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Abstract

A great amount of financial statements of Swedish companies are registered with the Swedish
companies registration office, Bolagsverket, as paper copies. These copies are then scanned and
made available to the public as image-PDFs, meaning the financial information contained in them is
not digitised and therefore not easily processed in an automated manner. Being able to do so, is
valuable however, e.g. to offer automated credit risk assessments or investigate fraud cases through
modern technologies. In order to digitise this financial information, the company I work for has
developed image recognition algorithms that can create a structured data representation of the
financial statements. In some cases however, the image recognition fails at creating an accurate
representation of what is written in the financial statement. This poses a data quality issue where
further applications onto the digitised financial data might be misconstrued and offer a skewed or
outright wrong perspective of the underlying financial situation of a certain company. It is therefore
the goal of this thesis to develop a solution that can identify cases in which the image recognition
data does not match its true counterpart.

The solution developed in this thesis is three-fold. First, the quality of the extracted data is
evaluated through the assignment of so-called error labels. Second, a Random Forest classifier is
trained to be able to predict these error labels and lastly, a quality score is calculated to offer a
suggestion of the best possible representation for each value in a financial statement. It is shown
that this approach obtains reasonable results and does indeed beat an existing approach to solving
the same problem by a considerable margin. The solution build in this thesis therefore offers a
valuable extension to the image recognition program, by allowing for a data quality assessment
of the extracted information and therefore increasing the confidence one can have in the digitised
financial data to accurately represent the original paper copies.
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Popular Science Summary

In this thesis, I build a solution that can identify whether or not a data point is of good or bad
quality. These data points are originally created by a program that extracts information from
financial reports. Now, this program works by using image recognition technology and the problem
is, that sometimes it simply extracts the wrong information from the financial report. I want to
figure out when that happens.

A financial report contains numbers that describe a company’s financial situation, usually over
the period of a year. For example, it contains the company’s revenue and cost figures. In Sweden,
these reports are often registered as paper copies with the financial authorities and then they get
scanned into PDFs. Because these PDFs are basically just images, the information contained in
them cannot easily be processed with computers. It would be very valuable to be able to do that
however, for example to offer automated credit risk assessments on these companies. In order to be
able to do that, the company I work for has therefore developed this image recognition program
which can extract information from the PDFs and store it in a table format.

The central problem of my thesis is that sometimes, the program will not extract the correct
information. In the PDF, the revenue value might read 4502 SEK, but the program has extracted
the value 8502 SEK instead. I want to be able to identify when that happens to make sure that the
extracted information is of high quality. To solve this problem, I build a Machine Learning program
that can predict whether an extracted number matches the number written in the PDF or not. As
it turns out, this is a decent way to identify the incorrect extractions. This means that my Machine
Learning program can be integrated with the image recognition program that the company I work
for develops, to improve the extracted information it offers.
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1 Introduction

1.1 Data Quality

By far, this is not the first nor the last thesis concerning itself with ‘data’ and ‘Machine Learning’.
Words so ubiquitous that sometimes it seems, not even my grandpa can escape hearing about ‘AI’
and ‘data-driven decision making’. The omnipresence of these technologies even leads some people
to refer to our current times as the Age of Data. From CEOs seeking to cut costs to politicians
scrambling to address global pandemics, decisions are being made by ‘looking at the numbers’,
trusting that ‘the data does not lie’. And it makes sense, numbers and statistics can offer incredible
insight on whatever one wishes to study. Without knowing how much incoming versus outgoing
money a company has, it would be quite the challenge to successfully manage a business and offer
secure employment. Without knowing how many people fall ill from a disease and at which rate,
intervention and cure might be futile efforts.

Gathering records and creating data is not just a phenomenon of recent decades. Indeed, the
earliest forms of writing (now known as proto-cuneiform writing) were motivated by economic
accounting initiatives, recording quantities of sales goods, labour and livestock in circa 3300 BCE
Mesopotamia.[11] From clay tablets to microchips, the creation of data is essential to human
organisation and decision making.

What certainly has changed over the thousands of years of recording data, is the vast amount
of information that is being gathered every day. It is hard to imagine a human living 200 years
ago that knew the precise amount of steps they took each day or how high their heart rate went
climbing up the stairs. I would claim that we are not living in the Age of Data because data is so
essential to our processes, but rather because virtually everything is being measured, recorded and
tracked these days.

Personally, I have worked with creating ‘Key Performance Indicator dashboards’ and setting up
‘monitoring solutions’ for some years and whenever I would discuss the numbers shown in any of
these applications with my colleagues, I would often find myself saying sentences along the lines of
‘Yes, but: consider that this only measures X and not Y’ or ‘Yes, but: this number only shows how
often A happens under this condition, not in every case’. In order to draw valid conclusions from
any of these dashboards, graphs, tables or plots, it is essential to understand the conditions under
which each number, or data point, was created. Is the ‘number of users’ some software product
might have counting all existing user IDs or is it based on who has logged in to the platform in the
last month? In order to provide the according number, a decision needs to be made on how ‘users’
should be measured, thereby selecting which aspect of reality a data point should represent. The
context that goes into the creation of data is thus necessary for the correct interpretation of the
numbers, but also highlights the difference that exists between the data itself and the phenomenon
of the real world that it aims to represent.

Indeed, this representational quality of data leads the author of [19] to describe its function as
semiotic, meaning that data is a stand in for things other than itself, and that data can be seen as a
model of reality. A model in which only selected characteristics of the chosen aspects of reality are
being represented.

If one accepts that data is simply a model of reality and thereby distinct from it, the question
naturally arises how well data actually represents said reality. What happens, when a data point
does not actually match its real counterpart? In any scientific experiment, the idea of measurement
error is well established. One speaks of ‘noise’ in the data that indicates such misrepresentations
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between measurement values and the underlying real phenomenon. In a broader context, studying
cases in which data and reality do not match, falls under the category of data quality. When
assessing the quality of a particular set of data, one aims to address, among other things, how well
the data matches the part of reality that it was created to represent. Coincidentally, this is what I
have chosen to make the topic of my thesis.

While sure enough, I apply said buzz-wordy technologies of Machine Learning in my work, it is
with the aim of challenging the very fundamental assumption to any data-driven approach: the
assumption that the data used for creating abstractions of reality actually represents this reality
sufficiently well.

As my grandpa likes to joke: ‘Statistics is the art of lying in its finest form’1. While of course,
the vast majority of numbers and statistics are created with good intent, there is an inkling of truth
to my grandpa’s words, expressed by the idea that sometimes, numbers do lie, or at least do not
offer a good representation of reality. Personally I believe that the more significance one places on
insights derived from data, the more one relies on it to make decisions, the higher the burden placed
on this fundamental assumption of accurate representation to hold true. By choosing data quality
to be the over-arching topic of my thesis, I hope to put a bit of focus on the care that should be
taken whenever data is used to learn about reality.

Now, this sets the stage for my thesis rather broadly. The next section narrows down the
particular application I have chosen for my work.

1.2 Image Recognition of Swedish Financial Reports

I currently find myself working for a company that offers financial services, amongst which are
credit risk assessments on other companies. These assessments are based on a broad range of
data points for each company, including the financial statements that a company typically releases
every year. These statements are often publicly available and contain valuable information on a
company’s financial health. Unfortunately, in Sweden, these financial statements are largely filed in
non-digital formats which make automated processing of them difficult. Often, the financial data is
only available through scanned images of a printed document, requiring extraction methods such as
image recognition algorithms to create a digital representation of the scanned images.

To put it in the language introduced above, the company I work for creates abstractions (the
credit risk assessments) of another company’s financial situation (that company’s reality) based
on a dataset that contains extracted information from the image of the financial statement (the
representation)2. In order for the credit risk assessment to be reliable, one needs to assume that
the extracted dataset accurately represents the company’s financial reality. To test whether this
assumption is true shall be the objective of this thesis.

The Swedish authority that is responsible for handling the financial statements of companies is
called Bolagsverket, or the Swedish Companies Registration Office. And while they generally offer
the option to hand in financial reports in a digital file format called XBRL (eXtensible Business
Reporting Language), many companies still choose to hand in a physical copy of their report to

1Loosely translated from the original German: ‘Statistik ist die Höchstform der Lüge.’
2One could argue that the original financial statement, before it becomes a scanned image file, is already just a

representation of the actual financial situation of the company and of course, that is valid. And spun even further,
can one even know what the true financial reality looks like? Is there such a thing as objective truth? Interesting
questions indeed, but in order to make any practical progress, I simply assume that the scanned image file as it was
filed with the authorities is a company’s financial reality.
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Bolagsverket. In order to digitise these physical reports, Bolagsverket scans them as TIFF files and
compiles a PDF which they then make available through their website search tool and subscription
services.

The financial information contained in each report is very valuable as it offers crucial insights into
the financial health of each company and many industries and third parties rely on this information
in order to operate their businesses. To address this need, there are many companies which offer
to redistribute the financial report from authorities such as Bolagsverket, and they often not only
redistribute the information from the financial report, but also add their own interpretations and
services to this, e.g. in the form of credit assessments and risk analyses. As mentioned before, the
company I work for is one of these companies.

In order to provide products like this, the companies are challenged by the fact that especially in
Sweden a large part of the financial statements are filed as printed copies, not using the digital XBRL
format. In order to obtain digitised and structured financial information on other companies, they
need to rely on manual data entry where a person reads the scanned PDF and types the information
in a structured file format, or increasingly, image recognition algorithms which seek to automate
this labour. While differing in their efficacy, both methods are prone to produce data quality issues
in the form of incorrectly extracted data points or misrepresentations of reality, as I called it earlier.
In the context of this problem, I consider the scanned PDF to be the company’s financial ‘reality’
and the extracted dataset, manually entered or created through an image recognition algorithm, the
representation. Whenever scanned PDF and the corresponding data point of the extracted dataset
differ, it poses a data quality issue and it is my goal to create a statistical model that is able to
detect these cases.

1.2.1 About the Image Recognition Data

As is established above, the reality that shall be represented through data are the financial statements
Swedish companies file with Bolagsverket as physical copies. Through Bolagsverket the company
I work for has obtained a large dataset of scanned PDFs, which I consider the ‘reality’, and also
implemented image recognition algorithms to extract the information contained in each, which form
the ‘representation’.

The content of a financial statement generally follows a similar structure. For a limited liability
company in Sweden, called ‘Aktiebolag’, Bolagsverket requires the financial report to contain a
Director’s report (‘Förvaltningsberättelse’), Income Statement (’Resultaträkning’), Balance Sheet
(‘Balansräkning’), Notes and often an Auditor’s report. [4] While the Director’s and Auditor’s
report as well as the Notes sections of the statement are very text-laden, the Income Statement and
Balance Sheet contain the financial figures, such as a company’s assets, debts and revenue, which
are firstly numeric and secondly, very relevant for gaining insights on the financial health of the
company in an automated manner. It is these two parts of the financial statement that the image
recognition focuses on, so that the resulting extracted dataset is largely numeric.

At this point it is worth mentioning that of course, when one attempts to extract financial
data from the scanned PDFs, it is not only the numeric values that are extracted, and therefore
potentially a misrepresentation of reality, but also the text that gives meaning to the numerical
values, i.e. the financial figure names. For example, if a company has an annual revenue of 250000
SEK, it is not just the value of 250000 that needs to be extracted, but also the associated meaning
of it, in this case the text string ‘revenue’. Both extractions, the numeric and the text-based, can
suffer from data quality issues. For the text-based ones these can often take the form of typos,
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wrongly-read special characters, but also issues like undetected line breaks. Identifying these issues is
complicated enough, but can be addresses through domain knowledge checks. That is, the financial
figure names are standardised across reports and while not every report necessarily contains all
financial figures, it is possible to know which ones to expect. So if the image recognition algorithm
returns the word ‘Nettoomsatting‘ instead of the correct ‘Nettoomsättning’ (English: revenue), a
simple string distance measure allows for a reasonable enough mapping of these two strings, and
therefore a sufficiently identified meaning of the financial figure value associated with it.

On the other hand, the domain knowledge constraints are much less precise for the financial
figure values. While sure enough, some financial figures cannot take negative values, or a value
of a trillion SEK would be very unreasonable, these bounds are not small enough to make for an
efficient detection of what the actual value is. It is because of this reason, that I have chosen to
only focus on the data quality issues pertaining to the extracted financial figure values and not the
financial figure names in this thesis. In the dataset that I have used for this project the text strings
are therefore already cleaned and mapped to a sufficient meaning by using the domain knowledge
constraints described above. Data quality issues encountered in the correct extraction of financial
figure names are therefore not considered here.

Now, in order to extract financial data from the PDFs, the company I work for has implemented
several different versions of image recognition algorithms. Each version is called a scraper and in
this thesis I worked with the output of six different ones. While the underlying implementation for
the image extraction part has been the same across all scrapers, each scraper itself was configured in
slightly different ways. For example, one scraper would sharpen the PDF image before attempting
an extraction, another would try to increase contrast and so forth. This means that for every
financial figure included in a PDF, there are six different outputs. The challenge, and ultimate goal
my work, is to identify which of these six values actually corresponds to the value as it is displayed
in the original image, if any, and then to make a recommendation which value should be chosen as
the best possible representation of the image one.

Since the actual values contained in the image are not easily machine-readable, this would
technically be an unsupervised learning task, as there are no available labels, or true values, for each
of the extracted ones. And indeed, as part of the initial scoping of this problem, I have tried a few
unsupervised attempts at solving the problem, but with little success. Luckily, the company I work
for has a secondary source for the financial data contained in each PDF available. While this source
comes with limitations itself (which are described in Section 4.1), the available data is comparable
and so it was possible to have at least an approximation of the true values for each scraped one.
This ultimately allowed me to use supervised learning algorithms to identify misrepresentations of
reality, which is described in more detail in later sections.

Table 1: Illustrative Data Sample

ID Financial Figure
Name

Scraper
Version Company Age Company Type Scraped

Value

Secondary
Source
Value

Report 1 ebitda Scraper 3 2208 AB -31123422.00 NaN
Report 1 short_term_debt Scraper 6 2208 AB 18230.00 18000.00
Report 2 inventories Scraper 2 2815 AB 0.00 0.00
... ... ... ... ... ... ...
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An illustrative sample of the dataset used for this thesis can be seen in Table 1. The columns
ID, Financial Figure Name and Scraper Version uniquely identify each scraped value. The columns
Company Age (measured in days) and Company Type (e.g. ‘AB’ which stands for ‘Aktiebolag’
- a Swedish Limited Liability Company) give further information on each company. Lastly, the
Secondary Source Value column is used as the approximation to the unknown true value as it is
printed in each report.

