
 
Department of Automatic Control 

 

Angular Velocity Estimation  
for Sensorless Brushless DC Motors 

 

Victor Martinsson



 
 

 

 

 

 

 

 

 

 

 

 

MSc Thesis 
TFRT-6241 
ISSN 0280-5316 

Department of Automatic Control 
Lund University 
Box 118 
SE-221 00 LUND 
Sweden 

© 2024 Victor Martinsson. All rights reserved. 
Printed in Sweden by Tryckeriet i E-huset 
Lund 2024 

 



Abstract

In the automotive industry today, safety is of highest priority. ASIL is a safety stan-
dard that quantifies risk. This project investigates how a redundant speed estimate
in a sensorless BLDC motor can be developed to meet ASIL B requirements. The
proposed solution involves tracking the shape of the phase curve to determine the
angular velocity. This is accomplished by changing the boundaries on the ADC,
making it work as a comparator, to find limit events.

The results show that the algorithm successfully tracks the angular velocity. The
error residual is noisy, with a maximum mean error of −5.64 rad/s. The error is be-
lieved to be due to unexpected disturbances on the phase curve. To get the final
estimate, a moving average filter with window size n = 6 and n = 18 is applied, cor-
responding to one and three mechanical revolutions. Window size n = 6 is preferred
to reduce delay, but n = 18 is more stable with the present disturbances.
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1
Introduction

This thesis project has been done at BorgWarner in Landskrona, Sweden. Borg-
Warner is a company that develops clean and efficient solutions for the automotive
industry, where the Landskrona site develops and produces driveline and propulsion
systems. The product that has been used during this thesis project is a coupling de-
vice used to transfer torque between axles in a vehicle. The coupling can be used
between the rear and front axles in a four-wheel drive vehicle, or between the left
and right wheel as a differential brake.

1.1 Background

Today’s development in the automotive industry is progressing rapidly, and the same
goes for the safety. In recent decades, cars have become more digital each year, and
today, almost everything is digitally controlled. With the increased usage of comput-
ers in the automotive industry, the possibility of more automatic safety precautions
has opened up. In today’s cars, many subsystems are implemented, whose assign-
ment is to monitor and check that the different components in the car are functioning
as intended. For car manufacturers, certain standards must be followed when devel-
oping a new car. The Automotive Safety Integrity Level (ASIL) risk assessment
scheme, based on the ISO 26262, Functional Safety for Road Vehicles standard, is
a risk assessment scheme that defines what safety precautions are needed, based on
how often a specific system malfunctions and how severe the outcome are to pas-
sengers if the system is malfunctioning. There are four levels in the ASIL scheme,
ASIL A-D, where an ASIL A product has the lowest safety requirements and an
ASIL D product has the strictest requirements.

In the coupling device, the torque is transferred between axles by controlling
an electric motor. When this electric motor is spinning, a hydraulic pressure is pro-
duced that couples the two axles together. The motor is a brushless DC (BLDC)
motor without sensors. To be able to control the speed of the motor, a technique
called block commutation is used. The speed of the motor is not only essential for
the overall control of the transfer torque, it is also important for the safety supervi-
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Chapter 1. Introduction

sion of the functionality. The product has been given a ASIL classification, and to
satisfy this, two redundant speed estimations are needed. The two speed estimates
should be compared so that malfunction can be identified, and safety precautions
can be taken.

Figure 1.1 Brushless DC motor used in BorgWarner’s clutch. Picture from Borg-
Warner, Sweden AB.

1.2 Master thesis goals

In this thesis project, a new redundant speed estimate of the BLDC motor will be
investigated. This report will cover the thought process behind how this was derived,
and also how the two speed estimates should be compared to detect malfunction.
An implementation of this estimation algorithm, suitable for the microcontroller
that controls the speed of the motor, will also be developed. In this report, the extra
functionality is also discussed in terms of extra CPU load.
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1.3 Literature review

1.3 Literature review

Estimating the angular velocity in a sensorless BLDC motor can be done in sev-
eral ways. Literature suggests that the angular velocity can be estimated using the
magnitude of the back EMF [Shrutika et al., 2021]. The back EMF, is also periodic,
opening up for possible solutions where the angular velocity is estimated using the
periodicity of the voltage phase curve. There are literature presenting how auto cor-
relation can be utilized to find periodicity in time series [Breitenbach et al., 2023].
This thesis will investigate how these methods can be used and if they are suitable
solutions for the problem given the components available.

1.4 Limitations

In this thesis project, the focus has been on implementing an algorithm that esti-
mates the speed of the motor inside the operating span of 65 to 400 rad/s. This has
been done without any modifications to the BLDC motor.
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2
Theory

2.1 Brushless DC motor

An electric motor mainly consists of a rotor and a stator and can be either brushed
or brushless. The rotor is the part that is rotating, and the stator often sits around the
rotor. The motor can be driven by either direct current (DC) or alternating current
(AC).

There are some major differences in how the motor works depending on if it is
brushed or brushless. In a brushed DC motor, the stator mainly holds field magnets,
and the rotor, wire windings. To make the rotor rotate, a commutator is used. The
commutator sits on the shaft of the rotor and is used to reverse the polarity of the
rotor windings so that the motor keeps rotating. When the motor is rotating because
of the attraction between field magnets and rotor windings, the commutator, which
is made out of conducting materials, loses its connection with the brushes. The
brushes later gets contact with the commutator and the polarity is switched.

Brushed DC motors are easily constructed and does not need any computers
since the hardware handles the commutations. The speed of the motor is controlled
by changing the supply voltage. One problem with the brushed DC motor is that it
needs maintenance, since the brushes are worn out over time because of the contact
with the commutator.

In BLDC motors, there are a stator and a rotor as well, but they function differ-
ently from those in the brushed DC motor case. In a BLDC motor, the rotor often
has the field magnets, and the stator has the wire windings. The biggest difference,
which is also one of the main advantages of the BLDC motor, is that the com-
mutator and brushes are removed, reducing its need for maintenance. In a BLDC
motor, the commutation is done by changing the direction of the current through
the phase windings via an inverter controlled by a microcontroller. The number of
stator windings can be chosen arbitrarily, and also the number of pole pairs in the
rotor.

One phase in an BLDC motor can be modelled as a resistance R, an inductance
L and the back electromagnetic force (EMF) E. The schematic can be seen in Figure
2.1. One phase can be described mathematically by (2.1) [Hughes, 2019].
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2.1 Brushless DC motor

Figure 2.1 Model of one phase with supply voltage Vs, resistance R, inductance L
and back EMF E.

Vs = Ri+L
di
dt

+E (2.1)

The inductance in the motor is dependent on the change of current inside the motor.
For a BLDC motor with three phases, these phases can be connected in two forma-
tions called, delta or wye formation. The delta formation can be seen in Figure 2.2
and the wye formation in Figure 2.3. The BLDC motor used in this project uses the
wye formation.

Figure 2.2 Three phases connected in delta formation.
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Chapter 2. Theory

Figure 2.3 Three phases connected in wye formation with the neutral point where
the three phases are connected together.

