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Abstract

Quantum metrology is a rapidly growing field of quantum information science that aims to
exploit the counter-intuitive properties of quantum systems to estimate physical quantities
with better-than-classical precision. The field primarily deals with the problem of estimat-
ing system parameters, which may or may not directly be associated to an observable. A
prominent result of quantum metrology is the quantum Cramér-Rao bound (QCRB), which
establishes a fundamental lower bound on the attainable uncertainty in a parameter estima-
tion problem. Nevertheless, this bound is in most cases unreachable by experiments. Hence,
the study of estimation strategies that are simultaneously precise and experimentally feasible
is essential for the development of quantum sensing devices.

In this work, the problem of parameter estimation is explored in a two-qubit autonomous
thermal machine interacting weakly with two thermal reservoirs. The qubits are coupled to
each other and their energy gaps are separated by a small detuning. The estimation precision
is calculated from the particle currents that naturally arise between the system and the reser-
voirs. In addition, violations of classical thermodynamic inequalties, called thermodynamic
uncertainty relations (TUR’s), are investigated and connected to a possible quantum advan-
tage in parameter estimation. Finally, the current-based estimation precision is compared to
the quantum Cramér-Rao bound.

A classical thermodynamic bound on the current precision is derived for the inter-qubit
coupling and the detuning. It is found that TUR violations are possible in different regions
of parameter space, and that they can lead to an increase in current precision. Furthermore,
it is observed that, for vanishing detuning, the current precision for the inter-qubit coupling
can approximate the quantum Cramér-Rao bound to a high degree.
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List of abbreviations

TUR - Thermodynamic uncertainty relation

NESS - Non-equilibrium steady state

FCS - Full counting statistics

FI - Fisher information

QFI - Quantum Fisher information

QCRB - Quantum Cramèr-Rao bound

CPTP - Completely positive and trace preserving

PVM - Projection-valued measure

POVM - Positive operator-valued measure

SLD - Symmetric logarithmic derivative
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1 Introduction

Metrology is the science of measurement, encompassing a broad range of disciplines aimed
at ensuring accuracy, precision, and reliability in quantitative measurements. Its aim is to
provide effective methods to accurately estimate physical quantities, both theoretically and
experimentally. The characterisation of the limits to such methods is also a fundamental
question in metrology.

Quantum mechanics, besides bringing about a paradigm shift in the understanding of the
universe, has allowed for the development of quantum information processing, which aims to
exploit the properties of quantum theory to achieve a computational advantage with respect
to classical computers. The emerging field of quantum metrology has an analogous goal, and
has seen great progress both theoretically and experimentally thus far. As an example, for
an ensemble of N classical particles used to measure a certain physical quantity, the lower
bound on the uncertainty on the estimation scales with 1/

√
N . Nevertheless, it has been

shown that with the aid of quantum entanglement the scaling of the uncertainty with the
number of particles can be reduced to as low as 1/N [1, 2]. Furthermore, the quantum advan-
tage in metrology has been observed experimentally in interferometry [3], magnetometry [4],
and even in the detection of gravitational waves [5, 6]. A key result in quantum metrology
is the quantum Cramér-rao bound (QCRB) [7], which sets a universal lower bound on the
uncertainty of quantum parameter estimation, although the estimation protocol that allows
to attain the bound is mostly experimentally inaccessible.

In its early days, non-relativistic quantum theory only provided a description of the
dynamics of quantum states in isolated and closed systems. Nonetheless, the majority of
physical scenarios feature open systems, which are capable of exchanging information with
an external environment. Hence, the vast field of open quantum systems extends the study
of quantum mechanics to open systems. Pivotal quantities used to characterise the dynamics
of open quantum systems are the particle currents between the system and the environment,
as they carry fundamental information about the time evolution of the system [8].

One of the most prominent theoretical setups studied by open quantum systems is quan-
tum thermal machines, which are physical devices capable of performing certain tasks by
interacting with the environment. They can function as heat engines [9, 10], refrigerators
[11], and as generators of quantum entanglement [12, 13]. Hence, they have numerous appli-
cations in quantum technology and quantum information processing.

In this thesis, the problem of parameter estimation is explored in an autonomous quantum
thermal machine consisting of a pair of two-level systems (qubits) coupled to each other and
to fermionic thermal reservoirs. In particular, the estimation precision for the system param-
eters is calculated by using the mean particle current and its fluctuations. Furthermore, the
violations of classical thermodynamic inequalities, referred to as thermodynamic uncertainty
relations (TUR’s), are explored and related to a non-classical advantage in parameter esti-
mation. Lastly, the current-based precision is compared to the quantum Cramér-Rao bound.
The entire analysis is done in the non-equilibrium steady state (NESS), in which the expec-
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tation values of the system’s observables do not change with time. The NESS is reached by
the machine in the long time limit.

The findings of this work are intended to be included in a future publication.

2 Theory

In this section and throughout the rest of this work, the Planck units ℏ = c = kB = 1 are
used.

2.1 Density operator

In quantum mechanics, a pure state is a quantum state that can be represented by a ket
vector. The concept of state can be extended to mixed states, which are a statistical ensemble
of pure states. Mixed states are best mathematically described by the density operator
formalism. Given a Hilbert space H, a density operator can be generally defined as

ρ̂ =
∑
i

pi |ψi⟩ ⟨ψi| , (2.1)

where the |ψi⟩ ∈ H are the pure states that form the ensemble and the pi ≥ 0 are their
respective statistical weights, which are such that

N∑
i

pi = 1. (2.2)

Hence, a density operator has to be normalised, which implies that

Tr(ρ̂) = 1. (2.3)

Furthermore, by the definition in 2.1, for any vector |ϕ⟩ in H,

⟨ϕ| ρ̂ |ϕ⟩ =
N∑
i

pi |⟨ψi|ϕ⟩|2 , (2.4)

and since |⟨ψi|ϕ⟩| ≥ 0 for all |ψi⟩ and |ϕ⟩, a density operator is positive semi-definite. More-
over, for any two vectors |ϕ⟩ and |φ⟩,

⟨ϕ| ρ̂ |φ⟩ =
N∑
i

pi ⟨ϕ|ψi⟩ ⟨ψi|φ⟩ =
N∑
i

pi ⟨φ|ψi⟩∗ ⟨ψi|ϕ⟩∗ = ⟨φ| ρ̂ |ϕ⟩ , (2.5)

hence ρ̂ is Hermitian. To summarise, a linear operator O on a Hilbert space H can be
identified as a density operator if and only if

• it is normalised (Tr(O) = 1);

• it is positive semi-definite (⟨ϕ| O |ϕ⟩ ≥ 0 ∀ |ϕ⟩ ∈ H);
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• it is Hermitian (O† = O).

If H is finite-dimensional, ρ̂ can be written in matrix form, and thus is referred to as
density matrix. Hence, by choosing an orthonormal basis for H, the diagonal elements of a
density matrix can be identified as the populations of the basis vectors and the off-diagonal
ones bear the name coherences and can be generally thought as the overlap between the
ensemble’s states in the chosen basis. In this formalism, the expectation value of an operator
Â in a general mixed state described by a density operator ρ̂ is

⟨Â⟩ρ̂ = Tr
(
ρ̂Â
)
. (2.6)

From this point onwards, the terms ’state’ and ’density matrix ’ will be used interchangeably.

2.1.1 Partial trace

In certain physical situations, a system described by quantum states in a Hilbert space H
can be partitioned in multiple parts {Ak}, with corresponding Hilbert spaces {Hk}. H can
thus be rewritten as the tensor product H =

⊗
jHj.

