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Abstract

This thesis models a superconducting device, known as a Transmon, from the perspective
of a microwave resonator. The work is motivated by Ref. 1, where such a device was
realised and characterised by its resonator properties, showing that it can be viewed as a
high-impedance resonator. In the thesis, the resonator is symmetrically connected to two
transmission lines: one input port and one output port. Both single tone and two-tone
measurements are treated, where the two-tone case treats the limit of a weak probe. The
measurements are simulated within the framework of input-output theory, however the
Lindblad master equation is also used showcasing an alternative approach for solving the
system dynamics. In the two-tone measurements we also find a coherent signal at a third
frequency, other than the probe or drive frequencies. This leaves an open question of
seeing if this signal can be measured in experiments and how to explain it. The thesis also
raises the question of whether the perspective of a resonator with photons residing inside
it is actually valid in this extreme case of a Transmon, often considered as an artificial
atom. It is highlighted that an alternative picture than that of a ’dressed atom’ should be
presented in the highly non-linear regime in order to aid this interpretation.
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Populärvetenskaplig
Sammanfattning

Mikrovågsugnar på kvantnivå
Mikrovågsresonatorer används inom supraledande kvantsystem för avläsning
och manipulation av kvantkomponenter. I avhandlingen analyseras en sådan
där gränsdragningen mellan foton och exciterad ’atom’ börjar suddas ut i dessa
system.

De senaste decennierna har supraledande kretsar och komponenter haft stort intresse inom
forskningen. Det finns flera orsaker till detta; bland annat tack vare att dessa kan up-
pvisa kvantfysikaliska fenomen, de kan konstrueras med hög precision och de erbjuder
en möjlighet att studera hur ljus och materia interagerar med varandra under särskilda
förhållanden. Att ett ämne är supraledande innebär att det kan leda ström utan nå-
gon resistans. Detta är en egenskap som några material får när de kyls ner till mycket
låga temperaturer. Till exempel blir aluminium supraledande när det kyls ner till cirka
1.2 Kelvin, där 0 Kelvin är den absoluta nollpunkten (-273.15 ◦C). Detta är en väldigt låg
temperatur, men i labb kan man med relativt god tillgänglighet numera kyla ner enheter
till temperaturer av enstaka tusendelars Kelvin. Att använda kvantfenomenen som upp-
står från supraledande effekter är ett av flera sätt man forskar på idag för att lyckas bygga
en kvantdator, som skulle vara mycket effektivare på att lösa vissa specifika problem. För
att åstadkomma detta krävs kvantversionen av en bit (något som antar värde 0 eller 1,
principen som datorer är byggda på), en så kallad ’kvantbit’. En komponent i ansatsen
att åstadkomma en qubit för supraledande kretsar har fått namnet Transmon. Denna
kallas ibland för en ’artificiell atom’, då den har egenskaper som atomer är kända för att
ha. Bland annat kan den fånga upp, fotoner - enskilda paket av ljus - som den sedan
kan skicka iväg. En viktig komponent för att manipulera och läsa av kvantbitar är det
som kallas för mikrovågsresonatorer. Det är i princip känt hur man konstruerar dessa,
men ständigt arbete pågår för att förbättra dem och hitta nya tillämpningar. Namnet är
säkert bekant, då en mikrovågsugn är en typ av mikrovågsresonator, men vi behöver en
mycket mindre och kontrollerad variant, med lite annan funktion. Fotonerna - ljuset - har
ungefär samma våglängd men våra resonatorer vill hålla inne fotoner som matchar dess
resonansfrekvens en liten stund och stänga ute resten.
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Vad är då en resonansfrekvens? Tänk dig att du rullar ut en jojo hela vägen. Sedan sätter
du den i svängning så att den svänger fram och tillbaka. Rör du dig fram och tillbaka i
rätt tempo - med rätt frekvens - kommer den svänga mer, än om du försöker få den att
svänga mycket långsammare eller mycket snabbare. Då svänger du i resonans med jojon.

I denna avhandling analyserar jag en resonator vars resonansfrekvens bestäms med hjälp
av egenskaper hos Transmonen och är en teoretisk analys baserat på experiment jag utfört
tidigare. Detta ger upphov till olinjära effekter som kan vara intressanta att undersöka för
att få bättre förståelse för kvantfysiken. En sådan olinjär effekt som förutspås teoretiskt
i uppsatsen är att när ljus med två olika frekvenser skickas in i resonatorn, kommer
den under vissa förhållanden skicka ut ljus med en tredje våglängd. Detta återstår att
observera i experiment.

iii



Acknowledgements

I want to start by thanking both of my (very encouraging) supervisors, Peter Samuelsson
and Ville Maisi, as this thesis would not be possible without them. Peter has an inspiring
interest in physics, an incredible drive and shares my sense of discomfort when there are
unresolved ”murky” details. Although he can sometimes be a little difficult to reach (he’s
a busy man), discussions with him are always a pleasure and he is very engaging. Ville
has always had an open door, and his love for physics is infectious. He is an experienced
experimentalist, while still being very skilled with theory and has provided a lot of feedback
and ideas for the thesis. He always has an open door and has helped me untangle many
knots ever since I first started working with him almost a year ago. It is comforting
knowing that I will continue working with such a remarkable supervisor.

Thank you to my opponents Gustav, Andrea and Ferdinand for providing feedback and
comments on the thesis. My apologies for giving you so much work.

Next I want to thank all of my friends from the F-guild who have made my five years at
Lund University a memory that I will cherish dearly, with a shout out to Nördbordet and
in particular Nils (NK) who has helped me resolve issues with VS Code.

Everyone I have shared an office with during my time here, thank you! The days are
just brighter when you are around. Also while I am at it, the people at Solid States and
Mathematical Physics, in particular everyone in Peter’s and Ville’s groups as well as the
Germans!

I shall not forget my friends from Uddevalla, thank you for always showing me that there
are more things to enjoy in life than just physics!

Last but not least, I want to thank my family. Hilda and Amanda, somewhere along the
years you must have grown up as it seems like we never fight anymore. Keep on being as
wonderful as you are (btw, you are very good at buying gifts, so I might continue leaving
that responsibility to you...). Mum and dad, even though you might provide very little
help when I have pondering questions about physics, it is thanks to your sacrifices and the
support that you have provided throughout my life that has allowed me to get to where I
am. I owe you everything.

iv



Contents

1 Introduction 1

2 Background 4

3 cQED 7
3.1 Setting up the Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Josephson relations and the Josephson junction . . . . . . . . . . . . . . . . 10
3.3 Cooper pair box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 The Transmon regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Semi-infinite transmission lines as baths . . . . . . . . . . . . . . . . . . . . 20

4 Input-Output Theory 23
4.1 Coupling semi-infinite transmission lines to a system . . . . . . . . . . . . . 24
4.2 Coupling a harmonic oscillator to a transmission line . . . . . . . . . . . . . 29
4.3 Two-port cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Transmon symmetrically coupled to two transmission lines . . . . . . . . . . 32
4.5 Heterodyne detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Master Equation 38
5.1 Lindblad master equation on a harmonic oscillator . . . . . . . . . . . . . . 39
5.2 Moving to a frame rotating with the drive . . . . . . . . . . . . . . . . . . . 42
5.3 Lindblad master equation on Transmon . . . . . . . . . . . . . . . . . . . . 43
5.4 Driving the two-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Single Tone Measurements 48
6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.1 Lindblad master equation using QuTiP . . . . . . . . . . . . . . . . 50
6.1.2 Input-output theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Theory and experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Transmission and output power . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Power spectrum of emitted photons . . . . . . . . . . . . . . . . . . . . . . . 58

6.4.1 Two-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

v



CONTENTS

6.4.2 Transmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Two-Tone Measurements 62
7.1 Two-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2.1 Lindblad master equation using QuTiP . . . . . . . . . . . . . . . . 68
7.2.2 Input-output theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 Transmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Conclusions and Outlook 73

Bibliography 76

vi



Chapter 1

Introduction

We are the universe experiencing itself.
- Carl Sagan

Superconducting microwave resonators are used in for instance quantum optics and quan-
tum information, where they are often based on a coplanar waveguide (CPW) design, the
equivalent of a coaxial cable on a 2D surface [2, 3]. CPW microwave resonators have use
in studying some metals [4], as well as coupling to quantum devices such as superconduct-
ing qubits [5] and quantum dots [6, 7]. CPW resonators are typically linear over several
orders of magnitude, meaning that the number of photons stored in the resonator cavity
can be varied several orders of magnitude without changing the resonance frequency. A
typical design is schematically depicted in Fig. 1.1, which shows a finite transmission line
on a Si wafer surrounded by a ground plane. The geometry of this (Fig. 1.1b) determines
some capacitance and inductance per unit length. The length of the cavity L can then be
used to choose the resonance frequency to high precision [3, 8]. The Hamiltonian for such
a system can be modelled as an ideal harmonic oscillator [9], yielding the highly linear
behaviour. CPWs have been proven useful for the study of light and matter, as they can
be used to reach the strong coupling regime when coupled to artificial atoms [10].

One of the reasons that superconducting circuits allow for the study of interaction be-
tween light and matter is the introduction of a new non-linear circuit element known as
the Josephson junction [11]. The properties of the Josephson junction have been used for
achieving parametric amplification [12–14], realising artificial atoms [15, 16] and fabricat-
ing high-impedance resonators by using arrays of Josephson junctions in order to achieve
strong and ultra-strong coupling [17, 18], among several other applications.

Taking the limit of only one junction as a resonator, which is what this thesis considers, you
end up effectively with a Transmon. Transmon qubits are a modification of the original
Cooper pair box (CPB) [15]. A CPB uses the non-linearity of a Josephson junction
to achieve energy levels with anharmonicity, allowing them to be used as qubits. An
issue with CPBs are that they are sensitive to charge noise, which the Transmon solves
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CHAPTER 1. INTRODUCTION
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Figure 1.1: A schematic picture of a CPW resonator with insets of typical length scales. In
a you can see the silicon substrate in grey. On top of this is a ground plane G (in blue) with
a centre conductor C (in turquoise) where the separation defines a capacitive coupling between
transmission lines on the left and right to the cavity in the middle. The length of the cavity L is
one of the parameters defining the resonance frequency of the cavity. In b you see a linecut of the
transmission line geometry, where the parameters s, w can be used to define some inductance and
conductance per unit length.

by coupling a large capacitance to the CPB. The sensitivity to charge noise is reduced
exponentially, while the anharmonicity is reduced according to a power law by this added
capacitance [16]. These Transmons can be coupled to resonators for manipulation and
readout [17, 19]. They are often considered as ’artificial atoms’ due to their energy level
structure and coupling to photons. Their energy level structure is similar to a harmonic
oscillator, but with added anharmonicity. This means that the resonance frequency for a
transition depends on which state the Transmon is in, for instance if it is in the ground
state or some excited state. The resonance frequency decreases if it is in an excited state
compared to the ground state. This shift in resonance frequency is a parameter that can
be chosen in fabrication within some constraints [16].

During the summer of 2023 at Lund University, we made a microwave resonator using
the properties of the well known Transmon [1]. High-impedance resonators have been
fabricated previously using arrays of Josephson junctions in order to increase the coupling
strength to circuit quantum electrodynamics (cQED) elements, such as Transmons or
quantum dots [17, 18, 20, 21], however the limit of one junction had not been viewed in
the light of a resonator before. The resonator became highly non-linear in the sense that
it saturated at one photon in the resonator at the bare resonance frequency. The next
photon that could be stored in the resonator had to have a lower frequency to be resonant
with the Transmon again. This was observed using two-tone measurements, where two
radio frequency (RF) signals are sent into the resonator. One that is measured (the probe)
and one that drives the system to a certain desired state (the drive). This method has
been used when measuring similar devices [22–26].

The main goal of this thesis is to use the established theoretical framework of analysing
quantum electrical circuits, in order to test the agreement with theory and experiment.
A secondary goal in this is to give an introduction to the theory, by deriving many of the
relations in order to give a connection between the theory and the actual physics, which
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CHAPTER 1. INTRODUCTION

will hopefully give some intuition for the theoretical formulas. Furthermore many of the
calculations will be presented in detail so that the steps will be easier to follow. This will
hopefully serve also as an introduction on how the theoretical toolbox may be used. The
thesis also tries to view the Transmon from the perspective of a high-impedance resonator.
This is different from the usual picture of an artificial atom, however as we will see, this
distinction is seldom going to be of relevance in theoretical considerations. It will rather
come as a short discussion in Chapter 8. Due to the strong anharmonicity of the Transmon
compared to the linewidth of the system, a reduction to a simpler two-level system will
become useful in understanding some of the observed features of the Transmon resonator.

The structure of the thesis is as follows. Chapter 2 has a short introduction on the exper-
imental setup that the theory aims to simulate. After that, in Chapter. 3, I will introduce
circuit quantisation and the Josephson element, as well as other building blocks that will
be needed, such as the Transmon. In Chapter 4 input-output theory is introduced, first
in a general case when studying a system weakly coupled to a bosonic bath before before
deriving the equations of motion for the Transmon symmetrically coupled to transmis-
sion lines. In Chapter 5 the Lindblad master equation is introduced as an additional tool
for studying the dynamics of quantum systems, where also the two-level system will be
analysed within this framework in preparation for understanding some of the observed
features of the Transmon. With all of the theory necessary presented, the methods of
the theoretical simulations as well as results for single tone measurements (Chapter 6)
and two-tone measurements (Chapter 7) will be presented, comparing the theoretical pre-
diction with the experimental data. In these chapters, I will provide an explanation for
some of the observed non-linear features. Then finally in Chapter 8, there will be some
conclusions drawn from and discussion about the results from the thesis, as well as some
outlook on future work that could be done. One of the interesting results of the thesis is
the appearance of a coherent signal at a third frequency in the two-tone measurements,
leaving an open question of whether or not this could be measured in experiments.
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Chapter 2

Background

Leave the atom alone.
- Edgar "Yip" Harburg

Since the thesis project was motivated by experiments made [1], let us first get acquainted
with what it is that we are trying to model and how measurements are carried out. The
system is a microwave resonator, which means that the system has some eigenmode with
a resonance frequency fr in the microwave regime. In our particular system S which was
studied, the resonance frequency was fr = 4.715 GHz, and photons carrying that frequency
could enter the resonator from the left, and leave it to the right. This is depicted in Fig. 2.1,
which shows a scanning electron microscope (SEM) image of the system. The turquoise
part in the middle makes the island part of the resonator, the blue highlighted parts are
transmission lines carrying microwave signals generated from an RF generator (RF In)
and to a measurement device (RF Out), the brighter grey areas are the silicon wafer that
the system was fabricated on and the darker grey areas are the ground plane. The light
blue rectangle highlights the Josephson junction and is the main source of capacitance and
inductance for this resonator. Since the blue and turquoise parts are never in touch, they

Figure 2.1: An SEM image of the microwave resonator that was studied in Ref. 1. Microwave
photons are sent in through the left coupler in blue (RF In) and if they are resonant with the system
they can travel across to the resonator island (turquoise) and then leave on the right coupler, also
in blue (RF Out), where the signal is then measured. The measurement setup is illustrated in
Fig. 2.2. The light grey areas of the image is the Si wafer that the system is fabricated on and the
darker grey areas make up the ground plane. The light blue rectangle highlights the Josephson
junction, which in this device defines the main inductance and capacitance, working effectively as
an LC resonator as a single element. This will be further explained in Chapter 3.
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CHAPTER 2. BACKGROUND

Phase locking
Local Oscillator:

Signals are
added

Mixed phase reference signal

Mixed system
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Mixer
A   sin(ω   t) DAQLO LO

RF Probe:

RF In RF Out

A  sin(ω  t)p p

RF Drive:
A  sin(ω  t)d d

Figure 2.2: A schematic representation of how a measurement is made on the microwave resonator
considered in Ref. 1. Three RF generators are sending signals into different transmission lines. The
probe and LO signals are mixed in one branch directly without having entered the system. This
is used as a phase reference when digitally analysing the signal from the system. The probe and
drive signals are added before entering the system, and the outgoing signal is mixed with the LO
before being digitised in the DAQ.

are only capacitively coupled, which means that photons generally cannot travel through
unobstructed, unless they carry a frequency matching the eigenmode of the resonator.
Photons that do not enter the resonator are reflected. If the microwaves are sufficiently
close to the resonance frequency, they can still enter the resonator and be transmitted
through, however with a lower probability, so the transmitted signal at such a frequency
will be lower than on resonance. Or at least this is the case for a linear resonator. The
experiments were conducted on a non-linear resonator, which means that if the input
signal is twice as strong, the output signal is not necessarily twice as strong as well. As we
will see, non-linear effects need to be taken into account and then it becomes relevant what
is referred to when saying ’signal’. What is it that we actually measure for our signal? In
the measurements, a setup for heterodyne detection was used. This will be explained in a
little more detail in Sec. 4.5, but what it means is that the coherent part of the signal was
measured. This will be defined more thoroughly in the thesis, however a familiar example
of a source of coherent light would be that of a laser compared to a source of incoherent
light such as an LED. There is clearly a difference which could be seen by for instance
looking at diffraction patterns from each light source. The non-linearity of the resonator
makes it so that the coherent amplitude can in some instances be lower on resonance than
slightly off. This is due to a non-linear effect of destroying some of the coherence, unlike
a linear resonator in which all of the coherence is preserved.

What does the measurement setup look like then, and what do we need to take into account
in the theory? A simplified version is depicted in Fig. 2.2, which essentially contains all
the relevant parts to consider in the theory. There are three RF generators (RF Probe, RF
Drive and the Local Oscillator (LO)), all in the left part of the figure. They each send out
a signal, in general with different amplitudes and frequencies, into transmission lines. The
probe and the LO are phase locked, which essentially means that their internal clocks are
synchronised and they have a stable phase relation. They both send a signal to a mixer,
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CHAPTER 2. BACKGROUND

which can be thought of as ’multiplying’ the signals (more on this in Sec. 4.5). This mixed
signal will be used as a phase reference for the signal that has gone through the system.
The mixed phase reference signal is connected via a cable to a data acquisition (DAQ)
system, which will digitise the signal for processing. Now if we consider what signal is sent
into the system S, we see that the RF Probe and RF Drive signals are added together
before entering the system. Two types of measurement will be considered: one-tone and
two-tone measurements. A one-tone measurement essentially just means that the RF
Drive is turned off. The signal transmitted through the system is then sent into a mixer
together with a signal from the LO. This mixed signal is then also sent into the DAQ and
here the amplitude and phase of the component oscillating with frequency ωp is extracted
and compared to the phase from the phase reference signal. This is in order to be able to
detect phase shifts in the signal.

The described measurement setup contains important parts of what is needed to be con-
sidered in the theory, as it tells us what quantity it is that we actually measure. The way
the outgoing signal is depicted in Fig. 2.1 means that we measure the transmitted signal.

As this thesis has such a close connection to experiments, and is based on well established
theory, figures will often be in units that make sense from an experimentalist’s point
of view, rather than in unitless parameters which are often something that a theoretician
might be interested in. An example is the use of dBm as a unit. If you have not encountered
it before, it is defined as P (dBm) = 10 log10

(
P (mW)
1 mW

)
, so for instance 1 mW = 0 dBm and

100 mW = 20 dBm.
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Chapter 3

cQED

It’s the irony of fate that the kinetic energy of the inductor is the potential energy in phase
space..
- Ville F. Maisi

Circuit quantum electrodynamics (cQED or circuit QED) is the study of light-matter in-
teractions in electrical circuits and borrows a number of techniques from the field by which
the name was inspired; cavity QED, the study of interaction between light and individual
atoms [27]. In cQED electrical circuits on the size of a few millimeters, with the smallest
components the size of a few nanometers, are quantised. This means that continuous clas-
sical varibales like voltage and charge are turned into quantum operators. This is possible
due to the fact that we are able to cool down these circuits to a a temperature of a few mK
[28] such that kT ≪ ℏω where ω is the typical resonance frequency of the circuit, making
thermal fluctuations very small as well as turning some metals into superconductors. When
a metal transitions into a superconducting state, it goes through a phase transition that
changes some properties of the material. Famously, conduction without resistance is one
of these properties [29]. Although superconductivity requires BCS theory to fully describe
it [30], the tools that superconductivity provide can be understood without a full BCS
theory description. A consequence of more fundamental properties of superconductors, is
the possibility of creating a new circuit element: the Josephson junction (sometimes called
Josephson element) [11], which has become of huge importance within the field of cQED
with some of the applications already mentioned in Chapter 1.

The system that we will be interested in is know as a Transmon, a type of superconducting
charge qubit [16]. In principle its Hamiltonian is well known within the community of
superconducting qubits and the thesis will mostly be treating the Hamiltonian, so it could
just be stated here. Doing this would however give no physical insight in how we end up
with this Hamiltonian. There will therefore be some instructive introduction on how to
quantise circuits, inspired by Ref. 9, and the Josephson junction before introducing the
Transmon.