2.2 Inverter

For a three-phase motor, the inverter is built by combining three half bridges, or
six transistors, as can be seen in Figure 2.4. By using an inverter, the polarity of the

Figure 2.4 Wire diagram for a three-phase inverter with transistors S0-S5.

windings can be chosen independently. In reality, the six transistors can be chosen to
be high or low independently. With these transistors, the states of the three phases A,
B and C, are controlled. With six transistors that can be either high or low, there are
64 combinations. The commutation patterns can be represented by a six dimensional
vector of logic values, 1 and 0, representing high or low(

S0 S1 S2 S3 S4 S5
)
, (2.2)

where, Sx represents the state of the transistor x. From (2.2), transistor S(2n), n =
0,1,2, determine if the corresponding phase should be high, and S(2n+ 1) if the
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2.3 Back electro-magnetic force

phase should be low. If both S(2n) and S(2n+1) are zero, then that phase is floating,
which will be covered later. From this, (2.2) can be written as (2.3).(

S0 S1 S2 S3 S4 S5
)
=
(
A A′ B B′ C C′

)
(2.3)

In (2.3), A is representing if phase A should be high, and A′, if phase A should be
low. From (2.3), both S(2n) and S(2m), m = 0,1,2 and n ̸= m, can be high at once,
meaning that two or more phases can be positive at the same time. It is also true
that S(2n) and S(2n+1) can be high at the same time, which would mean that the
corresponding phase is both low and high at the same time. These combinations are
in reality of no use and are ignored. Since the state of each transistor can be changed
independently, all the 64 combinations are feasible, but for the purpose of driving
the motor only six combinations are valid. By removing the combinations which do
not fulfil all the constraints (2.4), (2.5) and (2.6), the patterns in Table 2.1 remains.

2

∑
n=0

S(2n) = 1 (2.4)

2

∑
n=0

S(2n+1) = 1 (2.5)

S(2n)+S(2n+1)≤ 1,n = 0,1,2 (2.6)

Table 2.1 Valid combinations for transistor states with corresponding high, low
and floating phases.

High Low Floating S0 S1 S2 S3 S4 S5
C B A 0 0 0 1 1 0
B C A 0 0 1 0 0 1
C A B 0 1 0 0 1 0
B A C 0 1 1 0 0 0
A C B 1 0 0 0 0 1
A B C 1 0 0 1 0 0

2.3 Back electro-magnetic force

Back EMF is a voltage generated inside the motor to counter the supplied voltage
to the motor. For a three-phase motor, the back EMF can be measured on the float-
ing phase, the phase that the supply voltage does not pass through. When the motor
rotates, the magnetic field changes. This magnetic field from the rotor magnets in-
duces a voltage in the stator winding that is not active, in the opposite direction of
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Chapter 2. Theory

the supply voltage, therefore the name back EMF. Since the back EMF is changing
due to the rotor magnet’s position, this can give information about the rotors angular
position.

The back EMF E is proportional to the electric angular velocity [Shrutika et al.,
2021]. The electrical angular velocity ωe can be calculated as

ωe =
E
ke
, (2.7)

where ke is a back EMF constant specific to the motor.

2.4 Block commutation

There are a couple of techniques for how to drive electrical motors. These tech-
niques can generally be divided into two groups: control using sensors and sen-
sorless control, where sensorless control is not entirely sensorless, as voltages and
currents are measured. When using a BLDC motor with sensors, the position of
the rotor can be determined directly and thus the correct commutation pattern be
chosen. Examples of sensors that can be used are hall sensors and encoders. Hall
sensors sense the magnetic field produced from the permanent magnets in the rotor
and can thus read its position. Encoders on the other hand uses reflected light to
determine the position and speed of the rotor.

Sensorless control is often used in applications where the rotor position is of no
particular interest. A sensorless motor is also cheaper since it does not require any
additional components. For sensorless control of a BLDC motor, the speed of the
motor is determined through the time between commutations. When the inverter
should switch between the different commutation patterns in Table 2.1 is deter-
mined by measuring the back EMF on the floating phase. In a BLDC motor, the
back EMF has a trapezoidal waveform. When the trapezoidal back EMF crosses a
certain threshold, based on the supplied voltage to the motor, the commutation pat-
tern is changed. From Table 2.1, each phase is floating during two periods in one
electrical revolution, and one phase is floating in each pattern representing 60◦ of
an electrical revolution. The position of the rotor can thus be estimated every 60◦,
and the commutation pattern be changed.

The correct sequence of the switching patterns in Table 2.1 can be seen in Table
2.2, where the switching sequence is 1-2-3-4-5-6-1 [Naveen and Isha, 2017]. The
typical phase voltage shape for one phase during one electrical revolution can be
seen in Figure 2.5. The spikes during the floating phase are introduced due to change
of commutation pattern, when the phase goes from high or low to floating. When
the phase changes to floating, a discharge, due to the inductance, is occurring. With
a greater angular velocity, more current is flowing through the motor, implying a
larger discharge, hence a larger spike.
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2.4 Block commutation

Table 2.2 Sequence of commutations patterns for driving motor forward.

Sequence High Low Floating
1 C B A
2 A B C
3 A C B
4 B C A
5 B A C
6 C A B

0 60 120 180 240 300 360

Electrical Degrees [deg]

Ph
as

e
Vo

lta
ge

[V
]

Low side Floating High side

Figure 2.5 A typical shape of the phase voltage during one electrical revolution.
The commutation pattern is changed every 60 electrical degrees. Black lines indicate
when the phase is changing state between high, low and floating.

The speed of the motor can be controlled by either changing the supplied voltage to
the motor, or by keeping the supply voltage constant and using pulse width modu-
lation (PWM). With PWM, the control signal is the duty cycle of the PWM signal,
and the duty cycle is used to turn the high or low side transistors in the inverter on
and off.

In this project, the motor uses block commutation. The electrical angular veloc-
ity ωe in rad/s can be calculated as

ωe = 2π
1

6tc
, (2.8)

where tc is the time in seconds between two commutations. The mechanical angular
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Chapter 2. Theory

velocity ωm in rad/s is then equal to

ωm =
2
P

ωe, (2.9)

where P is the number of poles in the rotor [Shrutika et al., 2021]. From (2.9),
the electrical angular velocity is N times the mechanical velocity, where N is the
number of pole pairs.

2.5 Pulse width modulation

PWM is used to control the speed of the motor. PWM is a type of voltage modula-
tion, where one cycle has a period of T seconds. During these T seconds, the signal
is high during a duty cycle of Tc seconds, Tc ≤ T , which controls how much voltage
passes through the circuit during a period of time. The ADCs used in this project
are synced to sample with a sample period of Ts = T . To get useful voltage data, the
samples are taken in the middle of the duty cycle of the PWM.

