. To truly
determine which method is able to give the best fit further calibrations have to be
performed. Ideally, R23 approximated is good enough and can be used to reduce
the number of variables to be optimized, from five parameters (as used in the
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Ramberg-Osgood model), to three, thereby speeding up the calibration process.
A natural progression in further investigating the micro mechanical behavior

on paperboard would be to include fiber bindings into the model. Further in-
vestigation is also needed to understand the impact of the parameters that have
been approximated and set as dependent in this study. Deeper knowledge in how
individual fibers behave and interact may result in a more precise initial guess or
an improved plasticity model. The 45 degree validation (Figure 27) can be seen as
indication that the approximated parameters used in this study were reasonable.

Even though the macroscopic data of the paperboard can be modelled well us-
ing the Ramberg-Osgood relationship and the approximations used in this report,
it may be worth investigating whether other material models match the behavior
of the fibers better. The main problem with this is that it is difficult to find in-
formation on individual fiber characteristics. One example of an approximation
that was made in this study was setting the shear modulus GTT equal to GLT . A
discussion that occurred was whether or not this was a proper estimation and if it
would have been more accurate to set GTT = 1

2
GLT . A simulation with the later

mentioned relation was performed and is found in appendix Figure 44 and 45.
The calibration process for large deformations share similar parameters with

simulations conducted under small deformations (Table 11 and 19). However,
large deformation simulations have challenges due to its reduced stability and
sensitiveness to the choice of material parameters, especially the elastic modulus of
air. In this study, the elastic modulus of air was increased gradually until the large
deformation simulation succeeded. The elastic modulus of air Eair is still relatively
small compared to the elastic modulus of the fibers (about 300 times smaller than
CD and 3000 times less than MD) and did not seem to have a large influence on
the material behavior. Further effort is required to achieve model stability when
large deformations are enabled, and more studies are necessary to examine how
the structure is influenced by large deformations. Our findings suggest that it
is advantageous to initially calibrate with small deformations enabled, and then
activate the large deformation setting and fine- tune the parameters to reduce the
risk of simulation errors during calibration.

Results from investigating the influence of volume sizes, presented in Figure
29, show a minor dependency. Another comparison with smaller volume sizes is
therefore performed. Results from Figure 30 show that volume number 5 is the
smallest volume indicating representative mechanical behavior. The ratio of length
to fiber radius δ for volume 5 is 38.8, and falls within the same range as the values
used in previous studies, presented in Table 3. Calculating the exact number of
fibers using this voxel-based approach is difficult since the fibers are not distinctly
separated. However, a rough estimate suggests there are around 150-250 fibers,
which is relatively high compared to the values from previous studies.

The definition of an RVE is, apart from being size independent, that it should
be statistically independent of the location from which the sample is extracted.
The results from Figure 31 show that the paperboard is inhomogeneous on the scale
investigated in this report. The RVE must be larger than the reference volume
(volume 4) to capture statistically representative properties, and be independent
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on location of extraction. If the material is highly inhomogeneous, a large volume
is needed which will lead to heavy computations. However, if the goal is to capture
local material characteristics, expanding and contracting around the same central
point can be enough to establish the required RVE size. Result in Figure 30 show
that volume 5 is large enough to be considered an RVE for the current point of
extraction. Moreover, the acceptable level of deviation in the stress-strain should
be defined to determine when the volume is truly representative.

Two different volumes were employed to investigate the impact of voxel size.
The results are found in Figures 32 and 34. The findings indicate that resolution
significantly influences the RVE. In order to conduct tension tests on identical
volumes with varying resolutions, image quality was adjusted by binning the voxels
from the original 2 µm scans using MATLAB imresize function. However, the
2D cross-sectional representations of the binned images do not indicate identical
structures (Figure 32 and 34) , particularly noticeable with the 8 µm resolution.
To further explore the influence on voxel-size, the influence of voxel-sizes should
be examined by scanning the exact same volume, with different resolutions, rather
than using binning- techniques. Although two scanning resolutions were available
(2 µm and 4 µm), there were some challenges with accurately cropping the exact
regions of interest from the stacks, why the decision was made to resize the image
in the region of interest using MATLAB.