7



CHAPTER 3. CQED

3.1 Setting up the Lagrangian
In quantum mechanics we know that the dynamics of a system is described by the
Schrödinger equation. For this we need the Hamiltonian of our system, which can be
derived from the Lagrangian. In cQED, our physical system can often be represented by
a circuit diagram containing lumped and/or distributed elements of capacitors, resistors,
conductors and inductors (and Josephson junctions). Initially these circuits are consid-
ered purely classical before ’promoting’ conjugate variables to quantum operators. This
method is in fact a common way to introduce quantum mechanics from the perspective
of classical mechanics, where typically a mass is connected to a spring. Then we have the
Hamiltonian

H = p2

2m
+ 1

2mω2x2, (3.1)

where p is the momentum of the mass, m is its mass, x is the displacement of the mass from
the natural length of the spring and ω =

√
k/m. Here x and p are conjugate variables,

such that if we consider the Poisson bracket [; ], we have the relation

[x; p] = 1, (3.2)

and we can promote our conjugate variables by letting x → x̂ and p → p̂, while giving
them the commutation relation

[x̂, p̂] = iℏ, (3.3)

yielding the quantum version of the Hamiltonian for a mechanical oscillator

Ĥ = p̂2

2m
+ 1

2mω2x̂2, (3.4)

which can for instance come from a particle of mass m in a harmonic potential.

This time we did not start from the Lagrangian since it was just to provide a familiar
example, however to see how one might go about this in cQED, we will start with setting
up the Lagrangian for an LC oscillator (Fig. 3.1), as this is the typical example of a
harmonic oscillator in circuit theory, bridging the gap between the mechanical harmonic
oscillator case and the cQED equivalent. As we will see, the variables that we will want
to quantise are the charge and flux. To find the Lagrangian we use node analysis. In

LC

ϕ

V
+Q

 -Q

Figure 3.1: Circuit diagram of an LC circuit with parameter ϕ defined according to Eq. (3.5)
and charge ±Q on the capacitor plates.
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CHAPTER 3. CQED

preparation for later, instead of charge q as the analogue of a position coordinate with
flux Φ as its conjugate variable which is what is classically used, we will define our position
coordinate as

ϕ =
∫ t

t0
V (τ)dτ, (3.5)

where V (t) is the voltage at the node at time t. This is a little out of the blue for now, but
this will be more natural when we get to the CPB. Since V (t) = ϕ̇, the potential energy
stored in the capacitor with capacitance C is

Ekin = 1
2Cϕ̇2, (3.6)

which looks like a kinetic energy term in the coordinate ϕ that we have defined. One thing
to note is that ϕ is in the case of an LC oscillator still the magnetic flux Φ, which we can
see from

ϕ̇ = V = Lİ, (3.7)

where I is the current through the inductor and the last inequality is the voltage-current
relation for an inductor. This is important in order to determine the kinetic energy stored
in the inductor:

Epot = 1
2L

ϕ2, (3.8)

which now has the appearance of potential energy. Our Lagrangian is then

L = Ekin − Epot = 1
2Cϕ̇2 − 1

2L
ϕ2, (3.9)

from which we find the conjugate variable

Q = ∂L
∂ϕ̇

= Cϕ̇ = CV, (3.10)

where we see from the last equality that this corresponds to a charge. Analogous to
position and momentum as conjugate variables in a mass connected to a spring, we can
turn ϕ and Q into quantum operators with the conjugate variable commutation relation

[ϕ̂, Q̂] = iℏ. (3.11)

There is a subtlety here which is that in order to get this sign convention, we need to define
Q = −q (so this commutation relation is almost like defining the charge of the electron to
be positive). The Hamiltonian for the system is then readily obtained as

H = Qϕ̇ − L = 1
2L

ϕ2 + 1
2C

Q2, (3.12)

where we see that as expected it is the total energy stored in the capacitor and inductor.
Proceeding with the analogy of position and momentum, the Hamiltonian can be written
as an operator by turning the flux and charge into quantum operators. Furthermore, you
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can see a close resemblance to the Hamiltonian of a harmonic oscillator. This should
come to no surprise, as the LC circuit is a very common example of such a system. The
Hamiltonian can then be written in two ways:

Ĥ = 1
2L

ϕ̂2 + 1
2C

Q̂2 = ℏΩ
(

â†â + 1
2

)
, (3.13)

where â, â† are step operators which is exactly analogous to the mechanical harmonic
oscillator and Ω =

√
1/LC. This analogy will be made again later with the Transmon,

and the likeness will then also be considered in a slightly more detailed manner.

Here a specific example has been used, but the approach is quite general. Electronic
components like capacitors and inductors can be made very small, and by making them
superconducting by cooling them to very low temperatures, quantum effects become rel-
evant. This also allows for close to ideal circuits of purely reactive elements (like the LC

circuit). Then the general method of node analysis and quantising the circuit can be used
to derive quantum Hamiltonians for a system of interest.

3.2 Josephson relations and the Josephson
junction

The Josephson junction that has already been mentioned a couple of times, consists of two
superconducting leads with some ’weak link’. This weak link typically consists of a resistive
material as a tunnel barrier, however can also be a normal conducting metal or entirely
superconducting with a much thinner segment [29]. Cooper pairs are essentially paired up
electrons, such that they become composite bosons. Cooper pairs in low temperature su-
perconductors can be phenomenologically understood as electrons of opposite spin pairing
up at low temperatures due to one electron attracting positively charged ions in a lattice,
such that they in turn attract a new electron. Since Cooper pairs are composite bosons,
several of them can occupy the same state. The Cooper pairs can then condense into the
same ground state, forming an energy gap of 2∆ between the condensed state and the
quasiparticle states. Due to this, the condensate has a macroscopic coherent wavefunction
with one specific phase, which we will soon encounter, applying for all particles. The
energy gap of 2∆ is known as the superconducting gap, and is the energy needed to break
up a Cooper pair [29]. There is a critical temperature associated with superconducting
materials, indicating at which temperature they become superconducting. Aluminium for
instance has a critical temperature of about 1.2 K and a superconducting gap of about
∆ = 200 µeV (depending on the thickness of the metal) [31]. A good reference point to
have is also the energy relation between frequency and temperature, where 1 K corresponds
to a frequency of about 21 GHz. This shows the motivation for using microwave photons
in superconducting resonators, where typical ranges are in the GHz regime as we want to
be in a regime where kBT ≪ ℏω ≪ 2∆ in order to avoid breaking the Cooper pairs and

10
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also avoid thermal fluctuations to the resonator mode.

I will start here by naming the two Josephson relations for tunnel junctions [11]:
I(t) = Ic sin(φ(t))

∂φ
∂t = 2eV (t)

ℏ ,
(3.14)

where φ is interpreted as the phase difference between the Cooper pair wave equations
of the superconductors separated by the junction (the phase mentioned in the previous
paragraph), Ic is a quantity known as the ’critical current’, the current at which the
junction becomes normal conducting instead of superconducting and V (t) and I(t) are
the voltage across and current through the junction. Note here that φ is proportional to
ϕ defined in Eq. (3.5). It can therefore be interpreted as some flux. If we differentiate the
first Josephson relation with respect to t, we see that we get

∂I(t)
∂t

= Ic cos(φ(t))∂φ

∂t
= 2eIc cos(φ(t))

ℏ
V (t), (3.15)

which we can interpret as an inductance by

V (t) = LJ

cos(φ)
dI(t)

dt
⇒ LJ = ℏ

2eIc
. (3.16)

Following this interpretation, we can find the energy EM stored in the magnetic field at
time t from some time t0 as

EM =
∫ t

t0
V (τ)I(τ)dτ =

∫ φ(t)

φ(t0)
Ic sin(φ) ℏ

2e
dφ

= −Icℏ
2e

cos(φ(t)) + Icℏ
2e

cos(φ(t0))

= −EJ cos(φ(t)) + const,

(3.17)

where the Josephson energy (sometimes referred to as the Josephson coupling) EJ has
been defined as LJI2

c , which in these terms is very reminiscent of the energy stored in an
inductor.

We see that the Josephson energy is dependent on the critical current Ic, but have not
yet said anything about how this is determined. In case of a tunnel junction, for instance
when there is an oxide layer between the superconducting leads, the Ambegaokar-Baratoff
relation [32]

Ic = π

2e

∆
RN

tanh
( ∆

2kBT

)
(3.18)

becomes very useful, where RN is the normal state resistance over the junction. Also,
since we are at very low temperatures, tanh

(
∆

2kBT

)
≈ 1. With this formula we can now

determine the Josephson energy EJ of a single junction in the case of a tunnel junction
by measuring its normal state resistance. We are now ready to consider the Cooper pair
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box and derive its Hamiltonian.

3.3 Cooper pair box
In order to derive a Hamiltonian for the Cooper pair box, we need to know its equivalent
circuit diagram. One way of representing it is shown in Fig. 3.2, where also the circuit
element representation for both an ideal and a non-ideal Josephson junction are shown. In
Fig. 3.2b, the non-ideal Josephson junction is also represented as a parallel LCR circuit,
where the resistance RJ can be used to represent internal losses. It is important not
to confuse this with the RCSJ (resistively capacitance shunted junction) model, which
describes the junction at some bias voltage [29]. The resistance considered in that case is
the normal state resistance, acting as a resistor for current flowing through the junction.
When deriving the system Hamiltonian, losses from the junction will be neglected (RJ =
0) and internal losses will be added in later sections when the system is coupled to an
environment, so the Josephson junction will be considered to have just a capacitance CJ

and a non-linear inductance LJ from the Josephson relations.

If we now initially consider the variable ϕ (as we know from the LC oscillator that this
can be thought of as the familiar flux) at the node indicated in Fig. 3.2c by a black dot, we
can find the potential energy of the system by relating it to its adjacent nodes, receiving
the energy stored in the capacitors as

U = 1
2CJ ϕ̇2 + 1

2Cg(ϕ̇ − Vg)2, (3.19)

and the energy stored by the Josephson junction is as we have seen (ignoring constant
terms)

T = −EJ cos
(2e

ℏ
ϕ

)
, (3.20)

Ideal Josephson junc�on Non-ideal Josephson junc�on Cooper pair box

a b c

LJ

LJ

L  ,J

CJ
CJ

Cg

Vg
RJ

Figure 3.2: a. The circuit diagram symbol representing an ideal Josephson junction satisfying
the Josephson relations (3.14). b. A non-ideal Josephson junction (left) can be equivalently
represented as a capacitance, ideal Josephson junction and resistance in parallel. The resistance
mainly acts as a damping/dissipative element and will be assumed negligible. Note that a non-
ideal Josephson junction is very reminiscent of an LC oscillator as an alone element. c. A circuit
diagram of the Cooper pair box. A dot is placed in the top left corner as the node from which the
circuit is quantised. It is this ’island’ that constitutes the Cooper pair box.
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where the proportionality between φ and ϕ has been inserted. This yields the Lagrangian

L = U − T = 1
2CJ ϕ̇2 + 1

2Cg(ϕ̇ − Vg)2 + EJ cos
(2e

ℏ
ϕ

)
, (3.21)

from which we can find the conjugate variable

QI = ∂L
∂ϕ̇

= CJ ϕ̇ + Cg(ϕ̇ − Vg). (3.22)

Using this, we can express ϕ̇ as
ϕ̇ = QI + CgVg

CJ + Cg
, (3.23)

allowing us to express the Hamiltonian as

H = QI ϕ̇ − L

= Q2
I + QICgVg

CJ + Cg
− 1

2(CJ + Cg)(QI + CgVg)2 + CgVg(QI + CgVg)
CJ + Cg

− 1
2CgV 2

g − EJ cos
(2e

ℏ
ϕ

)
= 1

2CΣ
(QI + CgVg)2 − EJ cos

(2e

ℏ
ϕ

)
+ const.

= 4EC(n − ng)2 − EJ cos φ (+ const.),

(3.24)

where some definitions have been made in order to arrive at the form most commonly
used. The defined variables are QI ≡ 2en, where n is the number of excess Cooper pairs
on the island, ng ≡ −CgVg

2e is the charge bias which is considered as a continuous variable
and in practice is affected both by an applied gate voltage Vg, but also random charge
noise, and furthermore the charging energy EC ≡ e2

2CΣ
, where CΣ = CJ + Cg, has been

defined which is the energy associated with transferring a single electron. The sign change
to ng is once again a result of sign convention for out conjugate variable QI in order to
arrive at the correct sign for the commutation relation. Also, we now went back to the
variable φ in preparation for the quantisation.

The variables we wish to quantise are the number of Cooper pairs n and the Josephson
phase φ, similarly to how we did with the LC oscillator. They have the commutation
relation

[φ̂, n̂] =
[2e

ℏ
ϕ̂,

1
2e

Q̂

]
= i, (3.25)

where the second equality is just to show the close connection to our previous commutator
of Eq. 3.11, however one should be careful when using this as only periodic functions of
φ have an unambiguous interpretation [33]. This will become slightly more clear when
looking at the base kets, as we will see that they are periodic, and this periodicity stems
from the fact that n is a discrete variable. We finally have the Cooper pair box Hamiltonian

Ĥ = 4EC(n̂ − ng)2 − EJ cos φ̂. (3.26)
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Figure 3.3: The three lowest energy levels of a Cooper pair box as a function of the charge bias ng

for the four values EJ/EC = 1, 5, 10, 50. The energy levels are normalised such that the difference
in energy between the ground state and the first excited state at ng = 0.5 is unity, and the ground
state is 0 at its lowest point. Figure from Ref. 16.

Now that we have the Hamiltonian and quantum operators n̂, φ̂, it is worth considering
their eigenbases, how they act on them and how to transform between them. First of all
we remind ourselves that n can only take integer values, as it represents the number of
Cooper pairs tunneling which has to be an integer number. If |n⟩ is the eigenket for n̂

with relation n̂|n⟩ = n|n⟩, then we can more generally write

n̂ =
∞∑

n=−∞
= |n⟩n⟨n|. (3.27)

Now in analogy with transferring between position and momentum, we have the relation
that

|φ⟩ =
∞∑

n=−∞
einφ|n⟩, (3.28)

where instead of an integral (as with position and momentum) we have a sum since n

is discrete. Note that all shifts of φ by 2π leave |φ⟩ unaffected, so it is periodic. In the
derivation it was originally not specified that φ could only take on values in the range
φ ∈ [0, 2π). The reason this did not hurt us is that it only appeared inside a cosine, which
effectively takes care of this for us. It also made the analogy to the flux in the case of the
LC oscillator closer at hand.

The transfer back to the |n⟩-basis is done using the relation

|n⟩ = 1
2π

∫ 2π

0
e−inφ|φ⟩dφ. (3.29)
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We already know how to express our Cooper pair box Hamiltonian in the φ-representation:

Ĥ = 4EC

(
−i

∂

∂φ
− ng

)2
− EJ cos(φ̂), (3.30)

(see that n̂ turns into −i ∂
∂φ similarly to how p̂ turns into −iℏ ∂

∂x) but what does it look
like in the |n⟩-basis representation? In order to find this, we need to know the matrix
elements of cos φ̂ in this representation. We find them to be

⟨m| cos φ̂|n⟩ = ⟨m| 1
2π

∫ 2π

0
cos φ̂|φ⟩⟨φ|n⟩dφ

= ⟨m|12
1

2π

∫ 2π

0
(e−iφ + e−iφ)|φ⟩einφdφ

= 1
2

(
⟨m| 1

2π

∫ 2π

0
(e−i(n−1)φ + e−i(n+1)φ)|φ⟩dφ

)
= 1

2 (⟨m|n − 1⟩ + ⟨m, |n + 1⟩)

= 1
2(δm,n−1 + δm,n+1),

(3.31)

where δm,n is the Kronecker delta function. From this we can deduce that

cos φ̂ = 1
2
∑

n

(|n − 1⟩⟨n| + |n + 1⟩⟨n|) , (3.32)

in the n representation, from which we can see that indeed the effect of cos φ̂ is that
Cooper pairs tunnel through the junction as the operator changes the number of Cooper
pairs on each side of the junction. From this we have now recovered our Hamiltonian in
the number representation

Ĥ = 4EC(n̂ − ng)2 − EJ

2
∑

n

(|n − 1⟩⟨n| + |n + 1⟩⟨n|) . (3.33)

In Fig. 3.3 the three lowest energy levels are shown as a function of ng for different values
of EJ/EC , showing that when this quantity is higher, the energy level spacing is less
sensitive to fluctuations in the charge noise, but at the cost of reduced anharmonicity [16].
The regime of EJ ≫ EC is what will be explored from now on in the thesis and is what is
known as the Transmon regime.

3.4 The Transmon regime
Even though the results of the Transmon regime could be taken from the original paper
of Ref. 16, I will write the derivation how I did it myself. This way it will hopefully be
more clear what is lost in the approximations and give a view of what we are doing to
arrive at the final Hamiltonian. In the case when the Josephson energy is much larger than
the charging energy (EJ ≫ EC), the CPB Hamiltonian can be expanded in φ̂ to quartic
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order, and be considered as a harmonic oscillator with some anharmonicity. This can be
understood by considering φ̂ as the position coordinate in the analogy of a particle, which
then translates into −EJ cos φ̂ being potential energy and the EC term then behaves like a
kinetic energy term. We then have a low kinetic energy particle in a strong cosine-shaped
potential, which close to the origin looks like a quadratic potential. This is the motivation
for the expansion of φ̂, which we will later see is valid in the regime EJ ≫ EC . Since
EC is considered to be much lower than EJ , the simplification of ignoring ng is made
in the derivation as well, which in Fig. 3.3 you can see that not much is lost with this
approximation. What we end up with is

Ĥ ≈ 4EC n̂2 − EJ

(
1 − φ̂2

2 + φ̂4

24

)
, (3.34)

so we have a harmonic oscillator with some constant offset −EJ (which will not contribute
to any dynamics), as well as a term of quartic order in φ̂. The next step is to find step
operators â, â†, such that we can write

Ĥ ′ = 4EC n̂2 + EJ

2 φ̂2 = ℏω

(
â†â + 1

2

)
, (3.35)

where
[â, â†] = 1, (3.36)

all in analogy with usual harmonic oscillator systems. By these requirements and compar-
ing with the well studied case of a (quantum) mechanical harmonic oscillator (the quantum
mechanical version of a mass connected to a spring):

ĤHO = p̂2

2m
+ 1

2mω2x̂2, (3.37)

which has the step operators

âHO =
√

mω

2ℏ

(
x̂ + i

p̂

mω

)
(3.38)

â†
HO =

√
mω

2ℏ

(
x̂ − i

p̂

mω

)
, (3.39)

one can be inspired to make the ansatz

â = A(φ̂ + iBn̂). (3.40)

Then by comparison of terms with the mechanical harmonic oscillator, or by imposing the
requirements (3.35),(3.36), one finds that the operators â, â† are (with a certain choice of
phase)

â =
(

EJ

32EC

)(1/4)
(

φ̂ + i

√
8EC

EJ
n̂

)
(3.41)
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â† =
(

EJ

32EC

)(1/4)
(

φ̂ − i

√
8EC

EJ
n̂

)
, (3.42)

where ℏω =
√

8ECEJ . The transformation back to the operators n̂, φ̂ then have the form

φ̂ =
(8EC

EJ

)(1/4) 1√
2

(â + â†) (3.43)

n̂ =
(

EJ

8EC

)(1/4) −i√
2

(â − â†), (3.44)

where we also see that the expansion is valid as an approximation for cos φ̂ when EJ ≫ EC .

We now have our Hamiltonian in the form

Ĥ = −EJ +
√

8ECEJ

(
â†â + 1

2

)
− EJ

24 φ̂4 = Ĥ0 − EC

12 (â + â†)4, (3.45)

where Ĥ0 = −EJ +
√

8ECEJ

(
â†â + 1

2

)
is the harmonic part. The term (â + â†)4 can be

expanded and ordered in terms that couple the state |m⟩ with |m⟩,
|m ± 2⟩, |m ± 4⟩, where |m⟩ is a Fock state s.t â†â|m⟩ = m|m⟩, not an eigenstate of the n̂

operator:

|m⟩ ↔ |m + 4⟩ : â†4

|m⟩ ↔ |m + 2⟩ : â†2(4â†â + 6)

|m⟩ ↔ |m⟩ : 6(â†â)2 + 6â†â + 3

|m⟩ ↔ |m − 2⟩ : â2(4â†â − 2)

|m⟩ ↔ |m − 4⟩ : â4.

