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Abstract 

 

This study investigates the use of sequential UAV (Unmanned Airborne Vehicle) imagery and 

deep learning for crop yield predictions. Accurate crop yield predictions are crucial for 

mitigating food shortages and making informed agricultural decisions. This research uses 

different sequence lengths of UAV images across five wavelength bands to model winter wheat, 

spring wheat, and barley crop yield in South Sweden. The images were processed and calibrated 

to reflectance values, providing high-resolution data. CNN-LSTM (Convolutional Neural 

Network and Long Short-Term Memory) models were used to leverage the data's spatial and 

temporal dimensions. Models were trained on data from 2022 and combined data from 2022 

and 2023 to explore the general applicability of the model. The study aimed to understand better 

how the accuracy of crop yield predictions evolves throughout the growing season. It explored 

the effects of varying sequence lengths on the final prediction accuracy and whether adding 

images to the sequence improves the accuracy. Additionally, the research tested the models’ 

performance on barley and spring wheat to assess their generalisability to other cereals. Results 

indicate that prediction accuracy improves significantly as the growing season progresses, with 

the highest accuracy observed closer to the harvest date. However, extending the sequence 

length of UAV data did not consistently enhance model performance. The study also revealed 

that models specifically tuned to winter wheat did not perform well when applied to other crops, 

highlighting the need for crop-specific model training. The research contributes valuable 

insights into optimising UAV and deep learning technologies for agricultural applications, 

emphasising the need for precise and targeted data collection strategies. Such advancements are 

essential for improving yield predictions and aiding farmers and policymakers in making timely 

and informed decisions to enhance food security and sustainability. 
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1.  Introduction 
Ending world hunger is one of the most significant problems (Grochowska, 2014) of the 21st 

century. The United Nations aims to end world hunger by 2030 (FAO, 2020) and includes it in 

the Sustainable Development Goals as Goal 2: Zero Hunger (UN, 2017). Over 800 million 

people yearly suffer from hunger, and 2 billion lack adequate food access. Malnutrition due to 

inadequate food access is a worldwide problem and a particular challenge in Asia and Africa 

(FAO, 2020). Eradicating world hunger is vital for a sustainable future, and great efforts have 

been made in the past to achieve this goal. Ending world hunger requires sustainable and 

resilient global food systems (Ingram, 2011).  

However, recent pandemics and the effects of climate change have put our global food systems 

under pressure (FAO, 2020). It is estimated that an additional 77 million people will be exposed 

to hunger risks by 2050 due to climate change (Janssens et al., 2020). Our food systems are 

vulnerable to changes in climate, which poses a significant risk to food security (Gregory et al., 

2005). Agricultural shortfall is seen as one of the drivers for Global Catastrophic Risk and could 

potentially increase world hunger and inequality (Cernev & Fenner, 2020). Climate change has 

already been found to affect crop yield in some regions of the world negatively, and it is 

projected to reduce global crop yield by 3% to 12% by 2050 and up to 24% by 2100 (Kogo et 

al., 2021; Wing et al., 2021; Guntukula, 2020).  

The risk posed to our food systems calls for adaptative strategies in agriculture and decision-

making (Anderson et al., 2020). Crop monitoring using remote-sensed data has become popular 

for providing timely information on crop health and productivity and is essential for agricultural 

planning (Karthikeyan et al., 2020). It can help farmers make well-informed decisions regarding 

pesticides, fertilisers or irrigation (Abbas et al., 2020). Crop yield predictions can aid farmers 

and policymakers in financial and management decisions (Elavasaran & Vincent, 2020). Early 

season crop yield predictions are crucial for policymakers to react timely to national food 

shortages (Rashid et al., 2021).  

Crop yield predictions have become increasingly popular in recent years, partially due to the 

emergence of improved Machine Learning (ML) algorithms (Van Klompenburg et al., 2020). 

Traditional crop yield predictions were mainly made using mathematical, mechanistic models. 

The crop-specific models use various input data concerning soil-specific variables and climate 

data (Bali & Singla, 2022). However, due to the non-linearity in agricultural systems, high-

accuracy crop yield predictions can be complex to achieve with purely mechanistic models. ML 

can better capture these non-linear relationships and create high-accuracy predictive models 

(Elavasaran & Vincent, 2020). Currently, Deep Learning (DL) algorithms are becoming 

increasingly popular. DL is a branch of ML  and can find complex patterns within data.  
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Traditionally, crop yield predictions are based on satellite-based remote sensing. However, in 

addition to increasing DL use for predictions, unmanned airborne vehicles (UAVs) have also 

rapidly developed. In recent years, UAVs have become cheaper and more advanced, carrying 

low-weight multispectral cameras. While satellite imagery can be course-grained and have 

lower temporal resolution, UAVs can be flown on-demand and provide cost-efficient data with 

high spatial, temporal, and spectral resolution (Honkavaara et al., 2013). UAV data is often 

used with Machine Learning to accurately predict crop yield (Nevavuori et al., 2020; Bian et 

al., 2022; Maimaitijiang et al., 2020; Fei et al., 2023).  

Crop yield prediction using satellite imagery and DL has been done before in Sweden, but only 

a limited number of studies were found (Broms et al., 2023; Bouras et al., 2023). Though 

numerous studies combining DL and UAV data have been done before (Arroyo et al., 2017; 

Shammi et al., 2024), it has not been performed much in Europe. Winter wheat is a commonly 

used crop in Sweden, but crop yield predictions for this crop have only been done in China and 

the USA before (Han et al., 2020; Wang et al., 2020). By testing crop yield modelling in 

Sweden, its performance can be analysed in a different context. Commonly, different DL 

models are applied to find the one best suited to the specific research area (Van Klompenburg, 

2020). Finally, more information about the accuracy of crop yield predictions during different 

periods of the growing season should be available to aid farmers and policymakers in crop yield 

monitoring and decision-making, as there is a general lack of knowledge on the accuracy 

throughout the entire growing season of a crop. 