1.3 Problem Statement and Sketch of the Approach

The goal of this thesis is two-fold. First, I aim to assess the data quality of the image recognition data
with the focus on determining whether or not each value accurately represents its true counterpart,
that is the financial figure value as it is printed in the report itself. And second, I use the data
quality assessment to make a selection across the six different scraper outputs, deciding which of
them is most likely to be an accurate representation of the true value. In order to build a solution
that can hopefully achieve this goal, I split my approach into three steps.

Step 1. I start out by drafting a heuristic on what constitutes ‘data quality’ in my chosen
application domain of the image recognition efforts for Swedish financial reports. In essence, I want
to answer the question: what is the difference between scraped values considered to be of ‘good
quality’ and those considered ‘bad quality’? As is described in more detail later on in Section 2.2,
in this step, I aim to define the data quality dimension of accuracy for my application domain.

Step 2. In order to be able to assess whether or not the image recognition outputs do match with
their true counterparts in an automated manner, I do require a dataset for the true values. Luckily,
a secondary source for the financial data is available. While this secondary source does come with
some limitations (described in Section 4.1), it is independent of the image recognition algorithm
and sufficiently represents the true values. However, this secondary source is only available for a
subset of all non-digitally filed financial statements and it is expensive to acquire. Because of this, I
do not want my solution to rely on it going forward and ultimately, in this Step 2, I aim to replace
the secondary source by training a predictive algorithm (in particular a Random Forest Classifier)
to replace it. This trained classifier is then used to assess the accuracy of scraper values.

Step 3. Lastly, I use the data quality assessment model from Step 2 to make a selection for each
financial figure, which scraper output is the best possible one to accurately represent the true value.
To evaluate the success of my solution, I compare it to the current solution that the company I work
for has implemented. This ‘current solution’ equally provides a selection across the six scrapers, but
it has several drawbacks (for more details, see Section 3.4). If my solution performs better than this
existing solution, I deem my efforts successful and vice versa.

At this point, I like to emphasise that my use of a Machine Learning model is, for lack of a better
word, a bit ‘old-school’. Not only have Neural Networks been the fastest growing ML algorithms,
in terms of published research papers, in the period from 2013 to 2022 [16], Deep Learning has
become a ubiquitous buzzword. The trend does seem to be to grow large ML models that require
little human input and mostly identify patterns in the data autonomously. However, this comes
at the cost of interpretability and lack of oversight, giving rise to the term ‘black-box models’
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where it is unknown to the human observer how the algorithm has arrived at its output. While
complex Machine Learning algorithms are relatively cheap to apply after they have been trained,
the computational cost to train them is high which also means that the energy consumption and
environmental impact is a factor to be considered.

Since my thesis problem, to assess the scraper output data quality and offer a best-possible
value selection, is ultimately an intermediate step in the over-arching solution to providing digitised
financial data on Swedish companies, it is a requirement that my solution is relatively light-weight
and can be included in a production pipeline without accruing high cost. In addition to this, I have
also considered my personal experience and skills for the selection of a suitable Machine Learning
algorithm and have ultimately set the scope of my solution to rely on a more ‘traditional’ Machine
Learning algorithm in the form of a Random Forest classifier.3

1.4 Alternative Approaches

Before describing the actual chosen approach, I want to mention the alternative approach I tried to
apply as part of the initial exploration of the thesis problem. Namely, I originally set out to solve
this problem using Outlier detection methodologies. Outliers being data points that to some degree
are ‘different’ to others, or are considered atypical, extreme or otherwise not fitting into the existing
expectations towards the data. This concept of outlyingess does not necessarily mean that data
points are wrong, in the sense that they misrepresent reality, but it gives an indication that a data
point might be ‘suspicious’. Often, for every data point an outlier score is calculated that represents
the degree to which this data point is different from others and I intended to use this scoring as an
input to assessing data quality. Unfortunately however, the methods I tried to apply to this thesis
problem did not lead to satisfying results. While some extreme values could correctly be identified
as actual mispresentations of reality, a large part of the quality issues stem from extracted values
that do not necessarily appear very different from other values and as such, the outlier methodology
is simply not a good candidate for this thesis problem. This has lead me to explore other possible
methods, ultimately leading to the approach detailed in the previous section.

1.5 Thesis Structure

Beyond the introduction, this thesis is split into three further sections. Section 2 describes the
theoretical background relevant to this thesis. It begins by offering a classification of data types
as well as a data quality definition and moves on to describing principles of Statistical Learning
Theory, the mathematical framework for Machine Learning, as well as detailing the workings of
the Random Forest and Decision Tree models. This section ultimately concludes with mentioning
selected Machine Learning tools that I applied in my approach.

Following that, Section 3 reports the details of my actual application. From information about
the implementation in Python, to the initial heuristic as well as outputs from the Random Forest
classification and ultimate value selection, it offers an account of the results I obtained by applying
the previously described approach to the image recognition data of Swedish financial reports. Lastly,
Section 4 sums up my solution by discussing limitations of the approach as well as ideas for potential
improvements and finally ends my thesis with a conclusion. Additionally, the appendix includes
excerpts of actual financial reports and references are stated as well.

3While technically, a Random Forest model is still difficult to interpret directly, the narrow choice of my application
domain in Step 2 ensures sufficient transparency and control for the overall solution.
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2 Theoretical Background

2.1 Definition of Data and Data Types

When one thinks of the representation of a dataset in mathematics, it is often the matrix X that
comes to mind. X usually is nicely defined, with n rows and p columns. One might even know
some characteristics of the matrix, whether it is invertible, sparse or its diagonal has interesting
properties etc. How the values of the matrix X came to be is less often considered. When indeed, as
everybody that has tried to tinker with or read about Machine Learning algorithms has experienced,
there is a long path of ‘data wrangling’ before that matrix, or the code variable X, is ready to be
plugged into the training function of a Machine Learning library.

In order to offer some perspective on this process of ‘data wrangling’, i.e. the handling,
transforming, cleaning or ‘making ready’ of some dataset for further analysis and abstraction, this
section explores what data might be and how different types of it can be distinguished. To do so, I
follow the classifications given in [2, p.6-8] which defines data as follows.

Definition 2.1. Data represent real world objects, in a format that can be stored, retrieved,
and elaborated by a software procedure, and communicated through a network. The process of
representing the real world by means of data can be applied to a large number of phenomena, such
as measurements, events, characteristics of people, the environment, sounds and smells. Data are4

extremely versatile in such representation.

The authors describe several view points from which different types of data may be identified.
Firstly, one common distinction is made on the basis of the structure in which data is available,
with unsurprising category names such as:

• Structured data: is data that is given in a well-defined structure where each value of the
dataset can be associated with a meaning (e.g. the column name) and the list of all possible
meanings is known and fixed. Examples of this are traditional relational tables of a database.

• Semistructured data: also called ‘schema-less’ data, is available in a more flexible structure
where data values are still clearly associated with a meaning, but the list of all possible
meanings is not necessarily known at creation and can be expanded upon at any point.
Common file formats for storing such data are XML or JSON.

• Unstructured data: refers to information expressed through for example natural language that
follows no specific structure and where values do not necessarily have a clearly identifiable
meaning.

This view of data types is a practical one when considering the ease of handling data. The
more structure a dataset offers, the easier it is to assign meaning to each value and to automate
the processing of it. The less structure a dataset follows, the more external knowledge and input is
required to make sense of the information contained and the more difficult it is to create procedures
that are well-equipped to handle the data meaningfully.

There are other views on working with data from which different data type definitions arise.
Again, drawing from the work of [2], such distinctions can be made from the view point of data

4The word ‘data’ is grammatically a plural noun which many academic sources correctly address. In more common
language and industry contexts, ‘data’ is spoken of as a noun in the singular, which I prefer and therefore use in this
thesis.
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as a product, in which the ‘product-readiness’ of data is evaluated. First, that is done through
considering raw data which is data as it has been collected from a source without any transformations
added to it, then component data items which are temporary in nature and represent a layer of
transformation performed on the raw data. And lastly, the information products which are the
resulting datasets of several processing activities.

Further view points describe data type distinctions based on elementary and aggregated data.
The former is data representing ‘atomic phenomena of the real world’ and the latter collections
of such elementary data through abstractions like adding or averaging values. The sources from
which data stems also offers another categorisation: into, among others, federated data (coming
from several sources) and web data (being scraped from websites). And lastly, when considering
a time dimension of the data, it also makes sense to distinguish data that is stable (unlikely to
change over time), long-term-changing (changes happen infrequently or over long time periods) and
frequently-changing (changes happen frequently, e.g. in real-time streaming data).

Now, these classifications very much focus on the data as a whole. But, if we consider the
values contained in a dataset, they themselves can be of differing types. A very common and broad
distinction is that of numerical and categorical values. While numerical data will most often be
any real number5, representing counts, averages, percentages, categorical values will be text-based.
Furthermore, data values might also be missing which is referred to as blanks, NULL-values or
NaNs.

To apply these various distinctions and definitions of data at large to the dataset relevant for
this thesis, the dataset described in Section 1.2.1 is a structured one that can be considered an
‘information product’, since data point meanings are well-defined and much cleaning and transforming
has already happened. Furthermore, the dataset contains elementary as well as aggregated data,
since some financial figures are actually aggregates of others. Additionally, while the data for this
thesis stems from several thousands of financial statements and multiple scrapers, the information
is comparable and each scraper and statement combination is unique, requiring no record-matching
(i.e. identifying the same object across different sources), so I would consider it a ‘single-source’
dataset. And lastly, while the dataset is stable, in the production environment of the company I
work for the same data would be considered long-term-changing, reflecting the maintenance and
development efforts undertaken on the image recognition code base.

2.2 Data Quality

Data Quality (DQ) is often considered a multi-dimensional discipline with varying definitions.[8][7]
An aspect that is often mentioned in such definitions is the idea of ‘fitness for use’ where data is
considered of good quality, if it meets the expectations set upon it by the people that use the data
and if it is able to address the purpose for which the data was created.[19]

Data quality aspects are called dimensions and their quantification the according metrics. A
single dimension can be assessed through several different metrics. Nowadays, there are many DQ
frameworks ([7] provides a review of such) and tools (see [8] for another review) that aim to offer
generalised DQ assessments, but the authors of both papers identify some limitations. First, there
is a lack of standards when it comes to DQ definitions, dimensions and metrics. While the ISO 8000

5Of course, a numeric value stored in a computer cannot be truly infinite, so a number considered continuous in a
dataset is actually just a discrete approximation of it. Which in itself highlights the importance of thinking of data as
a representation of reality, not reality itself. That is, if one thinks of the mathematical concept of infinity as being
part of the real world in any case.
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standard for data quality exists [3], it is defined on a very high level and lacks the granularity to be
effectively applied to a wide range of data sets and applications. Second, DQ is context dependent
and evaluation is highly subjective and third, the authors of [8] even suggest that decades of research
into generalised DQ dimensions and metrics did not lead to successful generalised frameworks and
the focus should therefore shift to more practical approaches.

Nonetheless, some overlap across DQ dimensions can be seen. The most commonly described
ones are:

• Accuracy: describes how close data is to the exact or true values that the data was intended
to represent.

• Relevancy: is the extend to which data meets current and potential needs of its users.

• Timeliness: measures the length of time between data being available to the underlying
event or phenomenon of the real world occurring.

• Coherence: relates to the ability of data to be reliably combined in different ways and
for various applications and in such a way that the differences in data can be explained by
difference in the event or phenomenon it describes.

The descriptions of each dimension stem from [9]. Often, metrics to evaluate either dimension are
defined as the ratio of items that pass a certain quality test related to the dimension and the number
of items that were tested, i.e.

M = No. items that pass a quality test
No. tested items (1)

For this thesis, I am testing whether or not each scraped value offers a correct representation of
its counterpart, the reality, and as such, I am considering a problem of the DQ dimension accuracy.
While the evaluation of other DQ dimensions could potentially offer valuable insights on the image
recognition data as well, they are not directly related to my thesis problem and I therefore deem
them out of scope.

Since accuracy assessment requires knowledge of the true values, which often are unavailable,
there are no generalised metrics defined for it.[8] Because this lack of ‘objective truth’ occurs for
a lot of tasks,[19] in fact excludes the accuracy dimension from their DQ framework completely
and instead proposes a validity dimension. This validity dimension describes the extend to which a
given data point adheres to the domain knowledge constraints applicable to it, e.g. a value of 4.2m
in a data column that describes human height would be considered outside the permissible range
and therefore the value would be deemed ‘invalid’.

I am in the lucky position to have access to a secondary data source for the financial data,
however, which allows me to build a solution that can (hopefully) assess DQ accuracy. In that, my
accuracy metric follows the basic definition described in (1) and I call it the success rate of my
solution which ultimately in Step 3 of my approach is calculated as

R = No. values that match the true one
No. values in the validation data (2)

Note that the quality test in the numerator of this success rate applies a binary quality test of
whether or not the extracted value matches its true counterpart. As I describe in more detail later
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on, I actually consider several aspects of each value that potentially match the true one or not,
which is not reflected in this definition. This is because, ultimately, when I offer my data point
selection in Step 3, it is the binary nature of a ‘full’ match between extracted and true value that
determines the success of the solution. With only a partial match between the values I cannot claim
my result to be successful.

It seems that overall, there is unfortunately no general ‘mathematical theory for data quality
assessment’ available. Many industry relevant frameworks and tools exist to address certain needs
of data quality management, but scientific research is often limited by the fact that data quality
is context specific and difficult to generalise. In this thesis, I build a targeted solution to assess
the single dimension of accuracy for a very specific data generating process (that of the financial
statement image recognition). This solution includes the training of a Machine Learning algorithm
for which a much more well defined mathematical framework exists. This framework is described in
the following section.

2.3 Statistical Learning Theory

Statistical Learning Theory (SLT) provides the mathematical framework to Machine Learning
algorithms and concerns itself with the inference problem of estimating functions based on a set of
observations. As such, its origins lie in the 1960s where the first theoretical foundations for these
learning models were formulated. With the introduction of Support Vector Machines in the 1990s,
the popularity of Statistical Learning Theory (and hence Machine Learning) increased sharply.[29]
Since this thesis applies a supervised learning algorithm, the following sections focus on theory
relevant to such tasks.

According to [27] there are three components to a mathematical model that is capable of learning
from data:

(i) A generator which consists of the random vector X = (X1, . . . , Xp). X is drawn independently
from a fixed, but unknown, probability distribution P (X) which is defined on the feature space
X ⊂ Rp.6 In more modern contexts, the elements of the random vector are referred to as
inputs or features.[13]

(ii) A supervisor that returns the output vector Y (also called response) for every input X in
accordance with a conditional distribution function P (Y |X) which is also fixed, but unknown.
Y takes values in the set Y and the joint probability distribution P (X, Y ) = P (X)P (Y |X) is
defined over the space X × Y .

