
June 2024

A study of radiative corrections to the mass spectrum in the
Scale Invariant Two Higgs Doublet Model with an additional

Real Singlet

Noah Ben Moussa

Theoretical Particle Physics
Division of Particle and Nuclear Physics

Department of Physics
Lund University

Bachelor thesis supervised by Roman Pasechnik



Abstract

In this thesis, we study the Higgs boson mass spectrum of a Scale Invariant Two Higgs
Doublet Model that includes an additional real singlet. This model results in three neutral
CP-even states due to the mixing with the singlet. At tree level, one of these states has
zero mass. To obtain a consistent and accurate mass spectrum for the Higgs bosons, the
scale invariance is broken by incorporating radiative 1-loop corrections into the model as
well as a renormalization scale.



Populärvetenskaplig beskrivning

Standardmodellen inom partikelfysik har besvarat många av de fr̊agor som människan har
ställt genom åren. Till exempel har vi f̊att svar p̊a fr̊agor som: Vad är de minsta partiklarna
uppbyggda av? Vilka krafter f̊ar dem att röra sig som de gör? Hur f̊ar partiklar sin massa?
Även om m̊anga fr̊agor har f̊att svar, leder varje öppnad dörr till en ny dörr bakom, med
ett nytt l̊as vars nyckel ännu inte har hittats. Det finns många fr̊agor kvar att utforska,
vilket leder oss till att tro att Standardmodellen inte är den slutgiltiga modellen och att
det finns ytterligare svar att upptäcka.

Modellen som diskuteras i denna uppsats kallas för Skalinvariant Tv̊a-Higgsdublettmodellen
med en tillagd reell singlet (SI-2HDM+S). Den utvidgar Standardmodellen genom att lägga
till en extra Higgsdublett och en reell singlet. I denna modell inkluderas inte massor i po-
tentialens ekvation fr̊an början, vilket innebär att dessa partikelmassor inte antas vara
ursprungliga egenskaper. Modellen inneh̊aller totalt nio olika fält som används för att
bestämma partiklarnas massor. Dessa massor bestäms genom spontant symmetribrott
och kvantmekaniska korrektioner, vilket är avgörande för att återskapa de massvärden
vi observerar. Det intressanta med denna modell är den tillagda singleten, som öppnar
nya perspektiv p̊a symmetribrott och bidrar till att hitta möjliga lösningar p̊a vissa av
Standardmodellens begränsningar.

I detta projekt används datorbaserade simuleringar för att utforska hur olika parametrar
p̊averkar modellens resultat. Kritiska parametrar, s̊asom Higgsfältens vakuumvärden, kop-
plingskonstanter och massor för de skalära fälten, identifieras för att bestämma vilka som
har störst inverkan p̊a partikelmassorna och symmetribrott, vilket är essentiellt för framtida
experimentella studier. Med hjälp av ett datorprogram kan ett brett spektrum av scenar-
ier noggrant undersökas, vilket möjliggör en detaljerad kartläggning av de mest relevanta
parametrarna. Denna metod är avgörande för att först̊a vilka faktorer som p̊averkar model-
lens förutsägelser och för att optimera experimentella strategier i jakten p̊a nya fysikaliska
fenomen.
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1 Introduction

The Standard Model (SM) of particle physics [1] has been constructed by integrating mul-
tiple theories [2], each contributing a crucial piece of understanding regarding the actions
of particles and their properties. A notable moment was when Peter Higgs and François
Englert were awarded the Nobel Prize in 2013 for their theory on how particles acquire
mass, which had been experimentally confirmed a year earlier at CERN by the CMS and
ATLAS experiments [3]. Higgs’ theory applies the concept of spontaneous symmetry break-
ing (SSB) to the symmetrical structure of the Lagrangian, the mathematical framework
used to model the dynamics of fields and particles. Specifically, a structure known as the
SU(2) Higgs doublet, denoted H, is introduced [4]. This doublet is essential for initiating
Electroweak Symmetry Breaking (EWSB) [5], a process vital for enabling particles such as
the W± and Z bosons, as well as fermions, to gain mass through the Higgs mechanism [6].