1.1.  Research Aims  

This research will focus on the accuracy of crop yield predictions throughout the growing 

season using a deep learning network, a CNN-LSTM. The main aim is to understand better how 

the accuracy of crop yield predictions develops over the growing season. Additionally, the 

efficacy of single UAV runs will be compared against sequences of UAV data to assess the 

prediction quality. The yield prediction models will be constructed for winter wheat and tested 

for other cereal crops to test their effectiveness on crop yield predictions in a broader context 

and to find if the models can be generalised to other crops.  

1. How accurately can winter wheat crop yield be predicted with sequential UAV 

data? 

 

2. Does the accuracy of crop yield predictions increase later in the growing season? 

 

3. Using sequences of bi-weekly UAV data, does the accuracy of crop yield 

predictions keep increasing with the length of the sequence? 

 

4. Can deep learning models tuned for a specific crop be applied to similar crop 

species?  
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2.  Background 

2.1.  Crops 

This research includes three cereals: winter wheat, spring wheat and barley. The model will be 

trained on winter wheat. Winter wheat is a type of wheat which is sown before winter. The 

wheat has to endure lower temperatures and possible snowfall during the cold months before it 

starts sprouting in spring (Crofts, 1989). Spring wheat, on the other hand, is sown in spring. 

Barley is similar to winter wheat as it is also sown before winter. All three crops are harvested 

in August. 

2.1.1. Differences in Yield 

Winter wheat has been found to outperform spring wheat in terms of average crop yield 

consistently. Koppel & Ingver (2008) found a difference of 2 t ha-1 in favour of winter wheat 

across different sub-species. Entz and Fowler (1991) stated an average difference of 26% in 

yield between the two. Stofkopf et al. (1974) found higher differences between barley and 

winter wheat, with an average yield difference of 40%. Yield variability not only exists between 

crops but also within fields and between years. Yield values fluctuate and are affected by 

weather patterns. Crops sown in spring are more vulnerable to weather extremes than their 

winter varieties. In southern Sweden, extreme weather events are increasing due to climate 

change, partially causing these fluctuations (Sjulgård et al., 2023). 

2.1.2. Differences in Growth 

During the crop growth the cereals will pass through several growth stages. Early sown crops, 

such as winter wheat, will pass through these stages earlier than a spring crop. Anthesis (when 

the flower opens and is functional) is reached 23 days earlier in winter wheat than for spring 

wheat, and spring wheat's grain-filling period is shorter (Ozturk et al., 2006). These slight 

differences in growth stages cause differences in the structure of a plant when comparing winter 

crops to spring crops at one moment in time. This can lead to differences in spectral reflectance 

between the two crop types throughout the growing season (Kuester & Spengler, 2018). 

2.2.  Crop Yield Predictions 

2.2.1.  Statistical Modelling of Crop Yield 

Modern crop yield predictions have been around for well over five decades. The 1970s saw the 

emergence of prediction models, some of which are still used today. These models are focused 

on statistical regression, using environmental input variables combined with historical patterns 

to predict crop yield (Hanuschak, 2013). The statistical models use large amounts of historical 

data to find patterns in crop growth and environmental variables. Inputs such as temperature 

and precipitation are tracked and compared to history. The models have been considerably 

improved in the past decades, adding more input variables and advanced statistical methods 

(Basso & Liu, 2019).  
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Statistical crop yield models do have certain shortcomings. The models are based on historical 

data and assume that past relationships will hold in the future. However, this assumption of 

stationarity does not always hold (Lobell & Burke, 2010), and due to climate change, 

environmental variables, such as temperature and precipitation, are moving out of the familiar 

range. It is uncertain that crop yield will stick to historical relations when moving into unknown 

territory. 

2.2.2. Remote Sensing  for Crop Yield Predictions 

Remote sensing, the collection of data from a distance, e.g. by satellite or UAV, has been used 

in agriculture and crop yield prediction for decades. Remote sensing can provide accurate data 

over large areas and with a fair temporal resolution (Atzberger, 2013). Some of the first 

applications of remote sensing in the field of crop yield predictions were by providing data on 

the physical characteristics of the farmlands. Remote sensing has been used to map land use 

and soils on a large scale (Sishodia et al., 2020). The environmental variables mapped with 

remote sensing could be used as input for the statistical models. Satellite sensors providing 

meteorological information also saw a surge in the 60s, which could be used as an input for the 

models.  

Advancements in remote sensing technology have made it possible to follow crop growth with 

high temporal resolution instead of relying on statistical models and environmental variables to 

model the eventual yield. The quality of sensors and data availability have improved 

tremendously in the last decades (Rogan & Chen, 2004). Remote sensing is used more 

frequently in agriculture than ever (Weiss et al., 2020). Using satellite images, crop yield 

predictions can be made across vast areas (Bolton & Friedl, 2013). Satellite images provide 

spectral data, out of which spectral indices correlating with vegetation traits can be calculated. 

For example, the Normalized Difference Vegetation Index (NDVI) is closely related to the Leaf 

Area Index and the fraction of Absorbed Photosynthetically Active Radiation (Baret & Guyot, 

2013). These vegetation indices can also be used to predict crop yield (Bolton & Friedl, 2013).  

Though satellite imagery is rapidly improving, it does not have the sufficient spatial resolution 

required for precision agriculture. UAVs can provide this kind of resolution for farmers and 

other stakeholders. Developing cheaper and more advanced UAVs has led to a surge in UAV-

based studies around precision agriculture and crop yield predictions in the last decade (Maes 

& Steppe, 2018). Due to the small size of the area covered by UAVs, they may be unsuitable 

for larger-scale research because they cannot cover larger areas, but they excel on smaller scales 

because of the low cost and high resolution (Kasampalis, 2018). Farmers can fly UAVs on 

demand, monitor their crops and make quick management decisions for their crop health 

(Tsouros et al., 2019). For researchers, UAVs provide unprecedented data quality.   
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2.3.  Machine Learning for Crop Yield Prediction 

Not only the input data for crop yield prediction has changed significantly in recent years. With 

increasing computational strength, crop yield modelling is leaning further away from the 

traditional crop yield prediction methods and into ML. ML used for agricultural practices has 

increased exponentially recently (Benos et al., 2021). ML uses large datasets and high computer 

strength to find patterns within the data. UAVs can provide extensive and detailed datasets with 

much information on crop fields. ML is ideal for discerning patterns in these large amounts of 

data. ML can also discern non-linear patterns far better than previous crop yield models 

(Chlingaryan et al., 2018) and is more adaptable to scenarios with a changing climate. 