2.6 Autocorrelation

The autocorrelation function (ACF) is a measure of linearly dependency between
every two data points yi and yl , where i− l = k. The AFC is defined as

ρ(k) =
r(k)
r(0)

, (2.10)

where r(k) is the autocovariance function, and r(0) is the variance [Jakobsson,
2013]. The ACF is a powerful tool that gives information about seasonality in a
series of data points. The ACF can be used to identify the time between periodically
occurring events. The lag k that maximizes

k = argmax
k

ρ(k) (2.11)

can be used to calculate the time between periodically occurring events. Lag k in
(2.11), corresponds to the number of data points from yi to yi+k, where 0≤ i<N−k
and N is the number of data points used to calculate the ACF. The data points yi and
yl , with i− l = k, are therefore the most linear dependent and k, the period of the
time series. With k, the period time Tp can be calculated as

Tp =
k
fs
, (2.12)

where fs is the sample time. To find the k that corresponds to the number of data
points between the most negatively linear dependent data points, can be calculated
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2.7 Kalman filter

using (2.13).
k = argmin

k
ρ(k) (2.13)

With k from (2.13), a half period can be found.
When calculating the ACF ρ(k) at lag k for a sequence of N data points, there

are N− k combinations that are used to calculate the auto correlation. From this, it
follows that the largest lag k for the ACF is k = N−1, since, N− k > 0 must hold,
otherwise, no combinations of data points are used to calculate the correlation. From
above, it is clear that for k = N− 1, only one combination is available, which for
a time series is not enough to determine seasonality. If any noise is present in the
measurements, even lower lags are untrustworthy. A rule of thumb is to only use
and trust the ACF for lags up to at most N/4 [Jakobsson, 2013].

For perfect periodic time series without noise, the ACF will have a local maxima
equal to 1. With additional noise, the time series no longer is periodic in the sense
that it is a time shifted copy of the past. The ACF, however, still can pick up on
the regularity in the time series and the auto correlation approaches 1 [Breitenbach
et al., 2023].

2.7 Kalman filter

The Kalman filter is a filtering and prediction technique that utilizes the linear dy-
namics of a system, and system and measurement noise to estimate states [Intro-
duction and Implementations of the Kalman Filter. [Elektronisk resurs]. 2019]. The
process model can be mathematically described as

xk = Φxk−1 +Γuk−1 +wk−1, (2.14)

where xk is the state vector at time k, Φ and Γ are state transition and control matri-
ces respectively, uk−1 is the control input and wk−1 is the system noise, with noise
levels defined in the covariance matrix Q. Together with the measurement model

yk = Cxk + vk, (2.15)

where yk is the measured states at time k, C is the measurement matrix that deter-
mines what states are measured and vk is the measurement noise, the states can be
filtered and estimated. The noise levels of vk is defined in the covariance matrix R.
The idea is that given accurate information about system and measurement noise,
estimate the current states, and then update covariance matrices and Kalman gain,
given the error between estimates and measurements. The result is that hidden states
from measurements, disturbed by noise, can be estimated in an adaptive way.
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3
Equipment

The equipment used in this work includes both hardware and software. Constraints
on the equipment will be discussed in Section 3.3.

3.1 Hardware

The hardware consists of the BLDC motor itself, the test rig, and the Motor control
unit (MCU).

BLDC motor
The BLDC motor used is in-house built at BorgWarner and is used in products
today. The motor is a three-phase motor with three pole pairs. The motor with ECU
and hydraulic pump can be seen in Figure 3.1.

Figure 3.1 BLDC motor used in this thesis work. Picture from BorgWarner, Swe-
den AB.
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3.1 Hardware

Test rig
The equipment used in the test rig is the BLDC motor, the MCU with circuit boards,
and a module that simulates the hydraulic pressure built up when the BLDC motor
is spinning. To run the BLDC motor, a power supply is used. To measure the phase
voltages, a PicoScope oscilloscope module is used that connects to a PC. The PC is
also used to send commands via CAN. The module in the test rig, simulating the oil
pressure, can be seen in Figure 3.2. In Figure 3.3, the power supply from DELTA
ELEKTRONIKA can be seen.

Figure 3.2 Module filled with oil, simulating the increased oil pressure for differ-
ent angular velocities. The BLDC motor is mounted in front, where also the three
cables, red, blue and black, for the three phases can be seen.
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Chapter 3. Equipment

Figure 3.3 Power supply SM 18 - 50 from DELTA ELEKTRONIKA used during
experiments.

MCU
The MCU used is a simpler 32-bit microcontroller, with 16-bit timers, in the TriCore
Aurix series from Infineon. The MCU has ADC channels that can be configured. In
current products, only one channel is used, but for this project, another channel has
been set up using the circuit board in Figure 3.4. The motor control is implemented
with fix-point arithmetic.

Figure 3.4 The MCU is mounted in the black part in the figure, where all wires are
connected. An additional circuit board is used to use the additional ADC channel.
The three cables from the BLDC motor, red, blue and black, are connected to the
MCU.
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3.2 Software

3.2 Software

The software flashed onto the MCU is written in C. To send commands to the MCU
from a PC for different run modes and to change the reference speed for the BLDC
motor, CAN communication is used.

CANalyzer
CANalyzer is a software tool from Vector Informatik GmbH that allows the user
to send CAN messages. The software requires a license that is provided by Borg-
Warner and is located in the USB module that can be seen in Figure 3.5.

Figure 3.5 CANalyzer usb module.

3.3 Constraints

The MCU used in this thesis project is a 32-bit fixed point microcontroller, with
16-bit timers. With only 16-bits timers, overflows can be a problem if more than
one turn around on the clock has happened between two events where the time
is retrieved. Also, when working with fixed point, the resolution is affected when
making calculations with decimals.
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4
Method Selection

There are in theory a couple of methods that can be used to estimate the angular
velocity of the rotor. In this section, three methods will be covered, where two are
tested using simulations in Matlab and Simulink, and a third is discussed. In Section
4.1, the magnitude of the back EMF on the floating phase will be used to estimate
the angular velocity of the rotor. Section 4.2 will cover a more statistical approach,
based on time series. In Section 4.3, a simpler algorithm will be discussed that tries
to find periodic patterns in the back EMF. Section 4.4 will conclude what method
best suits the problem, given the constraints in Section 3.3.

4.1 Back EMF proportionality to angular velocity

The magnitude of the back EMF is proportional to the electrical angular velocity of
the rotor, as can be seen from (2.7). To utilize this phenomenon, it is vital to extract
the back EMF from the three phases. As can be seen in Table 2.2, the floating phase
will in the forward direction switch in the sequence A-C-B-A. By identifying the
floating phase and then follow this sequence, given that the rotational direction is
known, the back EMF values can be used to calculate the angular velocity. The back
EMF samples can be noisy, and the method presented in this section is therefore
based on filtering the noise with a Kalman filter [Wang and Lee, 2015].

The measurement is the back EMF E, and the hidden state that will be estimated
is the angular velocity ωm. The Kalman filter predicts the back EMF Eest using
the estimated electrical angular velocity ωe in x̂k, and the noise levels wk and vk,
specified in the process and measurment noise covariance matrices Q and R. The
measurement matrix C can be set to

C = ke (4.1)

to produce the estimated back EMF ŷk+1 = Eest through (4.2).

ŷk = Cx̂k−1 (4.2)
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4.1 Back EMF proportionality to angular velocity

The Kalman gain Kk is then computed as

Kk = Pk,k−1CT (CPk,k−1CT +R)−1, (4.3)

where covariance matrix P is predicted and updated as (4.4) and (4.5).