(3.46)

If we do first order perturbation theory, where V̂ = −EC/12(â + â†)4, we can find how
much the eigenstates change due to the perturbation. Let |m⟩ = |m0⟩ + |m1⟩, where
|m0⟩ are the eigenstates of the unperturbed Hamiltonian Ĥ0 and |m1⟩ is the first order
correction. Then, since the eigenenergies of the harmonic oscillator are non-degenerate,
|m1⟩ is given by

|m1⟩ =
∑

n,n ̸=m

⟨n0|V̂ |m0⟩
E0

m − E0
n

|n0⟩. (3.47)
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Using this relation and the above results we find

|m1⟩ = −EC

12

(
⟨m0 + 4|(â†)4|m0⟩

(m − (m + 4))
√

8ECEJ
|m0 + 4⟩ + ⟨m0 + 2|â†2(4â†â + 6)|m0⟩

(m − (m + 2))
√

8ECEJ
|m0 + 2⟩

+ ⟨m0 − 2|â2(4â†â − 2)|m0⟩
(m − (m − 2))

√
8ECEJ

|m0 − 2⟩ + ⟨m0 − 4|â4|m0⟩
(m − (m − 4))

√
8ECEJ

|m0 − 4⟩
)

= 1
12

√
EC

8EJ

(√
(m + 1)(m + 2)(m + 3)(m + 4)

4 |m0 + 4⟩

+
√

(m + 1)(m + 2)(4m + 6)
2 |m0 + 2⟩ −

√
m(m − 1)(4m − 2)

2 |m0 − 2⟩

−
√

m(m − 1)(m − 2)(m − 3)
4 |m0 − 4⟩

)
,

(3.48)

so for small m, these corrections will be small. Therefore these corrections to the states
will be neglected. Then we make the rotating wave approximation (RWA), meaning that
we only keep terms which are energy conserving in terms of the creation and annihilation
operators (the |m⟩ ↔ |m⟩ terms). After this approximation we end up with

Ĥ = −EJ +
√

8ECEJ

(
â†â + 1

2

)
− EC

4
(
2(â†â)2 + 2â†â + 1

)
, (3.49)

where the term proportional to (â†â)2/2 is known as a Kerr non-linearity. The eigenener-
gies for this perturbation approach is

Em = −EJ +
√

8ECEJ

(
m + 1

2

)
− EC

4 (2m2 + 2m + 1). (3.50)

Note that these eigenenergies are the ones that are received by a lowest order Rayleigh-
Schrödinger perturbation series where one has instead defined Ĥ0 as in equation (3.49)
and the other terms from equation (3.45) as the potential V̂ . In this sense, what we are
doing can be seen as making a ”0:th” order expansion of the eigenenergies and eigenstates,
however it is perhaps more natural to see this as a RWA.

The states |m⟩ can now be interpreted as the number of photons stored inside the Trans-
mon, similarly to the number state in CPW resonators corresponing to the number of
photons stored inside them. Thus the operators â, â† correspond to removing or adding
a photon in the resonator respectively. One more thing that should be highlighted now
since it will be used later, is the anharmonicity of the energy levels. Let Em,n = Em − En,
then we find that Em+2,m+1 −Em+1,m = −EC [16] i.e. the charging energy EC determines
the anharmonicity. In other words the photon energy required to excite the state |m + 1⟩
is lowered by EC as compared to exciting the state |m⟩.
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3.5 Coherent states
Before moving on to connecting the system to an environment in order to model mea-
surements, a short section about coherent states is appropriate. It serves both as an
introduction to what it refers to and to make a distinction between what is meant with
coherence or a coherent state in the thesis. There could otherwise be some confusion
with what is typically meant when calling a state ’coherent’. Typically what you learn in
textbooks as an example of a coherent state is a state that is in a superposition of states
[34], for instance a wavefunction |Ψ⟩ that is in a superposition of spin up | ↑ ⟩ and spin
down | ↓ ⟩

|Ψ⟩ = 1√
2

(
| ↑ ⟩ + | ↓ ⟩

)
, (3.51)

however this is not what we will refer to in the thesis as a coherent state. A coherent state
here refers to the quantised electromagnetic field (sometimes referred to as a Glauber
state) and was extensively treated by R. Glauber (see Ref. 35). It is an eigenstate of the
annihilation operator â, such that

â|α⟩ = α|α⟩, (3.52)

where |α⟩ is the coherent state of a single oscillator mode relating to â. It is such a state
that is considered as coherent within quantum optics. When quantising electromagnetic
fields, the state |0⟩ is the vacuum state and the operators â†, â, the creation and annihi-
lation operators connected to some mode, are fundamental building blocks. Acting with
these operators directly on the vacuum state will not create a coherent state, however
there exists an operator known as a displacement operator D̂α, such that

|α⟩ = D̂α|0⟩, (3.53)

so it turns or ’displaces’ the vacuum state into a coherent state. It turns out that the
operator that achieves this is

D̂α = e− 1
2 |α|2eαâ†

e−α∗â. (3.54)

A coherent state is in quantum optics a state that is ”the most classical”, since photon
fields generated by arbitrary distributions of classical currents have a simple description
in terms of coherent states [35]. If we consider the Schrödinger picture, the coherent state
evolves as

|α(t)⟩ = |e−iΩtα(0)⟩ = e− 1
2 |α|2eαe−iΩtâ† |0⟩, (3.55)

where Ω is the (angular) frequency of the oscillator mode relating to â. You see from
this that the real and imaginary parts of α oscillate sinusoidally in time, and α is then
considered to be the classical amplitude of the motion [9]. This classical amplitude could
for instance be a voltage amplitude in the case of a microwave RF drive.
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Another property of the coherent state is that it shows that the occupation number n of
the modes (photons in the case of light) is given by a Poisson distribution [35]:

Pn = |⟨n|α⟩|2 = |α|2n

n! e−|α|2 , (3.56)

where we see that the mean photon number is |α|2.

If the coherent amplitude α is large |α| ≫ 1, then quantum fluctuations can often be
ignored as they become negligibly small [27], simplifying some calculations. For the system
that we will consider, photon numbers inside the resonator will be of order 1, however we
will consider continuous weak measurements, meaning that if we increase the integration
time, it effectively acts as increasing |α|. If the integration time is long enough then we
can reach this limit where the quantum fluctuations will be negligible in our measurement.

This section has kept a very complicated subject very dense. For more details I refer
to chapter 2 in Ref. 27, or for a more formal mathematical treatment Ref. 36. The main
takeaway from this section should be that a Glauber state can be viewed as state that is as
close to classical as possible in some sense and it is this state we mean when talking about
a coherent state. We will consider voltage signals from our RF drives as these coherent
states.

3.6 Semi-infinite transmission lines as baths
In preparation for Chapter 4, where we will look into connecting our system to a transmis-
sion line, we want to have a quantum description of it. Taking inspiration from Ref. 37,
the picture that we will start from is depicted in Fig. 3.4, where the transmission line
initially is of finite length l terminated at x = 0 and x = l by capacitors on either side.
Furthermore it is segmented into inductors and capacitors with inductance ℓ and capaci-
tance c respectively, each node separated by δx with N nodes such that Nδx = l. With
this we implicitly assume that the transmission line is homogeneous. With flux and charge
defined as in Sec. 3.1, the energies associated to each capacitance and inductance at node
n is Q2

n/2c and (ϕn+1 − ϕn)2/2ℓ. Skipping some steps that we have already seen and
writing the classical Hamiltonian for this system we have

H =
N−1∑
n=0

( 1
2c

Q2
n + 1

2ℓ
(ϕn+1 − ϕn)2

)
. (3.57)

We want to take this to the continuum limit (δx → 0), which we can do by defining
c = δxc0, ℓ = δxℓ0, where c0, ℓ0 are the capacitance and inductance per unit length
respectively, as well as defining the flux field as ϕ(xn) = ϕn and charge density field as
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C

cx = 0
δx

x = l

lк Cϕ кn ϕn+1

Figure 3.4: A transmission line of length l segmented into a series of N lumped elements such
that l = Nδx that is terminated at the ends by some coupling capacitors. The capacitors have
capacitance c and the inductors inductance ℓ. ϕn represents the flux at node n. For finite l, this
schematic can represent for instance a CPW resonator.

Q(xn) = Qn/δx. Now taking the limit as we keep l = Nδx constant yields

H =
∫ l

0

1
2c0

Q(x)2 + 1
2l0

(
∂ϕ(x)

∂x

)2
dx, (3.58)

where so far the time dependence of Q and ϕ have not been explicitly written out for
brevity. Again, the charge Q(x, t) = c0∂tϕ(x, t) is the canonical momentum and ϕ(x, t) =∫ t

−∞ V (x, t′) dt′ now is continuous and dependent on x. Hamilton’s equations (alternatively
also the Euler-Lagrange equation) yield the wave equation for the propagation along the
transmission line

v2
0∂2

xϕ − ∂2
t ϕ = 0, (3.59)

where the mode wave velocity v2
0 = 1/c0ℓ0 has been defined, i.e. the speed with which the

modes propagate in the transmission line. This equation is separable and can be solved
in terms of normal modes as

ϕ(x, t) =
∞∑

m=0
um(x)ϕm(t), (3.60)

where ϕm(t) is not to be confused with ϕn and has the relation ϕ̈m(t) = −ω2
mϕm(t).

Furthermore
um(x) = Am cos(kmx + αm), (3.61)

where Am is the amplitude of the mode and αm as well as km = ωm/v0 are set by the
boundary conditions at x = 0 and x = l. More specifically the boundary conditions for
this case is that there is no current at those points, giving the condition

− 1
ℓ0

∂ϕ(x, t)
∂x

∣∣∣∣
x=0,l

= 0, (3.62)

which tells us that αm = 0 and km = mπ/l becomes discrete. Choosing the normalisation
of um (by choosing the constant Am) such that

1
l

∫ l

0
um(x)um′(x) dx = δx,x′ , (3.63)
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giving Am =
√

2. With this work done, we can rewrite our Hamiltonian using our normal
mode decomposition as

H =
∞∑

m=0

(
Q2

m

2Cr
+ 1

2Crω2
mϕ2

m

)
, (3.64)

where Cr = lc0 is the total capacitance of the transmission line. Now the charge conjugate
to ϕm is Qm = Crϕ̇m. Here we can see that we have a sum of harmonic oscillators which
we can promote to quantum operators similarly to how it was done in Sec. 3.1. We can
then write our Hamiltonian as a sum of harmonic oscillators

Ĥ =
∞∑

m=0
ℏωmâ†

mâm, (3.65)

where
[âm, â†

n] = δm,n. (3.66)

This Hamiltonian in the form of Eq. 3.65 will be used as the Hamiltonian in Chapter 4
representing a semi-infinite transmission line, then in the language of a bath connected
to our system, containing bosonic modes. Some comments should also be made here. In
no step did we let l → ∞, so for any finite l what we have modelled is a transmission
line resonator, for instance a CPW resonator. The coupling capacitances Cκ have however
been ignored, which would enter as coupling terms in our Hamiltonian. Another way of
viewing it is that Cκ is considered as 0. Taking l → ∞ should be done carefully. If
we consider our Hamiltonian (Eq. (3.65)) we see that formally it turns the bath into a
continuum of frequencies. For more details on this limit, see e.g. Ref. 37.
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Chapter 4

Input-Output Theory

This looks kind of murky... We’ll have to think more about this, yes.
- Peter Samuelsson

So far everything we have considered is an isolated system, describing its quantum states
and properties. Now we want to connect this system to some measurement setup, so that
we can do measurements on it. This is the motivation for this section, as quantum input-
output theory is a theory describing how information about a system can be extracted
from sending in a signal to the system and then measuring the signal coming out. This
is done by describing interactions between an environment and a system; how they affect
each other. The idea is that if we want to get information out from a system, we must
allow for information to go from the system to the environment. By doing this, we also
must allow for the environment to let noise into the system, but it also allows us to affect
the system from the outside in a more deliberate way. We will consider a system which
will be referred to as a ’cavity’ in analog with quantum optics. In quantum optics, one
considers a cavity with weakly transparent mirrors such that the cavity can let out photons
trapped in the cavity for measurement, at the expense of letting in noise from photons
in the environment. This is similar to the case which will be studied, where microwave
photons are residing in a ’bath’ that is connected to the cavity. The cavity is considered to
have high ’quality factor’ Q, a measure of how many times a photon oscillates on average
inside the cavity before escaping. This is the same as saying that the system is weakly
coupled to the environment, or in other words well isolated. The total Hamiltonian of
the system can then be divided up into three parts since we can think of the system as
separated from the environment, in contrast to if we would have strong coupling. The
Hamiltonian with its three parts is

Ĥ = ĤS + Ĥint + Ĥbath, (4.1)

where ĤS is the cavity (system) Hamiltonian, Ĥint is the interaction Hamiltonian between
the system and the bath and Ĥbath is the bath Hamiltonian which in our case comes from
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connecting the system to a semi-infinite transmission line. More formally what is done is
that we consider the two spaces HS and HE as separate Hilbert spaces, where HS is the
Hilbert space of the system and HE is the Hilbert space of the environment. Then Ĥ acts
on HS ⊗ HE , where ĤS acts on HS ⊗ 1, Ĥbath acts on 1 ⊗ HE and Ĥint acts on HS ⊗ HE .

We will see that this separation with a few assumptions allows us to make measurements
of the system by sending in photons via the bath, and then measure how the bath is
affected by the interaction with the system.

4.1 Coupling semi-infinite transmission lines to a
system

We know from electronics that a semi-infinite transmission line can act as a dissipative
element, even if it only consists of reactive elements (has no resistance). This is because
a signal can be transmitted from a system into the transmission line on one end and then
never get reflected back, so that energy is dissipated from the system. We will see that
we have an analogous situation here, where we will be considering modes in the bath that
we will be interpreting as ingoing or outgoing. These travelling waves will be considered
as independent everywhere except where the transmission lines terminate at the system,
where a relation will be derived to relate the ingoing and outgoing modes to each other and
the system. This section and the next will mostly follow the derivation made in Appendix
E from Ref. 38, however there are other standard references for this, for instance Refs. 27,
39, 40 and 41. The results from Sec. 4.3 can be found in these, however I have connected
the gap a little bit. Later I found that this is also done in Ref. 42.

We will consider the case where we have a coherent drive connected to the system Hamil-
tonian. The bath Hamiltonian, motivated by the derivation in Sec. 3.6, will be assumed
to be of form

Ĥbath =
∑

q

ℏωq b̂†
q b̂q, (4.2)

where q labels the quantum numbers of the bath, which are assumed to be independent
harmonic oscillator (or bosonic) modes, obeying

[b̂q, b̂†
q′ ] = δqq′ . (4.3)

This is reasonable, as we can think of these harmonic modes as photons residing in the
bath. Each photon has a certain frequency ωq, and the number of photons with a certain
frequency are governed by the bosonic step operators b̂q, b̂†

q connected to that particular
frequency. Because the bath terminates at the system (semi-infinite instead of infinite),
there is no translational invariance and we do not have running waves, but standing.
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The coupling Hamiltonian between the two systems is of the form

Ĥint = −iℏ
∑

q

(â† − â)(fq b̂q + f∗
q b̂†

q), (4.4)

where fq is the coupling strength between the bath and the system which in general can be
dependent on the frequency ωq. This term you can get from coupling the voltage operator
of the transmission line to the number operator of the CPB for instance. Note that the
form of it is a gauge choice, for instance with a different gauge choice the number operator
is proportional to â + â† instead.

For the interaction term, we make the RWA which means that terms that are rotating at
high frequency in the interaction representation are neglected, such as âb̂q. These will have
a much smaller effect on the dynamics of the system. Another way of viewing it, which is
perhaps more intuitive, is that we keep the terms that conserve the photon number. We
then end up with

Ĥint = −iℏ
∑

q

(
fqâ†b̂q − f∗

q b̂†
qâ
)
. (4.5)

The system Hamiltonian can be assumed more general when only one degree of freedom
is considered, for which the bosonic relation will still hold:

[â, â†] = 1. (4.6)

The derivation of the expressions will be kept as general as possible. However, assuming
that the system is a harmonic oscillator can in some cases be used to carry out further
calculations. This will be considered in Sec. 4.2. In the case of an empty cavity, this can be
assumed to hold for the lowest mode. The operators will be considered in the Heisenberg
picture, so they have some time dependence and the equation of motion (EoM) is for a
general operator Â given by

d
dt

Â = i

ℏ
[Ĥ, Â]. (4.7)

Using this we find
˙̂
bq = i

ℏ
[Ĥ, b̂q] = −iωq b̂q + f∗

q â, (4.8)

which is the EoM for the drive modes. The first term is the same as the EoM for a harmonic
oscillator, while the second term acts like a drive or force connected to the harmonic
oscillator. The system is linear and can be solved exactly by integration. Starting from a
time t0 far into the past long before any wavepacket going towards the cavity has reached
it, we have the solution

b̂q(t) = e−iωq(t−t0)b̂q(t0) +
∫ t

t0
e−iωq(t−τ)f∗

q â(τ) dτ. (4.9)

The first term is just the time evolution of the free bath, while the second term governs
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the waves absorbed and radiated by the cavity from and into the bath respectively. We
can also find the EoM of the cavity:

˙̂a = i

ℏ
[HS , â] −

∑
q

fq b̂q + i

ℏ
[Ĥbath, â]︸ ︷︷ ︸

=0

. (4.10)

We can insert Eq. (4.9) into the last term yielding
∑

q

fq b̂q =
∑

q

fqe−iωq(t−t0)b̂q(t0)

+
∑

q

|fq|2
∫ t

t0
e−i(ωq−ωr)(t−τ){e+iωr(τ−t)â(τ)} dτ.

(4.11)

The last term in the curly brackets is a slowly varying function of τ . The decay rate
between two states where the difference in energy is E = ℏωr is given by a version of the
Fermi Golden Rule [34]:

κ(ωr) = 2π
∑

q

|fq|2δ(ωr − ωq). (4.12)

In order to be able to simplify our expression in Eq. (4.11), we note that
∫ +∞

−∞

κ(ωr + ν)
2π

e−iν(t−τ) dν =
∫ +∞

−∞

∑
q

|fq|2δ
(
ν − (ωq − ωr)

)
e−iν(t−τ) dν

=
∑

q

|f |2qe−i(ωq−ωr)(t−τ).
(4.13)

To proceed further, we make the Markov approximation, which means that κ(ν) = κ is
considered to be constant over the range of frequencies relevant to the cavity. With this
assumption, we have ∫ +∞

−∞

κ

2π
e−iν(t−τ) dν = κδ(t − τ). (4.14)

Therefore, we make the approximation

∑
q

|fq|2e−i(ωq−ωr)(t−τ) = κδ(t − τ). (4.15)

One final relation that will be used is∫ x0

−∞
δ(x − x0) dx = 1

2 , (4.16)

which if we insert all of these results back into Eq. (4.11) yields

˙̂a = i

ℏ
[ĤS , â] − κ

2 â −
∑

q

fqe−iωq(t−t0)b̂q(t0). (4.17)

The second term in Eq. (4.10) which had a quite complicated expression before, has under
the approximations become a simple damping term in the EoM. For further simplification
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and in the spirit of the Markov approximation, we consider f =
√

|fq|2 to be constant
over the bath modes q relevant to the interaction with the cavity. Defining the density of
states, treated as a constant, as

ρ =
∑

q

δ(ωr − ωq), (4.18)

we can write the Golden Rule rate from Eq. (4.12) as

κ = 2πf2ρ, (4.19)

and this allows us to define the input mode

b̂in(t) ≡ 1√
2πρ

∑
q

e−iωq(t−t0)b̂q(t0). (4.20)

The input mode evolves as though no cavity was present until it arrives at the system and
acts as a drive. Since the evolution of the mode evolves long before it interacts with the
system, it is interpreted as an input; it evolves from a time t0, where it does not interact
with the cavity up until time t, when it drives it.

Before proceeding, a distinction should be made between the rates κ in Eq. (4.17) and
Eq. (4.18). So far, these have been considered to be the same, as we have assumed that the
modes decaying in the cavity end up in the bath. A more general and physical assumption
is to allow for some internal losses, which means that there is an environment outside of
the transmission line where the modes can end up. With this additional way of relaxation
of the cavity, we can denote the rate κc as the decay rate from the cavity to the bath and
κi as internal losses, the decay rate to the outside environment. We also for simplicity
re-define κ ≡ κc + κi. Then we end up with the total equation of motion

˙̂a = i

ℏ
[ĤS , â] − κ

2 â −
√

κcb̂in(t). (4.21)

Formally, what one does to arrive at this is to add another bath connected to the system
(similarly as to how it is done in section 4.3). One then needs to consider the effect that
the additional bath has on the system. Since we consider the case kT ≪ ℏω, we say
that the thermal fluctuations from the environment do not affect the system. We also
ignore vacuum fluctuations, as the cases we will consider from experiments is doing many
weak measurements, which will average out the vacuum fluctuations. The amplifiers also
provide more noise than vacuum fluctuations in the experiments. Therefore, the input
term from the environment (”loss” bath) will be considered as 0, and the output term is
not something that can be measured directly, so this will also be ignored.