Despite these advancements, significant questions such as baryon asymmetry [7] and the
nature of dark matter [8] remain, necessitating further enhancements to the SM. The Two
Higgs Doublet Model (2HDM) extends the SM by introducing an additional Higgs doublet
[9], facilitating a richer scalar sector which provides a framework for exploring additional
scenarios that can be tested through particle collider experiments. This model has been
further extended with multiple variations [10], one of which will be analyzed in this paper.

The model analyzed is a scale invariant 2 Higgs Doublet Model plus an additional real
singlet (SI-2HDM+S), and it largely follows the steps outlined by Lee & Pilaftsis in their
paper on SI-2HDM [11]. Through the Coleman-Weinberg (CW) mechanism [12], quantum
loop corrections introduce logarithmic terms to the potential. These radiative corrections
provide the necessary conditions for EWSB [4], where the vacuum expectation values (vevs)
of the scalar fields are generated. This method offers a natural solution to the hierarchy
problem by stabilizing the Higgs boson’s mass against large quantum corrections, thus
providing a more fundamental understanding of the mass generation mechanisms in par-
ticle physics. Additionally, the Gildener-Weinberg (GW) renormalization scheme [13] will
be followed to ensure that the theoretical predictions are finite and match experimental
results. Furthermore, Z2 symmetry will be imposed on the Higgs doublets to remove flavor-
changing neutral currents (FCNC). Finally, exploration of the parameter space within the
SI-2HDM+S is performed to identify the model’s constraints and pinpoint the conditions
under which new phenomena may emerge.

This thesis is structured as follows: Section 2, comprised of smaller subsections, first
presents the foundational knowledge of the Higgs doublets and the 2HDM model. It then
introduces the SI-2HDM+S model, explores its potential, and analyzes its mass spectrum.
The section concludes by examining the 1-loop radiative corrections, utilizing similar steps
as earlier sections to analyze their first derivative and tadpole conditions. Section 3 outlines
the necessary steps for conducting a numerical analysis of the model. Section 4 presents
the results and includes a comprehensive discussion. Finally, the thesis concludes with a
summary and an outlook for potential future research.
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2 Theoretical Background

2.1 Higgs Sector

Before delving into the specifics of the 2HDM+S model, it is important to establish a fun-
damental understanding of the structure and theory of the Higgs sector within the general
theoretical context, which is the focus of this section.

The 2HDM Langrangian possesses a SU(2)L × U(1)Y symmetry [4] which breaks under
EWSB into U(1)EM symmetry and contains two scalar doublets, with hypercharge Y =
+1, in the scalar potential:

Hi =

(
ϕ+
i

1√
2
(vi + φ0

i + ia0i )

)
, with i = 1, 2. (2.1)

A total of 8 different fields are represented, each doublet contributing a charged scalar
field ϕ+

i , a neutral scalar field φ0
i , and a neutral pseudoscalar field a0i [14]. Among these, 5

are physical fields and 3 serve as Goldstone modes [15]. These fields form the basis upon
which the physical mass terms are constructed. The doublets are expanded around their
respective vevs, obtained via EWSB, and can be defined as:

⟨Hi⟩ =
vi√
2

(
0
1

)
, i = 1, 2. (2.2)

The vevs, denoted by v1 and v2, play a critical role in the mass generation mechanisms of
the model. The EW scale parameter v, defined as v =

√∑
i v

2
i in the Higgs sector, must

be approximately 246 GeV [16] to match the mass scale of W±, Z0 gauge bosons. The
vevs v1 and v2 are denoted by v1 ≡ v cos β = vcβ and v2 ≡ v sin β = vsβ.

Additionally, the ratio of the two vevs, denoted as tan β = v2
v1

[17] influences the coupling
strengths of the Higgs bosons to fermions and gauge bosons, with the assumption of Z2

symmetry being explained in a subsequent section.

