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Abstract

Bioacoustic sound event detection (SED) is a critical field for biodiversity monitoring, yet the high cost
of annotating data poses significant challenges. This thesis explores the application of active learning
strategies to reduce the amount of annotated data required for effective model training. This is done
for a segment based SED model, where batch active learning is performed by querying full audio files
rather than individual segments. The data set used is created by mixing recordings from a park with
vocalizations from babies, dogs and meerkats. By implementing uncertainty based querying strategies,
a reduction in data demand by up to 92% is seen when compared to a baseline. These strategies
query audio files with higher event density, leading to improved performance. The best active learning
strategy is the proposed top X entropy which performs well for X = 10. Batch diversification using
farthest traversal shows an increase in performance for other strategies, but failed to improve top X
entropy. This shows that there is potential for assuring diverse batches and could suggest that top
X entropy promotes diversity. The active learning results show that these methods generalise well
across different datasets, highlighting their robustness and potential for broader application in other
bioacoustic contexts. The benefit of active learning is shown to correlate with the frequency of events,
where a higher pay-off is given in a domain where events are rare. This work advances the practicality
of machine learning in bioacoustics by enhancing annotation efficiency for segment based SED models.

Keywords: Active Learning, Sound Event Detection, Bioacoustics, Querying Strategies, Annotation
Efficiency
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Chapter 1

Introduction

In the field of Bioacoustics the auditory aspects of biology is studied. Sound recordings featuring animal
vocalizations, tree vibrations and a variety of other nature related sounds is the data of interest. Anal-
ysis of this data can give useful information about the ecosystem, biodiversity and animal behaviour [1].

Acoustic wildlife monitoring is relatively cheap and not invasive of the eco-system. However, the audio
recordings of interest are usually long, often weeks, making it expensive and time consuming for an
ecologist to analyse them [2]. Fortunately, computers can be used to automate a lot of the process
and bioacoustics has benefited from recent advancements in machine-learning [1]. However, the sheer
length of the data remains a problem. In order for a computer to make sense of the recordings, it
needs examples to learn from. This means that a human has to analyse the data in order to tell the
computer program what to make of the data. The data is thus only valuable if it is paired with human
supervision. The main focus of this thesis is to study how a bioacoustic model can learn with less data
by allowing it to choose what data will be most beneficial for its improvement.

Sound Event Detection (SED) relates to identifying what is happening in an audio recording by finding
events. An event could for instance be a Kinkajou squeling or a Hammercopf singing. SED specifically
relates to the task of detecting events by determining a start-time, end-time and specifying which
class the event belongs to. In bioacoustics, the classes are often associated with different species.
SED models can thus be used to detect the presence of species in a habitat, or count the number of
vocalizations in order to estimate population size. The vocalization rates of different animal sounds in
an area can be useful indicators of biodiversity, migration patterns and population size.

Machine learning paradigms like artificial neural networks and deep learning have in recent years helped
automate much of the data analysis in multiple industries including bioacoustics [1]. The category of
machine learning methods commonly used for detection tasks is supervised learning. These methods
require annotated data which associates the data with a ground truth. For SED, this means that an
audio recording is paired with a set of events described by their start, end and class. This annotation
process is generally done manually by humans and is labor intensive. Consequently, there is a lack of
large data sets with the appropriate annotations for SED which in turn hinders the development of
large machine learning models [3].

Fortunately, there are machine learning paradigms that aim to ease the annotation process. The
main focus of this thesis is to reduce the amount of annotated data needed without compromising on
performance. This is explored through a concept called Active Learning. The basic idea is that the
machine learning model chooses which data it needs to improve at a given task. One approach to active
learning is to have the model signal which data points it is unsure about, and provide annotations for
those data points. In other words we use less data to train the model at first, and then help it become
more certain by focusing on its weaknesses and hopefully end up needing less annotated data in total
to reach a set performance. The active learning approach has proven to be of great help in other sound
related machine learning tasks such as speech-recognition [4]. In this thesis, its application towards
bioacoustic SED is studied.

1



CHAPTER 1. INTRODUCTION

A Simple Active Learning Example

Imagine you are a bird-enthusiast, and want to learn to distinguish different species based on their
bird song. How do you go about improving at this task?

If you are already an expert in how a robin sings, it is not that helpful to look up what it sounds like.
However, if you always struggle to distinguish a sparrow from a magpie, you would probably benefit
from hearing more examples of their songs. This is the core idea of uncertainty based active learning :
that more is to be gained by learning from the instances we are unsure about.

In an active learning framework, the learner queries datapoints it wants to learn from based on some
querying strategy. This strategy could be based on uncertainty as we previously discussed, but could
also be based on similarity between data points.

Let’s put this into context with our hypothetical example. Imagine you have access to a large data
bank of bird songs, the problem is that the labels are missing meaning you cannot tell which species
of bird is singing. Fortunately you have a friend who is an acclaimed ornithologist, specialised in bird
songs. The problem is that she is very busy meaning you can only ask her about three song recordings
a day. This hypothetical scenario is quite similar to how active learning works in reality. There is an
oracle, your friend, who can help provide labels or annotations for the data points you are interested
in learning from. You are allowed to iteratively ask queries, often multiple at once in a batch, so that
you can learn from these examples. Once you have studied the examples, you get to make new queries
based on your current knowledge.

One day you find three bird songs that you are clueless about, but they sound almost identical and
you can therefore assume they come from the same species. You quickly figure that you don’t need to
ask your friend about all three, as one is enough to give you the sufficient knowledge about all three.
Instead you can query one of the three similar bird songs, and choose two other songs for your daily
batch. By doing so, you improve at multiple species by opting for variety in the batch. This is an
example of diversifying queries, and it makes you think about how to do this in the most effective way.

One day, the data bank is compromised by a Goldfinch enthusiast and is now filled with 95% Goldfinch
songs. There is now an extreme class imbalance. Does this affect how you should go about your learning
process?

Figure 1.1: Example: Active Learning Loop Example - Visualisation of an example
of active learning and its fundamental components.

2



1.1. PREVIOUS WORKS CHAPTER 1. INTRODUCTION

This example illustrated the fundamentals of active learning. We have discussed many key concepts;
queries, batches and the oracle. We have mentioned that uncertainty can be a strategy for making
queries. We have also posed the question about how imbalances in data and diversification might
impact learning curve. Whilst being an illustrative and simple example, much of what has been
discussed will be relevant in this thesis when teaching a computer how to detect bioacoustic events.

1.1 Previous Works
Research on the topic of active learning for SED exists, but is scarce. The 2020 research paper by
Shuyang et. al claims to be the first on the matter [5]. In this paper, the proposed active learning
strategy was proven to be very helpful in reducing the amount of annotation needed. With only 2%
of the available data, their active learning framework was able to get results that were close to that of
a model trained on all the available data. This paper proposes a novel active learning framework that
queries annotations for data points that are classified differently by two classifiers, and are dissimilar
from data points that are already classified. This approach is called mismatch-first farthest traversal.

This thesis differs in methodology compared to [5], as the active learning strategies and SED models
are different. For instance, the active learning queries in this thesis are limited to audio files, whereas
in [5] queries are made for only predicted events. This difference stems from the difference in how the
SED models are designed. How queries are selected also differs, as the work presented in this thesis is
more closely related to uncertainty based active learning. In this thesis the farthest traversal principal
is studied in a new context, inspired by the work in [5].

Other active learning strategies have been studied for SED. In [6] an uncertainty based strategy is
tested, which outperforms a baseline strategy that uses random querying. Whilst this paper also
studies uncertainty based active learning for SED, uncertainty is defined and used to make queries
differently compared to experiments in this thesis.

A common way to construct an SED model is to divide the audio into short segments, and classify
each segment. Such a model is called a segment based SED model, and is used in this thesis. Un-
certainty based active learning for such a model requires that queries are selected based on many
predictions/uncertainties. This means that many uncertainties need to be aggregated into a measure
that is representative of the entire audio file. No research has been found on the topic of active learning
for a segment based SED approach, or how to aggregate uncertainties across an entire file. However,
there exists research on active learning for similar methods when studying object detection in images,
where uncertainties for smaller segments are aggregated to represent the full image. Two such papers
are [7] and [8]. Whilst these analyse images opposed to audio, they are still based on similar ideas
that can be used to build an active learning framework for SED. In [7] they found that aggregation
through summing uncertainties was the best active learning strategy, as this favours images with many
objects. In [8], an aggregation strategy which is meant to address diversification issues is tested and
successful in improving performance. This thesis aims to see if these result transfer to a completely
different domain, but where the model is built based on similar reasoning.

There exists research on a topic called batch active learning, two examples being [9] and [10]. This
concept is related to optimally selecting a batch consisting of multiple queries. This usually involves
diversifying the batches by opting for queries that are different from one another. In this thesis, batch
active learning is studied as multiple files are always queried at once. [9] adds noise to the query
selection, which is done in this thesis as well in an attempt to diversify batches. With that said, the
context of SED, and how noise is added is different in this thesis.

The training of a segment based SED model is very similar to building a sound classification model.
Active learning for classification tasks across multiple domains has been studied before in [11], [12]
including bioacoustic sound classification [13]. These efforts generally show that active learning is ben-
eficial in reducing the number of annotated data points. Whilst SED isn’t only about classification,
these are still promising results for the prospect of using active learning for SED.

3



1.2. PURPOSE AND PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

There exist other efforts to reduce the amount of annotated data for SED, but using techniques that
aren’t directly connected to the concept of active learning. Few-shot learning is one such approach,
which has also been studied for SED in a bioacoustic context. Few-shot learning has been used
to successfully detect animal vocalizations with as few as five annotated samples per detected class
when using a SED model based on deep frame-level embeddings of audio recordings [14]. Few-shot
learning methods often utilise pre-trained machine learning models which are used in a new domain.
This method is also used in this thesis to build the SED model with less data and training. Few-shot
learning should not be seen as an alternative to active learning efforts, but as a complementary method
to even further reduce demands for annotated data.

1.2 Purpose and Problem Statement
One limitation in bioacoustics is the lack of annotated data and this thesis aims to find a solution to
this problem. This is done by studying active learning, specifically for bioacoustic SED. The purpose
is to make the field of bioacoustics more accessible by making the practical application of machine
learning methods more realistic.

The goal of this thesis is to improve the annotation efficiency of bioacoustic SED. Active learning
frameworks proven successful in other domains are applied for SED, together with a few novel meth-
ods to successfully design a good querying strategy.

The main focus lies in creating a successful querying strategy when using a segment based model, and
determining how the parameters of the strategy affects performance and what type of queries are made.
Batch active learning is studied in order to see if attempts to diversify batches are successful. We are
also interested in how active learning results depend on the data set. To address these objectives, the
following research questions are posed:

• Can uncertainty based active learning reduce the annotation cost for a SED model?

• What is the best way to aggregate segment uncertainties in order to benefit performance?

• Is it possible to improve uncertainty sampling through diversification of queries?

• How does active learning depend on the underlying data distribution?

In order to answer the research questions, many active learning methods are tested by simulating
active queries. The different querying strategies are compared by analysing detection metrics which
consider performance in terms of classification and temporal placement of events. This is compared to
a baseline which is based on random queries, which resembles how a model would receive data without
active learning.

The data sets studied are audio files created by mixing foreground audio in the form of events with
background audio in the form of noise. The audio is monophonic, meaning that no events overlap each
other. As overlapping events would require a more complex model, this restriction is set to emphasise
active learning rather than SED. As the data set is synthetic, it is easy to study how different parameters
may affect how effective active learning is. One such parameter is the signal-to-noise ratio, meaning
the robustness of the active learning frameworks can be examined. Other parameters include how
frequent events are. The synthetic data allows for testing of many different underlying distributions,
but since the time period of this thesis is limited, restrictions must be made. Therefore only three
event classes are considered, babies, dogs and meerkats. These are mixed with background noise from
a park. Many data generation parameters are kept fixed as testing many combinations of parameters is
time consuming. Each audio file is assumed to cost equally much to annotate, no matter the amounts
of events occurring in them.

1.3 Ethical Consideration
Machine learning and audio monitoring presents a broad spectrum of ethical considerations that de-
mand careful attention.
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• Training machine learning systems requires significant computational power when trained. This
contributes largely to the environmental footprint. It is usually the training of models which
requires a lot of energy, and in this thesis we don’t train any large models from scratch which
saves a lot of energy. As active learning aims to reduce the amount of data needed, it can
also help alleviate the amount of training that is needed. We hope that active learning efforts
can help make machine learning more computationally efficient. We also hope that bioacoustic
models will become more accesible and thus override the environmental impact with its social
importance.

• There are ethical concerns regarding the data used in the training of many models. Audio
monitoring might be intrusive, if done wrong. The data used in this thesis does not intrude on
anyone’s privacy.

• Transparency is a fundamental principle in ethical machine learning. Understanding how al-
gorithms make decisions and being able to trace back those decisions is crucial for ensuring
accountability and trustworthiness. It’s also important to be transparent with the data used and
how it is being handled.

• Sometimes, jobs are at risk of being replaced with automated solutions. With bioacoustic moni-
toring however, the task of analysing months worth of auditory data is intractable for an ecologist.
The type of model studied in this thesis should be seen more as a tool for ecologists to better
understand an ecosystem. Their expertise is still very much needed to make to train the model
and make sense of its predictions.

In conclusion, ethical frameworks and guidelines for machine learning should be developed alongside the
technological breakthroughs. This is to promote a responsible and beneficial use of machine learning
for all.
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Chapter 2

Theory

In this chapter, we present the necessary theory for an easy understanding of the experiments in this
thesis. This chapter begins with an explanation of how SED models are built in 2.1. This is followed
by a section on active learning 2.2, which introduces the theoretical concepts that this thesis is centered
around. In both of these sections a solid understanding of machine learning concepts is assumed. If
the reader needs an introduction to machine learning fundamentals, please begin with reading 2.3. This
section explains the most fundamental concepts of machine learning, meaning if the reader is familiar
with these, feel free to skip section 2.3.

2.1 Sound Event Detection (SED)
In Sound Event Detection (SED) the objective is to know what is happening in an audio signal, and
where it is happening. Contrary to Sound Classification, also known as tagging, a SED system does
not assign labels to entire clips of audio, but instead attempts to assign labels only to the parts of the
clip where an event occurs. This means that an annotation, and prediction, consists of three parts;
a discrete label of what sound the event contains, and two continuous labels in the form of a start-
and end time of where the sound occurs. These type of annotations are referred to as strong labels,
contrary to weak labels which solely assign classes to entire files [3], see figure 2.1 for visualisation of
the difference.

Figure 2.1: Sound Classification vs SED - The fundamental difference between sound
classification and SED, where SED takes the time of the events into account.

2.1.1 Segment Based Methods
A common approach to perform SED is to use a segment based method, where the audio being studied
is divided into short segments [3]. The size of these segment are predetermined and may overlap with
each other. Each segment is analysed separately and weak labeled, where adjacent segments with the
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same label approximate a full event, the strong label. The size of these segments determines the reso-
lution, and thus the precision in the time-domain, of the prediction. This is due to that the previous
domain, being the entire R+, has been reduced to a discrete set of time labels, being the start- and
end times of all segments. Depending on how the machine learning model is constructed, there could
be a trade-off between computational efficiency and the loss in resolution. Further, a short segment
size allows for high-resolution and detection of shorter events, but less information is provided to the
model, which can also affect accuracy. On the other hand, segments that are too long can contain
multiple events, miss short events and reduce resolution. The resolution is often set to be appropriate
for the length of the ground truth events [3].

Furthermore, for a model to train on these segments in a supervised manor each segment has to be
assigned a corresponding true label in the training phase. A naïve way of modifying the previous
strong labels into segments is just to assign the segments an event label if the sounds event exists
within in range of the segment [3]. If one would define a segment as an event only by this fact, that the
segment contains a part of an event, the new start- and end time of the true event in the new domain
can differ as much as the length of a segment at the start and end of the event. Figure 2.2 shows the
best- and worst-case scenario of how the resolution is affected by segmentation. It is apparent that
the resolution can get reduced when switching to a segment based domain, as well as how the segment
size might affect this. Instead of basing the segment labels on if an event overlaps with the segment,
one can set a threshold for how much of an event needs to overlap with the segment in order for the
label to be assigned.

Figure 2.2: Resolution of Segmentation - (right) A hypothetical best-case scenario
with no resolution loss when segmenting the strong label into segments. (left) A hypo-
thetical worst-case scenario with full resolution loss when segmenting the strong label into
segments.