We now want to consider the outgoing modes from the system residing in the bath. For
these we have the contrary scenario; we assume that we measure them at a time t1 long
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PHYP10: Advanced Project in Physics

Project Plan for PHYP10
Student: Samuel Andersson

Examiner: Ville Maisi
Autumn 2023, Lund University

The outline of the project is to perform experiments and analyse a superconducting microwave
resonator consisting of only a single Josephson junction, (or rather a single SQUID working effec-
tively as a single Josephson junction). It was shown during the summer project in 2023 that such
a device has a very non-linear behaviour; the resonance frequency differs already for the second
photon stored in the resonator. It was also shown that due to this, the device can be used as an
on-off resonator, since the resonance peak for the second photon is only clearly visible if the first
photon is already in the resonator. The non-linear properties of the device leads to new interesting
concepts and opportunities to explore, one of which is to realise an amplifier for a photon counter
in the low intensity microwave regime. We would like to test this hypothesis experimentally, as
well as try to further optimise the device.

The goals for the project are as follows:

1. To experimentally test whether or not this device can be used as an amplifier for a photon
counter in the low intensity regime, where the resonator still has an approximately linear
response. This will be done by probing the second resonance frequency at high intensity. The
hope is that when a photon at the first frequency excites the system, the second excitation
will occur several times before the system decays back into the ground state, giving a stronger
signal.

2. To compare the measured results to theoretical predictions made by simple models of the
system.

3. To fabricate a second device with the goal of replicating the observed results, as well as
yielding an opportunity to optimise some of the parameters of the device. The main idea is
to make junctions with higher transparency (lower resistance), which is expected to increase
the coupling with the photons. This is then expected to decrease the internal losses of the
device, yielding higher transmission. We aim to test these predictions with the new device.

The examination for the project will consist of a written and oral part. The written part will be
through sharing the notes of the progress made during the course of the project. The oral part
will be through a presentation at a device meeting.
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Figure 4.1: A very general schematic of a bath connected to a system S, where the bath can
be divided up into input and output modes b̂in and b̂out respectively, similarly to a semi-infinite
transmission line connected to a system.

after they interacted with the system at time t, such that at time t1, the modes no longer
affect the system. We then integrate the EoM (Eq. (4.9)) backwards from t1 to t, in order
to arrive at the time when the bath and system interacted. This gives the expression

b̂q(t) = e−iωq(t−t1)b̂q(t1) −
∫ t1

t
e−iωq(t−τ)f∗

q â(τ) dτ. (4.22)

The minus sign on the second term appears since we first integrate from t1 to t (since
we integrate backwards), then the direction of the integration is interchanged with the
compensation of changing the sign. We now perform all steps similarly to the input mode.
Defining

b̂out(t) ≡ 1√
2πρ

∑
q

e−iωq(t−t1)b̂q(t1), (4.23)

which is the free evolution of the bath, but now it evolves from b̂q(t1) in the future
backwards toward the time of interaction t. Inserting Eq. (4.22) into Eq. (4.10) yields,
with the same approximations

˙̂a = i

ℏ
[ĤS , â] + κc − κi

2 â −
√

κcb̂out(t). (4.24)

Subtracting Eq. (4.21) from Eq. (4.24) yields

b̂out(t) = b̂in(t) + √
κcâ(t), (4.25)

where we see that at the point where the system and bath interact, the outgoing field is
the reflected ingoing field together with the field radiated from the system. A schematic
of this bath connected to a system S is depicted in Fig. 4.1.
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4.2 Coupling a harmonic oscillator to a
transmission line

The results so far are valid for a general system Hamiltonian, but as stated before we can
assume a harmonic oscillator system. The system Hamiltonian is then

ĤS = ℏωrâ†â, (4.26)

where ωr is the resonance frequency of the harmonic oscillator. Then we find the EoM

˙̂a = −iωrâ − κ

2 â −
√

κcb̂in(t), (4.27)

which is linear and can therefore be Fourier transformed to describe the spectral domain
of â:

â[ω] = −i
√

κc

(ω − ωr) + iκ/2 b̂in[ω]. (4.28)

Inserting this into the Fourier transformed version of Eq. (4.25) yields

b̂out[ω] = ω − ωr + i(κi − κc)/2
ω − ωr + iκ/2 b̂in[ω] = r[ω]b̂in[ω], (4.29)

where the reflection amplitude r[ω] has implicitly been defined as

r[ω] = ω − ωr + i(κi − κc)/2
ω − ωr + iκ/2 . (4.30)

When measuring the spectral response of a system, the reflected signal will depend on the
ingoing power and the reflection coefficient

|r|2 =
(ω − ωr)2 +

(κi−κc
2
)2

(ω − ωr)2 + (κ/2)2 , (4.31)

which we recognise as a Lorentzian with line width κ. We see that there is no reflection
when driving on resonance when the internal losses and the coupling to the transmission
line have the same rates. The measured amplitude of the signal is symmetric in κi and
κc, however, the phase of the response can be used to determine which of them is larger
This can be seen from Eq. (4.30), where in the case κc > κi the phase of the signal shifts
with 2π when going from ω = −”∞” to ω = +”∞”.

A general expression for the input power Pin that the cavity is driven with can be expressed
as

Pin(t) = ℏω⟨b̂†
in(t)b̂in(t)⟩, (4.32)

where we consider the drive as a monochromatic beam with frequency ω. A steady state
solution can be found given a constant drive. We can relate the ingoing and outgoing
powers for a given frequency to the state of our cavity by using Eqs. (4.25) and (4.28),
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arriving at

Pin = ℏω⟨b̂†
inb̂in⟩ = ℏω

4(ω − ωr)2 + κ2

4κc
⟨â†â⟩ (4.33)

and
Pout = ℏω⟨b̂†

outb̂out⟩ = ℏω
4(ω − ωr)2 + (κc − κi)2

4κc
⟨â†â⟩. (4.34)

This yields a way of determining the average number of photons residing in a resonator
⟨â†â⟩ depending on the drive. If the denote the detuning by ∆ = ωr − ω, Eq. (4.33) yields

⟨â†â⟩ = κc

∆2 + κ2
Pin

ℏω
. (4.35)

If we consider the case of a lossless cavity driven on resonance, the steady state is

P = ℏω⟨b̂†
inb̂in⟩ = ℏω⟨b̂†

outb̂out⟩ = ℏω
κc

4 ⟨â†â⟩, (4.36)

which is different then what one would initially expect, which is P = ℏωκc⟨â†â⟩. This
discrepancy is due to interference between the field radiated by the cavity and the incoming
drive modes. If the drive is turned off (b̂in = 0) the outgoing waves yield this expected
power.

4.3 Two-port cavity
So far, the system has only been connected to a bath by a single weak coupling term. An
example of such a case is when a cavity is coupled to an external drive using a partially
transparent mirror on one side, while on the other using a reflecting mirror. It is in some
cases interesting to consider the case of two partially transparent mirrors. In order to
treat this, we have to open up the system to an additional bath, schematically represented
in Fig. 4.2. The treatment is essentially equivalent. One distinction we have to make is
that the couplings need not be of the same strength, but can be asymmetric. This is taken
care of by labelling κL to be the coupling between the left bath and the system and κR

the coupling between the system and the right bath, where ’left’ and ’right’ refer to their
locations in Fig. 4.2. The bath modes on the right are

Ĥbath,R =
∑

q

ℏωq ĉ†
q ĉq, (4.37)

similarly to the bath modes on the left. The interaction Hamiltonian is just interchanging
b̂q and b̂†

q in Eq. (4.2) with ĉq and ĉ†
q respectively, and also allowing for some different

coupling strength f ′
q instead of fq (this is what leads to κL and κR). The final result is

˙̂a = i

ℏ
[ĤS , â] − κ

2 â − κLb̂in − κRĉin, (4.38)
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ĉout

1

Figure 4.2: Schematic figure where an additional semi-infinite transmission line is added on the
right in order to be able to describe a two-port cavity resonator, for instance a cavity with two
partially transparent mirrors.

where here κ = κL + κR + κi. We also arrive at the expression

ĉout(t) = ĉin(t) + √
κRâ. (4.39)

Once again, assuming that the system is a harmonic oscillator, we can Fourier transform
Eq. (4.38), arriving at the solution

â[ω] = −i

√
κLb̂in[ω] + √

κRĉin[ω]
(ω − ωr) + iκ/2 , (4.40)

and then by inserting this into Eq. (4.39) receive

ĉout[ω] = −i
√

κLκR

(ω − ωr) + iκ/2 b̂in[ω] + (ω − ωr) + i(κ/2 − κR)
(ω − ωr) + iκ/2 ĉin[ω]

= t̃[ω]b̂in[ω] + r̃R[ω]ĉin[ω],
(4.41)

where now the transmission and reflection amplitudes t̃[ω] and r̃R[ω] have been defined as

t̃[ω] = −i
√

κLκR

(ω − ωr) + iκ/2 (4.42)

and
r̃R[ω] = (ω − ωr) + i(κ/2 − κR)

(ω − ωr) + iκ/2 . (4.43)

Note that the transmission amplitude is symmetric with respect to the two ports, i.e. the
expression is the same whether the transmission is considered from left to right or right
to left. This is not true for the reflection amplitude, where if the reflection from the left
port is considered, κR should be interchanged with κL.

In two-port measurements, it is common to only send in a signal from one side. This
means that ℏω⟨b̂†

inb̂in⟩ = Pin, ⟨ĉ†
inĉin⟩ = 0 and we can derive expressions similar to what
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was done in Eqs. (4.33),(4.34). Using Eqs. (4.40),(4.42), we find

⟨â†â⟩ =
〈(

t̃∗
√

κR
b̂†

in + t̃∗
√

κL
ĉ†

in

)(
t̃

√
κR

b̂in + t̃
√

κL
ĉin

)〉

= |t̃|2

κR
⟨b̂†

inb̂in⟩ + |t̃|2

κL
⟨ĉ†

inĉin⟩ + |t̃|2
√

κRκL
⟨b̂†

inĉin⟩ + |t̃|2
√

κRκL
⟨ĉ†

inb̂in⟩

= |t̃|2

κR
⟨b̂†

inb̂in⟩

= |t̃|2

κR

Pin

ℏω

= κL

(ω − ωr)2 + (κ/2)2
Pin

ℏω
,

(4.44)

where the assumption ⟨b̂†
inĉin⟩ = ⟨ĉ†

inb̂in⟩ = 0 has been made, since these are considered to
be uncorrelated. This is then an expression for the number of photons residing in a linear
resonator. If we now consider the outgoing power, we can find this for both ports. For
the right port we can use Eq. (4.39) to get

Pout,R = ℏω⟨ĉ†
outĉout⟩ = ℏωκR⟨â†â⟩, (4.45)

where again it is assumed that ⟨ĉ†
inĉin⟩ = 0. For the left port we receive

Pout,L

ℏω
= ⟨b̂†

outb̂out⟩

= ⟨(b̂†
in + √

κLâ†)(b̂in + √
κLâ⟩

= ⟨(r̃∗
Lb̂†

in + t̃∗ĉ†
in)(r̃Lb̂in + t̃ĉin⟩

= |r̃L|2⟨b̂†
inb̂in⟩

= (ω − ωr)2 + (κ/2 − κL)2

(ω − ωr)2 + (κ/2)2 ⟨b̂†
inb̂in⟩,

(4.46)

which is what one would intuitively expect, that the reflected power is the input power
times the reflection coefficient.

4.4 Transmon symmetrically coupled to two
transmission lines

Now I will apply this to our Transmon in the case where κL = κR = κc, i.e. that we have
a symmetric coupling to our system. We will consider the system Hamiltonian to be the
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one defined in Eq. (3.49). With this, we have

i

ℏ
[ĤS , â] = i

ℏ

(√
8ECEJ [â†â, â] − EC

4 [2(â†â)2 + 2â†â, â]
)

= −iωâ − iωC

4 (2(â†â[â†â, â] + [â†â, â]â†â) − 2â)

= −iωâ − iωC

4 (−2â†ââ − 2(â†ââ + â) − 2â)

= −i(ωr − ωC â†â)â,

(4.47)

where the definitions ℏω =
√

8ECEJ , ℏωC = EC and ωr = ω − ωC have been made. We
can compare this to a harmonic oscillator and see that if the system is in the state |m⟩,
then the resonance frequency shifts by an amount equal to −mωC . This result is consistent
with the perturbative result from calculating the resonance frequencies of the Transmon
as discussed at the end of Sec. 3.4, and it is thus this term that governs the non-linearity.
The full EoM for â is then

˙̂a = −iωrâ + iωC â†ââ − κ

2 â −
√

κc(b̂in + ĉin), (4.48)

where κ = 2κc + κi. Unlike the linear case, we cannot do a Fourier transform to receive
the transmission spectrum. What we can do however is to find the EoM for â†ââ. This
EoM will, as soon shall be seen, be dependent on terms of both higher and lower order.
This will be true for all EoMs, thus there is not much hope in finding a solution in closed
finite form. The terms of higher order will however most likely have decreasing amplitude,
meaning that we can eventually truncate terms of some high order while keeping the error
small. What is needed is a general expression for the EoM of (â†)mân, which is what is
done in Ref. 25. To find this we again need the full Hamiltonian from Eq. (4.1). The full
expression is

d
dt

((â†)mân) = i

ℏ
[Ĥ, (â†)mân]

= i

ℏ
[ĤS , (â†)mân] +

[∑
q

(
fqâ†b̂q − f∗

q b̂†
qâ
)
, (â†)mân

]
+ i

ℏ
[Ĥbath, (â†)mân]︸ ︷︷ ︸

=0

.

(4.49)

It will be useful to have the commutation relations [â, (â†)m] as well as [â†, ân] readily
available. We find these to be

[â, (â†)m] = â(â†)m − (â†)mâ

= (â†)m−1 + â†â(â†)m−1 − (â†)mâ

= · · · = m(â†)m−1 + (â†)mâ − (â†)mâ

= m(â†)m−1

(4.50)
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[â†, ân] = â†ân − ânâ†

= â†ân − ân−1â†â − ân−1 = · · · =

= −nân−1.

(4.51)

Treating one term in the Hamiltonian (4.49) at a time, we find

[â†â, (â†)mân] = â†â(â†)mân − (â†)mânâ†â

= â†
(
(â†)mâ + m(â†)m−1

)
ân − (â†)m

(
â†ân + nân−1

)
ââ†â

= (â†)m+1ân+1 − (â†)m+1ân+1 + m(â†)mân − n(â†)mân

= (m − n)(â†)mân

(4.52)

[(â†â)2, (â†)mân] = â†â[â†â, (â†)mân] + [â†â, (â†)mân]â†â

= (m − n)
(
â†â(â†)mân + (â†)mânâ†â

)
= (m − n)

(
â†((â†)mâ + m(â†)m−1)ân + (â†)m(â†ân + nân−1)â)

= 2(m − n)(â†)m+1ân+1 + (m2 − n2)(â†)mân.

(4.53)

With these two relations, the first term on the right hand side of Eq. (4.49) is readily
obtained:

i

ℏ
[ĤS , (â†)mân] = i

ℏ

((√
8ECEJ − EC

2
)
[â†â, (â†)mân] − EC

2 [(â†â)2, (â†)mân]
)

=
(
i(m − n)ωr − i

(m − n)(m + n − 1)
2 ωC

)
(â†)mân

− i(m − n)ωC(â†)m+1ân+1,

(4.54)

where the definitions for the variables are the same as in Eq. (4.47). For the interaction
Hamiltonian Ĥint, it is rather trivial given the relations (4.50),(4.51) to find that

i

ℏ
[Ĥint, (â†)mân] = −n(â†)mân−1∑

q

fq b̂q − m
∑

q

f∗
q b̂†

q(â†)m−1ân. (4.55)

Treating this the same way (with the same approximations) as in section 4.1 we find that

∑
q

fq b̂q = √
κcb̂in(t) + κ

2 â, (4.56)

and similarly ∑
q

f∗
q b̂†

q = √
κcb̂

†
in(t) + κ

2 â†. (4.57)

Note here that some steps have been skipped that were derived before. Since adding losses
and a second port is completely analogous to adding the first port those details are skipped
here. We further assume ⟨ĉin(t)⟩ = 0 since we are not driving the system from this side
and thus ignore this term, so we will only consider the influence from b̂in(t) on the system.
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The effect is then in principle to let κ = 2κc + κi. The total EoM for (â†)mân is now

d
dt

(â†)mân =
(
i(m − n)ωr − i

(m − n)(m + n − 1)
2 ωC − m + n

2 κ
)
(â†)mân

− i(m − n)ωC(â†)m+1ân+1 − n
√

κc(â†)mân−1b̂in(t)

− m
√

κcb̂
†
in(t)(â†)m−1ân.

(4.58)

If you are attentive about the details, then you might become suspicious about blindly
inserting Eqs. (4.56),(4.57) into Eq. (4.55). The operators b̂q commute with all system
operators, in particular â†, since their Hilbert spaces are separated. The right hand side
(RHS) of Eq. (4.56) however, contains â which does not commute with â†. It seems at first
as though something has broken down in our approximations. It is resolved by the fact
that a single term on the RHS need not commute with a system operator, but all terms
together on the RHS do. In other words, b̂in does not commute with â† for instance. One
can even find an expression for the EoM of a general system operator ÔS :

˙̂
OS = i

ℏ
[ĤS , ÔS ] +

(
[â†, ÔS ]

(
κ

2 â +
√

κb̂in(t)
)

−
(

κ

2 â† +
√

κb̂†
in(t)

)
[â, ÔS ]

)
. (4.59)

This is known as the quantum Langevin equation, and is in fact what we have used letting
ÔS = (â†)mân [39]. With Eq. (4.58) we now have a relation between all combinations
of step operators. Since a complete solution would require an infinite number of coupled
differential equations, m and n need to be truncated at some point. Then it becomes
possible to solve using numerical methods. It is a natural question to wonder about what
is lost when truncating at some finite m, n. For now the equation is only stated in terms
of operators, but later we will consider the expectation value of these. Then unless higher
order terms → 0, they will become increasingly important for the dynamics. I will not
prove that this condition really is fulfilled, but rather provide an argument for it in the
limit that will be considered (ωC ≫ κ): When acting on a state |k⟩ with (â†)mân it is only
non-zero if k ≥ n. As the system is highly anharmonic and only driven on at most two
frequencies, the system can only get excited to higher states with multi-photon processes.
Multi-photon processes are somewhat unlikely events unless the drive is very strong, so
they might occur occasionally, and they require approximately nℏω ≈ En − E0, where
ω is the frequency of the RF signal and En − E0 is the difference in energy between the
n:th excited state and the ground state. I will only consider frequencies reasonably close
to the resonance frequency, where these excitations are negligible for about n ≥ 5 due to
the strong anharmonicity, even with a strong drive. Since the excitations are essentially
negligible, the states have low probability of occupancy which means that ⟨(â†)mâ⟩ will
be small for higher m, n.

This reasoning is clearly not valid for systems where ωC/κ ≪ 1, as then the system
behaves closer to a linear system in which the higher states have a higher occupancy.
Also, of course the strength of the drive is relevant but at sufficiently strong drive some of
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the approximations made in the derivation of the input-output formulas start becoming
less valid, such as the RWA.

In Chapter 6 a steady state solution for ⟨â⟩ will be found numerically with this method for
single tone measurements. It will also be used in Chapter 7, where the system dynamics
will be analysed when a strong drive and a weak probe is injected into the system.

4.5 Heterodyne detection
With the output operators in our toolbox, we can start to look at what the measured signal
will be. The measurement setup used in the original experiments utilises heterodyne
detection. In order to understand what this means we first introduce what are called
quadratures. If we have a cavity with annihilation operator â, then we can define the
quadrature operators [27]

X̂ ≡ 1
2(â + â†) (4.60)

Ŷ ≡ i

2(â† − â), (4.61)

which are Hermitian operators and therefore correspond to some observable. They are
effectively the real and imaginary parts of â, which can be seen from ⟨X̂⟩ = Re ⟨â⟩ and
⟨Ŷ ⟩ = Im ⟨â⟩, where ⟨â†⟩ = ⟨â⟩∗ has been used. These are canonically conjugate operators,
satisfying

[X̂, Ŷ ] = + i

2 , (4.62)

and for coherent states they for instance obey

⟨α|X̂|α⟩ = Re (α(t)) (4.63)

⟨α|Ŷ |α⟩ = Im (α(t)). (4.64)

Since they are conjugate, they cannot be measured by a projective measurement simulta-
neously. They are however measured simultaneously in a heterodyne measurement, which
also means that such a measurement is limited in precision, determined by the Heisenberg
uncertainty relation. This uncertainty can be thought of in terms of quantum noise where
the output from the measurement contains some vacuum noise such that the uncertainty
relation is preserved [9]. This is opposed to a homodyne measurement, where only one of
these quadratures are measured.