2.2 Scale Invariant 2HDM+S potential

Following the work of Arhrib et al, [18] we extend the model with a real singlet with
hypercharge Y=0 :

S =
1√
2

(
vs + φs

)
, with ⟨S⟩ = 1√

2
vs (2.3)

By starting from a generic basis the potential at tree level for a 2HDM with an additional
singlet (2HDM+S), similar to [18], is given as:
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V generic
tree =m2

11H
†
1H1 +m2

22H
†
2H2 − µ2

(
H†

1H2 +H†
2H1

)
+

1

2
m2

sS
2 +

λ1

2

(
H†

1H1

)2
+

λ2

2

(
H†

2H2

)2
+ λ3

(
H†

1H1

)(
H†

2H2

)
+ λ4

(
H†

1H2

)(
H†

2H1

)
+

λ5

2

[(
H†

1H2

)2
+
(
H†

2H1

)2]
+

λ6

8
S4 +

1

2

[
λ7H

†
1H1 + λ8H

†
2H2

]
S2

+ κS3 + ξS(H†
1H1 +H†

2H2) + ζ ′S(H†
1H2 +H†

2H1).

(2.4)

We have the quadratic mass terms m2
11, m

2
22, m

2
s and µ2 and the quartic coupling terms

λi, the cubic coupling terms κ, ζ and ξ, where we assume that all couplings are real. Since
we are working within the conserving and scale invariant case we set m2

11, m
2
22, m

2
s, µ

2,
κ, ξ = 0. This further entails that there will be no CP violation as the model is in a
CP-conserving case. We further impose Z2 symmetry on the singlet field and the Higgs
doublet,

H1 ↔ H1, H2 ↔ −H2, S ↔ −S, (2.5)

to mitigate unwanted flavor-changing neutral currents (FCNCs) [19]. This changes the
model to one forbidding the quadratic terms H†

1H2 +H†
2H1. This leads to the use of the

following potential in this study:

Vtree =
λ1

2

(
H†

1H1

)2
+

λ2

2

(
H†

2H2

)2
+ λ3

(
H†

1H1

)(
H†

2H2

)
+ λ4

(
H†

1H2

)(
H†

2H1

)
+

λ5

2

[(
H†

1H2

)2
+
(
H†

2H1

)2]
+

λ6

8
S4 +

1

2

[
λ7H

†
1H1 + λ8H

†
2H2

]
S2.

(2.6)

To determine when the scalar potential Vtree stabilizes at a non-trivial minimum, the
tadpole conditions [20] are applied. These conditions require the first derivatives of the
potential with respect to each field to be zero at the minimum, ensuring vacuum stability.
They are set up as a system of equations, where one solves for expressions of the coupling
terms, in this case λ6, λ7, and λ8. Due to the flat direction in the potential, this results in
a massless scalar. This leads to the following specific tadpole conditions when minimizing
Eq. (2.6):

T 1
tree =

〈
∂Vtree

∂φ0
1

〉
=

1

4
v1
(
2v21λ1 + 2v22λ345 + v2sλ7

)
= 0, (2.7)

T 2
tree =

〈
∂Vtree

∂φ0
2

〉
=

1

4
v2(2v

2
2λ2 + 2v21λ345 + v2sλ8) = 0, (2.8)

T 3
tree =

〈
∂Vtree

∂φs

〉
=

1

8
vs(v

2
sλ6 + 2v21λ7 + 2v22λ8) = 0, (2.9)
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where λ345 = λ3 + λ4 + λ5, φ
0
1 and φ0

2 are the CP-even Higgs states, and ϕs is the real
singlet.