We have explained how one can go from event labels to segment labels. We also need to be able to
go in the opposite direction. Given class predictions on each segment, this needs to be processed into
events. One way of doing this is to simply merge adjacent segments with the same predicted label into
one event. This means that a single wrongfully predicted segment can ruin and contaminate an entire
event. To handle these outliers, and add temporal context to the prediction a filter can be used before
merging.

Filtering

The objective of the filtering is, amongst other things, to remove noise in the form of outliers. It also
adds temporal context to the segment prediction as neighbouring segments will consider each others
output. One filtering method that is effective in removing outliers is the median filter. This filter re-
quires a predetermined kernel size, ks, i.e. the number of consecutive segments that contributes to the
classification of the segment being filtered. Lets say the kernel is of size ks = 3, then the median value
of three contributors will determine the label of the segment being filtered. When processing a segment,
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the three contributors are the previous, the current and the upcoming segment. This implies that in or-
der for a segment to be assigned a class, it must be the class with the highest median over ks segments.

We can describe the filtering in somewhat more technical terms. Assume we have a softmax output of a
neural network with output dimension C (classes) for W segments, i.e ŷ ∈ RC×W . The median kernel
is applied on the temporal (segment) dimension of each node, which gives the filtered output Fks(ŷ).
For each segment in the filtered output, the argument of the node with highest value corresponds
to the predicted class. Assuming no other post-processing of the segment predictions, this gives the
classification output. cpred is a vector of output nodes for all segments w in the file. ŷ(c,w) is the
raw softmax output for all segments, that is filtered through Fks. The argmax thus return a vector
cpred that corresponds to the predicted class for each segment in w.

ŷ(w)SED = arg max
cpred

Fks(ŷ(cpred,w)) (2.1)

This is the final classification output, which can be formatted into event labels by merging neighbouring
segments of same class. Events that are to short to be plausible are often discarded [3]. This means
we can predict events, consisting of a start time, end time and class, which can then be compared to
the strong labels in the annotated data.

2.1.2 Machine Learning for SED
In this section we go through the theory behind analysing sound, focusing on methods used in this
thesis. This mainly includes more advanced machine learning concepts, but also traditional signal
processing techniques that remain relevant to the field of audio analysis.

Signal Processing

The human ear has a way of distinguishing relevant sounds from noise in its surroundings. In a crowded
room humans manage to maintain a conversation by filtering out all irrelevant sound. However, if the
background noise is too loud, humans might start to struggle with keeping the conversation afloat. In
signal processing and machine learning, the situation is analogous. It is harder to distinguish relevant
signals from the noise if the noise is of high intensity. This is also the case when building a bioacoustic
SED model. It will be harder to find a dog barking in the audio if there is a lot of wind.

The Signal-to-noise ratio (SNR) is defined as the ratio between the power of a wanted signal, animal
vocalizations in our case, and the power of the noise, the background sound. In the decibel scale this
can be written as:

SNR = 10 · log10(
Psignal

Pnoise
) (2.2)

In the SED case this is of the utmost importance as models can vary in performance depending on the
SNR. It is important to check if results are good for different SNR values as this could mean that the
model is robust and might be able to maintain performance when changes of microphone placement
or weather occurs.

When analysing audio, raw acoustic data is not usually used because of its high dimension and hard
interpretation. Instead it is common to convert raw audio signals into a spectrogram as this is more in-
tuitively analysable, and when analysing sound in the human hearing range a so called Mel-spectrogram
is often used. The standard spectrogram is a visual representation of the frequency spectrum of a signal
as it varies with time. It is computed by dividing the audio into overlapping segments and then the
Fourier transform is applied on each segment which results in different magnitude spectra over time.
The Mel-spectrogram differs from a standard spectrogram in that it uses the Mel scale for the fre-
quency axis. The Mel scale is a perceptual scale based on human hearing, which reflects the non-linear
way in which humans perceive sound frequencies. Mathematically, the Mel scale is defined [3] as:

mel =
1000

log 2
· log(1 + f

1000
), (2.3)
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where f is the frequency in hertz. This transformation compresses the higher frequency, while main-
taining a finer resolution in the lower ranges. This simulates the human ear’s sensitivity. The mel-
spectrogram is a 2-dimensional representation of the data that can be used as input for machine learning
models, including SED models. The matrix representing the mel-spectrogram can be visualised as a
heatmap as seen in figure 2.3. With our data now being ordered into 2-dimensions, architectures for
classic image analysis can be used for analysing the audio.

Figure 2.3: Mel-spectrogram - An example of a mel-spectrogram in the form of a
heatmap. Strong amplitudes for different frequencies can be distinguished at different
points in time.

Transfer Learning for Neural Networks

Transfer Learning refers to transferring knowledge from one domain to another. This often means
training a model on a task and then reusing it on a different, preferably related task. One salient
use of transfer learning is the utilization of feature embeddings. These are representations of the input
data, often taken from an intermediate layer of a neural network [15]. A common, and simple, way to
produce embeddings is to train a neural network on a classification task, and then simply remove the
final classification layers. We refer to these classification layers as the classifier-head. The remaining
network does no longer output class probabilities, but instead outputs a representation of the data that
is useful to determine the class [1]. As the intermediate layers often are of smaller dimension than the
input, the network is forced to find a smaller representation of the input data, i.e new features, that
still contain enough relevant information to classify the sample. We will call such a representation an
embedding of the data point.

One great advantage here is that large and well annotated data sets can be used for pre-training. The
pre-trained model can then produce embeddings on new data that can then be used to train a classifier-
heads on a new domain. In a sound analysis setting, this means that instead of training a classifier
from scratch on acoustic features, one can embed these using a pre-trained model and then use these
embeddings to train a small classifier model [1]. In bioacoustics, data is more common for certain
taxonomic groups. Whilst there is a lot of data for common bird species, endangered species aren’t as
well represented in data [15]. By utilizing a pre-trained model, that effectively produce embeddings
with relevant features describing the raw audio or spectrogram, less training examples are needed.

2.1.3 Advanced Network Architectures
In bioacoustics, the standard neural network architecture is outperformed by more advance architec-
tures, including different convolutional neural networks (CNN) and recurrent neural networks (RNN)
When building acoustic models it is common to deploy pre-trained networks that use well-known ar-
chitectures, such as ResNet, VGGish or MobileNet, by utilizing their embeddings through transfer
learning. These architectures are usually variations of CNNs, RNNs or both [1]. In this project, some
pre-trained models based on these architectures are used. In the context of SED, these types of models
can be used for classification or to encode data into a lower dimension.
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CNNs have convolutional layers which contain convolutional filters rather than normal weights. Each
kernel/filter in the layer is convoluted with the input and the output is passed to the next layer, which
usually applies some operation that reduces dimensionality, such as max-pooling. The weights in the
CNN are trained in a similar way to a normal neural network. The difference is that some weights
are located in filters. This allows for weight sharing, as the same weights slide across the spatial or
temporal data as a part of the convolution operation [16]. RNNs on the other hand feature recurrent
edges, or feed-back connections. These are often used to model sequential data. CNNs and RNNs
are able to manage high-dimensional data without an intractable number of weights. When analysing
audio, CNN classifiers are also invariant to time-shifts in the input data which is a good property to
have. [1]

YAMNet (MobileNet Architecture)

In this project, a pre-trained network called YAMNet plays a fundamental role as it is used for transfer
learning in the SED model. YAMNet is an open-source deep neural network for sound classification
developed by Google. It is a classifier trained on 521 different labels/classes based on Google’s own
audio data set AudioSet. This data set contains over two million 10-seconds-long Youtube audio clips
annotated by humans, making up about 6 thousand hours of audio data [17]. The architecture of
YAMNet is based on the concept of depthwise-separable convolution inherited from the Mobilenet_v1
network. Compared to classic convolutions, the depthwise-separable convolution prevents possible
overfitting by initializing less parameters. This is done by separation of dimensions, both spatial and
depth, of the convoluting kernel. This drastically reduces the number of parameters and multiplications
performed and thus the complexity and computational time [18]. The networks takes an audio file in a
single-channel 16kHz sampled waveform as input. 0.96 second segments are then extracted, with 0.48
second overlap, and processed separately. Note that the pre-trained YAMNet model pre-processes the
data by transforming it to a mel-spectrogram. The YAMNet network can be used for transfer-learning
as a feature extractor, if the final classifier-head is removed, see figure 2.4 for the full architecture. The
YAMNet embedding output is a 1024 long vector for each segment.

Figure 2.4: YAMNet Architecture - The full architecture of YAMNet as a feature
extractor. Each segment in the waveform is embedded into a feaure vector, which produces
a time-series of embeddings.
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Perch and AudioMAE

In this project the embeddings of two other models are used as a way to compare entire audio files.
Whilst these embedding aren’t used for classification or SED, they are used as an attempt to improve
active learning performance. These are explained in short below.

Perch is a model development by Google that uses the EfficientNet B1 network architecture, which is
a pure convolutional model which proposes a network scaling/balancing method designed to be suited
for the amount of computation that will be done [19]. Perch is trained on all the bird songs in the
Xeno-Canto data set [15]. The data set includes more than 10.000 classes. Perch embeds longer se-
quences of data compared to YAMNet, 5 seconds sampled at 32 kHz. The embeddings are of length
1280. The main focus of the Perch model was to produce quality embeddings [20]. In [15], Perch was
deemed to be one of the best models for enabling transfer learning for bioacoustic sound classification,
out of the models that were compared. It was the most consistent model out of the bunch, proving
that its embeddings extract useful information about the contents in the audio that can be used to
classify audio from a different domain.

AudioMAE is a model developed by Meta. It is based on the model Masked Auto Encoders (MAE)
model which is a vision-transformer [21]. It is trained to encode a spectrogram with some parts
masked out, in order to then decode the encoding and reconstruct the input. AudioMAE uses a stack
of standard transformers [22] as an encoder. The model is trained on a variety of data sets, including
AudioSet [17]. AudioMAE is a succesful model for sound classification and outperformed the state-of-
the-art models at the time of publication [23]. However, when used for transfer learning in [15], it did
not perform as well as YAMNet or Perch. The version of AudioMAE used in this project embeds 10
seconds of audio into a vector with 768 elements.

2.1.4 SED Performance Metrics
Studying the performance of a SED model is not trivial. Standard performance metrics, such as the
mean-squared-error (MSE) or accuracy are harder to define as SED needs to consider both the ability
to determine the correct class but, also the temporal placement of events.

Consider a model used for multi-class classification problem in bioacoustics using the segment based
method described in section 2.1.1. The accuracy of segments predictions reveals useful information
about the models classification ability. However, this metric doesn’t necessarily capture the perfor-
mance in the time domain, and isn’t based on the final SED output, see equation (2.1).

New metrics that are engineered for SED are needed. The two properties that need to be emphasised
and rewarded are the models classification ability and how well timed the events are in relation to the
ground truth. As previously mentioned, there is a trade-off, where the smaller segment sizes result in
better resolution, but less information is provided for each prediction.

The final prediction ŷSED consists of event labels. For an event to be considered a successful prediction
it has to match the true event in both the time domain, where start- and end time has be correct and
the correct label has to be assigned to the event. A metric that fulfills both critera is the Intersection
over Union (IoU ). The intersection is the part that two sets share, in our case it is the time period
that both the predicted event and the true event cover. The union is defined by the total area covered
by both sets, this equals the sum of the intersection and the unique parts of both sets. Taking the
ratio between these two measurements gives us the IoU metric, which can be considered for comparing
predictions and true events of the same class. Figure 2.5 shows two sets, A and B, as an example of
the metric IoU, along with its definition.

IoU can be used as a metric for events of the same class, or by setting a threshold for correct predic-
tions. When counting true positives (TP ) i.e true events, it might be reasonable to set a minimum
threshold ϵ for IoU. If a 10s event is predicted to only be of 1s, it might not be fair to call this a TP . If
the IoU of a predicted event and true event with the same class is larger than this threshold, we count
this a matched event or a TP . Note that there can only be one matched event per ground truth event.
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Figure 2.5: IoU - The definition of IoU along with an example using two sets, A and B.
The second fraction shows the mathematical symbols used in the field of set theory for
both intersection and union. The last fraction shows a visual interpretation of the two
metrics, where the striped area is the area of interest.

If there are multiple predicted events for one true event, all but one will be considered false positives
(FP ).

In the occurrence of multiple predicted events corresponding to a true label, the events are handled as
a bipartite graph. By using Hopcraft-Karp-Karzanov algorithm, the maximum-cardinality matching
can be determined and decides which events that should represent the true event. Basically, this means
that the most "suitable" event is matched with the true event, where the rest will be considered as
FP , and wrongfully classified. If no predicted event is assigned to a true event it is considered as a
false negative (FN).

By counting TP , FP and FN like described, using bipartite matching based on some threshold, a
F1-score (2.14) can be determined in the event domain and used as a performance metric for the SED
model. This F1-measure has some temporal dependency, as it uses the matched events criteria. IoU
can also be used as a metric on its own as it describes how well the predicted event actually covers the
true event. However, a decision needs to made about how IoU should be measured across an entire
data set of many files. One strategy is to imagine that all the files are added into one long file, and
then calculate the IoU. This variant of IoU will be referred to as the total IoU. The total IoU gives a
good estimate of the total performance in predicting both class and time correctly. [24]

2.2 Active Learning
A SED model needs data to train on in order to accurately find events and classify them. Depending
on the domain that is studied, data can vary a lot in accessibility and how expensive it is to annotate,
both in time and money. Annotations for SED generally come with a larger annotation cost than
sound classification, as they require start time and end time. In the context of bioacoustics, some
events might be scarce, meaning that a lot of data needs to be processed and annotated in order to
find sufficient training data to support these events. This has led to a scarcity of large annotated
data sets. Active learning is designed to bypass this problem, by finding data points that should be
annotated in order for the model to gain the most in performance. If successful, this means that fewer
annotations are needed to reach a set performance. In active learning it is common to speak of a
labelling budget, which can be measured in different ways. This can for instance refer to how much
time in total the annotator will spend annotating, or how many data points the annotator annotates.
The goal of active learning can thus be summarised as producing good results with a small budget by
carefully selecting the files that are annotated.

Active learning attempts to aid machine learning models that are trained on data which is expensive
to annotate. The main idea is to allow a model to choose which data to learn from in order for it to
perform better [4]. Active learning usually works by training a model on an initial pool of labeled data
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that is usually quite small in relation to the amount of unlabeled data that is available. The model is
then allowed to ask for annotations by selecting a batch of queries consisting of unlabeled data points.
These queries are annotated by an oracle, an entity which assigns ground truth labels to the data. The
selection of which data entries to query should be strategically chosen, to best improve performance.
This process is repeated iteratively as seen by the schematic figure 2.6.

Figure 2.6: Active Learning Loop - A visualisation of an active learning loop with all
its components and steps. The colored circle notations are as follows. Red is unlabeled
data points. Blue is data points being queried. Green is labeled data points.

Pool-based active learning is a common approach to active learning. This approach selects which data
entries are to be labeled by the oracle from a large pool of unlabeled data PU . Entries that have
been labeled by the oracle belong to a pool of labeled data which is denoted PL. Which instances are
queried from PU is commonly decided based on an uncertainty measure, favoring predictions of high
uncertainty [4]. This approach is called uncertainty sampling and elaborated below.

2.2.1 Uncertainty Sampling
Uncertainty sampling queries data points where the model has low confidence in its predictions. This
strategy targets data points where the model is ambiguous, meaning it helps the model where it strug-
gles. This strategy also makes intuitive sense in multiple ways if we consider why a model might be
uncertain. If a class is under-represented in the data set, it might lead to uncertainty in the model
prediction. In this case, uncertainty sampling can help make classes more equal in the queries. On the
other hand, if a class is very difficult to predict, the model would benefit from seeing disproportionately
many queries from this class, which uncertainty sampling can help generate.

Uncertainty sampling is well established and has been proven to work successfully [4]. The downside of
this sampling technique is that queried instances in the same batch are often similar and lack diversity
[5]. This issue can be addressed in different ways, and will be discussed further later.