When a heterodyne measurement is made, the signal from the system can be considered as
being multiplied together with the signal from a local oscillator (LO) in a mixer, where the
LO has some frequency ωLO. If we first consider the transmitted response of a two-port
linear resonator driven at frequency ωd where â is considered in the rotating frame of the
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drive, then the voltage signal from the mixer will be [43]

Vm = α⟨ĉout(t) + ĉ†
out(t)⟩ cos ωLOt

= α
√

κc

2 ⟨âe−iωdt + â†eiωdt⟩(eiωLOt + e−iωLOt)

= α
√

κc

2
〈
â(e−iωIF t + e−i(ωd+ωLO)t) + â†(eiωIF t + ei(ωd+ωLO)t)

〉
,

(4.65)

where α is some amplitude and ωIF = ωd − ωLO is some known intermediate frequency.
This is then filtered through a low pass filter, removing the terms rotating with e±i(ωd+ωLO),
yielding a signal

VLP F = β(⟨â⟩e−iωIF t + ⟨â†⟩eiωIF t), (4.66)

from which the quadratures I = V0⟨â + â†⟩ and Q = iV0⟨â† − â⟩ can be extracted. We are
mainly interested in the steady state solution of ⟨â⟩, so any phase difference when mixing
the signals can here be ignored. With the choice made now, at t = 0 the I quadrature is
extracted, but we can consider the case where we also have a sin ωLOt component as well.
Then we can see that at t = 0, this component will yield the Q quadrature. With these
we can find the steady state amplitude A of the signal in the measurement

A =
√

I2 + Q2. (4.67)

This quantity corresponds here is then proportional to |⟨â⟩|. This sounds a bit strange,
as â is not a Hermitian operator and can therefore not directly be measured. Now comes
the important remark that was made earlier, we cannot measure I and Q simultaneously
with perfect precision even though it might seem that way from our expressions. From
the quantum noise perspective, we can consider that if the signal from â oscillates with
e−i(ωLO+ωIF )t, then the output is subject to vacuum noise at frequency e−i(ωLO−ωIF )t which
prevents us from measuring both quadratures exactly at the same time. We need to make
several measurements over time and take the average to get ⟨â⟩.
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Chapter 5

Master Equation

We carry out the calculation as if it is allowed and then see afterwards that it is. This is
most often a good method.
- Tomas Persson

The input-output theory is very powerful and useful, as it tells us what our measured signal
will be. It is however sometimes lacking when simulating quantum systems. Adding
effects like pure dephasing that occurs due to interaction with the environment can be
difficult, and sometimes it can be difficult to calculate quantities entirely within input-
output theory. This is where master equations come in. Master equations are an efficient
way of studying the internal dynamics of a system over time (which usually requires
numerical simulations), or finding steady states solutions (which can sometimes be done
analytically as I have in some cases in the thesis). The idea is that if we have a system
S which is weakly coupled to an environment, it is a subsystem of some much larger,
much more complicated total system. This total system has some dynamics and, since it
is a Hilbert space, you can find some density of states matrix ρtot that properly describes
everything. Since solving this would generally be virtually impossible, we instead make the
approximation that the system S is weakly coupled and separable from the total system,
such that we have ρtot = ρS ⊗ ρE , where ρS is the density of states of the system S and
ρE is the density of states of the environment. This approximation was already made in
the input-output formalism, however now we will trace out the environment, such that we
are only left with the Hamiltonian for the system. This is what allows us to get access
to the internal dynamics of the system. It is possible to derive an appropriate master
equation from input-output theory, telling us that the same approximations are made on
the system in the derivations [39]. This means that other than the separation of the two
Hilbert spaces, only coupled via some weak interaction, the Markov approximation is used
in the derivation of master equations.

The famous Lindblad master equation will be introduced and assumed as given. There
are several derivations of it available with a few different approaches, see e.g. Ref. 44. In
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order to arrive at the Lindblad master equation, the so called secular approximation has to
be made. Essentially it means that terms that are fast rotating in the interaction picture
and terms that lead to a small renormalisation of the system energy levels are ignored.

Master equations also have an edge against input-output theory in doing numerical simu-
lations, as there are powerful toolboxes developed to do this, one of which will be used in
this thesis known as Quantum Toolbox in Pyhton (QuTiP). Since master equations also
give you access to the density matrix, information about coherences between states and
their populations can also be obtained.

5.1 Lindblad master equation on a harmonic
oscillator

We will start acquainting ourselves with the Lindblad master equation and how one can
utilise it by applying it to a regular harmonic oscillator, more specifically some cavity
where the number states correspond to how many photons are residing in the cavity.
Notable changes compared to the input-output theory is that we will now be working
in the Schrödinger picture instead of the Heisenberg picture, and instead of having a
Hamiltonian connecting the system and the environment, this will be traced out yielding
a driving term in the system Hamiltonian instead.

Our system Hamiltonian that we will study now has the form

Ĥ = ℏωrâ†â + ℏγ
(
â†e−iωdt + âeiωdt

)
, (5.1)

where ωr is the resonance frequency of the cavity, â and â† are the annihilation and creation
operators respectively, ωd is the frequency of the drive and γ is the coupling between the
drive and the resonator. Note here again that we have made a gauge choice, similarly
as to in Sec. 4.1, however this time a different one. It is mostly a matter of taste and
convention, however one needs to be a bit careful as the input-output relations 4.25, 4.39
changes slightly (by some phase factor in front of ⟨â⟩) due to the different gauge choices.

An issue with this Hamiltonian is that it is indeed an operator with time dependence,
making it tricky to deal with. We can however get rid of this by moving to a frame which
is co-rotating with the drive by performing a unitary transformation. This is described in
Sec. 5.2. Our Hamiltonian in this frame is then

Ĥ = ℏ∆â†â + ℏγ
(
â† + â

)
, (5.2)

where ∆ = ωr − ωd is the detuning of the drive frequency with respect to the resonance
frequency of the harmonic oscillator. This is the Hamiltonian that will be inserted into
the Lindblad master equation.
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The Lindblad master equation for our system is

˙̂ρ = − i

ℏ
[Ĥ, ρ̂] + κD[â]ρ̂, (5.3)

where κ is some real parameter indicating the relaxation (de-excitation) rate from the
system and D[â]ρ̂ is the Lindblad dissipator which is defined for a general operator Â as

D[Â]ρ̂ = 1
2
(
[Âρ̂, Â†] + [Â, ρ̂Â†]

)
. (5.4)

This will correspond to relaxations or de-excitations in the harmonic oscillator to the
environment. Note here that in equation (5.3), we have implicitly defined ρ̂ to be in the
frame that is co-rotating with the system, and therefore if we wish to know the states in
the original basis, we need to transform back to the original frame. One can also define ρ̂

in the original frame, transform it to the co-rotating frame and carry out the calculations
in a similar manner.

Let us now say that we want to look at steady state solutions for the average number of
photons inside the cavity ⟨â†â⟩. To do this we make the requirement

0 != d
dt

⟨â†â⟩ = d
dt

tr{ρ̂(â†â)} = tr{ ˙̂ρ(â†â)}, (5.5)

where tr{Â} is the trace of an operator Â and the last inequality follows from the fact
that we are in the Schrödinger picture so the operators are time independent.

First, we find ˙̂ρ using equation (5.3):

˙̂ρ = − i

ℏ

(
ℏ∆(â†âρ̂ − ρ̂â†â) + ℏγ(â†ρ̂ − ρ̂â† + âρ̂ − ρ̂â)

)
+ 1

2
(
[âρ̂, â†] + [â, ρ̂â†]

)
= −i∆[â†â, ρ̂] − iγ[â† + â, ρ̂] + 1

2κ
(
[âρ̂, â†] + [â, ρ̂â†]

)
.

(5.6)

This is about as far as we can go here, but when calculating ⟨â†â⟩ we can make further
progress by using linearity and the cyclic property of the trace (tr{ÂB̂} = tr{B̂Â}), as
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well as [â, â†] = 1:

d
dt

⟨â†â⟩ = tr{ ˙̂ρâ†â}

= tr
{

− i∆[â†â, ρ̂]â†â − iγ[â† + â, ρ̂]â†â + 1
2κ
(
[âρ̂, â†]â†â + [â, ρ̂â†]â†â

)}
= tr

{
−i∆

(
â†âρ̂â†â − ρ̂â†ââ†â

)
−iγ

(
â†ρ̂â†â − ρ̂â†â†â + âρ̂â†â − ρ̂ââ†â

)
+ 1

2κ
(
âρ̂â†â†â − â†âρ̂â†â + âρ̂â†â†â − ρ̂â†ââ†â

)}
= tr

{
−i∆

(
ρ̂â†ââ†â − ρ̂â†ââ†â

)}
+ tr

{
−iγ

(
ρ̂â†ââ† − ρ̂â†â†â

)}
+ tr

{
−iγ

(
ρ̂â†ââ − ρ̂ââ†â

)}
+ tr

{1
2κ
(
ρ̂â†â†ââ − ρ̂â†ââ†â + ρ̂â†â†ââ − ρ̂â†ââ†â

)}
= 0 − iγ tr{ρ̂â†[â, â†]} − iγ tr{ρ̂(−[â, â†])â} + κ tr{ρ̂â†(−[â, â†])â}

= −iγ tr{ρ̂â†} − iγ tr{−ρ̂â} − κ tr{ρ̂â†â}

= −iγ⟨â†⟩ + iγ⟨â⟩ − κ⟨â†â⟩.
(5.7)

We see that we need to find the steady state solutions to both ⟨â⟩ and ⟨â†⟩ in order to
solve this. By similar calculations as above, we find

d
dt

⟨â†⟩ = tr{ ˙̂ρâ†}

= tr
{

−i∆
(
â†âρ̂â† − ρ̂â†ââ†)−iγ

(
â†ρ̂â† − ρ̂â†â† + âρ̂â† − ρ̂ââ†)

+ 1
2κ
(
âρ̂â†â† − â†âρ̂â† + âρ̂â†â† − ρ̂â†ââ†)}

= tr{i∆ρ̂â†} + tr{iγρ̂} − tr
{1

2κρ̂â†
}

= i∆⟨â†⟩ + iγ − κ

2 ⟨â†⟩ != 0

⇒ ⟨â†⟩ = iγ

κ/2 − i∆ ,

(5.8)

as well as

d
dt

⟨â⟩ = tr{ ˙̂ρâ}

= tr
{

−i∆
(
â†âρ̂â − ρ̂â†ââ

)
−iγ

(
â†ρ̂â − ρ̂â†â + âρ̂â − ρ̂ââ

)
+ 1

2κ
(
âρ̂â†â − â†âρ̂â + âρ̂â†â − ρ̂â†ââ

)}
= tr{−i∆ρ̂â} + tr{−iγρ̂} − tr

{1
2κρ̂â

}
= −i∆⟨â⟩ − iγ − κ

2 ⟨â⟩ != 0

⇒ ⟨â⟩ = −iγ

κ/2 + i∆ .

(5.9)
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This is, as is expected, just the complex conjugate of ⟨â†⟩. Inserting this into equation
(5.7) now yields the steady state solution

d
dt

⟨â†â⟩ = γ2

κ/2 − i∆ + γ2

κ/2 + i∆ − κ⟨â†â⟩

= γ2(κ/2 − i∆ + κ/2 + i∆)
(κ/2)2 + ∆2 − κ⟨â†â⟩ != 0

⇐⇒ ⟨â†â⟩ = γ2

(κ/2)2 + ∆2 .

(5.10)

Comparison with this expression and Eq. (4.33) from input-output theory, we find after
some manipulation that γ2 = κcṄ , where Ṅ = P/ℏωd. A remark for the case of the
harmonic oscillator is that in the steady state solution ⟨â†â⟩ = ⟨â†⟩⟨â⟩. This means that
the coherence of the drive is conserved within the system, something that will be discussed
in more detail in later sections.

5.2 Moving to a frame rotating with the drive
We want to eliminate the time dependence of the Hamiltonian in equation (5.1). This can
be done via a unitary transformation of our states:

|Ψ̃(t)⟩ = Û(t)|Ψ(t)⟩. (5.11)

In order to see how our Hamiltonian changes under this transformation, we need to derive
this by requiring that

iℏ
d
dt

|Ψ̃(t)⟩ = Ĥ ′|Ψ̃(t)⟩, (5.12)

where Ĥ ′ is the Hamiltonian after the unitary transformation (which in general may or
may not have some time dependence). We then find

iℏ
d
dt

|Ψ̃(t)⟩ = iℏ
d
dt

(Û(t)|Ψ(t)⟩) = iℏ ˙̂
U(t)|Ψ(t)⟩ + Û(t)

(
iℏ

d
dt

|Ψ(t)⟩
)

= iℏ ˙̂
U(t)|Ψ(t)⟩ + Û(t)Ĥ|Ψ(t)⟩

= iℏ ˙̂
U(t)Û †(t)|Ψ̃(t)⟩ + Û(t)ĤÛ †(t)|Ψ̃(t)⟩

=
(
iℏ ˙̂

U(t)Û †(t) + Û(t)ĤÛ †(t)
)
|Ψ̃(t)⟩

= Ĥ ′|Ψ̃(t)⟩.

(5.13)

Where in the last equality, we have defined

Ĥ ′ ≡ iℏ ˙̂
UÛ † + ÛĤÛ †, (5.14)

where I have now skipped explicitly writing a time dependence for the unitary transfor-
mation operator. The unitary operator that changes the frame to one co-rotating with
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the drive is
Û(t) = eiωdâ†ât, (5.15)

which we will see when we have derived the expression for the transformed Hamiltonian.
For the calculations we need two commutation relations, namely

[â†â, â†] = â† (5.16)

[â†â, â] = −â. (5.17)

We are now ready to transform the Hamiltonian from equation (5.1) to the co-rotating
frame.

Ĥ ′ = iℏ ˙̂
UÛ † + ÛĤÛ †

= iℏ(iωdâ†â)Û Û † + ℏωrÛ â†âÛ † + γe−iωdtÛ â†Û † + γeiωdtÛ âÛ †

= ℏ(ωr − ωd)â†â + γe−iωdtÛ â†Û † + γeiωdtÛ âÛ †.

(5.18)

For the last two terms, we will treat one of them thoroughly then transfer the result to
the other case. We start by treating

Û â† = eiωdâ†âtâ†

=
∞∑

k=0

(iωdt)k

k! (â†â)kâ†

=
∞∑

k=0

(iωdt)k

k! (â†â)(k−1)(â† + â†(â†â))

=
∞∑

k=0

(iωdt)k

k! (â†â)(k−1)â†(1 + â†â))

= â†
∞∑

k=0

(iωdt)k

k! (1 + â†â)k = â†eiωd(1+â†â)t

= eiωdtâ†Û .

(5.19)

Similarly, one finds
Û â = e−iωdtâÛ . (5.20)

Putting these back into equation (5.18) yields the Hamiltonian presented in (5.2) (where
ωr − ωd has been replaced with ∆), which I repeat here for readability:

Ĥ = ℏ∆â†â + ℏγ
(
â† + â

)
. (5.21)

5.3 Lindblad master equation on Transmon
After having gotten aqcuainted with the Lindblad master equation on a harmonic oscillator
it is time to use it on the system which we wish to study, namely the Transmon. We will
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again try to find the steady state solution, except this time for the Transmon Hamiltonian
from equation (3.49). This will be modified slightly, such that we ignore the constants as
these do not affect the dynamics of the system. We will also add the driving term, finally
yielding the system Hamiltonian

ĤS =
(√

8ECEJ − EC

2

)
â†â − EC

2 â†ââ†â + ℏγ
(
â†e−iωdt + âiωdt

)
, (5.22)

which, after changing to a frame co-rotating with the drive becomes

ĤS = ℏ∆â†â + EC

2 (â†â − â†ââ†â) + ℏγ(â† + â), (5.23)

where ℏ∆ = (
√

8ECEJ − EC) − ℏωd = ℏωr − ℏωd. We wish now to find an expression for
⟨ ˙̂a⟩. Terms proportional to â, â† and â†â have already been treated in Sec. 5.1, so we only
need to treat the term â†ââ†â:

tr{− i

ℏ
[â†ââ†â, ρ̂]â} = − i

ℏ
tr{â†ââ†âρ̂â − ρ̂â†ââ†ââ}

= − i

ℏ
tr{ρ̂(ââ†ââ†â − â†ââ†ââ)}

= − i

ℏ
tr{ρ̂(ââ†â + â†âââ†â − â†ââ†ââ)}

= − i

ℏ
tr{ρ̂(ââ†â + â†ââ + â†ââ†ââ − â†ââ†ââ)}

= − i

ℏ
tr{ρ̂(â + 2â†ââ)}

= − i

ℏ
(⟨â⟩ + 2⟨â†ââ⟩).

(5.24)

With this, we now find by once again defining ωC ≡ EC/ℏ

d
dt

⟨â⟩ = −i∆⟨â⟩ + iωC⟨â†ââ⟩ − iγ − κ

2 ⟨â⟩, (5.25)

and by a similar calculation

d
dt

⟨â†⟩ = i∆⟨â†⟩ − iωC⟨â†â†â⟩ + iγ − κ

2 ⟨â†⟩. (5.26)

Trying to calculate a steady state for ⟨â†ââ⟩ and ⟨â†â†â⟩ will yield terms of even higher
order. One can see the similarity again with the input-output equation, as Eq. (5.25)
is exactly what we get when taking the expectation value of Eq. (4.48), only that the
drive term differs by a factor of i due to our gauge choice for the drive. In principle, one
could again derive an expression for ⟨(â†)mân⟩ using the master equation, but instead of
taking this further we simply leave this here and move over to a system that will be of
interest for gaining understanding of the Transmon resonator. This shows both that the
two methods within the specific form of the Lindblad master equation we have chosen
(Eq. (5.3)) are equivalent. The Lindblad master equation will later instead be used for
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numerical simulations rather than have the same approach as the input-output method.
More on this in the next chapter.

5.4 Driving the two-level system
Due to the large Kerr non-linearity (EC ≫ κ) the system is expected to behave similarly
to a two-level system, especially when driven in a non-linear regime (i.e. for not too
strong drive). It will therefore be useful to have insight in how the well studied two-level
system behaves from the point of view that we are interested in. This section will use the
Lindblad master equation to find analytical expressions for some quantities of interest,
that will later be used to draw conclusions about the Transmon. In order to analyse the
two-level system, we use the system Hamiltonian

ĤS = ℏ
∆
2 σ̂z + ℏγ(σ̂+ + σ̂−), (5.27)

which is yielded by changing â → σ̂− and â† → σ̂+ and moving to a frame co-rotating
with the drive. The Lindblad Master equation considered is

˙̂ρ = − i

ℏ
[ĤS , ρ̂] + κD[σ̂−]ρ̂, (5.28)

similar to equation (5.3). Useful relations in the calculations are

[σ̂+, σ̂−] = σ̂z (5.29)

[σ̂+, σ̂z] = −2σ̂+ (5.30)

[σ̂−, σ̂z] = 2σ̂− (5.31)

σ̂+σ̂− = 1 + σ̂z

2 . (5.32)

Using all of these, we find
.

⟨σ̂z⟩ = tr{ ˙̂ρσ̂z}

= tr{− i

ℏ
ℏ

∆
2 [σ̂z, ρ̂]σ̂z − i

ℏ
ℏγ[σ̂+ + σ̂−, ρ̂]σ̂z + κD[σ̂−]ρ̂)

= −2iγtr{ρ̂σ̂+} + 2iγtr{ρ̂σ̂−} − 2κtr{ρ̂σ̂+σ̂−}

= −2iγ⟨σ̂+⟩ + 2iγ⟨σ̂−⟩ − 2κ⟨σ̂+σ̂−⟩

(5.33)

as well as
.

⟨σ̂+⟩ = −
(

κ

2 − i∆
)

⟨σ̂+⟩ − iγ⟨σ̂z⟩ (5.34)

.

⟨σ̂−⟩ = −
(

κ

2 + i∆
)

⟨σ̂−⟩ + iγ⟨σ̂z⟩, (5.35)
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Figure 5.1: The population of the excited state P (|1⟩) (blue) and the coherent amplitude modulus
squared |⟨σ̂−⟩|2 (turquoise) as functions of the coupling strength γ when driven on resonance
(∆ = 0). In the figures, κ = 2π · 0.025 has been used. As one can clearly see, the population of
the excited state P (|1⟩) converges to the expected value of 1/2, and the coherent part increases
similarly to P (|1⟩) for lower coupling strengths, while for higher coupling strengths it approaches
0.

which in steady state yields
⟨σ̂+⟩ = −iγ

κ/2 − i∆⟨σ̂z⟩ (5.36)

⟨σ̂−⟩ = iγ

κ/2 + i∆⟨σ̂z⟩ (5.37)

0 = −2iγ⟨σ̂+⟩ + 2iγ⟨σ̂−⟩ − 2κ⟨σ̂+σ̂−⟩, (5.38)

which, after inserting equations (5.36) and (5.37) into equation (5.38) yields, after some
rearranging:

⟨σ̂z⟩ = −(κ/2)2 + ∆2

γ2 ⟨σ̂+σ̂−⟩. (5.39)

Using equation (5.32), this can be further simplified to

⟨σ̂z⟩ = − (κ/2)2 + ∆2

2γ2 + (κ/2)2 + ∆2 . (5.40)

This is perhaps even better understood in terms of the probabilities that the ground and
excited states are occupied. If we label the states |0⟩ and |1⟩, we have

P (|0⟩) = γ2 + (κ/2)2 + ∆2

2γ2 + (κ/2)2 + ∆2 (5.41)

P (|1⟩) = γ2

2γ2 + (κ/2)2 + ∆2 , (5.42)

which you can get by using Eq. (5.32) on Eq. (5.40) as ⟨σ̂+σ̂−⟩ = P (|1⟩) and P (|0⟩) +
P (|1⟩) = 1.

