

Department of Automatic Control

Improving Temperature Estimation Models
using Machine Learning Techniques

Van Duy Dang

Basim Elessawi

MSc Thesis
TFRT-6229
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2024 Van Duy Dang & Basim Elessawi. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2024

Abstract

Temperature estimation models are crucial for various products manufactured by
BorgWarner. These models often require manual calibration, where experts adjust
parameters to ensure accuracy. However, this process can be slow and prone to
errors. This thesis investigates how Machine Learning techniques can be used to
improve accuracy and efficiency of temperature estimation models.

Both black-box and grey-box approaches are used to evaluate the effectiveness
of machine learning-based calibration. The black-box model employs techniques
such as Decision Trees, Random Forests, and Neural Networks to predict tempera-
ture directly from raw input data, bypassing traditional temperature estimation pro-
cesses. The grey-box model, on the other hand, uses Deep Q-learning to adjust the
calibration automatically.

Results show that the black box model achieves better performance compared to
conventional temperature estimation methods. Meanwhile, the grey-box model not
only significantly improves accuracy compared to the manual calibration method,
but also reduces the need for manual calibration in temperature estimation models.

3

Acknowledgements

We would like to express our gratitude to our supervisors at BorgWarner, Meike
Rönn and Arne Hörberg, as well as our manager, Henrik Nilsson, for their un-
wavering support throughout the entire duration of this thesis. Their expertise and
insightful feedback have been instrumental in shaping the development of this work.

We would also like to thank Richard Pates from the Department of Automatic
Control, Lund University for his supervision and valuable feedback. Moreover, we
extend our gratitude to Professor Bo Bernhardsson for helping us get started on this
thesis.

Furthermore, we are grateful to the managers at BorgWarner for giving us the
opportunity to engage in this interesting project and for their continuous support
and feedback.

Finally, we would like to extend our deepest appreciation to our family and
friends for their unwavering love, understanding and encouragement throughout
this project.

5

Abbreviations

DNN Deep Neural Network
DRL Deep Reinforcement Learning
DQN Deep Q-Network
ECU Electronic Control Unit
GRU Gated Recurrent Unit
KNN K-Nearest Neighbour
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MLP Multi-Layer Perceptron
MSE Mean Squared Error
NN Neural Network
PCB Printed Circuit Board
RF Random Forests
RL Reinforcement Learning
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
THFP Total High Frequency Power

7

Contents

1. Introduction 11
1.1 Background . 11
1.2 Problem Formulation and Goals 12
1.3 Limitations . 13
1.4 Related Work . 13
1.5 Structure . 15

2. Theory 16
2.1 Decision Trees and Random Forests 16

2.1.1 Decision Tree Learning 16
2.1.2 Random Forests . 17

2.2 Neural Networks . 18
2.2.1 Feedforward Neural Networks 18
2.2.2 Convolutional Neural Networks 18
2.2.3 Deep Learning . 19
2.2.4 Neurons and Activation Functions 20
2.2.5 Long Short-Term Memory (LSTM) Networks 20
2.2.6 Gated Recurrent Unit (GRU) Networks 21
2.2.7 Dropout and Dynamic Regularization 22
2.2.8 Loss Functions and Optimization 22

2.3 Reinforcement Learning . 24
2.3.1 Q-Learning . 24
2.3.2 Deep Q-Learning . 25

3. Methodology 27
3.1 Temperature Model . 27
3.2 Data . 28

3.2.1 Dataset Description for Black Box Models 28
3.3 Loss Functions and Evaluation methods 30
3.4 Grey-Box Models . 30

3.4.1 Model 1 . 30
3.4.2 Model 2 . 31

9

Contents

3.4.3 Hyperparameter tuning 32
3.5 Black-Box Models . 33

3.5.1 Data processing and Procedure 34
3.5.1.1 Resampling 35
3.5.1.2 Filtering and Smoothing (with considerations) . 35

3.5.2 Goals and Evaluation Criteria 37
4. Results 40

4.1 Grey-Box Model . 40
4.1.1 Model comparision . 40
4.1.2 Model 1 . 42
4.1.3 Model 2 . 45

4.2 Black-Box Models . 48
4.2.1 Benchmark model results 48
4.2.2 Effect of Resampling on RMSE 49
4.2.3 Effect of Resampling on THFP 51
4.2.4 Effect of smoothing on results 53
4.2.5 Best model results on combined data 55
4.2.6 LSTM and GRU . 56
4.2.7 Effect of Dynamic regularization 57
4.2.8 Comparison against best ANN 58

5. Discussion and Conclusion 60
5.1 Grey-box models . 60

5.1.1 Model 1 . 60
5.1.2 Model 2 . 61

5.2 Black-box models . 61
5.2.1 Effect of Resampling on RMSE 61
5.2.2 Effect of Resampling on Total High Frequency Power . . 62
5.2.3 Effect of Smoothing on Results 63
5.2.4 Analysis on full ANN results 63
5.2.5 LSTM and GRU Models 64
5.2.6 Compiled results and comparisons 65

5.3 Future Work . 65
5.4 Conclusion . 66

Bibliography 67
Appendices 70

A.1 Additional Figures . 70

10

1
Introduction

1.1 Background

BorgWarner Landskrona designs and manufactures driveline and propulsion sys-
tems for hybrid, electric, and combustion vehicles. They cooperate with the biggest
vehicle suppliers in the automotive industry. BorgWarner is also one of the largest
suppliers of four-wheel drive systems in the world.

Within BorgWarner’s operations, a state-space temperature model is used in
drive train products that use an electric motor to actuate a pump in order to control
torque using hydraulic pressure. It plays a vital role in predicting temperatures at
specific locations where sensor deployment may not be feasible. Figure 1.1 illus-
trates the areas of the Transfercase, one of those drive train products, where temper-
ature estimation is crucial.

Figure 1.1 Temperature estimation spots of the Transfercase.

The estimated temperatures are utilized to accurately control the pump con-
nected to the pump head. Additionally, they serve to identify the critical tempera-
tures of the coupling, which helps prevent mechanical damage caused by overheat-
ing. The need for these temperature estimates arises from the high costs associated

11

Chapter 1. Introduction

with the implementation of temperature sensors. However, even with good sensors,
it is challenging to measure clutch plate temperatures that can increase by 100 to
200 degrees Celsius in just a second. [Olsson, 2019].

This project aims to develop innovative grey-box and black-box models for the
temperature estimation model, particularly in regions where direct measurement is
not feasible due to cost or complexity. The current method relies on a state-space
model with hand tuned parameters and inputs such as sensed temperature from the
Printed Circuit Board (PCB), motor speed, pump current, among others. This master
thesis provides a valuable opportunity to apply the knowledge we gained during our
time at LTH to a real-world project.

1.2 Problem Formulation and Goals

The state-space model requires an experienced engineer to manually calibrate prior
to its application in a project. To verify the model, predicted temperatures are com-
pared with actual temperatures obtained from sensors installed in test vehicles. This
iterative process continues until an optimal parameter set is found, which usually
takes around 2-3 weeks. Consequently, there is a need for a solution that not only
automates the calibration process but also enhances the model’s accuracy, poten-
tially even eliminating the need for calibration altogether.

Figure 1.2 Manual calibration flow.

This thesis aims to address the following questions:

• Is it possible to utilize machine learning for parameter tuning and identifica-
tion of an optimal parameter set?

12

1.3 Limitations

• Can temperature predictions be made directly, bypassing the use of the state-
space model?

The problem can be divided into two parts:
Part 1 - Grey-Box Model: The objective is to develop a common machine

learning model capable of automatically tuning parameters and identifying the op-
timal parameter set across various projects.

Part 2 - Black-Box Model: The goal is to construct a machine learning model
that can directly predict temperatures from the inputs in Section 3.2, thereby elimi-
nating the need for Manual Calibration and the state-space model.

1.3 Limitations

The evaluation of the black-box model primarily focuses on comparing its predic-
tions with those from a temperature model tuned by experts. While this benchmark-
ing approach offers a useful point of reference, it limits the validation process to a
single method. One of the main concerns with the black-box model is not its pre-
dictive accuracy—where it is expected to outperform traditional models—but rather
its stability, variance, and susceptibility to noise. These factors can significantly im-
pact the model’s reliability in real-world conditions. Additionally, implementing the
black-box model poses practical challenges, including the need for greater compu-
tational power and potential modifications to the Electronic Control Unit (ECU) to
accommodate the model’s preprocessing and filtering requirements.

The most effective way to thoroughly assess the performance and robustness of
the black-box model is by integrating it into the ECU and conducting extensive real-
world testing in an actual vehicle. However, incorporating such real-world testing
procedures is beyond the scope of this thesis. Therefore, while the black-box model
shows promise in controlled comparisons, its practical viability and long-term sta-
bility in a dynamic automotive environment remain areas for future investigation.

1.4 Related Work

Q-learning is an algorithm in the realm of reinforcement learning presented by
Watkins, C.J.C.H. (1989). They used this algorithm to learn the action-value func-
tion Q(s,a), which estimates the expected discounted reward for taking a particu-
lar action in a given state . The Q-learning algorithm has been widely adopted in
the reinforcement learning community due to its simplicity, convergence proper-
ties [Watkins et al., 1992], and effectiveness in solving complex decision-making
problems. Their research has laid the foundation for numerous applications, in-
cluding the integration of deep neural networks with Q-learning, known as Deep
Q-Networks (DQN).

13

Chapter 1. Introduction

Paszke and Towers (2017) created a tutorial on how to train a Deep Q-Learning
agent using PyTorch. This tutorial inspired the development of Model 2 in this the-
sis. They used DQN along with Replay Memory to train the agent, ensuring that the
pole attached to the cart remains upright.

In a paper written by Roderick et al. (2017), they presented critical aspects of
implementing the DQN proposed by Mnih et al. (2015), which were essential for
its overall performance but lacked detailed coverage in the original work. The paper
helps researchers understand and create their own versions of the algorithm more
easily. It also emphasized challenges in approximating a Q-function and provided
a comparison between their implementation and the original one by Mnih et al.
(2015).

Tian et al. (2020) presented a novel framework for the inference of model pa-
rameters based on Deep Reinforcement Learning (DRL).They reformulated the in-
ference problem as a tracking problem with the objective of learning a policy that
forces the response of the physics-based model to follow the observations. This
work has laid a solid foundation in the field of model calibration using Reinforce-
ment Learning. It provides valuable insights and methodologies that can be lever-
aged for calibrating a temperature model in this thesis.

Arendt et al. (2018) conducted a comparison among white-box, grey-box, and
black-box models for predicting indoor temperature within a university building.
They focused on two black-box models: a nonlinear autoregressive exogenous
model (NARX) and a feed-forward neural network (NN). These models are com-
monly utilized in building energy-related predictions [Macas et al., 2016], as high-
lighted by Macas et al. in a study from 2016. They use Keras [Chollet et al., 2015]
and Tensorflow [Abadi et al., 2015] libraries to implement the NN model. Over-
all, the results indicated that black-box models consistently outperformed grey and
white-box models in the majority of validation periods, with only one exception.