In order to use uncertainty sampling, one needs to determine a suitable certainty measure. A common
uncertainty metric for classification problems is the entropy of the output, where the output is the
softmax vector. This vector represents the probability of the data belonging to each class, which can
also be interpreted as the models confidence in that the data belongs to each class. The total entropy
for the softmax vector is determined by the Shannon entropy equation,

E = −
C∑

c=1

pc log2(pc), (2.4)
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where pc is the output probability of belonging to class c. To sum over the probabilities over all C
classes provides a accumulated measurement for the certainty of the prediction where high uncertainties
are penalised. Consider a 3-class classification problem. Our model is uncertain if it outputs the proba-
bilities [1/3, 1/3, 1/3], and certain if it outputs [1, 0, 0]. This uncertainty is effectively captured by (2.4).

In the active learning loop, the model iteratively makes queries. These queries can be made in batches,
meaning the model selects a number of data points, or it can query one data point at a time. Querying
one file per iteration is a simpler task, as diversification doesn’t have to be considered. This would
also result in a higher resolution, but it requires a lot of computation.

A model is given the option to obtain new data until the performance satisfies some predefined criterion
or the budget, or data, runs out. A full active learning loop sampling for a classification model M
is shown in Algorithm 1. This algorithm is quite general, but represents how all active learning
frameworks are designed in this thesis.

Algorithm 1 Pool-based Active Learning Loop
Require: M, PU , PL ▷ Model, unlabeled data, labeled data

Initialize M
TrainM on PL
Define query strategy Q
while stopping criterion not met do ▷ Iterate until the stopping criterion or out of budget

Select PQ from PU using Q
Let Oracle label PQ

PL ← PL ∪ PQ ▷ Add the newly labeled data to the labeled data set
PU ← PU \ PQ ▷ Remove the newly labeled data from the unlabeled data set
TrainM on PL ▷ Re-train the model using the updated labeled data set
Evaluate M

end while

In algorithm 1, the main decision that needs do be made is how to choose the strategy Q. This means
deciding how many files are chosen at each iteration, and also how to choose the files. For uncertainty
based sampling, Q would be commonly be based on the entropy.

2.2.2 Query Diversification
One of the many challenges when querying data is how to select a good batch, as with uncertainty
sampling queries often lack diversity. As the queries in a batch are generally chosen based on the same
metric, there is no guarantee that the batch chosen is diverse. We can illustrate this with a simple
thought experiment.

Consider the case where we have B identical samples of each data point. Every set of B identical
data points would have the same level of model uncertainty, meaning if we select a batch of size B,
all queries would be identical. This is obviously not a good property of uncertainty sampling, as the
model would benefit from variety in data rather than seeing the same examples multiple times.

We can also imagine a model that has poor performance for a certain class. The active querying strat-
egy will hopefully select data from that class in order to improve. However, it might be superfluous
to fill the entire queries of the same class, in this case we are interested in diversifying our batches.
Inter-class diversification is also of interest based on the same argument. If you want to teach a child
what an apple is, you do not only show the child big green apples, but also small red apples. Diversi-
fication can be added to an active learning framework by adding noise to the uncertainty measure [9]
or by actively selecting queries that are different based on some similarity measure.

One alternative is to first consider a batch P̄Q which is larger than the final batch, P̄Q > PQ. We will
sometimes refer to the initial batch the pre-batch. P̄Q is selected with the querying strategy Q, for
instance some uncertainty based method. The idea is to then select the final queries PQ within the
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new set P̄Q based on some new strategy that enforces diversification in the batch. This approach to
active learning with diversifcation is presented in algorithm 2. An example of a previous study that
has used this type of two-step selection is the mismatch-first farthest traversal framework from [5].

Algorithm 2 Pool-based Active Learning Loop with Diversification
Require: M, PU , PL

Initialize M
TrainM on PL
Initialize query strategy Q
Initialize diversification strategy S ▷ Choose a diversification strategy for choosing data to label
while not stopping criterion do
P̄Q from PU using Q ▷ Select data to diversify from the unlabeled data set using strategy
PQ from P̄Q using S ▷ Select data to label from the subset using div. strategy
Let Oracle label PQ

PL ← PL ∪ PQ ▷ Add the newly labeled data to the labeled data set
PU ← PU \ PQ ▷ Remove the newly labeled data from the unlabeled data set
TrainM on PL ▷ Re-train the model using the updated labeled data set
Evaluate M

end while

The relative size of P̄Q to PQ is of interest as there is a trade-off at play. With a bigger P̄Q we are
more likely to be able to select a diverse batch, but the initial query strategy Q is neglected in favor
of diversification. There are multiple ways of selecting a diverse subset of the data points in P̄Q. We
will go over two methods of doing this.

With a good querying strategy Q all data points in P̄Q should be of interest for the improvement of
the model, but only PQ queries can be chosen. One solution is to randomly select from the batch,
which adds a bit of stochasticity in the querying, which adds diversity. Another alternative is to use
an active second selection strategy. The one used in this thesis is called Farthest Traversal [5]. This
method can diversify batches by utilizing each data points embedding. The data points that with
the largest distance from other data points in the embedding space is chosen. Distance and similarity
between two points in the feature space can be described by many different metrics, including cosine
distance/ cosine similarity. Mathematically this is not a distance metric but rather a way of comparing
a similarity between two vectors based on the angle between them in an inner product space, rather
than the magnitude in distance between them. The angle is derived by the cosine similarity which is
the normalised dot product between two arbitrary vectors of the same dimensions.

cosine similarity = cos θ =
x1 · x2

∥x1∥∥x2∥
(2.5)

The cosine distance is related to the cosine similarity in the following way:

cosine distance = 1− cosine similarity = 1− cos θ = 1− x1 · x2

∥x1∥∥x2∥
(2.6)

Note that if both vectors are normalised, i.e. ∥x1∥ = ∥x2∥ = 1, the equation gets much simpler (2.6).
In this thesis the cosine distance will be used, where a high distance is prioritised in the diversification
strategy. The data point in P̄Q with the farthest distance to its closest data point in PL is chosen,
labeled and then added to the PL. This continues until enough data points are chosen for the query
of that iteration. Algorithm 3 shows the complete loop of farthest traversal.
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Algorithm 3 Farthest-traversal

Require: P̄Q, PL, Membed

P̄QE ← P̄Q with Membed ▷ Embed all files in pre-batch
PLE ← PL with Membed ▷ Embed all files in labeled data set
PQ = ∅ ▷ Empty query
while |PQ| < query size do

Min. dist. between P̄QE and PLE ∪ PQ ▷ Calculate minimum distance for all points in P̄QE

Get pQE , where pQE ∈ P̄QE ▷ Extract data point with the largest minimum distance
PQ ← PQ ∪ pQE ▷ Add the data point to the query

end while
Return PQ ▷ Finally return the query to be labeled

2.2.3 Active Learning for SED
In SED, when using segment based methods, it is reasonable for the active learning framework to
query multiple segments. The reason for this restriction is that an annotator can probably not make
sense of short segments without any context, thus the oracle is not able to supply a ground truth. In
this thesis, entire audio files are considered as data points, and these are queried in full.

The certainty given from the model predictions are for each segment, but as we are interested in
querying full audio files, an accumulation method has to be determined as a representation of the
uncertainty or entropy in the entire file. There are many possibilities for this metric, and it has mainly
been studied in an object detection setting when studying images [8] [7]. In this thesis, multiple strate-
gies , called aggregation strategies, based on the individual entropies for each segment will be discussed
and evaluated. To present them we establish the following sets. Let E be a set of the entropies from
all segments in a single audio file. Ee is the set of all the entropies from the segments being predicted
as events in that file, where Ee ⊆ E. The following aggregation strategies will be tested as part of
uncertainty based querying strategies and are very important for this thesis:

• The mean entropy strategy is where the mean of all the entropies in the audio file represent
the uncertainty of the file, i.e. Ē. This assures that all uncertainties in the file contributes
equally to the overall uncertainty representation of the file. Figure 2.7 shows an example of how
mean entropy works for a file containing 5 segments. The green square represents the numerical
uncertainty representation the file retains using this method.

Figure 2.7: Example: Mean Entropy - An example of how mean entropy works when
accumulating an uncertainty representation for a file using the entropies obtained for the 5
segments of the file. The green square represents the numerical uncertainty representation
of the file.

• The median entropy strategy is where the median of all the entropies in E in the audio file
represent the uncertainty of the file. This assures that outliers and extreme values does not
affect the overall uncertainty representation. Figure 2.8 shows an example of how median entropy
works for a file containing 5 segments. The green square represents the numerical uncertainty
representation the file retains using this method.

16



2.2. ACTIVE LEARNING CHAPTER 2. THEORY

Figure 2.8: Example: Median Entropy - An example of how median entropy works
when deciding on an uncertainty representation for a file using the entropies obtained
for the 5 segments of the file. The green square represents the numerical uncertainty
representation of the file.

• The mean event entropy strategy is where the mean of all the entropies for the segments that are
predicted as events in the audio file represent the uncertainty of the file, i.e. Ēe. This assures
that only the models predictions of the events are the ones affecting the overall uncertainty
representation of the file. Figure 2.9 shows an example of how mean event entropy works for
a file containing 5 segments. The blue colored segments are the ones predicted as events by
the model. The green square represents the numerical uncertainty representation the file retains
using this method.

Figure 2.9: Example: Mean Event Entropy - An example of how mean event entropy
works when accumulating an uncertainty representation for a file using only the entropies
that are obtained from segments that are predicted as events, the blue colored segments.
The green square represents the numerical uncertainty representation of the file.

• The top X entropy strategy is where the average of the X largest entropies in the audio file
represent the uncertainty of the file. This assures that only the segments that the model finds
the most difficult to classify affects the entropy of the file. Thus this strategy prioritizes files
that contain X segments with very high uncertainty. Figure 2.10 shows an example of how top
X entropy works for a file containing 5 segments. X is set to 3 in this case, and thus only the 3
largest entropies affect the representation. The green square represents the numerical uncertainty
representation the file retains using this method.

Figure 2.10: Example: top X entropy - An example of how top 3 (X) entropy works
when accumulating an uncertainty representation for a file using the top 3 entropies
obtained from the 5 segments of the file. The green square represents the numerical
uncertainty representation of the file.

The aggregation strategies give a single numeric measure of uncertainty per file. The querying strategy
based on each aggregation simply takes the |PQ| files with the largest entropy.
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2.2.4 Performance Metrics
In active learning a big part of the performance lies in the models ability to reach high accuracy fast
and one should choose a metric that takes this into consideration while also rewarding the model for
its actual prediction performance.

To evaluate the querying strategy in the active learning loop, and its ability to reach high accuracy
fast, it is good to have a random query strategy for comparison. This means that instead of choosing
queries actively, random selections are made which resembles how a model might receive data when
no active learning is used [4]. This strategy is called a baseline, or baseline strategy. The baseline
allows for a more elaborate analysis of using active learning. It is no longer the absolute values of
performance that matters, but rather how much the model benefits from active queries. A simple way
of evaluating the two is to simply compare different performance measures of these two models at each
iteration.

It is also possible to design performance measures that summarise active learning performance. There
is no standardised approach for this. One metric used is called area under the curve (AUC ). This
metric is based on the models performance with regards to some metric, and takes into account how
quickly the model learns as this gives affects the area under the performance curve. Figure 2.11 shows
two hypothetical accuracy curves for two different strategies and the AUC, A1 and A2, for both. The
figure also shows the difference in AUC between the two models. This is a metric that is useful to see
how large of a difference it is between the models. It is evident that the AUC metric considers and
rewards a steep initial learning curve as this increases the total area, which is preferable as it is an
important feature of active learning. Although this metric will not be used further in this thesis, it
provides an intuitive way to analyze these types of performance graphs.

Figure 2.11: Area Under Curve - (left) The hypothetical accuracy curves, and their
corresponding AUC, A1 and A2. (right) The difference in AUC between the two curves.

When evaluating active learning, it is possible to consider differences in how much data is needed
to reach a specific performance. One can compare the amount data needed for different models to
reach the same, or similar, performance. Figure 2.12 shows an example of this, where the green model
seems to reach the same performance as red much earlier. These types of budget reductions should be
considered when analysing active learning performance.
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Figure 2.12: Budget Reduction - A visualisation of comparing the performance at
different iterations between two models. The budget reduction of using the green model
and still reach the top performance of the red model is shown.

2.3 Machine Learning Fundamentals
This section is targeted towards those who are inexperienced in the field of machine learning. Anyone
with fundamental knowledge about supervised learning and neural networks is encouraged to skip ahead
to chapter 3.

In order to consider the specific task of SED, it is important to lay-out some of the fundamentals of
machine learning as these play an important part in today’s state-of-the-art detection models. This
section serves as a short introduction to some of the more fundamental machine learning concepts,
with a focus on the ones that are relevant to the field of audio analysis and SED. The goal of this
section is to make this thesis more accessible to a broader audience.

What is meant by Machine Learning?

A commonly cited and nowadays famous description of machine learning is given by Mitchell [25]

“A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P , if its performance at tasks in T , as measured by P ,
improves with experience E."

Whilst providing an abstract definition, it effectively reduces the concept of machine learning down to
three fundamentals: an experience E, a task T and a performance P. What these three components
represent depends on the problem at hand, and how we attempt to solve it. The experience usually
refers to the information or data that is available. The task is the well formulated problem that is
being solved. The performance is a preferred metric that measures how well the model is at solving
the task.

2.3.1 Data Set
A collection of data points is often referred to as a data set which we denote X ⊆ RM . Each data point
x ∈ X itself consists of a set of M features, where each feature can be interpreted as a description of an
attribute that the data point posses. Example: Consider a class of students, this can be interpreted
as a data set where each student is a data point. Each student can be described, and differentiated,
by a set of features. These features can be numerical, such as their height or shoe size. The features
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can also be categorical, such as hair color or favorite subject in school.

In machine learning we often refer to a labeled data set. The data set X is then accompanied by
an additional set Y consisting of different labels y assigned to each data point x. These labels are
sometimes called true labels or ground truths. Essentially, the labels are just features, but they are
the features that the machine learning model will try to predict, which is why we like to keep them
separated. In the context of bioacoustics, the data point x could be an audio file containing an animal
vocalization with the label y being which species is associated with the sound. Labels can be both
categorical or numerical. If the label is categorical, we speak of a classification task, and if it is
numerical, a regression task. Going forward, most explanations will be centered around classification
tasks as these are of higher importance for this thesis.

Class imbalance

A general problem with all types of classification tasks is the occurrence of class imbalance. This is
when a vast majority of the data set belongs to a certain class, whilst other classes lack support in
the data set. It is easy to imagine that this is almost always the case when presented with bioa-
coustic data, as there are species and animals more common or louder than others, and thus occur
more when the data is gathered. This becomes and even bigger problem when background noise, or
silence, is defined as a class, as the vast majority of bioacoustic data might consists of background noise.

Class imbalance can pose a problem in two ways. The first is when training the model. If a machine
learning model is faced with more examples of a certain class, it could create a bias towards predicting
said class. The second problem with class imbalance is when evaluating the model. If one class
represents the vast majority of the data set, general performance measures might only reflect the
performance of the majority class. This problem can be adressed by considering other performance
measures, making sure that different classes are all reflected.

2.3.2 Training
Providing experience to a model by presenting it to data is a part of what is called training the model.
Depending on the purpose of the model this can be done in different ways. Machine learning methods
can generally be divided into two categories, supervised and unsupervised. Supervised learning is when
a model learns to explicitly predict the labels of a data set, by being presented to data. Unsupervised
learning refers to trying to find patterns and structure in the data, without knowing what to look
for. The difference is explained by the names, where a supervised machine learning model is being
supervised by the label y. In a supervised context, models explicitly predict the label, or target variable.

Another useful application of supervised learning is for regression problems, where one tries to predict
numerical values, usually by fitting a function that follows the curvature of the given data. One basic
example is the problem of linear regression, that is to fit a linear function f(x) = kx + m to some
measurements (xn, yn), n ∈ {1, 2, ..., N}. A different example of a regression task, that is related to
bioacoustics, could be predicting the start or end time of a dog bark in auditory data x.

The unsupervised approach does need any explicit label of the data, and focus rather on finding
patterns and relations between the data points in the given set. This can be used to group or cluster
data that is similar.

Classification

Classification problems are often solved using supervised learning. The fact that each data point in
the data set has a true label, in the form of a target variable, allows for a straight forward approach to
determine how well the model performs as the label can be compared with the prediction. One common
performance measure for classification tasks is the accuracy of the model, which is simply determined
as the ratio between the number of correctly assigned labels and the total number of predictions. This
metric is useful and often used for classification problems, where a data point is assigned a discrete
class and the labeled data set contains the class corresponding to each data point. The special case
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where only two classes occur is called a binary classification problem. When multiple classes occur,
the task is called multi-class classification.

