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Abstract
The aim of this bachelor thesis is to enhance the performance of one of the electron storage
rings at MAX IV. The performance is primarily evaluated based on the lifetime and injection
efficiency of the ring. Improving these variables will enable smoother machine operation by
providing faster injections and reducing background radiation during injections. Consequently,
this optimisation project is valuable in terms of the safety and operations of MAX IV. A genetic
algorithm approach was used for the optimisation, and the selected algorithm was the Non-
dominated Sorting Algorithm II. The algorithm controlled a family of sextupoles in the ring to
improve the dynamic aperture and momentum acceptance. Theoretically, these improvements
should extend the beam lifetime and elevate the injection efficiency. The algorithm was suc-
cessful in finding superior sextupole configurations compared to the present conditions of the
ring. However, due to the magnetic hysteresis, it was deemed challenging to reproduce these
solutions. Despite the issues with hysteresis and, therefore, the reproducibility of solutions, it
was demonstrated that the algorithm was able to recover the key performance variables of the
lattice, particularly in a poorly set machine.
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1 Introduction
The accelerator complex of MAX IV includes a linear accelerator (Linac), a 1.5 GeV electron
storage ring (R1), and a 3 GeV electron storage ring (R3) [1]; the project presented in this
thesis aims to improve the performance of R1. An electron storage ring is a structure used
for storing and circulating electrons in a closed loop and the performance of this machinery is
dependent on several variables; two typical key performance variables are the beam lifetime
and the injection efficiency [2]. The first describes how long the circulating electrons last in
the ring, while the second expresses the ability to inject electrons into the storage ring, being
typically defined as the ratio between the current getting into the ring and the current provided
by the Linac. Optimising the lifetime and injection efficiency of an electron storage ring is a
non-linear problem and can suffer from discontinuities and local minima. Moreover, it is shown
that the improvement of one variable often leads to the degradation of the other; in other words,
there is a trade-off between the lifetime and injection efficiency, which can prevent traditional
gradient-based searches from succeeding in this optimisation task [2]. Moreover, traditional op-
timisation methods are typically designed for a single variable, and combining heterogeneous
variables into a single quantity may be challenging. For all these reasons, this project aims to
optimize both the lifetime and injection efficiency of R1 using an online Multi-Objective Ge-
netic Algorithm (MOGA). The term ‘online’ indicates that all interventions and data collection
will occur in real-time; MOGA is explained further in the ‘Method’ section. In order to improve
the lifetime and injection efficiency of R1, the algorithm will control one of the sextupole mag-
net families in R1, namely the outer corrector sextupole (SCo) family. The lifetime, injection
efficiency and the SCo family are further explained in the ‘Background and Theory’ section.
MAX IV hosts more than 1700 users annually, which is planned to double in the following
years [1]. Improving the lifetime and injection efficiency of R1 means faster electron injections
to R1 and reduced unwanted background radiation during injections [3]. Considering the con-
tributions of the experiments in MAX IV to the progress of scientific knowledge, it is crucial
to have a well-performing R1, which in return will result in a better quality scientific output by
the users.
The optimisation project presented here is a bachelor’s thesis affiliated with the Synchrotron
Radiation Department of Lund University and is done in collaboration with the Accelerator De-
velopment Group at MAX IV. I wrote a comprehensive Python script utilizing a MOGA and
carried out numerous tests to optimise the performance variables of R1. To fully understand the
scope of this work; a brief introduction to the main components of MAX IV is provided in the
following section.

1.1 MAX IV
MAX IV is a synchrotron radiation facility located in Lund, Sweden, which began operating in
2016 [1]. Synchrotron radiation is electromagnetic radiation produced by accelerating charged
particles to relativistic speeds and then curving their path using magnets; in the case of MAX
IV, the charged particles are electrons [4]. The synchrotron radiation produced at MAX IV is
used for various research techniques, including X-ray spectroscopy, scattering/diffraction, and
imaging techniques for a wide range of samples [1].
At MAX IV, electrons are emitted from a cathode through thermionic emission and accelerated
to relativistic speeds using a 250-meter-long linear accelerator (Linac), running 4.5 meters un-
derground [3]. The Linac consists of radio-frequency cavities that produce an oscillating electric
field: if the arrival time of the electron and the oscillation phase of the electric field inside the
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radio-frequency cavity are synchronized, then the electron is accelerated by the electric field
[4]. In this way, particles with initial energies of 4 to 5 MeV can reach up to 3 GeV at the end of
the Linac [3]. Refer to chapter 1.2.2 in [4] for a thorough description of radio-frequency cavi-
ties. The electrons are then extracted vertically at two points along the Linac through dedicated
transfer lines and injected into two electron storage rings, R1 and R3. The former has a circum-
ference of 96 m and stores electrons of 1.5 GeV energy, whereas the latter has a circumference
of 528 m and stores electrons of 3 GeV energy. R1 can host up to ten beamlines, and today, five
beamlines are in use. R3 hosts ten working beamlines with a potential of nineteen beamlines.
These are structures built adjacent to the ring where scientists can use the synchrotron radiation
for their experiments. R1 and R3 are constructed with repeating sections called achromats with
straight sections between them where insertion devices are placed to generate the aforemen-
tioned synchrotron radiation. The overall sequence of achromats and straights constitutes the
rings [3]. A schematic representation of the MAX IV accelerator complex is shown in Figure
1. Refer to [3] for a comprehensive understanding of the entire facility.

Figure 1: MAX IV accelerator complex including the Linac, R1 and R3. [1]

2 Background and Theory
In this section, the key concepts from the beam dynamics and optics of R1 are introduced. This
is crucial to understand the link between the control of the SCo family and the performance of
R1, which can be expressed in terms of the key performance variables lifetime and injection
efficiency. Lattice optics refer to the arrangement of the magnets in the ring and their corre-
sponding strengths. For a given optics, beam dynamics refers to how charged particles interact
with the electromagnetic fields of the ring and how they evolve inside the ring.
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2.1 Beta and Dispersion Functions
When the electrons are injected into R1 from the Linac, they form an electron beam, a semi-
continuous stream of electrons. The radio-frequency cavities in the ring replace the energy lost
to synchrotron radiation while electrons travel through the ring’s curved structure at relativistic
speeds. The oscillating fields in the radio-frequency cavities force the electron beam to form
bunches; these are the densely populated parts of the beam, and there are 32 electron bunches
in R1 [3].
An electron that travels through R1 with the ideal energy is called the reference electron, and
it follows a closed loop named reference orbit [4]. The motion of an electron through the
electron storage ring is usually described by six-dimensional coordinates (x, px, y, py, s, δ). The
transverse position of an electron is described by x (horizontal) and y (vertical) coordinates, px
and py are the corresponding momentum components. The position of the electron along its
trajectory through the ring is denoted by s, and E is the energy of the electron, where the
energy of the reference electron is denoted by E0 [5]. Usually, the parameter δ is used instead
of the energy E. This parameter, defined as δ = (E − E0)/E0, represents the deviation in
energy relative to the reference electron energy [4].
As electrons traverse the storage ring, all electrons, with the exception of the reference electron,
undergo transverse oscillations around the reference orbit due to the magnetic restoring forces.
These oscillations, known as betatron oscillations, have their amplitude characterized by the
beta functions βx and βy. Beta functions are derived from the solutions to the equation of
motion, which comes in the form of Hill’s equation for a complete turn around the ring [4]. The
formula for transverse oscillations is given by:

u(s) =
√
2Juβu(s) cos(ϕu) (1)

where u(s) is either x(s) for horizontal or y(s) for vertical displacement, Ju is a constant of
motion, and ϕu represents the betatron phase advance. The term ϕu varies according to,

dϕu

ds
=

1

βu(s)
. (2)

This formulation shows that the electron motion in the storage ring resembles that of a simple
harmonic oscillator, but the amplitude variations are dictated by βu(s) [4]. Beta functions are
plotted in Figure 2 for one achromat of R1.
Another critical concept is the betatron tune, which quantifies the number of betatron oscilla-
tions performed in one full turn of the ring. Specific betatron tunes can lead to resonances, which
significantly disrupt the beam. These resonances arise when an electron encounters consistent
magnetic deflections at specific points within the ring, progressively amplifying the betatron
oscillations [4]. As such, tunes sitting on dangerous resonances need to be carefully avoided.
In this respect, the amplitude-dependent tune shift, which refers to the variation in the betatron
tune with changes in oscillation amplitude, plays a pivotal role in beam stability and dynamics
[5]. This can be critical, for example, during the injection phase when electrons usually have
large amplitudes. If the lattice is characterized by large amplitude-dependent tune shift, elec-
trons may cross critical resonances and get lost, hampering the injection process. The injection
process is further discussed in the ‘Dynamic Aperture and Injection Efficiency’ section.
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Figure 2: Horizontal (βx) and vertical (βy) beta functions are plotted in blue and red, respec-
tively. The dispersion function ηx is plotted in green, the black outline at the bottom represents
the magnet layout of one achromat in R1. [3]

The horizontal dispersion function, ηx, highlighted in green in Figure 2, describes how much
an electron’s horizontal trajectory is affected due to its longitudinal momentum. This is due to
the different bending powers of the magnets, which interact differently with electrons that do
not precisely match the design momentum specified for that particular ring. Vertical dispersion
(ηy) is ideally zero in a storage ring with no vertically bending dipoles and mainly arises due
to magnet alignment errors. It is less relevant for this analysis [4]; hence, only ηx is plotted.
Referring to Figure 2, the SCo magnets that will be used as variables in the MOGA optimisation
are located at 2 and 6 m, i.e. in a non-dispersive region of the achromat. The implications of
this property are discussed in the following section. Refer to chapters 2.2 and 2.5 in [4] for a
comprehensive understanding of beta and dispersion functions.

2.2 R1 Magnets
Dipole, quadrupole, and sextupole magnets are employed in R1 to manipulate the electron
beam, ensuring that the electrons oscillate around the reference orbit. The configuration of all
magnets in R1 is called the R1 lattice. Dipole magnets bend the beam through the curved parts
of the accelerator. Meanwhile, the quadrupole magnets are used to focus and control the size
of the beam, ensuring that the electrons remain in a tight, well-defined stream. The quadrupole
magnets have magnetic fields varying linearly from where they are centred. Electrons with
different energies are focused to different extents in quadrupoles due to the variation in their de-
flecting angles, which become smaller for higher-energy electrons. This phenomenon is called
the chromaticity of the beam and can be compensated by placing certain types of sextupole
magnets in the dispersive regions of an achromat. The magnetic field of sextupole magnets
varies as the square of the distance from the magnet’s centre, allowing it to correct the under
or over-focused electron trajectories. The working of the magnets resembles the working of
optical lenses; therefore, the layout of the magnets is often referred to as the optics of the ring
in the accelerator physics terminology [4].
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Figure 3: Chromaticity correction of a sextupole with an analogy to optical lenses where δ is
the energy deviation from the reference electron energy. The x-axis represents the horizontal
direction, and the s-axis is the longitudinal direction. [4]

As can be seen on the left side of Figure 3, electrons with positive δ have a longer focal length
(under-focused), and the electrons with negative δ have a shorter focal length (over-focused).
Introducing a sextupole magnet, as shown on the right side of Figure 3, can provide additional
focusing or defocusing based on the δ of the electron.
R1 consists of 12 achromats where the optics are repeated, and there are six types of sextupole
magnets in an achromat. The same type of sextupole magnets are grouped into families in
the ring, and the magnets are split into two objective groups called chromatic and harmonic.
Chromatic magnets correct the chromaticity aberration of the beam, whereas harmonic magnets
correct for the other less predictable non-linear effects [3]. Refer to chapter 4 of [4] for a
thorough description of the non-linear effects of an electron beam. The sextupole specifications
are presented in Table 1, and their locations in an achromat are depicted in Figure 4.