Pk+1,k = ΦPk,kΦ
T +Q (4.4)

Pk,k = (I−KkC)Pk,k−1(I−KkC)T +KkRKT
k (4.5)

The Kalman gain Kk is used to update the hidden states depending on the magnitude
of the error through

x̂k+1 = x̂k +Kk(Ek− ŷk), (4.6)

to better match the true back EMF Ek implying that the error between ωe and the
estimated mechanical angular velocity x̂k decreases.

One assumption is that the motor, at time k and k+ 1, runs at the same speed.
Therefore, the state transition matrix Φ is set to I, implying x̂k+1 = x̂k. In this im-
plementation, where x̂k only has one hidden state, the state transition matrix Φ can
be set to 1. The summarized state space representation can be seen in (4.7).

Φ = 1
Γ = 0
C = ke

(4.7)

In each iteration of the Kalman filter, after predicting and filtering, the hidden state
x̂k is saved. Since only the magnitude of the back EMF is of interest, the absolute
value of the back EMF is used.

To evaluate this method, a couple of simulated step responses are used. The
constant ke is motor specific and found trough experiments. In the simulations, two
poles are used in the motor, which implies that ωm = ωe.

Below in Figure 4.1, 4.2 and 4.3, 1-second step responses for 104.7 rad/s (1000
RPM), 209.4 rad/s (2000 RPM), and 314.2 rad/s (3000 RPM) can be seen. In all
figures, the same ke constant is used.

In the first step response, it can be determined that the estimation performs well
during steady state conditions. Less delay can be achieved by changing the system
and measurement matrices in the filter. In this case, the trade-off is that the magni-
tude of the oscillations increases.

In the second step response, the filter is performing well during steady state
conditions, but small oscillations are present. There are also less delay in the rising
phase.

In the third step response, the oscillations are not visible during steady state
conditions. During the rising phase, the estimate first overshoots, but later converges
towards the true angular velocity.
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Figure 4.1 1-second step response with a reference speed of 104.7 rad/s or equiv-
alently 1000 RPM. The filter performs good during steady state conditions but are
delayed during the rising phase of the step response.

In the simulations, a constant rotating inertia is used, even though the oil pres-
sure in reality is increasing when the speed increases. This simplification should
not affect the behavior, since the back EMF is proportional to the angular velocity
during steady state, as the figures above also suggests.

4.2 Period detection using auto correlation function

When using auto correlation, there are two theoretical choices of time series that can
be used. The first being one phase as in Figure 2.1, and the other being the current
floating phase. Which one is chosen does not affect the calculations, although, it is
worth noting that the seasonality in the ACF will change.

Maximizing the ACF
The amount of input data points used to calculate the ACF must first be determined.
This is due to that the number of input data points sets the limit for which sea-
sonalities can be detected. The mechanical angular velocity ωm can be calculated
as

ωm = 2π
2

PαβTsk
, (4.8)

where Ts is the sampling period, P is the number of poles, α = 1 if the time series
is for one phase and α = 3 if the time series is the current floating phase, and β = 1
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Figure 4.2 1-second step response with a reference speed of 209.4 rad/s or equiva-
lently 2000 RPM. The filter performs good during steady state conditions, but some
oscillations are present. Less delay during the rising phase of the step response.

if the ACF are maximized using (2.11) and β = 2 if the ACF are minimized using
(2.13). If the rule of thumb, kmax = N/4, is applied, (4.8) can be written as (4.9)
[Jakobsson, 2013].

ωmmin = 2π
8

PαβTsN
(4.9)

The result is a function describing the lowest electrical angular velocity that can be
calculated given N. From (4.8) and (4.9), the relationship can be written as

2π
8

PαβTsN
≤ ωm ≤ 2π

2
PαβTs

, (4.10)

where it can be seen that N only affects the lower limit. If α = 3, β = 1, fs = 20
kHz, and P = 6, then the relationship between ωmmin and N can be written as

ωmmin(N) = 16π
20 ·103

18N
, (4.11)

where the plot of the function can be seen in Figure 4.4. Figure 4.4 shows that the
number of data points needed for ωmmin ≈ 0 requires a large N. To determine the
size of N, ωmmin must be set, to be able to solve (4.11) for N. Since the minimum
and maximum operating speed is 65 and 400 rad/s, setting ωmmin ≈ 25 rad/s seams
reasonable, to detect the rising phase of a startup, yielding N ≈ 2234. With a larger
N, a larger delay is introduced when more than one period fits into the N data point.
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Figure 4.3 1-second step response with a reference speed of 314.2 rad/s or equiva-
lently 3000 RPM. The filter performs good during steady state conditions, but some
oscillations are present. Less delay during the rising phase of the step response.

In Figure 4.5, a simulated time series for the current floating phase can be seen,
where the BLDC motor has 2 poles. By performing the same calculations as above,
N ≈ 6700. The corresponding ACF for this time series is plotted in Figure 4.6.
Clearly, maximizing k yields lag k = 0 since this is the variance of the time series,
and the same data point yk is 100% linearly dependent with itself. Worth noting is
that (4.8) is undefined for k = 0. Setting k = 1 in (4.8), yields ωm ≈ 42000 rad/s,
where ωm >> 400 rad/s, which is the maximum operating speed. Setting the al-
lowed maximum mechanical angular velocity that can be calculated to ωmmax ≈ 500
rad/s, yields a minimum kmin ≈ 84, implying that the first 84 ACF values in ρ(k)
can be ignored, and can be set to 0. The resulting ACF can be seen in Figure 4.7,
where the maximum k in (2.11) now clearly is inside the limits.

Minimizing the ACF
Another approach for estimating the motor speed is to use (2.13) and, β = 2 in (4.8),
to find a half period. Again, the relationship between ωmmin and N can be written
using P = 6, α = 3, β = 2, and fs = 20 kHz. The relationship is

ωmmin(N) = 16π
20 ·103

36N
, (4.12)

which for ωmmin = 25 rad/s yields N ≈ 1117, which dramatically changes the num-
ber of calculations needed to compute the ACF compared to N ≈ 2234, when maxi-
mizing. Another advantage with minimizing rather than maximizing the ACF is that
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Figure 4.4 Relationship between ωmmin and N for P = 6, Ts = 20 kHz, α = 3, and
β = 2.

k in (2.13) can be found directly in ρ(k), without worrying about the first values in
the ACF, since ρ(k) always starts at 1, as, again, can be seen in Figure 4.6.

Using simulated data, the number of data points is reduced down to N = 3350
trough (4.9) with α = 3, β = 2, fs = 20 kHz, and P = 2, implying that the ACF
for the floating phase input sequence is minimized for k. The pseudocode for the
implemented algorithm is presented in Algorithm 1. During the first phase, there
are not enough data points to calculate the ACF. There is therefore a counter that is
checked to be at least N. If this is not fulfilled, the input to the ACF function is filled
with zeros so that the resulting input vector is N long. The ACF is calculated, but
only the first quarter of the resulting vector is considered as reliable. The argument
that minimizes the ACF is then used to calculate the current speed. To evaluate this
method, data from a 1 second step response is used together with Algorithm 1. In
Figure 4.8, the true mechanical angular velocity as well as the estimated mechanical
velocity can be seen. Algorithm 1 can be seen to perform well during steady state,
where it tracks the angular velocity perfectly. During the rising phase of the step re-
sponse, the estimate is not very smooth, but also a bit delayed. To make the estimate
smoother, a simple Kalman filter without any dynamics can be used, as presented
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Figure 4.5 Simulated time series, where data is taken from the floating phase at
the current time.