A density operator ρ̂ on H cannot in general be factorised as a tensor product of density
matrices on the individual subspaces Hk. Nevertheless, it would still be beneficial to obtain
a density matrix that belongs to the subspace of interest and that retains some information
of ρ̂. Under this premise, for two partitions A and B with Hilbert spaces HA and HB, the
reduced density matrix ρ̂A, without loss of generality, is defined as

ρ̂A = TrB ρ̂, (2.7)

where TrB(·) is the partial trace over subsystem B. By choosing bases {|ak⟩} and {|bk⟩} for
HA and HB, ρ̂ can be written as

ρ̂ =
∑
αβγδ

cαβγδ |aα⟩ ⟨aβ| ⊗ |bγ⟩ ⟨bδ| , (2.8)

cαβγδ are complex coefficients. Hence, ρ̂A = TrB(ρ̂) can then be computed as

ρ̂A =
∑
αβ

[∑
γ

cαβγγ

]
|aα⟩ ⟨aβ| . (2.9)

The partial trace is a completely positive and trace-preserving map (CPTP) [14], which guar-
antees that ρ̂A is a density operator and represents a quantum state.

2.2 Time evolution of closed and isolated systems

In non-relativistic quantum mechanics, the time evolution of an isolated system described by
a pure state |ψ⟩ is governed by Schrödinger’s equation, which reads

i
d

dt
|ψ(t)⟩ = Ĥ |ψ(t)⟩ , (2.10)
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where Ĥ is the Hamiltonian of the system. If the state |ψ(t0)⟩ is known for some instant t0,
the solution to Eq. 2.10 is given by

|ψ(t)⟩ = Û(t, t0) |ψ(t0)⟩ , (2.11)

where Û(t, t0) is the time evolution operator for the system. Since the system is isolated,
probability is conserved and always equal to unity, and hence Û(t, t0) is unitary. If Ĥ is
constant,

U(t, t0) = exp
(
−iĤ(t− t0)

)
, (2.12)

otherwise, in the case of a closed system with a time-dependent Hamiltonian, the time evo-
lution operator can be expressed as

Û(t, t0) = τ̂ exp

(
−i
ˆ t

t0

Ĥ(s)ds

)
, (2.13)

where τ̂ is the time ordering operator, which assures that a product of operators is ordered
such that their time arguments decrease from left to right.

By substituting Eq. 2.11 into Eq. 2.1 for all the pure states in the mixture, the time evolution
of a mixed state may now also be described as

ρ̂(t) =
∑
i

Û(t, t0)[pi |ψi(t0)⟩ ⟨ψi(t0)|]Û †(t, t0) = Û(t, t0)ρ̂(t0)Û
†(t, t0), (2.14)

where ρ̂(t0) =
∑

i pi |ψi(t0)⟩ ⟨ψi(t0)|. Given a general and possibly time-dependent Hamilto-
nian, differentiating with respect to time both sides of Eq. 2.14 yields

˙̂ρ(t) = −iĤ(t)ρ̂(t) + iρ̂(t)Ĥ(t) = −i[H(t), ρ̂(t)], (2.15)

which is referred to as the Liouville-Von Neumann equation. Eq. 2.15 can be rewritten as

˙̂ρ = L(t)ρ̂(t), (2.16)

where L(t) is called Liouvillian superoperator, or Liouvillian for short.

2.3 Time evolution of open systems

In a given isolated system, it might be desirable to describe only the dynamics of a subsystem
S, which is coupled to the complementary subsystem E, which usually takes the name of
environment. Such physical scenarios are known as open quantum systems. The Hamiltonian
for the combined system may be written as

ĤSE = ĤS ⊗ 1+ 1⊗ ĤE + ĤI(t), (2.17)

where HS and HE are time-independent Hamiltonians on the respective Hilbert spaces of
S and E and encode the internal dynamics of system and environment, HI(t) is a possibly
time-dependent term that describes the interaction between S and E and 1 is the identity
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matrix.
By employing the partial trace, given the density operator ρ̂SE of the combined system S+E,
it may be possible to obtained the reduced density matrix for S:

ρ̂S = TrB ρ̂SE. (2.18)

and hence, according to Eq. 2.16 the time evolution of ρ̂S is governed by

˙̂ρS = TrB[L(t)ρ̂SE(t)], (2.19)

In order to describe the non-unitary evolution of ρ̂S, for a general partition of system and
environment, Eq. 2.19 requires complete knowledge of the total density matrix ρ̂SE. This is
in several cases highly impractical, as the environment possibly consists of an infinite number
of degrees of freedom. Hence, it might be beneficial to have a description of the time evo-
lution of ρ̂S which does not depend on all the possible interactions between all the degrees
of freedom of S and E and which treats the exchange of information between system and
environment as dissipative noise.

Nevertheless, this is possible under certain assumptions: firstly, it is assumed that at an
initial time t = t0, ρ̂SE = ρ̂S(t0)⊗ρ̂E, and that the environment is much larger than the system
and that the coupling between them is small enough so that the environment’s reduced state
ρ̂E stays constant throughout the evolution. This approximation is commonly known as the
Born approximation or weak coupling limit ; the second assumption is that the time taken by
environment excitations to decay is much shorter than average time scale of the evolution
of the system τS, under which the expectation values of the system’s observables change
appreciatively [15]. Hence, the environment retains no memory of the system’s internal
changes and thus the evolution of S does not depend of the full history of ρ̂S. This property
is called Markovianity. As it was first shown by Gorini, Kossakowski and Sundarshan in
[16] and independently by Lindblad in [17], the general form for a Liouvillian for an open
quantum system obeying the aformentioned assumptions is

L(GKSL)ρ̂S = −i[ĤS, ρ̂S] +
∑
i

γi

(
L̂iρ̂SL̂

†
i +

1

2
{L̂†

i L̂i, ρ̂S}
)
, (2.20)

where {A,B} = AB + BA is the anticommutator, the Li are the Jump operators, which
belong to the space of operators on the system’s Hilbert space and describe the different
ways through which the system can exchange information with the environment, and the
γi ≥ 0 are the associated damping rates. L(GKSL) is a CPTP map, and thus Eq. 2.20 takes
the name of Markovian master equation.

2.4 Thermodynamic uncertainty relations

A system in thermal equilibrium with its environment may be described by the canonical
ensemble, in which the system’s states, labelled by their energy, are distributed according to
the Boltzmann distribution [18]. In such cases, the response of the system to external per-
turbations is encoded in the fluctuations of its quantities through the fluctuation-dissipation
theorem. This is no longer possible in non-equilibrium scenarios, in which characterising
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fluctuations is a highly non-trivial task. This and several other problems related to non-
equilibrium setups are the subject of interest of stochastic thermodynamics, a branch of
statistical mechanics that models out-of-equilibrium phenomena as stochastic processes, in
which the system’s state transitions are governed by probability distributions.

A certain class of stochastic processes, called jump processes, describe a discrete random
variable X over a set S that changes randomly in time through instantaneous random jumps.
If the time intervals between jumps follow an exponential distribution, the process is Marko-
vian. If (d/dt)⟨X⟩ = 0, the process is said to be in the steady state. The transitions between
Xi → Xj with Xi, Xj ∈ S are described by rates kij. For a given element Xα in S, if at the
initial time t0 the process is in the steady state, the average amount Nα(t) of jumps through
Xα is given by

⟨N(t)⟩ = (t− t0)
∑
i,j

(kαi − kjα), (2.21)

where by convention the number of exits from the state Xα is positive while the number of
entrances is negative. From Eq. 2.21, mean current may be defined as

⟨Jα⟩ ≡
d

dt
⟨Nα(t)⟩ =

∑
i,j

(kαi − kjα). (2.22)

Recent findings in the study of fluctuations in classical microscopic systems [19, 20, 21]
have shown that for classical jump-like processes in non-equilibrium thermodynamics,

Var(Jα)

⟨Jα⟩2
≥ 2

σ
, (2.23)

where kB is Boltzmann’s constant and σ is the entropy production rate. Inequalities of this
kind are known as thermodynamic uncertainty relations, as they set a trade-off between the
fluctuations of the current, quantified by the variance of Jα, its average strength ⟨Jα⟩, and
the dissipation, encoded in σ.