In [Afram and Janabi-Sharifi., 2015], the authors compared different black-
box and grey-box models for residential heating, ventilation and air conditioning
(HVAC) system modeling. They used artificial neural networks (ANN), transfer
functions (TF), autoregressive exogenous models (ARX), state-space models (SS),
and several grey-box models in the project. Their validation with real measured data
showed that ANN performed better than all the other models, while the grey-box
models were the least accurate.

A paper written by Naing and Htike. (2015) explained how they used a random
forest model for monthly temperature forecasting. Their results indicate that the
random forests model could be a significant tool for temperature forecasting.

Zhang and Dong (2020) evaluated the use of a convolution recurrent neu-
ral network (CRNN) for predicting temperature. The results suggested that the
CRNN was more effective than the other benchmark methods. Uluocak and Bil-
gili (2023) employed hybrid models that integrate Convolutional Neural Networks
(CNN) with Long Short-Term Memory (LSTM) neural network and Gated Recur-
rent Unit (GRU) to perform one-day ahead air temperature (AT) predictions. The

14

1.5 Structure

results demonstrated that the proposed hybrid models outperformed all other mod-
els in one-day ahead AT predictions with high accuracy.

The paper by Nketiah et al. (2023) used Recurrent Neural Network (RNN) and
LSTM to improve and highlight the importance of deep learning algorithms in tem-
perature forecasting. Fente and Singh (2018) also employed the LSTM technique to
forecast future weather by training the neural network on various combinations of
weather parameters. In an article by Kreuzer et al. (2020), the performance of deep
learning models using convolutional LSTM was compared with that of Seasonal au-
toregressive integrated moving average (SARIMA). The results demonstrated that
the convolutional LSTM model outperformed the SARIMA model.

1.5 Structure

The next chapter delves into the concepts of temperature modeling, decision trees,
random forests, neural networks, and reinforcement learning, providing the theoret-
ical framework for the thesis. Chapter 3, Methodology, describes how the grey-box
and black-box models were developed, trained, and validated. This includes detailed
explanations of data collection, model design, training procedures, and validation
methods. Chapter 4 presents the results of the models and provides a comparative
analysis of the performance of the grey-box models, black-box models, and Man-
ual Calibration. Chapter 5 discusses the findings in depth, providing conclusions
and insights based on the results. This chapter also outlines potential future work,
suggesting areas for further research and improvement.

15

2
Theory

2.1 Decision Trees and Random Forests

Decision Trees (DTs) are a type of supervised learning algorithm that is used for
both classification and regression tasks. They work by repeatedly splitting the data
into smaller and smaller subsets based on specific criteria. Each node in the decision
tree represents a feature in the dataset, and the splits are based on a simple decision
rule derived from this feature. This process results in a tree-like model of decisions
and their possible consequences.

2.1.1 Decision Tree Learning
Decision tree learning involves constructing the tree by repeatedly selecting features
that return the highest information gain or the lowest gini impurity. The choice of
feature and the threshold for splitting is based on how well the feature separates the
classes. The commonly used algorithms include the ID3, C4.5, and CART.

The purity of a node is measured using either of the following criteria:

• Gini Impurity: Used in the CART algorithm, it measures the disorder of a set.
A Gini Impurity of 0 indicates that the node is pure, containing elements from
only one class.

• Information Gain: Typically used in the ID3 algorithm, it is based on the con-
cept of entropy from information theory. It measures the reduction in entropy
or surprise by splitting a dataset according to a given value of a random vari-
able.

A decision tree can be trained by recursively splitting the data according to these
measures until a stopping criterion is met, which could be a maximum depth of the
tree, a minimum number of samples per leaf, or a minimal gain in impurity.

IG(Dp,a) = I(Dp)−
Nle f t

N
I(Dle f t)−

Nright

N
I(Dright) (2.1)

16

2.1 Decision Trees and Random Forests

where IG(Dp,a) is the information gain by using feature a to split dataset Dp into
Dle f t and Dright , Nle f t and Nright are the number of points in Dle f t and Dright respec-
tively.

2.1.2 Random Forests
Random Forests (RF) [Breiman, 2001] are an ensemble learning technique that
builds upon the decision tree algorithm. It involves constructing a multitude of de-
cision trees at training time and outputting the class that is the mode of the classes
(classification) or mean prediction (regression) of the individual trees.

Random forests correct for decision trees’ habit of overfitting to their training
set by adding randomness in two ways:

• Each tree in a random forest is built from a set of data samples drawn with
replacement (i.e., a bootstrap sample) from the training set.

• In the traditional decision tree algorithm, the best split is chosen from all
features at a node. In contrast, in random forests, each node is split using the
best among a subset of predictors randomly chosen at that node.

This randomness helps to make the model more robust to noise and less likely to
overfit. The algorithm for training a random forest classifier involves the following
steps:

Algorithm 1 Random Forest Algorithm.
1: For i = 1 to n_estimators:
2: Create a bootstrap sample of the data set.
3: Build a decision tree by repeating the following for each terminal node

until it reaches a minimal threshold size:
4: For each node, randomly select d features without replacement.
5: Choose the best split based on these d features.
6: Split the node into daughter nodes.
7: Use the forest of trees to predict the output for new data points by aggregation:
8: For classification, use majority voting from the output of individual trees.
9: For regression, calculate the average of the outputs from the individual

trees.

Random Forests are widely used due to their simplicity, scalability, and good
performance across a wide range of data types and tasks. They are less sensitive to
outliers and can handle large datasets with higher dimensionality.

17

Chapter 2. Theory

2.2 Neural Networks

Neural Networks (NNs) are a foundational component of machine learning that sim-
ulate the way human brains operate, allowing computers to recognize patterns and
solve common problems in the fields of AI, machine learning, and deep learning.
At the core, a neural network consists of layers of interconnected nodes or neurons,
which are units of computation. Each connection represents a weight, and during
the learning process, these weights are adjusted to predict the correct output.

2.2.1 Feedforward Neural Networks
Feedforward Neural Networks are the simplest type of artificial neural network. In
this architecture, the information moves in only one direction—forward—from the
input nodes, through the hidden nodes (if any), and to the output nodes. There are
no cycles or loops in the network. The process of adjusting the weights and biases
is known as training the neural network, and a commonly used method for this is
backpropagation combined with stochastic gradient descent.

2.2.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a specialized kind of neural network

for processing data with a known grid-like topology. While they are commonly as-
sociated with image data, where they operate in two dimensions as shown in Figure
2.1 [Lecun et al., 1998], CNNs can also be adapted for one-dimensional (1D) data,
making them highly effective for sequential data such as time series or audio sig-
nals. An example of this is shown in Figure 2.2 [Kiranyaz et al., 2021].

1D CNNs employ the same fundamental operation as their 2D counterparts: con-
volution, which is a specialized linear operation. These networks are known for their
ability to detect patterns and features in sequential data, making them particularly
useful for tasks such as signal processing and time series analysis.

Figure 2.1 Traditional 2D Convolutional Neural Network architecture.

18

2.2 Neural Networks

Figure 2.2 1D Convolutional Neural Network architecture.

1D CNNs use convolution in place of general matrix multiplication in at least
one of their layers. They typically consist of three types of layers: convolutional
layers, pooling layers, and fully connected layers. The convolutional layers apply a
convolution operation to the input, passing the result to the next layer. This opera-
tion helps the network to concentrate on high-importance features while reducing
dimensionality. The formula for a convolution operation in 1D involves a filter or
kernel that passes over the sequential data, creating a feature map. After the con-
volutional and pooling layers have extracted and reduced the features, the output is
often passed to a Multilayer Perceptron (MLP) for final classification or regression
tasks. An MLP is a type of artificial neural network consisting of multiple layers of
neurons, typically including one or more hidden layers, which enables the network
to learn complex mappings from inputs to outputs.

Ci,k = ∑
m

Fm,k · Ii+m (2.2)

where Fm,k represents the filter matrix, I is the input sequence, and Ci,k is the output
feature map at position i for feature k.

1D CNNs are particularly useful in scenarios where the data is naturally sequen-
tial, such as audio signals, time-series data, or any other form of 1D data. They
effectively capture local patterns along the sequence, making them powerful tools
for tasks like anomaly detection, forecasting, and speech recognition.

2.2.3 Deep Learning
Deep Learning involves neural networks with a large number of layers. These net-
works can learn very complex patterns and features from the data, making them
extremely powerful for many tasks including speech recognition, natural language
processing, and image recognition. The depth of these networks is what allows them
to learn such rich representations of the data, enabling them to handle very complex

19

Chapter 2. Theory

tasks. The training of deep neural networks involves considerations such as avoiding
overfitting by using techniques such as dropout or batch normalization.

In practice, training deep neural networks is performed using high-level libraries
like TensorFlow or PyTorch, which provide tools that automatically calculate gra-
dients by backpropagation and update weights by gradient descent.

2.2.4 Neurons and Activation Functions
A neuron in an artificial neural network is a computational unit that takes inputs,
multiplies them by some weights, and then passes them through an activation func-
tion to produce an output. The purpose of the activation function is to introduce
non-linearities into the output of a neuron. This is crucial because it helps the net-
work learn complex patterns in the data.

• Structure of a Neuron: Each neuron receives input from some other neurons
or from an external source and computes an output. Each input has an asso-
ciated weight (a scalar), and there is an additional bias term. The neuron’s
output, Oi, is defined as:

Oi = f

(
∑

j
wi jx j +bi

)
(2.3)

where f is the activation function, wi j are the input weights, x j are the input
signals, and bi is the bias.

• Common Activation Functions:

- Sigmoid: σ(x) = 1
1+e−x , traditionally used because it squashes the output

between 0 and 1, making it useful for binary classification.

- ReLU (Rectified Linear Unit): ReLU(x) =max(0,x), popular in most recent
neural networks due to its computational simplicity and ability to reduce the
vanishing gradient problem.

- Tanh (Hyperbolic Tangent): tanh(x) = ex−e−x

ex+e−x , outputs values between -1
and 1, making it zero-centered and thus helping in the convergence during
training, it can be considered a simple rescaling of the sigmoid function and
can be used for other purposes.

2.2.5 Long Short-Term Memory (LSTM) Networks
Long Short-Term Memory networks [Hochreiter and Schmidhuber, 1997] are a spe-
cial kind of RNN, capable of learning long-term dependencies. LSTMs are explic-
itly designed to avoid the long-term dependency problem, remembering information
for long periods as a default behavior.

20

2.2 Neural Networks

• LSTM Architecture: Each LSTM cell has three gates: the input gate, the
output gate, and the forget gate. These gates determine whether to let new in-
put in (input gate), delete the information because it is not necessary anymore
(forget gate), or let it impact the output at the current timestep (output gate).

• Mathematical Model: The operations within an LSTM cell can be summa-
rized by the following equations:

ft = σ(Wf · [ht−1,xt]+b f)

it = σ(Wi · [ht−1,xt]+bi)

C̃t = tanh(WC · [ht−1,xt]+bC)

Ct = ft ∗Ct−1 + it ∗C̃t

ot = σ(Wo · [ht−1,xt]+bo)

ht = ot ∗ tanh(Ct)

where σ is the sigmoid function, W and b are the weights and biases specific
to each gate, and ∗ denotes element-wise multiplication.