ML models can be trained in two different ways: supervised and unsupervised learning. In 

supervised learning, the inputs and outputs are labelled, and the model tries to find the best way 

to reach the output based on the given inputs. Unsupervised learning is done without labelling 

the data. This gives the ML methods more freedom to look for patterns within the data (Benos 

et al., 2021). Supervised learning is more useful when the user wants a specific output. Models 

can be trained to produce the desired output and find patterns in the data to reach the desired 

outcome. 

Van Klompenburg et al. (2020) have reviewed the available literature on crop yield prediction, 

finding the most used ML algorithms to be Neural Networks, Linear Regression, Random 

Forest (RF) and Support Vector Machine (SVM). This finding was supported in a review by 

Benos et al. (2021), which found the most used algorithms to be Artificial Neural Networks 

(ANN), Ensemble Learning, SVM and Regression. Benos et al. (2021) showed that ANNs were 

the most accurate of the popular methods, followed by Ensemble learning, SVM and then 

Decision Trees and Regression. A Decision Tree model is a simplified version of the RF, 

consisting of only one decision tree. The RF model consists of an ensemble of Decision Trees. 

The most accurate model, ANN, is an overarching term for a branch of deep learning ML 

algorithms.  

2.3.1. Deep Learning 

Recently, deep learning has become increasingly popular in agricultural research. Deep learning 

is a sub-branch of Machine Learning that emerged first in 2006. Deep learning (DL) methods 

are mainly known for stacking multiple processing layers on top of each other. Non-linear 

processes occur in each layer, and their output is then passed on to the next layer (Vargas et al., 

2017). DL algorithms excel in handling raw image data and finding patterns in images by 

applying these different non-linear functions (LeCun et al., 2015). DL has found many valuable 

applications in image processing, medicine and biometrics (Vargas et al., 2017). DL algorithms' 

potential has also been noticed in the agricultural field and is now the most applied method for 

crop yield predictions (Van Klompenburg et al., 2020). Convolutional Neural Networks (CNN) 
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are the most popular and can also be used in combination with other DL methods, such as Long 

Short-Term Memory (Sun et al., 2019).  

2.4.  Models for Crop Yield Prediction 

The previous section aimed to provide a general overview of the developments in crop yield 

prediction in the last decades. This chapter will focus more on the specifics of crop yield 

modelling. The inputs and processes used throughout the research will be elaborated on and 

given context by collecting information from previous research. The focus will be on papers 

that have used a combination of UAV imagery and DL.  

2.4.1. Input Features 

2.4.1.1. Spectral Reflectance 

The primary input in yield forecasting is spectral reflectance or indices derived from spectral 

reflectance. Spectral reflectance is the percentage of the incoming light reflected from the 

earth's surface at different wavelengths. Sensors carried by UAVs and satellites measure 

reflectance in wavelength bands, capturing light over different wavelengths and registering one 

digital value per pixel. The different wavelength bands used in this report can be seen in Figure 

1. The wavelength bands in this figure are fairly broad; the sensors on the UAV capture a 

smaller part of this spectrum.  The reflectance of a particular surface will differ over different 

wavelengths. Different materials will reflect light differently: water absorbs most light in the 

infrared wavelength bands, soil reflects more in the mid-range of infrared, and vegetation 

reflects most in the near-infrared (Shahi et al., 2022). The spectral signatures (reflectance over 

different wavelengths) of these three different surface types can be seen in Figure 1. Spectral 

reflectance in the visible and near-infrared (NIR) region (400-2500nm) is especially useful in 

evaluating soil and crop (Scotford & Miller, 2005). The most commonly used sensors on UAVs 

are RGB (red, green, blue), multispectral, hyperspectral and thermal. RGB sensors are used 

most because of their low cost (Shahi et al., 2022). However, multispectral cameras are better 

suited for agricultural purposes because they have bands in the NIR and Red Edge (RE), which 

help estimate crop yield (Bian et al., 2022).  

 

Figure 1. Wavelength bands and spectral signatures of dry grass, healthy vegetation and water. 

(made in USGS Spectral Characteristics viewer) 
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2.4.1.2. Vegetation Indices 

Plants reflect light across different wavelengths in another way than soil or water does (Figure 

1). A Vegetation Index (VI) combines different wavelength bands to reflect biophysical 

properties (Bian et al., 2022). VIs are often used to aid ML algorithms in finding patterns within 

the data (Bendig et al., 2015; Fei et al., 2023; Li et al., 2022; Maimaitijiang et al., 2020). Many 

different VIs have been developed, reflecting different aspects of the physical characteristics of 

the vegetation. Especially NDVI is among the most used VIs containing multi-spectral data 

(Huang et al., 2021). They focus on enhancing the ratio between infrared light, red edge and 

visible light. Less healthy or dense vegetation reflects less infrared light and will have a lower 

ratio (Tsouros et al., 2019).  

2.4.2. Deep Learning Models 

2.4.2.1. Convolutional Neural Network 

A convolutional neural network will be used in this research. A CNN mimics a biologically 

inspired neuron network, like the ANN. It consists of many connected layers to form a neural 

network (O’Shea & Nash, 2015). A CNN differs from an ANN because it is not fully connected 

and uses grid-like inputs such as images and spatial data. CNNs consist of different types of 

layers such as: convolutional, non-linearity, pooling and fully-connected layers.  