Subsequently, we use these tadpole conditions to solve for the squared mass matrix, con-
structed by taking the second derivative of the potential with respect to the field compo-
nents as follows:

Mij =
∂2V

∂φi∂φ
†
j

∣∣∣∣∣
φ=⟨φ⟩

for i, j = 1, . . . , 7. (2.10)

The 7× 7 Hessian matrix, after applying the tadpole conditions, is organized into distinct
2 × 2 blocks, as well as one 3 × 3 block, along its diagonal. The order of these blocks is
determined by the structure φi = {ϕ+

1 , ϕ
+
2 , φ

0
1, φ

0
2, φs, a

0
1, a

0
2}, where ϕ+

1 and ϕ+
2 are complex

terms. This arrangement clearly outlines the coupling terms and their relationships to the
mass terms for various fields.

The first two 2× 2 blocks and the final one are represented by the charged Higgs field H±

and the CP odd field A respectively, and can both be diagonalized [11] by the following
rotational matrix which coincides with the Higgs basis [[17],[14],[21]],

(
cβ −sβ
sβ cβ

)(
−1

2
v2λ45s

2
β

1
4
v2λ45s2β

1
4
v2λ45s2β −1

2
v2λ45c

2
β

)(
cβ sβ
−sβ cβ

)
=

(
0 0
0 M2

H±

)
, (2.11)

(
cβ −sβ
sβ cβ

)(
−v2λ5s

2
β v2λ5cβsβ

v2λ5cβsβ −v2λ5c
2
β

)(
cβ sβ
−sβ cβ

)
=

(
0 0
0 M2

A

)
, (2.12)

where λ45 = λ4 + λ5. This results in the charged mass M2
H± = −1

2
v2λ45 and the CP-odd

mass M2
A = −v2λ5, which both match with Lee & Pilafstis work [11]. For both terms, the

Goldstone bosons [15] G±and G0 become the longitudinal components of the gauge bosons
W± and Z0 and thereby acquiring mass.

What remains of the Hessian is a 3 × 3 matrix involving the CP-even mass terms that
describe the mixing of the CP-even Higgs states φ0

1,2 with the additional real singlet φs:


v21λ1 v1v2λ345 −v1(v21λ1+v22λ345)

vs

v1v2λ345 v22λ2 −v2(v22λ2+v21λ345)
vs

−v1(v21λ1+v22λ345)
vs

−v2(v22λ2+v21λ345)
vs

v41λ1+v42λ2+2v21v
2
2λ345

v2s

 . (2.13)

By diagonalizing the 3× 3 matrix we obtain three physical mass eigenstates. The first, a
Goldstone boson [13] and further we also identify two CP-even physical masses, M2

h2
and
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M2
h3
, defined in Appendix A. The Goldstone boson arises from the spontaneous breaking

of classical scale symmetry due to a non-zero flat direction in the Higgs potential, resulting
in a massless CP-even state typically called the scalon [11].

For practical calculations in what follows, we invert the parameter space of the model,
λ1,2,4,5 with respect to the tree level physical masses M tree

H± , M tree
A , M tree

h2
, M tree

h3
, in order

to perform numerical scans of the model.

2.3 One-loop radiative corrections to the mass spectrum

In the SI-2HDM, quantum loops involving gauge, Higgs self-couplings, and top-quark in-
teractions break the classical scale symmetry. This necessitates computing the one-loop
effective potential and determining the radiatively corrected CP-even Higgs boson masses
and their mixing. Due to the additional CP-even mass eigenstate obtained in the 3 × 3
mass matrix at tree-level, the CW potential [12] must be extended to include the effects
of the additional CP-even mass state:

Veff =
1

64π2

(
µ4
h2

(
ln

µ2
h2

Q2
− 3

2

)
+ µ4

h3

(
ln

µ2
h3

Q2
− 3

2

)
(2.14)

+ µ4
A

(
ln

µ2
A

Q2
− 3

2

)
+ 2µ4

H±

(
ln

µ2
H±

Q2
− 3

2

)
+ 6µ4

W

(
ln

µ2
W

Q2
− 5

6

)
+ 3µ4

Z

(
ln

µ2
Z

Q2
− 5

6

)
− 12µ4

t

(
ln

µ2
t

Q2
− 1

))
,

where Q is the renormalization scale [13] and the background field-dependent masses
squared are given by the matching to their tree level expressions as following:

µ2
A = −2λ5(H

†
1H1 +H†

2H2), µ2
H± = −λ45(H

†
1H1 +H†

2H2), (2.15)

µ2
Z =

g2

2c2w
(H†

1H1 +H†
2H2), µ2

W =
g2

2
(H†

1H1 +H†
2H2), (2.16)

µ2
t = 2

m2
t

v2c2β
(H†

2H2), (2.17)

while µ2
h2

and µ2
h3

are given in Appendix A.