Magnet Family Name Abbreviation Objective per Achromat
Inner defocusing sextupole SDi Chromatic 2
Outer defocusing sextupole SDo Harmonic 2
Inner focusing quadrupole/sextupole SQFi Chromatic 1
Outer focusing quadrupole/sextupole SQFo Harmonic 2
Inner corrector sextupole SCi Chromatic 2
Outer corrector sextupole SCo Harmonic 2

Table 1: Sextupole magnet specifications of R1, adapted from information presented in [3].

Figure 4: Sextupole magnet locations in an achromat of R1, the grey line represents the tra-
jectory of the electrons. Sextupole magnets from the same family are labelled 1 and 2 in a
clockwise direction. [3]
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SQFi and SQFo families are integrated into quadruple magnets for a more compact design.
Therefore, their strength cannot be adjusted individually. Thus, the relatively smaller and
weaker sextupole families, SCi and SCo are introduced for fine-tuning the correction of the
SQFi and SQFo families. As mentioned in the previous section, SCo magnets are located in the
non-dispersive regions of the achromat, hence these magnets are harmonic and do not correct
the chromaticity of the beam. In consideration of its harmonic nature and fine-tuning ability,
the SCo family can be used to minimise the impact of the resonances while not interfering with
the chromaticity correction of the beam. Moreover, these magnets can shape the amplitude-
dependent tune shift, previously mentioned in the ‘Beta and Dispersion Functions’ section, and
provide a more stable beam [3].

2.3 Dynamic Aperture and Injection Efficiency
The dynamic aperture of an electron storage ring determines the maximum permissible distance
an electron can deviate from the reference orbit in the transverse plane while still being main-
tained within the beam [4]. Computed dynamic aperture plots for R1 are illustrated in Figure
5, where the thick line shows an ideal machine and the crosses represent the alterations that
occurred in the dynamic aperture due to random errors in the sextupole magnet gradients. The
term ‘magnet gradient’ refers to the rate of change of the magnetic field per unit length.

Figure 5: Dynamic aperture plots constructed using the software tool Tracy-3 [6]. The thin
full line shows the limits of the vacuum chamber, the dotted line with larger dots shows the
limits of the physical aperture, and the dotted line with smaller dots shows the limits of the
required aperture of R1 in the transverse plane. On the left, the thick bold line shows the outline
of the dynamic aperture for on-energy electrons, indicated by δ = 0.0%. On the right, the
thick bold line shows the outline of the dynamic aperture for off-energy electrons, indicated
by δ = −3.0%. The altered dynamic apertures caused by the random sextupole errors are
represented by ‘x’. [3]

It is important to note that the electrons can only be physically confined within the limits of
the physical aperture, regardless of how large the dynamic aperture may be. Figure 5 indicates
that the sextupole errors worsen the dynamic aperture of R1, especially for so-called off-energy
electrons, where it jeopardises the physical aperture. Therefore, it is crucial to optimize the
sextupole gradients to increase the dynamic aperture.
When the electrons are initially injected into the ring, they tend to have high betatron oscil-
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lation amplitudes [4]. Therefore, having a larger dynamic aperture helps retain more of these
electrons, resulting in higher injection efficiency of R1 [3]. Injection efficiency is the ratio be-
tween the current stored in R1 through electron injection and the current provided by the Linac.
Meanwhile, the injection rate is the unit charge injected into R1 per unit time. Assuming that
the current provided by the Linac is unchanged, injection efficiency is directly proportional to
injection rate, therefore it is common practice in MAX IV to monitor injection rate instead of
injection efficiency with regards to the rings. In this thesis, the same strategy will be followed.
It is clear that optimising the sextupole gradients, i.e. the SCo magnet currents, may result in a
better dynamic aperture, which in return improves the injection rate of the ring.

2.4 Momentum Acceptance and Lifetime
The electrons circulating in R1 generate an overall beam current IR1, and R1 presently supports
a maximum beam current of 500 mA. Without top-ups, which are regular electron injections
to R1, the beam current will gradually decrease over time. This is referred to as R1 being in
decay mode and introduces another important concept, the beam lifetime. Lifetime is defined
as the time it takes for the beam electron population to decrease by a factor of 1/e [4]. The
continuous reduction of beam current is essentially due to two main processes: electrons can
interact with the residual gas present in the vacuum chamber of R1 undergoing elastic and
inelastic scattering, or they can interact inside a bunch, exchanging transversal momentum. The
first process depends on the total current of the beam and the quality of the vacuum inside
the chamber. The second process is known as Touschek scattering and it is observed when
two electrons in an electron bunch collide, and their transverse momenta are translated into
longitudinal momenta. If the acquired longitudinal momentum exceeds a threshold known as
the momentum acceptance, the motion of the electrons destabilizes, and they are lost from the
beam. For a machine with good control of the vacuum, Touschek scattering is the dominant
process regarding the loss of electrons in the ring and dictates the lifetime [4]. Over brief
periods during which the bunch current remains relatively stable, the decrease in beam current
of R1 can be effectively approximated by exponential decay as shown in Equation 3,

IR1(t) = IR1(0)e
−t/τT (3)

where IR1(t) is the beam current at time t, IR1(0) is the initial beam current, t is the time vari-
able, and τT is the Touschek lifetime [4]. The aforementioned momentum acceptance measures
how much an electron can deviate from the longitudinal momentum of the reference electron
and still be contained in its bunch. In other words, it dictates the maximum amplitude of Tou-
schek scattering that electrons can go through and remain in the beam. The proportionality
between the Touschek lifetime τT and momentum acceptance δacc is described by Equation 4,

τT ∝
√
εyσz

Ib
δ3acc (4)

where εy is the vertical emittance, σz is the root mean square bunch length and Ib is the bunch
current [7]. Vertical emittance measures the spread of electron trajectories and momenta in the
vertical plane [4]. Refer to chapter 2.3 in [4] for a comprehensive understanding of vertical
emittance. Based on Equation 4, τT is directly proportional to δ3acc. Therefore, improving the
momentum acceptance δacc will improve the lifetime τT , assuming that the other variables are
kept constant. The momentum acceptance of R1 is determined by the radio-frequency cavity
voltage, and the ring lattice [3]. The momentum acceptance of one achromat of R1 can be
plotted as shown in Figure 6.
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Figure 6: Momentum acceptance of one achromat of R1, as calculated with the software tool
OPA [8]. The green line represents the limits imposed on the momentum acceptance by the
radio-frequency cavity voltage (0.56 MV), whereas the brown line represents the limits imposed
on momentum acceptance by the R1 lattice. [3]

Referring to Figure 6, one can improve the limits imposed on the momentum acceptance (brown
line) by improving the R1 lattice, which can possibly be done by optimising the currents of the
SCo magnets.
It is significant to highlight that, based on Equation 4, there is an inverse relationship between
bunch current Ib and lifetime τT . Generally speaking, τT decreases as Ib increases. An increase
in Ib results in an increase in the overall beam current IR1; hence, the lifetime reading will
vary depending on the beam current. Therefore, an important variable used to characterize the
performance of the ring other than the plain lifetime is the product of beam current and lifetime
IR1 · τT . In this way, one gets a performance variable almost independent of the beam current
variations. However, since the bunch length changes with the charge content of a bunch, this
simple equation is not constant for large current variations. Therefore, if one wants to use it
as an objective in a process of optimisation spanning through large current variations, IR1 · τT
has to be scaled with respect to the beam current. As mentioned earlier, Touschek scattering is
the dominant process regarding the loss of electrons from the beam and determines the overall
lifetime. Hence, τT can be equated to τR1 and one can introduce the performance variable,
‘scaled (I · τ)R1’. The calculation of this variable is introduced in the ‘Method’ section.

2.5 Magnet Material and Hysteresis
The magnet material used in MAX IV is ARMCO® Pure Iron. This high-purity iron material
is removed from almost all impurities [9]. Due to the magnetic memory of the material, over
time, there will be an inconsistency between the applied current to the magnet and the produced
magnetic flux density. This is called magnetic hysteresis, whose behaviour can be predicted
using a hysteresis loop [10]. The predicted hysteresis loop of the ARMCO® Pure Iron that is
magnetised up to 1.5 T is plotted in Figure 7. The positive coercivity value, the material’s resis-
tance to demagnetisation, is sourced from the product data bulletin [9]. The positive remanence
value, i.e. the residual magnetic field after the exciting current is brought back to zero, is cal-
culated based on the slope of the two highest measurements on the virgin curve. The ‘virgin
curve’ is the initial magnetisation curve of a material not previously magnetized, and it is also
sourced from the product data bulletin [9]. Subsequently, the negative remanence, coercivity
and magnetisation values are determined by mirroring their positive counterparts. Refer to [10]
for a comprehensive understanding of hysteresis loops and their terminology.
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Figure 7: The predicted hysteresis loop of ARMCO® Pure Iron. The blue line represents the
virgin curve of the ARMCO® Pure Iron as it is magnetised up to 1.5 T at around 950 ◦C. The
predicted hysteresis loop is plotted in red using the remanence, coercivity and magnetisation
values. The figure is adapted from the data presented in [9].

The magnetic field strength H increases linearly with the current of the magnet according to
Ampere’s Law. In the presence of magnetic hysteresis, a particular magnet current can be
associated with multiple magnetic flux density outputs, as demonstrated by the hysteresis loop
in Figure 7. One way to deal with hysteresis at MAX IV is to ‘cycle R1’, which is the process
of going all the way up and down in the current range of the magnets for a total of six times
and then stopping at the pre-determined current value for the magnets. This process takes about
25 minutes and will get rid of any pre-existing magnetic history. Referring to Figure 7, it is
important to note that 1.5 T is not the saturation point of ARMCO® Pure Iron, and it is merely
chosen to demonstrate a particular case. The appearance of the hysteresis loop of the magnet
material will vary depending on the level of magnetisation.