2.5 Quantum parameter estimation

In quantum mechanics, the measurement of a physical quantity A corresponding to an ob-
servable Â with eigenvalues {λk} and eigenvectors {|λk⟩} mathematically corresponds to the
set of operators {Pk = |λk⟩ ⟨λk|}, such that∑

k

Pk = 1, (2.24)

and

Tr(PiPj) = δij. (2.25)

All measurements induced by observables are projection-valued measures (PVM’s), as they
can be interpreted as the act of projecting the state onto the observable’s eigenvectors.
Nonetheless, if the ortho-normality condition in Eq. 2.25 is relaxed, quantum mechanical
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measurements can be generalised to positive operator-valued measures (POVM’s), which need
only statisfy the completeness condition in Eq. 2.24. In general, POVM’s are not induced
by observables and thus do not always correspond to a physical measurement, although it is
possible to relate any POVM with finite number of operators Fi to a PVM in a larger Hilbert
space through Naimark’s dilation theorem [22]. For all measurements, the probability of
obtaining measurement outcome m = λi by performing a measurement on a state ρ̂ is given
by the Born rule

p(mi) = Tr
(
ρ̂F̂i

)
. (2.26)

As mentioned in the Introduction, given a state ρ̂(θ), the fundamental problem in quantum
metrology is estimating the value of θ, and quantifying the precision and accuracy of such
estimation. An estimation problem is formulated with the following protocol:

1. A state ρ̂ is prepared.

2. ρ̂ is mapped to ρ̂(θ) by a CPTP map, so that ρ̂(θ) retains all the properties of a density
operator.

3. A POVM measurement Π : {Fi} is performed and an outcome mi is obtained.

4. A function E(m), called estimator, is used to estimate θ from the measurement outcome

5. The procedure is repeated N times

An ideal estimator would be such that E(m) = θ for all measurement outcomes, although
in most scenarios there is no such estimator. A easier condition to achieve is requiring that
theta is equal to the average value of E over all measurements. In the asymptotic limit
(N → ∞), the average value of E coincides with the mean value ⟨E⟩ and the condition
reduces to ⟨E⟩ = θ. All such estimators are called unbiased.

In order to quantify the amount of information about θ contained in the measurement of
Π, the classical Fisher information (FI) associated to Π is defined as

I[Π, θ] =
∑
i

1

p(mi|θ)

(
∂p(mi|θ)

∂θ

)2

, (2.27)

where p(mi|θ) = Tr(Fiρ̂(θ)).

For any POVM and any unbiased estimator E(m), the variance Var(E), which provides
information about the uncertainty on θ, is bounded by [7]

Var(E) ≥ 1

NF(ρ̂(θ))
, (2.28)

where F(ρ̂(θ)) is the Quantum Fisher Information (QFI), which is obtained by maximising
the FI over all possible POVM’s

F(ρ̂(θ)) = max
Π
{I[Π, θ]} (2.29)
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The inequality in Eq. 2.28 is known as the quantum Cramér-Rao bound (QCRB), and
it is a pivotal result in quantum parameter estimation theory, as it establishes a universal
lower bound on the estimation uncertainty of a system parameter. The quantum Cramér-Rao
bound is in fact independent of the measurement or the estimation strategies that one may
use.

Even unbiased estimators may be difficult to find in certain estimation problems. Hence,
for biased estimators E(m), such that ⟨E⟩ = θ+ b(θ), where b(θ) is the bias, the Cramér-Rao
bound reads [8]

Var(E) ≥ (1 + ∂θb(θ))
2

NF(ρ̂(θ))
, (2.30)

and given that ∂θb(θ) = ∂θ(⟨E⟩ − θ) = ∂θ⟨E⟩ − 1, rearranging Eq. 2.30 yields

Var(E)
(∂θ⟨E⟩)2

≥ 1

F(ρ̂(θ))
. (2.31)

The quantum Cramér-Rao bound is always saturated by a certain optimal POVM, which, in
the case of the discrete measurement protocol described above, is a projective measurement
in the eigenbasis of the symmetric logarithmic derivative (SLD) L̂SLD, implicitly defined as
[23]

L̂SLDρ̂(θ) + ρ̂(θ)L̂SLD

2
=

∂

∂θ
ρ̂(θ) (2.32)

Nonetheless, the optimal measurement is often impractical or impossible to realise experi-
mentally.

3 Methods

Figure 1: Schematic representation of the two qubit thermal machine. The excited states
of each qubit are coupled to the ground states of the other with coupling strength g. Each
qubit has its own energy gap εα (εR ≥ εL) and is coupled with strength κα to thermal bath
α at temperature Tα and chemical potential µα.
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3.1 Local master equation

The system taken into consideration is a thermal machine formed by a pair of qubits (two-
level systems) coupled to each other and to two fermionic reservoirs in thermal equilibrium.
The Hamiltonian for the system reads

ĤS = εLσ̂
+
L σ̂

−
L + εRσ̂

+
R σ̂

−
R + g(σ̂+

L σ̂
−
R + σ̂+

R σ̂
−
L ) (3.1)

where ϵα, with α = {L,R} are the energies of the excited states of the two qubits, g is the
inter-qubit coupling, and σ̂±

α are creation and annihilation operators on the qubits. In the
computational bases {|0⟩L , |1⟩L} and |0⟩R , |1⟩R},

σ̂−
L = |0⟩L ⟨1|L ⊗ 1 σ̂+

L = |1⟩L ⟨0|L ⊗ 1

σ̂−
R = 1⊗ |0⟩R ⟨1|R σ̂+

R = 1⊗ |1⟩R ⟨0|R .
(3.2)

Furthermore, it is assumed that the two qubit energies are separated by a small detuning δ
such that εR − εL = δ. Hence, it is convenient to rewrite εL = ε and εR = ε+ δ.
The two reservoirs, also referred to as baths, have Hamiltonians

Ĥbath
α =

∑
j

ωj,αâ
†
j,αâj,α, (3.3)

with

{â†i,α, âj,α} = δij (3.4)

and are in thermal states [24]

ρ̂α =
e(−(Ĥbath

α −µαN̂α)/Tα)

Tr
(
e(−(Ĥbath

α −µαN̂α)/Tα)
) , (3.5)

where µα are the chemical potentials, Tα are the temperatures, and N̂α are the number
operators

N̂α = â†j,αâj,α. (3.6)

The system-bath interactions are described by

Ĥ(I)
α =

∑
j

tα,j(â
†
j,ασ̂

−
j,α + σ̂+

α âj,α). (3.7)

If κα,j ≪ max{ϵα−µα, Tα}, the system is Markovian and thus the evolution of the system
density matrix ρ̂ can be described by a master equation in GKSL form (Eq. 2.20). By further
assuming that

√
g2 + δ2 ≪ max{Tα, |εα − µα|}, the master equation for the system density

matrix ρ̂ can be expressed as [25, 26]

˙̂ρ = −i[ĤS, ρ̂] +
∑
α

(
κα(1−Nα(ε̄))D[σ−

α ]ρ̂+ καNα(ε̄)D[σ+
α ]ρ̂

)
(3.8)
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where Nα(ε̄) are Fermi-Dirac distributions

Nα(ϵ) =
1

1 + e(ϵ−µα)/Tα
(3.9)

evaluated at ε̄ = (εL + εR)/2 = ε+ δ/2, κα are the bath damping rates, and D[σ̂±
α ]ρ̂ are the

dissipators, which read

D[σ±
α ]ρ̂ = σ̂±

α ρ̂σ̂
∓
α +

1

2
{σ̂∓

α σ̂
±
α , ρ̂}. (3.10)

Eq. 3.8 is a local master equation, as the interactions described by the dissipators, emission
and absorption to and from the baths, are localised on each one of the qubits. Hence,
the possible transitions, in the computational basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}, are |00⟩ ←→
|01⟩, |00⟩ ←→ |10⟩, |10⟩ ←→ |11⟩ and |01⟩ ←→ |11⟩. Furthermore, the evaluation of the
Fermi-Dirac distributions at ε̄ = (εL + εR)/2 ensures consistency with the second law of
thermodynamics [26]. It is important to stress that the local master equation is only valid
for small inter-qubit coupling, as this allows the baths to distinguish the two qubits. For
larger values of g, this is no longer possible, and the system is better described by a global
master equation [25], in which the baths couple to the eigenstates of the two-qubit system.