The convolutional layer slides kernels across the images to find latent patterns. This essentially 

means that a CNN find patterns more regionally instead of a fully connected image. The kernel 

operations find patterns and structure in the image; this can lead to precise edge detection and 

pattern recognition (Albawi et al., 2017). Padding can be applied throughout these kernel 

operations to maintain the same image dimensions. This process adds rows of zeros around the 

image to ensure the dimensions stay the same when sliding the kernel.  

The non-linearity layer is also known as the activation function. The activation function applies 

a function to the feature map output from the convolutional layer. The activation function cuts 

off specific outputs and limits the output's generated values. The activation function breaks up 

the otherwise linear output of the convolutional layer and assists the CNN in mimicking the 

training data (Li et al., 2021). The pooling layer aims to downsize the spatial dimension of the 

input data and reduce complexity. The most common type of pooling is max-size. Here, a kernel 

of a specific size shifts over the image and selects the cell with the highest value; this is then 

kept in the size-reduced image. The highest value is selected to maintain the most important 

piece of information. Finally, the fully-connected layer sits at the end of the model architecture. 

It connects with all the neurons before to connect the entire model. 

2.4.2.2. Long short-term memory 

Long short-term memory (LSTM) is a type of Recurrent Neural Network (RNN). RNN is a 

form of DL that differs from the usual feed-forward neural network in that it can handle data 



8 
 

sequences. Compared to other ML algorithms, the main difference of an RNN is that it uses a 

type of memory to help make predictions. The network remembers past values to aid in the 

making of predictions. The ordinary RNN can overflow with information if the time dimension 

gets too great. Hochreiter and Schmidhuber (1997) created the LSTM in 1997 to solve this 

problem.  

The LSTM model uses a form 

of internal memory to store 

relevant information for long 

periods of time. It uses a 

memory block with input, 

output and forget gates to 

transfer relevant information in 

and out of the memory 

(Staudemeyer & Morris, 2019). 

The memory gates learn how 

much information they should 

let in or out of the memory 

based on the relevance of the 

information. The structure of an 

LSTM is shown in Figure 2. 

The processes within the model 

are shown in equations 1-6. 

𝑖𝑡 = σ (𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖)    (1) 

𝑓𝑡 = σ (𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓)  (2) 

𝑔𝑡 = tanh (𝑊𝑥𝑔𝑥𝑡 + 𝑊ℎ𝑔ℎ𝑡−1 +  𝑏𝑔)   (3) 

𝑜𝑡 = σ (𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 +  𝑏𝑜)   (4) 

𝑐𝑡 = 𝑓𝑡  * 𝑐𝑡−1 +  𝑖𝑡 *𝑔𝑡      (5) 

ℎ𝑡= 𝑜𝑡* tanh (𝑐𝑡)       (6) 

 

Where : 𝑥𝑡 is the input at time step t , ℎ𝑡−1 is the previous hidden state, 𝑐𝑡−1 is the previous cell 

state ( memory), 𝑖𝑡 , 𝑓𝑡, 𝑔𝑡  , and 𝑜𝑡 are the input, forget, cell, and output gates, respectively. σ 

is the sigmoid activation function. W and b are the weight matrices and bias vectors for each 

gate. 

 

Figure 2. The cell structure of an Long Short-Term Memory (LSTM) 

network. Showing its inputs outputs and internal structure. . 
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2.4.2.3. CNN-LSTM 

A combination model of a CNN and LSTM combines the strength of a CNN to handle spatial 

data and the power of the LSTM to handle sequential data. A CNN-LSTM model has been used 

successfully for crop yield predictions before (Nevavuori et al., 2021; Sun et al., 2019). In the 

architecture of a CNN-LSTM model, the CNN typically operates as a feature extractor, 

transforming raw input data into a set of high-level feature maps. These feature maps encode 

spatial information and are then passed on to the LSTM component, which processes them 

sequentially to capture temporal dependencies and patterns. One common approach is to 

remove the final linear layer of the CNN, enabling the feature maps to serve as direct input to 

the LSTM, thus preserving spatial information throughout the sequential processing. 

The training strategy for CNN-LSTM models can vary depending on the task and dataset 

characteristics. In some cases, the entire CNN-LSTM architecture is trained jointly as a single 

integrated model, allowing the network to learn hierarchical representations of spatial and 

temporal features end-to-end. Alternatively, the CNN and LSTM components can be trained 

separately, with pre-trained CNN weights sometimes used as initialisations for the feature 

extraction part. This modular training approach offers flexibility and allows for fine-tuning or 

transfer learning on specific tasks or domains. 

3.  Data and Study Area 

3.1.  Study Area 

This study used data from five fields throughout Skåne, Sweden and of the years 2022 and 

2023. Four fields are located in Alnarp, in the west part of Skåne. The final field is in the south-

east of Skåne, in Löderup (Figure 3). Three of the fields were sowed with winter wheat. The 

other fields consisted of barley and spring wheat. Two fields were harvested in 2023, the other 

three in 2022. Table 1 contains an overview of the five fields and their sizes.  

Table 1. Overview of the five fields, their crop type, location, harvest year and size. 

ID Crop Type Location Harvest Year Size (Ha) 

1 Barley Alnarp 2022 1.34 

2 Winter Wheat Alnarp 2022 1.42 

3 Winter Wheat Alnarp 2022 1.34 

4 Winter Wheat Alnarp 2023 1.17 

5 Spring Wheat Löderup 2023 1.32 
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Figure 3. The location of the fields within the province of Skåne (top left). The fields are 

located in Alnarp (bottom left) and Löderup on the top right. 

Skåne, located in the southernmost part of Sweden, experiences a temperate oceanic climate. 

This region is characterised by mild winters and cool summers, with relatively high 

precipitation evenly distributed throughout the year. The climate is influenced by its proximity 

to the sea, which moderates temperature extremes, creating favourable conditions for 

agriculture. In winter, the average minimum temperature ranges from -2°C to 1°C, while in 

summer, the average maximum temperature ranges from 20°C to 23°C. Skåne receives 

approximately 600-700 mm of precipitation annually. The growing season here is relatively 

long compared to other parts of Sweden. 