3 Method
In the ‘Background and Theory’ section, it was explained that the injection rate instead of the
injection efficiency and scaled (I · τ)R1 instead of the lifetime will be considered as the perfor-
mance variables of R1. A multi-objective genetic algorithm approach will be used to optimise
these performance variables, referred to as the ‘objectives’ of the optimisation. The genetic al-
gorithm utilised in this project is the Non-dominated Sorting Genetic Algorithm II (NSGA-II),
first proposed in 2002 [11]. A Python adaptation of NSGA-II (n ii.py) is taken from the py-
Multiobjective Python Library [12], and a comprehensive Python script utilizing ‘n ii.py’ was
written to optimise R1. The Python script will be referred to as the ‘optimiser’, and it is pre-
sented in the ‘Appendix’ section. It should be noted that writing and successfully running the
optimizer took a significant amount of time, requiring a thorough comprehension of the MAX
IV control systems.
Control and monitoring of the MAX IV ring and other parts of the facility are operated by
means of the Tango toolkit [13]. Tango provides a communication line between the physi-
cal devices in R1 (detectors and instruments) and the MAX IV main control room. Tango is
structured into virtual devices mimicking the physical devices used in the rings to monitor and

9



control the machine. The optimiser can proxy into the necessary Tango devices to perform
commands, measurements or calculations. The optimiser consists of three main components:
‘Magnet Control’, ‘Objective Measurements’ and ‘Genetic Algorithm’. These components are
separately explained in the following sections.

3.1 Magnet Control
There are 24 SCo magnets in R1, and a visual overview of their locations on the ring is presented
in Figure 8.

Figure 8: Locations of the SCo magnets in R1. The numbers one through twelve denote the
achromat number. Each achromat hosts two SCo magnets, namely SCo1 and SCo2.

The following naming convention will be used to address an individual SCo magnet: (Achromat
number, SCo number). For instance, magnet (1,2) refers to the SCo2 magnet in achromat 1.
Each SCo magnet is connected to a designated power supply, and it is possible to proxy into the
Tango devices of these power supplies to adjust their currents. The designated power supply for
each SCo magnet is listed in the optimiser script which can be found in the ‘Appendix’. The
SCo configuration of R1, typically used during beam delivery to the beamlines, is presented in
Table 2 and will be referred to as the ‘standard lattice’.

Achr. 1 2 3 4 5 6
SCo 1 2 1 2 1 2 1 2 1 2 1 2
ISCo 0.597 0.597 0.597 0.597 0.597 0.597 0.597 0.597 0.597 0.597 0.597 0.597
Achr. 7 8 9 10 11 12
SCo 1 2 1 2 1 2 1 2 1 2 1 2
ISCo 0.597 0.597 0.597 0.597 0.597 0.000 0.000 0.597 0.597 0.597 0.597 0.597

Table 2: Magnet current readings of the R1 SCo family, which make up the standard lattice.
‘ISCo’ is the magnet current in A, and the noise of the current reading is ±1.6× 10−5 A. ‘Achr.’
stands for achromat number and ‘SCo’ denotes if the magnet is SCo1 or SCo2.

All SCo magnets in R1 are set to 0.597 ± 1.6× 10−5 A, the only exceptions being the magnets
(9,2) and (10,1), which are set to 0.0±1.6×10−5 A. These exceptions are due to the local orbit
corrections of BLOCH, which is the beamline located in that region of the ring [14]. Therefore,
these two magnets will be excluded from the optimisation, and their current values will not
be changed. The noise level of the current readings was determined by taking the standard
deviation of 180 readings with 1-second intervals. The results are presented in Figure 9. The
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magnet (1,2) has the highest standard deviation recorded at 1.6× 10−5. Therefore, this value is
used as the noise level for all SCo magnet readings.

Figure 9: The noise levels of all 24 SCo magnets. The y-axis shows the standard deviation of
180 current readings with 1-second intervals, and the x-axis shows the name of the SCo magnet
in the following format (Achromat number, SCo Number).

3.2 Objective Measurements
The R1 beam current IR1 is measured using a Tango device called DC current transformer
(DCCT), which is connected to a physical DCCT in R1. The DCCT measures the voltage
induced in a coil of wire by the magnetic field around the beam [4], which is then converted to
a current reading usually expressed in mA.
R1 lifetime τR1 is also calculated by the same Tango device (DCCT) using Equation 3, from the
‘Background and Theory’ section. Equation 3 can be written in a linear form as follows,

IR1(t) = IR1(0)e
−t/τR1 (5)

−→ ln(IR1(t)) = − 1

τR1

t+ ln(IR1(0)) (6)

This linear relationship has the form y = mx+ c, where y is ln(IR1(t)), the slope m is −1/τR1,
x is t and c is ln(IR1(0)). The slope of Equation 6 is then obtained by means of a linear fit of
300 IR1 readings taken over a time window of 30 s. The R1 lifetime is then simply inferred by
inverting the slope. Lifetime τR1 is typically expressed in hours.
Subsequently, the product of IR1 and τR1 gives the variable, (I · τ)R1. However, as mentioned
previously, this variable needs to be scaled with respect to the R1 beam current. Therefore,
(I · τ)R1 values are collected at beam currents from 150 mA to 500 mA with 50 mA intervals.
Then a ‘scaling curve’ is constructed by plotting (I ·τ)R1/reference(I ·τ)R1 vs R1 beam current,
where the reference (I ·τ)R1 is equal to the (I ·τ)R1 value at 350 mA of beam current. Applying
a cubic fit to the scaling curve provides a scaling factor in the following form,

scaling factor = a(IR1)
3 + b(IR1)

2 + c(IR1) + d (7)

where a, b, c, and d are the coefficients of the cubic fit. During the optimisation, all (I · τ)R1

calculations are divided by this scaling factor to align the calculation with respect to the (I ·τ)R1

value at 350 mA of beam current. The resulting variable is correlated to the beam lifetime in a
virtually independent way from the variations in the beam current.
The injection rate of R1 is read from a Tango device called the injection-meter, which is con-
nected to the physical DCCT device. During an electron injection to R1, the injection-meter
takes 50 IR1 measurements over a window of 5 seconds and then applies a linear fit to these
points. The slope of the linear fit simply produces an injection rate reading in mA/min.
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During the optimisation process, both objectives - scaled (I · τ)R1 and injection rate - will be
evaluated 10 times at 0.5-second intervals. This frequent assessment is particularly critical for
the injection rate reading, which exhibits rapid fluctuations that change almost every 0.5 sec-
onds.
For both objectives, the mean and standard deviation of the data will be calculated; the former
will be used as the objective value in the algorithm, and the latter will be utilized to define the
uncertainty of the objective value.

3.3 Genetic Algorithm
The algorithm controls the SCo magnet currents to optimise the scaled (I · τ)R1 and injection
rate. These objectives have a trade-off, meaning that improving one objective often leads to a
decrease in the other. Optimising two objectives with a trade-off results in a non-dominated so-
lution set called a Pareto optimal set, which can be depicted using a Pareto front in the objective
space [15]. A visual representation of a Pareto front for this type of optimisation is shown in
Figure 10.

Figure 10: Optimal solutions which construct the Pareto front are painted in green, the domi-
nated area is painted in light green, and the dominated solutions are painted in black. The green
dotted line shows the Pareto front, and the black arrows show the direction of the optimisation.

Each solution represents a different R1 lattice distinguished by its SCo current levels, which
will be referred to as the SCo configuration of the solution. It is important to note that the
direction of the optimisation goes towards the origin of the plot, meaning that the objective
values increase in that direction. An arbitrary solution A dominates an arbitrary solution B only
if the following conditions are met:

• Condition 1: Solution A is no worse than solution B in both objectives.

• Condition 2: Solution A is strictly better than solution B in at least one objective.

As shown in Figure 10, the solutions on the Pareto front are not dominated by any solutions.
Hence, they are called a non-dominated solution set [11]. The algorithm essentially seeks the
best Pareto front possible following the critical steps illustrated in Figure 11.
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Figure 11: Step by step evolution of NSGA-II. Two sorting methods, namely non-dominated
sorting and crowding distance sorting, are annotated on the diagram. Rt represents a generation
with the index t, Pt denotes the parent population and Qt denotes the offspring population. F1,
F2, and F3 represent Pareto fronts arranged in descending order of dominance. [11]

As depicted in Figure 11, each generation, denoted by Rt, contains a total of 2N solutions.
Here, t represents the generation index, with the sequence of generations progressing as R0,
R1, R2 and so on. A generation Rt includes a parent population Pt of size N and an off-spring
population Qt of size N.
The algorithm starts by constructing an initial parent population P0, which consists of ran-
domly generated solutions. These solutions are then ranked (1, 2, 3... where 1 is the best rank)
based on dominance. Subsequently, the solutions with better rank and crowding distance are
selected; this process is called ‘binary tournament selection’. The crowding distance measures
how spread out a solution is on the objective space compared to the other solutions; this en-
sures that diversity is maintained through the generations. The selected solutions from P0 give
birth to the initial offspring population Q0 by performing crossover and mutation. Crossover
is the process where two parent solutions exchange some parts of their SCo configurations and
become two offspring solutions with unique SCo configurations. On the other hand, mutation
is the random modification of the SCo configuration of a selected parent solution, which then
becomes a unique offspring solution. Then, the initial parent and offspring populations, P0 and
Q0, are combined and sorted into Pareto fronts (F1, F2, F3... where F1 is the best Pareto front)
based on dominance. This process is labelled as ‘non-dominated sorting’ in Figure 11.
At this point, the construction and sorting of the initial generation R0 is complete, and it is time
to construct R1. The parent population P1 is then created by selecting the solutions in the top
50% of R0 based on the Pareto front sorting. If the cut-off line goes through a Pareto front,
which is the case for F3 as shown in Figure 11, the solutions with the higher crowding distance
are favoured; this process is called ‘crowding distance sorting’. Subsequently, the parent pop-
ulation P1 gives birth to Q1 through binary tournament selection, crossover and mutation as
mentioned earlier. Then, P1 and Q1 are combined and sorted into Pareto fronts. The following
generations R2, R3... are constructed following the same steps used to construct R1 [11].
The sequence explained above runs until the number of generations selected by the user is
reached. Key parameters utilized to tune the performance of NSGA-II are explained in Table 3.
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Parameter Code Description
Population
Size

population size Determines the number of solutions created for a parent
or offspring population.

Number of
Generations

generations Determines the number of generations created during the
optimisation.

Mutation Rate mutation rate Determines the probability of a mutation occurring during
the creation of an offspring. This parameter is typically set
to 0.1 in the algorithm.

Mutation
Intensity (µ)

mu Controls the intensity of mutations, affecting how signifi-
cantly offspring can differ from the parent solution. This
parameter is typically set to 1 in the algorithm.

Crossover
Intensity (η)

eta Describes how closely offspring resemble their parents,
influencing the crossover process. This parameter is typi-
cally set to 1 in the algorithm.

Min ISCo min values The lowest possible current setting for an SCo magnet.
Max ISCo max values The highest possible current setting for an SCo magnet.

Table 3: Summary of the key parameters of NSGA-II. These parameters, referred to by their
‘Code’, are used in the algorithm function (non dominated sorting genetic algorithm II) of the
optimiser. The table is adapted from the information provided in [12].

3.4 Optimiser Overview
Thus far, the three main components of the optimiser have been discussed, namely ‘Magnet
Control’, ‘Objective Measurements’ and ‘Genetic Algorithm’. A visual representation of how
the optimiser works using these components is shown in Figure 12.

Figure 12: A general overview of an optimisation run, which shows the evaluation of several
solutions.