Results from the 4µm resolution volumes show that the Young’s modulus of
fibers in the longitudinal direction EF is approximately 50 GPa, slightly higher
than findings from previous studies (Table 3) but still within the same order of
magnitude. The Young’s modulus in the transverse direction, ET , is about 4 GPa.
This aligns well with the assumption that the elastic modulus in the transverse di-
rection is typically modeled as 10 percent of the elastic modulus in the longitudinal
direction. Paperboard consists of fibers that have been mixed and stirred during
the paper-making process. Our finding shows that the RVE is smaller than a full-
length untreated fiber, typically few millimeters long, and therefore the results
from uniaxial tensile tests on full-length individual fibers treated differently may
not be directly comparable with our results. The same applies to fiber stiffness’s
that have been estimated based on fiber composites that consists of other fibers
or have gone thorough a different process. For the plastic region, it was rather
difficult to find information about fiber characteristics. Our simulations produced
the best fit when R22 was approximately 0.04, suggesting that the fiber undergoes
plastic deformation at a lower stress level in the transverse direction.

A continuation of this project would involve including periodic boundary con-
ditions into the RVE, meaning that the RVE is assumed to repeat periodically
in all directions. The use of periodic boundary conditions could allow for smaller
volumes as a result of mitigating introduction of inconsistencies at the boundaries.
With periodic boundary conditions applied, the RVE would represent an infinite
material, more closely resembling the bulk of the material. However, due to the
already wide scope of this project and the limited time available, combined with
our inexperience with Abaqus, we concluded that implementing periodic boundary
conditions was not a priority for this project.
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terial science: Application of x-ray tomography. Comptes Rendus Physique,
11(9):641–649, 2010. doi:https://doi.org/10.1016/j.crhy.2010.12.003.

[14] Development Engineering Tetra Pak Laurence Mott, Exec-
utive Vice President. Making sustainable progress. 2021.
URL https://www.tetrapak.com/about-tetra-pak/stories/

innovating-towards-sustainable-food-package.

[15] S.G. Lekhnitskii. Anisotropic Plates. Gordon and Breach Science Publisher,
1968.

[16] Kang Li, Xiaodong Wu, D.Z. Chen, and M. Sonka. Optimal surface seg-
mentation in volumetric images-a graph-theoretic approach. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 28:119–134, 2006.
doi:10.1109/TPAMI.2006.19.
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6 Appendix

6.1 Workflow

A systematic workflow for going from X-ray scanned images of paperboard to a Fi-
nite Element Model including calibrated material properties of fibers are presented.
The software used for gradient and orientation computations includes MATLAB
and Abaqus, with the use of Abaqus being manual. Material calibration is per-
formed using a Python script that automatically submits jobs to Abaqus.

Figure 41: The overall workflow for transforming X-ray images to a Finite element
model

A more detailed wokflow of the material calibration process is included. The
workflow is performed automatically but require manual inputs and decision on
whether the optional calibration should be included.
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Figure 42: Process for material calibration

6.2 Fiber Replication

A fiber replication created with MATLAB and used to validate the effects of
parameters used in the orientation analysis.
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(a) Fiber in xy-plane (b) Fiber in xz-plane

Figure 43: The created ideal fibre for validating filtering parameters.

6.3 Effect of Changing Shear Modulus, GTT

A test to analyze the effects of shear modulus estimation, GTT , also denoted G23,
was performed. No significant difference was observed when GTT was set to half
of what was used in the initial calibration where GTT was set equal to GLT = G12.
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Figure 44: Effects of shear modulus GTT = G23 on the reference volume in the
elastic region

Figure 45: Effects of shear modulus GTT = G23 on the reference volume in elasto-
plastic region.

72


	Introduction
	Problem Formulation
	Introduction to Paper Materials
	Image Acquisition and Image Processing
	X-ray Computerized Tomography
	Segmentation


	Theory
	RVE - Representative Volume Element
	Meshing and Finite Element Modelling
	Orientation Analysis
	Gradients with Gaussian Kernel
	Gradients with Abaqus Transient Heat Equation
	Comparison of Gradient Methods
	Structure Tensor

	Material Models
	Elastic Material Model
	Plastic Material Model

	Abaqus Solver

	Method- From Paperboard to RVE
	Image Acquisition and Analysis
	Meshing
	Orientation Study using Structure Tensor Analysis
	Material Calibration
	Elastic Calibration
	Plastic Calibration

	Sensitivity Study
	Material Orientations and Calibration
	Voxel Size
	RVE Size


	Results
	FE Model
	Material Calibration
	Sensitivity Study
	Material Orientation
	Impact of Volume Size
	Impact of Voxel Size

	Material Calibration Large Deformations
	Material Calibration- Ideal Plasticity

	Conclusion and Future Work
	Appendix
	Workflow
	Fiber Replication
	Effect of Changing Shear Modulus, GTT