The squared masses µ2
h2
, µ2

h3
, µ2

A, and µ2
H± are defined in the CW potential [11] by com-

binations of the quartic couplings λ1,2,3,4,5. These reflect the dynamics within the Higgs
sector, influenced by the two Higgs doublets Hi and the singlet S. The field-dependent
gauge boson masses squared, M2

Z and M2
W , are derived from the weak coupling g, the

cosine of the Weinberg angle c2w, and the Higgs contributions. The field-dependent top
quark mass squared, µ2

t , is influenced by the mass of the top quark m2
t , vevs, and c2β.
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The renormalization scale is defined by using the GW scheme [13] so that Q = ΛGW where
the relation for ΛGW is:

log
ΛGW

v
=

(
A

2B
+

1

4

)
,

where the values for B and A are defined as:

B =
1

64π2v4

(∑
j∈Π

βjM
2
j

)
, (2.18)

A =
1

64π2v4

∑
j∈Π

βj⟨µ4
j⟩
(
αj + log

(⟨µ2
j⟩

v2

))
, (2.19)

where Π = {h2, h3, A,H
±,W, Z, t} represents the set of particles considered in the model,

which are directly related to the field-dependent mass components of Veff. The constants
βj and αj are specific coefficients for each particle j in the set Π, where βj represents
the numerical coefficient for each field-dependent mass term µ2

j , while αj accounts for an
additional constant affecting the logarithmic terms.

To gain a clearer analytical understanding of the one-loop tadpole equations, we use Π to
indicate how the derivative can be simplified to show the contributing components of Veff,
similar to the approach in [22]. We define the total derivative of the one-loop potential,
where all components contribute, as VΠ. When all components except the top quark t
are included, it is denoted as VΠ\t. If only the components related to the field-dependent
CP-even mass terms remain in the derivative, it is denoted as Vh2,3 . This is specifically the
case when differentiating Veff with respect to the singlet field.〈

∂Vtot

∂φ0
1

〉
= T 1

tree +

〈
∂Veff

∂φ0
1

〉
= T 1

tree +

〈
∂VΠ\{t}

∂φ0
1

〉
= 0,〈

∂Vtot

∂φ0
2

〉
= T 2

tree +

〈
∂Veff

∂φ0
2

〉
= T 2

tree +

〈
∂VΠ

∂φ0
2

〉
= 0,〈

∂Vtot

∂φs

〉
= T 3

tree +

〈
∂Veff

∂φs

〉
= T 3

tree +

〈
∂V{h2,3}

∂φs

〉
= 0,

(2.20)

These tadpole equations of the total potential are used with eq. (2.10) to calculate the
new mass matrix. Due to the complexity of the solutions a numerical analysis is performed
to get the final results for the mass eigenstate values corresponding to the physical mass
values by diagonalizing the matrix.
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3 Numerical Analysis

The computational implementation is carried out using a custom Mathematica script,
which systematically explores the random parameter space. The script operates by se-
quentially varying the parameters within defined ranges, ensuring that the entire process
runs through multiple iterations to produce the final result. This comprehensive approach
allows for a thorough analysis of the model’s behavior under different conditions, as de-
scribed in the following steps.

The objective of the numerical analysis of the SI-2HDM+S is to explore the implications
of the model under various parameter settings. To this end, a setup is employed where a
multitude of parameters are randomly varied within specified ranges. The parameters and
their respective ranges are specifically listed as follows:

M tree
A ,M tree

h2
,M tree

h3
,M tree

H± : 100 GeV ≤ M ≤ 300 GeV,

|λ3| < 1,

tan β : 1 ≤ tan β ≤ 20,

vs : 50 GeV ≤ vs ≤ 500 GeV,

v : 246 GeV.