Determining the objective values corresponding to a specific solution Sn chosen by the algo-
rithm starts with applying the solution to R1, which entails implementing the SCo current val-
ues corresponding to that solution. As mentioned in the ‘Objective Measurements’ section, the
DCCT requires at least 30 seconds to provide a lifetime reading. Therefore, the scaled (I · τ)R1

is calculated after a 50-second delay; the additional 20 seconds are added as a buffer to ensure
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the beam and the lifetime reading are stable. This process is denoted by ‘I · τ ’ in Figure 12.
Following this, an injection to R1 is started with a 2 Hz repetition rate. The optimiser waits
20 seconds for the injection-meter to reach a steady reading, measures the injection rate and
then stops the injection; this process is denoted by ‘IR’ in Figure 12. This sequence repeats
for the proceeding solutions Sn+1, Sn+2... until the maximum allowed beam current is reached
(typically 450 mA). At this point, the optimiser is paused, and the beam current is decreased
by means of beam scrapers. These tools are inserted into the ring and physically intercept the
outer region of the electron beam, causing current loss. When a pre-defined baseline current is
reached, the optimiser is resumed and continues until the total number of solutions are evalu-
ated. One can use the following equation to determine the total number of solutions created and
evaluated during an optimisation run:

Number of Solutions = 2 · Population Size · Number of Generations (8)

Given that the evaluation of the objectives for a single solution requires approximately 1.5
minutes, and accounting for occasional scrape downs, which take about 10 minutes each, the
duration of an optimisation run can be estimated in minutes as follows:

Optimisation Duration = (Number of Solutions · 1.5) + (Number of Scrape Downs · 10) (9)

Thus, a typical optimisation run with a population size of 10 across 7 generations, assuming
one scrape down per generation, will take approximately 5 hours to complete.

3.5 Optimisation Plan
This thesis will present the results of the final optimisation attempt out of a series of 15 opti-
misation tests, which amount to about 150 hours of experimental work. Initially, efforts were
made to optimise the standard lattice of R1, which proved to be rather challenging to improve
in terms of scaled (I · τ)R1 and injection rate. It is most likely because R1 has reached a well-
calibrated SCo configuration over the years and is rather optimised.
In view of this, it has been decided on a different strategy, essentially meant to prove the validity
of the optimiser. Two separate optimisation runs were executed, named Part 1 and Part 2. In
Part 1, the standard lattice was altered to generate an initially spoiled version of the machine,
and an optimisation run was performed using this altered lattice as the starting point. The aim
was to demonstrate how the genetic algorithm method could be used to improve the objectives
and possibly to recover or even improve the standard machine. In Part 2, a solution was chosen
from the resulting Pareto front of Part 1, and an optimisation run was performed using the cho-
sen solution as the starting point. The focus was on refining the minimum and maximum SCo
current limits, concentrating on the SCo configuration of the selected solution. The procedure
for both parts is explained in detail in the following sections.
During both optimisation runs, the existing feedback systems at MAX IV were utilized to cor-
rect the beam’s orbit and manage betatron oscillations effectively. These systems include the
slow orbit feedback (SOFB) and the tune feedback. The former adjusts beam trajectory mis-
alignments using corrector dipole magnets, while the latter regulates the betatron tune of the
ring by employing SQFO and DIPC magnet families [14]. For a detailed understanding of the
SOFB and tune feedback, refer to chapter 3.4.6 in [3] and to [16], respectively. For the pur-
poses of this thesis, it is sufficient to note that the feedback systems were operational during
both optimisation runs, ensuring consistent working conditions.
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3.5.1 Part 1: Altered Lattice Optimisation

Part 1 started with measuring the (I ·τ)R1 scaling curve of the standard lattice to be able to carry
out scaled (I · τ)R1 calculations. Then began the process of altering the standard lattice to have
a relatively worsened start to the optimisation. This process resembles the random sextupole
error study in Figure 5 from the ‘Dynamic Aperture and Injection Efficiency’ section. In this
case, the currents of the SCo magnets were manually changed while simultaneously observing
the scaled (I · τ)R1 and injection rate of R1 until a lattice with relatively worse objective values
was found. When the search was over, R1 was cycled to clear the magnetic history of the SCo
magnets, and the altered lattice was applied to R1. After this, the (I · τ)R1 scaling curve of the
altered lattice was measured, and during the optimisation run, this scaling curve was used to
calculate the scaled (I · τ)R1 values of all the solutions. The optimisation run was conducted
using the parameters in Table 4 and the range of the beam current was set from 150 to 450 mA.

Pop Size Generations Mutation Rate µ η Min ISCo (A) Max ISCo (A)
10 7 0.1 1 1 0 1

Table 4: Optimisation parameters for Part 1. ‘Pop size’ stands for ‘Population Size’ and ‘Gen-
erations’ stands for ‘Number of Generations’. Refer to Table 3 for the parameter descriptions.

The parameters ‘Min ISCo’ and ‘Max ISCo’ were set to 0 and 1 A, respectively. This decision
was guided by the SCo configuration of the standard lattice, where SCo magnets are typically set
at 0.597±1.6×10−5 A. Optimizing within this range (0 to 1 A) allows for the potential recovery
of the SCo configuration of the standard lattice. After the optimisation run was complete, the
solutions that make up the Pareto front of the final generation were re-evaluated after cycling
R1. Additionally, the (I · τ)R1 scaling curves of two more solutions were measured after the
optimisation run to compare the scaling curves of several different lattices.

3.5.2 Part 2: Solution-based Optimisation

In this part, one of the solutions from the resulting Pareto front of Part 1 was selected, and
an optimisation run was conducted trying to operate around the selected solution. To do this,
the SCo current values were carefully varied close to the chosen point as illustrated in Table
5. Hence, if one represents the SCo configuration of the selected solution using a 22-element
vector S = (s1, s2, s3...), where each term represents the current of an individual SCo magnet,
the magnet current range of this optimisation run was S ± 0.1 A. It is important to remember
that it is a 22-element vector instead of 24, because two SCo magnets are excluded from the
optimisation as explained in the ‘Magnet Control’ section. This optimisation run was conducted
using the parameters summarized in Table 5 and the beam current ranging from 250 to 450 mA.

Pop Size Generations Mutation Rate µ η Min ISCo (A) Max ISCo (A)
10 7 0.1 1 1 S - 0.1 S + 0.1

Table 5: Optimisation Parameters for Part 2. Refer to Table 3 for the parameter descriptions.

The choice of ‘Min ISCo’ and ‘Max ISCo’ values allowed a more focused, solution-based opti-
misation. The (I · τ)R1 scaling curve of the selected solution from Part 1 was used to calculate
the scaled (I · τ)R1 of all the solutions. After the optimisation run, three solutions from the

16



resulting Pareto front were re-evaluated after cycling R1. To ensure that (I · τ)R1 scaling pro-
duces consistent results regardless of the beam current, the selected solutions were re-evaluated
at three different beam current levels.

4 Results
The results of the optimisation plan will be presented in two parts following the same titling
convention, namely ‘Altered Lattice Optimisation’ and ‘Solution-based Optimisation’.

4.1 Part 1: Altered Lattice Optimisation
The optimisation process began by altering the standard lattice of R1. During this process,
the electron beam was lost multiple times, indicating the sensitivity of R1 to the significant
changes made in the SCo magnets. Therefore, the adjustments were approached with caution to
minimize disruptions to the beam. To compare the SCo configuration of the standard and altered
lattices, a plot is presented in Figure 13. The data of the standard lattice is taken from Table 2
in the ‘Method’ section, while the data of the altered lattice can be found in the ‘Appendix’.

Figure 13: SCo configurations of the standard (blue) and altered (red) lattices.

At a first glance, one can see that the altered lattice deviates from the standard lattice symmetric
scheme, exhibiting significant differences from achromat to achromat. The key properties of
the standard and altered lattices are evaluated and presented in Table 6.

Lattice IR1 (mA) τR1 (h) Scaled (I · τ)R1 (mAh) IR (mA/min)
Standard 149.216 ± 0.018 9.633 ± 0.018 3222.842 ± 0.342 53.673 ± 0.545

Altered (BC) 149.480 ± 0.023 8.666 ± 0.001 2825.385 ± 0.322 28.180 ± 0.412
Altered (PC) 150.652 ± 0.020 10.157 ± 0.001 3400.929 ± 0.350 30.827 ± 1.195

Table 6: Key properties of the standard and altered lattice, ‘BC’ stands for before-cycling, ‘PC’
stands for post-cycling and ‘IR’ stands for injection rate. IR1 indicates the R1 beam current at
which the evaluations of the scaled (I · τ)R1 and injection rate started. The uncertainties are the
standard deviations of the corresponding measurements or calculations performed 10 times at
0.5-second intervals.
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It is important to note that the altered lattice was evaluated twice, before and after cycling R1.
This was done to understand the effect of hysteresis. During the search for the altered lattice,
the currents in the SCo magnets were varied multiple times, determining a magnetic history that
was subsequently cleared with the cycling process. The intention of altering the lattice was to
decrease the scaled (I ·τ)R1 and injection rate values compared to the standard lattice, which was
achieved in the before-cycling evaluation. However, in the post-cycling evaluation, the altered
lattice showed improved objective values, with the scaled (I · τ)R1 even exceeding that of the
standard lattice. This indicates the significant impact of magnetic hysteresis on the performance
of R1. It is important to note that even though the altered lattice (post-cycling) had a higher
scaled (I · τ)R1 than the standard lattice, it is not necessarily a better lattice as its injection
rate was significantly worse. In fact, in order to claim a successful optimisation, both the scaled
(I ·τ)R1 and injection rate must be improved. The optimisation run was then conducted using the
post-cycling altered lattice as the starting point. The generation-by-generation evolution of the
optimisation run is presented in Figure 14, where only every second generation (even-numbered
generations) is presented for the sake of clarity.

Figure 14: Optimisation results are presented generation by generation, showing only even gen-
erations. The green dotted line represents the Pareto front of each generation and the solutions
that are a part of the Pareto front are painted in green. The larger circles represent the parent
population, while the smaller circles show the offspring population of each generation. The
performance of the standard (blue square) and altered (red square) lattices are also presented in
each plot as references.
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The obtained results indicate that, with each generation, the solutions gradually move away
from the starting point, which is the altered lattice, and achieve higher scaled (I · τ)R1 and
injection rate values. Already in generation 0, some solutions reach the injection rate value of
the standard lattice and even surpass it. The solutions start to converge towards the optimal
levels, and by generation 6, a Pareto front of four different solutions is obtained: these are
the best outcomes of this optimisation run. As shown in Figure 15, these solutions (circles),
colour-coded as 1, 2, 3, and 4, are re-evaluated after cycling (triangles).

Figure 15: Resulting Pareto front (dotted green line) of Part 1. The optimisation results are
represented by circles, and their post-cycling evaluation is represented by triangles using the
corresponding colours detailed in the legend. The standard (blue) and altered (red) lattices are
also shown for reference.