(iii) A learning machine which summarises a set of functions {f(X, α) : α ∈ Λ} where α is a
parameter from the arbitrary set Λ. This set can for example simply contain scalars, vectors
or more abstract elements.[28]

The idea of the learning problem can then be expressed as choosing the function from {f(X, α) :
α ∈ Λ} that predicts the response Y in ‘the best possible way’ - which is to be defined. This
function selection is based on a training set of n random, identically distributed (iid) observations
(x1, y1), . . . (xn, yn) which are drawn from the probability distribution P (X, Y ).

6Note that formally, P should be defined as a probability measure on a σ-algebra of X . I will omit the details of
measure theory for the purpose of this thesis, and assume that the necessary conditions for measurability are met.
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Continuing with the problem set up described in [27], in order to solve this learning problem, a
loss function L(Y, f(X, α)) is introduced. This loss function measures the discrepancy between the
response Y of the supervisor to a given input X and the response f(X, α) provided by the learning
algorithm. This discrepancy is also called the prediction error. The expected loss is then given by
the risk function (also referred to as the expected prediction error in [13]),

R(α) =
∫

L(Y, f(X, α))dP (X, Y ) (3)

This results in a refined statement of the learning problem, as follows.

Definition 2.2. It is the goal of the learning problem to find a function f(X, α0) which minimises
the risk R(α) over the class of functions {f(X, α) : α ∈ Λ} when the joint probability distribution
P (X, Y ) is fixed, but unknown and an iid sample (x1, y1), . . . (xn, yn) is given.

Furthermore it is assumed that the learning model does not make any further assumptions on
P (X, Y ) except what is stated in the definition and the sample of data may assume non-deterministic
values, e.g. there might be data quality issues7 in the training data itself.[10, p.15]

The existence of a data sample for the response Y means that the learning problem as defined
above is indeed a task in supervised learning, as opposed to unsupervised learning where the response
of the supervisor is unavailable and the focus rather lies in understanding structures in the generator
data such as clusters.[13, p.2]

The risk function as defined in Equation (3) describes the general setting of the learning problem.
Depending on the data type of the response Y , the supervised learning problem can be divided into
different specific settings. Namely,

• Regression problems: If the response is of numerical or quantitative nature, the learning
problem is often referred to as a regression model. A commonly used loss function for regression
problems is the squared error loss, [13]

L(Y, f(X, α)) = (Y − f(X, α))2 (4)

• Classification problems: Given a response that is of categorical or qualitative nature, i.e.
Y ∈ Y = {1, . . . , k} where k is the number of categories (also referred to as labels or classes),
the learning problem is one of classification. In older texts this is also called a problem in
pattern recognition and a typical loss function is the 0-1 loss, [28]

L(Y, f(X, α)) =
{

0, Y = f(X, α)
1, Y ̸= f(X, α)

(5)

While both the probability distribution P (X) and conditional distribution P (Y |X) are assumed to
exist, they are also unknown, which means that the risk function in (3) cannot actually be calculated

7At this point, the literature often mentions noise in the data and gives examples such as measurement errors or
transcription mistakes when data is being generated. As is mentioned in the previous section, in the domain of data
quality, this is also referred to as an accuracy issue, or a misrepresentation of reality - exactly the kind of situation I
set out to study.
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and thus, not formally minimised either. In order to solve the learning problem as defined in 2.2, an
approximation to R(α) is required and this approximation is given by the empirical risk function,

Remp(α) = 1
n

n∑
i=1

L(yi, f(xi, α)) (6)

which is calculated using the n data points in the training data. The idea is then to approximate
L(Y, f(X, α0)) which minimises R(α) by L(Y, f(X, αn)) which minimises Remp(α). This is called
the empirical risk minimisation principle (ERM).[28]

Statistical Learning Theory concerns itself with the conditions for consistency of the ERM
principle, meaning the conditions under which the empirical risk converges in probability to the
actual smallest risk (see below). Furthermore, SLT describes the associated rate of convergence and
describing how algorithms that control this convergence, meaning the generalisation ability of the
ERM principle, can be constructed.[27] Details of these aspects are deemed outside the scope of this
thesis and it is therefore assumed that the ERM principle is a consistent approach to solving the
learning problem, meaning the following two conditions are assumed to hold.

(i) The sequence of expected risks for the functions L(Y, f(X, αn)), n = 1, 2, . . . of which each
minimises the empirical risk Remp(αn) converges in probability to the minimal possible value
of the actual risk, i.e.

R(αn) P→ R(α0) as n → ∞ (7)

(ii) The sequence of calculated empirical risks equally converges in probability to the minimal
possible value of the actual risk, i.e.

Remp(αn) P→ R(α0) as n → ∞ (8)

While the ERM principle is statistically consistent, it is still faced with the challenge whether the
function that minimises Remp(α) is actually a good approximation to the function that minimises
R(α) or not. Since the empirical risk is calculated based on a fixed set of training data, it might
look very different for a new, previously unseen set of data points. In order for the ERM principle to
be a powerful tool in solving the learning problem, the difference between the empirical and actual
risk function should be sufficiently small. In such a case, the chosen function f(X, αn) is said to
generalise, meaning it performs similarly over the training data as well as unseen data.[10, p.91-92]

As it turns out, the ERM principle is prone to over-fitting, meaning in its basic form it will result
in a function f(X, αn) that does not generalise well. Modern implementations of ML algorithms
therefore rely on several improvements to the ERM principle, such as regularisation or restricting
the set of functions considered in the learning algorithm.[20, p.16] The latter is described in more
detail in the following section.

2.3.1 Bias-Variance Trade-Off

Since the introduction of Support Vector Machines mentioned above, many more types of learning
models have been introduced: from Neural Networks, to Clustering algorithms to Tree-based methods
such as Random Forest.[16] Each model comes with its own set of assumptions on the data and the
type of functions it considers to solve the learning problem. More formally, each model aims to solve
the learning problem by finding the best possible function in a set Fmodel = {f(X, α) : α ∈ Λmodel}.
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For example, Fmodel might only include functions that are linear, or only second degree polynomials
etc. Ideally, Fmodel is chosen in such a way that it matches the true relationship of the generator
and supervisor data, i.e. P (X, Y ). But again, since the joint probability is unknown, this might
prove difficult to do. It might then happen that the choice of Fmodel is not ideal, meaning the best
possible function that can be obtained is limited through the choice of Fmodel. Because of this, the
set Fmodel is also referred to as the bias of the supervised algorithm.[10, p.19]

This thesis considers a multi-label classification problem, meaning the set of functions considered
by the learning algorithm take values in the set of possible labels Y = {1, . . . , k} where k is the
number of labels. With the 0-1 loss function defined in (5), the best possible function that minimises
the risk R(α) as described in the learning problem definition in 2.2, is then given by the so-called
Bayes classifier which simply chooses the most likely label for each observation x ∈ X, i.e.[13, p.21]

f(x, α0) = argmax
l∈Y

P (l|X = x) (9)

Now as mentioned, since P (Y |X) is unknown, the Bayes classifier is merely a theoretical construct.
By the ERM principle however, this classifier can be approximated using the empirical risk function
in (6) which for the 0-1 loss is minimised by the function that makes the smallest amount of
prediction errors in the training data.[28, p.33] In more general contexts, the Bayes classifier is
simply defined as the function in {f(X, α) : α ∈ Λ} that minimises R(α).[10, p.26]

Now, if Fall is the set of all possible functions to tackle any learning problem, then Fmodel ⊂ Fall
and the best possible function in Fall is the Bayes classifier f(X, α0). The goal is to find a function
that is as close as possible to the Bayes classifier, in terms of minimising the risk. In order to
evaluate how close some solution f(X, αi) is to the Bayes classifier, their difference in risks can be
decomposed as follows,

R(αi) − R(α0) = R(αi) − R(αm)︸ ︷︷ ︸
estimation error

+ R(αm) − R(α0)︸ ︷︷ ︸
approximation error

(10)

where f(X, αm) is the best possible function in Fmodel. The estimation error, as an equivalent to
statistical variance, represents the uncertainty found in the training data, while the approximation
error indicates how far away the best possible function for the chosen model and the Bayes classifier
are. As such, the latter represents the bias introduced by the choice of model.

Ultimately the difference R(αi) − R(α0) should be as small as possible. This translates into the
problem of minimising both the estimation as well as approximation error. The problem however is,
that if Fmodel is chosen in such a way that f(X, αi) easily converges to f(X, αm), i.e. the estimation
error (variance) is small, this also means that Fmodel is rather restricted and hence the ‘distance’ to
the Bayes classifier (meaning the approximation error, or bias) is large.[10, p.99] Now, the other way
around equally applies, where choosing Fmodel to include a large family of functions likely decreases
the approximation error, but at the same time increases the estimation error. This gives rise to the
term Bias-Variance Trade-Off where choosing an appropriate model for some training data is a
matter of balancing the estimation and approximation error.

In terms of ML, this is also often referred to as the problem of over-fitting versus under-fitting.
An over-fitted ML model indicates the scenario in which the approximation error is small, due
to the choice of a large Fmodel, but at the same time, the estimation error is large. For example,
using a 10-degree polynomial to model a dataset that shows largely linear relationships is likely an

15



over-fitted model.8 And again, the inverse, whereby Fmodel is small, is called an under-fitted model
with high approximation error, but low estimation error.[10, p.100]

To sum this up, SLT and the ERM principle form the foundation for training Machine Learning
algorithms that are able to predict some desired target variable based on an available input dataset.
The Bias-Variance Trade-Off highlights, how this training process needs to happen in a way that
the resulting model has a good generalisation ability and is not over-fitted to the training data
itself. The theoretical body on SLT and conditions for obtaining generalising models is far more
extensive than what is presented here, but for the purposes of this thesis, I deem the stage set and
the next sections move on to a description of the Random Forest algorithm as well as more practical
considerations for implementing ML models.

2.4 Random Forest Classifier

A Random Forest (RF) Classifier is a type of ML algorithm that was first introduced by Leo Breiman
in [5]. In this paper, he introduces a definition for a Random Forest classifier as follows.

Definition 2.3. A Random Forest is a classifier consisting of a collection of tree-structured classifiers
{f(X, αj), j = 1, 2, . . . , b} where {αj} are iid random vectors and each tree casts a unit vote for the
most popular class at input x.

Note that the random vector aj defines the characteristics of the jth tree in terms of its split
variables, end points at each node as well as terminal node values.[13, p.589] These characteristics
are elaborated on in the following section.

The mentioned tree-structured classifiers are also known as Decision Trees. Since a RF model is
a collection of multiple Decision Trees, it forms a combination of simpler ‘base models’ and as such
it is considered an ensemble method.[13, p.605] As Decision Trees form the basis for the RF model,
the next section is dedicated to them.

2.4.1 Growing a Decision Tree

Decision Trees (DT) describe another set of functions that can be used to solve the learning problem
in Definition 2.2. The idea behind them is to partition the feature space X into the sets T1, . . . , Tt

such that Tm ∩To = ∅ for m ̸= o, m = 1, . . . , t and o = 1, . . . , t and offer a prediction for the response
yi for an observation xi in each Tm according to the function

f(xi, α) =
t∑

m=1
lmI(xi ∈ Tm) (11)

where lm ∈ Y = {1, . . . , k} is the majority label in each set Tm, I is the indicator function and α
indicates the configuration of the DT.

While in general a partition of some set can be arbitrary, as long as the partitioning sets are
disjoint, in the context of DT, it is preferred to have a partition that can easily be described.
Because of this, the partitioning of the feature space happens according to a process called recursive
binary splitting. In essence, this process starts by considering the entire feature space, splits it into
two subsets according to some chosen criteria and then repeats the same process for each newly
created subset (also referred to as a node) until some stopping condition is met. The sets T1, . . . , Tt

8In very modern contexts, this is also referred to as an overkill.
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obtained at the last iteration form the partition of X and are called the leaves of the tree, or
terminal nodes.[13, p.305]

The difficulties arise in deciding how each set should be split. Since the feature space is
p-dimensional, there are p options of deciding which variable of X = (X1, . . . , Xp) should be
considered for each split. In addition, the split point s needs to be decided, meaning the threshold
for deciding which observations of the training data are collected in which of the two resulting sets
after the split. And lastly, the stopping condition for the recursive splitting process needs to be set.

To find the optimal split at each node, a measure for the ‘goodness of split’ at each node T̃m′

is required. Recall that the overall aim of solving the learning problem is to find a function that
minimises the risk R(α), meaning the expected prediction error. Since a DT predicts the majority
label at each terminal node, it is reasonable to relate the ‘goodness of split’ criterion to a measure of
impurity ϕ(m′) of the nodes. This impurity measure characterises the diversity of distinct labels in
each node, with a low impurity (indicating high homogeneity of the labels in a node) being preferred.
In particular, the proportion of label k observations in any node T̃m′ is given by

pm′k = 1∣∣∣T̃m′

∣∣∣
∑

xi∈T̃m′

I (yi = k) (12)

where
∣∣∣T̃m′

∣∣∣ is the number of observations in T̃m′ and m′ indexes all nodes obtained through the
splitting process. The majority label l̃m′ at a node T̃m′ is then the label that maximises pm′k. From
this, several node impurity measures can be defined. In [13, p.309] the following ones are mentioned,

• Misclassification error,

ϕ(m′) = 1∣∣∣T̃m′

∣∣∣
∑

xi∈T̃m′

I
(
yi ̸= l̃m′

)
= 1 − p

m′ l̃m′
(13)

• Gini index,

ϕ(m′) =
k∑

j=1
pm′k(1 − pm′k) (14)

• Cross-entropy,

ϕ(m′) = −
k∑

j=1
pm′k ln(pm′k) (15)

where generally the Gini index and cross-entropy are preferred to the misclassification error. As
Breiman has shown in [6, p.28-32], minimising the risk for the DT classifier translates to minimising
the tree impurity measure which in turn, means that at each node m′ the split point s should be
chosen in such a way that the decrease of impurity after the split is maximised. Formally, let T̃ R

m′

and T̃ L
m′ be the two sets obtained after splitting the node T̃m′ at s. Then the decrease of node

impurity is given by

∆sϕ(m′) = ϕ(m′) −

∣∣∣T̃ R
m′

∣∣∣∣∣∣T̃m′

∣∣∣ϕ(m′R) −

∣∣∣T̃ L
m′

∣∣∣∣∣∣T̃m′

∣∣∣ϕ(m′L) (16)
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and ultimately the optimal splitting point s∗ is given by

s∗ = argmax
s

∆sϕ(m′) (17)

At each iteration of the splitting process, s∗ is calculated for each potential splitting variable Xp

and the optimal pair is selected as the split that the DT performs.
Lastly, it needs to be decided at which point the recursive binary splitting should be stopped.