The analysis continues by defining the coupling constants λi in terms of the mass param-
eters, using the field-dependent masses for λ1, λ2, λ4, and λ5, as well as the minimization
conditions of the total potential, eq. (2.20), to obtain the definitions for the couplings λ6,
λ7, and λ8. For each set of random parameters, the model’s equations are solved to deter-
mine the eigenvalues of the mass matrix derived from the total loop-corrected potential by
diagonalization.

We choose to consider the state corresponding to the smallest of these eigenvalues, Mh1 ,
following the GW scale, as a candidate for the SM-like Higgs boson under the assumption
that it represents a light, potentially observable particle.
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4 Numerical Results

A parameter limit of 115-135 GeV was set for the CP-even masses, and the first seven
results within this range, along with the various output parameters obtained during the
model scan, are presented below.

Table 1: Data showing Mh1 , Mh2 , Mh3 , MA, tan β , vs, M
tree
h2

, M tree
h3

, M tree
H± , and λ3 values.

Mh1 Mh2 Mh3 MA tanβ vs M tree
h2

M tree
h3

M tree
H± λ3

130 132 196 295 13.2 462 199 148 232 0.106
125 127 184 233 13.3 445 150 251 155 0.983
123 124 184 246 19.9 385 285 156 158 0.355
131 131 194 125 17.0 340 298 165 108 0.415
126 127 190 288 16.1 360 296 163 116 0.228
120 147 184 114 3.12 190 242 297 251 0.810
124 124 187 103 10.5 275 230 173 210 0.576

Before analyzing the table, we impose an ordering at the one-loop level for Mh1 < Mh2 <
Mh3 , defining the lightest CP-even mass term as the Higgs boson. From our numerical
results, we observe several distinct parameter traits, most notably that multiple results
within the correct range for the Higgs boson can be found for the lightest CP-even mass.
However, as seen in Table 1, the lightest and second lightest masses are very close in
range, while the heaviest CP-even mass differs by a clear amount. This disparity could
be attributed to several factors. These include the additional contributions from the real
singlet field, which enhance the mass of the pseudo-Goldstone boson, the significant impact
of radiative corrections in the SI-2HDM+S model on the mass generation process, and the
redistribution of mass eigenvalues resulting from the mixing terms involving the singlet
field and the CP-even neutral scalars.

Furthermore, looking at other parameters of Table 1 reveals that there is no specific range
for λ3 and tan β. For the other parameters, a graphical approach is taken to better observe
their constraints visually. This is done by following the numerical analysis.
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Figure 1: Comparison of the lightest eigenvalue Mh1 on the x-axis with Mh2 on the y-axis,
with Mh3 represented as an additional parameter using a color scale.

Figure 1 demonstrates a strong linear relationship between Mh1 and Mh2 . Additionally,
the color scale representing Mh3 indicates a similar linear relationship, though it is shifted
slightly higher.
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Figure 2: Comparison of the lightest eigenvalues Mh1 on the y-axis with M tree
h2

(left) and
M tree

h3
(right) on the x-axis, with λ3 represented as an additional parameter using a color

scale.

Figure 3: Comparison of the lightest eigenvalues Mh1 on the y-axis with M tree
h2

(left) and
M tree

h3
(right) on the x-axis, with vs represented as an additional parameter using a color

scale.

Furthermore, both Figure 2 and Figure 3 reveal a relationship that serves as a boundary
or guideline for the distribution of the lightest CP-even mass when comparing tree-level
parameter CP-even masses with the lightest eigenvalues. These figures also provide a rough
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estimate of the range of the tree-level mass M tree
h3

, approximately 140-170 GeV, and for
M tree

h2
, around 150-180 GeV. This constrained parameter space could be due to the delicate

balance required between the tree-level potential and the radiative corrections to achieve
a stable vacuum and maintain consistency with experimental data.