From these equations we can see that if the drive is off (γ = 0), then the steady state of
the system is in its ground state (P (|0⟩) = 1), while in the limit of infinite drive (γ → ∞)
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we have P (|0⟩) = P (|1⟩) = 1/2, which is what we expect from a two-level system (it is
assumed that κ is finite and non-zero, and ∆ is also finite). These cases can already be seen
from equation (5.40) (as the trace of the density function only has one degree of freedom),
but the population distribution is more directly clear in terms of these probabilities. One
thing to note here is that when doing heterodyne measurements it is the coherent response
that is measured, which means that the output power will be proportional to |⟨σ̂−⟩|2 and
not ⟨σ̂z⟩. From equation (5.37) we see that if the system is driven strongly, such that
⟨σ̂z⟩ is close to 0, then the measured signal will also approach 0. Note that the prefactor
in equation (5.37) scales linearly with γ, and ⟨σ̂z⟩ scales (for large γ) like 1/γ2, so ⟨σ̂z⟩
does indeed approach 0 faster than the prefactor. These results can be seen in Fig. 5.1,
which plots Eq. (5.37) modulus squared and Eq. (5.42) as functions of γ for ∆ = 0 and
κ = 2π · 0.025, showing quantitatively what has been qualitatively discussed here.
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Single Tone Measurements

Ohhh, look at me, I looked up a quote!
- Randall Munroe (xkcd.com)

In this section, I will present what results the different approaches yield for the response
of the system. Firstly, the methods for determining the output from the system will be
explained briefly. One of the methods utilises the Quantum Toolbox in Python (QuTiP),
a toolbox containing functions that simulate quantum systems. The other method uses an
input-output approach. Then the results from the two approaches will be compared with
each other as well as the experimental results obtained previously in Ref. 1. I will also
compare the results to the two-level system as this provides some insight in the observed
effects. After this the coherence of the transmitted signal will be further discussed, which
will serve as a motivation for investigating the emission spectrum of the system. This
will initially be done for a two-level system, again in order to gain understanding for the
Transmon resonator. The spectrum analysis of the two-level system will show that when
the system is driven strongly, photons are emitted at three different frequencies. This
feature is known as the Mollow triplet, after the theoretical discovery of this by B. R.
Mollow in 1969 [45]. The emission spectrum will then be numerically determined using
QuTiP.

6.1 Method
The general approach will be to find ⟨â⟩, which is motivated by the use of heterodyne
detection in the original experiments. This will be used to extract other important quan-
tities, such as the coherent output power Pout,coh (discussed in Sec. 4.5) from the right
port of Fig. 4.2

Pout,coh = ℏω|⟨ĉout⟩|2 = ℏωκc|⟨â⟩|2, (6.1)
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as well as the transmission amplitude

t ≡ ⟨ĉout⟩
⟨b̂in⟩

=
√

κc⟨â⟩
⟨b̂in⟩

, (6.2)

where b̂in is, as before, the input RF signal from the left port of Fig. 4.2. In the single
tone measurements, we will consider an RF signal generated with an amplitude at a single
frequency. This signal will be referred to as a ”probe”, indicating that it probes the system
response. It is the probe signal that is presented in the figures, unless stated otherwise. In
Chapter 7, another signal will be added on top of the probe. This will be referred to as the
”drive”, as it drives the system to a certain state, which is then probed via the probe RF
signal. The drive and the probe will in general have different amplitudes and frequencies.
This will be further explained in the two-tone measurements section (Chapter 7). One
final remark is that in for instance Eq. (5.2), what is now referred to as probe was then
referred to as drive. This made sense at the time, since from the perspective of the system
the external RF source drives the internal system dynamics. It was not at this stage
important to make a distinction in what the input was called, but now a distinction will
help with clarity when it comes to the two-tone measurements. For now we are satisfied
with considering only the probe which allows us to write ⟨b̂in⟩ as

⟨b̂in⟩ =
√

Ṅe−iωpt, (6.3)

where Ṅ is the rate of incoming photons from the probe and ωp is the probe signal
frequency. From this we get the important quantity Pp = ℏωp⟨b̂†

inb̂in⟩, i.e. input power of
the probe signal. This will be of relevance when analysing the results. Results will often
be presented using the frequency fp instead of the angular frequency ωp, and they are as
usual related via ωp = 2πfp.

In order to be able to compare the theoretical results with experiments, the parameters
will be chosen such that they match the values of the measured device, namely

ωr/2π = 4.715 GHz

EC/h = 290 MHz

κL = κR = κc = 2π · 11 MHz

κi = 2π · 3 MHz.

(6.4)

These can be obtained by fitting a function to the experimental data. For instance in the
case of measuring the transmission, the (Lorentzian) function

T = |t̃|2 = κ2
c

(ω − ωr)2 +
(

κ
2
)2 , (6.5)

where t̃ is from Eq. (4.42) and κL = κR = κc is assumed, can be fitted to the data yielding
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κc, κi and ωr. This will look essentially as the turquoise line in Fig. 6.1h, but will only
work with this system for a very weak probe while the system is still in the linear regime.

As discussed previously in Sec. 3.4, the anharmonicity of the Transmon is determined by
the charging energy EC . This means that also EC can be determined from measurements,
which is most easily done in two-tone measurements where the drive power is changed
and the system is weakly probed. More specifically, the separation in the two resonance
peaks (a second will appear at sufficiently strong drive on resonance corresponding to the
|1⟩ ↔ |2⟩-transition) will be such that h∆f = EC . Alternatively, as we will see later in
this section, one can find EC in a Pp - fp plot (Fig. 6.1a-c), and the reason for this will
become clear when the data is presented.

With this, we are now ready to move on to explaining how the response is calculated
numerically in practice.

6.1.1 Lindblad master equation using QuTiP
As previously mentioned, QuTiP is a powerful tool when simulating quantum processes. It
can numerically find a steady state solution to the density matrix ρ̂ of the system using the
Lindblad master equation. For our system the master equation is as previously mentioned
of the form Eq. 5.3, where κ = 2κc +κi and Ĥ → ĤS , where ĤS is the system Hamiltonian
in the rotating frame of the probe (Eq. (5.23)), where γ =

√
κcṄ . I repeat them here for

readability:
˙̂ρ = − i

ℏ
[ĤS , ρ̂] + κD[â]ρ̂ (6.6)

ĤS = ℏ∆â†â + EC

2 (â†â − â†ââ†â) + ℏγ(â† + â). (6.7)

Another parameter that has to be chosen in the numerical simulations is where to truncate
the Hilbert space. Due to the strong non-linearity of the system, it is only the first
few states that have a relevant impact on the system dynamics. The Hilbert space was
truncated such that it only contains {|0⟩, . . . , |5⟩}, i.e the ground state up to the 5th
excited state. Another way of phrasing this is that the dimension N of the Hilbert space
was chosen such that N = 6.

The steady state solution of ρ̂ was then found for each probe power Pp and detuning
∆ = ωr − ωp, where Pp = ℏωpṄ , from which the steady state amplitude of ⟨â⟩ = tr{ρ̂â}
can easily be extracted and used to determine Pout,coh and t by using Eqs. (6.1),(6.2)
respectively.

6.1.2 Input-output theory
Now we also want to find the transmitted signal entirely within the input-output theory.
The method for this was introduced in Sec. 4.4, and we will utilise the EoM for operators
that we got from the input-output formalism. First we want to have the expression for
(â†)mân (Eq. (4.58)) in a more manageable form, which we achieve by moving to a frame
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rotating with the probe and then taking the expectation value. With the unitary operator

Û(t) = eiωpâ†ât, (6.8)

we find, using the results from Sec. 5.2, that

Û(t)(â†)mânÛ †(t) = (â†)mânei(m−n)ωpt. (6.9)

Performing this transformation on Eq. (4.58) and dividing by ei(m−n)ωpt yields the result

d
dt

(â†)mân =
(
i(m − n)(ωr − ωp) − i

(m − n)(m + n − 1)
2 ωC − m + n

2 κ
)
(â†)mân

− i(m − n)ωC(â†)m+1ân+1 − n
√

κc(â†)mân−1b̂in(t)eiωpt

− m
√

κcb̂
†
in(t)(â†)m−1âne−iωpt.

(6.10)

Taking the expectation value of this, and defining

Am,n ≡ ⟨(â†)mân⟩, (6.11)

we can rewrite this as

d
dt

Am,n =
(
i(m − n)(ωr − ωp) − i

(m − n)(m + n − 1)
2 ωC − m + n

2 κ
)
Am,n

− i(m − n)ωCAm+1,n+1 − n
√

κcṄAm,n−1 − m
√

κcṄAm−1,n,

(6.12)

where Eq. (6.3) has been inserted into the relation after using

⟨b̂†
in(t)(â†)m−1ân⟩ = ⟨b̂†

in(t)⟩⟨(â†)m−1ân⟩, (6.13)

and
⟨(â†)mân−1b̂in(t)⟩ = ⟨(â†)mân−1⟩⟨b̂in(t)⟩. (6.14)

The justification for this is the use of a coherent drive, which is the most classical drive so
the quantum correlations arise mostly from thermal and vacuum fluctuations and these
are assumed to be negligible. Now we have gotten rid of the time dependence from the
drive and can find a steady state solution, yielding the equation for Am,n as

Am,n =
i(m − n)ωCAm+1,n+1 + n

√
κcṄAm,n−1 + m

√
κcṄAm−1,n

i(m − n)(ωr − ωp) − i (m−n)(m+n−1)
2 ωC − m+n

2 κ
, (6.15)

which allows us to define a vector A⃗ =
(
A0,1 A0,2 . . . A1,0 . . . Am,n

)T
, such that we

can write our recursive relation as a matrix equation

A⃗ = MA⃗ + C, (6.16)
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where C is yielded by the special cases arising from the EoM of â and â† where we have

A0,1 = 1
−i(ωr − ωp) − κ/2

(
−iωCA1,2 +

√
κcṄ

)
(6.17)

A1,0 = 1
i(ωr − ωp) − κ/2

(
iωCA2,1 +

√
κcṄ

)
. (6.18)

Now it only remains to solve for A⃗ and extract ⟨â⟩ = A0,1, from which we again can get
our quantities Pout,coh and t.

6.2 Theory and experiment
The result from the two theoretical approaches are represented in Fig. 6.1 together with the
experimental result. In Figs. 6.1a-c, you can see the transmitted coherent power Pout,coh

on a log-scale as a function of the probe frequency fp and power Pp. The two theoretical
methods yield virtually identical results within the numerical accuracy in the calculated
range. The theory and experiment show excellent agreement within the measurement
accuracy, even capturing areas where the transmission is suppressed. This suppression is
caused by the loss of coherence, similarly to the case of the two-level system when this
was discussed in Sec. 5.4. This will be discussed more in depth in Sec. 6.3. At the points
indicated by coloured arrows in Fig. 6.1b, there are different absorption processes behind
the visible features, distinct in the number of photons involved in the excitation process.
These multi-photon processes are illustrated in Fig. 6.1d, where the the energy of a photon
E = ℏωp is represented by the length of an arrow. The single photon process excites the
system from its ground state to its first excited state (|0⟩ → |1⟩), indicated by the purple
arrow. Since the next resonance mode has a lower frequency, the photon has too much
energy to be able to excite the system further. At lower frequency however, two photons
with lower energy can match the energy difference between the ground state and the
second excited state (blue arrows), thereby driving the transition |0⟩ ↔ |2⟩. This process
however requires a stronger input field, as the probability for a multi-photon interaction
decreases each time another photon is involved in the process. It is thereby only noticeable
when there are a lot of photons available, i.e when the drive is strong. Previous studies of
systems with similar level structure have shown these features as well, see e.g. Ref. 46.

The data presented in Figs. 6.1e-g is the same as Figs. 6.1a-c, only presented in terms of
the transmission coefficient |t|2 instead of the output power. Once again, the agreement
is good, both between experiment and theory, as well as between the two methods used
for the theoretical predictions. All of these figures clearly show a constant transmission
at very low powers (−140 dBm). This is in the linear response regime where we expect
that the transmission behaves as for a linear resonator. At higher powers, already at
−130 dBm but more clearly at −120 dBm the transmission shows saturation. This means
that the transmission decreases due to the fact that the system is now more probable to
be in an excited state when a photon tries to enter the resonator due to the stronger probe
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Figure 6.1: a-c, The power of the coherent transmitted signal Pout,coh as a function of the
frequency fp and power Pp of the probe. Panel a shows the experimental data while b and c show
the master equation and input-output theory approaches respectively. The coloured arrows in
panel b indicate where different types of processes occur. The violet arrow indicates a one-photon
process, while blue, green and red indicate 2-, 3- and 4-photon processes respectively, schematically
represented in panel d. e-g, The same data as in a-c, but represented in terms of the transmission
coefficient |t|2. Panel e show experimental data, panel f the master equation approach and panel
g the input-output approach. h, Transmission coefficient as a function of probe frequency fp at
probe powers Pp = −143, −133, −123 dBm, indicated by dashed lines in panel g. The dots are
from experimental data and the lines are obtained using the input-output approach. The values
for ⟨n̂⟩ = ⟨â†â⟩ are determined theoretically when the system is driven at the resonance frequency.

signal. This is because of the shift in resonance frequency due to the Kerr non-linearity,
which in turn prohibits the photon from entering as there is a mismatch in energy for
an available transition. Figure 6.1h shows three line-cuts indicated in Fig. 6.1g, where
the transmission coefficient is shown as a function of frequency at the three different
probe powers Pp = −143 (turquoise), −133 (light blue), and −123 dBm (blue). The dots
indicate experimental data, while the solid lines are determined theoretically using the
input-output approach. The turquoise line-cut is still approximately in the linear regime,
and as indicated in the figure, ⟨n̂⟩ = ⟨â†â⟩ = 0.015, determined theoretically. Here the
agreement with experiment and theory is very good, especially close to the resonance
frequency. At the tails, the agreement is slightly worse, but barely visible in the image.
At 10 times higher power, saturation is already visible. This is indicated both by the
decrease in transmission and that ⟨n̂⟩ is slightly less than 10 times the lower power case.
Finally at 10 times higher power again (−123 dBm), the transmission is close to 0, meaning
that only a very small fraction of the input power is transmitted through the resonator.
The saturation of ⟨n̂⟩ is also clearer than before, as the increase is now less than a factor
of 4. You can also see the loss of coherence on top of the saturation, as there is a valley
on the resonance frequency. All of these features are reminiscent of the two-level system,
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where similar effects can be concluded from Fig. 5.1.

6.3 Transmission and output power
The coherence of the transmitted photons has been discussed briefly in different places so
far (e.g. in Secs. 5.4,6.2). It has mostly just been mentioned that the loss of coherence is a
non-linear effect visible especially in a two-level system but also in the Transmon. (Another
example of a non-linear system where the loss of coherence is observed is for instance a
system where a Transmon qubit is coupled to a CPW, where the system Hamiltonian can
be mapped to a typical James-Cummings Hamiltonian giving anharmonic energy levels,
see e.g. Ref. 46.) As previously mentioned briefly at the end of Sec. 5.1, for an ideal
harmonic oscillator, ⟨â†â⟩ = ⟨â†⟩⟨â⟩ (= |⟨â⟩|2), which means that all transmitted light is
coherent. We have already seen in Sec. 5.4 that this is not the case for a two-level system,
where instead if the system was driven strongly enough, all coherence could be lost. This
section will go into slightly more detail about the coherence, or rather incoherence, and
try to quantify it in the system. For this I define the two quantities

αinc ≡ Pout,inc

Pout,tot
= 1 − |⟨â⟩|2

⟨â†â⟩
(6.19)

and
βinc ≡ Pout,inc

Pp
= ℏωpκc⟨â†â⟩αinc

Pp
, (6.20)

where Pout,tot = ℏωpκc⟨â†â⟩ is the total transmitted output power (as in Eq. (4.45) with
κR = κc) and Pout,inc = Pout,tot − Pout,coh (with Pout,coh as defined in Eq. (6.1)) is the
incoherent transmitted output power. So αinc is the fraction of the emitted photons that
are incoherent and βinc is the fraction of the incoming power that is turned into transmitted
incoherent power. This analysis will be made mostly from the theoretical data, since we
do not have access to ⟨â†â⟩ from the experimental data. This is as we did not measure
the full signal in the experiments since we did not anticipate a large contribution from the
incoherent response. In this section, we aim to quantify the strength of this contribution
and make sure that we have accounted for all the output signals of the system.

Using Figs. 6.1a,b as a starting point, Fig. 6.2a shows a line-cut of these figures at fp =
4.716 GHz, shown in turquoise where the solid line is the theoretical prediction while the
dots are from the experimental data. Furthermore, the figure also has the total output
power (blue) from the resonator, determined theoretically by Pout,tot = ℏωpκc⟨â†â⟩. A
dashed line indicating when ⟨n̂⟩ = ⟨â†â⟩ = 0.5 is indicated to show the saturation point
for a two-level system. The theory predicts the coherent transmitted power very well,
especially for low powers. while the agreement falls off slightly at higher powers. Note
that both the x-axis and the y-axis are on a logarithmic scale so at Pp = −118 dBm, the
total output power is almost 10 times larger than the coherent output power. This is better
reflected in Fig. 6.2b, which shows αinc as a function of probe power Pp and frequency
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Figure 6.2: a, Output power Pout as function of probe power Pp, where both all the output
power is shown (blue) as well as the coherent output power (turquoise). The solid lines are
theoretical predictions using the master equation approach. The dots are the experimental data,
which matches the coherent output power prediction over a large range of probe powers. The dashed
line indicates the crossing for ⟨n̂⟩ = 0.5, which is where the two-level system would be saturated.
b, The defined quantity αinc as a function of probe power Pp and frequency fp, showing that at
certain powers, almost all of the coherence in the system is lost. Note here that the z-axis is linear
in contrast to the logarithmic scale used in for instance Fig. 6.1b. c, The defined quantity βinc as a
function of probe power Pp and frequency fp. Here you can see the fraction of the probe power Pp

that is turned into transmitted incoherent power. It is largest when driving on resonance, reaching
close to a fifth of the input power at Pp = −128 dBm.

fp. Here one can see that for a sizeable region of the two-dimensional parameter space
explored, the system emits more than 80 % of the transmitted photons incoherently. The
coherence is however starting to be regained when driving the system strongly enough,
unlike the case of the two-level system. The extra levels available must therefore play a
crucial role in this process. A partial but not fully satisfactory explanation is that multi-
photon processes start to give rise to a coherent response again. In Fig. 6.1b for instance,
by the blue arrow where 2-photon processes start to occur, you see a similar broadening in
frequency as the power is increased, as for the single photon process by the violet arrow.
The question then arises about the ’arcs’, especially for the base resonance frequency,
where the loss of coherence is less at frequencies just above resonance than below. The
next section will help to provide some insights into what happens with the photons that
lose their coherence, but some of the questions that have arisen will unfortunately not be
fully explained.

Moving on to Fig. 6.2c where βinc is shown as a function of probe power Pp and frequency
fp, we see that the arcs are no longer as visible. This is natural, since the arcs in αinc are
present off resonance where the probability for excitation is lower as we are further away
from resonance. This decrease in probability does not affect αinc but it does affect βinc as
this scales with 1/Pp and is thus not just dependent on internal dynamics. Another way of
putting it is that the detuning ∆ affects Pout,inc and Pout,tot in the same way, cancelling this
effect for αinc, while it does not affect Pp, so the detuning causes a smaller amplitude off
resonance for βinc. This is naturally what we would expect, as when we are off resonance,
most of the power is reflected and thus does not enter the system. βinc reaches its max
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value of almost 0.2 on resonance at about Pp = −128 dBm, a rather high value. You can
see that some coherence is lost even at very small powers, but when the power is increased,
both saturation effects and reduction in lost coherence results in βinc approaching 0 rather
quickly as compared to αinc. βinc is also slightly larger again early on, close to resonance
for the multi-photon processes. As seen from αinc the loss of coherence is large within
the system when these processes start to occur. In order to gain insight in the question
of what happens to the emitted photons whose coherence is lost, the next section will
investigate the power spectrum of the emitted photons from system.