Algorithm 1 Period detection for speed estimation
y← input
N← number o f elements
t← 1 ▷ Set counter to 1.
while True do

if t ≥ N then ▷ When N data points are available.
x← y(t−N : t)

else ▷ When only t data points are available, fill with N− t zeros.
x← [zeros(N− t),y(1 : t)]

end if
ρ ← ACF(x) ▷ Compute the ACF.
ρ ← ρ(1 : round(N/4)) ▷ Only the first fourth of the ACF is used.
k← argmink ρ(k) ▷ Find k that minimizes the ACF.
speed← calculate_speed(P,α,β ,Ts,k) ▷ Calculate the speed based on k.
t← t +1

end while

in (4.13). 

Φ = 1
Γ = 0
C = 1
Q = 5 ·10−3

R = 100

(4.13)
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Figure 4.6 Auto correlation function plotted for 1000 lags, with N = 6700. Maxi-
mum is found at ρ(0) which is of no interest.

The resulting estimation when filtered can be seen in Figure 4.9, where the estimate
is smoothened out. As mentioned earlier, the size of N has an impact on the delay
for the estimate to settle in during steady state. By ignoring the rule of thumb,
kmax = N/4, and letting kmax = N, where N is reduced to a fourth from N = 3350 to
N = 838, fewer periods fit. The drawback is that fever combinations are available
for computing lower angular velocities.

The resulting estimate can be seen in Figure 4.10, where it can be seen that the
rising phase of the step response still is uneven. It can however be seen that there is
less delay. By applying the same Kalman filter with no dynamics with the system
and measurement matrices, {

Q = 5 ·10−3

R = 100
, (4.14)

the estimate is smoothened out. The resulting filtered estimate without the rule of
thumb, using N = 838, and the estimate with the rule of thumb, using N = 3350, can
be seen in Figure 4.11. The estimate without the rule of thumb can clearly be seen
to perform better, since the delay is heavily reduced and the estimate is tracking the
angular velocity perfectly during steady state.

Important noting is also that N can be heavily reduced by decreasing fs. This,
however, comes at the cost of decreased resolution in the estimate.
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Figure 4.7 Auto correlation function plotted for 1000 lags, with N = 6700, where
the first 84 data points are set to 0. Maximum is now found at k = 200 which corre-
sponds to a mechanical angular velocity of 209.4 rad/s or 2000 RPM.

4.3 Interrupt based pattern recognition

The MCU has functionality that allows the user to set up an analog-to-digital con-
verter (ADC) channel. This ADC channel has the sample frequency fs = 20 kHz
and works as a comparator. When the sampled value falls outside or inside a de-
fined range [b0,b1], an interrupt is requested from the hardware to the operating
system (OS). The interrupt is handled by the OS on the MCU and is routed to an
interrupt event handler when it has occurred.

By choosing the boundaries b0 and b1 wisely at certain time points, the time
between interrupts can be converted to angular velocity.

Referring back to Figure 2.5 in Section 2.4, where a typical wave form of the
phase voltage can be seen, the waveform has peaks when the phase switches to float-
ing. These peaks occur every half electrical revolution, meaning that the electrical
angular velocity in rad/s can be calculated using

ωe = 2π
1

2∆t
, (4.15)

where ∆t is the time in seconds between two peaks. Further, the mechanical angular
velocity can be calculated using (2.9), which simplifies down to

ωm = 2π
1

P∆t
, (4.16)
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Figure 4.8 1 second step response and the estimated mechanical angular velocity
from Algorithm 1. The algorithm uses N = 3350 to derive the mechanical angular
velocity.

where again P is the number of poles in the rotor.
A first approach to the problem would be to choose two boundary pairs B1 and

B2. Since the ADC has 12 bits, the maximum value from the ADC is 4095. For
B1, the chosen values would be [b0,b1] = [0,b], and for B2, [b0,b1] = [b,4095].
From this, it is clear that b0 in B1, and b1 in B2 covers the whole range of possible
values [0,4095]. But by alternating between B1 and B2 where b is the cross-section,
information about the phase curve’s shape, such as peaks, can be gathered.

As in previous theoretical methods, the algorithm can be based on only one
motor phase or the current floating phase. In this method, this can be an important
decision for several reasons. When looking at one phase at all times, two peaks will
occur each electrical revolution. When switching between phases to see the floating
phase, instead, six peaks will occur each electrical revolution. This means that the
estimate can be updated two or six times each electrical revolution. If all phases
are used, also extra logic must be implemented to handle the switching. By looking
at only one phase, this can be ignored at the cost of the lowest possible angular
velocity that can be calculated. For a 16-bit timer, the turnaround time Tta is equal
to,

Tta = (216−1)
1

ftimer
, (4.17)

where ftimer is the frequency of the timer. To be able to calculate the angular velocity
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Figure 4.9 Rising phase of 1 second step response. The original estimation is de-
layed and not very smooth, whereas the filtered estimation is only delayed.

in the motor,
Tta ≥ Tc, (4.18)

where Tc is the time between two commutations when looking at current floating
phase. It is clear that this does not hold for all angular velocities, so Tc must be
the time between two commutations at a minimum angular velocity ωmmin . When
looking at only one phase, the time between two peaks Tp is equal to,

Tp = 3Tc, (4.19)

which implies that ωmmin is three times as large if Tta = Tc.
The ADC channels on the microcontroller are separated from the processing

unit. This reduces the load on the processor since the processor only acts when an
interrupt is fired, implying fewer calculations per time unit.

4.4 Chosen method

There are pros and cons with all above methods. By using the magnitude of the back
EMF, or calculating the ACF for the voltage time series, a lot more calculations
are needed per time unit. Using interrupts from the ADC to find patterns in the
phase voltage is not equally resource expensive and is therefore chosen as the most
suitable method for this problem. One potential problem with this method could be
that the ADC can be fooled by disturbances in the phase curve.
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Figure 4.10 1 second step response and the estimated mechanical angular velocity.
The algorithm uses N = 838 and is ignoring the rule of thumb to derive the mechan-
ical angular velocity.
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Figure 4.11 Rising phase of 1 second step response. The original filtered estimate
is delayed, whereas the new filtered estimate’s delay is reduced.
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5
Implementation

In this section, the implementation phase of the thesis work will be described in
detail. The problems that were encountered and how they were solved are also dis-
cussed.