There is a noticeable difference between the optimisation results and post-cycling results, sug-
gesting that clearing the magnetic history by means of cycling may reduce the efficacy of the
optimisation, sometimes in a very negative fashion. However, while these solutions did not con-
firm the expected results, they are still located close to the standard lattice, which makes them a
viable alternative. Moreover, the sequence in the plots in Figure 14 and the graph in Figure 15,
ensure that the optimisation method works as intended and is able to recover a spoiled machine
even providing better alternatives before cycling R1. The SCo configurations of the selected
solutions are illustrated in Figure 16, with the corresponding data detailed in the ‘Appendix’.
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Figure 16: The thick blue and red lines show the SCo configurations of the standard and altered
lattices, respectively. The dotted lines illustrate the SCo configurations of the selected solutions;
see the legend for the colour assignment.

There is a considerable overlap between the SCo configurations of the selected solutions. This
suggests that the algorithm might have found an SCo configuration that performs as well as the
standard lattice even after cycling R1. Solution 1 (post-cycling) is a suitable starting point for
the next optimisation run because it offers an optimal balance between both objectives, as seen
in Figure 15. Also, one can claim that it deviates the least from the SCo configuration of the
standard lattice; therefore, it might be a sensible starting point for further exploration.
(I ·τ)R1 scaling curves of the standard and altered lattices were measured before the optimisation
run. Additionally, the scaling curves of solutions 1 and 4 were measured after the optimisation,
and all four scaling curves are plotted in Figure 17.

Figure 17: The (I · τ)R1 scaling curves of the standard lattice, altered lattice, solution 1, and
solution 4 are collectively plotted. Uncertainty bars represent the standard deviation of mea-
surements or calculations, which were performed 10 times at 0.5-second intervals. The corre-
sponding coefficients for the cubic fits are detailed in the ‘Appendix’.
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It can be concluded that the four (I · τ)R1 scaling curves are sufficiently similar. This justifies
the assumption that one can use an initially calculated scaling curve through the whole optimi-
sation. It is also apparent that the scaling is mostly linear between the beam currents 250 and
450 mA. Thus, the next optimisation run (Part 2) was conducted between these beam current
values to have the most optimal (I · τ)R1 scaling.

4.2 Part 2: Solution-based Optimisation
In the second optimisation run, solution 1 (post-cycling) was used as the starting point, and the
scaling curve of the said solution was used to calculate the scaled (I · τ)R1 of all the solutions.
As explained in the ‘Optimisation Plan’ section, the minimum and maximum SCo current limits
were reduced to be within ±0.1 A of the SCo configuration of solution 1 in an attempt to refine
the chosen case. The generation-by-generation evolution of the optimisation run is presented in
Figure 18. Once again, only every second generation is presented for clarity purposes.

Figure 18: Optimisation results are presented generation by generation, showing only even gen-
erations. The green dotted line represents the Pareto front of each generation and the solutions
that are a part of the Pareto front are painted in green. The larger circles represent the parent
population, while the smaller circles show the offspring population of each generation. The
performance of the standard and altered lattices, as well as solution 1 (post-cycling), are also
presented in each plot as references.
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Already with generation 0, about half of the solutions are in the proximity of the Pareto front.
As generations progress, solutions gradually improve and the density of solutions around the
Pareto front increases. At generation 6, the solutions converge and form a Pareto front from
which three solutions (designated as 1.1, 1.2, and 1.3) are selected and colour-coded. These
solutions are then evaluated after cycling at three different beam current levels. The results of
this evaluation are presented in Figure 19.

Figure 19: Pareto front (green dotted line) constituted by the selected solutions in Part 2. The
optimisation results are represented by circles and their post-cycling evaluation is represented
by triangles using the colour assignment detailed in the legend. The standard and altered lattices
are represented by blue and red squares, respectively. The solution 1 (post-cycling) is plotted
as a green square as the reference point. Bold numbers annotated on the post-cycling solutions
represent the R1 beam current (mA) at which their evaluation started.

It is apparent that there is a significant difference between the optimisation results and the post-
cycling data, which was also observed in Part 1 of the optimisation. The beam current has no
influence on the scaled (I · τ)R1, indicating that the (I · τ)R1 scaling is working as intended.
Variations in mean injection rate are well within the statistical error bars, as seen in Figure
19, except for solution 1.2 (post-cycling) at 174 mA. The optimisation run provided promising
results (circles). However, after cycling, these solutions performed similarly to the standard
lattice and the starting point of this optimisation run, solution 1 (post-cycling).
The SCo configurations of solutions 1, 1.1, 1.2 and 1.3, as well as the standard and altered lat-
tices, are plotted in Figure 20. The precise magnet current values are detailed in the ‘Appendix’.
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Figure 20: The thick blue and red lines show the SCo configurations of the standard and altered
lattices, respectively. The dotted lines are colour-coded, as shown on the legend, and illustrate
the SCo configurations of the selected solutions.

Due to the ±0.1 A limits around solution 1, one can see that solutions 1.1, 1.2 and 1.3 do
not deviate too much from the SCo configuration of solution 1. These minor deviations from
solution 1 did not significantly improve the machine performance post-cycling. However, unlike
the case of altered lattice, where the asymmetric nature caused a significant reduction of the
injection rate, there was a significant improvement in the injection rate of the machine compared
to the altered lattice. This is an indication that the SCo configuration found by the optimisation
restored a good dynamic aperture in the machine, possibly by reducing the amplitude-dependent
tune shifts and the consequent crossing of dangerous resonances.
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5 Conclusion and Outlook
The main objective of this thesis project was to demonstrate that the performance of the 1.5
GeV storage ring at MAX IV (R1) can be improved using an online multi-objective genetic
algorithm approach. Its performance can be measured in terms of its lifetime and injection ef-
ficiency; these objectives were actually represented by the scaled (I · τ)R1 and injection rate,
respectively. It was demonstrated that the algorithm is capable of finding solutions significantly
better than the standard lattice of the machine during the optimisation process. These solutions
were better for both objectives, which showed the algorithm’s ability to improve two conflict-
ing quantities. It was also shown that the (I · τ)R1 scaling works as intended at different beam
currents, decoupling the (I · τ)R1 from the actual beam current. Unfortunately, after cycling the
ring, the performance of the solutions suffered quite considerably in terms of the scaled (I ·τ)R1.
This was observed numerous times, and it is almost certainly due to the magnetic hysteresis.
However, even after clearing the magnetic history, the algorithm was able to recover an altered
machine and improve its injection rate to the likes of the standard machine, which was about an
80% increase in the injection rate from the altered lattice. As mentioned before, a high injection
rate translates into a high injection efficiency if the current provided by the Linac is kept con-
stant. High injection efficiency results in faster injections and reduced unwanted background
radiation during these injections; these are valuable improvements for the operations and safety
of MAX IV.
Due to time limitations, it was not possible to conduct optimisation runs with a diverse NSGA-II
parameter selection; it will be advised to run optimisations with varied mutation rate, mutation
intensity, and crossover intensity parameters to explore a more diverse set of solutions. The
magnetic hysteresis was deemed the major obstacle in replicating the solutions after cycling the
machine. Therefore, an attempt not presented in this thesis was performed to re-create the mag-
netic history of the solutions with the hope that they could provide the same objective values
initially discovered during the optimisation run. Finding a way to mitigate magnetic hysteresis,
following the aforementioned strategy or by any other means, could mean that the solutions
found during the optimisation can be replicated. Hence, the performance of the standard ma-
chine can be improved significantly in terms of lifetime and injection efficiency.
The Python script implementing NSGA-II, the optimiser, can be easily made available to run
the same type of optimisation for the 3 GeV storage ring (R3). Moreover, its objective variables
can be replaced with other conflicting variables in the rings or potentially in other parts of the
facility, e.g. the injection transfer lines. The optimiser script is written explicitly for optimis-
ing the lifetime and injection efficiency using the NSGA-II method; however, the script can be
improved to include other multiple-objective optimisation methods such as particle swarm op-
timiser (MOPSO) or simulated annealing (MOSA) [17]. As a future development, the structure
of the optimisation code can be made more modular, for example, with the use of a graphic user
interface.
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7 Appendix

7.1 Scaling Curve Data

Lattice Coefficient of (IR1)
3 Coefficient of (IR1)

2 Coefficient of IR1 Constant Term
Standard −4.492× 10−9 7.631× 10−6 −0.0003081 0.3385
Altered −1.027× 10−8 1.321× 10−5 −0.001958 0.4903

Solution 1 −9.025× 10−9 1.063× 10−5 −0.0008795 0.3842
Solution 4 −1.524× 10−8 1.736× 10−5 −0.00323 0.6258

Table 7: Coefficients of cubic fit applied to the (I · τ)R1 scaling curves of the standard lattice,
altered lattice, solution 1 and solution 4.

7.2 SCo Configuration Data
This section presents the magnet current readings of the R1 SCo family for different solutions.
The noise of the current reading is ±1.6 × 10−5 A. ‘Achr. N.’ stands for achromat number,
‘SCo’ shows if the magnet is SCo1 and SCo2 and ‘SCoI (A)’ shows the current reading of the
magnet.

Achr. N. 1 2 3 4 5 6
SCo 1 2 1 2 1 2 1 2 1 2 1 2

SCoI (A) 0.505 0.784 0.865 0.635 0.128 0.755 0.149 0.158 0.116 0.168 0.199 0.233
Achr. N. 7 8 9 10 11 12

SCo 1 2 1 2 1 2 1 2 1 2 1 2
SCoI (A) 0.378 0.377 0.258 0.299 1.069 0.000 0.000 0.219 0.252 0.090 1.094 0.845

Table 8: SCo configuration of altered lattice

Achr. N. 1 2 3 4 5 6
SCo 1 2 1 2 1 2 1 2 1 2 1 2

SCoI (A) 0.638 0.522 0.603 0.520 0.964 0.679 0.529 0.402 0.527 0.434 0.917 0.672
Achr. N. 7 8 9 10 11 12

SCo 1 2 1 2 1 2 1 2 1 2 1 2
SCoI (A) 0.445 0.862 0.856 0.942 0.504 0.000 0.000 0.026 0.664 0.409 1.000 0.317

Table 9: SCo configuration of solution 1
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Achr. N. 1 2 3 4 5 6
SCo 1 2 1 2 1 2 1 2 1 2 1 2

SCoI (A) 0.651 0.519 0.460 0.293 0.953 0.744 0.519 0.506 0.392 0.745 0.821 0.702
Achr. N. 7 8 9 10 11 12

SCo 1 2 1 2 1 2 1 2 1 2 1 2
SCoI (A) 0.189 0.091 0.928 0.926 0.194 0.000 0.000 0.009 0.668 0.408 0.436 0.410

Table 10: SCo configuration of solution 2

Achr. N. 1 2 3 4 5 6
SCo 1 2 1 2 1 2 1 2 1 2 1 2

SCoI (A) 0.644 1.000 0.975 0.646 0.395 0.759 0.487 0.109 0.445 0.364 0.987 0.827
Achr. N. 7 8 9 10 11 12

SCo 1 2 1 2 1 2 1 2 1 2 1 2
SCoI (A) 0.313 0.115 0.906 0.804 0.656 0.000 0.000 0.060 0.832 0.435 0.286 0.098