In order to represent a true label in a multi-class classification problem it is common to use a so called
one hot encoding vector. This representation of the class is what the model sees and tries to predict.
The one hot vector is a binary vector that represents each class and usually contains as many elements
as there are possible classes. The value on the i :th position determines the data points belonging of
the i :th class. Where 1 usually refers to the data point belonging and 0 meaning that it does not. This
representation will be important later, when we provide a more detailed explanation of how classifica-
tion models are constructed and trained.

If we have three classes, baby, dog and meerkat, each class has a unique representation in the one hot
representation. For example, the representation could be

"baby" −→ [1, 0, 0]

"dog" −→ [0, 1, 0] (2.7)

"meerkat" −→ [0, 0, 1]

Loss function

A fundamental part of training is the ability to determine if improvements are being made, i.e. if the
training is successful. In machine learning this is achieved through the so called loss function L(θ).
The loss function is dependent on the model parameters θ and is a type of performance measure,
usually related to some average error between the model prediction of a datapoint f(xi; θ) and the
ground truth yi.

L(θ) = 1

N

N∑
n=1

ℓ(yn, f(xn; θ)) (2.8)

In (2.8), ℓ is the loss function for a single prediction. Accuracy has been introduced as a metric of how
well models performs when faced with a classification problem. This is a discrete measurement, either
the model is correct or not. This means that accuracy isn’t differentiable which is necessary in order to
optimise the loss function with standard methods. Let’s consider an example to illustrate this principal.

Imagine shooting 3-pointers in basketball. If you continuously hit the rim after each throw, you know
that you are close to your goal and just need small adjustments. Compare this to throwing the ball
with your eyes closed, meaning you don’t see how close you are unless you hear the ball going through
the net. If you don’t see where the ball lands, it is hard to know what adjustments to make. Whilst
your accuracy is the most interesting metric of how good of a basketball player you are, it is not the
most crucial information for you to improve. This is the difference between a general performance
metric and a good loss function. When evaluating a model, accuracy might be a good sign of perfor-
mance, but it is not the feedback it needs to train and improve.

There are multiple different loss functions, applicable for different purposes. Consider a linear regres-
sion problem. Let’s assume we have a data set X ∈ R2 and wish to fit a straight line. The distance
between the value yn of the data point xn and its corresponding value ŷn on the regression line de-
termines how well the line fits for point n, see figure 2.13. The mean of all the squared errors gives us
a good loss function for this problem. This is called the Mean Squared Error :

MSE = ℓ(yn, ŷn) = (yn − ŷn)
2 (2.9)

Training the model can now be reduced to optimising the loss function. This will be covered in its own
section, but it is important to note that it is often times helpful if the loss function is differentiable.
Many optimisation methods use the derivative to update the model parameters in a favorable way.

Having described the use and purpose of a loss function it is time to introduce the categorical cross-
entropy loss, also called the softmax loss, as it is the loss function used in this thesis. It is customary
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Figure 2.13: Mean Squared Error - visualisation of MSE. The difference, yn - ŷn, for
the true- and predicted value of point xn is marked with a solid black line. The regression
line shows the line of which the mean of the square of all the distances (black dashed
lines) is as small as possible, i.e. the line which reflects the underlying data as good as
possible.

to use this loss when faced with a multi-class classification problem and combines the softmax output
activation function and the cross-entropy loss function. The purpose of an activation function will be
saved for later. What is important now is to know the output of the softmax function, i.e. what it
returns. It returns a probability distribution of the data point belonging to each class in form of a
vector. In other words a vector where each element represents the probability of belonging to a class.
The sum of the vector should be one, as the total probability is one.

In order to calculate the categorical cross-entropy loss, the output vector is compared with the true
label in its one hot encoding vector form. Naturally, if the prediction is perfect, this will be identical to
one hot representation of the ground truth. The cross-entropy loss function compares the two vectors
with the following equation:

ℓ(yn, ŷn) = CEn = −
C∑

c=1

ycn log2(ŷ
c
n) (2.10)

ŷcn is the predicted probability of class c for data point n, whereas yc is the one hot encoded ground
truth for data point n and class c. Taking the mean of all these errors for all predicted data points n
gives us the full cross-entropy loss function [16].

Performance Metrics

In order to compare and evaluate models after training, a reasonable performance metric is vital. In
order to develop this theory, we will consider a positive class (yes) and a negative class (no). In this
thesis, when different animal vocalizations are studied, all animal classes are assigned to the positive
class whereas background noise is assigned to the negative class.

If a model correctly identifies a positive data point, this is referred to as a True Positive, or TP. Sim-
ilarly, a True Negative TN is a correct classification of the negative class. Conversely, False Positives
(FP) or False Negatives (FN ) relate to incorrect classifications of the positive and negative classes,
respectively. These four metrics can be used to construct other types of metrics that provide different
perspectives of the models performance. A graphical interpretation often called a confusion matrix is
shown in figure 2.14.

22



2.3. MACHINE LEARNING FUNDAMENTALS CHAPTER 2. THEORY

Figure 2.14: Confusion matrix - A general confusion matrix for a binary classification
problem. TP (True Positive) shows how many correctly predicted labels of class "yes".
TN (True Negative) shows how many correctly predicted labels of class "no". FP (False
Positive) shows how many wrongfully predicted labels of class "yes". FN (False Negative)
shows how many wrongfully predicted labels of class "no". A large amount on the diagonal
of the matrix is desired.

One previously mentioned metric is accuracy, which is the ratio of correct predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.11)

This metric is commonly used, but is not ideal when faced with class imbalance. Imagine if 90% of
data points belong to the negative class. The model can then predict all labels being negatives and
the accuracy would turn out to be relatively good. This type of class imbalance is common in real life
data and is a challenge faced in this thesis, which makes accuracy a less interesting metric. A better
metric in these types of situations is precision, and is calculated in the following way:

Precision =
TP

TP + FP
(2.12)

It can be interpreted as how good the model actually predicts the positive class, as all predictions that
involve the negative class is no longer taken into account. This makes precision suitable for imbalanced
problems, where some classes might be more important to evaluate than others. An additional metric
that is suitable in these situations is recall, and is calculated in the following way:

Recall =
TP

TP + FN
(2.13)

It looks similar to precision, but can be interpreted as how many instances of the positive class did
the model manage to predict correctly. As the property of both these metrics are important there is
a third metric that takes the harmonic mean between the two. This is the so called F1-score, and is
calculated in the following way:

F1 =
2 · TP

2 · TP + FP + FN
(2.14)

It is important to not that the division into a positive and negative class is not only useful when dealing
with a binary yes/no classification problem. It can easily be adopted to a multi class scenario in two
ways. The first alternative is to look at one class at a time, which will represent the positive class.
The other is to assign a selection of classes to the positive class and the rest to the negative class.

2.3.3 Optimisation
We have discussed training as a way of making a model better in terms of presenting it to data and
minimizing a loss function. We haven’t discussed the optimisation theory that goes into doing this
successfully. How do we find the correct model-parameters θ for our machine learning model? The
fundamental part of the optimisation is to minimise the loss function L(θ), i.e. find the arguments that
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provides the minimal value of error and thus the optimal solution. It is favorable if the optimisation
is not to computational expensive. For further explanations we assume our loss function to be differ-
entiable on a closed interval. The Extreme value theorem then holds as the function is continuous and
this assures that a minimum value exists. The optimisation algorithms in this section will be visualised
in two dimensions but are all scalable for larger dimensions. Generally, optimisation algorithms relies
on an initial guess θ0. The initialization is often random, which means these algorithms can differ in
time and computation, and a number of trials might be necessary. Evaluating the loss function at each
positions allows for an understanding of how the weights should be updated to improve performance.
As the function is differentiable the gradient of the function can be determined in each point, and thus
the direction of which a lower value can be reached. This approach is called Gradient Descent (GD)
where every new step at each time t is being updated by the gradient of the loss function at the current
position:

θt+1 = θt − γ∇L(θt) (2.15)

The subtraction sign is due to the fact that a gradients points in the direction of which the function
has its highest increase rate. The gamma is called the learning rate, or step size and determines the
magnitude of the step taken at each iteration. This is a so called hyperparameter as it has to be
determined in advance and can be tweaked for better performance. The learning rate is usually in the
range of (0, 1] and if it is too small the minimum can be hard to reach as too many iterations might
be needed.If too small, the optimisation might converge to a local minimum i.e the minimum in some
interval. This means that the method fails to find the global minimum which is the minimum over all
θ for which the function is defined. If the learning rate is too high then the minimum can easily be
missed as the method might fail to converge. Figure 2.15 shows how a GD search gets stuck in a local
minimum and thus does not converge to the optimal solution of the problem.

Figure 2.15: Gradient Descent - Global- and local minimum - The phenomenon of
Gradient Descent (GD) getting stuck in a local minimum. This prevents convergence to
the global minimum.

One way to avoid converging to a local minima is to repeat the optimisation multiple times with
different initial guesses and then hopefully find the global minima of the problem. This becomes very
computational expensive as a lot of gradients have to be calculated, especially if the data set is large.
To solve this an approximation of the gradient can be used instead. In Stochastic Gradient Descent
(SGD) a random mini-batch of data points are chosen to represents the whole data set, and the gradient
of the loss of that data point is used as the update term instead.

θt+1 = θt − γ∇Li(θt) (2.16)

Here Li(θ) relates to the loss for batch number i. The stochastic part of SGD is the division in to
mini-batches. This does not only improve the computational time but also provides stochasticity in the
stepping at each iteration, as a mini-batch rarely represents a whole data set perfectly. The stochastic-
ity tends to help with the problem of getting stuck in local minima. As the search is inexact it usually
converges toward a less accurate minima after more iterations as a trade-off for its computational
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efficiency. It is possible to have an adaptive learning rate which allows for the learning rate to change
for each iteration. This has the potential of combining quick convergence and precise results. In 2014
the Adaptive Moment Estimation, or ADAM, was introduced. It uses the momentum at each step
by taking the previous directions into account. These are weighted with an exponentially decreasing
factor which rewards more previous directions over old ones. The new accumulated direction is then
also multiplied with a step size for easy magnitude adjustments before updating the step. Algorithm
4 shows the full loop [26]. ADAM includes more parameters to initialize, but these usually need less
tuning than parameters in other optimisation methods.

Algorithm 4 ADAM Optimisation Algorithm
Require: Learning rate γ, exponential decay rates β1, β2, and a small constant ϵ.
m0 ← 0
v0 ← 0
Initialize θ0 ▷ Initialize guess for parameters θ0
t← 0
while not stopping condition do ▷ Loop until minimum reached or max number of iteration

t← t+ 1 ▷ Take a step
Compute gradient gt ← ∇f(θt−1)
Update biased first moment estimate: mt ← β1 ·mt−1 + (1− β1) · gt
Update biased second moment estimate: vt ← β2 · vt−1 + (1− β2) · g2t
Compute bias-corrected first moment estimate: m̂t ← mt/(1− βt

1)
Compute bias-corrected second moment estimate: v̂t ← vt/(1− βt

2)
Update parameters: θt ← θt−1 − α · m̂t/(

√
v̂t + ϵ)

end while
Final parameters θt

2.3.4 Neural Networks
So far, the theory has revolved about how data might be used in machine learning and how to optimise
models. Little has been said about what a machine learning model might look like. In this section we
introduce the neural network, a model that comes in many shapes and forms. The neural network is
of importance in this thesis as more advanced versions of it are used to extract features from auditory
data, and a simple network is used to classify animal vocalizations.

Neural networks are universal function approximators, meaning they can approximate any function.
As most things can be described as functions, neural networks are a very powerful tool to have in
your machine learning toolbox. Whilst it is not feasible to give a comprehensive explanation of neural
networks and their parameters, we attempt to give some insight to the topic here.

A neural network consists of nodes ordered into layers with edges connected to other nodes. Figure
2.16 is a visual representation of this structure. The nodes in the first layer represent the input data
x. A neural network essentially takes a weighted sum of the nodes in the first layer, then applies some
(typically non-linear) transformation and then repeats this process in the next layer. Each edge has a
weight, ω, which is used in the mentioned sum. This means that a node h in the next layer is assigned
a value by taking the weighted sum a of the nodes that point to h. This weighted sum a is fed through
a function, called the activation function, which gives the node its final value h. The nodes are updated
in a feed-forward way. In figure 2.16 this means that information is passed from left to right. The
weights are selected by optimising some loss function. In doing so, the neural network approximates
the function that maps the data x to the label y.

A bias, b is usually added to each node, when calculating the weighted sum a. The bias is also a weight
that is added to the input to the activation function. For a simple neural network that represents a
linear function, we can interpret the weights ω as the slope of the function, and the bias as the intersect.
Note that the bias is not depicted in figure 2.16.
Activation functions are often what determines what types of function the network can approximate.
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Figure 2.16: Small Neural Network - An example of a small neural network containing
two hidden layers. The network is fully connected and has 3 input nodes, and 2 output
nodes.

If the activation functions are linear, ϕ(a) = a , the network can only capture linear relationships in
the data. Other possible choices of ϕ include the Rectified Linear Function ϕ(a) = max(0, a), or the
tan-hyperbolicus ϕ(a) = tanh(a), both of which are popular options.

As an example we consider a node in the second layer of the neural network in figure 2.16: h
(2)
1 . Its

value will be affected by the weights assigned to the edges pointing to the node. There are K = 3 such
edges, the weights of which we denote ωk. We denote the bias that affects our node as b (not displayed
in the network in figure 2.16). Finally, given an activation function ϕh assigned to our node we can
calculate the value of the node as,

h
(2)
1 = ϕ(a21) = ϕ(

K∑
k=1

ωkh
(1)
k + b(1)) (2.17)

In order to extend this to a full network, the notation of weights and biases would have to change to
account for different layers and nodes. This notation would look more intimidating, but it would be
the same core idea at play. [16]

Output nodes

The output of the neural network ŷ is represented by a set of nodes. In a regression task, when trying
to predict a real-number, only one node is needed, usually with a linear activation function. The output
node(-s) represent an output vector, that can be compared with the ground truth for that data pattern.

The loss function relies on a comparison between the model output and its true label. This means
that the structure of these two has to be the same. By carefully choosing the activation function for
the output nodes, one can make sure that the output has the properties necessary in order to be used
in the loss function. For the sake of this thesis, only the one used will be introduced. Keep in mind,
there are many more. The softmax activation function returns an output in form of a vector, y. The
vector has two crucial properties:

• The sum of all elements in the vector equals to 1,
∑C

c=1 yc = 1.

• Each element in the vector is constrained to the range between 0 and 1 (exclusively), yc ∈ (0, 1)

Both these are fundamental properties for the output vector to be the form of a probability distribution.
The conversion to probabilities are done using the following equation for each element:

yc =
eac∑C
i=1 e

ai

, (2.18)

where a is the argument provided from the previous layer in the neural network [16].
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Chapter 3

Data Generation

A short chapter with an overview of the data used in this thesis. In 3.1, the data generation is explained.
This section is followed by an exploration of the generated data in section 3.2. The chapter ends of
with a visualisation of the distribution of the data.

3.1 Method

3.1.1 Generating Soundscapes
The data used to study active learning for the SED model is synthetic and generated by mixing fore-
ground sounds with background audio. The foreground audio consist of the events that are supposed
to be detected by the model. These audio files are shorter and contain sounds belonging to one out of
three classes: meerkat, dog and (human)-baby. The audio used as background noise are recordings
from a park, and will be refereed to as noise. The noise has some variability, as it is possible to hear
lawn-mowers, birds, foot-steps etc. in these recordings. All data points generated from the background
sources are 10 second 44.1 kHz .wav files. Each file is mixed with different number of events and paired
with a ground truth, specifying a start-time, end-time and class for each event that occurs.

Each data set will be referred to as DSNR
r . SNR specifies the signal to noise ratio used when mixing

the noise with foreground signals, see equation (2.2). The parameter r specifies the ratio between the
number of files with events and the total number of files. This means that 1 − r is the ratio of files
without events, i.e just noise. In this project, D0

0.2 is the primary data set used when studying active
learning for SED, but other SNR and r values are tested to study the impact of these two parameters.
The size of a data sets is defined by the number of .wav files it contains, where |DSNR

r | = 2500 is used
in all experiments in this thesis.