As is quite intuitive, growing a tree that is very large likely fits the training data rather well,
and sometimes too well leading to over-fitting. On the opposite hand, stopping too early and
growing a small tree might mean that the algorithm has not learned important patterns, leading to
under-fitting.[13, p.307]

Now one could try to introduce another measure during the recursive binary splitting that
indicates whether this split should be the last one or not. Similarly to a good gardener, however,
that prunes a tree not when the first shoots grow in spring, but after the branches have grown in
winter, stopping splits in the DT too early might mean missing out on good splits later on in the
fully-grown ‘branch’. Because of this, it is the preferred strategy to grow large Decision Trees and
stop the splitting only when there is a given number of observations left in the terminal nodes. To
avoid over-fitting, the DT is then sufficiently pruned back using a method called cost complexity
pruning.[13, p.308]

Pruning in the context of DT refers to the process of ‘collapsing’ internal nodes of the large tree
D0 by taking the union of all subsets to the according node. In order to govern this pruning, a cost
complexity criterion for the tree D ⊆ D0 is introduced as follows

Cθ(D) =
t∑

m=1
|Tm| ϕ(m) + θt (18)

where θ is a tuning parameter that controls the complexity of the DT model. In order to achieve
a balanced fit, one that is neither over- nor under-fitted, θ should be chosen so that Cθ(D) is
minimised. This best-possible parameter is θ∗ and it is obtained through so-called weakest link
pruning. In this process, a sequence of sub-trees to D0 is obtained by iteratively collapsing the
internal nodes of the tree which give the smallest per-node increase in ∑t

m=1 |Tm| ϕ(m). This is
repeated until only a single-node tree is left and out of the resulting sequence of trees, the one that
minimises Cθ(D) is chosen as the final DT, Dθ∗ .[13, p.308]

Now, while [13] identifies θ as the only tuning parameter of the DT model, as [25] shows,
in practise further parameters need to be set in order to fit a DT to the training data. These
parameters that are not adaptively set by the learning algorithm itself are called hyper-parameters.
For Decision Trees these hyper-parameters include, among others, the chosen impurity measure
ϕ(m′), the minimum amount of observations in terminal nodes and the maximal number of terminal
nodes allowed. These parameters, together with the tuning parameter that the model learns itself
and the obtained leaf nodes Tm, m = 1, . . . , t with their majority labels lm, then are described in
the vector α which characterises the DT classifier in (11).

Lastly, even though Decision Trees are ‘pruned back’ to combat the issue of over-fitting, they
are still prone to having high estimation errors (variance), since a small change in the training data
might mean a very different selection of optimal splitting points. To improve this, one can combine
several DTs to achieve a single prediction.[13, p.312] This is the case in bagging and its modification,
the Random Forest model. The next section is dedicated to this ensemble method.
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2.4.2 Combining Multiple Decision Trees

As is mentioned in the previous section, Decision Trees themselves generally suffer from high variance
as they are very sensitive to changes in the training data. A method to improve this, is to grow
multiple DTs and then combine their results for a better prediction. One such method is bagging,
also called bootstrap aggregation. What it does, is to create bootstrap samples of the training
data, grow a DT on each sample and ultimately combine the predictions of each.[13, p.587] These
bootstrap samples are of the same size as the training data and are obtained by randomly drawing
observations with replacement.[13, p.249]

Since bagged trees are correlated, the variance reduction of this method is limited by the
correlation itself. Random Forest models then offer an improvement to that, by selecting random
input variables for the training of each DT on the bootstrap samples, thereby growing trees that
are less correlated.[13, p.588]

As stated in Definition 2.3, for a classification problem, the outputs of the DTs grown in the
RF model are combined through determining the majority vote cast by the trees. In addition to
the tuning and hyper-parameters mentioned in the previous section, the characterising vector α for
each DT, must contain the number of randomly selected input variables before each split η ≤ p as
well. Often, η = √

p is selected.[13, p.589]

2.4.3 Prediction Probabilities in the Implementation

As a last note to RF models it is worth mentioning that in the implementation of the algorithm
used in this thesis (the Scikit-learn library RandomForestClassifier [21]), for each predicted label
of a data point xi an additional prediction probability pRF

i has been calculated. This prediction
probability for a single tree corresponds to the proportion of observations that are of that label in
the corresponding terminal node, as defined in Equation (12). To obtain a prediction probability
for the RF output lRF

i , the individual tree prediction probabilities have been averaged. That is, if lji
is the predicted label of the jth tree for input xi, the RF prediction probability for xi is given by

pRF
i = 1

b

b∑
j=1

p
mil

j
i

= 1
b

b∑
j=1

Lj
i

|Tmi |
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where Tmi is the terminal node to which xi belongs and Lj
i is the number of training data observations

in Tmi that are of label lji , i.e. Lj
i = ∑

xq∈Tmi
I(yq = lji ).

This concludes the theory section on Random Forest models and the next section moves on to
some practical considerations for building ML solutions.

2.5 Machine Learning Tools

This section describes a selection of methods commonly used when developing Machine Learning
algorithms. It is by far not exhaustive on the different tools and techniques applied in ML and
rather focuses on the ones relevant to this thesis. I divide them into three sub-sections. The first
one focuses on data preparation techniques, i.e. methods required to prepare the data in order for it
to comply with the standards the ML implementation expects. The second details improvement
methods of the training part and lastly, I describe how the ML model can be evaluated on a test
data set.

19



2.5.1 Data Preparation Techniques

In this thesis, I make use of publicly available libraries in the programming language Python that
have implemented a wide array of ML models, including Random Forest classifiers. Section 3.1
elaborates on this. These libraries often define more or less narrowly how they expect data to be
passed on to them. Often enough, it is required for the data to be a real-valued matrix. Since the
dataset I used for this thesis contains a lot of categorical variables, including the prediction target
(the response Y ), it is necessary for these to be encoded. The simplest type of encoding comes in
the form of Label Encoding in which a non-negative integer is assigned to each unique category.[24]
This is actually assumed to be the case already in the formulation of the classification problem in
Section 2.3 where the set of possible labels G is described as being the set {1, . . . , k} for k unique
labels. As is described in the Application later on, the response variable is actually of categorical
nature and the set G is the label-encoded stand in.

As an alternative to label encoding, it is also possible to introduce a binary variable for each
distinct label, indicating whether or not a certain observation belongs to each label or not. This
is called One-Hot Encoding. More formally, let Xj be a column in the n × p-matrix of input data
X that can take kj unique categorical values. For each unique value c in Xj a new column Xj,c is
introduced which then can take values in {0, 1} depending on whether or not each observation in
Xj is of category c or not. This results in kj new columns for each categorical variable Xj in X.

Besides the new columns that get created when using One-Hot Encoding as opposed to Label
Encoding, another difference between the two methods is that Label Encoding preserves the ordinal
nature of the original categorical values, while One-Hot Encoding represents categories without any
hierarchy between them. This means that Label Encoding is preferred when an ordinal relationship
of the categories in a variable is present and vice versa.

2.5.2 ML Training Improvements

While there are many methods to improve a ML algorithm, I have applied only two different ones
and these are described here.

First off, due to the optimal split point search in the tree growing process, tree-based ML
algorithms are sensitive to a large number of input variables. In order to reduce the number of
features in the input data, one can select the ones deemed more relevant in successfully predicting
the target and simply remove the others. This is called feature selection. For this thesis, I have
made use of the feature_importance property of the Scikit-learn implementation for the RF
model which calculates the importance of each feature based on the summed reduction of the
node impurity measure ϕ (in this case the Gini index) each feature achieves.[13, p.593] The feature
importance across all input variables is normalised to the interval [0, 1] to obtain the relative feature
importances.[21] Finally only those features that score higher than some set threshold are selected.

Another issue often encountered in multi-label classification problems is that of class imbalances.
This occurs, when the frequencies of each label in the training data are not roughly equal and there
are labels that clearly are observed more often than others. Due to the over-abundance of one or a
few labels, the learning algorithm might become biased towards the majority classes which can lead
to poorer generalisation ability.[30] In order to address this problem, class weights are introduced.
In the Scikit-learn implementation, the weight wl for the label l is calculated according to

wl = n

k
∑n

i=1 I(yi = l) (20)
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where n is the number of observations in the training data and k the number of distinct labels.
For each split in the tree growing process, the decrease in node impurity of Equation (16) is then
evaluated through the weighted sums.[25]

2.5.3 Evaluation Methods

This last section of the theoretical background describes several methods to assess the generalisation
ability of the learning model. Recall from Section 2.3 that a model is said to generalise well, if it
performs similarly over the training data, as well as new, previously unseen test data. In order to
ultimately decide, if the trained ML algorithm offers a good approximation to the true relationship
between input data and the response, the model performance on a test dataset is evaluated.

Also introduced in the previous sections is the loss function that measures the discrepancy
between the actual response and the prediction output. Since this thesis deals with a multi-label
classification problem, the loss function that details the number of misclassifications can be seen
as a k × k matrix C (where k is the number of unique labels). Each element of the matrix is then
given by

Cs,t =
ntest∑
i=1

I (yi = ls, f(xi) = lt) (21)

where ls and lt are the sth and tth label respectively and ntest is the number of observations in
the test data set. This matrix is also called the confusion matrix. The diagonal elements of C
characterise correct predictions, whereas all non-diagonal elements show misclassifications. From
this, the accuracy of the model can be calculated as follows

A = 1
ntest

ntest∑
i=1

I (yi = f(xi)) (22)

As there are different types of misclassifications, one considers the following four cases for a label l,

TPl =
ntest∑
i=1

I(yi = l, f(xi) = l) (23)

FNl =
ntest∑
i=1

I(yi = l, f(xi) ̸= l) (24)

FPl =
ntest∑
i=1

I(yi ̸= l, f(xi) = l) (25)

TNl =
ntest∑
i=1

I(yi ̸= l, f(xi) ̸= l) (26)

where TP indicates the number of true positives, FN the false negatives, FP stands for false positives
and lastly, TN indicates true negatives. These four counts are summarised by the quantities recall
R (also called sensitivity or true positive rate) and precision P which for the label l are given by

Rl = TPl

TPl + FNl
and Pl = TPl

TPl + FPl
(27)

Additionally, specificity S (or true negative rate) may be defined as

S = TN

TN + FP
(28)
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From this, the false positive rate is given by 1 − S. Now, the accuracy measure A is sensitive to
class imbalances, as it will be dominated by the majority class of the test dataset. So instead, a
balanced accuracy can be calculated by

Abalanced = 1
k

k∑
l=1

Rl (29)

as is described in [22].

Figure 1: ROC curve for two illustrative binary classification models (green and
orange). The performance of the orange model is considered better than the
green one. The dashed line indicates a model that predicts labels by chance.

Lastly, the true positive rate and false positive rate may be plotted against each other for
varying thresholds of prediction probabilities. That is, for different choices of thresholds of the RF
prediction probability as defined in Equation (19) to decide on the majority label, the resulting
true positive and false positive rates are calculated and plotted against each other in the so-called
receiver operating characteristics curve (ROC). This is illustrated in Figure 1. The larger the area
under the curve is, meaning the closer the curve runs to the top left corner of the graph, the better
the performance of the model. To quantify the ROC curve, the area under the curve (AUC) for a
model is calculated. The AUC then serves as another measure to evaluate model performance.

Now, since the true positive and false positive rate are calculated for each label, meaning they
consider the binary case, an extension to the multi-label classification case is necessary. This is
achieved by a pairwise comparison of AUC scores for the distinct labels, namely the multi-label
AUC score is calculated as the average AUC of all possible pairwise combinations of labels.[23]

This concludes the section on Machine Learning tools that are relevant to this thesis. The
following part focuses on the application of the methods presented here to the image recognition
data with the aim of assessing its data quality.
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3 Application and Results
While the previous section dives into the theoretical intricacies relevant to the thesis problem, this
section now describes the details of my chosen approach. It is ultimately my goal to first, assess how
well the scraped values represent the true one as it is printed in the financial statements and then,
to offer a suggestion which of the different scraper values that are available for each financial figure
should be the one to be selected in the final dataset. To accomplish this, I divide my approach into
three steps which are described below.

Step 1. I start out by investigating how the image recognition outputs differ from the actual
values. Based on that knowledge, I define the data quality aspect that I wish to identify. This quality
aspect is represented through so-called error labels which capture the differences between scraped
and true values that I am able to identify systematically. Since the true values are technically only
available as the original image files, I make use of a secondary source to serve as an approximation
to the true values.

Step 2. In this step, I then build a statistical model to predict the previously introduced error
labels. This allows me to be able to assess the data quality of the image recognition outputs without
the need for a secondary source. The statistical model in question is a Random Forest classifier.

Step 3. Lastly, in order to make a selection for the best possible scraped value to represent the
true one, I quantify my quality assessment by introducing a quality score. The scraped value which
obtains the highest score is ultimately selected as my suggestion for the best possible representation
of the true financial figure. I then contrast my results with an alternative model for the value
selection.

3.1 About the Implementation

I wrote the scripts for this work in Python (Version 3.11.5) [26], since first and foremost I am most
comfortable with this programming language and second because it is an industry standard, used
by the company I work for, and many extensive and well-documented Machine Language libraries
exist for it. In particular, I used the Anaconda [1] distribution package and created a Jupyter [15]
notebook for my work. Furthermore, I have made use of the Python packages Scikit-learn (Version
1.3.0) [18], Pandas (Version 2.0.3) [17], NumPy (Version 1.24.3) [12] and Matplotlib (Version 3.7.2)
[14].

3.2 Types of Error in the Image Recognition

This section starts out by describing Step 1 of my approach, understanding the data quality aspects
relevant for the image extraction problem and introducing a method to systematically identify them.

As previously mentioned, when using Machine Learning algorithms to predict whether a numerical
value is of good quality or not, it is easy to think of it as a regression problem - after all, I am trying
to see how close an extracted number is to the true one. I could tackle this problem by making
a prediction for what the true value of each financial figure in a particular report should be and
then select the value across the different scrapers that is closest to the predicted one. And indeed, I
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have tried that, but with little success. The predictions were just not very good, likely because the
available training data was not very suited for a regression task.

Additionally, it is not necessarily the numerical aspect of the scraped financial figure values
that indicates whether the image recognition was successful or not. Instead, it is the simple fact of
whether or not the string of digits that was extracted matches the string of digits that was written
in the report itself, that indicates the successful extraction of information. Because of this, I have
chosen to tackle this problem as a classification task instead.