3.2 Solving the master equation

Given a density operator ρ̂ on a N -dimensional Hilbert space H, a Liouvillian superoperator
L acts on the N2-dimensional space of operators B(H). A master equation is a matrix
equation, and solving for ρ̂ directly is highly impractical in most cases. Nevertheless, the
Markovian master equation in Eq. 2.20 can be cast into a vectorised form expressed as

ṗ = L̃p, (3.11)

where p is the N -dimensional column vector whose coordinates are the elements ρ̂ij of the
density matrix ρ̂ and L̃ is a N2 ×N2 matrix such that [27]

L̃ = −i(Ĥ ⊗ 1− 1⊗ ĤT ) +
∑
i

γi

(
L̂i ⊗ L̂∗

i −
1

2
(L̂†

i L̂i ⊗ 1+ 1⊗ L̂T
i L̂

∗
i )

)
, (3.12)

where Ĥ and {Li} are the Hamiltonian and the jump operators in their matrix representa-
tion, and (·)T , (·)∗, and ⊗ respectively denote transposition, complex conjugation and the
Kronecker product. The vector p belongs to a N2-dimensional vector space called Liouville
space [28].

The steady state ρ̂SS is such that

Lρ̂SS = 0, (3.13)

and is thus the eigenoperator associated to the zero eigenvalue λ0 = 0 of L. For a time
independent Liouvillian on a finite dimensional operator space, λ0 is guaranteed to be an
eigenvalue, and there always exists a steady state ρ̂SS, which can be reached in long-time
limit [29]. In vectorised form, the steady state vector pSS is obtain by solving L̃pSS = 0,
which is a system of N2 equations.
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3.3 Full counting statistics

The transfer of fermions between the two-qubit system and the baths can be modelled as
a stochastic process. The system density matrix ρ̂ does not directly provide information
about the number of jumps n from and into either bath α = {L,R}. Hence, in order to
track n throughout the system’s evolution, following the approach in [14], it is convenient
to introduce the conditional density matrix ρ̂(nα)(t), which provides information about the
number of particles exchanged between the system and a particular bath α at any given time
t. ρ̂(nα)(t) is such that the probability that n particles have been exchanged between the
system and α until time t is

P (nα)(t) = Tr
[
ρ̂(nα)(t)

]
. (3.14)

In order to study the time evolution of ρ̂(nα)(t) Eq. 2.20 can be rewritten as

˙̂ρ(nα)(t) = Lρ̂(nα) = L0ρ̂(nα)(t) + L−ρ̂(nα+1)(t) + L+ρ̂(nα−1)(t), (3.15)

where L+ρ̂(nα−1) and L−ρ̂(nα+1) account for the jumps in and out of bath α, whilst L0ρ̂(nα)

accounts for the terms that do not change the number of particles in the system. It is
important to remark that the jumps are assumed to be instantaneous [30]. Eq. 3.17 represents
a system of a possibly infinite number of equations. Shifting the description to Fourier space
can reduce the system to one single equation, and thus the counting density matrix is defined
as

ρ̂(χ, t) =
∑
n

ρ̂(nα)(t)eiχn, (3.16)

where χ is referred to as the counting field. Hence, Eq. 3.15 can be rewritten as

˙̂ρ(χ, t) = L0(t)ρ̂(χ, t) + e−iχL−
α ρ̂(χ, t) + eiχL+

α ρ̂(χ, t) = L(χ)ρ̂(χ, t), (3.17)

where L(0) corresponds to the original Liouvillian. Since L(χ) is time-independent, for an
initial density operator ρ̂0,

ρ̂(χ, t) = exp[L(χ)t]ρ̂0, (3.18)

where it is assumed that the are no jumps at the initial time t0 and thus that ρ̂(χ, t0) = ρ̂0.

3.3.1 Mean current

In general, for a given discrete random variable X with probability mass function P (x), a
statistical moment of order k is defined as

⟨Xk⟩ =
∑
i

xkiP (xi). (3.19)

In the case of the number of particles exchanged between the system and R, the probability
mass function at time t is given by Eq. 3.14. By rewriting ρ̂(χ, t) as in Eq. 3.16, the following
quantity can be defined:
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M(χ, t) = Tr[ρ̂(χ, t)] = Tr

[∑
nα

ρ̂(nα)(t)eiχnα

]
=
∑
nα

Pnα(t)e
iχnα . (3.20)

Furthermore, the following holds:

(−i)k ∂
k

∂χk
M(χ, t)

∣∣∣∣
χ=0

= (−i)k
∑
nα

(inα)
kPnα(t)e

iχnα

∣∣∣∣
χ=0

=
∑
n

nkPnα(t) = ⟨nk
α(t)⟩. (3.21)

Hence,M(χ, t) is referred to as the moment generating function [31]. The first order moment
corresponds to the mean of the random variable. Thus, the mean jump current through bath
α reads

⟨Iα(t)⟩ =
d

dt
⟨nα(t)⟩. (3.22)

If the initial density operator is chosen to be the steady state ρ̂SS, ⟨N̂⟩ does not change,
where N̂ is the number operator for the system, and thus the mean currents for the two
baths are equal in absolute value. The α subscript is henceforth dropped. The stationary
current ⟨I⟩ for either of the baths can be then calculated as

⟨I⟩ = −i ∂
∂χ

d

dt
M(χ, t)

∣∣∣∣
χ=0

= −i ∂
∂χ

d

dt
Tr[ρ̂(χ)]

∣∣∣∣
χ=0

= −i ∂
∂χ

d

dt
Tr{exp[L(χ)t]ρ̂SS}

∣∣∣∣
χ=0

= −i ∂
∂χ

Tr{L(χ) exp[L(χ)t]ρ̂SS}
∣∣∣∣
χ=0

.

(3.23)

Replacing exp[L(χ)t] with its Taylor expansion

exp[L(χ)t] =
∞∑
j=0

[L(χ)t]j

j!
,

and using that L(0)ρ̂SS = 0 and exp[L(0)t]ρ̂SS = ρ̂SS yield

⟨I⟩ = −iTr
{ ∞∑

j=0

L′(χ)
[L(χ)t]j

j!
ρ̂SS +

∞∑
j=0

L′(χ)[L(χ)t]j+1ρ̂SS

}∣∣∣∣
χ=0

= −iTr[L′(0)ρ̂SS] (3.24)

3.3.2 Current fluctuations

Another important quantity that characterizes the total particle number or charge is its
variance
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Var[n(t)] = ⟨n2(t)⟩ − ⟨n(t)⟩2, (3.25)

which provides information on the statistical fluctuations of the measured number of particle
jumps.
From this, it is useful to define the noise

D(t) =
d

dt
Var[n(t)], (3.26)

as, in the steady state, for a time interval τ , [8]

Var[n(t)]

⟨n(t)⟩2
=

D(t)

τ⟨I⟩2
, (3.27)

which is akin to the quantity bounded by the TUR bound in 2.23. Furthermore, in the long
time limit, D(t) becomes independent of time, and thus it can be rewritten as D. In order
to derive an expression for D from L(χ, t), it is convenient to define the cumulant of order k
of a random variable X, expressed through

⟪Xk⟫ = (−i)k ∂
k

∂χk
C(χ)

∣∣∣∣
χ=0

, (3.28)

where C(χ) reads

C(χ) = ln[M(χ)], (3.29)

and takes the name of cumulant generating function. The first and second order cumulants
correspond respectively to the mean and the variance of the distribution. In the case for n(t),

C(χ, t) = ln{Tr[ρ̂(χ, t)]}. (3.30)