5.1 First iteration

As mentioned in Section 4.3, a vital part of implementing an algorithm based on
interrupts, is to choose when B1 and B2 should be used. In the first prototype of the
algorithm, the idea was to detect the rising phase of a peak and then blank, meaning,
ignore and not act when the phase is constantly outside the interval. After a duration
of time based on the time between the two earlier peaks, the boundaries are changed
from B1 to B2 to detect the falling phase of the next peak. The time between the
interrupts from rising and falling peaks can then be converted to mechanical angular
velocities through (4.16). The thinking can be seen in Figure 5.1, where the changed
boundaries as well as the interrupts are visualized.
In the plot, four times, ti, i = 1,2,3,4, are highlighted on the time axis. To begin
with, boundary pair B1 is used and the raw voltage value is low. At time t1, one
peak has begun to rise. The raw voltage value falls outside B1 and an interrupt is
fired. Given the time between t1 and the previous interrupt, not visible in the plot,
the blanking time is calculated to be t2− t1. If the interrupt is the first since startup
and no earlier time can be used to calculate the blanking time, a default blanking
time is used. When t2 is reached and the blanking time is over, the boundary pair is
changed from B1 to B2. The raw voltage values are then inside the interval B2 until
the next falling peak begins. At t3, the falling peak is detected. The blanking time is
again based on the time between t3 and t1 and is calculated to be t4− t3. When t4 is
reached, the boundary pair is changed back to B1 and repeated.

The above approach was later about to be changed after viewing the phase curve
from the MCU’s perspective. By generating interrupts at a frequency of 20 kHz, and
saving the raw values from the ADC, the true phase curve could be seen. Figure 5.2
shows one electrical revolutions at 65 rad/s.
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Figure 5.1 Visualization of when interrupts (blue) are fired, how the boundaries
(red) are changed, and the phase voltage (black) over time. In the plot is b the cross-
section value.

At first sight, the phase curve did not match the theoretical shape in Figure 5.1.
However, after analyzing it a bit, the theoretical characteristics could be spotted,
where the biggest difference between the true shape and the theoretical one was that
the peaks were harder to detect during the floating phase at lower angular velocities.
In Figure 5.3 and 5.4, phase curves during 150 and 350 rad/s respectively can be
seen. Comparing those with Figure 5.2, it is clear that the curve’s shape is changing
for different angular velocities. To successfully estimate the angular velocity in the
motor, the algorithm must be able to handle the changing shape, which is harder
and more complicated to achieve by only using two pairs of boundaries, especially
if disturbances are present, fooling the algorithm to fire interrupts wrongly.

During the implementation phase of the project, a strange behavior was dis-
covered in the phase curve. From experiments, it could be seen that the phase
curve switched between a smooth curve, and a curve with high frequently occurring
spikes, as can be seen in Figure 5.5. This behavior is harder to handle, since inter-
rupts are fired at the wrong places. However, since this is not an expected behavior,
it is assumed to be present because of some fault in the test equipment specifically
made to be used in this thesis, or the project specific circuit board.

5.2 Second iteration

Instead of continuing with the above approach, the changing shape of the phase
voltage forced the development into a more incremental algorithm. Since the shape
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Figure 5.2 Phase voltage in raw ADC values during one revolution at an angular
velocity of 65 rad/s.
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Figure 5.3 Phase voltage in raw ADC values during one revolution at an angular
velocity of 150 rad/s.

is different for different angular velocities, an algorithm described as a state machine
can be developed. By trying to change the boundaries more often, a step by step
algorithm can keep track of where, in the voltage shape, it currently is.

To begin with, only the curve without the unwanted spikes were considered.
One electrical revolution is divided into 6 states, where each state contains a char-
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Figure 5.4 Phase voltage in raw ADC values during one revolution at an angular
velocity of 350 rad/s.
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Figure 5.5 Phase voltage in raw ADC values during one revolution at an angular
velocity of 150 rad/s with highly frequent occurring spikes.

acteristic feature such as high, low, local maxima, or local minima. Each state is
highlighted in Figure 5.6.

Instead of firing an interrupt when the curve moves outside the interval, an in-
terrupt is fired when the voltage falls inside the interval. From Figures 5.2, 5.3 and
5.4, the magnitudes in the different states can be compared. In state one, the bound-
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Figure 5.6 Typical phase voltage curve with the different states numbered out.

ary pair [0,500] is used to capture the beginning of the low phase. In state two, the
spikes are different between the figures. Therefore, the boundary pair [1000,4095]
is used to capture the peak, no matter its magnitude. To find the area around the
local minima in state three, the boundary pair [1000,1200] is used. In state four, the
boundary pair [2000,4095] is used to capture the beginning of the high phase. To
capture the downwards spike in state five independently of its magnitude, boundary
pair [0,1200] is used. In the last state, again, the boundary pair [1000,1200] is used
to capture the area around the local maxima. The boundary pairs are summarized in
Table 5.1.

When the phase curve is spiky, interrupts are fired at the wrong times, no matter
the approach. To reduce this influence, only angular velocities below a maximum
angular velocity are accepted. This will affect the overall performance negatively
but will instead make the estimates more stable and usable.

Table 5.1 Boundary pairs to detect the different states.

State b0 b1
1 0 500
2 1000 4095
3 1000 1200
4 2000 4095
5 0 1200
6 1000 1200
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5.2 Second iteration

In state two and five, where the peaks are located, the current times are retrieved,
corresponding to a half revolution. The tick frequency of the timer used is ftimer =
260417 Hz. This corresponds to a turnaround time of Tta ≈ 0.252 seconds, which
in turn corresponds to a mechanical angular velocity of ωm ≈ 4.16 rad/s, which is
below the idle speed that the motor is driven at.

The velocity is calculated on the MCU using

ωm = 2π
ftimer

Pnticks
, (5.1)

where nticks is the number of ticks between interrupts. To reduce the number of
calculations, a conversion constant Cconv is defined. This constant is calculated as

Cconv = 2π
ftimer

P
≈ 272708, (5.2)

rounded to the closest integer, simplifying the calculations down to

ωm =
Cconv

nticks
. (5.3)

Code
Below, example code in C of the implemented algorithm is presented. To calculate
the time elapsed between two peaks, the timeElapsed function is used. It must be
checked if the current time t1 is less than the previous time t0 to handle a turn around
on the timer. If this is false, the time is calculated normally.

PRIVATE UINT timeElapsed(UINT t0, UINT t1, UINT max){
if (t1 <= t0){

return (max - t0) + t1;
}
return t1 - t0;

}

The angular velocity is calculated through the function calculateAngularVelocity,
where a moving average filter is applied with window size n. This function has
the current timestamp as argument and updates the time buffer, which has size
timeBufferSize= n. Only tick values greater than what corresponds to 400 rad/s
are added to the buffer to prevent corrupted interrupts to influence the estimated
velocity. The mean is calculated if all values in the time buffer are none-zero. The
mean is later used with Cconv to calculate the angular velocity.