3.2.  Yield Data 

Yield data was collected by a combine harvester. The harvester rides over the field and weighs 

the harvested crop automatically, which is then stored in a point format at a specific time 

interval. The combine harvester is equipped with GNSS, which records the location of the point. 

The Alnarp fields were harvested with the same combine harvester, recording crop yield every 

5 seconds. The harvester has a swath width of 5 meters and records the roll and pitch of the 

vehicle next to the location and crop yield. Field 5 (Löderup) was harvested with a different 

machine, collecting point data every second. The machine has a swath width of 7.3 meters and 

measures vehicle speed and heading next to the timestamps and crop yield. The amount of 

points collected per field and their density can be seen in Table 2. The distribution of crop yield 

values of the five different fields is visible in Figure 4.  
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Table 2. Statistics for collected yield point data. Showing the amount of points collected, the density of 

the points and the distance between collected points. 

ID Number of Points  Point Density (points ha-1) Average recording interval (m) 

1 11,191 232.1 8 

2 3,267 166.7 8 

3 5,989 217.0 8 

4 7,417 213.7 8 

5 19,596 1,646.7 1 

 

Figure 4. Distribution of crop yield values of the collected point data for the five different fields used. 

Units are in t ha-1 and the red line indicates the mean yield for the field.  

3.3. UAV Data 

UAV images were collected at different time intervals throughout the growing season of the 

crops in the years 2022 and 2023. All images were captured using a DJI P4 Multispectral UAV 

(Company). The UAV carries a camera with six sensors, five monochrome sensors for multi-

spectral imaging and one RGB sensor. The ranges of the monochrome sensors are shown in 

Table 3. Each sensor has 2.08MP and a field of view of 62.7°. The flying height was set at 40 

meters, which gives a nominal ground sample distance of 2.1 cm, and there was a 75% front 

and side overlap of the images. All flights were done fully automated in a grid. Flights were 

mainly done between 10:00 and 14:00 on clear days to avoid low solar elevation angles. The 

UAV was connected to the RTK-GNSS service Swedish Positioning Service (SWEPOS), 

giving it a centimetre accuracy. The timing of the flights varied per field. Flights started earliest 

in April and finished latest in August. The exact weeks of the flights per field and their sequence 

number are given in Table 4.  
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Table 3. Wavelength band ranges of the drone sensors in nanometres. 

 

 

 

 

  

  

 

 

 

Table 4. Weeks of captured images for all five fields, including their sequence number in brackets.  

Field Week Number 

 15 

(1) 

17 

(2) 

18  

(3) 

21  

(4) 

23 

(5) 

26 

(6) 

28  

(7) 

1 – Barley x 
  

x x x x 

2 – Winter Wheat - 2022 x x x x x x x 

3 – Winter Wheat – 2022 x x x x x x x 

4 – Winter Wheat - 2023  x x x x x x 

5 – Spring Wheat     x x x 

 

  

Sensor Range 

Blue 450 nm ± 16 nm 

Green 560 nm ± 16 nm 

Red 650 nm ± 16 nm 

Red Edge 730 nm ± 16 nm 

Near-infrared 840 nm ± 26 nm 
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4.  Methods 

Several steps were undertaken to predict crop yield using UAV data and deep learning. First, 

the data was pre-processed to remove any flaws and noise, ensuring it was in a suitable format 

for the deep learning models. After pre-processing, the UAV and yield data were sorted into 

sequences and matched based on location. The next step involved splitting the data into training 

and validation datasets. Following three experimental setups, the training data was used to build 

multiple full-sequence and part-sequence models. These models were tested on the validation 

data to evaluate their accuracy. The validation data included samples for testing on the crop it 

was trained on, winter wheat, as well as barley and spring wheat. An overview of the methods 

can be found in Figure 5. 

 

 

Figure 5. Simplified diagram of the overall workflow of the methods.  
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4.1.  Pre-processing 

The input data had to be pre-processed before 

being used as input into a DL model. The yield 

data and the UAV images needed pre-

processing to prepare them as a suitable input. 

The workflow of the pre-processing can be 

seen in Figure 6.  

4.1.1. Yield Data 

Data was collected by a combine harvester, 

which recorded point data with GPS 

coordinates, a timestamp, yield data and 

rotation information. Harvesters can be prone 

to erroneous yield measurements, and careful 

pre-processing of yield data is required to 

obtain reliable results (Lyle et al., 2014). 

Criteria for the data cleaning were set 

following a paper by Hunt et al. (2019). 

Erroneous measurements can arise due to the 

harvester mechanics and GPSS measurements 

when these criteria are not matched. Speed and 

acceleration were calculated using the GPS 

locations and timestamps. The rotation speed 

was based on the roll and pitch per second. The 

criteria used to eliminate data are summarised 

in Figure 7. Data points collected outside of 

these criteria are likely to have larger errors. 

The local mean was calculated using the yield 

values of the three closest points. Additionally, 

a buffer of 15 meters was applied around the 

edge of the field because yield values can be 

significantly lower on the edges. The results of 

this initial cleaning can be seen in Figure 8. 

After the pre-processing, the yield data was turned into a raster. The yield point data was 

interpolated using bilinear interpolation to a field size of 1m. Afterwards, the raster was cropped 

using manual set field boundaries. Finally, the raster was resampled using bilinear interpolation 

to a pixel size of 0.04m to match the UAV data. This led to a crop yield raster like in Figure 9.  

Figure 7. Overview of the six criteria used for 

cleaning the yield data points. 

Figure 6. Detailed workflow diagram of data pre-

processing. 

Figure 6. Detailed workflow diagram of data pre-

processing. 

Figure 7. Overview of the six criteria used for 

cleaning the yield data points. 
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Figure 8. Overview of yield point data of field 2 (winter wheat) before and after the data cleaning 

processing steps. 