In the long-time limit, when the system reaches the steady state, the dominant contribution
to C(χ, t) is provided by the eigenvalue λ0(χ) of L(χ) with the largest real part. Hence,

C(χ, t) ≈ λ0(χ)t, (3.31)

where λ0(χ) is such that

λ0(0) = 0, (3.32)

In general, it is not straight-forward to determine λ0(χ) analytically, and thus it may be more
convenient to follow the approach shown in [32], where the following quantity is defined:

P (χ, x) = det
(
L̃(χ)− x1

)
, (3.33)

where L̃(χ) is the matrix representation of the counting Liouvillian, defined in the same way
as in Eq. 3.11. P (χ, x) the characteristic polynomial of L̃(χ), and as such it can be expanded
as
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P (χ, x) =
N∑
j

aj(χ)x
j, (3.34)

where N is the dimension of L and the coefficients aj(χ) = (1/j!)∂jxP (x, χ)|x=0 can be
replaced by their Taylor expansions

aj(χ) =
∞∑
k

a
(k)
j

χk

k!
, (3.35)

where

a
(k)
j = ∂kχaj(χ)|χ=0. (3.36)

Eq. 3.34 can then be rewritten as

P (χ, x) =
N∑
j=0

∞∑
k=0

a
(k)
j

χk

k!
xj. (3.37)

The jump fluctuations can then be expressed as (Appendix B.1)

⟪n(t)⟫ = Var[n(t)] = i
⟨n(t)⟩
a
(0)
1

(
a
(2)
0 a

(0)
1

a
(1)
0

+
2a

(1)
0 a

(0)
2

a
(0)
1

− 2a
(1)
1

)
(3.38)

Finally, since D = (d/dt)⟪n(t)⟫

D = −i ⟨I⟩
a
(0)
1

(
a
(2)
0 a

(0)
1

a
(1)
0

+
2a

(1)
0 a

(0)
2

a
(0)
1

− 2a
(1)
1

)
. (3.39)

Hence, the TUR bound in Eq. 2.23 can be rewritten as

⟨I⟩2

D⟨σ⟩
≤ 1

2
. (3.40)

3.3.3 Estimation precision

The expressions for the mean current ⟨I⟩ and the noise D may now be used to calculate the
information about a system parameter θ encoded in the jump current. To this end, for a
given measurement time τ , in the steady state, the current precision can be expressed as the
error propagation formula [1]

(∆θ)−2 =
(∂θ⟨I⟩)2

D
τ. (3.41)

Under this definition, the current precision is expressed in a similar form as the reciprocal of
the quantity bounded by the Cramér-Rao bound in Eq. 2.31.
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3.4 Entropy production and TUR violations

The mean entropy production rate for the two qubit system is [33]

⟨σ⟩ = ∂tS(ρ̂)−
(
JL
TL

+
JR
TR

)
, (3.42)

where S(ρ̂) is the von Neumann entropy

S(ρ̂) = Tr(ρ̂ ln(ρ̂)), (3.43)

and Jα are the heat currents between the system and the two baths. In the steady state ρ̂SS,
the von Neumann entropy is constant, and thus ⟨σ⟩ reduces to

⟨σ⟩ = JL
TL

+
JR
TR
, (3.44)

where [26]

Jα = ±⟨I⟩(εα − µα). (3.45)

In order to study such violations, the amount of TUR violation VTUR can be defined as [34]

VTUR = max{0, ⟨I⟩
2

D⟨σ⟩
− 1

2
}. (3.46)

3.5 Continuous measurement QFI

In order to measure the jump current, one needs to perform some kind of measurement that
continuously monitors the baths and system. This aspect is captured by the current precision
in Eq. 3.41, which, in the steady state, scales with the measurement time.

Alternatively to the discrete measurement protocol highlighted in Sec. 2.5, the quantum
Fisher information may also be defined and computed for continuous measurements. If the
encoding CPTP map for a parameter θ is generated by a Markovian Liouvillian written in
GKSL form, the continuous measurement QFI in the steady state for a large measurement
time τ reads [8, 35]

F(ρ̂SS(θ)) = 4τ

(∑
j

⟨(∂θL̂†
j)(∂θL̂j)⟩ − 1T ṼLL̃DṼRpSS − 1T ṼRL̃DṼLpSS

)
, (3.47)

where ṼL/R are the matrix representations of the superoperators

VLρ̂ = −i∂θ
(
Ĥ − i

2

∑
j

L̂†
jL̂j

)
ρ̂+

∑
j

(∂θL̂j)ρ̂L̂
†
j (3.48)

VRρ̂ = iρ̂∂θ

(
Ĥ† − i

2

∑
j

L̂†
jL̂j

)
+
∑
j

L̂j ρ̂(∂θL̂
†
j), (3.49)
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1 =
∑

j |j⟩
∗ ⊗ |j⟩ is the vectorised identity in the basis {|j⟩}, and L̃D is the Drazin inverse

of the matrix representation of the Liouvillian. As explained in Sec. 3.2, a time independent
Liouvillian has at least one steady state and hence at least one density matrix belonging to
the zero eigenvalue. Thus, for an Liouville space of dimension N2, rank(L̃) ≤ N2 − 1. The
Drazin inverse is hence defined as the unique matrix L̃D such that [36]

L̃k+1L̃D = L̃k, L̃DL̃L̃D = L̃D, L̃DL̃ = L̃L̃D, (3.50)

where k is the smallest integer such that rank(L̃k+1) = rank(L̃k). By rewriting L̃ as L̃ =
L̃0 + J̃ , where L̃0 and J̃ are respectively the no-jump term

L̃0 = −i(Ĥ ⊗ 1− 1⊗ ĤT )− 1

2

∑
i

γi

(
L̂†
i L̂i ⊗ 1+ 1⊗ L̂T

i L̂
∗
i

)
, (3.51)

and the jump term

J̃ =
∑
i

γiL̂i ⊗ L̂∗
i , (3.52)

the Drazin inverse can be computed as [8]

L̃D = (1+QL̃−1
0 J̃ )−1QL̃−1

0 Q, (3.53)

where Q = 1− pSS1
T .

In the case of the local master equation in Eq. 3.8, the operators σ±
α do not depend on

the system parameters, and thus Eq. 3.47 reduces to

F(ρ̂SS(θ)) = −4τ(1T ṼLL̃DṼRpSS + 1T ṼRL̃DṼLpSS), (3.54)

with ṼL = −i(∂θĤ)ρ̂ and ṼR = iρ̂(∂θĤ
†).

4 Results and discussion

In this section, analytical expressions for the steady state density matrix ρ̂SS, the mean cur-
rent ⟨I⟩, and the noise D are shown. Furthermore, the precision of parameter estimation in
the system and its non-classicality are studied through three figures of merit: the current
precision (∆θ)−2, violations of the TUR in Eq. 3.40, and the QFI for continuous measure-
ments on the system. In particular, the current precision and the continuous measurement
QFI are analysed for the inter-qubit coupling g and the detuning δ. For all numerical results,
the condition κL = κR = κ is applied.

4.1 Steady state density matrix, mean current and fluctuations

In the steady state, the Hamiltonian is such that, in the computational basis {|00⟩ , |01⟩ , |10⟩ , |11⟩},
the only non-vanishing coherences are ρ̂12 and ρ̂21 [37]. Hence, the steady state density matrix
ρ̂SS can be written as
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ρ̂SS =


p0 0 0 0
0 p1 c 0
0 c∗ p2 0
0 0 0 p3

 .