Table 11: SCo configuration of solution 3

Achr. N. 1 2 3 4 5 6
SCo 1 2 1 2 1 2 1 2 1 2 1 2

SCoI (A) 0.644 0.958 0.963 0.651 0.736 0.761 0.454 0.081 0.402 0.766 0.969 0.831
Achr. N. 7 8 9 10 11 12

SCo 1 2 1 2 1 2 1 2 1 2 1 2
SCoI (A) 0.000 0.093 0.901 0.410 0.411 0.000 0.000 0.000 0.493 0.433 0.346 0.367

Table 12: SCo configuration of solution 4

Achr. N. 1 2 3 4 5 6
SCo 1 2 1 2 1 2 1 2 1 2 1 2

SCoI (A) 0.538 0.622 0.503 0.430 0.917 0.779 0.590 0.493 0.612 0.420 0.974 0.711
Achr. N. 7 8 9 10 11 12

SCo 1 2 1 2 1 2 1 2 1 2 1 2
SCoI (A) 0.345 0.927 0.930 0.878 0.604 0.000 0.000 0.102 0.744 0.509 0.980 0.317

Table 13: SCo configuration of solution 1.1

Achr. N. 1 2 3 4 5 6
SCo 1 2 1 2 1 2 1 2 1 2 1 2

SCoI (A) 0.619 0.436 0.598 0.483 0.893 0.637 0.459 0.370 0.607 0.356 0.858 0.695
Achr. N. 7 8 9 10 11 12

SCo 1 2 1 2 1 2 1 2 1 2 1 2
SCoI (A) 0.495 0.949 0.898 0.929 0.522 0.000 0.000 -0.041 0.725 0.318 0.968 0.353

Table 14: SCo configuration of solution 1.2
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Achr. N. 1 2 3 4 5 6
SCo 1 2 1 2 1 2 1 2 1 2 1 2

SCoI (A) 0.603 0.474 0.503 0.481 0.939 0.626 0.455 0.496 0.608 0.397 1.006 0.705
Achr. N. 7 8 9 10 11 12

SCo 1 2 1 2 1 2 1 2 1 2 1 2
SCoI (A) 0.518 0.962 0.899 0.920 0.523 0.000 0.000 0.107 0.725 0.309 0.971 0.301

Table 15: SCo configuration of solution 1.3
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7.3 Optimiser Python Script

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on January 2024
5

6 @author: Ali Kuzey Yanartas
7 """
8

9 ##################################################################
10

11 # Import the necessary modules
12

13 import statistics
14 import datetime
15 import time
16 import matplotlib.pyplot as plt
17 from PyTango import DeviceProxy
18 import concurrent.futures
19 import shutil
20 import logging
21 import copy
22 import numpy as np
23 import random
24 import os
25

26 ##################################################################
27

28 # Calling SCo magnets and proxying in
29

30 sextupole_SXCO = [
31 'R1-D110210CAB01/MAG/PSIE-01', # Achromat 1, SCo 1
32 'R1-D110210CAB01/MAG/PSIE-02', # Achromat 1, SCo 2
33 'R1-D110210CAB01/MAG/PSIE-03', # Achromat 2, SCo 1
34 'R1-D110210CAB01/MAG/PSIE-04', # Achromat 2, SCo 2
35 'R1-D110310CAB01/MAG/PSIE-01', # Achromat 3, SCo 1
36 'R1-D110310CAB01/MAG/PSIE-02', # Achromat 3, SCo 2
37 'R1-D110310CAB01/MAG/PSIE-03', # Achromat 4, SCo 1
38 'R1-D110310CAB01/MAG/PSIE-04', # Achromat 4, SCo 2
39 'R1-D110610CAB01/MAG/PSIE-01', # Achromat 5, SCo 1
40 'R1-D110610CAB01/MAG/PSIE-02', # Achromat 5, SCo 2
41 'R1-D110610CAB01/MAG/PSIE-03', # Achromat 6, SCo 1
42 'R1-D110610CAB01/MAG/PSIE-04', # Achromat 6, SCo 2
43 'R1-D110710CAB01/MAG/PSIE-01', # Achromat 7, SCo 1
44 'R1-D110710CAB01/MAG/PSIE-02', # Achromat 7, SCo 2
45 'R1-D110710CAB01/MAG/PSIE-03', # Achromat 8, SCo 1
46 'R1-D110710CAB01/MAG/PSIE-04', # Achromat 8, SCo 2
47 'R1-D110910CAB01/MAG/PSIE-01', # Achromat 9, SCo 1
48 'R1-D110910CAB01/MAG/PSIE-04', # Achromat 10, SCo 2
49 'R1-D111210CAB01/MAG/PSIE-01', # Achromat 11, SCo 1
50 'R1-D111210CAB01/MAG/PSIE-02', # Achromat 11, SCo 2
51 'R1-D111210CAB01/MAG/PSIE-03', # Achromat 12, SCo 1
52 'R1-D111210CAB01/MAG/PSIE-04'] # Achromat 12, SCo 2
53

54 sextupole_SXCO_proxy = [DeviceProxy(dev) for dev in sextupole_SXCO]
55
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56 #Achromat 9, SCo 2 and achromat 10 SCo 1 are excluded from the optimisation
.

57

58 ##################################################################
59

60 # Reading from SCo magnets
61

62 logging.basicConfig(level=logging.ERROR)
63

64 def read_magnet(magnet_device, max_retries=3):
65 for _ in range(max_retries):
66 try:
67 magnet_device_proxy = DeviceProxy(magnet_device)
68 magnet_current = magnet_device_proxy.read_attribute("Current").

value
69 return magnet_current
70 except TimeoutError as e:
71

72 logging.error(f"Timeout reading {magnet_device}: {e}")
73 except Exception as e:
74

75 logging.error(f"Error reading {magnet_device}: {e}")
76

77 time.sleep(1)
78

79

80 logging.error(f"All retries failed for {magnet_device}. Returning None.
")

81 return None
82

83 def read_family():
84 magnet_devices = sextupole_SXCO_proxy
85 with concurrent.futures.ThreadPoolExecutor() as executor:
86 results = list(executor.map(read_magnet, magnet_devices))
87 print("Readings from magnet devices:")
88 for device, result in zip(sextupole_SXCO, results):
89 print(f'({device}, {result})')
90

91 ##################################################################
92

93 # Recording the magnet values before the optimisation starts
94

95 magnet_values_SXCO = [(dev, read_magnet(dev)) for dev in sextupole_SXCO]
96

97 all_magnet_names = [name for name, _ in magnet_values_SXCO]
98 all_magnet_values = [str(value) for _, value in magnet_values_SXCO]
99

100 #Step: Record the machine lattice before the optimisation
101

102 with open('R1_preopt_data.txt', 'w') as f:
103 # Write magnet names as titles
104 f.write(', '.join(all_magnet_names) + ',injection_rate,scaled_I_Tau,

std_dev_inj,std_dev_I_Tau,current_r1\n')
105 # Write magnet values
106 f.write(', '.join(all_magnet_values))
107

108 ##################################################################
109
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110 # Writing to SCo magnets
111

112 def write_family(change, max_retries = 3):
113 for i in range(len(magnet_values_SXCO)):
114 new_value = change[i]
115 dev = magnet_values_SXCO[i][0]
116 sextupole_SDE_proxy = DeviceProxy(dev)
117

118 for _ in range(max_retries):
119 try:
120 sextupole_SDE_proxy.write_attribute("Current", new_value)
121 break # Success, exit the loop
122 except TimeoutError as e:
123

124 logging.error(f"Timeout writing {dev}: {e}")
125 except Exception as e:
126

127 logging.error(f"Error writing {dev}: {e}")
128

129 time.sleep(1)
130

131

132 ##################################################################
133

134 # Reading Scrapers
135

136 r1_scraper_01V_proxy = DeviceProxy("r1-101s/VAC/scrp-01-v")
137 r1_scraper_02V_proxy = DeviceProxy("r1-101s/VAC/scrp-02-v")
138 r1_scraper_03H_proxy = DeviceProxy("r1-101s/VAC/scrp-03-h")
139

140 def read_r1_scrapers():
141 try:
142 scraper_01V = r1_scraper_01V_proxy.read_attribute('position').value
143 scraper_02V = r1_scraper_02V_proxy.read_attribute('position').value
144 scraper_03H = r1_scraper_03H_proxy.read_attribute('position').value
145 return scraper_01V, scraper_02V, scraper_03H
146 except TimeoutError as e:
147

148 logging.error(f"Timeout reading scrapers: {e}")
149 except Exception as e:
150

151 logging.error(f"Error reading scrapers: {e}")
152 return None, None, None
153

154

155 ##################################################################
156

157 # Scaled I*Tau calculation
158

159 lifetime_device_proxy = DeviceProxy("r1-101s/dia/dcct-01")
160 current_device_proxy = DeviceProxy("r1-101s/dia/dcct-01")
161

162 #must write the coefficients of the scaling curve on a .txt file, one row
per coefficient

163

164 def read_coefficients_from_file(filename='Scaling_factor_coefficients.txt')
:

165 with open(filename, 'r') as file:
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166 coefficients = [float(line.strip()) for line in file.readlines()]
167 return coefficients
168

169 coefficients = read_coefficients_from_file()
170

171 def cubic_fit_scaling_factor(I):
172 a, b, c, d = coefficients
173 scaling_factor = a*I**3 + b*I**2 + c*I + d
174 return scaling_factor
175

176 def read_lifetime_r1():
177 try:
178 lifetime_r1 = lifetime_device_proxy.read_attribute("Lifetime").

value / 3600
179 return lifetime_r1
180 except TimeoutError as e:
181

182 logging.error(f"Timeout reading lifetime: {e}")
183 except Exception as e:
184

185 logging.error(f"Error reading lifetime: {e}")
186 return None
187

188 def read_ring_current_r1():
189 try:
190 current_r1 = current_device_proxy.read_attribute("Current").value *

1000
191 return current_r1
192 except TimeoutError as e:
193

194 logging.error(f"Timeout reading ring current: {e}")
195 except Exception as e:
196

197 logging.error(f"Error reading ring current: {e}")
198 return None
199

200 def calculate_I_Tau(lifetime_r1, current_r1):
201 I_Tau = current_r1 * lifetime_r1
202 return I_Tau
203

204 def measure_I_Tau_values(number_of_measurements=10,
time_between_measurements=0.5):

205 I_Tau_values = []
206

207 for i in range(number_of_measurements):
208 lifetime_r1 = read_lifetime_r1()
209 current_r1 = read_ring_current_r1()
210

211 if lifetime_r1 is None or current_r1 is None:
212 logging.error("Failed to obtain necessary readings. Skipping

measurement.")
213 continue # Skip this measurement if either value is None
214

215 scaling_factor = cubic_fit_scaling_factor(current_r1)
216

217 result = calculate_I_Tau(lifetime_r1, current_r1)/(abs(
scaling_factor)-1e-5)

218 I_Tau_values.append(result)
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219 time.sleep(time_between_measurements)
220

221 mean_I_Tau = statistics.mean(I_Tau_values)
222 std_deviation_I_Tau = statistics.stdev(I_Tau_values)
223