2.2.6 Gated Recurrent Unit (GRU) Networks
Gated Recurrent Unit networks [Chung et al., 2014] are a type of RNN that aim to
solve the vanishing gradient problem and enhance the ability to capture long-term
dependencies, similar to LSTMs but with a simpler architecture. GRUs achieve this
by using gating mechanisms to control the flow of information.

GRU Architecture: Each GRU cell has two main gates: the update gate and the
reset gate. These gates manage the flow of information by determining how much
of the past information should be passed to the future (update gate) and how much
of the past information should be forgotten (reset gate).

• Mathematical Model: The operations within a GRU cell can be summarized
by the following equations:

zt = σ(Wz · [ht−1,xt]+bz)

rt = σ(Wr · [ht−1,xt]+br)

h̃t = tanh(Wh · [rt ∗ht−1,xt]+bh)

ht = (1− zt)∗ht−1 + zt ∗ h̃t

where σ is the sigmoid function, W and b are the weights and biases specific
to each gate, and ∗ denotes element-wise multiplication.

21

Chapter 2. Theory

In these equations:

• zt is the update gate vector,

• rt is the reset gate vector,

• h̃t is the candidate activation vector,

• ht is the new hidden state vector.

The update gate zt decides how much of the past information needs to be passed
along to the future. The reset gate rt determines how much of the past information
to forget. The candidate activation h̃t is then calculated using the reset gate’s output.
Finally, the new hidden state ht is a linear interpolation between the previous hidden
state ht−1 and the candidate activation h̃t , controlled by the update gate zt .

GRUs offer a simpler and potentially more efficient alternative to LSTMs while
achieving similar performance in handling long-term dependencies.

2.2.7 Dropout and Dynamic Regularization
In traditional artificial neural networks (ANNs), dropout is a widely used tech-

nique to prevent overfitting and improve generalization by randomly omitting a sub-
set of neurons during training. However, due to the inherent memory properties and
sequential nature of Long Short-Term Memory (LSTM) networks and Gated Re-
current Units (GRUs), applying dropout directly to these architectures can disrupt
the temporal dependencies they are designed to capture. To address this challenge,
we introduce a method called "dynamic regularization." This approach involves ap-
plying varying regularization strengths to different layers of the LSTM and GRU
networks, rather than using a uniform regularization parameter across the entire net-
work. By tailoring the regularization for each layer, dynamic regularization helps to
maintain the integrity of memory retention and sequence learning while mitigat-
ing overfitting. This method ensures that the regularization is optimally balanced,
allowing the model to generalize better without compromising its ability to learn
long-term dependencies.

2.2.8 Loss Functions and Optimization
In neural network training, a loss function or cost function is used to measure how
well the model predicts the target data. Optimizing this function involves adjusting
the weights of the network to minimize the loss.

• Common Loss Functions:

- Huber Loss: The Huber loss [Huber, 1964] acts like MSE when the error is
small, but it acts like Mean Absolute Error (MAE) when the error is large.

22

2.2 Neural Networks

The Huber loss, Lδ (y, ŷ), is defined as follows:

Lδ (y, ŷ) =

{
1
2 (y− ŷ)2 if |y− ŷ| ≤ δ

δ · |y− ŷ|− 1
2 δ 2 otherwise

(2.4)

where y is the true value, ŷ is the predicted value, and δ is the threshold
parameter.

- Cross-Entropy Loss: Preferred for classification tasks, measures the perfor-
mance of a classification model whose output is a probability value between
0 and 1.

L =−∑y log(ŷ) (2.5)

where y is 1 for the true class and 0 otherwise, and ŷ is the predicted proba-
bility of the label.

- Mean Squared Error (MSE) and Root Mean Squared Error (RMSE): Both
are primarily used for regression problems. MSE quantifies the average of the
squared differences between the predicted values and the actual values, while
RMSE provides a measure of how well a model predicts the target variable
by calculating the square root of the average squared differences between the
predicted values and the actual values.

The MSE is defined as follows:

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2 (2.6)

The RMSE is defined as follows:

RMSE =

√
1
n

n

∑
i=1

(yi− ŷi)2 (2.7)

where n is the number of data points, yi represents the true value for data point
i, and ŷi represents the predicted value for data point i.

Both MSE and RMSE are sensitive to large errors, which can be beneficial
when large errors are particularly undesirable. However, this sensitivity can
also be a disadvantage if the dataset contains outliers, as they can dispro-
portionately influence these metrics. Despite this, MSE and RMSE are often
favored in practice due to their straightforward interpretation and their ability
to reflect the overall fit of a model more effectively than other metrics.

23

Chapter 2. Theory

• Optimization Techniques:

- Gradient Descent: The most basic form of optimization algorithm used in
neural networks. It updates the weights incrementally after each epoch ac-
cording to the gradient of the loss function.

- Stochastic Gradient Descent (SGD): A variant of gradient descent where
the update to the weights is performed using a subset of the data rather than
the full dataset. This is much faster and can also lead to better generalization.

- Adam: Adaptive moment estimation (Adam) is a popular optimization al-
gorithm used in neural networks. It provides an optimization that can handle
sparse gradients on noisy problems. [Kingma and Ba, 2017]

• Backpropagation: This is the process used to compute the gradient of the
loss function in a neural network. It involves performing a forward pass to
calculate the output and error, and then a backward pass to calculate the gra-
dient of the loss with respect to each weight.

∆w =−η∇L (2.8)

where ∆w is the change to the weights, η is the learning rate, and ∇L is the
gradient of the loss function with respect to the weights.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that focuses on deci-
sion making and the optimization of sequential actions to achieve a goal. In RL, an
agent interacts with an environment over discrete time steps. At each time step, the
agent selects an action from a set of possible actions. The environment, in response,
transitions to a new state and returns a reward to the agent. The goal of the agent is
to learn a policy, which is a mapping from states to actions, that maximizes the sum
of rewards over time.

2.3.1 Q-Learning
Q-Learning is a model-free reinforcement learning algorithm, introduced by
Watkins et al, that seeks to find the best action to take based on the current state.
It focuses on learning the Q-value, which represents the expected future reward for
taking a specific action in a particular state [Watkins, C.J.C.H., 1989].

The Q-value for a current state s and action a is denoted by Q(s,a) and is up-
dated using the Bellman equation:

Q(s,a)←− Q(s,a)+α

[
R(s,a)+ γmax

a′
Q(s′,a′)−Q(s,a)

]
(2.9)

24

2.3 Reinforcement Learning

where α is the learning rate, γ is the discount factor. R(s, a) is the immediate reward
received after taking action a in state s. max

a′
Q(s′,a′) represents the maximum Q-

value over all possible actions in the next state s′.
The goal of Q-Learning is to find the optimal policy by learning the optimal Q-

values for each state-action pair. The optimal policy is the one that has the highest
expected future reward.

2.3.2 Deep Q-Learning
While Q-Learning can be very effective, it has a major limitation in that it can
only handle environments with small state and action spaces, as it requires more
memory and time to create and store the Q-table. DQN [Mnih et al., 2015] addresses
this limitation by using deep neural networks (DNN) to approximate the Q-value
function. Figure 2.3 illustrates the integration of a DNN in the Deep Q-learning
model, allowing it to handle environments with larger and more complex state and
action spaces effectively.

Figure 2.3 Deep Q-Learning model.

The DQN takes in the state as input and outputs the Q-value for each action.
The weights of the network are then updated to minimize the difference between
the predicted Q-values and the target Q-values,

Li(θi) = (R(s,a)+ γmax
a′

Q(s′,a′;θi−1)−Q(s,a;θi))
2 (2.10)

25

Chapter 2. Theory

where θi is the parameters of the neural network at each step i. When optimizing
the loss function, the parameters from the previous iteration θi−1 are fixed.

Deep Q-learning uses the experience replay technique where past transitions
et = (st ,at ,rt ,st+1) are stored in a replay memory. During training, mini-batches
of transitions are randomly sampled from this replay memory instead of using just
the latest transition. This approach ensures a diverse and uncorrelated set of expe-
riences for learning, thereby improving the stability and efficiency of the learning
process. In addition, an ε-greedy policy, as explained in steps 8 and 9 in Algorithm
2, is used to select and execute an action to ensure good coverage of the state and
action space. Finally, through backpropagation, the weights of the main DNN are
updated to minimize the loss from (2.10), thus improving the accuracy of Q-value
estimation. The deep Q-learning algorithm is derived from [Roderick et al., 2017]
as follows:

Algorithm 2 Deep Q-learning with Experience Replay.
1: Initialize replay memory D to capacity N.
2: Initialize action-value function Q with random weights θ .
3: Initialize target action-value function Q̂ with weights θ− = θ .
4: for episode = 1,M do
5: Initialize sequence s1 = {x1} where x1 represents the initial observation of

the environment when a new episode starts.
6: Initialize state φ1 = φ(s1) where φ is the function to handle s1 and convert

it to φ1.
7: for t=1,T do
8: With probability ε select a random action at
9: otherwise select at = argmaxaQ(φ(st),a;θ).

10: Execute action at in emulator and observe reward rt and the next
11: observation of the environment xt+1.
12: Set next sequence st+1 = st ,at ,xt+1 and next state φt+1 = φ(st+1).
13: Store transition (φt ,at ,rt ,φt+1) in D.
14: If D has reached its capacity N, replace the oldest transition with the

new one.
15: Sample random mini-batch of transitions (φ j,a j,r j,φ j+1) from D with

a batch size of K.

16: Set y j =

{
r j for terminal φ j+1

r j + γ maxa′ Q̂(φ j+1,a′;θ−) for non-terminal φ j+1

17: Perform a gradient descent step on (y j−Q(φ j,a j;θ))2 with respect to
the network parameters θ .

18: Every C steps reset Q̂ = Q, i.e set θ− = θ .
19: end for
20: end for

26

3
Methodology

At a high level, the inputs for both models are the data described in Section 3.2, and
the outputs are the predicted temperatures. The grey-box model uses an existing
state-space model to predict these temperatures. In contrast, the black-box model
predicts the temperatures directly from the inputs. This chapter explains how data
was collected and processed. It also describes the process of building the models
and how these were evaluated.

To answer the first question in the problem formulation and goals "Is it possible
to utilize machine learning for parameter tuning and identification of an optimal
parameter set?", Deep Q-Learning models are created to calibrate the temperature
model. Python libraries such as PyTorch, Numpy, Scipy, Matlab engine are used to
handle data and create the DRL model.

To answer the second question, which is if it is possible to bypass the requirement
of a state-space model, we propose using black-box model methods. Our main focus
is on customizable neural network models created with the Deep Learning Toolbox
in MATLAB. Additionally, we use models such as Random Forests, SVM, and
KNN as benchmark comparisons. These additional models were developed using
the scikit-learn toolbox in Python.