There are some stochastic aspects of the data generation. The number of events present in a file, the
class assigned to each event and the temporal location of the events in the file are all chosen from a
uniform distribution U(a, b). The length of the events are determined by the duration of the foreground
files themselves. The classes might have different distributions in terms of length. Remember that only
a fraction r of the files in DSNR

r will contain events. The number of events that each file with events
will have is drawn from U(1, 3). Once the number of events is determined, the type of event is chosen
uniformly over all three classes. Finally the temporal placement of events is selected by randomly
drawing a start time (in seconds) uniformly over an interval, tstart ∼ U(0.5, 8). The interval facilitates
the annotation process for the oracle. If the placement leads to an overlap between two events, tstart
is drawn once more. The maximum duration of a single event is set to 7 seconds to make room for
other events. The data generation explained above is summarised in table 3.1.
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Table 3.1: Summary of Data Generation - Summary of the data generation process
which determines the properties of each data set DSNR

r . Ne is the stochastic variable
determining the number of events in a file, given that it will have events. tstart is the
start time within a 10 s file drawn for each event in the data set.

Parameter Value
Data set size |DSNR

r |
Ratio of files with events r (data set dependent)

Signal-to-noise ratio SNR (data set dependent)
Audio file length [s] 10.0

Maximum event length [s] 7.0

Distribution of Ne U(1, 3)

Distribution of tstart U(0.5, 8)

P (event is baby) Pb = 1/3

P (event is dog) Pd = 1/3

P (event is meerkat) Pm = 1/3

3.1.2 Evaluation Data Set
For each data set DSNR

r , a different data set D̄SNR
r can be generated. The reason for this is to evaluate

how the developed active learning frameworks on DSNR
r adapt to a slightly different domain, contain-

ing unseen events and noise from new audio recordings.

Each evaluation data set D̄ is generated using the same parameters as for D, see table 3.1. The main
difference between the two sets is that D and D̄ are generated using different recordings, both for the
foreground- and the background audio. For instance, when a meerkat event is placed in a .wav file in
set D, the meerkat recording is randomly chosen from a set of meerkat recordings Sm. When placing
a meerkat event in a file in set D̄ the recording is chosen from a different set of meerkat recordings S̄m,
where Sm ∩ S̄m = ∅. The same goes for placing noise, and any other event.

All data sets DSNR
r used for the studying of active learning are separated, where one part of the data

set (80%) is available for training and the other part (20%) is used as a validation set for evaluating
model performance. The method for this will be covered in more detail when the methodology to
study active learning is explained. The D̄SNR

r data set could then be used in the same way to see if
the framework is able to generalise to a slightly different domain.

3.2 Results from Data Generation

3.2.1 Exploring D0
0.2

As previously mentioned, the D0
0.2 is the most commonly used in this thesis. The event length dis-

tribution for each class from the generated data set D0
0.2 is shown in figure 3.1. It is clear that the

baby vocalizations are the longest, and meerkat vocalizations are the shortest out of the three classes.
Highest variance is observed for baby events, whereas meerkat events have the lowest variance. These
properties are also seen in table 3.2 which summarises the distribution of event lengths EL. The data
set data consists of 25 000 s of audio. This is made up by 302.7 s of baby vocalizations (1.2%), 110 s of
dog barks (0.4%), 59 s of meerkat sounds (0.2%) and 24 529 s of noise.
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Table 3.2: Distribution of Event Lengths (EL) for D0
0.2 - D(EL) is the standard

deviation of the event lengths. "Me" represents the meerkat class. It is clear that the
average length events is longest for baby and shortest for meerkat. The same goes for the
standard deviation.

Class Number of Events Average EL Std(EL) max EL min EL

Baby 302 1.00 0.81 7.00 0.08
Dog 341 0.32 0.24 1.54 0.07
Me 339 0.17 0.054 0.29 0.10

Figure 3.1: Event Length Distributions - This plot shows the content of the D0
0.2 data

set, in terms of the temporal distribution of each class. As the baby events had one outlier
that was 7 seconds long, this event is not displayed in order to better see the distribution
of the other events.

3.2.2 Exploring D̄0
0.2

In this section, the same exploration is done for D̄0
0.2 as previously done for D0

0.2. It is important to
know how similar D̄0

0.2 and D0
0.2 are, as this sets the context and expectations for the final testing on

D̄0
0.2. Differences in the two data sets can help explain potential differences in results.
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In table 3.3 the distribution of events is summarised. Most of the class dependent traits seen for D0
0.2

can be observed here, with slightly different values. The total event time is longer in D̄0
0.2. Baby

events are on average longer, and dogs on average shorter in D̄0
0.2 compared to D̄0

0.2. The distribution
of event lengths is also shown in figure 3.2. The data set comprises a total of 25 000 s of audio. Among
these, there are 352.04 s of baby vocalizations (1.41%) of the data set, 82.61 s of dog barks (0.33%), and
62.20 s of meerkat sounds (0.25%). The majority of the data set, 24 503 s, consists of noise, representing
98% of the total data. In D0

0.2, the events total 471 s, whereas the events in this data set account for
497 s which is a 5% increase in events.

Table 3.3: Distribution of Event Lengths (EL)for D̄0
0.2 - D(EL) is the standard

deviation of the event lengths. "Me" represents the meerkat class. In general, the distri-
butions look similar in comparison with D0

0.2. The main difference is that the dog events
are slightly shorter, and baby events slightly longer.

Class Number of Events Average EL Std(EL) max EL min EL

Baby 300 1.17 0.85 3.61 0.17
Dog 313 0.26 0.18 1.04 0.12
Me 373 0.17 0.05 0.28 0.10

Figure 3.2: Event Length Distributions - This plot shows the content of the D̄0
0.2 data

set, in terms of the temporal distribution of each class.
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Chapter 4

SED Model

This chapter presents the SED model used in this thesis. Section 4.1 gives summary of the entire model
along with a visualisation of the full SED pipeline. Following this, section 4.2 breaks down each part
of the model. Finally section 4.3 presents some examples that aim to show how the model works.

4.1 Summary of SED Model
The SED model used to study active learning is built using a segment based approach. Each 10 second
file in a data set D is split into short segments and fed through a pre-trained feature extractor called
YAMNet (see section 2.1.3, Advanced Network Architectures). YAMNet outputs embeddings which are
low dimensional representations of the input data. The embedding corresponding to each segment are
assigned their ground truth class: noise, baby, dog or meerkat. This is the target variable to predict
based on the embeddings. Note that noise is defined as its own class.

A small neural network is built to classify each segment based on the embeddings. This is referred
to as the classifier-head, which is trained to predict the class for every segment in every file. The
classifier-head has input dimension 1024, corresponding to the YAMNet output embedding dimension,
and 4 output nodes, one for each class. Once the classifier is trained, it outputs probabilities for each
of the classes, for each time-segment in the files. Figure 4.1 shows the entire pipeline for the class
prediction of a single segment.

Figure 4.1: SED Prediction Pipeline - The pipeline from audio source, in this case a
baby, to a final prediction of a single segment using the architecture of the model in this
thesis.

For SED, the desired output is a start- and end time for events, meaning we need to process and
merge segment predictions into this format through post-processing. This is done by first filtering the
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raw output prediction from the classifier-head with a median filter of size 3, which applies the median
operator over the time dimension in the classification input. This essentially means that the prediction
for a segment is affected by the probability outputs for adjacent segments. After filtering, the adjacent
segments assigned the same class are merged into events, which makes up the final predictions of the
SED model.

In the sections that follow, more detailed explanations of all the fundamental parts of the SED model
is provided.

4.2 Method

4.2.1 Pre-processing
The SED pipeline starts with loading the generated .wav files and pre-processing. It is preferable if the
file lengths are a multiple of 0.96 seconds as that is the input dimension of YAMNet. For this reason,
when loading the files, zeros are added at the end to make the length 10.56 seconds. The sample rate
required by YAMNet is 16 kHz (15360 samples). Since the data set contains 44.1 kHz audio files, we
can fit more information into YAMNet by not resampling the data to 16 kHz. This is accomplished
by using shorter time segments than 0.96 s with the native sample rate of the files. Shorter time seg-
ments do not only allow more information to be retained in the embedding, but also allows for a finer
resolution for the SED.

In this project, a segment size of 1
8 · 0.96 = 0.12 seconds is used, and each segment overlaps 50%

with the next, which allows for even better resolution. As previously mentioned, YAMNet accepts
15360 samples. Zero-padding is used to adjust for this dimensionality, that is making the 0.12 second
segment recorded at 44.1 kHz fit into YAMNet. In summary, the file is cut into slices of 0.12 seconds
(44.1 kHz), and zeros are added at the beginning and end so that each slice fulfills the requirements
from YAMNet. Each file in the data set contains 175 segments after zeros are added to the end. This
means that YAMNet outputs a time-series of 175 embeddings.

The goal of the SED is now to classify each small segment, and then combine the segment predictions
to intervals to obtain events, characterized by the events start time, end time and class. In order to
build a classifier for each segment, they must be paired with a corresponding ground truth. As the
raw format of the ground truth is the class, start- and end time, this also needs to be processed in a
segment-like manner. Each segment in the file has its own start- and end time, so it is easy to check
if a segment overlaps with the interval where a ground truth event is present. However a decision has
to be made about how much a segment must overlap with a true event in order for it to be assigned
the label of that event. If a segment only overlaps with 0.01 s of an event, it may not be reasonable
to assign that segment with the event label, see figure 2.2. In this project, a threshold of 50% is set,
meaning that a segment must contain more than 50% of an event in order to be assigned the label of
that event. This option, along with the segment overlap of 50%, best captures the temporal position
of events in the ground truth data. Note that this means that events of duration 0.06 seconds would
be completely discarded, but this is not a problem in our case as no such events exists, see table 3.2.
The reason behind the 0.12 second segments is to assure that no true events would be discarded by the
pre-processing. The class assigned to each segment is represented as a one-hot-encoded vector, which
is useful when training the classifier.

4.2.2 Classification
After pre-processing, YAMNet is used to embed all segments. The purpose of this is to reduce dimen-
sionality and extract salient features from the segments to classify them. A classifier-head in the form
of a small neural network is used for classification of each segment. In our case, the classifier-head is
fully connected and has no hidden layers, i.e it connects all input nodes with all output nodes directly.
The input layer consists of 1024 nodes corresponding to each feature in the YAMNet embedding. There
are four output nodes, one for each class, with softmax activation functions. This means their value
can be interpreted as the models confidence that the input segment embedding belongs to each class.
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The final prediction of each segment, corresponds to the node with the highest softmax output.

The classifier-head is the part of the SED pipeline that requires training in a supervised manner. Thus,
it is in the training of the classifier-head where active learning is applicable. The training parameters
seen in table 4.1 are the ones chosen for our model, as these gave good validation performance when
training the model. These hyperparameters are used when training each model at every active learning
iteration, this to draw valid conclusions and comparisons.

Table 4.1: Classifier-head Hyperparameters - These are the predetermined hyperpa-
rameters used to train each model when studying active learning.

Parameter Value
Input dimension 1024

Output dimension 4
Loss function L Categorical Cross-Entropy

Optimisation method ADAM
Learning rate 0.01

Epochs 50

4.2.3 Post-processing
The raw output from the classifier-head for each segment needs to be processed into event labels
consisting of class, start- and end time. This begins with filtering the results, followed by merging
predictions into continuous intervals.

A median filter of kernel size 3 is used to remove model noise, see section 2.1.1. The median opera-
tor is not linear, meaning we cannot describe the filtering mechanism using traditional convolutions.
However, we can think about it much like a convolution. Consider the median operator m3(·) which
returns the median of its input, which is a vector of length 3. For the 175 segments we output 4 class
probabilities, meaning the raw output from the model, for each file, is R4×175. The median operator
is then applied along the temporal dimension, independently for each of the 4 class predictions. The
first and last segments in the file keep their raw output, as these segments are missing one of their
neighbouring segments.

As an example, consider that three consecutive segments are assigned labels "meerkat, baby, meerkat"
by the classifier-head. After filtering, the baby prediction in this example will likely be convinced by
it’s neighbours that it should be labeled as a meerkat. This is one of the advantages of the filtering
process; that single predictions can never break up entire events. This is an important feature to have
in the post-processing, as the segments overlap.

Following the filtering process, any single segment events that remain are discarded. This is reasonable
as we have previously established that no event can only be covered by one single segment. Segments
are merged into an interval, described by its start time, end time and class, for all consecutive segments
that belong to the same class. The processing is now complete, meaning the output from this stage is
the final model output for the SED.

4.3 Results

4.3.1 Visualisation of Model Output
In figures 4.2 and 4.3 the final SED predictions are visualised against the ground truth. The purpose
of these figures is mainly to see how segments are classified and then processed into events. In this case
the model was trained on a small data set of 100 files, with SNR = 3dB, for visualisation purposes.
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In the bottom subplots of both figures, the classifier-head output, before post-processing, is visualised.
In figure 4.2, it is clear that the predictions are good in terms of placement in the time domain, but it
struggles with some of the segment labels. However, after filtering the predictions are nearly perfect,
as seen in the top subplot. In figure 4.3 we see a similar example, but in this case we see the impact
of the filters removal of single segment predictions, where it manages to remove false positives.

Figure 4.2: Visualisation of the SED model output, Example I - A 10 seconds audio
file containing one event of each class; baby, dog and meerkat. (bottom) Plotting the true
label segments over and the predicted segments under the x-axis. (top) The results of the
post-processing. The true strong label over and the post-processed predicted segments,
i.e the final event predictions, under the x-axis. "Me" represents the meerkat class.

4.3.2 Segmented Data
As the model is trained on small segments rather than full files, it can be a good idea to view the data
as a set of segments rather than .wav files in order to understand the results better. In table 4.2, the
number of segments for each class is shown for D0

0.2, separated by their ground truth label. Due to the
segmentation of the events it is obvious that a big class imbalance arises. The difference is not due to
any large discrepancy in event frequency, but rather a consequence of the difference in the distribution
of event duration between the classes. The number of segments needed to cover an event is directly
correlated with how long the event is. In figure 4.4, the number of event segments per file is plotted.
This shows the distribution of how many event segments occur in files with events. In this plot, only
the files with events are considered, as most files contain only noise. This information could be useful
in order to distinguish files with events from files without events in an active learning context.
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Figure 4.3: Visualisation of the SED model output, Example II - A 10 seconds
audio file containing one event of each class; baby, dog and meerkat. (bottom) Plotting
the true label segments over and the predicted segments under the x-axis. (top) The
results of the post-processing. The true strong label over and the post-processed predicted
segments, i.e the final event predictions, under the x-axis. "Me" represents the meerkat
class.

Table 4.2: Class Distribution in Segmented Data - Distribution of classes after pre-
processing. For the D0

0.2 data-set which is the main data-set used for studying active
learning. "Me" represents the meerkat class.

Class N. Segments Percentage of data set Average N. Segments per Event
Noise 429634 98.20 % -
Baby 5048 1.15 % 16.7
Dog 1843 0.42 % 5.4
Me 975 0.22 % 2.87
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Figure 4.4: Distribution of Event Segments in D0
0.2 - The distribution of the number

of event segments present in the files in data set D0
0.2. Only files containing events are

considered.
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Chapter 5

Active Learning for SED

This chapter covers the methods used, the results produced and discussions of our study of active
learning. Section 5.1 starts of by explaining how active learning is simulated and then continues with
the setup used for the primary tests. This is followed by section 5.2 where the first results from testing
different aggregation strategies is presented, along with discussions. Section 5.3 presents the result of
the different diversification methods used and their relation to the aggregation strategies being used.
Finally, the generalization of the strategies are presented in section 5.4. This is where new data sets
are tested, in order to get an idea how robust the results are.

5.1 Method

5.1.1 Simulating Active Learning
In order to simulate active learning and test different strategies, one approach is to have access to a
large annotated data set, where the size of the data set is more than enough to reach satisfactory results
if all the data is used for training. The model is then initialized (trained) on a fraction of this data set,
where the rest of the data gets defined as "unlabeled". The model can then iteratively access more
and more data by asking for annotations from the "oracle" using a querying strategy . The oracle in
this case is just simply revealing the labels previously hidden for the model. Alongside this, a baseline
strategy is used, where queries are selected randomly, in batches of the same size as the active strategies.