By following the procedure in 3.2, the non-vanishing elements of ρ̂SS read

p0 =
4g2(γ−R + γ−L )

2 + γ−Rγ
−
L (4δ

2 + Γ2)

χ
(4.1)

p1 =
4g2(γ−R + γ−L )(γ

+
R + γ+L ) + γ+Rγ

−
L (4δ

2 + Γ2)

χ
(4.2)

p2 =
4g2(γ−R + γ−L )(γ

+
R + γ+L ) + γ−Rγ

+
L (4δ

2 + Γ2)

χ
(4.3)

p3 =
4g2(γ+R + γ+L )

2 + γ+Rγ
+
L (4δ

2 + Γ2)

χ
(4.4)

c =
2g(γ−Rγ

+
L − γ

+
Rγ

−
L )(2δ − iΓ)

χ
, (4.5)

where

γ+α := καNα(ε̄), γ
−
α := κα(1−Nα(ε̄))

Γ = κL + κR

χ = Γ2(4g2 + κLκR) + 4δ2κLκR

The mean current and the noise, calculated with the full counting statistics scheme in
Sec. 3.3, read (Appendix C)

⟨I⟩ = 4g2κLκR(κL + κR)(NL −NR)

(κL + κR)2 (4g2 + κLκR) + 4δ2κLκR
(4.6)

D =
NL +NR − 2NLNR

NL −NR

⟨I⟩ − 2

κL + κR
⟨I⟩2

(
1 +

(κL + κR)
2 + 4δ2(κL − κR)2/(κL + κR)

2

4g2 + κLκR + 4δ2κLκR/(κL + κR)2

)
(4.7)
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4.2 Current-based estimation precision

Figure 2: Current precision for the inter-qubit coupling g as a function of g and δ [a), b), c)].
Cross section of b) for different values of δ [d)]. Common parameters to all plots: TL/ε =
TR/ε = T/ε = 1. Parameters for individual plots: κL/ε = κR/ε = κ/ε = 0.01, µL/ε =
2, µR/ε = −1 [a)], κL/ε = κR/ε = κ/ε = 0.01, µL/ε = 4, µR/ε = −2 [b), d)],κL/ε = κR/ε =
κ/ε = 0.05, µL/ε = 2, µR/ε = −1 [c)]
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Figure 3: Current precision for the detuning δ as a function of g and δ [a), b), c)]. Cross
section of b) for different values of δ [d)]. Common parameters to all plots: TL/ε = TR/ε =
T/ε = 1. Parameters for individual plots: κL/ε = κR/ε = κ/ε = 0.01, µL/ε = 2, µR/ε = −1
[a)], κL/ε = κR/ε = κ/ε = 0.01, µL/ε = 4, µR/ε = −2 [b), d)],κL/ε = κR/ε = κ/ε =
0.05, µL/ε = 2, µR/ε = −1 [c)]

As it can be noticed in Fig. 2, the current precision for the inter-qubit coupling is maximal
for g, δ ≪ κ, and rapidly decays with increasing g until g ≃ κ. In fact, as highlighted in [34],
from a transport physics perspective, g is the rate of quantum tunnelling between the two
qubits, and as g and the bath damping rates κL = κR = κ become comparable in magnitude,
the inter-qubit tunnelling and the jump process between the system and the baths become
equally likely. As g increases beyond κ, the influx of fermions from the baths bottlenecks
the inter-qubit tunnelling, and thus the mean current ⟨I⟩ no longer increases with g. Hence,
∂g⟨I⟩ vanishes with increasing g beyond κ, and so does the current precision for g.

On the other hand, as it is shown in Fig. 3, the current precision for the detuning δ
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vanishes around δ = 0, but rapidly increases until |δ| becomes comparable with κ, where
it reaches its maximum. Interestingly, the maxima occur at non-vanishing value of g. For
the parameter values in Figs. 3b) and 3d), the optimal value of the inter-qubit coupling is
g/ε = 0.0055.

4.3 TUR violations and effects on current precision

Figure 4: VTUR as a function of g and δ in the case of an applied bias [a)] and a temperature
gradient [b)]. Common parameters: κL/ε = κR/ε = κ/ε = 0.05. Parameters for individual
plots: TL/ε = TR/ε = T/ε = 1, µL/ε = 2, µR/ε = −1 [a)], µL/ε =, µR/ε = 0, TL/ε =
1, TR/ε = 2 [b)].

Figure 5: Comparisons between VTUR and the norm of coherence |c| as a function of g and
δ in the case of an applied bias [a)] and a temperature gradient [b)]. Common parameters:
κL/ε = κR/ε = κ/ε = 0.05. Parameters for individual plots: TL/ε = TR/ε = T/ε = 1,
µL/ε = 2, µR/ε = −1 [a)], µL/ε =, µR/ε = 0, TL/ε = 1, TR/ε = 2 [b)].

As shown in Sec. 4.1, ρ̂SS presents coherences between states |01⟩ and |10⟩ in the com-
putational basis, and thus the jump process between the qubits and the baths cannot be
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reduced to a classical continuous-time Markov chain. Violations of TUR were found, and
are presented in Fig. 4. It is found that TUR violations can occur both in the presence of a
difference in chemical potential between the baths, achieved by applying an external voltage
gradient (bias), and with a temperature gradient. In the former case, the violation peaks at
g = 0.0321, whilst in the latter the violation is maximal for δ = 0.05. Interestingly, as shown
in Fig. 5, the increase of norm of the coherence |c| with varying g seems to correspond to
the occurrence of TUR violations in some degree. Hence, coherences in the steady state play
a significant role in TUR violations.

It is now shown analytically how the TUR bound induces an upper thermodynamic bound
on the current precision for g and δ, and the subsequent precision advantage allowed by TUR
violations. The partial derivative of the mean current with respect to δ reads

∂δ⟨I⟩ = −
32g2κ2Lκ

2
R(κL + κR)(NL −NR)δ

[(κL + κR)2 (4g2 + κLκR) + 4δ2κLκR]2
. (4.8)

By comparison with the mean current in Eq. 4.6,

∂δ⟨I⟩ =
8κLκRδ

(κL + κR)2 (4g2 + κLκR) + 4δ2κLκR
⟨I⟩, (4.9)

and thus the precision (∆δ)−2/τ may now be expressed as

(∆δ)−2/τ =

(
8κLκRδ

(κL + κR)2 (4g2 + κLκR) + 4δ2κLκR

)2 ⟨I⟩2

D
. (4.10)

The current precision for δ, now expressed in terms of ⟨I⟩2/D, can now be directly connected
to the TUR bound in Eq. 3.40, and (∆δ)−2/τ is thus bounded by

(∆δ)−2/τ =

(
8κLκRδ

(κL + κR)2 (4g2 + κLκR) + 4δ2κLκR

)2 ⟨I⟩2

D

⟨σ⟩
⟨σ⟩

≤ (∆δ)−2
TUR ≡

1

2

(
8κLκRδ

(κL + κR)2 (4g2 + κLκR) + 4δ2κLκR

)2

⟨σ⟩ ≡ f(δ)⟨σ⟩,

(4.11)

which represents the largest current precision for δ allowed by classical stochastic thermo-
dynamics. Hence, achieving a higher precision implies a TUR violation and the presence of
non-classical thermodynamic behaviour.

A similar procedure can be repeated for (∆g)−2/τ , which is bounded by (∆g)−2/τ ≤
h(g)⟨σ⟩, where

h(g) =
1

2

(
2κLκR (4δ2 + (κL + κR)

2)

g[(κL + κR)2 (4g2 + κLκR) + 4δ2κLκR]

)2

. (4.12)

Fig. 6 shows how the current precision outperforms the thermodynamic precision bound in
the presence of TUR violations.

25



Figure 6: Classical thermodynamic precision bounds compared with current precision for g
[a)] and δ [b)]. Parameters: κL/ε = κR/ε = κ/ε = 0.05, TL/ε = TR/ε = T/ε = 1, µL/ε =
0, µR/ε = 0, TL/ε = 1, TR/ε = 2.

4.4 Continuous measurement QFI

Figure 7: QFI for continuous measurements compared to the current precision in the steady
state for the inter-qubit coupling g. Common parameters to all plots: TL/ε = TR/ε = T/ε =
1, κL/ε = κR/ε = κ/ε = 0.01. Parameters for individual plots: µL/ε = 2, µR/ε = −1, δ/ε = 0
[a)], µL/ε = 4, µR/ε = −2, δ/ε = 0 [b)], µL/ε = 4, µR/ε = −2, δ/ε = 0.01 [c)].