In the most simple problem statement, identifying whether extracted and true values match is
of binary nature. True, whenever the two values match and False, whenever they do not. Being
able to correctly differentiate those two scenarios is a powerful tool to evaluate the quality of the
image extraction data. However, by only considering each value in its entirety, it does not offer a lot
of granularity on why a scraped value might be assigned a True or ‘matching-reality’ label or vise
versa. From a binary label alone, one cannot answer questions such as: Do the values not match,
because one digit is wrong? Or are none of the digits matching each other? Since it is unlikely that
the predictions would reach perfect accuracy, this lack of granularity could easily mean that a lot of
scraped values get mistakenly disregarded as not good enough or even worse, incorrectly considered
as being of good quality and therefore assumed to accurately reflect the original financial figure
value.

While less than perfect accuracy is a concern for all predictive modelling, the binary case in
addition to that only considers each value in its entirety and labels the whole value as matching
reality or not, when actually the image recognition algorithm often only gets part of a number
wrong. For example, the true value might read 597895 and the image recognition extracts the value
597896, where the last 5 is incorrectly scraped as a 6. When comparing these two numbers as
a whole, the binary label would be False or ‘mismatching-reality’ as in fact, those two numbers
do not match precisely. However, a single wrong digit, especially in the last position, is not of
grave consequence in this case. For the purpose of creating a digital representation of the images of
financial statements, it is better to have a number that only has a single wrong digit than to have
no representation of the financial figure at all.9

I have therefore chosen to predict not just whether a value matches its true one, but which part
of it matches. The parts of a number that I have considered for this problem are the sign, the string
of significant digits (that is the number excluding leading and/or trailing zeros) and the order of
magnitude (OoM). Note that for most of the extracted values it is not possible to infer the OoM
from the string of significant digits alone, because financial reports often state their numbers with
differing currencies. For example, a financial figure value might be printed as 5672 (corresponding
to the string of significant digits from which the inferred OoM would be 3) while the currency is
given as KSEK, meaning the actual value is 5672000 SEK (corresponding to a correct OoM of 6).

While the sign is certainly important for the correct interpretation of a financial figure value,
unfortunately the reporting standards for annual accounts regarding the presentation of negative
values are not unified. Sometimes, when reporting a loss it is assumed that the stated number
is negative and because of this, the minus is omitted. In other, albeit rare, cases, the minus is
printed on the right side of a number and then again, a minus might indicate a double-negative

9It is worth to note that the position of such a single wrong digit is significant, however. Representing a company’s
revenue that is truly 597895 SEK as 597896 SEK or 697895 SEK does make a difference. Unfortunately though, while
my solution did have moderate success at identifying a single wrong digit, additionally identifying the position of the
wrong digit goes beyond its capabilities. The different types of mistakes that can happen in the string of digits are
discussed in more detail in a later section.
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for financial figures that are inherently negative values. This varied approach to the reporting of
negative amounts unfortunately means that the minus sign becomes unreliable. And while it is true
that my problem statement only concerns itself with the correct extraction of information and not
the assigning of meaning to the extracted information, i.e. the minus sign is just another character
to be correctly or incorrectly scraped independent of what it means for the financial figure value, the
secondary source is equally affected by the lack of strict reporting standards for negative values and
I therefore deem it unreliable for representing the true value. Because of this, I have only considered
the string of significant digits and the order of magnitude to create my measure of quality, which
I call the error labels. These error labels reflect how well each part of the scraped value matches
the corresponding secondary source value, of which the latter serves as the approximation to the
true value as it is in the image of the financial report itself. It is the goal of my approach to create
a Machine Learning model, in particular a Random Forest Classifier, that can predict these error
labels with sufficient accuracy, so that the quality of future scraped values can be evaluated without
a corresponding secondary source value being available.

3.2.1 Examples of Scraper Mistakes

Before the error labels themselves get created (and described in this text), I want to take a step
back and introduce the heuristic on which they are based. Namely, the types of things that go
wrong in the image extraction part, the scraper mistakes. These scraper mistakes are instances in
which the scraped value does not match the corresponding value that is printed in the PDF which is
considered the true value. As such, the scraper mistakes are the actual misrepresentations of reality
in the data that I want to identify. In order to do so, I started out with a manual inspection of a
random set of reports and compared the scraper outputs to them. A selection of mistakes I found
when doing this can be seen in Table 2. While there are many different mistakes that happen in the
image recognition process, some occur more frequently than others. I can certainly not claim to
have found them all, as the sheer amount of financial statements is just too great to go through all
of them manually. That being said, the more frequent scraper mistakes can generally be grouped
into the following categories:

• Digit mistakes

• Mistakes in the order of magnitude (OoM)

• Positioning mistakes

• Combinations of multiple mistakes

In the category of digit mistakes, one might find problems in which the scraper only extracted
parts of the string of digits, with either the beginning or ending digits missing. Examples of these
can be seen in Figure 5 in the appendix. Alternatively, it is only a single digit (or not more than a
few) that has been extracted wrongly, as is the case in Figure 7, equally included in the appendix
(as are the following figures displaying scraper mistakes).

For the problem of mismatching order of magnitudes between scraped and true value,
generally speaking the OoM is either the same or it differs. There are some special cases of differing
OoMs that occur frequently. One of these is an OoM of the scraped value that is off by a factor
of 1000, since financial figure values are often stated in currency values of SEK, KSEK (where 1
KSEK = 1 000 SEK) or MSEK (where 1 MSEK = 1 000 000 SEK), see Figure 6c. Additionally
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to that, sometimes the currency abbreviation is given in Swedish, e.g. with Tkr as the equivalent
to KSEK (see Figure 6d) or it is stated not as an abbreviation at all, but is written as part of a
sentence somewhere else in the report (see Figure 6a and Figure 6b). These non-standardised ways
of stating the currency of financial figure values pose quite the challenge in correctly extracting the
OoM and therefore often result in scraper outputs that are off by a factor of 1000.

Additionally, the OoM might be wrong when the scraper extracts numbers that are not financial
figures at all, like dates, IDs or page numbers. This was particularly troublesome in early versions
of the scrapers, but has been addresses in more recent versions so that these mistakes occur less
frequently. One type of mistake that remains however, is the case of two column values being
extracted as one (see Figure 9d). This often results in scraper values with extreme OoMs.

Another common mistake is made in regards to the positioning of values and their meaning,
i.e. the financial figure name or corresponding time interval. Examples of this are given in Figure
8 where the scraper either swapped the columns, i.e. reading the value stated for the previous
financial year instead of the most recent one, or extracted the wrong line, when the financial figure
is a summed item and the figure name is not written in the same line as its value.

Lastly, any of these mistakes can of course happen in combination with others. For example,
a single wrong digit together with a wrong OoM as in Figure 9a. Or, the scraped and true value
differ greatly, so that it is not actually apparent which mistakes were made as is the case in the
remaining images of Figure 9.

As stated above, ultimately it is the goal to identify these scraper mistakes as each poses a
data quality issue. Namely, for each wrongly scraped number, the financial reality of that company
gets misrepresented. And if the wrong number gets used to create abstractions based on it, e.g.
in the form of credit risk assessments, the mistake gets exacerbated and potentially inaccurate or
plain wrong consequences are being drawn. Of course, this is relative to the type of mistake and
the quantity of financial figures in a report, but the principle persists. The question now becomes,
how can one identify these scraper mistakes in an automated manner without the need for manual
inspection? This is where the error labels and the available secondary source come into play. While
generally, the true values are only given in the non-digitised (and hence, ‘not-automatable’) PDF
format, in this particular problem I am lucky enough to have a secondary source available that
can serve as an approximation for the true values. This secondary source is independent from the
scraping process, and while it might have its own issues (as described in Section 4.1), it is sufficiently
close to the true values to be used as a representation of them.

With this, I can compare each scraped value to the corresponding secondary source one (as a
stand-in for the true value), which then allows me to identify mistakes in the digits and the order of
magnitude. It does not however, offer context as to which values are ‘around’ each other. And by
that I mean the positioning context that one obtains when looking at each value as it is printed
in the PDF, with the financial figure names as well as applicable time intervals in a semi-tabular
structure. This means that it is not possible to identify the scraper mistakes pertaining to the
positioning of a value and its meaning by simply comparing the scraped and secondary source
number. As is described in the following section, the error labels therefore only capture mismatches
in the string of digits and/or the order of magnitude. A scraper mistake caused be the incorrect
reading of a column or line therefore most often will only show up as a mistake of mismatching
digits/the OoMs. With my solution as is, it is not possible to truly differentiate these cases and
similarly so for combined scraper mistakes. That being said, it is possible to expand the error labels
to potentially be able to identify positioning mistakes as well. For example, if the previous year’s
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value of a financial figure is available in the secondary source, one could check the scraper value
against that previous value to see, if a potential ‘column swap’ happened. Additionally, several
financial figures are related to each other, e.g. one being the sum of others, and to check for mistakes
in which the wrong line was read, it might be possible to check a scraped value against all secondary
source values for the same report to see if any matches can be found. This would then indicate a
‘line swap’. Beyond that, this could also be a targeted effort, by utilising domain knowledge around
which financial figures are related / stated close to each other in the report, e.g. only checking
balance sheet figures against each other versus what is printed in the income statement, or even
more granular by looking at the ‘sum total of assets’ and all assets sub-figures etc.

Table 2: Sample of scraper mistakes together with their true value and assigned
error label

Fig. Scraper Mistake Financial Figure Financial Figure (SE) Scraped
Value

Secondary
Source
Value

True
Value Error Label

5a missing_first_digits short_term_receivables
_from_sales_and_services Kundfordringar 902 361000 360902 meh digits,

1000 OoM diff

5b missing_first_digits equity Eget Kapital 279 291000 291279 meh digits,
1000 OoM diff

5c missing_last_digits equity Eget Kapital 541 542000 541645 good digits,
1000 OoM diff

5d missing_last_digits ebit Rörelseresultat 5338 5338000 5338325 good digits,
1000 OoM diff

9a multiple short_term_debt Kortfristiga Skulder 2101 9101000 9101000 meh digits,
1000 OoM diff

6a oom_elsewhere ebit Rörelseresultat 31444 31444000 31444000 good digits,
1000 OoM diff

6b oom_elsewhere short_term_receivables Kortfristiga Fordringar 428785000 429000 428785 meh digits,
1000 OoM diff

6c oom_elsewhere profit_loss_before_tax Resultat Före Skatt 913 913000 913000 good digits,
1000 OoM diff

6d oom_missing depreciation

Avskrivningar Och
Nedskrivningar Av
Materiella
Och Immateriella
Anläggningstillgångar

59035 59035000 -59035000 good digits,
1000 OoM diff

9d two_columns_together profit_loss_before_tax Resultat Före Skatt 251434589855 252000 251434 extreme
scraper OoM

9b unclear liabilities_and_equity Eget Kapital Och Skulder 1 1618000 1617570 meh digits,
wrong OoM

9b unclear short_term_debt Kortfristiga Skulder 18 393000 393394 meh digits,
wrong OoM

9c unclear short_term_debt Kortfristiga Skulder 10112 17418000 17418000 meh digits,
1000 OoM diff

8a wrong_column depreciation

Avskrivningar Och
Nedskrivningar Av
Materiella
Och Immateriella
Anläggningstillgångar

4670 4307000 -4307116 meh digits,
1000 OoM diff

8a wrong_column short_term_debt Kortfristiga Skulder 3884 7506000 7506135 meh digits,
1000 OoM diff

7a wrong_digit operating_costs Övriga Externa Kostnader 7505 6000 -5750 meh digits,
exact OoM

7b wrong_digit short_term_receivables Kortfristiga Fordringar 9010639 9911000 9910699 meh digits,
exact OoM

7c wrong_digit liabilities_and_equity Eget Kapital Och Skulder 278356 328000 328356 meh digits,
exact OoM

8c wrong_line short_term_debt Kortfristiga Skulder 9456 40000 40196 meh digits,
wrong OoM

8d wrong_line property_plant
_and_equipment

Materiella
Anläggningstillgångar 61118000 80612000 80612000 meh digits,

exact OoM
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As these examples illustrate, some scraper mistakes are easier to identify than others. The error
labels will therefore group several different scraper mistakes together, as can be seen in Table 2
above. The next section describes in more detail how the error labels get created.

3.2.2 Assigning Error Labels

As described above, to evaluate the quality of the scraped values I compare two parts of each
number, its order of magnitude (OoM) and the string of significant digits (SSD), to the equivalent
parts of the secondary source number. I start out by introducing slight modifications to both values.
These are namely:

• Taking the absolute value of both values

• Strip the values of trailing and leading zeros to obtain the SSD

• Round the scraped value to the nearest thousand

• Strip the rounded scraper value of trailing and leading zeros

• Remove the first digit from the secondary source value (which is done to potentially identify
cases in which the image extraction missed the first digit, see examples in Figure 5a and
Figure 5b in the Appendix)

Following this, I calculate some derived data points:

• Difference between secondary source and scraper value as well as secondary source and rounded
scraper value

• OoM of both values and their difference

• Similarity of the SSDs (both for rounded and exact scraper value versus the secondary source
value) using the SequenceMatcher from the Python library difflib

Using these new columns, I create two flags: one to represent how well the OoMs match, the OoM
flag, and one for the quality of matching the SSD, the digit match flag. These two flags can take
a limited number of values which can be see in Table 5. In particular, the OoM flag values are
assigned as shown in Table 3 and similarly, for the digit match flag, I assign the values as described
in Table 4.

Table 3: OoM flag values with a descriptions of the assignment conditions

OoM flag Description
exact OoM The OoM difference between scraped and secondary source value is exactly 0
1000 OoM diff The absolute OoM difference is exactly 3
extreme scraper OoM The absolute OoM difference is greater than 4 and the scraper OoM is greater than 9
wrong OoM Any remaining case

28



Table 4: Digit match flag values with a descriptions of the assignment conditions

Digit match flag Description

good digits

SSDs match exactly
SSD of the rounded scraper value matches the secondary source SSD exactly
SSD difference is exactly 1
Scraped value equals the secondary source value divided by 1000
Scraped value or rounded scraped value matches the secondary source value without the first digit

ok digits No good digit match has been determined and
the digit similarity (for either exact or rounded scraper value) is bigger than 0.5

bad digits Any remaining case

Table 5: Assigned error labels with number of occurrences and underlying order
of magnitude (OoM) and digit match flags

OoM Flag Digit Match Flag Occurrences Error Label Aggregated Occurrences

wrong OoM
good digits 3229 good digits, wrong OoM 3229
bad digits 26894 meh digits, wrong OoM 35509ok digits 8615

extreme scraper OoM
good digits 2

extreme scraper OoM 2379bad digits 1797
ok digits 580

exact OoM
good digits 182480 good digits, exact OoM 182480
bad digits 18844 meh digits, exact OoM 30425ok digits 11581

1000 OoM diff
good digits 19918 good digits, 1000 OoM diff 19918
bad digits 8081 meh digits, 1000 OoM diff 12319ok digits 4238

The error label is then just the combination of both the OoM flag and the digit match flag - with
the slight modifications that first, I have further grouped the labels ‘ok digits’ and ‘bad digits’ into
the eloquent label ‘meh digits’ and second, whenever the scraper OoM is extreme, it constitutes a
clear domain knowledge violation10 and the value should be disregarded independent of the quality
of the SSD match, so the error label in this case is just the OoM flag. I have introduced both these
groupings in the error label to avoid too small classes (i.e. with too few occurrences in the data),
since imbalanced classes can be tricky for the prediction algorithm to handle well.