Each strategy is assigned a model, which is retrained on a larger labeled set at each iteration. The
model is evaluated on a separate validation/testing set, for valid performance results. By continuously
increasing the amount of data accessible for the model, we can measure performance of the SED model
in relation to the fraction of labeled data Lr, which is our budget. This is defined as:

Lr =
|PL|

|PL|+ |PU |
(5.1)

Here Lr = 1 means we use all the data allocated for training. These results can be used to visualise the
performance improvement between the models trained on different amounts of data, given a querying
strategy. This data can then be used to compare strategies, a good active learning method should see
a quicker increase in performance with respect to Lr compared to the baseline strategy. The increase
in data at each iteration can differ, but usually smaller batches, and thus less data, are queried in
the beginning to emphasise the impact of active learning in the early stages of data gathering. This
means that |PQ| in algorithm 1 and algorithm 2 is not the same throughout. This is to allow for high
resolution in the early stages, and to save computational resources in the later stages of active learning.

5.1.2 Setup
The initial focus of the active learning research is to verify that active learning is useful for SED and
finding an aggregation method that gives a fast and significant increase in performance compared to
the baseline strategy. Note that for all testing, a validation data set DV ⊂ DSNR

r is used to evaluate
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the model. The validation set consist of 20% of the files in DSNR
r . The same split is done for D̄SNR

r

when testing active learning on a slightly different domain.

Table 5.1 presents how queries are chosen in terms of the number of files selected at each step. In
the beginning, batches containing 10 queries are created, as we want to closely study what happens
in the beginning of the learning process, as this is the crucial part of active learning, where more is
to gain from a good strategy. We want to make sure that active learning is able to quickly gain an
advantage over the baseline strategy, which is why we use a fine resolution in early stages of training.
The baseline model queries files randomly instead of actively in all tests.

Table 5.1: Active Learning Queries - Summary of the number of files queried in the
active learning loop at each iteration. Lr relates to the fraction of training files used and
|PL|i indicates the size of the labeled pool at iteration i. The query sizes presented here
will be used often throughout experiments, with a few exceptions. In some experiments,
the active learning is stopped after iteration 12.

Iteration (i) Lr |PL|i
1 0.005 10
2 0.01 20
3 0.02 40
4 0.03 60
5 0.04 80
6 0.05 100
7 0.06 120
8 0.07 140
9 0.08 160
10 0.09 180
11 0.1 200
12 0.2 400
13 0.3 600
14 0.4 800
15 0.5 1000
16 1 2000

In the primary tests SNR is set to 0 and r is set to 0.2, which have been defined in section 3.1.1.
The data set has size |D0

0.2| = 2500, whilst the validation data set has size |DV | = 500, as 20% is used
for validation. The additional 2000 is kept for training. This is presented in table 5.2, along with the
separation of the data set D̄0

0.2, used for the final test. Lr is defined as the fraction of labeled data,
with respect to the total files allocated for training, i.e 2000 files.

Table 5.2: Data Setup - The size and separation of data sets used for different tests of
active learning.

Data Set Size
D0

0.2 2500
DV 500
D̄0

0.2 2500
D̄V 500
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When testing active learning, seeds are used to initialize the validation set DV and the first labeled
data set, PL at iteration 1. This is to assure that all active learning strategies being compared have the
same starting conditions. We run each experiment with a different seed to see if the same trends can be
observed for different starting conditions. The seed are also used to initialize weights and mini-batches
in the classifier-head so that if two strategies were to choose the same files to train on, the outcome
would be the exact same. The results of all seeds can then be averaged to see the average outcome of
active learning. This also allows for confidence intervals to be determined for all models. Five seeds
are used; 2, 17, 41 91 and 118.

Other data sets

Besides looking at the generalization of the active learning models on a new domain, other contributing
factors and parameters are studied. A data set D0

1.0 is created to make tests on how active learning
behaves when all files contain events (r = 1.0). This is interesting for this particular field of study
as event frequency might vary and it is important to establish what the impact of this change has on
active learning results. Two additional data set D10

0.2 and D−10
0.2 are created where the SNR is different

to see how this affects active learning. All tests executed on these data sets are performed in the same
way as for the others, except they stop at iteration 12 in table 5.1.

5.2 Segment Aggregation Methods

5.2.1 Comparison of Aggregation Strategies
In figure 5.1, we present a comparison between the following aggregation strategies: mean entropy, top
10 entropy, median entropy and mean event entropy, which were introduced in section 2.2.3. These
are compared to the baseline strategy, with respect to total IoU, a SED based metric, see section 2.1.4.
This metric considers both the models ability to classify type of event and noise, and its precision in
time. Note that these results are measured after filtering and post-processing the segment classifica-
tions into full events. The results are averaged over 5 seeds for reliability in the results. The baseline
strategy is run 10 times per seed, due to its stochasticity. Note that the x-axis is not linear, but instead
follows query sizes in table 5.1.

In the plot we can observe that both the top X entropy, with X = 10, and the mean entropy strategy
perform a lot better than the baseline strategy. It appears that top X entropy, with X = 10, is the
most beneficial active querying strategy. An additional observation can be made. When looking at
the performance for the baseline strategy after querying 100% of the files, we see that the top X en-
tropy reaches a similar performance when querying barely 8% of the data. This means that for that
particular performance level, using active learning can cut the budget with 92%. The same goes for
mean entropy, but where a similar performance level is reached around 9%. This is exactly the kinds
of results we want to see when using active learning.
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Figure 5.1: Total IoU: Segment Aggregation Methods - the total IoU results aver-
aged over 5 seeds (N=5), for 4 different querying strategies (mean entropy, top 10 entropy,
median entropy and mean event entropy) along with the baseline. This is computed after
post-processing where the accumulated events are now compared with the true strong
labels. Note that the x-axis is not linear, but instead follows query sizes in table 5.1.
Vertical grid lines are spaced 10% apart. The baseline is run 10 times per seed.

To explain the results above we look at how the model performs on the raw predictions of event seg-
ments. In figure 5.2, the active learning results for the recall performance is shown, i.e classification
accuracy for ground truth events, see equation (2.13). This means that performance for noise segments
is ignored, as we don’t consider TN or FP, see section 2.3.2. Note that we now consider the models raw
classification output, before filtering and post-processing the segment classifications into full events.
This metric is used as it isn’t affected by the extreme class imbalance and shows how well the model
classifies segments which has implications for the final SED output. The same aggregation strategies
are studied in this case, and are averaged over the same 5 seeds.

The results here once again show that mean entropy and top X entropy, with X = 10, both outperform
the baseline strategy. In this case we see that the top X entropy reaches the baseline performance at
100% after only querying barely 3% of the data. This reflects a budget reduction of 97%. The same
goes for mean entropy, but where a similar performance level is reached around 4%. Additional ob-
servation is that the median entropy also outperforms the baseline in this case. The top 10 entropy
strategy is not the single most beneficial strategy when considering this metric. In general the model
seem to improve even more using active learning in this case. This can be explained by either the
fact that the post-processing has flaws or that some strategies give poor performance for classifying
noise, as this is not considered in this metric. Let’s look at the overall accuracy to examine this further.
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Figure 5.2: Recall: Segment Aggregations Methods - The averaged recall results
over 5 seeds (N=5), for 4 different querying strategies (mean entropy, top 10 entropy,
median entropy and mean event entropy) along with the baseline strategy. This metric
only considers event segments, i.e how well the model classifies segments that contain
animal vocalizations. Note that the x-axis is not linear, but instead follows query sizes in
table 5.1. Vertical grid lines are spaced 10% apart. The baseline is run 10 times per seed.

In figure 5.3, the active learning results for the normal definition of accuracy is shown, see equation
(2.11). Note that this also is measured before post-processing is performed. The difference from figure
5.2 is that the noise segments are now included in this metric. Accuracy is a bit biased in this case,
considering the extreme class imbalance seen in table 4.2. This metric is dominated by noise segments,
meaning that the models ability to classify events is not captured by the numerical values produced by
the metric. This makes this metric not very informative, as it focuses on noise. An interesting result
is that top X entropy, with X = 10, appears to have the best performance when considering noise,
compared to the other active learning strategies. It does not however outperform the baseline initially.

This can explain the difference in total IoU and recall performance previously discovered, between
the top performing strategies. Figure 5.3 shows that mean entropy lacks in performance in general
accuracy, i.e. performs poorly on classifying noise. This fact is not captured by the recall metric but
is considered in total IoU. This also explains the reason why median entropy performed relatively well
on recall compared to total IoU. It is clear that both events and noise are important for good SED
performance, and top X entropy is the strategy that manages both well.

We can establish that the aggregation strategies most successful so far are top X entropy, X = 10,
followed by mean entropy. To assure the significance in the performance, confidence intervals are cre-
ated using the realisations from 20 seeds. In figure 5.4 the total IoU, along with matched F1-score,
averaged over all seeds are plotted for mean entropy and top 10 entropy with 95 % confidence inter-
vals. Matched F1-score is an additional SED-metric, more focused on the temporal aspect compared
to total IoU, see section 2.1.4. The intervals for top X entropy and the baseline are separated for all
budgets. Thus, we can say with 95 % confidence that top X entropy, with X = 10, is better than the
baseline strategy for the metrics studied. This is not the case for the mean entropy strategy when
the matched F1-score is considered, but hold for almost all budgets in the total IoU case. An addi-
tional mark is that the top X entropy, with X = 10, performs significantly better than the mean entropy.
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Figure 5.3: Accuracy: Segment Aggregations Methods - The accuracy results aver-
aged over 5 seeds (N=5), for 4 different querying strategies (mean entropy, top 10 entropy,
median entropy and mean event entropy) along with the baseline strategy. This metric
considers all segments, including noise. Note that the x-axis is not linear, but instead
follows query sizes in table 5.1. Vertical grid lines are spaced 10% apart. The baseline is
run 10 times per seed.

(a) (b)

Figure 5.4: Matched F1-score and Total IoU: Segment Aggregation Methods
with Conf. Intervals - The (a) matched F1-score and (b) total IoU results averaged
over 20 seeds (N=20), for 2 different querying strategies mean entropy and top 10 entropy
along with the baseline. The orange line represents the average baseline strategy over 5
realisations for each seed and is displayed with 95% confidence intervals. The same goes
for the querying strategies, where the 95% confidence intervals is based on the average of
seeds.
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5.2.2 Analysis of Queried Files
It can be useful to inspect what type of queries the different active learning strategies make, to get a
better understanding of the outcome of the results. Considering that there is an extreme class imbal-
ance in favor of noise segments, and that the event segments are important to detect for the purpose
of SED, it is likely that the SED would improve if queries are made for files that contain events. As
these files also are made up of a majority of noise (98.2%), the model will still likely perform well at
classifying noise. There should therefore not be any big downside with querying files with events, with
an upside being that more data to support the event predictions are provided. It is thus reasonable to
assume that a good querying technique should choose files with events being present. In this section
we check if this hypothesis holds true, and what implication the queries have for the performance.

In figure 5.5 the average number of segments queried at each iteration is shown for the baseline model
and the models using the strategies top 10 entropy, mean entropy, mean event entropy and median
entropy. The classes are color coded, in order to distinguish how many queried segments belong to each
class. These results stem from the same five seeds as before. Iteration 1 corresponds to the number
of event segments the initial data set consists of and is the same over all models. The later iteration
tends to consist of more event segments as these contain a larger percentage of the data set, thus more
files, compared to the earlier iterations.
It is apparent that the aggregation strategies that perform better, being top 10 entropy and mean
entropy, query files with more event segments, opposed to mean event entropy or random. This can
also explain the initial loss in overall accuracy for some of the active learning strategies in figure 5.3.
When querying files containing events, the dominant class, noise, gets neglected. As noise makes up
the vast majority of all predictions, it has largest repercussion on the accuracy metric.

As previously mentioned, it is interesting to look at the initial stages of querying as this is where active
learning is crucial. Table 5.3 shows the percentage of event segments queried when 2% of the data has
been annotated along with the models recall and total IoU performance at that iteration. As 2% of
the files have been queried, we can expect the baseline strategy to sample 2% of events, as it doesn’t
actively seek out events. This is also the observed outcome. The difference is drastic compared to top
10 entropy and mean entropy, where 14% and 10% of all segments are found in 2% of the data. The
same results for 10% of the data is presented in table 5.4, where it is shown that 61% and 43% of events
are found in 10% of the data for top X entropy and mean entropy respectively. This is clear evidence
that these strategies actively query files with events, and that this pays off in terms of recall and total
IoU. There appears to be diminishing returns in this payoff, especially for recall. This can be seen as
the difference between the mean entropy and top X mean entropy is large in terms of queried segments,
but small in performance, whereas when comparing the baseline to mean entropy the differences are
large for both metrics. This means that we expect less increase in performance per queried event as we
query more and more events. In general, there appears to be grounds for the claim regarding queried
events being related to performance.

Table 5.3: Queried Event Segments (%) - Iteration 3 - The total fraction of queried
event segments to the total number of event segments in the data set. This is a snap-shot
of the active learning loop at iteration 3, where 2% of the training data has been queried.
This data is accompanied by two of the performance metrics: total IoU and recall. These
are the average results over 5 seeds. Random is run 10 times per seed.

Event Type Random Top 10 Mean Mean Event Median
Baby Segments 2% 16% 12% 1% 5%
Dog Segments 2% 12% 7% 3% 3%

Meerkat Segments 2% 7% 5% 2% 4%
All Event Segments 2% 14% 10% 2% 5%

Recall 0.33 0.56 0.52 0.33 0.46
Total IoU 0.31 0.49 0.38 0.28 0.37
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(a) Random (b) top 10 entropy

(c) Mean Entropy (d) Mean Event Entropy

(e) Median Entropy

Figure 5.5: Queried class segments: Segment Aggregation Methods - The number
of queried event segments separated by class at each iterations for (a) random (baseline
strategy) and the querying strategies: (b) top 10 entropy, (c) mean entropy, (d) mean
event entropy and (e) median entropy. These are averaged over 5 seeds. Random is run
10 times per seed.
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Table 5.4: Queried Event Segments (%) - Iteration 11 - The total fraction of queried
event segments to the total number of event segments in the data set. This is a snap-
shot of the active learning loop at iteration 11, where 10% of the training data has been
queried. This data is accompanied by two of the performance metrics: total IoU and
recall. These are the average results over 5 seeds. Random is run 10 times per seed.

Event Type Random Top 10 Mean Mean Event Median
Baby Segments 10% 64% 48% 1% 18%
Dog Segments 10% 60% 40% 6% 19%

Meerkat Segments 10% 47% 28% 4% 17%
All Event Segments 10% 61% 43% 3% 18%

Recall 0.50 0.63 0.63 0.33 0.59
Total IoU 0.50 0.61 0.58 0.28 0.44

When looking at the class specific data in tables 5.3-5.5, keep in mind that the results show the ratio
of queried segments within that class. It is clear that there are some differences between classes. For
the more successful querying strategies, top 10 entropy and mean entropy, babies are over-represented,
whereas meerkats appear to be more difficult to query. Keep in mind that there is a class imbalance
in play, which means that these differences will be even bigger in absolute terms.

In table 5.5, the results preceeding the final iteration (15) of the active querying is shown, correspond-
ing to 50% of the data. We see how many of the event segments in the data set that are queried by each
strategy. As this is the last iteration where active queries are made, this result tells us how many event
segments the different strategies find in total, and how many event segments that the active strategies
leave behind. Whereas top 10 entropy and mean entropy manage to query 95% of event segments, the
other active strategies query way fewer events. At this stage in the training, this doesn’t seem to have
a big impact on the performance metrics, as they are comparable. It is plausible that the model is sat-
urated at this point. It is clear from table 5.3 that in earlier iterations, querying event segments leads
to a leap in performance. At some stage, the model benefits less from being presented to events. The
model might have seen enough variability for the events, and thus struggles to improve further. Figure
5.2 shows us a slight decrease in recall in the later iterations for the better performing aggregation
strategies. This could potentially be due to the model no longer benefiting from the exposure of event
segments, but still needs to accommodate more and more noise during training. We clearly see that
more is to gain from active learning in the early stages, as the model appears more reactive to the data.

Table 5.5: Queried Event Segments (%) - Iteration 15 - The total fraction of queried
event segments to the total number of event segments in the data set. This is a snap-
shot of the active learning loop at iteration 15, where 50% of the training data has been
queried. This data is accompanied by two of the performance metrics: total IoU and
recall. These are the average results over 5 seeds. Random is run 10 times per seed.