3.1 Temperature Model

This section briefly introduces the state-space model. The primary objective of the
temperature estimation module is to estimate the oil temperature accurately based
on the measured temperatures, internal coupling signals, and existing knowledge.
This is crucial for effectively controlling the pump and identifying critical temper-
atures of the coupling to prevent mechanical damage from overheating. As the sole
method for measuring temperatures relies on a temperature transducer on the ECU
PCB and the external temperature of the vehicle, it is essential to precisely estimate
the temperatures in the oil pan and the lamella. [Olsson, 2023]

27

Chapter 3. Methodology

The temperature estimation relies on the state-space model (3.1) and 18 param-
eters that need to be tuned. [Svendenius, 2020]

ẋ = Ax+Bu

y =Cx+Du
(3.1)

where the state vector x comprises the temperatures to be estimated and the control
vector u consists of powers. These powers are calculated from the data described in
Section 3.2. The matrices A and B are constructed using 18 tunable parameters. The
matrix C is defined as the identity matrix, and the matrix D is set to zero. Further
details regarding these matrices are omitted from this report due to confidentiality
reasons.

3.2 Data

A test car used for driving tests is equipped with sensors at different places, such as
Pump sump, Final gear box, Lamella sump, Coupling, Outside air temp sensor, etc.
DIAdem/CANalyzer is used to collect data depending on project needs. Below are
some input signals required for the Matlab model:

• Pump voltage

• Pump current

• Coupling torque

• Absolute rotational speed of coupling

• Differential rotational speed of coupling

• Vehicle velocity

• Pump motor speed

• Battery voltage when the ignition is on

The test logs will contain approximately 20-45 minutes of data, and each test
will be started from different temperatures. The test car will be driven in various
driving scenarios, such as aggressive driving, highway driving, country road driving,
or city driving.

3.2.1 Dataset Description for Black Box Models
For the purpose of training black box models aimed at temperature estimation, we
utilized a comprehensive collection of 18 datasets. These datasets were systemat-
ically divided into two segments: 12 datasets allocated for training purposes and
6 datasets reserved for testing. Each dataset encompasses a range of features and
goals essential for model development and evaluation.

28

3.2 Data

Each dataset comprises 8 features and 4 goals, crucial for accurate temperature
estimation. The features included are:

• Pump Current - The current measured in the pump.

• Pump Voltage - The voltage supplied to the pump.

• Motor Speed - The rotational speed of the motor.

• Car Velocity - The speed of the car.

• Outside Temperature - The ambient temperature outside.

• Case Temperature - The temperature of the case enclosing the system.

• Flow Rate - The rate of fluid flow through the system.

• PCB Temperature - The temperature of the printed circuit board.

The goals, which are the target variables for our models, include:

• Lamella Temperature - The temperature of the lamella.

• Pumphead Temperature - The temperature at the pump head.

• Coupling Oil Temperature - The temperature of the coupling oil.

• Final Gear Temperature - The temperature of the final gear.

To ensure a more robust and comprehensive model training and evaluation, we
employed two distinct testing regimens:

1. Compiled Dataset Testing: In this approach, all 12 training datasets are used
collectively to train the models, and all 6 testing datasets are used to evaluate
the model performance. This comprehensive approach allows for a general-
ized and comprehensive evaluation of the model, and how we can expect it to
behave in a variety of situations.

2. Warm Driving Situation Testing: This focused testing method involves se-
lecting 4 specific training datasets and 1 test dataset, all related to warm driv-
ing situations. This subset of datasets helps in understanding the model per-
formance in specific operational conditions, providing insights into its relia-
bility and accuracy. This subset of data also allows for more detailed micro-
investigations into the behaviour of various models on a controlled dataset
due to it’s smaller size which facilitates more numerous tests in the same
time frame.

29

Chapter 3. Methodology

3.3 Loss Functions and Evaluation methods

RMSE is the loss function used to evaluate the Black box model, however, due
to the uncertain nature of black box models (that arise because of the lack of ex-
plainability) additional methods of evaluation are necessary. To achieve this we also
extracted the variance of results, as well as the total high frequency power.

MSE and Huber loss are used to train DRL models. Although MSE is a popular
loss function, Huber loss can be especially useful in this context because the model’s
loss often starts out high in the initial stages.

3.4 Grey-Box Models

Two models were created to compare their performance. The first model relies
solely on a single DQN, while the second model employs a policy network and
a target network. The input to these models is a parameter set comprising 18 param-
eters, as described in Section 3.1, with all values initialized to zero. Each parameter
is bounded within the range of 0 to 100. This boundary is defined by the architect.
These parameters are updated every epoch and are reset to zero when any parameter
reaches its defined limit. When this happens, the current episode is marked as done
(termination). New Q values are updated to include the rewards for the current step
as described in step 16 in Algorithm 2.

Each model will be trained for about two days to five days on a laptop and
the performance of these models will be evaluated using data from three different
driving tests. After each epoch, the average MSE loss between the predicted data
and the actual data will be calculated. At the end of the training, the best average
MSE loss from the grey-box models will be compared to the average MSE loss from
Manual Calibration to evaluate its performance.

3.4.1 Model 1
Model 1 uses a single DQN, serving as both the policy network and the target net-
work as shown in Figure 3.1. This model implements a training approach that uses
both short-term and long-term memory to update the DQN. The short-term memory
allows the model to learn from individual experiences as they occur.

On the other hand, the long-term memory involves accumulating a collection of
experiences in a replay memory. The network is then trained in batches by sampling
from this replay memory at the end of each episode. By combining short-term and
long-term memory, this approach leverages the benefits of both immediate learning
and more generalized learning from diverse experiences, contributing to a more
stable and effective training process.

30

3.4 Grey-Box Models

Figure 3.1 DQN network.

3.4.2 Model 2
This second model, as shown in Figure 3.2, involves two separate networks: a policy
network for selecting actions and a target network for providing stable reference
values during training [Lillicrap et al., 2019]. The policy network and the target
network have similar structures, but they operate independently. The policy network
chooses actions based on the current state, while the target network offers a stable
estimation of future rewards, which helps in updating the policy network.

When a new episode starts, a random sample of experiences from the replay
memory is used to update the policy network, which helps to improve training sta-
bility and model robustness by reducing the likelihood of overfitting to specific
sequences of events. However, this model does not use short-term and long-term
memory. The policy network is optimized every epoch with the batch size from Ta-
ble 3.1. Moreover, the target network is updated less frequently, which contributes
to greater stability during training. The target network is synchronized with the pol-
icy network by a soft update [Lillicrap et al., 2019].

θ
′←− τθ +(1− τ)θ ′ (3.2)

where θ and θ ′ are the weights of the policy network and the target network, re-
spectively, and τ is a hyperparameter between 0 and 1.

31

Chapter 3. Methodology

Figure 3.2 Policy and Target network.

This approach may slow down learning because the target values change slowly,
but it enhances stability.

3.4.3 Hyperparameter tuning
Various configurations were tested through a series of experiments to optimize the
hyperparameters. Table 3.1 presents the optimal set of hyperparameters determined
through these experiments.

32

3.5 Black-Box Models

Table 3.1 Model Parameters.

Parameter Model 1 Model 2 Description
Batch Size 1000 250 Number of samples in each training batch

Randomness
(Epsilon)

80 80 Initial randomness for exploration

Discount Rate
(Gamma)

0.9 0.9 Rate at which future rewards are dis-
counted

Learning Rate 0.001 0.001 Rate at which the optimizer updates the pa-
rameters

Soft Update
Coefficient (TAU)

None 0.005 Coefficient for updating the target network

Input Layer Neurons 25 25 Number of neurons in the first linear layer
First Hidden Layer

Neurons
128 128 Neurons in the first hidden layer

Second Hidden
Layer Neurons

128 128 Neurons in the second hidden layer

Output Layer
Neurons

17 17 Neurons in the output layer

3.5 Black-Box Models

The black box models are divided in four main categories, each category contains
3 models. It should be noted that the black box models are expected to perform
significantly better than the state-space models, thus the comparisons made will
rarely be purely on the error scale, and comparisons are only used to contrast the
ability of the black box methods. The categories are as follows:

1. Classical models: Random forest, SVM, and KNN.

These models are used as a benchmark standard for more robust neural
network models. The classical models have an upper limit in terms of learning
capabilities. Grid searches were used to optimize the hyperparameters, and
after some feature engineering, what is believed to be the theoretically best
results achievable within the limits of the model have been acquired.

2. Perceptron Neural Networks: Small, Medium, and Large.

The sizes reflect various architectures of a perceptron based Deep Neural
network model (The specific architectures will be mentioned in the appendix).
The varying sizes are used to achieve a balance between generalizing data,
power consumption, and capturing temporal properties. All of which vary
across datasets and model sizes.

33

Chapter 3. Methodology

3. LSTM Networks: Small, Large, and Dynamic Regularization.

As mentioned, LSTM or Long Short-Term Memory is a special type of
neural network unit, this unit is especially helpful in keeping track of temporal
dependencies. Similar to the Perceptron networks above, the sizes reflect dif-
ferent architectures of the LSTM networks, for consistency the sizes ’small’
and ’large’ have been made to match that of the other networks, this was done
by choosing an architecture that has the most similar number of parameters as
that of the other networks, with the same number of hidden layers. The rea-
son why matching the number of parameters was preferred over matching the
architecture is due to the increasing complexity of the model being based on
the number of parameters instead of the architecture. Additionally, the num-
ber of hidden layers was kept consistent to avoid any qualitative differences
between results, and to most closely match the behavior of the other models
(for easier contrast). Dynamic regularization is an additional structure used
on Recurrent neural networks such as LSTM and GRU, the purpose is to use
regularization at different layers as opposed to dropout which is used in the
perceptron networks.

4. GRU Networks: Small, Large, and Dynamic Regularization.

The GRU model is known for its efficiency in processing sequences simi-
larly to LSTMs but with a simplified structure. The small and large configu-
rations are designed with a similar number of parameters to their perceptron
and LSTM equivalents, maintaining uniformity in complexity and capability
across the models. The use of dynamic regularization in GRU networks is
aimed at enhancing model adaptability and improving performance on varied
sequences by selectively applying regularization techniques at different net-
work layers. This approach helps in mitigating overfitting while preserving
the network’s ability to capture essential temporal features in the data, thus
ensuring robustness and generalization across different datasets and scenar-
ios.

3.5.1 Data processing and Procedure
Data pre-processing is a critical step in the methodology of training machine

learning models, as it directly influences the model’s performance and effectiveness.
The data pre-processing performed consisted of several key steps: data cleaning,
normalization, and resampling. Data cleaning was used to rectify inconsistencies
such as missing values, outliers, and incorrect data entries, which could otherwise
skew the results and lead to unreliable model predictions. Normalization scales the
data attributes to a standard range of 0 to 1 using a min-max normalization formula,
this is crucial for preventing certain features from dominating due to their scale,
thus ensuring all attributes contribute equally to the learning process. Additionally,

34

3.5 Black-Box Models

transformation techniques such as encoding categorical variables and decompos-
ing timestamps were used to enhance the model’s ability to understand and extract
patterns from the data.