Before moving on to what happens to the emitted incoherent photons, an answer to the
question of what happens to the reflected signal and what is lost to the environment would
be appropriate, to make sure that for instance energy conservation holds for what we have
so far considered. Before that, recall that the total reflected output power is

Pr = ℏω⟨b̂†
outb̂out⟩, (6.21)

where we now consider the steady state. As the coherent probe is considered only at
one frequency ωp for the input power Pp, we will for now make the assumption when
determining the output power also only carries the same frequency, setting ω = ωp. The
observant reader notices that this assumption was already made in the definition of βinc.
By similar arguments as before, the coherent reflected power Pr,coh is given by

Pr,coh = ℏωp|⟨b̂out⟩|2 = ℏωp|⟨b̂in + √
κcâ⟩|2. (6.22)

Since the drive is coherent, we can let ⟨b̂in⟩ =
√

Ṅp, note that with this we implicitly
assume that we are in a frame rotating with the drive. To get the incoherent reflected
power Pr,inc we use

Pr,inc = Pr − Pr,coh = ℏωp

(
⟨b̂†

outb̂out⟩ − |⟨b̂in + √
κcâ⟩|2

)
= ℏωp

(
⟨b̂†

inb̂in⟩ + √
κc

(
⟨b̂†

inâ⟩ + ⟨â†b̂in⟩
)

+ κc⟨â†â⟩

−
(
|⟨b̂in⟩|2 + 2√

κc Re{⟨b̂in⟩⟨â⟩} + κc|â|2
))

= ℏωpκc

(
⟨â†â⟩ − |⟨â⟩|2

)
,

(6.23)

where ⟨b̂†
inb̂in⟩ = |⟨b̂in⟩|2 and ⟨b̂†

inâ⟩ + ⟨â†b̂in⟩ =
√

Ṅp⟨â + â†⟩ has been used (see Ref. 39)
since b̂in is assumed coherent. If we divide Pr,inc by Pp, we see that we have nothing
else than βinc, meaning that the transmitted incoherent signal is equal to the reflected
incoherent signal. This is what we expect since any interference between the coherent and
incoherent photons should be averaged out. To consider the power lost via the resonator
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internal losses to the environment Pi, we take similarly as for the transmission

Pi = ℏωpκi⟨â†â⟩, (6.24)

where the difference between the transmitted power and Pi is interchanging κc ↔ κi.
Energy conservation means that

Pp = ℏωp⟨b̂†
outb̂out⟩ + ℏωp⟨ĉ†

outĉout⟩ + Pi, (6.25)

i.e. that the input power ends up as either one of the output modes (b̂out, ĉout) or is
dissipated in the system. By substituting b̂out and ĉout with Eqs. (4.25),(4.39) as well
carrying out calculations similar to Eq. (6.23) yields the relation

κ⟨â†â⟩ + 2
√

κcṄ Re{⟨â⟩} = 0, (6.26)

where again κ = 2κc +κi. We recognise this as the steady state solution of Eq. (5.7). This
shows the consistency with our assumptions. In the numerical calculations this relation
holds true with error < 1 % in units of κ⟨â†â⟩. Since the incoherent output power was
calculated by subtracting the coherent contribution out from the total output signal, this
energy conservation consideration checks that the total output powers to different ports
and losses obey energy conservation. It does not test energy conservation between the
coherent and incoherent parts. Note that this relation assumes that b̂in is coherent and
does not take into account for instance white noise or quantum noise from the input, in
which case the correlations would be different [39].

Now going back to the question of only considering the frequency ωp for all the outgoing
photons. This turns out to be a very bold assumption. As we will see next, photons
are emitted at other frequencies than ωp at strong drive. They are however emitted with
equal amplitude, and for instance in the case of driving on resonance, they are emitted
symmetrically (in frequency) around the resonance frequency, thereby the emitted energy
from the photons of different frequencies averages out to the energy of considering photons
with just the probe frequency. Therefore the assumption is formally incorrect but the end
result in considering steady state averages still holds as the average energy of the output
photons is equal to ℏωp. As this is only shown for driving on resonance in the next section
(Sec. 6.4), the validity of the equations when this assumption is made for the incoherent
output would need to be established for when ωp is off-resonance. As mentioned, the
relation of Eq. (6.26) had a very small error over the entire range considered in Figs. 6.1b,c
which suggests that this simplification is a good approximation and this is more to motivate
further in depth studies of the validity of the relations. They might
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6.4 Power spectrum of emitted photons
As already mentioned briefly in the introduction to this section, we will again build some
of our understanding on the foundation of processes occurring in the two-level system. The
Mollow triplet will be introduced, as well as some parts of how the spectrum is derived.
After this, the spectrum of the Transmon will briefly be analysed numerically. The general
method for finding the power spectrum of the emitted photons will be to look at the two-
time correlation function ⟨â†(t′)â(t)⟩. We will make the constraint to only consider the
case when the system is driven on resonance, and to make calculations simpler we have
changed to a frame rotating with the drive frequency. Furthermore the initial condition
for the time evolution will be from the steady state, in which case it suffices to look at
⟨â†(τ)â(0)⟩ (or ⟨â†(0)â(τ)⟩). This is Fourier transformed to give the spectrum.

6.4.1 Two-level system
This section will contain some highlights from Ref. 45, although translated from the atom-
light system picture into the cQED Transmon device, to gain some insight in how the
Mollow triplet is derived. In order to find the power spectrum of the two-level system,
the time evolution of the system will be important. This was derived in Sec. 5.4, and the
expressions Eqs. (5.33),(5.34),(5.35) will be handy. Let us first define α ≡ ⟨â⟩, ē ≡ ⟨σ̂+σ̂−⟩
and ḡ ≡ ⟨σ̂−σ̂+⟩ which allows us to write the equations slightly simpler. With this
definition ē and ḡ become the expectation value for the two-level system to be in the
excited state and ground state respectively. Note now that instead of ⟨σ̂z⟩ we separate the
EoM of the ground state |0⟩ = |g⟩ and the excited state |1⟩ = |e⟩ even though they are
coupled. The reason for this becomes apparent later. Now we have the equations as

d
dt

ē = −iγα∗ + iγα − κē (6.27)
d
dt

α = −
(

κ

2 + i∆
)

α + iγ(ē − ḡ) (6.28)

d
dt

α∗ = −
(

κ

2 − i∆
)

α∗ − iγ(ē − ḡ) (6.29)

d
dt

ḡ = − d
dt

ē. (6.30)

Writing the solution for α(t + τ) in a very general way, we can say that if we know the
solution of all functions ē, ḡ, α and α∗ at time t, then α(t + τ) is just a linear combination
of these and some time evolution functions that depend on t and τ :

α(t + τ) = hα,α(τ, t)α(t) + hα,ē(τ, t)ē(t) + hα,α∗(τ, t)α∗(t) + hα,ḡ(τ, t)ḡ(t). (6.31)

Recall that when looking at ρ̂ in our master equations, we have been looking at ρ̂ =
trE{ρ̂tot} = trE{ρ̂ ⊗ ρ̂E}, i.e. we have traced out the environment. With this in mind,
we can see that if we use the full density matrix the expectation value of the two-time
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correlation function is determined formally by

⟨â†(0)â(τ)⟩ = tr{ρ̂tot(0)â†Û †(τ, 0)âÛ(τ, 0)}, (6.32)

which can be compared to

α(τ) = tr{ρ̂tot(0)Û †(τ, 0)âÛ(τ, 0)}, (6.33)

where we can see that from α(τ) we can go to ⟨â†(0)â(τ)⟩ by making the substitution
ˆρtot(0) → ρ̂tot(0)â†. Making this substitution in Eq. (6.31) we then find

⟨â†(0)â(τ)⟩ = hα,α(τ, 0)ē(0) + hα,ḡ(τ, 0)α∗(τ). (6.34)

Here we now see why it was helpful to divide ⟨σ̂z⟩ into its two components. The details will
now be skipped, but the functions h can from the obtained from the coupled differential
equations (Eqs. (6.27)-(6.30)) and then Fourier transformed. The calculations become
quite lengthy and we are interested in the main result which is the spectrum

S[ω] = F(⟨â†(0)â(τ)⟩)[ω]

= 2π|⟨σ̂−⟩ss|2δ(ω − ωp) + 4ē∞κγ2
(

(ω − ωp)2 + (2γ2 + κ2)
|f(i(ω − ωp))|2

)
,

(6.35)

where ⟨σ̂−⟩ss is the steady state solution of ⟨σ̂−⟩ found in Eq. (5.37) and ē∞ is given by
Eq. (5.42). If the system is driven on resonance

|f(iω)|2 = (ω2 + s2
0)(ω2 + s2

+)(ω2 + s2
−), (6.36)

in the case when all roots

s0 = −1
2κ (6.37)

s+ = −3
4κ +

√
1
16κ2 − 4γ2 (6.38)

s− = −3
4κ −

√
1
16κ2 − 4γ2, (6.39)

are real, i.e 1
16κ − 4γ2 is positive. If however 1

16κ − 4γ2 is negative, s+ and s− become
complex conjugates, in which case they can be re-written as

s0 = −1
2κ (6.40)

s+ = −3
4κ + iωM (6.41)

s− = −3
4κ − iωM , (6.42)
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Figure 6.3: The power spectrum S[ω] of emitted photons when the system is driven on resonance
by the probe as function of the probe power Pp. The spectrum is normalised such that it shows
S[ω]/Pp (in some arbitrary units) in order to better resolve the spectrum at lower power. Panel
a shows the power spectrum for a two-level system, where you can clearly see the splitting into
the Mollow triplets. In b, the same behaviour is visible, however the non-linear effects are not as
strong here, showing a slightly smaller amplitude at higher powers for the Mollow triplets, instead
having a stronger coherent response visible in the spectrum as a sharp line on the probe frequency.

where ωM =
√

4γ2 − 1
16κ. In this case

|f(iω)|2 =
(
(ω − ωp)2 + (κ/2)2)

)(
(ω − ωp − ωM )2 + (3κ/4)2

)(
(ω − ωp + ωM )2 + (3κ/4)2

)
.

(6.43)
By using partial fraction decomposition, we can write the second term of Eq. (6.35) as three
separate terms. In the first case, when all roots are real, the three terms will be Lorentzians
centered around the resonance frequency, where one of the terms will be negative. In the
second case we instead get three Lorentzians centred around three different frequencies (ωr

and ωr ±ωM ). This is the emission spectrum referred to as the Mollow triplet, observed in
e.g. Ref. 47. An interesting feature of this is that the splitting in frequency between the
emitted photons increases as the drive strength increases, so even though we have a two-
level system (so only one resonance mode) we see emission at three different frequencies.
This is shown in Fig. 6.3a, where S[ω] has been normalised with respect to the probe
power Pp in order to resolve the spectrum better at lower powers. You can clearly see a
splitting into the triplets as the power increases. As the effect eventually saturates in the
sense that the three Lorentzian peaks reach an asymptotic value for their maximum [45],
you can see that the features start fading due to the normalisation with Pp.

6.4.2 Transmon
Moving on to cover the emission spectrum of the Transmon, I will only consider a similar
case as for the two-level system, namely the emission spectrum when driving on resonance.
Since attempting an analytical solution would require at least a three-level system and
that would become significantly more difficult to deal with, the Transmon case is only
done numerically, but using the qualitative results from the two-level system in order to
draw conclusions. The Transmon case is indeed very similar, as can be seen in Fig. 6.3
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by comparing the two-level system with the Transmon. There are however some subtle
differences, for instance that the coherent signal is stronger at higher powers (the δ(ω−ωp)
amplitude) for the Transmon, as well as a lower amplitude on the Mollow triplet spectrum.
The splitting appears to be slightly smaller as well, which can be understood by some
photons being able to excite the system to higher energy levels reducing the effect from
the extreme non-linear case of the two-level system. The higher coherent amplitude in
the emission spectrum agrees with the previous result presented in Fig. 6.2a, and explains
well what happens with the incoherent part of the signal from the system.
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Chapter 7

Two-Tone Measurements

One of the basic rules of the universe is that nothing is perfect. Perfection simply doesn’t
exist.....Without imperfection, neither you nor I would exist.
- Stephen Hawking

In this section, we will move on to try to model two-tone measurements on our system.
Here we will have an input signal containing two amplitudes and frequencies (the drive
and the probe), such that

⟨b̂in⟩ =
√

Ṅde−iωdt︸ ︷︷ ︸
drive

+
√

Ṅpe−iωpt︸ ︷︷ ︸
probe

. (7.1)

So for instance the system Hamiltonian ĤS that we consider in the master equation will
be

ĤS =
(√

8EJEC − EC

2

)
â†â − EC

2 â†ââ†â

+ ℏγd(â†e−iωdt + âeiωdt) + ℏγp(â†e−iωpt + âeiωpt),
(7.2)

where γ(d,p) =
√

κcṄ(d,p). This turns out to be much more of a challenge, as we are
unable to find a frame where we can get rid of all the time dependence (except for the
special case of ωd = ωp). We will still however be able to manage using the methods
described in Sec. 7.2, but before that the two-level system will be analysed and in this
case we are able to find an analytical solution in the perturbative case of a weak probe.
In all of the following cases, the probe will be considered weak, such that the response is
approximately linear to it, more precisely it will be such that Ṅp = 10−2.5 GHz which on
resonance corresponds to about −140 dBm. The drive frequency ωd will always be set to
the bare resonance frequency ωr.
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7.1 Two-level system
In order to gain a better understanding for the two-tone measurements done on the Trans-
mon resonator, understanding what happens to a two-level system proves useful as the
two systems will share some similarities. Moving to the rotating frame of the drive will
modify equation (5.27), giving the form

ĤS = ℏγd(σ̂+ + σ̂−) + ℏγp(σ̂+e−iδωt + σ̂−eiδωt), (7.3)

where γd, γp are the drive and probe couplings respectively, and δω = ωp −ωd, where ωd, ωp

are the drive and probe frequencies respectively. This will then change the equations of
motion for the different operators. The result is the coupled set of equations

.

⟨σ̂+⟩ = −κ
2 ⟨σ̂+⟩ − i(γd + γpeiδωt)⟨σ̂z⟩

.

⟨σ̂−⟩ = −κ
2 ⟨σ̂−⟩ + i(γd + γpe−iδωt)⟨σ̂z⟩

.

⟨σ̂z⟩ = −2i(γd + γpe−iδωt)⟨σ̂+⟩ + 2i(γd + γpeiδωt)⟨σ̂−⟩ − κ(1 + ⟨σ̂z⟩).

(7.4)

In order to simplify these we can assume that the drive is stronger than the probe, such
that the system is driven to a steady state by the drive, then it has a time dependent
perturbation from the probe. The probe is then assumed to be weak such that terms with
O(γ2

p) are neglected, implicitly assuming a linear response. In order to achieve this, we
make the perturbation

⟨σ̂(t)⟩ = ⟨σ̂⟩0 + γp⟨σ̂(t)⟩1. (7.5)

Now the time dependent part sits in the perturbative term and the steady state solutions
(⟨σ̂⟩0) are given by equations (5.36),(5.37),(5.40) by setting γ = γd and ∆ = 0. The EoM
for ⟨σ̂+⟩ then becomes

γp

.

⟨σ̂+⟩1 = −κ

2
(
⟨σ̂+⟩0 + γp⟨σ̂+⟩1

)
− i
(
γd + γpeiδωt

)(
⟨σ̂z⟩0 + γp⟨σ̂z⟩1

)
= −κ

2 γp⟨σ̂+⟩1 − iγpγd⟨σ̂z⟩1 − iγpeiδωt⟨σ̂z⟩0,
(7.6)

where, in the second line, −iγ2
peiδωt⟨σ̂z⟩1 has been neglected, and the (steady state) con-

dition −κ/2⟨σ̂+⟩0 − iγd⟨σ̂z⟩0 = 0 has been imposed. Analogous calculations for the other
equations of motion yields our new set of coupled equations which can be represented in
matrix form

˙⃗σ = Mσ⃗ + C, (7.7)

where

σ⃗ =


⟨σ̂+⟩1

⟨σ̂−⟩1

⟨σ̂z⟩1

 , M =


−κ

2 0 −iγd

0 −κ
2 iγd

−2iγd 2iγd −κ

 , C =


−ieiδωt⟨σ̂z⟩0

ie−iδωt⟨σ̂z⟩0

−2ie−iδωt⟨σ̂+⟩0 + 2ieiδωt⟨σ̂−⟩0

 .

(7.8)
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It is more convenient to work in a diagonal basis, which we can achieve by a transformation.
Let σ⃗ = Sx⃗, where x⃗ =

(
x1 x2 x3

)T
is in the diagonal basis. Then the equation can be

rewritten as
˙⃗x = S−1MSx⃗ + S−1C = Dx⃗ + C̃, (7.9)

where D contains the eigenvalues. There is a choice in the ordering of the eigenvalues in
D. One choice, and its corresponding transformation matrices, is

D =


−3

4κ + iωM 0 0

0 −3
4κ − iωM 0

0 0 −κ
2

 (7.10)

S =


−iγd

−κ/4+iωM

iγd
κ/4+iωM

1
iγd

−κ/4+iωM

−iγd
κ/4+iωM

1

1 1 0

 , S−1 =


−γd
ωM

γd
ωM

−κ/4+iωM

2iωM

γd
ωM

−γd
ωM

κ/4+iωM

2iωM

1
2

1
2 0

 , (7.11)

where −3κ/4 ± iωM and −κ/2 are the eigenvalues of M and ωM ≡
√

4γ2
d − 1

16κ2 has
suggestively been named with the same notation as the Mollow triplets in Sec. 6.4. Note
that for 64γ2

d > κ2 it makes sense to think of this as a frequency, as then ωM is real. This is
assumed, since the drive is currently assumed to be strong but the expressions themselves
are in principle valid for low γd as well. One thing to note is that for 64γd = κ2, there is
a pole in S−1. This is because at this power, we have a degeneracy in the eigenvalues of
M , and are unable to find a basis for the transition matrix S. This does not affect the
end result. With these we find C̃ to be

C̃ =



(
eiδωt + e−iδωt

)(
iγd
ωM

− κ/4−iωM

ωM

iγd
κ/2

)
⟨σ̂z⟩0(

eiδωt + e−iδωt
)(

−iγd
ωM

+ κ/4+iωM

ωM

iγd
κ/2

)
⟨σ̂z⟩0

⟨σ̂z⟩0 sin δωt


=



2ξ cos δωt

2ξ∗ cos δωt

⟨σ̂z⟩0 sin δωt


, (7.12)

where the relations (5.36),(5.37) have been inserted and the definition

ξ = iγd

ωM

(
κ/4 + iωM

κ/2

)
⟨σ̂z⟩0, (7.13)

has been made.

Since the probe is oscillating with e−iωpt, this is the signal that will be detected in a
measurement which motivates the interest in looking at this particular frequency. We will
also see that there is an amplitude oscillating with eiωpt. Furthermore, due to the assumed
long duration of the measurement, the steady state solution is what is interesting. With
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all of this in mind, the ansatz x⃗(t) = x⃗0(t)+ x⃗+e+iδωt + x⃗−e−iδωt is made, where x⃗+, x⃗− are
the steady state amplitudes which are oscillating with the probe frequency. Extracting the
terms oscillating with e+iδωt first, we find the linear differential equations (after dividing
by eiδωt) to give


iδωx+

1 = λ1x+
1 + ξ

iδωx+
2 = λ2x+

2 + ξ∗

iδωx+
3 = λ3x+

3 + ⟨σ̂z⟩0
2i

⇒


x+

1 = ξ
i(δω−ωM )+3κ/4

x+
2 = ξ∗

i(δω+ωM )+3κ/4

x+
3 = ⟨σ̂z⟩0/2i

iδω+κ/2

. (7.14)

Similarly, one finds 
x−

1 = −ξ
i(δω+ωM )−3κ/4

x−
2 = −ξ∗

i(δω−ωM )−3κ/4

x−
3 = ⟨σ̂z⟩0/2i

iδω−κ/2

. (7.15)

Transforming back to the original basis, we are interested in the coherent response of the
probe, so ⟨σ̂−⟩1 oscillating with e±iδω. These are readily obtained as

⟨σ̂−⟩+
1 = η

i(δω − ωM ) + 3κ/4 − η∗

i(δω + ωM ) + 3κ/4 + ⟨σ̂z⟩0/2i

iδω + κ/2 (7.16)

⟨σ̂−⟩−
1 = − η

i(δω + ωM ) − 3κ/4 + η∗

i(δω − ωM ) − 3κ/4 + ⟨σ̂z⟩0/2i

iδω − κ/2 , (7.17)

where now η = iγd
κ/4−iωM

ξ. From these expressions, we see that the signal is split into three
resonance modes. The resonance modes with frequencies ωr and ωr ± ωM correspond
exactly to the frequencies of the Mollow triplets. One further note is that all of the terms
are linear with ⟨σ̂z⟩0. This is interpreted as an effect due to both loss of coherence as well
as saturation of the two-level system. The third term in Eqs. (7.16),(7.17) approaches 0
as ∼ 1/γ2

d (see Eq. (5.40)), while the first and second term approach 0 rather as ∼ 1/γd

(see Eq. (5.37) together with Eq. (5.40)). Putting our result back into equation (7.5), we
end up with

⟨σ̂−(t)⟩ = ⟨σ̂−⟩0 + γp

(
⟨σ̂−⟩0

1(t) + ⟨σ̂−⟩−
1 e−iδωt + ⟨σ̂−⟩+

1 eiδωt
)
, (7.18)

where ⟨σ̂−⟩0
1(t) contains any transients and corrections to the constant term. Note also

here the importance of a weak probe, as in the approximation the outgoing signal is linear
with γp as ⟨σ̂−⟩±

1 do not depend on γp at all. The system is highly non-linear so the
approximation is only valid for when the system responds linearly to the probe.