Event Type Random Top 10 Mean Mean Event Median
Baby Segments 50% 98% 95% 60% 64%
Dog Segments 51% 97% 92% 73% 61%

Meerkat Segments 50% 93% 85% 67% 58%
All Event Segments 50% 97% 93% 64% 63%

Recall 0.58 0.61 0.58 0.57 0.59
Total IoU 0.58 0.61 0.6 0.57 0.57
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5.2.3 Finding a Suitable X in top X entropy

In the initial testing, the top X entropy aggregation method showed promising results as seen in figures
5.1-5.5. However, the X in top X entropy was set to 10 quite arbitrarily. As each file is made up of
175 segments, mean entropy corresponds to top X entropy with X = 175. As we can see a difference in
results between the two, there is reason to believe that the selection of X matters. In this section, the
selection of X is discussed in detail, and some new strategies that extend the top X entropy strategy
are tested.

Fixed X

We will start of with keeping X fixed through out the entire training process and test for different
numerical values. To choose some valid candidates, the definition and restrictions of X has to be
established. The following is true for X :

X ∈ {x ∈ Z+ | 1 ≤ x ≤ 175 }

The restriction is due to the number of segments present in each file, where X cannot exceed this
value. Figure 5.6 shows the result of testing different fixed values of X in an active learning context.
The testing and results is based on the same methodology as before, where the same 5 seeds are used.
The values being studied are X ∈ {2, 5, 10, 20, 40, 80}.

(a) (b)

Figure 5.6: Total IoU and Recall: Different top X entropy - The (a) total IoU
and (b) recall results averaged over 5 seeds (N=5), for 6 different fixed values of X for
the querying strategy top X entropy) along with the baseline strategy. The values being
studied are X ∈ {2, 5, 10, 20, 40, 80}. The baseline is run 10 times per seed.

It is apparent that all different fixed values of X outperform the baseline, but any differences between
them is hard to distinguish. In the early stages it seems that a relative small value of X seem to
perform slightly better for both of the metrics. This is consistent with the results presented in the
previous section where we have seen that X=10 outperform X=175 (mean entropy) for small budgets.
For total IoU it seems that the lowest value, X = 2, manages to have a quick increase at the start,
but eventually starts to fall behind after about 5%. This could mean that a X that varies with the
percentage of labeled files Lr is beneficial, as the model changes which affects its output. Further,
it could be of interest to study how the accuracy for the individual classes, to see how this could be
affected by the choice of X. The reasoning behind this is that the events look different in terms of
average number of segments per event, see table 4.2.

Figure 5.7 shows the total IoU for each class and all the different top X strategies, along with the
baseline strategy. It seems that a low value of X favours the meerkat class in the beginning of the
process, wheres these values perform poorly for the baby class. This can be explained by the difference
in the number of segments an event of the difference classes contain. The value of X that correlates to
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a standard length of an event of a certain class might favour the querying of files containing that class.
Whilst we can find arguments that supports such a conclusion, these results seen in 5.6 and 5.7 are
by no means significant. When studying these X values, it is seldom that the observations mentioned
here hold for the entire plot. Hence, these observations should be taken with a grain of salt.

The idea that the top X entropy with a low X value might favor classes with shorter events, could be
explained by how the segment based SED method works. If a class has short events, there will be a class
imbalance: the model see fewer segments from that class. This could in turn lead to more uncertainty
for this class, and as the events are of length X, the top X entropy would be high and not get washed
out by more certain predictions of other classes. With that said, this assumption might not hold if
the short class is easier to predict, or if there are multiple events in the audio files as there is in this case.

The observations made from studying top X entropy and the distribution of event lengths seen in figure
4.4, lead us to believe that there is more to explore with this strategy. Enter, the top X ensemble.

Figure 5.7: Total IoU on Classes: Different top X entropy - The Total IoU perfor-
mance on each individual class averaged over 5 seeds (N=5), for 6 different fixed values of
X for the querying strategy top X entropy) along with the baseline strategy. The values
being studied are X ∈ {2, 5, 10, 20, 40, 80}. The baseline is run 10 times per seed.

An ensemble of top X entropy

We have seen some evidence that different top X entropy measures are better or worse at different
classes. It is reasonable to suspect that this has something to do with the correlation between X and
how many event segments are found in a file. The reasoning behind this is based on that a lower
X performs better for meerkat events, and worse for baby events. We have also previously noted
that meerkat segments are much rarer than babies. Therefore, when choosing a batch, it could be
reasonable to use multiple values of X. Each X can then be used to select a number of files for the
query, using top X entropy. If successful, this strategy might find many events based on a slightly dif-
ferent approach, hopefully introducing a bit of diversity so that all three classes show good performance.

We will begin by defining an ensemble of X values, or a top X ensemble, before we explain how the
ensemble is selected. An ensemble SX = X1, . . . , XK is a set of values which are used in the top X
entropy querying strategy. Each value X ∈ SX is used to query a fraction of files in each iteration,
where each X chooses the same number of files if possible.

Let’s give an example. We are on iteration 12 and are about to query a batch of 10% of the unlabeled
data set, this corresponds to 200 files. A set of 10 integers are used in an ensemble, for instance
SX = {10, 20, 30, 40, . . . , 100}. When using this ensemble we start of by letting top 10 entropy choose
20 files, i.e a tenth of the total queries being made. Then we let top 20 query an additional 20 files
(the previous 20 files are not considered, as they are already in the batch). This continues until all 10
values in the set has chosen 20 unique files, making up a full batch of 200 files. This is repeated at
each iteration, potentially with a new ensemble.
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Whilst the results were not significant in figure 5.7, we still suspect that some top X values benefits the
training of specific classes. We want to create an ensemble that accommodates all classes at once. We
design this ensemble around the assumption that a value of X is good at querying files containing X
event segments. This means that sampling from the distribution which determines how many segments
are found in a file, gives a good distribution of ensemble members. As previously seen in figure 4.4 the
underlying distribution of event lengths (in terms of segments) can be established. Thus, by fitting
a probability density function to this data we can sample the number of segments, and use these
samples as X values. This means that the method relies on prior knowledge of the distribution. In
this experiment, perfect knowledge is assumed, meaning that all true labels in D0

0.2 have been used for
the distribution, rather than estimating this on the labeled pool PL on each iteration. The probability
density function used is a shifted gamma distribution:

f(x;α, β, loc) =
1

βαΓ(α)
(x− loc)α−1e−(x−loc)/β (5.2)

α = 1.1712,

β = 12.5849,

loc = 0.9927.

The result of the fitting is shown if figure 5.8. We can now sample from this distribution, and use
the samples in the top X ensemble. This means that SX contains 10 different X sampled from the
distribution in (5.2). At each iteration a new ensemble SX is sampled, so that the ensemble is not
to biased towards one single realisation. Given that we have introduced stochasticity, it is a good idea
to run the strategy multiple times for each seed.

Figure 5.8: Fitted Gamma Distribution of Event Segments in D0
0.2 - A fitted

gamma distribution curve for the distribution of the number of event segments present
in the files for data set D0

0.2. Only files containing events are considered. The exact
distribution and the value of parameters used is shown in equation (5.2).
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Figure 5.9 shows the result of the ensemble as querying strategy along with the previously used top 10
entropy and the baseline strategy as reference. The tests are executed in the same procedure as before,
with the same 5 seeds. The baseline strategy is run 10 times for each seed, whereas the ensemble is
run 5 times per seed. Unfortunately, the figure reveals that no significant improvements were made
using this strategy. Though, the method is worth mentioning as it can be more thoroughly examined.
The number of values sampled at each step was arbitrarily chosen to 10, and is an additional hyper
parameter that can be tuned. An additional thing is that the distribution of events in the files can
affect this method. The ensemble aims to uniformly query each class based on the number of event
segments in a file. This is not accomplished, as seen in table 5.6, where the distribution of queried
class segments queried does not change much compared to top 10 entropy. This can be explained by
the fact that many of the event files contain multiple events. The sum of event segments in those files
are hard to assign to specific class, as they can contain multiple different events. Thus, this ensemble
strategy could benefit if run on a data set containing event files with only one single event.

Figure 5.9: Total IoU: Ensemble for top X entropy - The averaged total IoU results
over 5 seeds (N=5), for the querying strategy using a top X ensemble compared with top
10 entropy and the baseline strategy. The baseline is run 10 times per seed, whereas the
ensemble is run 5 times per seed.
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Table 5.6: Queried Event Segments for Ensemble (%) - Iteration 11 - The total
fraction of queried event segments to the total number of event segments in the data set.
This is a snap-shot of the active learning loop at iteration 11, where 10% of the training
data has been queried. This data is accompanied by two of the performance metrics:
total IoU and recall. These are the average results over 5 seeds. The two aggragation
strategies being compared are top 10 entropy and top X ensemble

Event Type Top 10 Top X Ensemble
Baby Segments 64% 62%
Dog Segments 60% 59%

Meerkat Segments 47% 49%
All Event Segments 61% 60%

Recall 0.63 0.64
Total IoU 0.61 0.61

5.3 Diversification
Given the aggregation strategies from the previous section, we now attempt to diversify the queries
in an attempt to further improve on the active learning framework. This means that the files in the
batch being queried should be different with respect to some similarity measure. We no longer make
queries solely based on aggregation strategies, instead the task is divided in to two parts. Firstly,
the aggregation strategy queries files that the model is uncertain of, the diversification strategy then
fine tunes this selection by selecting files that differ from each other. This is performed by selecting a
larger pre-batch based on aggregated uncertainty, and then select the final queries using a diversification
strategy. The diversification strategies studied are random selection and the farthest traversal principal.

5.3.1 Random Selection
Aggregation strategies is biased in its ways of choosing files, as it is deterministic. Therefore, we let the
aggregation strategies select a larger number of files and then we randomly select from these. The large
batch still contains valid contestants as it is based on uncertainty, but the adding of stochasticity in
the form of random sampling, bias is reduced. Thus, a more diverse reflection of the data is retracted.

5.3.2 Farthest Traversal
Farthest traversal is an active way of deciding which files are actually queried, by selecting files that
are dissimilar. In order to use farthest traversal as in algorithm 3, an embedding that represents entire
files are necessary. Previous embeddings have been created on short segments using YAMNet. Using
YAMNet in this case would require comparing many small segments with each other, which would
require a lot of computation, and might not be valid representations of the entire files. For a more
straight forward comparison between files, we opt for a different embedding model that more effectively
embeds larger segments of audio, with a larger dimensionality reduction. Two models that allow for
5 and 10 second audio respectively are Perch and AudioMAE, see section 2.1.3. When using these to
embed files, necessary resampling is done to make the full 10 s files compatible with the model. We
test both models in order to see if there is any difference in how they represent the 10 s files, which
could have implications on the results.

Visualising full audio files

A t-distributed stochastic neighbor embedding (t-SNE ), of the embeddings produced by both models
is performed for visualisation of the two models ability to grasps the underlying patterns in the data.
t-SNE is an algorithm that reduces the dimensions while retaining salient patterns of complex and
high-dimensional data. This is done in order to visualise vital clusters and underlying structures.
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Figure 5.10 shows a 2-dimensional representation of the 1280-dimensional embeddings obtained from
Perch. Each file embedding is color coded for which type of events that file contains. The black dots
represents the files that are solely noise. An interesting thing that can be seen in the plot is that it is
seems that Perch manages to cluster noise files in a good way. The fact that the noise files themselves
are separated into multiple clusters can be explained by the generation of data. It might be that each
cluster consists of files sharing the same noise, as these are randomly generated from a discrete set of
background audio files, and thus should contain the same features.

Looking at the t-SNE visualisation for the AudioMAE embedding similar conclusions can be made,
see figure 5.11. Figure 5.12 and 5.13 shows how different classes are interpreted in the embeddings
produced by both models. Both plots only confirms that both models seem to focus on finding patterns
in the noises rather than in the events. This is not necessarily a bad thing. Diversification of noise can
be useful as the noise itself has variability, and it can help teach the model to classify similar events
in different contexts. However, we are more interested in improving class performance, meaning we
are probably more interested in a good representation of files with events. The clusters of what is
expected to belong to the same noise tend to be surrounded by a few dots that contain events. This is
mainly a bad result, as it probably means that a files position in the high dimensional space is mostly
determined by its noise, rather then the events in contains. However, the embeddings still show some
sense of awareness to events. Ideally, this plot would show 8 distinct clusters, separated by which
classes occur in the file. Even though this is very far from the case there is still some potential in the
embedding representation.

Figure 5.10: t-SNE Visualisation - Perch - A t-SNE representation of the 1280-
dimensional embeddings produced by Perch. The color coding is based on the event
types being present in the file, where black means that no events occur in the file.
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Figure 5.11: t-SNE Visualisation - AudioMAE - A t-SNE representation of the 768-
dimensional embeddings produced by AudioMAE. The color coding is based on the event
types being present in the file, where black means that no events occur in the file.

Figure 5.12: t-SNE Visualisation - Perch (classes) - t-SNE representations of the
1280-dimensional embeddings produced by AudioMAE for each class. The colorcoding is
binary, where red means that the class in question occurs at least once in that file

Figure 5.13: t-SNE Visualisation - AudioMAE (classes) - t-SNE representations of
the 768-dimensional embeddings produced by AudioMAE for each class. The color coding
is binary, where red means that the class in question occurs at least once in that file.
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Setup and Results

Before performing farthest traversal using the two different embedding methods, and random selec-
tion, the size of the pre-batch has to be determined. This size determines the number of files that the
diversification methods are allowed to choose from at each iteration. We chose to double the batch
size, which we denote with the scaling constant S = 2. Thus the diversification strategy queries half
of the files in the pre-batch.

Figure 5.14 shows the recall and total IoU result of the diversification strategies when combined with
the top 10 entropy aggregation strategy. The performance of top 10 entropy from previous tests is
also included for comparison. In the recall case we can see that farthest traversal using AudioMAE
embeddings seem to outperform all models in the early iterations, but the difference is slim and not
statistically significant. What is interesting though is looking at the diversification strategies impact
when combined with other aggregation strategies. Looking at same performance metrics for median
entropy with diversification in figure 5.15, the difference is more significant. In the total IoU case
both farthest traversal strategies performs better than the other strategies. In the recall case, and in
total IoU, we can see that random selection performs relatively poorly. The reason for why median
entropy sees a decrease in performance with random diversification could be due to the fact that me-
dian entropy itself is a quite bad aggregation method. Thus, random sampling from a larger batch of
poor chosen queries might just deteriorate the querying. It is also interesting that Farthest traversal
performs so well in this case compared to the previous, where top 10 entropy was used. The reason
why median entropy sees an increase in performance with the diversification strategies could originate
from the same reason: that median entropy is a bad aggregation strategy to begin with. There are
active learning frameworks that aren’t uncertainty based, but only use methods that are based on
similarity. Diversification in itself can be enough to make active queries that benefit results, and that
might be what we are seeing here.

The same reasoning could apply to why the top 10 entropy fails to improve, it might already choose
diverse queries, or optimal queries, which is why diversification doesn’t make a big difference in either
direction. Given each seed, there exist an optimal selection of files. If the selection of queries is perfect,
then the results are saturated and diversification can do no good. Whilst there is no clear evidence
to support that this is the case here, it could be worth keeping in mind. Furthermore, as the batch
sizes change throughout the active learning loop, it is also possible that the hyper parameters of the
diversification strategy should change accordingly.

(a) (b)

Figure 5.14: Total IoU and Recall: Farthest Traversal Top X Entropy - The (a)
total IoU and (b) recall results averaged over 5 seeds (N=5), for the querying strategy
top X entropy using the diversification strategies: random selection, farthest traversal
and along with not diversification. The farthest traversal strategy is split in two, where
two different embedding methods are used; Perch and AudioMAE. The random selection
strategy is run 5 times per seed.
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(a) (b)

Figure 5.15: Total IoU and Recall: Farthest Traversal Median Entropy - The (a)
total IoU and (b) recall results averaged over 5 seeds (N=5), for the querying strategy
median entropy using the diversification strategies: random selection, farthest traversal
and along with not diversification. The farthest traversal strategy is split in two, where
two different embedding methods are used; Perch and AudioMAE. The random selection
strategy is run 5 times per seed.