3.5.1.1 Resampling.

Resampling was a critical process in the data pre-processing step, especially due
to dealing with time-series data from multiple experiments. The goal is to standard-
ize the number of data points in each dataset, ensuring consistency across different
experimental conditions and facilitating robust comparative analyses. The resam-
pling performed in our paper was done using linear interpolation and is described
as:

x(t ′) = x(t1)+
(t ′− t1)
(t2− t1)

(x(t2)− x(t1))

Where, t represents the original time points, t ′ represents the new resampled
time points, and t1 and t2 are the time points in the original data that bracket t ′.
This ensures that the temporal relationships in the original data are preserved while
reducing (or increasing) the number of points to the desired sample size.

For our thesis, a resampling factor was used to verify the effect of resampling
across datasets, this is because the effect of resampling can manifest in two ways; it
can involve either under-sampling or oversampling, both of which have their indi-
vidual benefits and drawbacks.

A smaller resampling factor would result in under-sampling more data sets,
which could lead to a loss of detail and potential under-representation of the data’s
variability. On the other hand, a larger resampling factor would result in more fre-
quent oversampling, potentially introducing artificial data points that might not rep-
resent real changes in the underlying process.

However, by standardizing the number of data points across all experiments,
resampling ensures that each dataset is comparable. This uniformity is crucial for
the black box models, as to prevent the model from developing unnatural biases due
to the data size and sampling time variations, thus facilitating more robust statistical
analyses. Overall, the goal of resampling is to enhance the reliability and validity of
the subsequent analyses and modeling efforts.

3.5.1.2 Filtering and Smoothing (with considerations).

Noise reduction techniques were employed in the pre-processing of feature data
for neural networks to enhance the quality of the input data and improve the model’s
performance. This was crucial for mitigating the influence of noise and variability
in sensor measurements. While these techniques successfully preserved the accu-
racy of the model’s predictions, ensuring robust performance with real-world data
required us to forego some noise reduction methods that could not be implemented

35

Chapter 3. Methodology

in real-time. Instead, we suggest using alternative methods such as Kalman filtering
and low-pass filters.

For the purposes of this thesis following methods for noise reduction were used:

1. Moving Average Filter: a moving average filter was applied to sensor data
to reduce noise and smooth the signal. The filter was configured with a win-
dow size of 5, meaning each output value was the average of the current and
the four preceding sensor readings. This approach effectively smoothed out
rapid fluctuations in the sensor output, enhancing the signal-to-noise ratio.
The implementation can be given as:

yt =
1
N

t

∑
i=t−N+1

xi (3.3)

where:

• yt is the output of the moving average filter at time t.

• xi is the sensor data at time i.

• N is the window size of the moving average filter.

2. Exponential Smoothing: Exponential smoothing was also utilized, prioritiz-
ing recent data points by assigning exponentially decreasing weights to older
observations. A smoothing factor of α was chosen to balance between re-
sponsiveness and smoothness of the output signal. This method provided a
continuously updated average that responded sensibly to changes in trend
while damping out noise. Similarly we can realize this smoothing with the
following formula:

St = αxt +(1−α)St−1 (3.4)

where:

• St is the smoothed value at time t.

• xt is the raw sensor data at time t.

• α is the smoothing constant, 0 < α ≤ 1.

• St−1 is the previous smoothed value.

3. The Kalman Filter was designed to estimate and correct sensor readings in
real time. The filter started with an initial estimation of state and error covari-
ance matrices. The process involved a prediction step, where the next state
was estimated based on a physical model, followed by an update step, where
this prediction was corrected using new sensor data. It is instrumental to un-
derstand that the Kalman filter was implemented on pre-recorded data. Due

36

3.5 Black-Box Models

to the intricacies of which, or lack thereof, we are not able to accurately assert
the effectiveness of this method on real time processes (this is not to say that
the Kalman filter may produce contradictory results, but the degree to which
it may improve the data may not be the same).

4. Low-Pass Filter AA Butterworth low-pass filter was chosen for its maximally
flat frequency response at ω = 0, ensuring minimal signal distortion at low
frequencies. The MATLAB function designfilt was used to create the digital
low-pass filter, and filtfilt was employed to apply the filter to the dataset. The
filtfilt function was chosen for its zero-phase filtering capability, which en-
sures that the filtered signal has no phase distortion. The filtering process was
applied to each column (feature) of the dataset independently. The mathemat-
ical details and pseudocode of which are given by:

The transfer function of a digital Butterworth low-pass filter of order N is
given by:

H(z) =
B(z)
A(z)

where B(z) and A(z) are polynomials in z.

The frequency response of the Butterworth filter is:

|H(e jω)|2 = 1

1+
(

ω

ωc

)2N

The difference equation for the filter in the time domain is:

y[n] =
N

∑
i=0

bix[n− i]−
N

∑
j=1

a jy[n− j]

where:

• y[n] is the output signal.

• x[n] is the input signal.

• bi are the feedforward coefficients.

• a j are the feedback coefficients.

3.5.2 Goals and Evaluation Criteria
While RMSE (Root Mean Square Error) is typically the main evaluation criterion
for neural network predictions in regression tasks, the delicacy of real-time car tem-
perature estimation requires additional evaluation factors. Simply achieving a low
RMSE may not be sufficient to confirm the model’s validity due to external factors

37

Chapter 3. Methodology

Algorithm 3 Apply Low-Pass Filter
1: function APPLYLOWPASSFILTER(data, cutoffFrequency)
2: Design the low-pass filter using Butterworth design
3: d← designfilt(lowpass,cuto f f Frequency,butterworth)
4: Initialize the filtered data matrix
5: f ilteredData← zeros(size(data))
6: Apply zero-phase filtering to each column of the dataset
7: for i = 1 to size(data,2) do
8: f ilteredData(:, i)← filtfilt(d,data(:, i))
9: end for

10: return f ilteredData
11: end function

such as result uncertainty. This uncertainty can necessitate a higher safety factor,
potentially leading to overall worse performance compared to a more stable state-
space model. Thus, evaluating the model’s effectiveness involves a comprehensive
approach considering multiple criteria.

1. Root Mean Square Error (RMSE):

RMSE measures the average magnitude of the errors between predicted
and actual values. The metric is used to directly assess the model’s prediction
accuracy, with Low RMSE meaning better accuracy.

RMSE =

√
1
N

N

∑
i=1

(ypred/est,i− ytest,i)2

where ypred/est,i is the value for the i-th prediction/estimation, ytest,i is the true
value, and N is the total number of predictions.

2. Variance:

Variance measures the dispersion of prediction errors. It indicates how
much the prediction vary from the mean. With low variance indicating consis-
tent performance with small deviations in prediction errors, leading to reliable
predictions. Conversely, high variance could imply that the model is overly
sensitive to minor fluctuations in the input data, which is usually undesirable
in an automotive system.

σ
2 =

1
N

N

∑
i=1

(ypred/est,i− ȳ)2

38

3.5 Black-Box Models

where ypred/est,i is the value for the i-th prediction, ȳ is the mean value, and N
is the total number of predictions.

3. Total High Frequency Power:

Total high frequency power quantifies the amount of high-frequency com-
ponents in the prediction error signal. It helps to assess the presence of
high-frequency noise or rapid fluctuations in the predictions. Low High Fre-
quency Power indicates that the predictions are smooth and free from high-
frequency noise, contributing to stable performance. Inversely, high values
of total High Frequency Power suggests that the predictions contain signifi-
cant high-frequency noise, which can lead to erratic performance and reduced
reliability.

To compute the total high-frequency power, the following steps are per-
formed:

a) Detrending the Signal: The prediction signals are detrended to remove
any linear trend that could obscure the high-frequency components.

b) Computing the Power Spectral Density (PSD): The PSD of the de-
trended signals is calculated using the Welch method. The PSD repre-
sents the distribution of power across different frequency components
in the signal.

c) Summing the High-Frequency Components: A threshold frequency
is defined to separate high-frequency components from low-frequency
ones. The total high-frequency power is then obtained by summing the
PSD values that correspond to frequencies above this threshold.

Mathematically, if ŷpred(t) is the detrended prediction signal, the power spec-
tral density PSDpred(f) is computed. The total high-frequency power PHF is
given by:

PHF = ∑
f> fth

PSDpred(f)

where fth is the threshold frequency separating high-frequency components.

By analyzing the total high-frequency power, we can evaluate the smooth-
ness and reliability of the predictions. Low high-frequency power indi-
cates smoother predictions with fewer rapid fluctuations, while high high-
frequency power suggests the presence of noise and potential instability in
the predictions.

39

4
Results

This chapter will comprehensively present the performances of all models. A con-
cise discussion will accompany the results to enhance understanding. Additionally,
visual comparisons of results will be provided to identify the most effective model.
Further elaboration will be discussed in Chapter 5.

4.1 Grey-Box Model

4.1.1 Model comparision
The best average loss values of all the models, calculated using MSE, are shown in
Table 4.1.

Table 4.1 Best average MSE loss metrics.

Model 1 Model 2 Manual Calibration
Dataset 1 16.3 19.5 18.9
Dataset 2 58.9 72.9 71.6
Dataset 3 138.5 177 191.4

Out of the numerous log files in each dataset, a log file from Dataset 3 will be
used as the basis for visualizing the results across all models. Figures 4.1 and 4.2
present the predictions from all the models evaluated with the MSE and Huber loss
functions, respectively. The blue lines represent the actual data from the sensors.
The green lines show predictions using the parameter set from Model 1, while the
black lines illustrate predictions using the parameter set from Model 2. The dashed
lines show predictions from Manual Calibration. Model 1 generally fits the real data
better in most cases. More details can be found in sections 4.1.2 and 4.1.3.

40

4.1 Grey-Box Model

Figure 4.1 Temperature predictions of all the models trained using the MSE loss
function.

Figure 4.2 Temperature predictions of all the models trained using the Huber loss
function.

41

Chapter 4. Results

4.1.2 Model 1
Table 4.2 shows the average loss metrics of Model 1, calculated using MSE, with
three different measurements. The first column displays the average MSE loss of
Model 1, trained using the MSE function on its DQN, across three datasets. In the
second column, Model 1 utilizes the Huber loss function to train the DQN, while
the third column shows the average loss for Manual Calibration using MSE. These
metrics provide a baseline for comparing Model 1’s results..

Table 4.2 Average MSE Loss of Model 1 and Manual Calibration.

Model 1 (MSE) Model 1 (Huber Loss) Manual Calibration
Dataset 1 16.8 16.3 18.9
Dataset 2 69.7 58.9 71.6
Dataset 3 143.4 138.5 191.4

Figures 4.3 and 4.4 visualize the results obtained from Dataset 3. The blue lines
represent the actual data from the sensors. The green lines show predictions using
the parameter set from Model 1. The dashed lines show predictions from Manual
Calibration.

Figure 4.3 Predictions from Model 1 trained using Dataset 3 and the MSE loss
function.

42

4.1 Grey-Box Model

Figure 4.4 Predictions from Model 1 trained using Dataset 3 and the Huber loss
function.

Two separate replicas of Model 1 were trained, each using a different loss func-
tion: one with Huber loss and the other with MSE. Figures 4.3 and 4.4 show that Hu-
ber loss leads to more accurate predictions for Coupling, CouplingOil, PumpHead
and Lamella temperatures. However, the predictions for FinalGear temperature tend
to undershoot, which might be due to limitations within the state-space model. This
poses a trade-off, implying that it might not be feasible to find one parameter set
that provides good predictions for all components.