224 return mean_I_Tau, std_deviation_I_Tau
225

226

227 # mean_I_Tau, std_deviation_I_Tau = measure_I_Tau_values()
228 # print(f'Mean I_Tau: {mean_I_Tau} mAh +/- {std_deviation_I_Tau}.')
229 # print('-' * 30)
230

231

232 ##################################################################
233

234 # Reading the Injection Rate
235

236 injection_device_proxy = DeviceProxy("R1/DIA/InjectionMeter")
237

238 def read_injection_rate(number_of_measurements=10,
time_between_measurements=0.5):

239 injection_rate_values = []
240

241 for i in range(number_of_measurements):
242 try:
243 result = injection_device_proxy.read_attribute("

InjectionRateMapm").value
244 injection_rate_values.append(result)
245 except TimeoutError as e:
246

247 logging.error(f"Timeout reading injection rate: {e}")
248 except Exception as e:
249

250 logging.error(f"Error reading injection rate: {e}")
251 time.sleep(time_between_measurements)
252

253 mean_injection_rate = statistics.mean(injection_rate_values)
254 std_deviation_injection_rate = statistics.stdev(injection_rate_values)
255

256 return mean_injection_rate, std_deviation_injection_rate
257

258

259 # mean_injection_rate, std_deviation_injection_rate = read_injection_rate()
260 # print(f'Mean injection rate: {mean_injection_rate} mA/min +/- {

std_deviation_injection_rate}.')
261 # print('-' * 30)
262

263 ##################################################################
264

265 # Injection to R1
266

267 stm_proxy = DeviceProxy("g/ctl/stm-01")
268

269 def write_r1_injection(max_current):
270 try:
271 stm_proxy.write_attribute("R1MaxCurrent", max_current)
272 stm_proxy.command_inout("InjectR1")
273 print(f"Injecting R1 to {max_current} mA!")
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274 print(30*'-')
275 except TimeoutError as e:
276

277 logging.error(f"Timeout writing R1 injection: {e}")
278 except Exception as e:
279

280 logging.error(f"Error writing R1 injection: {e}")
281

282 def stop_r1_injection():
283 try:
284 stm_proxy.command_inout("StopInjectR1")
285 print("R1 Injection Stopped!")
286 print(30*'-')
287 except TimeoutError as e:
288

289 logging.error(f"Timeout stopping R1 injection: {e}")
290 except Exception as e:
291

292 logging.error(f"Error stopping R1 injection: {e}")
293

294 def read_stm_status():
295 try:
296 stm_state = stm_proxy.read_attribute("CurrentState").value
297 return stm_state
298 except TimeoutError as e:
299

300 logging.error(f"Timeout reading STM status: {e}")
301 except Exception as e:
302

303 logging.error(f"Error reading STM status: {e}")
304 return None
305

306

307 ##################################################################
308

309 # Measuring the machine performance before the optimisation
310

311 mean_I_Tau, std_deviation_I_Tau = measure_I_Tau_values(
number_of_measurements=10, time_between_measurements=0.5)

312

313 print(f'Scaled I_Tau (Initial measurement): {mean_I_Tau} mAh +/- {
std_deviation_I_Tau}.')

314

315 current_r1 = read_ring_current_r1()
316

317 write_r1_injection(500)
318

319 time.sleep(20)
320

321 mean_injection_rate, std_deviation_injection_rate = read_injection_rate(
number_of_measurements=10, time_between_measurements=0.5)

322

323 print(f'Mean injection rate (Initial measurement): {mean_injection_rate} mA
/min +/- {std_deviation_injection_rate}.')

324

325 stop_r1_injection()
326

327 with open('R1_preopt_data.txt', 'a') as f:
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328 f.write(f" ,{mean_injection_rate}, {mean_I_Tau}, {
std_deviation_injection_rate}, {std_deviation_I_Tau}, {current_r1}\n")

329 shutil.copy('R1_preopt_data.txt',f'R1_preopt_data_{datetime.datetime.now().
strftime("%Y-%m-%d_%H-%M-%S")}.txt')

330

331 ##################################################################
332

333 # Objective functions: Scaled I*Tau and Injection Rate
334

335 with open('R1_opt_raw_data.txt', 'w') as f:
336 f.write(', '.join(all_magnet_names) + "I_Tau, I_Tau_std_dev,

injection_rate, injection_rate_std_dev, current_r1, time\n")
337

338 def I_Tau_objective(change):
339

340 print(30*'-')
341

342 print('Scaled I_Tau objective running...')
343

344 time.sleep(5)
345

346 write_family(change)
347

348 time.sleep(50)
349

350 mean_I_Tau, std_deviation_I_Tau = measure_I_Tau_values(
number_of_measurements=10, time_between_measurements=0.5)

351

352 print(f'Scaled I_Tau: {mean_I_Tau} mAh +/- {std_deviation_I_Tau}.')
353

354 current_r1 = read_ring_current_r1()
355

356 magnet_values_SXCO = [(dev, read_magnet(dev)) for dev in sextupole_SXCO
]

357

358 all_magnet_values = [str(value) for _, value in magnet_values_SXCO]
359

360 with open('R1_opt_raw_data.txt', 'a') as f:
361 f.write(', '.join(all_magnet_values) + f", {mean_I_Tau}, {

std_deviation_I_Tau}")
362

363 current_r1 = read_ring_current_r1()
364 while current_r1 > 450:
365 user_input = input("Ring current is over 450 mA, turn off BBB,

scrape down to 250 mA, turn on BBB and pull out all the scrapers. Are
you ready to continue ? (yes/no): ")

366 if user_input.lower() == "yes":
367 print("Algorithm continues.")
368 break
369

370 current_r1 = read_ring_current_r1()
371 while current_r1 < 240:
372 user_input = input("Ring current is under 250 mA, inject up to at

least 250 mA. Are you ready to continue? (yes/no): ")
373 if user_input.lower() == "yes":
374 print("Algorithm continues.")
375 break
376
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377 scraper_01V, scraper_02V, scraper_03H = read_r1_scrapers()
378 while scraper_01V < 29 or scraper_02V < 30.1 or scraper_03H < 29.5 :
379 user_input = input("The scrapers are not fully pulled out, pull out

the scrapers. Are you ready to continue? (yes/no): ")
380 if user_input.lower() == "yes":
381 print("Algorithm continues.")
382 break
383

384 stm_state = read_stm_status()
385 while stm_state == 'R3' :
386 user_input = input("Injecting to R3, please wait! Are you ready to

continue? (yes/no): ")
387 if user_input.lower() == "yes":
388 print("Algorithm continues.")
389 break
390

391 return -mean_I_Tau
392

393 def Injection_Rate_objective(change):
394

395 print(30*'-')
396

397 print('Injection Rate objective running...')
398

399 time.sleep(5)
400

401 write_r1_injection(500)
402

403 time.sleep(20)
404

405 mean_injection_rate, std_deviation_injection_rate = read_injection_rate
(number_of_measurements=10, time_between_measurements=0.5)

406

407 print(f'Mean injection rate: {mean_injection_rate} mA/min +/- {
std_deviation_injection_rate}.')

408

409 stop_r1_injection()
410

411 current_r1 = read_ring_current_r1()
412

413 with open('R1_opt_raw_data.txt', 'a') as f:
414 f.write(f' ,{mean_injection_rate}, {std_deviation_injection_rate},

{current_r1}, {datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}\n'
)

415

416 while current_r1 > 450:
417 user_input = input("Ring current is over 450 mA, turn off BBB,

scrape down to 250 mA, turn on BBB and pull out all the scrapers. Are
you ready to continue ? (yes/no): ")

418 if user_input.lower() == "yes":
419 print("Algorithm continues.")
420 break
421

422 current_r1 = read_ring_current_r1()
423 while current_r1 < 240:
424 user_input = input("Ring current is under 250 mA, inject up to at

least 250 mA. Are you ready to continue? (yes/no): ")
425 if user_input.lower() == "yes":
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426 print("Algorithm continues.")
427 break
428

429 scraper_01V, scraper_02V, scraper_03H = read_r1_scrapers()
430 while scraper_01V < 30.1 or scraper_02V < 30.1 or scraper_03H < 29.5 :
431 user_input = input("The scrapers are not fully pulled out, pull out

the scrapers. Are you ready to continue? (yes/no): ")
432 if user_input.lower() == "yes":
433 print("Algorithm continues.")
434 break
435

436 stm_state = read_stm_status()
437 while stm_state == 'R3' :
438 user_input = input("Injecting to R3, please wait! Are you ready to

continue? (yes/no): ")
439 if user_input.lower() == "yes":
440 print("Algorithm continues.")
441 break
442

443 return -mean_injection_rate
444

445

446 ##################################################################
447

448 # Functions required for the NSGA-II algorithm
449

450 # Function: Initialize Variables, function adapted from Valdecy, refer to
[12] in the references section.

451 def initial_population(population_size = 5, min_values = [-5,-5],
max_values = [5,5], list_of_functions = [Injection_Rate_objective,
I_Tau_objective]):

452 population = np.zeros((population_size, len(min_values) + len(
list_of_functions)))

453 for i in range(0, population_size):
454 for j in range(0, len(min_values)):
455 population[i,j] = random.uniform(min_values[j], max_values[j])
456 for k in range (1, len(list_of_functions) + 1):
457 population[i,-k] = list_of_functions[-k](list(population[i,0:

population.shape[1]-len(list_of_functions)]))
458 return population
459

460

461

462 # Function: Fast Non-Dominated Sorting, function adapted from Valdecy,
refer to [12] in the references section.

463 def fast_non_dominated_sorting(population, number_of_functions = 2):
464 S = [[] for i in range(0, population.shape[0])]
465 front = [[]]
466 n = [0 for i in range(0, population.shape[0])]
467 rank = [0 for i in range(0, population.shape[0])]
468 for p in range(0, population.shape[0]):
469 S[p] = []
470 n[p] = 0
471 for q in range(0, population.shape[0]):
472 if ((population[p,-number_of_functions:] <= population[q,-

number_of_functions:]).all()):
473 if (q not in S[p]):
474 S[p].append(q)
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475 elif ((population[q,-number_of_functions:] <= population[p,-
number_of_functions:]).all()):

476 n[p] = n[p] + 1
477 if (n[p] == 0):
478 rank[p] = 0
479 if (p not in front[0]):
480 front[0].append(p)
481 i = 0
482 while (front[i] != []):
483 Q = []
484 for p in front[i]:
485 for q in S[p]:
486 n[q] = n[q] - 1
487 if(n[q] == 0):
488 rank[q] = i+1
489 if q not in Q:
490 Q.append(q)
491 i = i+1
492 front.append(Q)
493 del front[len(front)-1]
494 rank = np.zeros((population.shape[0], 1))
495 for i in range(0, len(front)):
496 for j in range(0, len(front[i])):
497 rank[front[i][j], 0] = i + 1
498 return rank
499

500 # Function: Sort Population by Rank, function adapted from Valdecy, refer
to [12] in the references section.