Since these error labels now serve as the target for the prediction, how well defined they are,
meaning how well they capture the quality of the image extraction, is crucial for the success of this
approach to solve the ultimate problem - that of selecting the best possible value across scrapers to
most closely represent the true financial figure value. Over the course of developing a solution to
this problem I went through many iterations of identifying and grouping error labels and finally
arrived at what is presented here. One could say that these error labels are still quite basic and

10Values with the OoM exceeding 9 correspond to financial figure values in the trillions of SEK, since reports often
state their values with the currency as TSEK (thousand SEK) or MSEK (million SEK). Often, the scraper values in
these magnitudes happen when two separate values get appended to each other and read as a single one.
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only capture a part of the types of mistakes the scrapers make. For example, the case of when a
scraper reads the wrong line of the report (it extracts a correct value, but it gets assigned to the
wrong financial figure), does not get identified by my error labels and instead is simply put into
the ‘bad digits’ category. Trying to expand and refine the error labels is therefore a suited starting
point for introducing future improvements to this project.

3.3 Random Forest Classification

The previous section is dedicated to Step 1 of my approach, that is defining the target of the
prediction. It therefore answers the question: what is the quality aspect of the image recognition
outputs that I want to be able to assess through a statistical model? For this quality aspect, I
have chosen the error labels which represent the match between SSD and OoM between scraped
numbers and their true counterpart. This section then moves on to Step 2 of the approach, namely
the prediction of these error labels.

As is described above, the error label creation depends on a secondary source that serves as
a sufficient approximation to the true values. Now this secondary source is only available for a
subset of all financial data and acquiring more, e.g. for next year’s release of financial statements,
is expensive, making the predictive assessment of data quality an attractive option (and hence,
giving rise to this thesis project). As representatives of the data quality of the image recognition
outputs, the error labels serve as the target of this prediction. The particular predictive algorithm
in question is a Random Forest Classifier which this section describes in more detail.

3.3.1 Feature Selection, Encoding and Model Configuration

In Section 2.1 I have introduced different concepts on how to define data and how to classify datasets.
As is established there, many distinct perspectives on data exist, each offering a different flavour of
a definition. For the purposes of this thesis, and in particular statistical modelling, the relevant
ones are: that this dataset is structured, contains numerical as well as categorical columns and any
column can potentially be NaN (not a number, also called a NULL value or a blank).

The categorical columns require encoding in order to be used as input to the Random Forest
Classifier method of the sklearn.ensemble library. This has been done using the OneHotEncoder
function of the preprocessing module, equally from the sklearn library. The workings of One-Hot
Encoding are described in Section 2.5.1. While also being of categorical nature, the error label as
the prediction target has been encoded using a simple mapping to natural numbers as is shown in
Table 6. This is done to keep the target univariate, instead of creating a multi-variate target as
would be the case, if One-Hot Encoding would have been applied.

Table 6: Error labels together with their encoded label

Error Label Encoded Error Label
good digits, exact OoM 0
meh digits, 1000 OoM diff 1
meh digits, wrong OoM 2
meh digits, exact OoM 3
extreme scraper OoM 4
good digits, wrong OoM 5
good digits, 1000 OoM diff 6
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The resulting dataset after encoding contains 424 columns and 286259 rows, where rows containing
any NULL values have been removed. Each row represents a single scraped financial figure value
and the same financial figure of the same report can be represented by different scrapers as multiple
rows. This dataset was further split into three parts: a training dataset for fitting the Random
Forest Classifier, a test set for evaluating its performance and ultimately a validation set that has
been kept aside from the training process to evaluate Step 3 of my approach, the selection of best
possible value across scrapers (see the next section).

Note that the split into three datasets has not been done purely random. Since a single financial
report contains multiple financial figures of which several are related to each other, selecting rows
randomly to split the dataset into three, would mean running the risk of having rows in the test
and training dataset be correlated with each other. So instead, to ensure that training, test and
validation data are independent of each other, I have selected the report IDs at random. This gives
three sets of report IDs, forming a partition to the full set of unique report IDs, and the data is
then divided by selecting all rows belonging to each set of random report IDs. This of course means
that some rows within each subset are still correlated with each other, see Section 4.1 for more
details on this problem.

Lastly, not all of the columns that are available have been selected as input to the final Random
Forest model, as these excluded features likely do not carry any explanatory power for predicting the
error labels. See Table 7 for descriptions of the available and ultimately selected features. Feature
selection has been performed on the training dataset as described in Section 2.5.2, giving rise to the
following three dataset sizes (where the 36+1 columns indicate 36 features and the single target),

• Training data: 96506 × (36 + 1)

• Test data: 46850 × (36 + 1)

• Validation data: 142903 × (36 + 1)
After the dataset has been prepared and split, the training data is ready for the actual model

fitting and prediction of error labels. The chosen parameters for the Random Forest classifier are as
follows:

• n_estimators = 1000 (meaning the RF model grows 1000 DTs)

• ccp_alpha = 0.00001 (referring to the tuning parameter θ in the cost complexity criterion
Cθ(D) of Equation (18) in Section 2.4.1)

• bootstrap = True (Bootstrap samples are drawn to grow the individual DTs; note that the
independence of the samples is limited by the fact that rows in the training data are correlated,
since multiple scrapers aim to extract the same financial figure and several financial figures
stem from the same PDF, for more detail refer to Section 4.1)

where all remaining parameters have been chosen as the default defined by the
RandomForestClassifier function itself. Without mentioning all, the node impurity measure
ϕ has been chosen to be the Gini index, the number of features considered when identifying the
best possible split to be η = √

p where p is the total number of (encoded) features and the minimal
number of observations in a leaf node is set to 1. Note that the class weights as defined in Equation
(20) in Section 2.5.2 are introduced to the RF model through setting the sample_weight parameter
of the fit method.

The next section details the results obtained with this RF model.
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3.3.2 Classification Results

With the RF model as defined in the previous section, a sample of resulting predictions can be seen
in Table 8. What is apparent from this sample is the overabundance of ‘good digits, exact OoM’
error labels. This is in-line with the label occurrences shown in Table 5 and additionally, this result
is reasonable given that it is the aim of the image recognition algorithm to produce values that
actually match what is printed in the report. In this very small sample of table, 6 out of 10 labels
are predicted correctly and the others are not.

Table 8: A sample of actual error labels together with their Random Forest
prediction on the test dataset, together with the scraped value and its secondary
source counter part. The prediction is wrong in rows 3, 7, 8 and 10.

Row Secondary
Source Value

Scraped
Value Error Label Prediction

1 49900000 49900000 good digits, exact OoM good digits, exact OoM
2 5911000 5911384 good digits, exact OoM good digits, exact OoM
3 -1572000 -2021 meh digits, 1000 OoM diff good digits, exact OoM
4 26000 26271 good digits, exact OoM good digits, exact OoM
5 50000 50000 good digits, exact OoM good digits, exact OoM
6 10657000 10656778 good digits, exact OoM good digits, exact OoM
7 26000 26383 good digits, exact OoM meh digits, exact OoM
8 126000 126 good digits, 1000 OoM diff meh digits, 1000 OoM diff
9 1509000 1509000 good digits, exact OoM good digits, exact OoM

10 55000 55000 good digits, exact OoM meh digits, wrong OoM

A full count of all matching and mismatching prediction labels can be seen in the confusion
matrix in Figure 2. This figure displays the encoded error labels (see Table 6). In the ideal case,
only the values of the matrix diagonal would be non-zero as these indicate correctly predicted error
labels, but clearly this is not the case here. First off, the label imbalances are again very noticeable,
with ‘0’ being the label ‘good digits, exact OoM’. Then, the highest amount of miss-classifications,
a total of 2900 cases, occur for the true label ‘3’ (meaning ‘meh digits, exact OoM’) which get
mistaken for the label ‘0’ (‘good digits, exact OoM’). Indeed, it is about twice as likely for the
classifier to wrongly predict the label ‘0’ for the true label ‘3’ than to accurately identify it as such.
Additionally, the label ‘3’ gets predicted in roughly the same frequency for the true label ‘3’ (1434
cases) as for the true label ‘0’ (1406 observations). It seems that the model is not particularly
good at distinguishing ‘good digits’ from ‘meh’ ones. To a degree, this makes sense as the available
and selected feature set (see Table 7) does not include a lot of variables that could be powerful
in deciding what constitutes ‘good’ or ‘meh’ digits in the scraped value. Additionally, the error
labels as I defined them do not consider positional context (see Section 3.2) that might give more
indication as to whether or not extracted digits are of good quality or not. Another example of
this is the second highest miss-classification amount, 1830 cases, where the true label ‘2’ (‘meh
digits, wrong OoM’) get wrongly predicted as the label ‘0’. This again indicates the bias towards the
majority label as well as the rather poor performance on distinguishing the quality of the scraper
value digits.
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Figure 2: Confusion matrix matching predicted and true error labels for the test
dataset

At this point it is worth looking at the consequences of such miss-classifications. Generally
speaking, predicting a scraped value to be ‘bad’ when it is actually of ‘good’ quality, means that
this value is less likely to be selected for the best possible representation in Step 3 and the other way
around. Since there are up to six different scraper values for each financial figure, a miss-classification
could occur for either one of them, which then results in several different scenarios. For example, a
‘truly bad, but predicted good’ value could be chosen over a ‘truly good, but predicted bad’ one in
Step 3. What happens in this case is that ultimately a wrong value is passed on as the representation
of the financial reality of a company. This in turn could mean that further applications, such as
credit risk assessments, would rely on ‘bad data’ and potentially offer the wrong conclusions on
the finances of a company. But, in reality it is rarely the case that these further applications only
consider a single value for their calculations which means that a single wrong financial figure value
does not carry grave consequences on its own in most cases. Only if a considerable large part of the
financial figure values that compromise a report are of bad quality, it would actually impact further
applications. Considering that the image recognition algorithm does extract a value that is truly of
the type ‘good digits, exact OoM’ most of the time, the risk for miss-classifications to carry grave
consequences is generally low. So while miss-classifications of course mean that the classifier fails at
assessing data quality accurately, it only does so for a single value. Ultimately, the value selection
in Step 3 and the fact that a financial report contains many different financial figures reduce the
impact that a single miss-classification can have.
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Now, looking at the performance across all error labels, the ratio between correct predictions
and incorrect ones (meaning the prediction accuracy as described in Section 2.5.3) is 70.22%. This
is, as expected, not very high and also an overstated result due to the imbalanced label frequencies.
In comparison, the balanced accuracy across all error labels is only 51.56%. A list of prediction
accuracies by label is given in Table 9. While attempts at correcting for the imbalanced classes
have been made (as can be seen in the associated class weights of this table), the effect was rather
minute. Only for the error labels ‘extreme scraper OoM’ and ‘good digits, exact OoM’ does the
prediction accuracy reach above 90%.

Table 9: Error labels and their prediction accuracy on the test set as well as
their associated class weights from the training process.

Encoded Label Error Label Label Accuracy Associated Class Weight
4 extreme scraper OoM 0.913753 17.2764
0 good digits, exact OoM 0.909199 0.221727
6 good digits, 1000 OoM diff 0.574194 2.04215
2 meh digits, wrong OoM 0.381916 1.16441
5 good digits, wrong OoM 0.362007 13.6772
3 meh digits, exact OoM 0.280297 1.38378
1 meh digits, 1000 OoM diff 0.1875 3.47444

To offer some perspective on these accuracy numbers, if I chose a naive predictor that in all
cases predicts the majority label (‘good digits, exact OoM’) instead, the prediction accuracy would
be equal to the frequency of this label in the test data. In this case, the ‘good digits, exact OoM’
label occurs 28678 times in 46850 total values, giving a prediction accuracy of 61.21% for the naive
predictor. For all remaining labels, the prediction accuracy would be at 0% as none of them would
be identified correctly. This then gives a balanced accuracy of only 61.21%

7 = 8.744%. Both scores
are higher for my RF model than for the naive predictor and especially the balanced accuracy result
shows a clear preference for the RF classifier.

I have chosen to train only a single classifier for all of the six different scrapers. Since each of
these scrapers is configured in a slightly different way, the underlying true probability distributions
that generate the scraper outputs (and therefore error labels) are likely different as well. So by
approximating these different distributions by only a single model (the Random Forest classifier) I
am introducing a simplification. It is worth checking whether this simplification is actually valid or
whether I might be sacrificing too much predictive complexity. Table 10 shows the classification
results by scraper11. Not every scraper successfully extracts a value for every financial figure which
is why the number of observations by scraper differ. This happens, because the image recognition
algorithms do not only need to identify the correct financial figure value, but also the associated
name. If a scraper fails to get the financial figure name extracted, the according value needs to be
disregarded from the initial data, as the value lacks meaning. That is, it is not known, if the value
displays revenue, or assets, loss etc and can therefore not be compared to the secondary source.

Now, the achieved prediction accuracy scores across the scrapers are more or less close to the
overall accuracy of 70.22% and similarly so for the balanced accuracy. It does seem that for values

11Note that the scrapers are numbered oddly which is simply an artefact of earlier developments and of no further
relevance
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generated by Scraper 7, the model predicts error labels with the highest accuracy which could be
explained by the fact that Scraper 7 also shows the highest ratio of error label ‘0’ observations, i.e.
Scraper 7 extracts a value with ‘good digits, exact OoM’ more often than the other scrapers. Since
the classifier is slightly biased towards this majority class, it does make sense that the prediction
accuracy for Scraper 7 is also the highest. In fact, the correlation coefficient between True ‘0’ Ratio
and Accuracy Score is 0.9847 indicating that for the most part the difference in accuracy scores
across scrapers is explained by their differing success rate in extracting a value that is labelled ‘good
digits, exact OoM’12. Based on this it is likely that the configuration differences of the individual
scrapers is only of minute relevance and the approximation of the differing true distributions by a
single RF model is a valid choice.

In addition, the confusion matrices evaluated on the test dataset and split by the six different
scrapers are shown in Figure 10 in the appendix. The pattern of correct and incorrect classifications
for each scraper is overwhelmingly similar to the overall confusion matrix in Figure 2, which further
shows that the simplification of a single RF model for all scrapers is justified.