At the start of each episode, all parameters were reset to zero. Subsequently, the
average MSE loss was recalculated after the agent performed a new action. Conse-
quently, this reset led to a spike in the average MSE loss. The average MSE loss
and Huber loss are plotted in figures 4.5 and 4.6. These figures illustrate that while
both models were able to converge before resetting for a new episode, the model
trained with the MSE loss function typically demonstrated a longer and more stable
calibration period. Notably, the model utilizing the Huber loss function achieved the
lowest loss value.

43

Chapter 4. Results

Figure 4.5 Average MSE loss of Model 1 trained using Dataset 3 and the MSE
loss function.

Figure 4.6 Average MSE loss of Model 1 trained using Dataset 3 and the Huber
loss function.

44

4.1 Grey-Box Model

Moreover, Dataset 2 was utilized for a five-day training period on a laptop to
evaluate Model 1’s performance under conditions where it could explore and learn
more extensively. Figure 4.7 shows the average MSE loss of Model 1 throughout
this training process.

Figure 4.7 Average MSE loss of Model 1 trained using Dataset 2 and the MSE
loss function after five days.

Figure 4.7 demonstrates that given sufficient time for exploration and learning,
the grey-box models are capable of identifying even more optimal parameter sets.
It was able to find the optimal set around epoch 1100.

4.1.3 Model 2
Similar to 4.1.2, the average MSE loss metrics of Model 2 are shown in Table 4.3.

Table 4.3 Average MSE loss of Model 2 and Manual Calibration.

Model 2 (MSE) Model 2 (Huber Loss) Manual Calibration
Dataset 1 30 19.5 18.9
Dataset 2 73 72.9 71.6
Dataset 3 177 219.5 191.4

Figures 4.8 and 4.9 visualize the results obtained from Dataset 3. The blue lines
represent the actual data from the sensors. The green lines show predictions using

45

Chapter 4. Results

the parameter set from Model 2. The dashed lines show predictions from Manual
Calibration.

Figure 4.8 Predictions from Model 2 trained using Dataset 3 and the MSE loss
function.

Model 2 demonstrated poor fitting to the real data, performing worse than Man-
ual Calibration in most cases.

The average MSE loss and Huber loss are seen in figures 4.10 and 4.11. These
figures show that the model using the MSE loss function generally experienced a
longer and more stable calibration period before resetting. In contrast, the model
employing the Huber loss function achieved the lowest loss value.

46

4.1 Grey-Box Model

Figure 4.9 Predictions from Model 2 trained using Dataset 3 and the Huber loss
function.

Figure 4.10 Average MSE loss of Model 2 trained using Dataset 3 and the MSE
loss function.

47

Chapter 4. Results

Figure 4.11 Average MSE loss of Model 2 trained using Dataset 3 and the Huber
loss function.

4.2 Black-Box Models

4.2.1 Benchmark model results

Model RMSE Variance High Frequency Power

Random Forest 8.60 56.39 7.64
KNN 8.82 121.94 32.31
SVM 6.90 50.09 10.24

Table 4.4 Benchmark results

From the results in Table 4.4 and Figure 4.12 we can compare the perfor-
mance of three benchmark models (Random Forest, KNN, and SVM) on the warm
drive dataset. The SVM model achieves the lowest RMSE (6.897613) and variance
(50.088986), indicating better accuracy and consistency compared to the Random
Forest and KNN models. However, the SVM model has a higher High Frequency
Power (10.24166) than the Random Forest model (7.63996), indicating more high-
frequency noise.

48

4.2 Black-Box Models

Figure 4.12 Performance of the benchmark model on the warm drive data set.

4.2.2 Effect of Resampling on RMSE

Figure 4.13 Trend of RMSE as resample size varies and across model sizes.

Figure 4.13 and Table 4.5 show the trend of RMSE as the resample size varies
across small, medium, and large ANN models. The data indicates that as resampling
size increases, the RMSE initially decreases for all models but then deteriorates for

49

Chapter 4. Results

Model Resample size RMSE
Small 16000 1.35

Medium 24000 1.14
Large 48000 1.14

Table 4.5 Best results on RMSE-Sample size test.

Figure 4.14 Visual results of the best Neural network models plotted with the real
and estimated results. [Sample index (x-axis) Temperature in °C (y-axis)]

the small and medium models at higher resampling sizes. The large ANN model
consistently shows the lowest RMSE at higher resampling sizes. Figure 4.14 shows
the final test results using the best resampling size (in terms of RMSE) for each
ANN model.

50

4.2 Black-Box Models

The results highlight that as the resampling size increases, the complexity of the
model required to maintain a low RMSE also increases, this is discussed further
in section 5.2.1. Initially, all models benefit from increased resampling, suggesting
improved pattern recognition due to more comprehensive data. However, the small
ANN model struggles with higher resampling sizes, likely due to its limited capacity
to handle the increased temporal complexity. Conversely, the medium and large
ANN models show better adaptability, with the large ANN consistently performing
the best at higher resampling sizes. This indicates that larger models are more suited
for managing large datasets with complex temporal dynamics.

4.2.3 Effect of Resampling on THFP

Figure 4.15 Trend of total high frequency power as resample size varies and across
model sizes.

Model Sampling size Total High Frequency Power
Small 56000 0.32

Medium 56000 1.50
Large 56000 3.14

Table 4.6 Best results on Total high Frequency Power-Sample size test.

The results from Figure 4.15 and Table 4.6 concern the effect of resampling size
on THFP across different ANN models. As resampling size increases, THFP de-

51

Chapter 4. Results

Figure 4.16 Trend of total high frequency power with examples.

creases, suggesting more stable models with less high-frequency noise. Figure 4.16
illustrates these results in small snapshot views across points on the curve shown in
Figure 4.15. Finally Figure 4.17 shows the final test results using the best resam-
pling size (in terms of THFP) for each ANN model.

The data demonstrates that larger models require higher resampling rates to main-
tain stability and avoid high-frequency noise. While large models capture more in-
tricate patterns, they risk instability without detailed data. In contrast, whilst still
showing improvement, smaller models are still stable at lower resampling sizes but
may lack the capacity to capture complex dynamics as shown from the RMSE re-
sults.

52

4.2 Black-Box Models

Figure 4.17 Visual results of the smoothest Neural network models plotted with
the real and estimated results. [Sample index (x-axis) Temperature in °C (y-axis)]

4.2.4 Effect of smoothing on results
Figure 4.18 reveals the impact of the moving average filter and exponential

smoothing (we will collectively refer to this as "smoothing" going forward) on
model predictions. Smoothing generally aligns predictions with actual data, reduc-
ing variance and high-frequency noise. This results in a much less volatile prediction
pattern.

However, inappropriate smoothing can amplify variability, especially in complex
data scenarios such as the one shown in Figure 4.19; displaying a paradoxical be-
havior in the smoothing results.

53

Chapter 4. Results

Figure 4.18 Effect of smoothing on data. [Sample index (x-axis) Temperature in
°C (y-axis)]

Figure 4.19 Case where smoothing leads to more variance. [Sample index (x-axis)
Temperature in °C (y-axis)]

54

4.2 Black-Box Models

4.2.5 Best model results on combined data

Model RMSENN RMSEest σ2
NN σ2

est T HFPNN T HFPest

Small, 5000 3.50 9.12 2.63 59.12 317.27 507.42
Medium, 24000 3.40 9.12 6.74 59.12 418.40 509.11
Large, 50000 2.50 9.12 12.42 59.11 381.31 508.89

Table 4.7 Table of RMSE, Variances, and HF Powers for combined best results.

Figure 4.20 Visual results of the best Neural network models tested on compiled
data. [Sample index (x-axis) Temperature in °C (y-axis)]

55

Chapter 4. Results

Table 4.7 and Figure 4.20 summarize the performance of ANN models on com-
piled datasets. The large ANN model achieves the lowest RMSE, but with higher
variance and THFP, indicating greater fluctuations in predictions. Smaller models,
while less accurate, provide more consistent and stable predictions. For the purpose
of this paper however, we will proceed with the assumption that the large model
performs the best.

4.2.6 LSTM and GRU

Model RMSENN RMSEest σ2
NN σ2

est T HFPNN T HFPest

GRU small 12.87 5.75 6.28 27.27 9.97 0.021
GRU Large 4.65 5.75 23.96 27.27 2.13 0.021
LSTM small 8.84 5.75 1.79 27.27 11.11 0.021
LSTM Large 1.46 5.75 26.28 27.27 2.23 0.021

Table 4.8 Warm drive results for LSTM and GRU models.

Figure 4.21 Best GRU result.[Sample index (x-axis) Temperature in °C (y-axis)]

The results in this subsection present the performance of LSTM and GRU mod-
els. Dynamic regularization significantly improves their performance, reducing
RMSE and THFP. from Table 4.8 we can observe that LSTMs generally perform
better on the smaller dataset in terms of accuracy (RMSE). Conversely, the GRU
models perform better in terms of THFP. Figures 4.21 and 4.22 display the results
acquired of the "GRU Large" and "LSTM Large" models.

56

4.2 Black-Box Models

Figure 4.22 Best LSTM result.[Sample index (x-axis) Temperature in °C (y-axis)]

4.2.7 Effect of Dynamic regularization

Dynamic Regularization

With Without

Model LSTM GRU LSTM GRU

RMSENN 0.96 2.34 1.46 2.65
σ2

NN 0.05 16.31 26.28 31.31
T HFPNN 0.21 2.23 11.11 2.13

Table 4.9 Table with Dynamic Regularization.

Subsection 4.2.7 shows the improvement that Dynamic regularization provides
to the LSTM and GRU models. Table 4.9 displays improvements in both LSTM
and GRU models after dynamic regularization, with the improvements in the LSTM
model especially noteworthy, achieving the best results across all model types on all
criteria for the small data set. Figure 4.23 shows an interesting phenomena that oc-
curs in the LSTM model under higher Dynamic regularization, where a discretiza-
tion effect takes place on the prediction, with the appearance of step functions that
at first seem similar to the decision boundaries visible in the benchmark results.

57

Chapter 4. Results

Figure 4.23 LSTM Discretization effect after Dynamic L2 regularization. [Sample
index (x-axis) Temperature in Kelvin (y-axis)]

4.2.8 Comparison against best ANN

Metric Model

ANN LSTM GRU

RMSE 2.50 2.43 2.75
Var 12.42 20.43 11.84
THFP 381.31 469.90 464.21

Table 4.10 Comparison of Models with Highlighted Minimum Values.

The compiled results compare the best performing LSTM and GRU models
against the best ANN model. Figures 4.24, 4.25, and 4.26 visually demonstrate these
findings. The ANN model’s predictions align closely with the real data while main-
taining smooth transitions, reflecting its lower THFP and balanced performance.
The LSTM model, although accurate, shows more fluctuations, corresponding with
its higher variance and THFP. The GRU model, while consistent, shows some de-
gree of instability in the form of high-frequency noise.