 

Figure 9. Example image of spring wheat yield raster (4cm resolution) after interpolation. Greyscale 

indicates the crop yield per pixel in t ha-1 

 

4.1.2. UAV Data 

Each UAV flight over the agricultural fields involved capturing multiple overlapping images to 

facilitate the creation of orthophotos. Overlapping images are essential for orthophoto 

generation as they allow for the correction of perspective distortions inherent in individual 

aerial images. While single aerial images capture objects at the edges from an angle, 
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orthophotos are produced by identifying and matching control points across overlapping 

images. This process eliminates the 'edge' effect, resulting in a composite image that appears to 

have been captured from an infinite distance directly overhead, providing a consistent nadir 

view throughout the entire image. 

The raw UAV imagery consists of Digital Numbers (DN) calibrated for exposure compensation 

and irradiance normalisation following Olsson et al. (2021). This data needed to be calibrated 

from DN to actual surface reflectance values. This calibration is essential for accurate 

reflectance measurements. DN values can vary without calibration due to differences in sensor 

sensitivity, lighting conditions, and atmospheric effects. Calibration normalises these 

variations, allowing consistent comparisons across flights, dates, and fields. Calibrated data is 

necessary to ensure the findings are based on accurate and repeatable measurements. This is 

critical for the credibility and reproducibility of scientific studies. 

The empirical line calibration method was employed to convert DN values to surface 

reflectance, assuming a linear relationship between these values (Olsson et al., 2021). 

Reflectance panels with known reflectance values for specific wavelength bands serve as 

references to establish this relationship. Three different reflectance panels were used, with 

varying reflectance values per wavelength band, as shown in Table 5. The central region of 

each panel was manually selected from the images, and the mean DN for these panels was 

extracted (Figure 10). These mean DN values were then paired with the panel's known 

reflectance values to formulate the empirical line equations. These equations were subsequently 

applied to all images to convert DN values to reflectance values. 

Table 5. Reflectance values per wavelength band for the used reflectance panels. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Exemplary image of drawn ROIs used in 

the image calibration. 

Band 9% 23% 44% 

Blue 0.072 0.217 0.383 

Green 0.068 0.219 0.453 

Red  0.077 0.223 0.439 

RedEdge 0.085 0.235 0.467 

NIR 0.100 0.252 0.497 
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Two main challenges arose during calibration: panel saturation and changing light conditions 

during the flight. Panel saturation occurred on the majority of the monochrome sensors. To 

establish a reliable linear relationship between DN values and reflectance, three panels are 

preferred. However, during panel saturation, one or more panels reach their maximum DN value 

of 255, making that panel unusable. This happened for the 44% panel on nearly all flights for 

the Red Edge and NIR bands. The calibration was still done with two panels, which is slightly 

less reliable. For the RGB monochrome sensors, more than one of the panels was saturated and 

rendered unusable. Instead, the RGB sensor was used to provide RGB data for all flights. Here, 

one panel was often unusable and the empirical line method was done with only two reference 

points.  

The second main challenge, changing light conditions during the flight, was partially solved 

using images of the reflectance panels from before and after each flight. By comparing DN 

values before and after, it is possible to understand the light conditions throughout the flight 

better. Irradiance normalisation was already applied on the individual images following Olsson 

et al. (2021). However, changing light conditions can impact the mean DN value of the 

reflectance panels before and after the flight. For orthomosaics with significant differences 

before and after the flight, the solar irradiance data throughout the flight was compared with 

the solar irradiance data at the time of the calibration images. The orthomosaics with closer 

solar irradiance to the majority of the flight were chosen for calibration. 

After calibrating, all orthomosaics were cropped to manually create field borders to match the 

yield data perfectly. All orthomosaics were resampled to ensure all pixels perfectly overlayed 

each other. Additionally, the orthomosaics had to be organised in sequences. The date stamp in 

the orthomosaics names was used to sort the orthomosaics of a field into order. Figures 11 and 

12 show the average RGB values for all fields of the years 2022 and 2023, respectively. The 

empirical line method led to a negative reflectance value for some of the data. Figure 13 shows 

a winter wheat field in June 2023 before and after orthomosaics calibration, cropping and 

resampling.  

 

 

 

 

 

 

 

 

 

 

Figure 11. Mean RGB 

reflectance values for 

calibrated fields in 2022 

over time. 
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Figure 12. Mean 

RGB reflectance 

values for calibrated 

fields in 2023 over 

time. 

 

 

 

 

 

 
 

Figure 13. Winter wheat field in 2023 (field 4) before (a) and after (b) all pre-processing steps. 
 

4.2.  Model Architecture and Training 

4.2.1. CNN-LSTM 

The used model is a sequential model pairing a CNN model and an LSTM. The CNN and LSTM 

were tested separately and then combined into one single model. The sequential model consists 

of a CNN convoluting multiple layers and then passing these to the LSTM, where a dense layer 

will finally give a regression output. The model used time-distributed layers to ensure that the 

time dimension remained intact through the convolutional layers. These keep the time 

dimension separate to pass the data into the LSTM as a sequence. Hyperparameter tuning was 

done to find the optimal hyperparameters for the model. The tuned hyperparameters will be 

further discussed in 4.2.3.  
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A max-pooling layer followed each convolutional layer to decrease the size of the images 

passed through to the following layers and keep the computational time down. The 

convolutional layers used the ReLU (Rectified Linear Unit) activation function. This function 

is often used in machine learning and is found to improve training in neural networks. It returns 

positive values as normal but returns negative values as 0. The convolutional layers also 

received ‘same’ padding. By padding the borders of the images, the size does not decrease when 

kernels are applied to the pixels. The models were trained on the mean squared error loss metric. 

Additionally, the mean absolute error was given for the validation data. The selection of model 

architecture was based on the value of the mean absolute error of the validation data.  

4.2.2. Patch Creation   

The original images were too large and few to train a neural network, and the crop variability 

across a whole field can be substantial. The large size of the images caused the CNN to find 

patterns across the entire image, whilst most patterns for crop yield are down on the plant level. 

To decrease the model's complexity and increase the training material, the original images were 

split into patches. Each patch of images was trained on the mean crop yield for that patch. 