5.4 Generalization
The active learning methods that have been tested show promising results. Although the querying
strategies have shown to be difficult to fine tune, many of the methods show a significant improvement
over the baseline. As the active learning has so far only been executed on the data set D0

0.2, a bias
could exist towards this data set. For example, the top 10 entropy might be best in this data set due
to the lengths of the audio sources, or some other unknown reason. The results might only hold for
SNR = 0 or r = 0.2, as this is all that has been tested. It is therefore important to test active learning
in a slightly different domain. To evaluate the generalization of the models, and active learning in
general, these models are tested on other data sets. This is to evaluate how the underlying data set
structure affects the impact of active learning.

5.4.1 D̄0
0.2 (Domain Change)

Changing the domain, by using sound sources with slightly different origins, gives an insight to how
well the model generalises to new type of sounds. This is important as there exists a vast diversity
of sounds in this field of study. The data set D̄0

0.2 is used to perform these tests, see section 3.2.2.
The underlying distribution of event lengths and the sound sources differs from the previous data set
D0

0.2. The same methodology as always is used in this case where 80% of the data in D̄0
0.2 is used for

training, whilst the remaining 20% is kept for validation.

Figure 5.16 shows the total IoU performance of using top 10 entropy and mean entropy as querying
strategies, along with the baseline strategy, on the new data set D̄0

0.2. The results for the same metric
on the data set D0

0.2 is plotted beside it for comparison. It is apparent that the models and active
learning frameworks adapt and generalise well to the new data. Both querying strategies performs
better then the baseline, where the performance of top 10 entropy is significantly better. The general
performance is better for all strategies, including the baseline, in this new data set. This shows that
active learning works well, even though the data is somewhat easier.
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(a) D̄0
0.2 (b) D0

0.2

Figure 5.16: Total IoU: Domain Change - The total IoU results averaged over 5 seeds
(N=5), using the querying strategy top X entropy and mean entropy for the data sets (a)
D̄0

0.2 and (b) D0
0.2. The data sets are generated from different domains. All strategies are

displayed with 95% confidence intervals. The results shown goes up to 20% of the data
set. The baseline is run 5 times per seed.

5.4.2 D±10
0.2 (SNR Change)

Trying out different values of SNR allows for evaluation of how sensitive the models are to power
differences between the noise and the events. This is a problem in real life data as the sound sources
(animals) rarely has a fixed distance to the source of which it is recorded. The amplitude of the sounds
(animal vocalizations or noise) can also differ, depending on its source. This makes the power of the
same types of event differ. Thus, this test is reasonable to make in this field of study, as we can expect
the SNR to change within data sets and between data sets.

Figure 5.17: Example: SNR Comparison - A visual comparison of SNR using the
waveform of an audio file. The three SNR-values plotted are 10, 0 and -10.

55



5.4. GENERALIZATION CHAPTER 5. ACTIVE LEARNING FOR SED

Two different values of SNR are studied, 10 and -10. Having a high, positive value of SNR leads to
events in the audio files being more distinguishable from the noise. The opposite goes for negative
values, where the noise dominates the events in power, making it difficult to even hear the events. This
concept is easier to comprehend if one listens to the same recording with different values of SNR, but
the difference can also be visualised in the audio file’s waveform as seen in figure 5.17.

In figure 5.18, the performance of top 10 entropy, mean entropy and baseline is presented for SNR
-10, 0 and 10. Note that only the first 12 iterations are plotted. We can see that performance is higher
for the data with larger SNR, and this can be observed across all strategies. This is expected as
events are now more distinguishable. Besides this, we see that the aggregation strategies outperforms
the baseline significantly in the early stages for SNR = -10. As noise becomes more dominant its
evident that querying files containing events are of great importance. As no other significant changes
in relation to the baseline can be observed, we can establish that active learning seems to be overall
robust. It generalises well to changes in the power of noise and outliers. This is a good result in this
field as real recordings from nature might contain strong winds, storms and other outliers, and thus
the SNR might fluctuate.

(a) SNR 10 (b) SNR -10

(c) SNR 0

Figure 5.18: Total IoU: SNR Change - The total IoU results averaged over 5 seeds
(N=5), using the querying strategy top X entropy and mean entropy for data sets (a)
D10

0.2, (b) D−10
0.2 and (c) D0

0.2. The SNR is changed between the data sets. All strategies
are displayed with 95% confidence intervals. The results shown goes up to 20% of the
data set. The baseline is run 5 times per seed.
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5.4.3 D0
1.0 (Event Ratio Change)

We have previously established that a major class imbalance is present in our current data set D0
0.2.

Not only between the event classes themselves, but also between events and noise. This is to reflect
the real life data that exists in this field, where events might be rare. Due to this, it is important to
evaluate the impact of the event to noise ratio, and how active learning performs when the ratio of
event segments compared to noise segments increases.

Thus, we test on a data set consisting solely of files containing events, D0
1.0. Except for the ratio of

event files, all other generation parameters are kept the same. Figure 5.19 shows the total IoU perfor-
mance when using top 10 entropy and mean entropy as querying strategies, along with the baseline,
on the new data set D0

1.0. Note that only the first 12 iterations are plotted to emphasise the crucial
part of active learning. The results for the same metric on the data set D0

0.2 is plotted beside it for
comparison. We see that the top 10 entropy strategy still is advantageous compared to the baseline,
whereas mean entropy performs slightly worse. The baseline appears to perform better on the data
set with more events. This can be explained by the fact the entire data set now contains files with
events. The baseline’s random querying will thus select files containing events at each iteration, and
perform better as the model is exposed to more event data. For the data set with fewer events, the
strategies were rewarded for finding events, whereas now it is likely that increases in performance stem
from finding more events per file, or files with higher variability between events. Considering that the
mean entropy does not outperform the baseline, it is possible that this strategy is better suited for the
data set with fewer events. This shows once again that the top X entropy has great potential, as it
appears to be more robust to changes in event frequency.

(a) D0
1.0 (b) D0

0.2

Figure 5.19: Total IoU: Event Ratio Change - The total IoU results averaged over 5
seeds (N=5), using the querying strategy top X entropy and mean entropy for the data
set (a) D0

1.0 and (b) D0
0.2. All strategies are displayed with 95% confidence intervals. The

results shown goes up to 20% of the data set. The baseline is run 5 times per seed.

In figure 5.20, the performance for the individual classes is shown on the D0
1.0 data set. This shows

one interesting result, which is that the baseline appears to outperform the active strategies when
considering total IoU for meerkat events. This emphasises one of the struggles experienced in this
thesis. In general, we have seen that meerkat events have been underrepresented due to being shorter
in length. This has lead to our aggregation strategies neglecting them, except when they occur in
files containing other events. The baseline model on the other hand have had a struggle with meerkat
classification, and other classes, due to its randomness in querying. But now when the baseline model
queries on a data set consisting solely of events and is thus presented with more meerkat events,
it outperforms the active learning strategies. In conclusion, active learning seem to have a larger
impact the more noise being present in the data. This makes sense as the assignment of querying files
containing events gets more crucial with fewer events.
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Figure 5.20: Total IoU on Classes: Event Ratio Change - The total IoU performance
on each individual class averaged over 5 seeds (N=5), using the querying strategy top X
entropy and mean entropy, along with the baseline model, for the data set D0

1.0. The
results shown goes up to 20% of the data set. The baseline is run 5 times per seed.
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Chapter 6

Conclusions

In this chapter, we present the conclusions of this thesis.

The annotation cost for auditory data is a serious issue for monitoring and quantifying biodiversity.
We have proven that active learning can be successfully used to drastically reduce the amount of an-
notated data needed for a bioacoutsic SED model.

In the initial testing of active learning, it is shown that for classification, measured in recall, the demand
for data is reduced by up to 97% as compared to the baseline. When looking at the SED performance,
as measured by total IoU, the reduction in data is around 92%. The active learning strategy to ac-
complished these reductions is top X entropy. Also the aggregation strategy mean entropy performs
well, where both are proved to be significantly better than the baseline. These results are in line with
previous works, in terms of reductions in amount of data needed [5].

For the main data set used (D0
0.2), results point to top X entropy, X=10, being the most successful

entropy option. It consequently and significantly outperforms mean entropy on this data set with
regards to SED performance. This result is likely due to top X entropy, X=10, being able to perform
well at both noise and events, where as for mean entropy, there appears to be a trade-off between event
and noise performance.

In general, the active learning performance generalises very well, indicating that it can be useful in
many different scenarios. Across all data sets that were tested, the best performing active learning
strategy outperformed the baseline. SNR and changes in data distribution or audio recordings does
not seem to have any large impacts on how useful active learning is. However, we can conclude that
the ratio of files with events in the data set is closely tied to the benefit of active learning. We can
conclude that a higher concentration of event files gives a smaller improvement. This makes sense
as active learning becomes less about finding files with events, and more about finding many events
within files, or finding valuable events that increase performance.

Fine-tuning the active learning frameworks proved to be a difficult task. Diversification attempts and
tuning of the X parameter in top X entropy showed small improvements at best, that were not statis-
tically significant. This does not mean that they don’t have potential to improve the active learning.
For the data sets used, the benefit of active learning used is rooted in finding a lot of events rather
than diversity. This does not have to be the case for other data sets. There could also exist flaws in the
diversification methodology, as it seems that the embeddings used for diversification better represents
the noise in the data rather than the events. Maybe a better representation of the contents in the files
could lead to better diversification results.

With the top X entropy, no optimal X was found. The proposed top X ensemble appears to be at
least as good as a fixed top X entropy strategy, meaning it could be a good way of applying the active
learning methodology on a completely new domain with a known distribution, as it adapts to the
underlying distribution. It should however be noted that one might be able to do this with a simpler
strategy, for instance by using a fixed X that is derived from the distribution. Further, it is important
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to consider the value of X with relation to the total number of segments in the file when applying this
method to a new problem, as this could have an impact. An interesting prospect for future research
is to study an X which is dynamic, and varies with the amount of labeled data Lr.

One observation that was made throughout experiments is that the class with shortest events (meerkats)
were not only underrepresented in terms of available training data, but also in active queries, further
exaggerating the class imbalance in the labelled data set. It is difficult to conclude if this is an inherent
trait of this methodology, or if this is a result of the model being more certain in its predictions of the
shorter meerkat class.

The results show that active learning is worthwhile in bioacoustics. The framework in this thesis could
be adapted in real life, as it is designed to provide an annotator with reasonable 10 seconds of audio
at a time for labelling. With the successful aggregation strategies proposed in this thesis, annotators
won’t have to struggle to classify 0.12 second audio segments without context. The annotation cost
has potential of being drastically reduced. In this thesis, we have only studied annotation cost as the
number of audio files, assuming they are equally expensive to annotate. In order to compute the an-
notation cost in terms of time or money, one would have to consider more precisely how expensive files
are to label and if there are any differences in annotation cost between files, something we encourage
other researchers to continue with.

With climate change being on the rise we are in desperate need of technological advancements that can
help protect ecosystems and biodiversity. Advancements in AI and machine learning are impressive in
their own right, but might fail to make a real impact due to monetary limitations or data restrictions.
In this thesis, we have hopefully narrowed the gap between cutting-edge technology and applications
that help the planet.

Figure 6.1: A baby, a dog and a couple of meerkats in a park.

60



Bibliography

[1] Dan Stowell. Computational bioacoustics with deep learning: a review and roadmap. PeerJ,
(2017):1–32, 2022.

[2] Ella Browning, Rory Gibb, Paul Glover-Kapfer, and Kate Jones. Passive acoustic monitoring in
ecology and conservation. Technical report, 10 2017.

[3] Annamaria Mesaros, Toni Heittola, Tuomas Virtanen, and Mark D. Plumbley. Sound Event
Detection: A tutorial. IEEE Signal Processing Magazine, 38(5):67–83, 2021.

[4] Burr Settles. Active Learning Literature Survey. (January), 2009.

[5] Zhao Shuyang, Toni Heittola, and Tuomas Virtanen. Active Learning for Sound Event Detection.
IEEE/ACM Transactions on Audio Speech and Language Processing, 28:2895–2905, 2020.

[6] Yu Wang, Mark Cartwright, and Juan Pablo Bello. Active few-shot learning for sound event
detection. Proceedings of the Annual Conference of the International Speech Communication
Association, INTERSPEECH, 2022-September:1551–1555, 2022.

[7] Clemens-Alexander Brust, Christoph Käding, and Joachim Denzler. Active learning for deep
object detection. CoRR, abs/1809.09875, 2018.

[8] Asma Yamani, Albandari Alyami, Hamzah Luqman, Bernard Ghanem, and Silvio Giancola. Ac-
tive learning for single-stage object detection in uav images. In 2024 IEEE/CVF Winter Confer-
ence on Applications of Computer Vision (WACV), pages 1849–1858, 2024.

[9] Andreas Kirsch, Sebastian Farquhar, and Yarin Gal. A simple baseline for batch active learning
with stochastic acquisition functions. CoRR, abs/2106.12059, 2021.

[10] Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Rajagopalan, Afshin
Rostamizadeh, and Sanjiv Kumar. Batch active learning at scale. CoRR, abs/2107.14263, 2021.

[11] Aymane Abdali, Vincent Gripon, Lucas Drumetz, and Bartosz Boguslawski. Active learning
for efficient few-shot classification. In ICASSP 2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1–5, 2023.

[12] Ajay J. Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class active learning for image
classification. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
2372–2379, 2009.

[13] John M. van Osta, Brad Dreis, Ed Meyer, Laura F. Grogan, and J. Guy Castley. An active
learning framework and assessment of inter-annotator agreement facilitate automated recogniser
development for vocalisations of a rare species, the southern black-throated finch (poephila cincta
cincta). Ecological Informatics, 77:102233, 2023.

[14] Ines Nolasco, Shubhr Singh, Veronica Morfi, Vincent Lostanlen, Ariana Strandburg-Peshkin, Ester
Vidaña-Vila, Lisa Gill, Hanna Pamuła, Helen Whitehead, Ivan Kiskin, Frants H. Jensen, Joe
Morford, Michael G. Emmerson, Elisabetta Versace, Emily Grout, Haohe Liu, Burooj Ghani, and
Dan Stowell. Learning to detect an animal sound from five examples. Ecological Informatics,
77(May), 2023.

61



BIBLIOGRAPHY BIBLIOGRAPHY

[15] Burooj Ghani, Tom Denton, Stefan Kahl, and Holger Klinck. Global birdsong embeddings enable
superior transfer learning for bioacoustic classification. Scientific Reports, 13(1), December 2023.

[16] Mattias Ohlsson and Patrik Edén. Introduction to Artificial Neural Networks and Deep Learning.
1 edition, 2022.

[17] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R. Chan-
ning Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset
for audio events. In Proc. IEEE ICASSP 2017, New Orleans, LA, 2017.

[18] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural net-
works for mobile vision applications, 2017.

[19] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. CoRR, abs/1905.11946, 2019.

[20] Google. Bird vocalization classifier. https://www.kaggle.com/models/google/
bird-vocalization-classifier/tensorFlow2/bird-vocalization-classifier/4?
tfhub-redirect=true, 2021. Accessed: 2024-05-09.

[21] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked
autoencoders are scalable vision learners. CoRR, abs/2111.06377, 2021.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

[23] Po-Yao (Bernie) Huang, Hu Xu, Juncheng Billy Li, Alexei Baevski, Michael Auli, Wojciech
Galuba, Florian Metze, and Christoph Feichtenhofer. Masked autoencoders that listen. ArXiv,
abs/2207.06405, 2022.

[24] Ines Nolasco, Shubhr Singh, Veronica Morfi, Vincent Lostanlen, Ariana Strandburg-Peshkin, Ester
Vidaña-Vila, Lisa Gill, Hanna Pamuła, Helen Whitehead, Ivan Kiskin, Frants H. Jensen, Joe
Morford, Michael G. Emmerson, Elisabetta Versace, Emily Grout, Haohe Liu, Burooj Ghani, and
Dan Stowell. Learning to detect an animal sound from five examples. Ecological Informatics,
77:102258, November 2023.

[25] Tom M Mitchell. Machine learning, volume 1. McGraw-hill New York, 1997.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

62

https://www.kaggle.com/models/google/bird-vocalization-classifier/tensorFlow2/bird-vocalization-classifier/4?tfhub-redirect=true
https://www.kaggle.com/models/google/bird-vocalization-classifier/tensorFlow2/bird-vocalization-classifier/4?tfhub-redirect=true
https://www.kaggle.com/models/google/bird-vocalization-classifier/tensorFlow2/bird-vocalization-classifier/4?tfhub-redirect=true

	Richard Lindholm, Oscar Marklund juni 2024
	WhoLetTheMeerkatsOut