58

4.2 Black-Box Models

Figure 4.24 Best ANN results on full data.[Sample index (x-axis) Temperature in
°C (y-axis)]

Figure 4.25 Best LSTM results on full data.[Sample index (x-axis) Temperature
in °C (y-axis)]

Figure 4.26 Best GRU results on full data.[Sample index (x-axis) Temperature in
°C (y-axis)]

59

5
Discussion and Conclusion

5.1 Grey-box models

It is a fact that experts invest 2-3 weeks in Manual Calibration, yielding exception-
ally accurate results that are challenging to surpass. Figures 4.1 and 4.2 demonstrate
that Model 1 achieves a superior fit to the real data compared to both Model 2 and
Manual Calibration. Despite this, none of the models are able to accurately fit the
actual data due to inherent limitations within the state-space model. However, as the
average MSE loss values of Model 1 in Table 4.2 are lower than the average MSE
loss values of Manual Calibration across all tests, the results show that RL can help
reduce the effort required to calibrate the temperature model while improving the
accuracy of predictions. This is achieved by identifying parameter sets with lower
average MSE loss values. The grey-box models can find these parameter sets in just
1-2 days of training on a laptop, reducing the Manual Calibration effort by 90%.

5.1.1 Model 1
The results in Table 4.2 indicate that employing the Huber loss function during train-
ing leads to a lower average MSE loss for Model 1 compared to using the MSE loss
function. This suggests that the Huber loss function may be more effective for this
model, potentially due to its robustness against outliers. The lower average MSE
loss with Huber loss may be explained by its design, which combines the advan-
tages of MSE and MAE. It behaves like MSE for small errors, providing sensitivity
to minor changes, but acts more like MAE for larger errors, reducing the impact
of outliers. This characteristic can lead to more stable and accurate model perfor-
mance. More details can be seen in Figure 4.6 where the average MSE loss is high
when the model is reset and low when the agent modifies the parameter values.

Within the scope of the thesis, only a select number of projects were tested. De-
spite the fact that the outcomes surpassed those of Manual Calibration, it would be
beneficial to evaluate additional projects to confirm the performance. An alterna-
tive strategy could involve experimenting with different hyperparameters, states, or
reward values to achieve a better average MSE loss value.

60

5.2 Black-box models

5.1.2 Model 2
Table 4.3 shows that the average MSE loss values of Model 2 are higher than those
of Model 1 and Manual Calibration. This indicates that the simpler architecture of
a single DQN may offer advantages in terms of stability and convergence speed.
The lower average MSE loss for Model 1 might be due to fewer layers and reduced
complexity, which can lead to faster convergence. In contrast, Model 2’s increased
complexity from the addition of a target network and a policy network could lead
to slower learning and higher average MSE loss. This low performance might be
resolved through further tuning of hyperparameters, but the current results indicate
that a simpler model structure may offer better performance in this context. How-
ever, it would be intriguing to explore whether updating the state, reward, or adjust-
ing hyperparameters could yield better results. Perhaps, it might be worthwhile to
explore the use of short-term memory from Model 1 as an alternative approach.

5.2 Black-box models

5.2.1 Effect of Resampling on RMSE
As depicted by the graph presented in Figure 4.13, there is a clear trend indicat-

ing that as the resampling size increases, the complexity of the model required to
maintain a low RMSE also increases.

Initially, at lower resampling sizes, all three models (small, medium, and large)
show a decreasing trend in RMSE, suggesting that resampling improves the model’s
ability to capture relevant patterns in the data, this makes sense as larger resam-
pling size means less data is under-sampled and more information is available to
the model. However, as the resampling size continues to increase, the performance
of the small ANN begins to deteriorate. This can be attributed to the small model’s
limited capacity to handle the increased volume of data and the associated temporal
complexity.

In contrast, the medium and large ANN models demonstrate better adaptability
to higher resampling sizes. The medium ANN maintains a relatively stable RMSE
up to a certain point before also experiencing a performance decline, albeit less
severe than the small model, this again can be attributed to the fact that at some
point some datasets start to get over-sampled, the medium model cannot handle the
presence of extra information and loses the ability to grasp the temporal behavior of
the data. The large ANN, on the other hand, consistently shows the lowest RMSE
at higher resampling sizes, indicating its superior ability to manage large datasets
with complex temporal dynamics.

61

Chapter 5. Discussion and Conclusion

This trend underscores the importance of selecting an appropriately sized model
based on the sampling rate of the data. For sensors that have higher sampling rates
to adequately capture the temporal nuances, larger models with greater complexity
are necessary to achieve optimal performance, as the temporal aspect will be more
prevalent in higher sample sizes (i.e. higher sampling rates). Smaller models, while
computationally less intensive, may struggle to maintain accuracy as data complex-
ity increases.

The results emphasize the presence of a trade-off between sampling time and
model complexity. The resampling size directly correlates with the temporal com-
plexity of the data, which is determined by the sampling time. A shorter sam-
pling time captures more detailed temporal information, necessitating the use of
more complex models to accurately process and predict the data without overfitting
or increased prediction variance. Smaller models, while offering better computa-
tional efficiency, may struggle to handle complex temporal properties, making them
less suitable as the data’s temporal complexity increases. Therefore, when high-
resolution temporal data is required, larger models, despite their higher computa-
tional demands, are essential to ensure precise temperature estimation and model
stability.

5.2.2 Effect of Resampling on Total High Frequency Power
The observed trend in the results indicates that as the resampling size increases,

the THFP consistently decreases. This finding suggests that higher resampling rates
contribute to more stable models with reduced high-frequency noise, a crucial as-
pect for real-time sensor data applications in automotive environments.

Interestingly, the data demonstrates that large models exhibit a significant reduc-
tion in THFP only at extremely high resampling sizes. This implies that without
sufficient resampling, large models may be prone to instability due to their com-
plexity and the increased difficulty in managing temporal variations in the data.
This relationship highlights a key trade-off: while larger models have the potential
to capture more intricate patterns, they require more detailed data (achieved through
higher resampling rates) to maintain stability and avoid introducing high-frequency
noise.

Conversely, less complex models (such as the small and medium ANNs) inher-
ently exhibit lower THFP, indicating that they are more stable at lower resampling
sizes. This stability, however, comes at the cost of potentially reduced capability to
capture complex temporal dynamics present in the data, as discussed in the section
5.2.1.

62

5.2 Black-box models

The results illustrate the importance of stability over mere accuracy in model se-
lection. While larger models may offer greater predictive accuracy, their instability
at lower resampling rates makes them less suitable for practical applications with-
out high-resolution data. This instability, characterized by higher THFP, can lead
to unreliable performance in real-time systems. Therefore, it is crucial to balance
model complexity with the resampling capabilities of the data collection system to
ensure both stability and efficiency. This approach ensures that temperature estima-
tion models are not only accurate but also robust and reliable, effectively avoiding
the pitfalls of high-frequency noise and making efficient use of computational re-
sources.

5.2.3 Effect of Smoothing on Results
The application of smoothing techniques was generally found to improve the

alignment of the predicted values with the real data, reducing the variance and high-
frequency noise.

However, Figure 4.19 highlights a case where smoothing introduces more vari-
ance rather than reducing it. This indicates that while smoothing can enhance the
model’s performance by reducing noise, it can sometimes amplify the variability
in the predictions, especially in complex scenarios where the underlying data has
significant fluctuations. This paradoxical effect suggests that smoothing needs to
be carefully calibrated to balance noise reduction with the risk of introducing addi-
tional variance.

5.2.4 Analysis on full ANN results
The next set of experiments involved testing the compiled datasets on the ANN

models, comparing their performance against the state-space model.

The RMSE values show that the large model achieves the lowest error (2.50),
followed by the medium model (3.40), and the small model (3.50), these results
can be found in Table 4.7. This suggests that the larger model, given the correct
sampling rate, is more capable of capturing the underlying patterns in the data,
resulting in more accurate temperature predictions.

However, when considering the variance of residuals (σ2), the small model ex-
hibits the least variance in its predictions (2.63), indicating more consistent perfor-
mance. In contrast, the large model, despite its lower RMSE, shows a higher vari-
ance (12.42), reflecting greater fluctuations in its predictions. This trade-off between
accuracy and consistency must be carefully managed in practical applications, es-
pecially in real-time systems where stability is crucial.

63

Chapter 5. Discussion and Conclusion

The Total High Frequency Power (THFP) values further highlight the differences
in model behavior. The small model has the lowest THFP (317.26), indicating the
least amount of high-frequency noise and suggesting it is more stable in its predic-
tions. The medium and large models have higher THFP values (418.40 and 381.31,
respectively), implying they introduce more high-frequency components into their
predictions, which could lead to instability in real-time applications.

The visual results in Figure 4.20 corroborate these findings. For each component
(pumphead, finalgear, couplingoil, and lamella), the predictions of the large model
closely follow the real data, but with more pronounced fluctuations compared to the
smaller models. The small model provides smoother predictions with fewer high-
frequency variations, however as we can see from the results, it is unable to keep up
with the trends in the data due to the higher resampling size.

5.2.5 LSTM and GRU Models
The introduction of LSTM and GRU models brings another dimension to our

analysis of temperature prediction models. The results show that large LSTM mod-
els perform comparably well, achieving a comparable RMSE (1.46) to all the ANN
models tested on the initial dataset. The remaining large and small models however,
do not perform as well.

Interestingly, despite the high RMSE, the THFP values for both LSTM and GRU
models are lower than those for the large ANN model discussed earlier. This indi-
cates that while their predictions may not be as accurate, they are more stable and
less noisy, which is critical for real-time applications.

The introduction of dynamic regularization dramatically improves the perfor-
mance of both LSTM and GRU models. The RMSE for the LSTM model with dy-
namic regularization drops to 0.960, and for the GRU model, it decreases to 2.345.
This improvement is accompanied by a significant reduction in THFP, suggesting
that dynamic regularization effectively stabilizes the predictions and reduces high-
frequency noise.

A notable observation from the dynamic regularization is its discretizing effect
on the LSTM model’s predictions. This effect could be due to the regularization
method enforcing a form of periodicity or structure in the predictions, which war-
rants further investigation but is beyond the current scope.

From these results we can realize the potential of LSTM and GRU models, par-
ticularly when enhanced with dynamic regularization, for accurate and stable tem-
perature estimation. However, their performance on compiled data needs to be com-

64

5.3 Future Work

pared with ANN models to fully understand their efficacy in a more comprehensive
dataset. This analysis will be discussed in the next section.

5.2.6 Compiled results and comparisons
In this final section, we compare the best performing LSTM and GRU models

against the best ANN model using the compiled dataset. Table 4.10 summarizes the
key metrics: RMSE, variance (Var), and Total High Frequency Power (THFP).

The large LSTM model achieves the lowest RMSE (2.43), outperforming both
the ANN (2.50) and GRU (2.75) models. This indicates that the LSTM model is
slightly more accurate in predicting temperature across the compiled dataset.