Working in patches also allows to model intra-field variability, as the field will be split into 

smaller sections. Different patch resolution sizes were tested during hyperparameter training to 

obtain the best model results. Patch sizes of 8, 16, and 32 pixels were tested (table 6). 

4.2.3. Hyperparameter tuning 

Hyperparameter tuning was applied to the image size, CNN layers, CNN units, and CNN kernel 

size (Table 6). Hyperparameter tuning was done based on the Mean Absolute Error (MAE). 

First, hyperparameter values were tested ad hoc to determine the range of values for the 

hyperparameter tuning. The results of which can be found in Appendix A1. During these tests, 

the epoch was noted from where the model no longer improved in accuracy. After these tests, 

the number of epochs was set at 8 for the hyperparameter tuning. Furthermore, three different 

values for learning rate were tested for the same model architecture. A learning rate of 0.001 

was set for the hyperparameter tuning.  

All values included in the hyperparameter tuning are noted in Table 6. The hyperparameter 

tuning was split into multiple parts to decrease the number of possible combinations. Different 

combinations of hyperparameters were tested using the Keras random search module. The CNN 

parameters were first used to compare the effect of the image size. Based on these results, the 

ideal architecture of the CNN was determined. This was then used to tune the ideal architecture 

for the LSTM. The effects of the max pooling layer were also tested and turned out in favour 

of applying max pooling. The results for all model runs can be found in Appendix A. 
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Table 6. Tested hyperparameters for the CNN part of the CNN-LSTM model.  

Tested values indicate the tested possibilities for that specific hyperparameter. 

Hyperparameter Tested values 

Patch size 8 16 32  

CNN Layers 1 2 3 4 

CNN Units 32 64 96 128 

Kernel size CNN 3 4 5 6 

 

The architecture of the LSTM part of the model was decided by trying four different 

combinations of layers and unit size (Table 7). The number of units in the following layer was 

always lower than in the previous layer. Additionally, the effects of a dropout layer were tested 

for the most basic architecture.  

Table 7. Tested hyperparameter combinations for the LSTM part of the CNN-LSTM model. 

# Units layer 1 Units layer 2 Units layer 3 Dropout 

1 32 - - - 

2 32 - - 0.1 

3 64 - - - 

4 64 32 - - 

5 128 64 32 - 

4.2.4. Training and testing data 

The model was trained on two fields with winter wheat data, fields 2 and 3. These fields were 

both harvested in 2022. The fields were split into 80% training and 20% validating data. The 

percentage of training data was chosen to be high due to the presence of winter wheat data from 

other fields, which could be used for further testing. The other winter wheat field, field 4, was 

harvested in 2023 and kept separate during the first part of training. By doing this, the model's 

effectiveness in predicting across different years could be tested. Fields 1 (barley), 5 and 6 

(spring wheat) were also kept apart for the testing phase.  

4.3.  Experimental Design 

To test model performance and help answer the research questions, an experimental design 

consisting of three different experiments was set up: independent testing of a CNN and an 

LSTM, full sequence testing, and part sequence testing. Experiment 1, independent CNN and 

LSTM, was done to assess the overall performance of the CNN-LSTM model and gain insight 

into possible improved model accuracy by combining the two models. Experiment 2, full 

sequence testing, uses all available data and helps assess the reliability of part sequence testing 

compared to a baseline. Additionally, it could help evaluate the performance of models trained 

on an entire growing season of a specific crop type on a different crop type. Finally, experiment 

3, part sequence testing, uses shorter sequences of 2, 3 or 4 images. It aids in exploring the 
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effects of sequence length, the effects of image proximity to harvest data, and its usefulness in 

predicting yield for different cereals.  

For experiment 1, the models were trained on data from 2022 and only tested on 2022, this was 

done to keep the total amount of model runs low and make it easier to compare to results from 

the other experiments. Experiments 2 and 3 were trained on data from 2022 and on a dataset 

consisting of 2022 and 2023. Both experiments were tested on all crops with sufficient data. 

The overview of all experiments and final model runs per experiment can be found in Figure 

14. 

 

Figure 14. Flow diagram of model tests for the three experiments. Blue lines indicate experiment 1, 

orange lines indicate experiment 2 and green lines indicate experiment 3. Different configurations for 

the tests are indicates by the path of the coloured lines.  

4.3.1. Experiment 1: Independent evaluation of LSTM and CNN 

The LSTM model was first tested separately to assess its capabilities in finding patterns across 

the temporal aspect of the UAV data. Five different runs were done on a basic LSTM model. 

These runs varied in the grain size of the image data used. The first run modelled crop yield on 

single pixels. The other four runs aggregated the pixels by sliding windows of different sizes 

and computing the mean (Table 8). This window caused image size to decrease but also 

decreased outliers in the image data. Model run specifications can be seen in Table 8. Due to 

time constraints, the models were all tested on field 3 with only multispectral data. All the 

models were run for five epochs, and the validation data size was 20%. The LSTM had one 
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layer consisting of 32 units. The input shape was (8,2), with 8 being the time dimension of the 

input and 2 the RE and NIR bands. Model compiling was done using the Adam Optimiser, and 

loss was based on the mean squared error.  

A stand-alone CNN was also tested before the two models were combined. The model consists 

of two 2D convolutional layers with 32 and 64 units and a window of (3,3). A MaxPooling 

layer with a (2,2) window is between the convolutional layers. The batch size is 32, and the 

other model specifics are equal to the LSTM model runs. The CNN model was trained on the 

same winter wheat data from 2022 as the LSTM model runs.   

Table 8. Configurations for the 5 different LSTM model tests.  

Variations in windows size and batch size are indicated in the table. 

LSTM Run Window size Batch size 

Model 1 1×1 64 

Model 2 2×2 32 

Model 3 4×4 32 

Model 4 8×8 16 

Model 5 16×16 8 

 

4.3.2. Experiment 2: Full sequence testing 

A CNN-LSTM model was built using the model architecture following the hyperparameter 

tuning. The full sequence was used to estimate the capabilities of predicting crop yield using 

the 7 orthophoto-long sequences. Not all fields had the full 7-image long sequence. For these, 

a model was trained on a shorter sequence, omitting the vacant slots. This was the case for the 

winter wheat of 2023 and the barley field (2022). The spring wheat field only contained three 

valid timesteps and was used only in part sequence testing. 