PRIVATE UINT calculateAngularVelocity(UINT t1){
UINT t = timeElapsed(t0, t1, 65535);
UINT angularVelocity = 0U;
UINT meanTick = 0U;

41



Chapter 5. Implementation

UINT i;
t0 = t1;
if (timeBufferIdx == timeBufferSize){

timeBufferIdx = 0U;
}
if (t >= minimumTickValue){

timeBuffer[timeBufferIdx] = t;
timeBufferIdx++;

}
for (i = 0U; i < timeBufferSize; i++){

if (timeBuffer[i] == 0U){
return 0U;

}
meanTick = add(meanTick,

div(timeBuffer[i], timeBufferSize));
}
return div(C_conv, meanTick);

}

The function redundantInterruptHandler is invoked when an interrupt is
fired. The boundary pair during startup is set to detect the first upwards peak,
hence state two is set. In each state, the boundaries are changed. When state
two and five are found, the current times are retrieved and passed with function
calculateAngularVelocity.

PUBLIC void redundantInterruptHandler(void){
if (startUp){

state = 2;
startUp = False;

}

if (state == 1){
setBoundaries(1000, 4095);
state = 2;

}
else if (state == 2){

UINT t1 = getCurrentTime();
setBoundaries(1000,1200);
state = 3;
redundantAngularVelocity =

calculateAngularVelocity(t1);
}
else if (state == 3){

setBoundaries(2000,4095);
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state = 4;
}
else if (state == 4){

setBoundaries(0,1000);
state = 5;

}
else if (state == 5){

UINT t1 = getCurrentTime();
setBoundaries(1000,1200);
state = 6;
redundantAngularVelocity =

calculateAngularVelocity(t1);
}
else if (state == 6){

setBoundaries(0,500);
state = 1;

}
else{

/* Do Nothing */
}

}

5.3 Comparing estimates

The redundant estimate is a safety feature, running in the background at all times.
Therefore, the estimate used as input to the controller, controlling the motor speed,
is seen as the true angular velocity ω . The redundant estimate can be used as an
additional measurement, that should not diverge from the true estimate ω more than
a threshold of±L, for more than n estimates. The allowed range could be calculated
as L = pω , where p is a percentage level.
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6
Results

To validate the performance of the redundant estimate, a number of experiments
were carried out. The experiments carried out were step responses from standstill
to reference speed 65, 250 and 300 rad/s. Experiments have been done with the two
window sizes n, 6 and 18, corresponding to the mean speed during one and three
mechanical revolutions respectively. These plots are found in Section 6.1. For all
experiments, a residual analysis was performed using the ACF, described earlier.
The residual error is calculated as e = ωredundant −ω . These results are found in
Section 6.2.

6.1 Step responses

In Figure 6.1, 6.3, and 6.5, step responses can be seen for reference speeds 65, 250
and 300 rad/s respectively, using window size n = 6. In Figure 6.2, 6.4, and 6.6, step
responses for the same reference speeds can be seen, using window size n = 18.

6.2 Residual errors

In Table 6.1, the mean residual error and the residual error variance are summarized.
For all the residual errors, a Jarque-Bera hypothesis test was performed to determine
if the residual errors were normally distributed. All tests resulted in that the null
hypothesis can be rejected at a 5% level and that the data is not normally distributed.
The ACF are computed for all residual errors and plotted for the first 200 lags,
where in Figure 6.7, the window size n = 6 is used, and in Figure 6.8, the window
size n = 18 is used. A 95% confidence interval for significance is also shown.
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Figure 6.1 Step response from standstill to r = 65 rad/s, using n = 6 (upper sub-
plot). The residual error is plotted with the rising phase of the step response removed
(lower subplot).

Table 6.1 Mean residual error and residual error variance.

r n mean variance
65 6 1.54 24.61
65 18 1.14 5.1

250 6 -1.95 126.16
250 18 -2.78 58.13
300 6 -5.54 291.81
300 18 -5.64 106.82
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Figure 6.2 Step response from standstill to r = 65 rad/s, using n = 18 (upper sub-
plot). The residual error is plotted with the rising phase of the step response removed
(lower subplot).
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Figure 6.3 Step response from standstill to r = 250 rad/s, using n = 6 (upper sub-
plot). The residual error is plotted with the rising phase of the step response removed
(lower subplot).
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Figure 6.4 Step response from standstill to r = 250 rad/s, using n = 18 (upper
subplot). The residual error is plotted with the rising phase of the step response
removed (lower subplot).
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Figure 6.5 Step response from standstill to r = 300 rad/s, using n = 6 (upper sub-
plot). The residual error is plotted with the rising phase of the step response removed
(lower subplot).
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Figure 6.6 Step response from standstill to r = 300 rad/s, using n = 18 (upper
subplot). The residual error is plotted with the rising phase of the step response
removed (lower subplot).
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Figure 6.7 ACFs for residual errors with n = 6. The first 200 lags are plotted. Red
dotted lines represent the 95% significance confidence interval.
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Figure 6.8 ACFs for residual errors with n = 18. The first 200 lags are plotted. Red
dotted lines represent the 95% significance confidence interval.
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7
Discussion

In this section, the results obtained from the implemented method are discussed. The
strengths, weaknesses and overall performance are discussed, but also the problems
that arose during implementation. Lastly, some conclusions about the extra CPU
load are mentioned.

7.1 Performance

From the figures in Section 6.1, the performance differs between the window sizes.
In Table 6.1, the variance is considerably greater for the window size n = 6. The
mean error is greater for n= 6 at idle speed, and lower for greater angular velocities,
but not dramatically.

Even though the larger window size performs better during steady state condi-
tions, the variance is greater than desired. The variance being that high probably
comes down to the influence of disturbed ADC values. The algorithm tracks the
shape of the voltage curve, where each section has different lengths. The length of
each section also changes with the angular velocity. The time between two correct
interrupts are for greater angular velocities, less than the time between a correct and
a corrupted one, for smaller angular velocities. This hinders the solution of check-
ing if the time between interrupts are long enough. If the other estimate is used to
calculate a window where no interrupts are expected, a gray area emerges around
the definition of the term redundant.

If a corrupt interrupt is fired too early, this can result in that the time between,
what the algorithm thinks is two peaks, is less than what corresponds to the maxi-
mum angular velocity. If the motor, for example, runs at idle speed, this time could
influence the estimate a lot. When this occurs, the algorithm also gets lost. After a
while, eventually, it will find its way back, but then the measured time takes longer
than expected, decreasing the estimate. In Table 6.1, the mean error is positive for
idle speed, and negative for greater angular velocities. This supports the reasoning
above, since for smaller angular velocities, some corrupt and short times are likelier
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to be accepted, and for greater angular velocities, too short times are ignored, and
only too long times are accepted.

Overall, a longer window size performs considerably better during steady state,
but comes with a longer delay when the reference speed is changed. This is clear
from the plots in Section 6.1, where the estimate tracks the angular velocity better
for n = 6.

The algorithm’s weaknesses are that it is sensitive to unexpected disturbances on
the ADC channel, and that it is more delayed than the current sensorless estimate.
The unexpected disturbances on the ADC channel should be fixable, but the delay is
harder to disregard. With two measurements per electric revolution, smaller window
sizes than n = 6 might make the estimate unstable even with undisturbed ADC
measurements.