When it comes to variance, the GRU model excels with the lowest value (11.84),
indicating the most consistent predictions. The ANN model follows with a variance
of 12.42, while the LSTM model, despite its lower RMSE, shows higher variance
(20.43). This suggests that while the LSTM model is accurate, its predictions are
more variable, potentially due to its sensitivity to temporal dynamics.

The THFP metric reveals another critical aspect of model performance. The ANN
model exhibits the lowest THFP (381.31), indicating the least amount of high-
frequency noise and the most stable predictions. Both the LSTM (469.90) and GRU
(464.21) models have higher THFP values, suggesting that their predictions are
noisier and potentially less stable for real-time applications.

Interestingly, while the LSTM model performed exceptionally well on smaller
datasets with dynamic regularization, it shows a marked increase in THFP on the
compiled dataset. This increase is even more pronounced in the estimated state-
space model. This discrepancy is attributed to the nature of the compiled data, where
the time resets multiple times between datasets. Such resets introduce discontinu-
ities that the ANN model appears more robust against compared to the LSTM and
GRU models. The ANN model’s ability to handle these resets better contributes to
its superior performance in maintaining stability and low high-frequency noise in
the compiled dataset. How this translates in real time deployment is yet to be seen.

5.3 Future Work

Although this project provided insights into the performance of the grey-box and
black-box models, further investigation is needed to deepen the understanding of
the optimal design and application of these approaches.

One promising option is hyperparameter optimization. To refine the perfor-
mance of both models, a more comprehensive exploration of hyperparameters could

65

Chapter 5. Discussion and Conclusion

be conducted. This could involve experimenting with different values and combina-
tions of hyperparameters, and observing the impact on model performance.

The current state-space model implemented in Matlab has been identified as a
bottleneck due to its slow execution time. One potential solution is to reimplement
the model in Python, which could lead to significant reductions in training time.

Exploring alternative architectures is another area worth pursuing. Double DQN
or Prioritized Experience Replay could offer insights into achieving greater stability
and enhanced performance of the grey-box models.

Additionally, the grey-box models depends heavily on the state-space model for
temperature prediction. The accuracy and reliability of these predictions are closely
tied to the quality of the state-space model. Therefore, making improvements to the
state-space model has the potential to significantly enhance the performance of the
grey-box models.

5.4 Conclusion

This thesis successfully addressed the questions from Section 1.2 by applying the
grey-box and black-box models in a real-world project to improve calibration and
prediction accuracy in the temperature models.

The grey-box models demonstrated a significant advantage over Manual Cal-
ibration by achieving better results with substantially less effort. It outperformed
Manual Calibration, reducing the effort to calibrate by 90%, and reducing the need
for an expert’s involvement in the calibration process. This approach provides a
more accessible and efficient method for parameter tuning, enabling broader appli-
cation in various projects.

The black-box model also showed promising results, offering predictions with
higher accuracy compared to Manual Calibration. By using a Neural network ar-
chitecture to predict temperatures by directly mapping them from the input data,
the black-box model reduced the complexity associated with traditional state-space
models.

However, both models require further exploration of hyperparameter tuning and
alternative architectures to optimize its performance. In addition, while both models
demonstrated their potential, it is essential to validate the final results with a broader
range of test data to ensure their reliability and robustness.

66

Bibliography

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Vié-
gas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng
(2015). “Tensorflow: large-scale machine learning on heterogeneous distributed
systems”.

Afram, A. and F. Janabi-Sharifi. (2015). “Black-box modeling of residential hvac
system and comparison of gray-box and black-box modeling methods.”

Arendt, K., M. Jradi, H. R. Shaker, and C. Veje. (2018). “Comparative analysis of
white-, gray-and black-box models for thermal simulation of indoor environ-
ment.”

Breiman, L. (2001). “Random forests”. Machine learning 45:1, pp. 5–32.
Chollet, F. et al. (2015). Keras. https://github.com/keras-team/keras.

Chung, J., C. Gulcehre, K. Cho, and Y. Bengio (2014). “Empirical evaluation of
gated recurrent neural networks on sequence modeling”.

Fente, D. N. and D. K. Singh (2018). “Weather forecasting using artificial neural
network”. In: 2018 second international conference on inventive communication
and computational technologies (ICICCT). IEEE, pp. 1757–1761.

Hochreiter, S. and J. Schmidhuber (1997). “Long short-term memory”. Neural com-
putation 9:8, pp. 1735–1780.

Huber, P. J. (1964). “Robust estimation of a location parameter. ann. math. statist.
35 (1) 73 - 101, march, 1964. https://doi.org/10.1214/aoms/1177703732”.

Kingma, D. P. and J. Ba (2017). Adam: a method for stochastic optimization. arXiv:
1412.6980 [cs.LG].

67

https://arxiv.org/abs/1412.6980

Bibliography

Kiranyaz, S., O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman (2021).
“1d convolutional neural networks and applications: a survey”. Mechanical Sys-
tems and Signal Processing 151, p. 107398. ISSN: 0888-3270. DOI: https:
//doi.org/10.1016/j.ymssp.2020.107398. URL: https://www.
sciencedirect.com/science/article/pii/S0888327020307846.

Kreuzer, D., M. Munz, and S. Schlüter (2020). “Short-term temperature forecasts
using a convolutional neural network—an application to different weather sta-
tions in germany”. Machine Learning with Applications 2, p. 100007.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-based learning
applied to document recognition”. Proceedings of the IEEE 86, pp. 2278–2324.
DOI: 10.1109/5.726791.

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.
Wierstra (2019). Continuous control with deep reinforcement learning. arXiv:
1509.02971 [cs.LG].

Macas, M., F. Moretti, A. Fonti, A. Giantomassi, G. Comodi, M. Annunziato, S.
Pizzuti, and A. Capra. (2016). “The role of data sample size and dimensionality
in neural network based forecasting of building heating related variables.”

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. (2015). “Human-
level control through deep reinforcement learning. nature, 518(7540):529–533,
2015”.

Naing, W. Y. N. and Z. Z. Htike. (2015). “Forecasting of monthly temperature vari-
ations using random forests.”

Nketiah, E. A., L. Chenlong, J. Yingchuan, and S. A. Aram. (2023). “Recurrent
neural network modeling of multivariate time series and its application in tem-
perature forecasting.”

Olsson, F. (2019). “Thermal model and tuning presentation, BorgWarner internal
document”.

Olsson, F. (2023). “Genvi temperature estimation tuning guide, BorgWarner internal
document”.

Paszke, A. and M. Towers (2017). Reinforcement learning (dqn) tutorial.
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html.

Roderick, M., J. MacGlashan, and S. Tellex (2017). “Implementing the deep q-
network”. CoRR abs/1711.07478. arXiv: 1711.07478. URL: http://arxiv.
org/abs/1711.07478.

Svendenius, J. (2020). “Genvi sdd temperature estimation, BorgWarner internal
document”.

Tian, Y., M. A. Chao, C. Kulkarni, K. Goebel, and O. Fink (2020). Real-time model
calibration with deep reinforcement learning. arXiv: 2006.04001 [eess.SP].

68

https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107398
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1711.07478
http://arxiv.org/abs/1711.07478
http://arxiv.org/abs/1711.07478
https://arxiv.org/abs/2006.04001

Bibliography

Uluocak, I. and M. Bilgili (2023). “Daily air temperature forecasting using lstm-cnn
and gru-cnn models”.

Watkins, C.J.C.H., and P. Dayan (1992). “Q-learning. mach learn 8, 279–292
(1992).”

Watkins, C.J.C.H. (1989). “Learning from delayed rewards. PhD thesis, University
of Cambridge.”

Zhang, Z. and Y. Dong (2020). “Temperature forecasting via convolutional recurrent
neural networks based on time-series data”. Complexity 2020, pp. 1–8.

69

Appendices

A.1 Additional Figures

Figure .1 Architectures of ANN model. (from left to right: small, medium, large)

Model Layer Regularization Value

LSTM LSTM Layer 1 1×10−4

LSTM Layer 2 2×10−3

GRU GRU Layer 1 2×10−4

GRU Layer 2 1×10−3

Table .1 Regularization values for each layer in the LSTM and GRU models.

70

A.1 Additional Figures

Figure .2 Architectures of LSTM model. (left: small, right: large)

Figure .3 Architectures of GRU model. (left: small, right: large)

71

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
June 2024
Document Number
TFRT-6231

Author(s)

Van Duy Dang
Basim Elessawi

Supervisor
Meike Rönn. BorgWarner Sweden AB
Arne Hörberg, BorgWarner Sweden AB
Richard Pates, Dept. of Automatic Control, Lund
University, Sweden
Bo Bernhardsson, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Improving Temperature Estimation Models using Machine Learning Techniques
Abstract

 Temperature estimation models are crucial for various products manufactured by BorgWarner. These
models often require manual calibration, where experts adjust parameters to ensure accuracy.
However, this process can be slow and prone to errors. This thesis investigates how Machine
Learning techniques can be used to improve accuracy and efficiency of temperature estimation
models.
 Both black-box and grey-box approaches are used to evaluate the effectiveness of machine learning-
based calibration. The black-box model employs techniques such as Decision Trees, Random Forests,
and Neural Networks to predict temperature directly from raw input data, bypassing traditional
temperature estimation processes. The grey-box model, on the other hand, uses Deep Q-learning to
adjust the calibration automatically.
 Results show that the black box model achieves better performance compared to conventional
temperature estimation methods. Meanwhile, the grey-box model not only significantly improves
accuracy compared to the manual calibration method, but also reduces the need for manual
calibration in temperature estimation models.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-71

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Title Page
	Contents
	Introduction
	Background
	Problem Formulation and Goals
	Limitations
	Related Work
	Structure

	Theory
	Decision Trees and Random Forests
	Decision Tree Learning
	Random Forests

	Neural Networks
	Feedforward Neural Networks
	Convolutional Neural Networks
	Deep Learning
	Neurons and Activation Functions
	Long Short-Term Memory (LSTM) Networks
	Gated Recurrent Unit (GRU) Networks
	Dropout and Dynamic Regularization
	Loss Functions and Optimization

	Reinforcement Learning
	Q-Learning
	Deep Q-Learning

	Methodology
	Temperature Model
	Data
	Dataset Description for Black Box Models

	Loss Functions and Evaluation methods
	Grey-Box Models
	Model 1
	Model 2
	Hyperparameter tuning

	Black-Box Models
	Data processing and Procedure
	Resampling
	Filtering and Smoothing (with considerations)

	Goals and Evaluation Criteria

	Results
	Grey-Box Model
	Model comparision
	Model 1
	Model 2

	Black-Box Models
	Benchmark model results
	Effect of Resampling on RMSE
	Effect of Resampling on THFP
	Effect of smoothing on results
	Best model results on combined data
	LSTM and GRU
	Effect of Dynamic regularization
	Comparison against best ANN

	Discussion and Conclusion
	Grey-box models
	Model 1
	Model 2

	Black-box models
	Effect of Resampling on RMSE
	Effect of Resampling on Total High Frequency Power
	Effect of Smoothing on Results
	Analysis on full ANN results
	LSTM and GRU Models
	Compiled results and comparisons

	Future Work
	Conclusion

	Bibliography
	Appendices
	Additional Figures

	Tom sida