Table 10: Classification results across the different scrapers. The column True
‘0’ Cases refers to the number of observations that have the ‘good digits, exact
OoM’ error label in the test dataset and the column True ‘0’ Ratio divides these
observations by all observations in the test set for each scraper.

Scraper Observations Correct
Classifications

True ‘0’
Cases

Accuracy
Score

Balanced
Accuracy True ‘0’ Ratio

1 7041 4824 4142 0.685130 0.505717 0.588269
3 8811 6287 5456 0.713540 0.499579 0.619226
4 7189 5080 4521 0.706635 0.514625 0.628877
6 8145 5469 4538 0.671455 0.523031 0.557152
7 7615 5655 5194 0.742613 0.507047 0.682075
8 8049 5581 4827 0.693378 0.519594 0.59970
All 46850 32896 28678 0.702156 0.515552 0.612124

Besides the prediction accuracy, I have also considered the area under the ROC cuve (detailed in
Section 2.5.3). While this is technically an evaluation metric for the binary case, it can be expanded
to the multi-label case by considering pairwise scores. I have chosen to calculate the one-versus-one
score using the roc_auc_score function of the sklearn.metrics library. The resulting AUC is
86.48% (using an unweighted average across one-versus-one scores) which is a decent result.

Based on these evaluation metrics, the trained Random Forest classifier for predicting the error
label is certainly not the very best, but I deem the results acceptable. Since the error label prediction
is only Step 2 of my overall approach, its performance does not have to be stellar. The true success of
this solution is determined based on the performance of the data point selection across the different
scrapers in Step 3. The following section dives deeper into that.

12It would also be interesting to compare the individual scrapers in their success of extracting accurate values, but
that is outside the scope of my thesis.
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3.4 Scraper Value Selection

This section now arrives at the final step and concludes my approach to solving the thesis problem.
By applying the Random Forest classifier from the previous step to the validation data, I obtain an
error label prediction based on which I calculate a quality score. This score aims at representing
how good the scraped value matches its true counterpart and is used to select which scraped value,
across the six different scrapers, is the best one to represent the true value for each financial figure
in each report.

As I mention in the previous section, the ultimate success of my approach is determined by
this last step, the scraper value selection. Since this is my only overall model, I do not have an
alternative model myself to contrast this approach to. However, in the solution that the company
I work for has currently implemented, an alternate model for the scraper value selection exists.
This model does not evaluate data quality directly, but relies on a so-called ‘image recognition
confidence score’ which is calculated by an external library. Unfortunately, the exact workings of
this confidence score are unknown to me and I do not have the required access to be able to describe
it further. What is known however, is that this confidence score is tied to the external library and
since it is the currently sole input to the scraper value selection, only scraped values using this
external library can be compared using its score. This poses a problem in terms of scalability, as it
limits the expansion towards other image recognition algorithms for further improving the quality
of scraped financial reports. Additionally, with the unknown definition of the confidence score, it
offers little customisation and increases the reliance on unknown factors in the overall effort of
digitising financial statements. And lastly, from manual inspections it is known that the scraped
value selection based on this confidence score does not always perform in the best way possible.
This then gives rise to the motivation for my thesis problem: finding a method that is transparent,
controllable and potentially performs better.

This ‘current’ model for the scraper value selection based on the confidence score supplied by the
external library offers an alternative ‘best possible value’ across the scraper outputs. This value is
referred to as the merged value and while this name is ambiguous in the context of my thesis, I lack
a better alternative and so continue to use it in this text. Ultimately, I use the merged value as an
alternative result to compare the selected value from my approach to. If my approach outperforms
the merged value one by offering a higher rate of correct representations of reality (based on the
secondary source approximation), I deem my approach a success and vice versa.

3.4.1 Quantifying Quality

In order to facilitate selecting the best possible value, i.e. the one most likely to represent the reality
of the financial statement accurately, across the six scraped values, I need to quantify the predicted
data quality aspect of each value. I do that by introducing a quality score for each value which is
calculated as follows

qi = 1
2 (pi + li) with i = 1, . . . , 6 (30)

where pi is the prediction probability obtained from the Random Forest classifier as described in
Section 2.4.3 and li is the error label preference score (see Table 11) associated with the predicted
error label for scraped value i (I of course calculate the quality score for all scraped values in the
validation data, so the index i here indicates the six scraped values for each financial figure). The
prediction probabilities as well as error label preference scores are independent of each other and
since both inputs to the quality score take values in the interval [0, 1], so does the quality score itself.
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For each financial figure in each report, I then select the scraped value with the highest quality
score as the best possible value s∗ = si∗ to represent that financial figure, where i∗ is the scraped
value index maximising the quality score, i.e.

i∗ = argmax
i=1,...,6

(qi) (31)

Note that if two scraped values for the same financial figure were to get the same exact quality
score, my implementation would pick the first one in the list. If the two scraper values were identical,
that would not pose a problem, since the order of identical values does not matter in the selection,
but if the scraper values would differ and still have the same exact quality score, the selection is
biased towards the order of values in the list variable of the implementation. Ultimately, if my
solution assigns the same quality score for two distinct values, it is a sign that the quality score in
its current form is not sufficiently distinguishing quality. Luckily, this is not the case for any data
point in the validation data.

Table 11: Error labels together with their assigned preference score.

Error Label Preference Score
good digits, exact OoM 1
good digits, 1000 OoM diff 0.8
meh digits, exact OoM 0.6
meh digits, 1000 OoM diff 0.4
good digits, wrong OoM 0.2
extreme scraper OoM 0.0
meh digits, wrong OoM 0.0

Regarding the error label preference score, this score simply gives a ranking which error label
is ‘more correct’, or the other way around, which error label has the least mistakes in matching
the true value and is therefore preferred over others. See Table 11 for the score values by error
label. The label ‘good digits, exact OoM’ indicates that scraped value and true one match (almost)
exactly 13 and therefore represents the best possible case with the highest preference score. On
the other end, the label ‘meh digits, wrong OoM’ indicates that neither the string of significant
digits nor the order of magnitude match between the scraped and true value. A scraped value with
this predicted error label, or the label ‘extreme scraper OoM’, should therefore not be selected as a
representation for the true value, and the preference score is set to 0.

Note that the error label ‘good digits, wrong OoM’ has a lower preference score than ‘meh digits,
exact OoM’ and ‘meh digits, 1000 OoM diff’ which might be a little counter intuitive. The reasoning
behind this is that when representing financial figures, a difference in the OoM constitutes a larger
misrepresentation than a difference in the string of significant digits. So an exact OoM match or
knowing by how much the OoMs differ is preferred to simply having a wrong OoM in the scraped
value, regardless of whether or not the digits might match.

Equipped with the quality score and using the definition in Equation (31) to identify the best
possible scraper value, I make my selection of scraper values for all financial figures. As a last step

13Since the error labels are based on the secondary source which is only an approximation to the true values, the
error labels themselves cannot actually express a truly exact match between scraped and true value, therefore the
‘almost’ designation.
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to this, if the predicted error label for the selected scraper value indicates an OoM difference of a
thousand, I offer a correction by multiplying the scraped value by 1000 and setting this value as the
ultimate output of my approach: the suggested value. If the best possible value has an exact OoM,
the suggested value is simply the selected scraper value without manipulation. With this, I finally
obtain a list of suggested values which my approach deems to be the extracted value to most closely
represent the true value of each financial figure in each report.

3.4.2 Quality Scoring Results

The quality score offers the crucial quantification of the quality aspects I try to determine for
the outputs of the image recognition efforts. As with any score, it is assumed that its value is
proportional to the actual quality, i.e. the correct representation of reality, but it is always worth
considering whether this assumption actually holds. In order to be a powerful score, a higher value
should indicate that the associated scraped value is truly a good representation of what is printed
in the financial statement and vice versa. Figure 3 shows both a box and whiskers plot as well
as histograms of the distribution of the quality score of all the scraper values in the validation
data (with 142903 observations), split by a flag indicating whether the scraper value matches its
secondary source counterpart (label ‘1’) or not (label ‘0’). In the ideal case, there would be a clear
cut-off point in the quality score, where all scraper values labelled ‘0’ lie below it and all values
labelled ‘1’ above. Unfortunately, this is not exactly the case. Looking at the histograms, there
is considerable overlap in these two groups for quality scores above 0.5. This means that, while a
quality score below 0.5 quite confidently indicates scraped values to be of ‘bad quality’, i.e. not
matching their true counterpart, the other way around, when a quality score is higher than 0.5,
does not confidently distinguish ‘good’ or ‘bad’ quality. There is definitely room for improvement to
make the quality score more powerful in this regard, which is discussed further in Section 4.2.

(a) Box and whiskers plot (b) Histograms

Figure 3: Distribution of the quality score for the scraper values in the validation
data split by a flag indicating whether the value matches the corresponding
secondary source one (label ‘1’, 93817 observations) or not (label ‘0’, 49086
observations).

That being said, the sample median of the quality score, indicated as a green line in Figure 3a,
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has the value 0.64 for the mismatching values and the value 0.86 for the matching ones. While
ideally, the quality score for mismatching values, i.e. incorrect representations of reality, should
be zero, a difference between both match cases can be seen. Again, as with the Random Forest
classifier in the previous step, these results are not excellent, but I deem them sufficient to continue.

It is worth noting that by looking at the histograms in Figure 11 in the Appendix, there seems
to be no great difference in quality score distribution by scraper. The scrapers all show the roughly
0.5 threshold for differentiating the mismatching and matching scraper values and there is not one
scraper that is much better or worse than another, in terms of how powerful the quality score
distinguishes ‘good’ or ‘bad’ quality data points. The only difference between the histograms are
the number of scraped values available from each scraper, which is due to the fact that not every
scraper necessarily outputs a value for each financial figure in each report.

The next section reveals whether the suggested values outperform their corresponding merged
values from the existing approach.

3.4.3 Model Comparison Results

To conclude Step 3 and the approach itself, I compare my suggested values for the validation data
to the merged values from the alternative model. A selected sample of values can be seen in Table
13 in the appendix. As said before, I use the success rate R of identifying correct representations of
reality as the factor to compare the suggested and merged values by (see the metric definition in
Equation (2) in Section 2.2).

There are 27651 rows in the pivoted validation data14, but for only 27419 a secondary source
value is available, meaning I exclude those 232 rows without the secondary source value from the
evaluation. I am happy to report that for 20687/27419 (75.45%) my approach selects the correct
value while the alternative model only gets 17821/27419 (65.00%) of cases correct. This is already a
promising result, but there might of course be cases in which my suggested value is actually worse
than the merged one. Table 12 details these different ‘match scenarios’, using the secondary source
value to determine whether scraped or merged values are correct. For the largest part (16389 cases,
59.77%) of the validation data, both the suggested and merged values are correct which is already a
decent baseline for both approaches to be useful. As can be seen as well, in 1432 cases (5.223%) my
suggested value is actually worse than the merged one - which of course is unfortunate. However,
there are 4235 (15.45%) cases in which the suggested value is better than the merged one. Meaning
that the loss of correct results in the alternative model is outweighed by the improvements offered
by my approach.

14In the pivoted validation data each row corresponds to a single financial figure in a given report, with each scraper
value displayed in its own column and a new column for the selected scraper value (the suggested value) added. In
previous steps, there would be multiple rows for each financial figure, one row for each scraper value.
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Table 12: Number of occurrences for each ‘match case’ between merged, suggested
and secondary source value. Note that in 232 observations of the validation
data, a secondary source value was unavailable and this table therefore only
considers 27419 rows.

Suggested correct Suggested incorrect Suggested Missing Total
Merged correct 16389 1432 0 17821
Merged incorrect 4235 5261 0 9496
Merged missing 63 39 0 102
Total 20687 6732 0 27419

For the 5261 cases in which both the suggested and the merged model offer incorrect results,
the histogram of the quality score distribution is shown in Figure 4. Based on visual inspection,
this distribution looks very similar to the overall one in Figure 3b for the mismatching values (label
‘0’), except for fewer observations in the quality score below 0.5 range which is explained by the
fact that now, in the suggested model, only those scraper values with maximal quality score per
financial figure are included.

This suggests that there is no clear further aspect of the quality score in its current form that
could be exploited to improve these incorrect data point selections. Instead, it is likely that neither
of the six scrapers actually obtained a correct value that could have been selected in the first place
and the quality score unfortunately does not reflect this in all cases (see the observations in the
range above 0.5).

Figure 4: Histogram of the quality score distribution of the validation data
where both the merged model and my suggested model lead to incorrect results.
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To formally compare the success rate of both models, i.e the number of correct values out of the
total, I apply a χ2-hypothesis test with

H0 : Rs = Rm (32)
H1 : Rs ̸= Rm (33)

where Rs and Rm are the success rates of my suggested model and the merged one respectively.
This means that the null hypothesis H0 reflects the case in which there is no difference between
my suggested and the merged values when it comes to selecting a scraped value that accurately
represents the true value or not. In turn, the alternative hypothesis H1 covers the case of suggested
and merged model differing in their success rates.

The test statistic is given by

χ2 =
4∑

i=1

(xi − µi)2

µi
(34)

where xi is the observed frequency of correct or incorrect values and µi the associated expected
value. The observed frequencies are obtained from Table 12 and the expected values are calculated
as the product of the joint probabilities and the total values 2N , giving the following values

x1 = 20687, µ1 = (x1 + x2)(x1 + x3)
2N

= 19254

x2 = 6732, µ2 = (x1 + x2)(x2 + x4)
2N

= 8165

x3 = 17821, µ3 = (x3 + x4)(x1 + x3)
2N

= 19254

x4 = 9598, µ4 = (x3 + x4)(x2 + x4)
2N

= 8165

Note that the ‘merged missing’ match scenario has been included in the count for incorrect values
of x4, giving an equal amount of observations in both the suggested and merged cases and hence
the total number of observations as 2N . This leads to a test statistic value of

χ2 = 2(1433)2

19254 + 2(1433)2

8165 = 716.30 (35)

With 1 degree of freedom and a significance level α = 0.05, the critical value for this test is at 3.841.
Since the test statistic far surpasses the critical value, H0 should be rejected and it can be concluded
that the difference between Rs and Rm is statistically significant.

Given these results, I am quite confident that my suggested approach in selecting the best
possible scraper value offers an improvement to the existing solution relying on the merged value.
Of course, a success rate of 75.45% is still far from perfect and my solution involves a Machine
Learning model that entails a much larger maintenance effort, but the results are promising and I
deem my approach in tackling the problem of assessing the data quality of the extracted financial
data successful.
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4 Discussion

4.1 Limitations of the Solution

This section has been referenced several times in this thesis, indicating the importance of considering
the limitations my solution has.