As expected from the Cramér-Rao bound, the QFI bounds the current precision from above.
As shown in Fig. 7, for intermediate bias (µL = 2, µR = −1) and vanishing detuning, the
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current precision presents a similar behaviour as the steady state continuous measurement
QFI around g = 0. Nevertheless, for g > κ, the QFI converges to a finite non-vanishing
value.

Interestingly, for higher bias, the current precision nearly coincides with the QFI around
g = 0, which implies that for g ≪ κ and vanishing detuning the jump current carries nearly
as much information about g as the optimal measurement that saturates the Cramér-Rao
bound. Hence, this suggests that in the aforementioned conditions the estimation of the
inter-qubit coupling can be performed very effectively by measuring the jump current. As
detuning is switched on, the QFI for g presents a different behaviour with increasing g. For
the parameters in Fig. 7c), the QFI presents a peak for intermediate coupling (g ≃ κ/2), in
correspondence with the drop in current precision. In this case, the jump current does no
longer seem to provide a near-optimal estimation performance for the inter-qubit coupling.

Figure 8: QFI for continuous measurements compared to the current precision in the steady
state for the detuning δ. Common parameters to all plots: TL/ε = TR/ε = T/ε = 1, kL/ε =
kR/ε = k/ε = 0.01. Parameters for individual plots: µL/ε = 2, µR/ε = −1, g/ε = 0.01 [a)],
µL/ε = 4, µR/ε = −2, g/ε = 0.01 [b)], µL/ε = 4, µR/ε = −2, g/ε = 0.05 [c)].

In the case of the estimation precision for the detuning δ, the current precision seems to
perform rather poorly in comparison to the maximal precision allowed by the Cramér-Rao
bound. As shown in Fig. 8, the current precision is systematically lower than the QFI by at
least one order of magnitude. Nevertheless, for the choices of parameters in Figs. 8a) and
8b), the current precision and the QFI show a similar behaviour with varying δ. Unlike the
case for the inter-qubit coupling, a change in bias or in inter-qubit coupling does not have a
significant effect on the maximum attainable value of the QFI for δ.
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5 Conclusions and outlook

In this thesis, the precision of parameter estimation in the non-equilibrium steady state of
a quantum thermal machine of two qubits couple to thermal baths was studied under the
Born-Markov approximation. In particular, this work explored the possibility of using the
steady state particle current between the system and the baths to estimate system parame-
ters, and the potential advantage deriving from the quantum mechanical description of the
system.

It was shown that, with a local master equation approach (Eq. 3.8), the thermodynamic
uncertainty relation in Eq. 2.23 can be violated by the system, and how such violations are
linked to the presence of coherence in the steady state density matrix. Furthermore, classi-
cal thermodynamic bounds on the on the estimation precisions of the inter-qubit coupling
and the detuning were derived, and thus it was shown that TUR violations allow for higher
current precision. Moreover, the current precision was compared to the quantum Fisher in-
formation, and it was found that for vanishing detuning it is possible for the current precision
to nearly saturate the quantum Cramér-Rao bound for the inter-qubit coupling. Hence, in
this model, it is possible to measure the coupling with near-maximal precision by measuring
the steady state particle current.

There are several possible research directions that may be explored. The non-classical
estimation advantage in the system has been linked to coherence, which is an inherent feature
of quantum mechanics. Nonetheless, quantum entanglement is undoubtedly the phenomenon
that sets quantum mechanics apart from any other classical theory, and thus studying the
relation between entanglement and the non-classical gain in estimation precision could be
worthwhile. Furthermore, in this work, violations of thermodynamic uncertainty relations
were explored in order to achieve a better-than-classical estimation performance. Neverthe-
less, there exists other types of bounds in classical Markovian jump processes referred to as
Kinetic uncertainty relations (KUR’s), which set a trade-off between the mean current, its
fluctuations and the mean number of jump events [38]. Hence, it might be interesting to
study the non-classical advantage in parameter estimation that may arise from KUR viola-
tions. Moreover, the work could be extended to the transient regime, in which the two-qubit
thermal machine could be explored through the lens of autonomous quantum clocks [39]. In
addition, the Markovian master equation approach may be relinquished in favour of other
methods which do not rely on the Born-Markov approximation, in order to generalise the
research to out-of-equilibrium environments.

A Steady state density matrix

A.1 Calculation of ρ̂SS

The matrix representation of the system Hamiltonian, and of the creation and annihilation
operators in the {|00⟩ , |01⟩ , |10⟩ , |11⟩} basis read
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Ĥ =


0 0 0 0
0 ε+ δ g 0
0 g ε 0
0 0 0 2ε+ δ

 , (A.1)

σ̂+
L =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 σ̂−
L =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 (A.2)

σ̂+
R =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 σ̂−
R =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 . (A.3)

Given that the matrix representation of ρ̂SS simplifies to Eq. 4.1, the master equation can be
reduced to a linear system of 6 equations. The Liouvillian matrix L̃, computed as prescribed
in Eq. 3.12 in the {p0, p1, p2, p3, c, c⋆} basis, reads

L̃ =


−γ+L − γ

+
R γ−R γ−L 0 0 0

γ+R −γ−R − γ
+
L 0 γ−L ig −ig

γ+L 0 −γ−L − γ
+
R γ−R −ig ig

0 γ+R γ+L −γ−L − γ
−
R 0 0

0 ig −ig 0 −Γ
2
− iδ 0

0 −ig ig 0 0 −Γ
2
+ iδ

 . (A.4)

Furthermore, given the the normalization constraint pLR = 1− p2 − p1 − p0, there can be an
additional reduction of one equation. Thus, the vectorised master equation may be rewritten
as

ṗ =Mp+ v, (A.5)

where v is a constant vector andM is a matrix such that L̃p =Mp+v. In the {p0, p1, p2, c, c∗}
basis, the matrix M and the vector v (Eq. A.5) read

M =


−γ+L − γ

+
R γ−R γ−L 0 0

γ+R − γ
−
L −γ−R − γ

−
L − γ

+
L −γ−L ig −ig

γ+L − γ
−
R −γ−R −γ−L − γ

−
R − γ

+
R −ig ig

0 ig −ig −Γ
2
− iδ 0

0 −ig ig 0 −Γ
2
+ iδ

 (A.6)

v =


0
γ−L
γ−R
0
0

 . (A.7)
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Hence, given that MpSS + v = 0, the steady state vector pSS is solved for as

pSS = −M−1v (A.8)

B Mean current and fluctuations

B.1 Derivation of Eq. 3.38

By definition [32],

P (χ, λ0(χ)) = 0, (B.1)

and thus

dl

dχl
P (χ, λ0(χ))

∣∣∣∣
χ=0

= 0 ∀l ≥ 1. (B.2)

For l = 1,

d

dχ
P (χ, λ0(χ))

∣∣∣∣
χ=0

=
N∑
j=0

∞∑
k=1

(
a
(k)
j

χk−1

k!
λj0(χ)

)

+
N∑
j=1

∞∑
k=0

(
a
(k)
j j

χk

k!
λ′0(χ)λ

j−1
0 (χ)

)∣∣∣∣
χ=0

= 0

(B.3)

By the condition in Eq. 3.32, there only are non-vanishing terms for {j, k} = {1, 0} and
{j, k} = {0, 1}:

d

dχ
P (χ, λ(χ))

∣∣∣∣
χ=0

= a
(1)
0 + a

(0)
1 λ′0(0) = 0. (B.4)

The same procedure can be repeated for l = 2 to obtain

d2

dχ2
P (χ, λ(χ))

∣∣∣∣
χ=0

= a
(2)
0 + a

(0)
1 λ′′0(0) + 2a

(1)
1 λ′0(0) + 2a

(0)
2 (λ′0(0))

2 = 0. (B.5)