Figure 4: Comparison of the lightest eigenvalues Mh1 on the y-axis with M tree
A on the x-

axis, with λ3 (left) and vs (right) represented as additional parameters using a color scale.

For the parameter M tree
A , there is no specific range when the lightest CP-even mass is

around 125 GeV; instead, it can be any value, as shown in Fig. 4. However, what can be
observed from this figure, as well as from Figure 3, is that vs has a slight constraint, with
its values lying around 300 GeV and slightly above.

Looking from a theoretical point of view and starting from the tree-level potential, we
can observe significant differences between the SI-2HDM and SI-2HDM+S models. In the
SI-2HDM+S model, the terms λ6, λ7, and λ8 do not vanish as they would under a Z2

symmetry in the case of Lee & Pilaftsis [11]. This non-zero contribution from λ6, λ7, and
λ8 modifies the scalar potential and impacts the mixing terms, leading to a 3 × 3 mass
matrix for the CP-even neutral scalars instead of a 2 × 2 matrix. Consequently, the SI-
2HDM+S model predicts two additional CP-even neutral mass eigenstates compared to
the SI-2HDM, which only predicts one.

Both models feature a Goldstone boson, which acquires mass through radiative corrections.
At tree level, the SI-2HDM+S introduces an additional vev from the real singlet, affecting
the mass terms of the CP-even neutral scalars. This additional mass term adjusts the CW
potential and the GW renormalization scale, incorporating an extra term due to the singlet.
As a result, the third tadpole condition in the CW potential, which typically vanishes in
other models [22], retains both CP-even mass terms in the SI-2HDM+S.
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It can further be stated that the tree-level masses and their one-loop corrections reveal
that the couplings in the SI-2HDM+S model differ significantly from those in the SI-
2HDM. Specifically, the introduction of the real singlet modifies the relationships among
the couplings, leading to a richer phenomenology and different experimental signatures.
The one-loop corrected masses show that the parameter space is tightly constrained to
obtain a Higgs boson mass around 125 GeV.

5 Conclusion and Outlook

In conclusion, the SI-2HDM+S model introduces significant modifications to the scalar
potential and mass spectrum compared to the SI-2HDM. The presence of an additional
real singlet field and the non-zero λ6, λ7, and λ8 terms lead to a lengthier mass matrix and
an additional mass eigenstate. Our numerical analysis shows that the parameter space is
tightly constrained to achieve a Higgs boson mass around 125 GeV.

The next natural steps to study the SI-2HDM+S model include a detailed investigation
of the interactions between the proposed Higgs boson candidates and other particles, such
as gauge bosons and fermions. Understanding these interactions is crucial as they may
differ from those of the Higgs boson, providing further insights into the model’s validity
and potential experimental signatures. Additionally, a thorough analysis of the eigenstates
of the mass matrix at the one-loop level should be conducted to determine why the degen-
eracy between the two lightest mass terms exists. This analysis should also identify which
physical mass corresponds to each mass eigenstate, as experimentally this may result in
the observation of only one mass, but this remains to be investigated.

Future research could also explore a broader range of areas. This includes reproducing
the Higgs state and studying its constraints from collider data, and examining how these
states behave in the early universe, particularly when considering thermal corrections. Such
studies are essential for understanding the model’s implications and ensuring its consistency
with experimental and cosmological observations.

A Appendix

The following shows the calculated CP-even mass eigenstatesMh2 andMh3 defined in terms
of λi:

M2
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1λ1 + v22λ2) + vs (v
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1λ1 + v42λ2 + 2v21v

2
2λ345)
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−

√
−4v21v

2
2v

4
s (v

2 + v2s) (λ1λ2 − λ2
345) + v2s (v

4
1λ1 + v22 (v

2
2 + v2s)λ2 + v21 (v

2
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2
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The field dependent masses for µ2
h2

and µ2
h3

are as follows:
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