I mention early on that assessing the data quality domain of accuracy requires having some kind
of ‘objective truth’ of what reality actually is. Of course, there are the actual PDFs of the financial
statements that allow for a manual inspection of data quality accuracy, but that is not a feasible
method to assess data quality of the entire data. I was lucky enough to have a secondary source
available for the same financial data that the image recognition algorithm has extracted. While
overall this secondary source is deemed of sufficient quality to represent the financial statements
themselves, it still comes with some limitations that affect the success of the overall solution.

Firstly, the secondary source only provides rounded values (to the nearest thousand), while
the scrapers will show the exact value as it is printed in the statements (if there is not quality
issue). This means that ‘good digits’ in the error labels are determined based on whether or not the
rounded values match and not the exact digits. Since most financial statements report numbers in
MSEK or KSEK, an amount below 1000 SEK does not have a great effect however, so this rounding
limitation is acceptable.

Secondly, the secondary source is not available for all data points, meaning I had to exclude
some scraped values from the dataset as the secondary source counterpart is missing. In most cases,
the values are unavailable due to not having purchased them, but there might be cases in which
the secondary source might have had difficulty obtaining the value (e.g. due to bad scan quality of
the financial statements from Bolagsverket, so that not even human eyes could read the correct
value). In such a case, it is likely that the scrapers also had difficulty obtaining the correct financial
figure, but this then unknown to my solution. From experience, these should only occur in rare
cases, however, so again, an acceptable limitation.

Lastly, the secondary source needs to be purchased and the goal of the scraping effort is to
replace this cost, meaning the secondary source will not be available in the future which makes
retraining the RF model impossible. This should be bearable though, since first, it is expected that
the share of digitally filed reports with Bolagsverket is going to increase (therefore decreasing the
reliance on image extraction algorithms to obtain digitised financial data on Swedish companies)
and second, it is unlikely that the layout of financial reports is going to change much over time,
meaning the image recognition algorithm probably will not need to adapt to reading different kinds
of reports. Lastly, should it really become necessary, it is possible to still purchase small subsets of
secondary source data to retrain the RF classifier.

Beyond the limitations tied to the use of the secondary source, the approach itself has some
constraints as well. The first of which is related to the error labels themselves. As mentioned before,
these error labels are tied to the types of scraper mistakes that I identified, but they are not able to
capture all types. Especially ‘positioning mistakes’, e.g. reading the wrong line or column of the
report or not considering the context of the financial figures printed ‘close by’, are not included in
the error labels. This means that accuracy issues related to these types of mistakes get mixed in to
the digit and order of magnitude labels which likely affects how well the model can identify quality
issues.

Additionally, the training data rows are not necessarily independent of each other. In each
financial report there are several financial figures. Meaning several rows in the training data are
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scraped from the same report that might suffer from the same extraction difficulties. For example,
if the scan quality of the PDF is bad or the layout of the report is particularly unusual, several rows
in the training data will be affected by it, resulting in non-independent rows. Statistical Learning
Theory assumes that observations in the training data are iid, which is not necessarily the case here.
Since, in reality, it is difficult to obtain truly iid training data however, this is deemed acceptable as
well.

This concludes the list of limitations to the solution and the next section focuses on potential
future improvements.

4.2 Future Outlook

As is mentioned in the results, the RF classifier results are not stellar. While my solution overall
beats the existing approach to selection scraper values, there is clearly room for improvement which
is discussed in this section.

Firstly, the error labels are a crucial building block of my solution. They form the abstraction
by which I assess data quality, so their success in actually capturing quality issues puts a bound on
how successfully the overall solution can be. I already mention previously that they do not include
all identified types of scraper mistakes, so the natural possible improvement is to expand these error
labels. Namely, when error labels are being created, including ‘positioning mistakes’ likely leads to
an improvement in overall data quality detection. This could be done by introducing the context of
all financial figures within a single report to the evaluation of a scraped value. For example, when a
scraper value does not match its secondary source counterpart, one could compare the list of all
other values in the same report and check, if the scraper value matches another secondary source
value in the same report. If that is the case, it is likely that a positioning mistake has occurred
where the wrong line has been extracted. Another flavour of this is to utilise the additive nature of
financial figures, e.g. the financial figure ‘assets’ is the sum of ‘noncurrent assets’ as well as ‘current
assets’ which in turn are sums of yet more granular financial figures. Checking if a scraped value
that does not match its counterpart directly, instead matches an aggregate of secondary source
values from the same report could indicate another mis-read line mistake. However, this additive
nature is more difficult to exploit, because it does not necessarily offer a location of the mistake15,
so it is a less preferred improvement option.

Furthermore, the error labels for extreme order of magnitudes are based on hard-coded thresholds
(i.e. an OoM difference greater than four and a scraped value OoM greater than nine). Instead,
more sophisticated methods to identify what constitutes an extreme value can be introduced. For
example, thresholds could be set per financial figure instead of for all values together, since there
are likely differences in what counts as extreme based on the meaning of each financial figure. Also,
instead of providing fixed threshold values, they could be determined adaptively, e.g. by using
Chebyshev’s inequality to identify extreme values.

Another possible improvement can be done in regards to the unbalanced error labels. Since the
image recognition algorithms are overall pretty good at what they do, meaning the scraped values
are largely accurate, there is a clear dominance of the ‘good digits, exact OoM’ error labels. While
I tried to counteract this by introducing class weights in the model, there are potentially further
adjustments to be made.

15E.g. if the asset value is 4600 SEK, noncurrent assets is 2800 SEK and current assets 2000 SEK, the sum of
both ‘sub-figures’ is 4800 SEK, indicating that a mistake has occurred. But, with this information alone, it cannot be
deduced whether the error lies with noncurrent assets, current assets or both.
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Beyond the error labels, further improvements can also be made to the quality score itself in Step
3 of the approach. Instead of averaging the prediction probability and the error label preference
score, another combination of these inputs might better capture quality. For example, multiplying
both values instead or introducing weights could improve the ‘power’ of the quality score.

More generally applicable improvements are to simply increase the sample size of the training
data, as long as secondary source values are available, and to introduce better handling of NULL
values, e.g. through imputation rather than removal of rows from the dataset. Additionally,
alternative ML algorithms might be applied to predicting error labels, especially ones that are able
to model more complex transformations of the input data and capture semantic and positional
context of the financial figures. While this improvement is quite limited with the currently available
data, potentially expanding the feature set with additional information from the image recognition
algorithms likely increases the predictive power and ultimately offers a more confident and detailed
data quality assessment. Given the current feature set however, I would expect that especially the
refinement and expansion of the error labels would bring the greatest effect in improving the success
of the solution in identifying misrepresentations of reality.

4.3 Conclusion

Overall, I deem my thesis problem as stated in Section 1.3 to be sufficiently solved. Although the
ML performance of my trained RF classifier is far from perfect, it is able to identify error labels and
therefore data quality accuracy within reasonable bounds. The following data point selection does
beat the existing method by a considerable margin, meaning my solution detects data quality issues
better than what has been currently implemented.

While there is room for improvement as described in the previous section, I can recommend my
solution to be added to the existing financial data service that the company I work for develops.
Doing so likely improves how well the extracted information reflects the reality of the scanned
financial reports from Bolagsverket.

This thesis solves the data quality question in a very targeted and narrow domain. It does seem
that truly general frameworks for addressing data quality are yet to be developed, or might need to
continue as more practical approaches.

As a last remark, in this ‘Age of Data’ that we are living in, numbers, statistics and data are
inescapable, omnipresent companions. We see the world through abstractions and small samples,
impossible as it would be to comprehend every detail all at once. And indeed, my work in this
thesis is just a tiny drop in a vast ocean of research that shows that there is incredible value in the
exploration and utilisation of data. Through choosing aspects of a real phenomenon, measuring
them and creating data, we introduce models of reality that are powerful tools for learning about it
and making new discoveries - in a way that would not be possible without this layer of data as a
representation. It is my hope that this thesis highlights the importance of thinking of data as being
that, a representation, and that ‘data-driven’ methodologies consider the discrepancy that might
exist between the data and its underlying real phenomenon.
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Appendix A Examples of Scraper Mistakes

(a) Missing first digits; while the true value reads
360902, the scraper extracted the value 902.

(b) Missing first digits; while the true value reads
291279, the scraper extracted the value 279.

(c) Missing last digits; while the true value reads
541645, the scraper extracted the value 541.

(d) Missing last digits; while the true value reads
5338325, the scraper extracted the value 5338.

Figure 5: Scraper mistakes, missing first and last digits of a number.
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(a) OoM stated elsewhere in report; while the true
value reads 31444000, the scraper extracted the value
31444.

(b) OoM stated elsewhere in report; while the true
value reads 428785, the scraper extracted the value
428785000.

(c) OoM stated elsewhere in report; while the true
value reads 913000, the scraper extracted the value
913.

(d) OoM in expected position, but not extracted;
while the true value reads -59035000, the scraper
extracted the value 59035.

Figure 6: Scraper mistakes, OoM not extracted properly.
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(a) Wrong digit extracted; while the true value reads
-5750, the scraper extracted the value 7505.

(b) Wrong digit extracted; while the true value reads
9910699, the scraper extracted the value 9010639.

(c) Wrong digit extracted; while the true value reads
328356, the scraper extracted the value 278356.

Figure 7: Scraper mistakes, wrong digit extracted.
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(a) Wrong column extracted; while the true value
reads -4307116, the scraper extracted the value 4670.

(b) Wrong column extracted; while the true value
reads 7506135, the scraper extracted the value 3884.

(c) Wrong line extracted; while the true value reads
40196, the scraper extracted the value 9456.

(d) Wrong line extracted; while the true value reads
80612000, the scraper extracted the value 61118000.

Figure 8: Scraper mistakes, wrong column or line extracted.
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(a) Multiple mistakes (wrong digit and OoM not
extracted); while the true value reads 9101000, the
scraper extracted the value 2101.

(b) Unclear; while the true value reads 1617570, the
scraper extracted the value 1 (for Eget Kapital och
Skulder) and the true value 393394 has been scraped
as 18 (for Kortfristiga Skulder).

(c) Unclear; while the true value reads 17418000, the
scraper extracted the value 10112.

(d) Two columns read together as single value; while
the true value reads 251434, the scraper extracted
the value 251434589855.

Figure 9: Scraper mistakes, multiple columns read together, multiple mistakes
at the same time or mistake is not apparent.
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Appendix B Confusion Matrices by Scraper

(a) (b)

(c) (d)

(e) (f)

Figure 10: Confusion matrices evaluated on the test dataset and split by scrapers.
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Appendix C Quality Score Histograms by Match Flag and Scraper

Figure 11: Histograms of quality score distribution of the validation data.
Histograms are split by scraper and a match flag where value 0 indicates that
the scraped value does not match its true counterpart and 1 indicates that it
does match.
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Appendix D Selected Sample of Suggested and Merged Values

Table 13: Sample of scraper value selection results compared to the alternative
model (the merged value). Models are compared by the ‘Match Flag’ column
that indicates which values correspond to the true one (represented through
the secondary source value approximation) or not. Sample is not random, but
selected to show more mismatch cases.

Row Financial Figure Predicted Error Label Quality
Score

Suggested
Value

Merged
Value

Secondary
Source Value Match Flag

1 other_short_term_receivables meh digits, wrong OoM 0.32 18872.00 18.00 72000.00 both different
and both incorrect

2 debt good digits, exact OoM 0.89 2471271.00 2471271.00 2471000.00 both correct
3 assets good digits, exact OoM 0.92 63971685.00 63971685.00 63972000.00 both correct

4 cash good digits, 1000 OoM diff 0.66 816000.00 816.00 1000.00 merged correct,
suggested incorrect

5 ebitda good digits, exact OoM 0.72 -19828.00 -19828.00 -4000.00 both same,
but incorrect

6 short_term_receivables_
from_sales_and_services good digits, 1000 OoM diff 0.84 93050000.00 93050.00 93050000.00 merged incorrect,

suggested correct
7 assets good digits, exact OoM 0.98 239197.00 239197.00 239000.00 both correct

8 net_financial_income good digits, exact OoM 0.84 -113407.00 -113407.00 -117000.00 both same,
but incorrect

9 cash good digits, 1000 OoM diff 0.65 5000.00 0.00 8000.00 both different
and both incorrect

10 equity good digits, exact OoM 0.97 205455.00 205455.00 205000.00 both correct

11 ebitda good digits, exact OoM 0.86 352862.00 -647138.00 353000.00 merged incorrect,
suggested correct

12 short_term_debt good digits, exact OoM 0.94 168616.00 168616.00 169000.00 both correct

13 untaxed_reserves meh digits, wrong OoM 0.47 2754000.00 2754000.00 44610000.00 both same,
but incorrect

14 long_term_debt good digits, exact OoM 0.81 26377799.00 26377799.00 26378000.00 both correct

15 short_term_debt good digits, exact OoM 0.94 2192833.00 2192.00 2193000.00 merged incorrect,
suggested correct

16 contributed_capital good digits, exact OoM 0.99 100000.00 100000.00 100000.00 both correct

17 revenue good digits, exact OoM 0.82 15945610.00 15945.00 15946000.00 merged incorrect,
suggested correct

18 current_assets good digits, exact OoM 0.90 738250.00 738250.00 738000.00 both correct

19 other_short_term_receivables good digits, exact OoM 0.66 3901.00 3901.00 2360000.00 both same,
but incorrect

20 debt good digits, exact OoM 0.82 50312000.00 2049937.00 54570000.00 both different
and both incorrect

21 equity good digits, exact OoM 0.94 4053063.00 53.00 4053000.00 merged incorrect,
suggested correct

22 profit_loss good digits, exact OoM 0.95 -492000.00 -492000.00 -492000.00 both correct
23 net_financial_income good digits, exact OoM 0.92 -2512.00 -2512.00 -3000.00 both correct
24 retained_earnings good digits, exact OoM 0.82 26209508.00 26209508.00 26210000.00 both correct
25 ebitda good digits, exact OoM 0.74 872033.00 872033.00 872000.00 both correct

26 retained_earnings good digits, exact OoM 0.79 -1262887.00 -1257005.00 -1257000.00 merged correct,
suggested incorrect

27 retained_earnings good digits, exact OoM 0.77 18114709.00 1151.00 18115000.00 merged incorrect,
suggested correct

28 contributed_capital good digits, exact OoM 0.97 25000.00 25000.00 25000.00 both correct
29 debt good digits, exact OoM 0.92 1636433.00 1636433.00 1636000.00 both correct
30 profit_loss good digits, exact OoM 0.95 401062.00 401062.00 401000.00 both correct
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