501 def sort_population_by_rank(population, rank):
502 idx = np.argsort(rank[:,0], axis = 0).tolist()
503 rank = rank[idx,:]
504 population = population[idx,:]
505 return population, rank
506

507 # Function: Crowding Distance (Adapted from PYMOO), function adapted from
Valdecy, refer to [12] in the references section.

508 def crowding_distance_function(pop, M):
509 infinity = 1e+11
510 population = copy.deepcopy(pop[:,-M:])
511 population = population.reshape((pop.shape[0], M))
512 if (population.shape[0] <= 2):
513 return np.full(population.shape[0], infinity)
514 else:
515 arg_1 = np.argsort(population, axis = 0, kind = 'mergesort')
516 population = population[arg_1, np.arange(M)]
517 dist = np.concatenate([population, np.full((1, M), np.inf)])

- np.concatenate([np.full((1, M), -np.inf), population])
518 idx = np.where(dist == 0)
519 a = np.copy(dist)
520 b = np.copy(dist)
521 for i, j in zip(*idx):
522 a[i, j] = a[i - 1, j]
523 for i, j in reversed(list(zip(*idx))):
524 b[i, j] = b[i + 1, j]
525 norm = np.max(population, axis = 0) - np.min(population,

axis = 0)
526 norm[norm == 0] = np.nan
527 a, b = a[:-1]/norm, b[1:]/norm
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528 a[np.isnan(a)] = 0.0
529 b[np.isnan(b)] = 0.0
530 arg_2 = np.argsort(arg_1, axis = 0)
531 crowding = np.sum(a[arg_2, np.arange(M)] + b[arg_2, np.

arange(M)], axis = 1) / M
532 crowding[np.isinf(crowding)] = infinity
533 crowding = crowding.reshape((-1,1))
534 return crowding
535

536 # Function:Crowded Comparison Operator, function adapted from Valdecy,
refer to [12] in the references section.

537 def crowded_comparison_operator(rank, crowding_distance, individual_1 = 0,
individual_2 = 1):

538 selection = False
539 if (rank[individual_1,0] < rank[individual_2,0]) or ((rank[individual_1

,0] == rank[individual_2,0]) and (crowding_distance[individual_1,0] >
crowding_distance[individual_2,0])):

540 selection = True
541 return selection
542

543 # Function: Offspring, function adapted from Valdecy, refer to [12] in the
references section.

544 def breeding(population, rank, crowding_distance, min_values = [-5,-5],
max_values = [5,5], mu = 1, list_of_functions = [
Injection_Rate_objective, I_Tau_objective]):

545 offspring = np.copy(population)
546 parent_1 = 0
547 parent_2 = 1
548 b_offspring = 0
549 for i in range (0, offspring.shape[0]):
550 i1, i2, i3, i4 = random.sample(range(0, len(population) - 1), 4)
551 if (crowded_comparison_operator(rank, crowding_distance,

individual_1 = i1, individual_2 = i2) == True):
552 parent_1 = i1
553 elif (crowded_comparison_operator(rank, crowding_distance,

individual_1 = i2, individual_2 = i1) == True):
554 parent_1 = i2
555 else:
556 rand = int.from_bytes(os.urandom(8), byteorder = 'big') / ((1

<< 64) - 1)
557 if (rand > 0.5):
558 parent_1 = i1
559 else:
560 parent_1 = i2
561 if (crowded_comparison_operator(rank, crowding_distance,

individual_1 = i3, individual_2 = i4) == True):
562 parent_2 = i3
563 elif (crowded_comparison_operator(rank, crowding_distance,

individual_1 = i4, individual_2 = i3) == True):
564 parent_2 = i4
565 else:
566 rand = int.from_bytes(os.urandom(8), byteorder = 'big') / ((1

<< 64) - 1)
567 if (rand > 0.5):
568 parent_2 = i3
569 else:
570 parent_2 = i4
571 for j in range(0, offspring.shape[1] - len(list_of_functions)):
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572 rand = int.from_bytes(os.urandom(8), byteorder = 'big') / ((1
<< 64) - 1)

573 rand_b = int.from_bytes(os.urandom(8), byteorder = 'big') / ((1
<< 64) - 1)

574 rand_c = int.from_bytes(os.urandom(8), byteorder = 'big') / ((1
<< 64) - 1)

575 if (rand <= 0.5):
576 b_offspring = 2*(rand_b)
577 b_offspring = b_offspring**(1/(mu + 1))
578 elif (rand > 0.5):
579 b_offspring = 1/(2*(1 - rand_b))
580 b_offspring = b_offspring**(1/(mu + 1))
581 if (rand_c >= 0.5):
582 offspring[i,j] = np.clip(((1 + b_offspring)*population[

parent_1, j] + (1 - b_offspring)*population[parent_2, j])/2, min_values[
j], max_values[j])

583 else:
584 offspring[i,j] = np.clip(((1 - b_offspring)*population[

parent_1, j] + (1 + b_offspring)*population[parent_2, j])/2, min_values[
j], max_values[j])

585 for k in range (1, len(list_of_functions) + 1):
586 offspring[i,-k] = list_of_functions[-k](offspring[i,0:offspring

.shape[1]-len(list_of_functions)])
587 return offspring
588

589 # Function: Mutation, function adapted from Valdecy, refer to [12] in the
references section.

590 def mutation(offspring, mutation_rate = 0.1, eta = 1, min_values = [-5,-5],
max_values = [5,5], list_of_functions = [Injection_Rate_objective,

I_Tau_objective]):
591 d_mutation = 0
592 for i in range (0, offspring.shape[0]):
593 for j in range(0, offspring.shape[1] - len(list_of_functions)):
594 probability = int.from_bytes(os.urandom(8), byteorder = 'big')

/ ((1 << 64) - 1)
595 if (probability < mutation_rate):
596 rand = int.from_bytes(os.urandom(8), byteorder = 'big') /

((1 << 64) - 1)
597 rand_d = int.from_bytes(os.urandom(8), byteorder = 'big') /

((1 << 64) - 1)
598 if (rand <= 0.5):
599 d_mutation = 2*(rand_d)
600 d_mutation = d_mutation**(1/(eta + 1)) - 1
601 elif (rand > 0.5):
602 d_mutation = 2*(1 - rand_d)
603 d_mutation = 1 - d_mutation**(1/(eta + 1))
604 offspring[i,j] = np.clip((offspring[i,j] + d_mutation),

min_values[j], max_values[j])
605 for k in range (1, len(list_of_functions) + 1):
606 offspring[i,-k] = list_of_functions[-k](offspring[i,0:offspring

.shape[1]-len(list_of_functions)])
607 return offspring
608

609 ##################################################################
610

611 # Plotting generations during the optimisation and writing solutions to
file

612
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613 def plot_population_and_offspring(population, offspring, generation):
614 pop_injection_rate = population[:, -2]
615 pop_I_Tau = population[:, -1]
616

617 off_injection_rate = offspring[:, -2]
618 off_I_Tau = offspring[:, -1]
619

620 plt.figure(figsize=(10, 6))
621 plt.scatter(pop_injection_rate, pop_I_Tau, color='blue', label='

Population', alpha=0.6, edgecolor='k')
622 plt.scatter(off_injection_rate, off_I_Tau, color='red', label='

Offspring', alpha=0.6, edgecolor='k')
623 plt.title(f'Generation {generation}: I_Tau vs Injection Rate')
624 plt.xlabel('Injection Rate')
625 plt.ylabel('I_Tau')
626 plt.legend()
627 plt.grid(True)
628 plt.show()
629

630

631 def write_population_to_file(file, pop, gen, pop_type, all_magnet_names,
list_of_functions):

632 rank = fast_non_dominated_sorting(pop, number_of_functions=len(
list_of_functions))

633 for individual in range(pop.shape[0]):
634 rank_val = int(rank[individual, 0])
635 var_vals = pop[individual, :-len(list_of_functions)]
636 obj_vals = pop[individual, -len(list_of_functions):]
637 file.write(f'{gen}, {rank_val}, {pop_type}, {obj_vals[0]}, {

obj_vals[1]}, ' + ', '.join(map(str, var_vals)) + '\n')
638 file.flush() # Force flush the buffer to file after each write

operation
639

640 ##################################################################
641

642 # The main NSGA-II function, function adapted from Valdecy, refer to [12]
in the references section.

643

644 def non_dominated_sorting_genetic_algorithm_II(population_size = [],
mutation_rate = [], min_values = [], max_values = [], list_of_functions
= [Injection_Rate_objective, I_Tau_objective], generations = [], mu =
[], eta = [], verbose = True, all_magnet_names=[]):

645 count = 0
646 population = initial_population(population_size = population_size,

min_values = min_values, max_values = max_values, list_of_functions =
list_of_functions)

647 offspring = initial_population(population_size = population_size,
min_values = min_values, max_values = max_values, list_of_functions =
list_of_functions)

648

649 # Plot initial population and offspring
650 plot_population_and_offspring(population, offspring, 'Initial')
651

652 with open('R1_opt_data.txt', 'w') as file:
653 file.write('generation,rank,type,injection_rate,scaled_I_Tau,' + ',

'.join(all_magnet_names) + '\n')
654

655 # Initial population write
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656 write_population_to_file(file, population, count, 'population',
all_magnet_names, list_of_functions)

657 write_population_to_file(file, offspring, count, 'offspring',
all_magnet_names, list_of_functions)

658

659 while (count <= generations):
660 if (verbose == True):
661 print('Generation = ', count)
662 population = np.vstack([population, offspring])
663 rank = fast_non_dominated_sorting(population,

number_of_functions = len(list_of_functions))
664 population, rank = sort_population_by_rank(population, rank)
665 population, rank = population[0:population_size,:], rank[0:

population_size,:]
666 print(population, rank)
667 crowding_distance = crowding_distance_function(population, len(

list_of_functions))
668 offspring = breeding(population, rank, crowding_distance,

mu = mu, min_values = min_values, max_values = max_values,
list_of_functions = list_of_functions)

669 offspring = mutation(offspring, mutation_rate =
mutation_rate, eta = eta, min_values = min_values, max_values =
max_values, list_of_functions = list_of_functions)

670 print(offspring)
671 with open('R1_opt_data.txt', 'a') as file:
672 write_population_to_file(file, population, count, 'population',

all_magnet_names, list_of_functions)
673 write_population_to_file(file, offspring, count, 'offspring',

all_magnet_names, list_of_functions)
674

675 plot_population_and_offspring(population, offspring, count)
676

677 count = count + 1
678

679 return population
680

681 ##################################################################
682

683 #Calling the algorithm function
684

685 non_dominated_sorting_genetic_algorithm_II()
686

687 ##################################################################
688

689 #Adding date to the data files
690

691 shutil.copy('R1_opt_raw_data.txt',f'R1_opt_raw_data_{datetime.datetime.now
().strftime("%Y-%m-%d_%H-%M-%S")}.txt')

692 shutil.copy('R1_opt_data.txt',f'R1_opt_data_{datetime.datetime.now().
strftime("%Y-%m-%d_%H-%M-%S")}.txt')

693

694 ##################################################################

Listing 1: Python script adapting NSGA-II to optimise R1 performance using the SCo magnets.
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