The question is now how to interpret the terms in the lab frame, as all of the calculations
have been done in a frame rotating with the drive. There is therefore an ambiguity
in what frequencies −δω and +δω would correspond to in the lab frame, as it could
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Figure 7.1: a, The modulus of the frequency spectrum for the time evolution of ⟨σ̂−⟩ in a frame
rotating such that the resonance frequency is at 1 GHz. The drive power Pd = −100 dBm and there
are three peaks visible corresponding to the frequencies fd − δf , fd and fp. b, c, The amplitude
at fp is extracted and displayed as a transmission coefficient |t|2 (with t defined as in Eq. 7.19)
as a function of drive power Pd and probe frequency fp for both the analytical solution derived in
Sec. 7.1 and the master equation (ME) approach discussed in Sec. 7.2. At low drive, the system
response is approximately linear, until at around −130 dBm where the response quickly vanishes
due to the saturation from the drive. d, e, The amplitude at fd − δf is displayed in terms of the
transmission coefficient |t|2 as a function of drive power Pd and probe frequency fp, again both for
the analytical solution and the ME approach. Note that the scale of the z-axis is slightly different
in order to better resolve the features. The signal is here low for weak drive, but then increases
and eventually splits into the Mollow triplets before vanishing.

be some classical signal like a beating, or coming from the e+iδωt term in the system
Hamiltonian (7.3) corresponding to rotating with eiωpt in the lab frame. We are no longer
able to make a transformation with operators, as we have taken the expectation values and
are therefore only working with numbers. What we can do however, is to evolve the system
numerically using master equations, then Fourier transform the response and extract the
amplitude at the probe frequency. Doing this in the lab frame can be computationally
quite heavy, and for the purpose of understanding where the amplitudes come from it is
a bit unnecessary. We can work in some intermediate frame, such that in this frame the
resonance frequency is 1 GHz. This is shown in Fig. 7.1a, where we see three peaks. Peak
II is at the drive frequency and not very interesting in our case, however peaks I and III
are more interesting, as peak III is at the probe frequency fp. This amplitude is naturally
interpreted as corresponding to γp⟨σ̂−⟩−

1 . Peak I however, is at frequency fd − δf , where
δf = fp − fd, so this is then interpreted as the amplitude corresponding to γp⟨σ̂+⟩+

1 .
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With this interpretation, we can now plot the transmission |t|2 at the different frequen-
cies. This is shown in Fig. 7.1b-e, where both the analytical solutions originating from
Eqs. 7.16,7.17 and the master equation solution is shown. It is important to stress here
that the master equation figures were simulated in the frame rotating with the drive, so
Eq. 7.3 was used here as well. Furthermore |t|2 refers to the definition

t ≡ κc⟨â⟩
⟨b̂in⟩

, (7.19)

which means that at the probe frequency ωp = 2πfp, it makes sense to think of it as
the fraction of power transmitted, however in Figs. 7.1d,e the view of it as fraction of
number of photons transmitted since then the photons are emitted at a different frequency.
Figures 7.1c,e are in other words determined by time evolving the system in the frame
rotating with the drive, then Fourier transforming the signal and extracting the amplitudes
at ±δω. It will also be explained in more detail in the next section. The above method
was only to aid in the interpretation of the amplitudes. We see that the response at
the probe frequency fp (Figs. 7.1b,c) at low powers has a shape similar to the one-tone
measurement shown in Figs. 6.1e-g. You can also see that transmission quickly vanishes,
as the two-level system is saturated by the drive. At frequency fd − δf (Figs. 7.1d,e) we
see that the transmission is lower for lower drive powers, but initially increases, splitting
into the Mollow triplets, before vanishing again. Note that the two cases have different
limits on the z-axis. This is in order to resolve more of the response at fd − δf , which has
lower amplitude.

The agreement between the perturbative analytical solution and the numerical solution is
very good in this limit of a weak probe. Now with the interpretations and understanding
gained from the two-level system, we are ready to move on to the more complicated
Transmon.

7.2 Method
As we have already seen, solving for the response from a two-tone measurement becomes
quite a bit more challenging than for a one-tone measurement as we can no longer move
to a rotating frame that gets rid of all time dependencies. The treatment required will
therefore be a bit different than the one-tone case, both for the master equation and the
input-output approach. The restriction of using a weak probe just as in Sec. 7.1 will help
to simplify the problem in the case of the input-output theory, but before that, let us treat
the method used for determining the two-tone response using master equations.

67



CHAPTER 7. TWO-TONE MEASUREMENTS
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Figure 7.2: The Fourier spectrum of ⟨â(t)⟩ at Pp = −113 dBm and δω = −0.5. We see a strong
amplitude on resonance, and two smaller ones at frequencies ±δf = ±δω/2π. The amplitude at
−δf is interpreted as the steady state amplitude for the probe, corresponding to the measured
amplitude in the experiment.

7.2.1 Lindblad master equation using QuTiP
In order to simplify the numerical simulation, we move to a frame rotating with the drive,
such that we end up with the system Hamiltonian

ĤS = EC

2 (â†â − â†ââ†â) + ℏγd(â† + â) + ℏγp(â†e−iδωt + âeiδωt), (7.20)

where again δω = ωp − ωd. The steady state solution for the density matrix ρ̂ is first
found for γp = 0, which is then used as initial condition for the time evolution in order
to reduce the amount of time needed to approach a steady state solution for the system.
Now we have some ρ̂(t), from which we can easily get ⟨â(t)⟩. Since we are interested in
the coherent amplitude of the signal in the heterodyne detection, we want the amplitude
oscillating with e−iδωt. This we can extract by Fourier transforming ⟨â(t)⟩ and taking the
amplitude at the desired frequency. An example of such a spectrum is shown in Fig. 7.2,
where we see an amplitude at −δω = −2πδf . As we saw in the two-level system, there is
also an amplitude at δω = 2πδf . This one is also extracted and is what we have already
seen in Fig. 7.1e.

7.2.2 Input-output theory
For the input-output approach it will again be done as in Ref. 25, only adding an amplitude
rotating with eiδωt in the frame of the drive. As in the one-tone case we will use Eq. 4.58
just as in the one-tone case. Now we will however use Eq. 7.1 as the input. Once again
moving to a frame rotating with the drive, defining

Am,n ≡ ⟨(â†)mân⟩, (7.21)
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and making the same approximations as before we end up with the EoM for Am,n as

d
dt

Am,n =
(
i(m − n)(ωr − ωp) − i

(m − n)(m + n − 1)
2 ωC − m + n

2 κ
)
Am,n

− i(m − n)ωCAm+1,n+1 − n
√

κc

(√
Ṅd +

√
Ṅpe−iδωt

)
Am,n−1

− m
√

κc

(√
Ṅd +

√
Ṅpeiδωt

)
Am−1,n,

(7.22)

where we unfortunately still have a time-dependence. Here we will do a similar trick as
for the two-level case where we make an ansatz

Am,n(t) = A0
m,n + A1,+

m,neiδωt + A1,−
m,ne−iδωt, (7.23)

where A0
m,n is the steady state solution from the drive and A1,+

m,n as well as A1,−
m,n are as-

sumed to be perturbations from the probe. In other words we make the approximation
that Ṅp is small (equivalent to γp being small), so that we can neglect the terms propor-
tional to

√
ṄpA1

m,n. The restriction of looking at terms oscillating with e±iδωt and not
ei±(m−n)δωt is that we are only interested in A0,1(t) in the end and the amplitudes that
are oscillating with those frequencies.

The approach for the steady state solution is the same as in Sec. 6.1.2. The ansatz allows us
to find steady state solutions for terms that are proportional to ei±δωt by separating those
terms and solve for them separately. This yields one set of equations by only considering
the terms proportional to eiδωt:

iδωA1,+
m,n =

(
−i

(m − n)(m + n − 1)
2 ωC − m + n

2 κ
)
A1,+

m,n

− i(m − n)ωCA1,+
m+1,n+1 − n

√
κcṄdA1,+

m,n−1

− m
√

κc

(√
ṄdA1,+

m−1,n +
√

ṄpA0
m−1,n

)
,

(7.24)

as well as one set of equations by considering the terms proportional to e−iδωt:

−iδωA1,−
m,n =

(
−i

(m − n)(m + n − 1)
2 ωC − m + n

2 κ
)
A1,−

m,n

− i(m − n)ωCA1,−
m+1,n+1 − n

√
κc

(√
ṄdA1,−

m,n−1 +
√

ṄpA0
m,n−1

)
− m

√
κcṄdA1,−

m−1,n.

(7.25)
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There will again be some special cases that we need to deal with:

iδωA1,+
1,0 = −κ

2 A1,+
1,0 − iωCA1,+

2,1 −
√

κcṄp (7.26)

iδωA1,+
0,1 = −κ

2 A1,+
0,1 + iωCA1,+

1,2 (7.27)

−iδωA1,−
1,0 = −κ

2 A1,−
1,0 − iωCA1,−

2,1 (7.28)

−iδωA1,−
0,1 = −κ

2 A1,−
0,1 + iωCA1,−

1,2 −
√

κcṄp, (7.29)

after which we can write a matrix equation similar to the form of Eq. 6.16 for each case.
With all of this taken care of this section is concluded.

7.3 Transmon
The transmission |t|2 at the probe frequency fp = ωp/2π from the experiments as well as
the two theoretical methods just described is shown in Fig. 7.3a-c. Starting with describing
the experimental measurement, we see at low drive power Pd that the transmission |t|2

looks just as in the linear case that we saw in Fig. 6.1e-g. This is expected as the rate
with which photons enter the cavity is to low to start saturating the system and having
any significant effect. At higher powers there are several interesting features. For instance
at fp = 4.4 GHz we start seeing the |1⟩ ↔ |2⟩ transition (second mode) appearing due to a
photon residing in the resonator for a significant amount of the time, such that the photon
from the probe at 4.4 GHz is resonant with the second transition. The first mode (|0⟩ ↔ |1⟩
transition) splits at higher power into two; one dominant feature splitting downwards in
frequency and one faint feature splitting upwards in frequency, both corresponding to the
Mollow triplet frequencies. Furthermore there is also a splitting of the second mode at
high powers. Both of these features can be explained by a phenomenon known as ’dressed
states’ [48]. This is something that has been observed in similar systems, see for instance
Refs. [22, 25, 49]. It can be understood as an effect that the environment has on the
perceived energy levels of the system, and is in special cases known as Autler-Townes
splitting [23, 50]. The photons in the environment that couple to the system can be
seen as changing the potential of the system, in a semi-classical picture similar to a strong
oscillating electric field perturbing the potential of an atom in the so-called ac-Stark effect.
Take for instance a two-level system driven on resonance in the frame of the drive and
consider the Hamiltonian where the environment is traced out, such that you have Eq. 5.27
with ∆ = 0:

ĤS = ℏγ(σ̂+ + σ̂−), (7.30)

then the eigenenergies of the system Hamiltonian will change due to the drive term, and
one has to diagonalise it again in order to receive effective eigenenergies which describe the
system better. This gives new eigenstates which will instead be superpositions of the bare
states. This is mostly in order to gain some intuition for the phenomenon and there are
some more details that need to be considered which are beyond the scope of this thesis,
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Figure 7.3: a, The transmission |t|2 of the probe in the two-tone measurements as function of
drive power Pd and probe frequency fp. The drive frequency fd is fixed at the bare resonance
frequency fr = 4.715 GHz and the probe power Pp = −144 dBm. At low drive power the response
is the same as with no drive. At around −130 dBm the second resonance mode starts appearing
as well, corresponding to the |1⟩ ↔ |2⟩ transition. The main resonance mode splits at −120 dBm
into two signals, one very faint going upwards in frequency. This corresponds to one of the Mollow
triplets. The other is stronger and goes downward in frequency, corresponding to the other split
frequency of the Mollow triplet. At about −115 dBm, the second transition also splits. Both
of these splittings are due to dressed states, meaning that the strong drive causes the effective
eigenenergies of the system to change. b, c, The theoretical results received for the prediction of
panel a, determined using the methods described in Sec. 7.2. Qualitatively a lot of the features
are present such as the signal going downwards in frequency at strong drive Pd and the splitting of
the second transition due to the dressed states, however they deviate a bit quantitatively from the
experimental data. There is also some deviance between the two theoretical methods where the
ME gives a more smeared feature from the second transition mode. d, e, The predicted response
at frequency fd −δf = 2fd −fp as function of probe frequency fp and drive power Pd, which shows
features at the Mollow triplet frequencies. The two splitting frequencies of the Mollow triplet are
indicated in the figure as fd ± fM by dashed red lines. Note that the z-axis has a different scale in
order to better resolve the features.

these can be found in for instance Ref. 48.

Turning to the theoretical results, they do no replicate the two-tone measurements as well
as the one-tone measurements. They do however contain most of the main features, such
as an approximately linear response at low drive power Pd, the downwards splitting signal
of the first mode and the appearance of the second mode and its splitting. Even between
the two methods, there are some discrepancies. The discrepancies are mainly around
the second mode, where the approach using the Lindblad master equation shows more
’smeared’ features in contrast to the input-output result which has slightly sharper features
that seem to agree better with the experimental data. The exact reason is unknown, but
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a possible explanation is that the system had not been evolved for long enough in order
to get rid of transients and end up at a steady state. Since the probe was weak, the
approximation made in the input-output theory approach is not enough to explain this
as in the relevant regime this approximation is justified. There will be some discussion in
Chapter 8 about ways that could potentially explain the difference between experiments
and theory.

Moving on to the output at angular frequency ωd − δω = 2ωd − ωp, the theoretically
predicted transmission |t|2, with t defined in Eq. 7.19, is shown as function of drive power
Pd and probe frequency fp = ωp/2π in Figs. 7.3. Here the z-axis has a different scale as
compared to Figs. 7.3a-c, in order to resolve the features better. The features appearing
correspond to the frequencies of the Mollow triplet. One weak at resonance and two
stronger features at frequencies fr ± fM where fr is the resonance frequency and fM =
ωM /2π is the frequency of the sidebands of the Mollow triplet. These frequencies are
indicated in Fig. 7.3 with red dashed lines. A satisfactory explanation for this phenomenon
of coherent emission at frequency 2ωd −ωp was not achieved within the scope of this thesis,
however there will be some suggestion on future directions in studying this phenomenon
in the next section. The reason for there not being an experimental figure is that we were
unaware of the possibility of observing a signal at a frequency other than ωd and ωp.
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Chapter 8

Conclusions and Outlook

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it
doesn’t agree with experiment, it’s wrong.
- Richard P. Feynman

We have seen that the theoretical framework of cQED, input-output theory and master
equations together are effective for explaining the behaviour of the measured device; a
microwave resonator consisting of a single Josephson junction capacitively coupled to
input- and output transmission lines. The view that has been presented is from the
perspective of a non-linear resonator, rather than the more common approach of viewing
it as an artificial atom or qubit stemming from the energy level structure of the Transmon.
The difference in the view is quite subtle, but starting with the view of an artificial
atom it would be that the Transmon absorbs a photon causing Cooper pairs to tunnel,
similarly to how electrons in an atom can absorb a photon causing it to transition to a
different energy level. This photon is then emitted by the system (Transmon or atom) as
it decays back to its ground state. If we instead consider the view of a photon, we can
think of CPW resonators which are also superconducting systems. These are distributed
elements, meaning that the size is comparable to or larger than the wavelength of the
photons, rather than lumped elements such as the Transmon, where the wavelength is large
compared to the component. The view in CPW resonators is that the photons ’jump’ from
the transmission lines into the resonators, just like a cavity made from semi-transparent
mirrors used in cavity QED, so that the photons really are residing in the resonator.
The view of the Transmon as a resonator raises the question of whether or not a similar
picture can be used here as well, where photons are residing in the Transmon cavity. The
theoretical framework used in the thesis does not necessarily make a significant distinction
in the end when working almost exclusively with ladder operators, so in this sense the
distinction is a matter of taste and which interpretation better fits the situation. As long
as one is aware of the underlying physics when relevant, the system can be understood in
both ways, for instance the ’photons’ in CPW resonators should really be called plasmons
if one wants to be more precise [51]. Sometimes one picture has an advantage when trying
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to explain a certain behaviour, such as the non-linear behaviour observed in two-tone
measurements that can be explained in the picture of dressed states, in which the picture
is that the bare states of an atom get ’dressed’ by the photons in the surrounding field. In
order to keep the picture of a cavity with photons, these observed phenomena in the two-
tone measurements would need a satisfying explanation without resorting to the picture
of an artificial atom.

The theory and experiments show overall good agreement, especially for the one-tone
measurements where both the qualitative and quantitative agreement is very good. The
two-tone measurements show similar qualitative agreement overall, however it is lacking
in quantitative agreement. Some discrepancies between the two theoretical methods used
were found which could be verified more in detail. Furthermore the theoretical simulation
of the two-tone measurements of the Transmon showed a coherent amplitude at a third
frequency, related via the probe frequency fp and drive frequency fd as 2fd − fp, however
no physical explanation was presented although suggestions will come in the outlook.

The thesis opens up several areas where further work can be done. As mentioned several
times already, there are discrepancies between theory and experiment. There are processes
that occur in experiments that have not been captured in the theoretical model used here,
for instance leakage between the couplers - that some photons can leak from the left
to the right coupler - an effect that should become more relevant for a stronger drive
and lead to a larger output in experiments than in theory. This can be added to the
heterodyne amplitude A in Eq. (4.67) as a term proportional to ⟨b̂in⟩ similarly as to how
it is done in Ref. 46. Furthermore pure dephasing can be added to see how the signal
would change due to that, which can easily be done with the Lindblad master equation
approach. The Transmon is insensitive to low frequency charge noise, one of the main
dephasing mechanisms [16]. However it could be of interest to see if this would have any
effect on the response.

There were also some terms thrown away in the RWA when deriving the Hamiltonian for
the Transmon in Sec. 3.4, and it would be interesting to further investigate how this effects
the end result if one tries to keep these terms, as this is something that is rarely done
when studying the system.

The loss of coherence was only investigated in the single tone measurements in Sec. 6.4.2
for the case when the probe drives the system on resonance, however as seen from Figs. 6.2b
there is also significant loss of coherence at other frequencies forming arc-like shapes. The
reason for this loss of coherence could be further explored, for instance by analysing the
emission spectrum at those frequencies as well. This could show for instance if the loss
of coherence is due to sequential decay of for instance the first and second transitions, or
some other process. It could also show if an effect similar to that of the Mollow triplet
splitting occurs then as well due to the saturation of the second excited state.

It was mentioned in Chapter 2 that the probe and LO were phase locked to each other but
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not to the drive. This is not captured within the theoretical model presented in the thesis,
as lack of phase locking can lead to for instance phase drifting. This is something that
could be added to the model as well, appearing in the drive term as e−iωdt+iφ(t), where
φ(t) can be some stochastic process or a constant phase drift, in order to try to capture
this effect. Experiments were however performed with phase locking to the drive as well,
without observation of any significant difference [1].

The method for the two-tone measurements could also be adapted to have the operators for
the probe in the dressed state basis similarly to how some have done it in previous works
(see e.g. Refs. 22, 24) rather than in the bare state basis. This is an additional alternative
that has potential to improve on the agreement between experiment and theory.

Future experimental work of interest is to try to measure the response at frequency 2fd−fp

shown in Figs. 7.3d,e. If a signal is detected then this would motivate further investigation
into the underlying physical process causing this effect. For instance, as it seems to be an
effect that is strong along the Mollow triplet frequencies, a dressed states picture might
be appropriate to use. For instance where a photon from the probe causes a de-excitation
at fp, then energy conservation forces another photon at 2fd − fp to be emitted, which is
then the frequency at the opposite side Mollow triplet. This does not explain why it would
be coherent though. Another picture is that of a scattering process, where two incoming
photons at frequency fd scatter at the system, emitting two photons at frequencies 2fd−fp

and fp with this process becoming more likely somehow due to resonance with the Mollow
triplet frequencies as well as presence of a photon with frequency fp. The answer might
even already exist in previous work or literature.

In summary, a lot of the needed basic theory for quantum optics and in particular su-
perconducting circuits for describing the system was presented quite detailed, as well as
derivations for the particular system that was studied. Furthermore instructive examples
and in places detailed calculations were presented in order to get acquainted with methods
of how the theoretical tools can be used. Some of the theory showed excellent agreement
with theoretical data while other parts of the approaches used motivate further studies
for improved understanding. It was also proposed to perform an experiment in order to
verify theoretical results not yet measured in experiments.
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