Eqs. 3.28 and 3.31 imply that, in the steady state,

⟨n(t)⟩ = −iλ′0(0)t and ⟪n(t)⟫ = −λ′′0(0)t. (B.6)

Solving for λ′′0(0) in terms of λ′0(0) = ⟨n(t)⟩ in eqs. B.4 and B.5 thus yields

⟨n(t)⟩ = i
a
(1)
0

a
(0)
1

t =⇒ ⟨I⟩ = i
a
(1)
0

a
(0)
1

(B.7)
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⟪n(t)⟫ = Var[n(t)] = −i⟨n(t)⟩
a
(0)
1

(
a
(2)
0 a

(0)
1

a
(1)
0

+
2a

(1)
0 a

(0)
2

a
(0)
1

− 2a
(1)
1

)

=⇒ D = −i ⟨I⟩
a
(0)
1

(
a
(2)
0 a

(0)
1

a
(1)
0

+
2a

(1)
0 a

(0)
2

a
(0)
1

− 2a
(1)
1

)
(B.8)

C Calculation of mean current and fluctuations

If the counting is performed on the left qubit, the matrix representation L̃(χ) of the counting
Liouvillian in the {p0, p1, p2, p3, c, c∗} basis reads

L̃(χ) =


−γ+L − γ

+
R γ−R γ−L e

−iχ 0 0 0
γ+R −γ−R − γ

+
L 0 γ−L e

−iχ ig −ig
γ+L e

iχ 0 −γ−L − γ
+
R γ−R −ig ig

0 γ+R γ+L e
iχ −γ−L − γ

−
R 0 0

0 ig −ig 0 −Γ
2
− iδ 0

0 −ig ig 0 0 −Γ
2
+ iδ

 . (C.1)

The coefficients a
(k)
j defined in Eq. 3.36 required to calculate the mean current and its

fluctuations read

a
(1)
0 = −ig2κLκR(κL + κR)

2(NL −NR) (C.2)

a
(0)
1 =

1

4
(κL + κR)

3
(
4g2 + κLκR

)
+ κLκR(κL + κR)δ

2 (C.3)

a
(2)
0 = g2κLκR(κL + κL)

2(NL +NR + 2NLNR) (C.4)

a
(0)
2 =

1

4
(κL + κR)

2(20g2 + κ2L + 7κLκR + κ2R) + (κ2L + 3κLκR + κ2R)δ
2 (C.5)

a
(1)
1 = 4ig2κLκR(κL + κR)(NL −NR) (C.6)

Hence, by inserting the coefficients into Eqs. B.7 and B.8,

⟨I⟩ = 4g2κLκR(κL + κR)(NL −NR)

(κL + κR)2 (4g2 + κLκR) + 4δ2κLκR
(C.7)

D =

(
− 8g2κLκR(NL −NR) ((κL + κR)

2 (20g2 + κ2L + 7κLκR + κ2R) + 4δ2 (κ2L + 3κLκR + κ2R))

((κL + κR)2 (4g2 + κLκR) + 4δ2κLκR)
2

+
32g2κLκR(κL + κR)(NL −NR)

(κL + κR)2 (4g2 + κLκR) + 4δ2κLκR
+
NL +NR − 2NLNR

NL −NR

)
⟨I⟩i,

(C.8)
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where D can be further simplified into

D =
NL +NR − 2NLNR

NL −NR

⟨I⟩ − 2

κL + κR
⟨I⟩2

(
1 +

(κL + κR)
2 + 4δ2(κL − κR)2/(κL + κR)

2

4g2 + κLκR + 4δ2κLκR/(κL + κR)2

)
.

(C.9)
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[29] Á. Rivas et al. Open Quantum Systems. An Introduction. arXiv:1104.5242 [cond-mat,
physics:math-ph, physics:physics, physics:quant-ph]. 2012. doi: 10.1007/978-3-642-
23354-8.

[30] G. Blasi et al. Exact finite-time correlation functions for multi-terminal setups: Con-
necting theoretical frameworks for quantum transport and thermodynamics. Number:
arXiv:2312.15065 arXiv:2312.15065 [cond-mat, physics:quant-ph]. Jan. 2024.

33

https://doi.org/10.22331/q-2018-06-13-73
https://doi.org/10.1063/1.522979
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1103/PhysRevE.93.052145
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1088/1367-2630/ac3b2f
https://doi.org/10.1088/1367-2630/ac3b2f
https://doi.org/10.1103/physreva.98.042118
https://doi.org/10.1088/1361-6404/ab9fdd
https://doi.org/10.1007/978-3-642-23354-8
https://doi.org/10.1007/978-3-642-23354-8


[31] G. Casella et al. Statistical Inference Vol. 70. Duxbury Press Belmont, Ca, 1990.

[32] M. Bruderer et al. “Inverse counting statistics for stochastic and open quantum systems:
the characteristic polynomial approach”. In: New J. Phys. 16.3 (Mar. 2014), p. 033030.
doi: 10.1088/1367-2630/16/3/033030.

[33] M. Esposito et al. “Entropy production as correlation between system and reservoir”.
In: New J. Phys. 12.1 (Jan. 2010), p. 013013. doi: 10.1088/1367-2630/12/1/013013.

[34] K. Prech et al. “Entanglement and thermokinetic uncertainty relations in coherent
mesoscopic transport”. en. In: Phys. Rev. Res. 5.2 (June 2023), p. 023155. doi: 10.
1103/PhysRevResearch.5.023155.

[35] S. Gammelmark et al. “Fisher Information and the Quantum Cramér-Rao Sensitivity
Limit of Continuous Measurements”. In: Phys. Rev. Lett. 112 (17 Apr. 2014), p. 170401.
doi: 10.1103/PhysRevLett.112.170401.

[36] M. P. Drazin. “Pseudo-Inverses in Associative Rings and Semigroups”. In: The Am.
Math. Mon. 65.7 (1958), pp. 506–514. doi: 10.1080/00029890.1958.11991949.

[37] S. Khandelwal et al. “Critical heat current for operating an entanglement engine”. In:
New J. Phys. 22.7 (July 2020), p. 073039. doi: 10.1088/1367-2630/ab9983.

[38] I. D. Terlizzi et al. “Kinetic uncertainty relation”. In: J. Phys. A: Math. Theor. 52.2
(Dec. 2018), 02LT03. doi: 10.1088/1751-8121/aaee34.

[39] P. Erker et al. “Autonomous Quantum Clocks: Does Thermodynamics Limit Our Abil-
ity to Measure Time?” In: Phys. Rev. X 7.3 (Aug. 2017). doi: 10.1103/physrevx.7.
031022.

34

https://doi.org/10.1088/1367-2630/16/3/033030
https://doi.org/10.1088/1367-2630/12/1/013013
https://doi.org/10.1103/PhysRevResearch.5.023155
https://doi.org/10.1103/PhysRevResearch.5.023155
https://doi.org/10.1103/PhysRevLett.112.170401
https://doi.org/10.1080/00029890.1958.11991949
https://doi.org/10.1088/1367-2630/ab9983
https://doi.org/10.1088/1751-8121/aaee34
https://doi.org/10.1103/physrevx.7.031022
https://doi.org/10.1103/physrevx.7.031022

	Introduction
	Theory
	Density operator
	Partial trace

	Time evolution of closed and isolated systems
	Time evolution of open systems
	Thermodynamic uncertainty relations
	Quantum parameter estimation

	Methods
	Local master equation
	Solving the master equation
	Full counting statistics
	Mean current
	Current fluctuations
	Estimation precision

	Entropy production and TUR violations
	Continuous measurement QFI

	Results and discussion
	Steady state density matrix, mean current and fluctuations
	Current-based estimation precision
	TUR violations and effects on current precision
	Continuous measurement QFI

	Conclusions and outlook
	Steady state density matrix
	Calculation of SS

	Mean current and fluctuations
	Derivation of Eq. 3.38

	Calculation of mean current and fluctuations