The strengths coming with the proposed algorithm are that less logic is needed,
the algorithm never fully stops working, but also that it can keep track of the angular
velocity, when the motor stops commuting. As described above, the algorithm can
get lost, but because of the shape of the voltage curve and the changed limits, the
algorithm eventually, always finds itself in the right state. When the motor stop
commuting, and current stops flowing, but still spins, all three phases will have
trapezoidal back EMF. The trapezoidal waveform is very similar to the waveform
of the voltage during idle speed. This makes it possible to track the angular speed
when the motor slows down, without any modifications.

Using the smaller window size of n = 6 is preferred to minimize the delay.
The smaller window size should also be enough to get a stable estimate when the
unexpected disturbances on the ADC channel is resolved. However, for now, a larger
window size is needed to remove the worst spikes in the estimate.

7.2 Residual analysis

Using the ACF, the correlation between samples ek is calculated. In Figure 6.7,
where the window size n = 6 is used, there are strong dependencies for lags 1−5,
which is expected because of the window size of the moving average filter. The
same phenomenon is visible in Figure 6.8, where the lags 1− 17 are significant,
because of the larger window size. When two ACF plots, with the same reference
speed, are compared, no seasonality is standing out. Some lags are outside the con-
fidence interval and are significant, but, since the data is not normally distributed,
the confidence interval can not be fully trusted. If the redundant ADC channel was
configured wrongly, or if the syncing is not working as expected, this should appear
in the ACF. This points in a direction where the high frequent disturbance comes
somewhat randomly, which logically would suggest that something could be wrong
with the test setup, rather than the configuration of the ADC channels.
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7.3 Comparing estimates

7.3 Comparing estimates

With a percentage p of five percent, and letting the estimate exceed the threshold for
n = 100 times, all runs in the Section 6.1 would comply with that requirement. With
an angular velocity of 400 rad/s, n = 100 would correspond to approximately 0.26
seconds. During idle speed, it would correspond to approximately 1.61 seconds.

7.4 CPU load

Without the logic of changing what phase to track, and four more peaks per electri-
cal revolution, the algorithm successfully tracks the angular velocity with very low
extra load on the CPU. With 4 more peaks per electrical revolution, and logic for
phase switching, the operations per electrical revolution is more than three doubled.
The other two methods described in Section 4 requires more operations per sample
period, which would have impacted the CPU load more. With the proposed solu-
tion, fewer calculations are made overall per time unit. Also, fewer calculations are
needed for smaller angular velocities, since the number of calculations are decou-
pled from the sampling frequency.
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8
Conclusion

The end goal was to implement and evaluate a redundant algorithm that successfully
could track the angular velocity. The proposed solution tracks the angular velocity,
but because of unexpected disturbances on the ADC channels, spikes in the estimate
are a fact. Two window sizes on the moving average filter applied to the estimate
are tested, where the smaller is preferred to get rid of delay. However, the larger
window size is needed to lower the impact of spikes in the final estimate with the
current problems. An important aspect was also to try to minimize the extra CPU
load, which the proposed solution does. By focusing on tracking the shape of only
one phase curve, the operations per electrical revolution are decreased with more
than a third. To detect malfunction, the two estimates should be compared, where
the difference should not exceed a set percentage for more than a set number of
samples.

8.1 Future work

In the proposed solution, the algorithm is sensitive to disturbances. To increase the
performance of the algorithm, this would be important to address. Also, from Sec-
tion 4, finding the period using auto correlation seems to have potential. The algo-
rithm appears, from simulations, to be able to perfectly track the angular velocity.
Currently, it requires a lot of resources to be able to calculate the ACF inside the
sampling period. In the future, it would be interesting to investigate how much the
sampling frequency could be reduced to still be able to find the periodicity. The
algorithm could also be modified to sample at the same frequency, but calculate the
ACF less often to reduce the CPU load.

54



Bibliography

Breitenbach, T., B. Wilkusz, L. Rasbach, and P. Jahnke (2023). “On a method for
detecting periods and repeating patterns in time series data with autocorrelation
and function approximation.” Pattern Recognition 138. ISSN: 0031-3203.

Hughes, A. (2019). "Electric Motors and Drives : Fundamentals, Types and Appli-
cations" [Elektronisk resurs]. ISBN: 0081026153.

Introduction and Implementations of the Kalman Filter. [Elektronisk resurs].
(2019). InTech. ISBN: 9781838805364.

Jakobsson, A. (2013). An Introduction to Time Series Modeling. Fourth edition.
Studentliteratur AB, pp. 39–40, 47. ISBN: 978-91-44-15894-5.

Naveen, V. and T. B. Isha (2017). “A low cost speed estimation technique for closed
loop control of bldc motor drive.” 2017 International Conference on Circuit
,Power and Computing Technologies (ICCPCT), Circuit ,Power and Computing
Technologies (ICCPCT), 2017 International Conference on, pp. 1–5. ISSN: 978-
1-5090-4967-7.

Shrutika, C., S. Matani, S. Chaudhuri, A. Gupta, S. Gupta, and N. Singh (2021).
“Back-emf estimation based sensorless control of brushless dc motor.” 2021
1st International Conference on Power Electronics and Energy (ICPEE), Power
Electronics and Energy (ICPEE), 2021 1st International Conference on, pp. 1–
6. ISSN: 978-1-7281-8774-7.

Wang, S. and A.-C. Lee (2015). “A 12-step sensorless drive for brushless dc motors
based on back-emf differences.” IEEE TRANSACTIONS ON ENERGY CON-
VERSION 30:2, pp. 646–654. ISSN: 08858969.

55





Lund University 
Department of Automatic Control 
Box 118 
SE-221 00 Lund Sweden 

Document name 
MASTER’S THESIS 
Date of issue 
June 2024 
Document Number 
TFRT-6241 

Author(s) 

Victor Martinsson 
Supervisor 
Jacob Svendenius, BorgWarner Sweden AB 
Bertil Ströberg, BorgWarner Sweden AB 
Karl-Erik Årzén, Dept. of Automatic Control, Lund 
University, Sweden 
Kristian Soltesz, Dept. of Automatic Control, Lund 
University, Sweden (examiner) 
 

Title and subtitle 

Angular Velocity Estimation for Sensorless Brushless DC Motors 
Abstract 
 
 In the automotive industry today, safety is of highest priority. ASIL is a safety standard that 
quantifies risk. This project investigates how a redundant speed estimate in a sensorless BLDC motor 
can be developed to meet ASIL B requirements. The proposed solution involves tracking the shape of 
the phase curve to determine the angular velocity. This is accomplished by changing the boundaries 
on the ADC, making it work as a comparator, to find limit events. 
 The results show that the algorithm successfully tracks the angular velocity. The error residual is 
noisy, with a maximum mean error of 5.64 rad/s. The error is believed to be due to unexpected 
disturbances on the phase curve. To get the final estimate, a moving average filter with window size n 
= 6 and n = 18 is applied, corresponding to one and three mechanical revolutions.Window size n=6 is 
preferred to reduce delay, but n = 18 is more stable with the present disturbances. 

Keywords 
 

Classification system and/or index terms (if any) 
 
Supplementary bibliographical information 
 
ISSN and key title 
0280-5316 

ISBN 
 

Language 
English 

Number of pages 
1-55 

Recipient’s notes 

Security classification 

http://www.control.lth.se/publications/ 


	Tom sida