The model was initially trained on winter wheat fields 2 and 3, which contained data from the 

same cereal, winter wheat, and from the same year, 2022. By separating the other fields, an 

estimation can be done for how well the model performs on a different cereal type and on 

different years when using the full sequence. 

4.3.3. Experiment 3: Part sequence testing 

After the initial full sequence testing, the model was trained for different sequence lengths. By 

doing this, it is possible to estimate the model's accuracy over the growing season. By testing 

the model at different phases of the growing season, more information was provided on when 

it is possible to make a valid estimate of the eventual crop yield. Additionally, varying the 

sequence length may help estimate the efficiency of full sequences instead of only part 

sequences and could indicate the optimal time to capture images for yield predictions.  
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The part sequence lengths range from 2-image sequences to 4-image sequences. They were 

applied on all fields where possible. The sequences were applied with a stride of 1, causing a 

7-image sequence to have 6-part sequence measurements. This was done to display an 

improvement in measurement accuracy throughout the crop's growing season. The same model 

architecture, derived from the hyperparameter tuning, was applied to each part sequence. The 

model was trained for a specific time period and then applied to the same time period on other 

fields. The spring wheat fields did not have image data for the first four timesteps, causing 

fewer part sequence testing than other fields.  

4.3.4. Two-Year Training Data 

Following the results of the full sequence and part sequence testing, another set-up of training 

data was used to test model performance. Instead of training the model only for 1 year, winter 

wheat data from 2 years was used. Field 1 was used as a representation of winter wheat in 2022, 

and 70% of field 4 in 2023 was used. More heterogeneity is introduced into the training data by 

including these different years. The average yield in 2023 was over 2 t ha-1 lower than in 2022 

and had a completely different distribution (Figure 4). This variance makes the model better at 

dealing with different ranges of yield values but does not allow for unbiased testing of the model 

in different years. Nevertheless, by training it on two different years, the model should better at 

predicting crop yield, regardless of the year they were harvested.  

4.3.5. Evaluation Metrics 

Three values were calculated for all models to estimate model quality: Mean Absolute Error 

(MAE), weight ratio and slope. The MAE indicates the quality of each patch prediction. It is 

absolute because negative and positive values would cancel each other out. Secondly, the 

‘weight ratio’ is used. For this metric, the complete yield from the field is used to calculate the 

predicted value and the test data. Using a ratio of predicted and actual yield, it is possible to 

compare the metric for different fields (equation 7).  

 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑟𝑎𝑡𝑖𝑜 =  
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑌𝑖𝑒𝑙𝑑

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑌𝑖𝑒𝑙𝑑
  (7) 

 

Finally, the slope is calculated by the line fitted through all predicted points. The ideal slope is 

1, where every predicted value matches the yield's actual value. Lower values closer to 0 

indicate that the model overpredicts for lower yield values and underpredicts for higher yield 

values. The range of model predictions is lower, with a lower slope. A negative slope indicates 

a very low accuracy model performance, it predicts actual low yield values to be higher than 

the actual high yield values. 
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5.  Results 

5.1.  Model Architecture 

During hyperparameter tuning, the results for 8×8 patches were consistently better than for 

16×16 or 32×32 patches, frequently scoring a mean absolute error below 0.4. (See Appendix B 

for an overview of all tested hyperparameter combinations). Thus, a patch size of 8×8 was used 

for all further experiments. The number of layers of the model did not greatly impact the model's 

performance, with more layered models scoring only slightly higher than single-layer models. 

An architecture with three layers was chosen, with units and kernel size decreasing for further 

layers. An overview of the CNN used in the CNN-LSTM is shown in Figure 15.  

The best LSTM architecture was a simple 1 layer model with 32 or 64 units (Appendix A). A 

single-layer model with 32 units was chosen to reduce model complexity and required 

computational power. Additionally, dropout did not impact the model's accuracy but was 

chosen to be kept in the structure. Following these results, the final model architecture was set 

to the one in Figure 15. 

 

Figure 15. CNN-LSTM model architecture after hyperparameter tuning. Figure indicates the eventual 

amount of layers (3) and the different filters amounts, kernel sizes and LSTM units used.  
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5.2.  Experiment 1: LSTM and CNN 

When testing the LSTM and CNN models separately, the CNN without the temporal aspect 

performed better than all LSTM models (Table 9). The grain size had a clear effect on the 

performance of the LSTM. The single-pixel model performed worst of all iterations. The 2×2 

window caused considerable improvements in model performance, leading to a mean absolute 

error of 0.67. However, further window size increases only led to worse model performance.  

Table 9. LSTM model run results. 

Model MAE Weight Ratio Slope 

LSTM 1×1 0.77 0.99 0.74 

LSTM 2×2 0.67 1.00 0.79 

LSTM 4×4 0.65 1.01 0.77 

LSTM 8×8 0.74 1.01 0.67 

LSTM 16×16 0.86 0.96 0.55 

CNN 0.60 1.00 1.06 

 

5.3.  Experiment 2: Full sequence testing 

The full sequence model trained on 2022 achieved a MAE of 0.33, a weight ratio of 1.01 and a 

slope of 0.62. The predicted values have been plotted against the actual values in Figure 16. 

The blue trendline shows the quality of the model prediction against the ‘ideal’ black line. A 

weight ratio of 1.01 indicates a near-perfect estimation of eventual yield. A slope value of 0.62 

shows a clear positive prediction trend but is imperfect.  

 

Figure 16. Distribution graph showing the predicted values vs the actual values of winter wheat in 

2022, on which the model was trained. Blue line indicates the fitted line through all points, the black 

line indicates the ‘perfect’ model.  
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The same full sequence model, applied to the winter wheat field in 2023, has an MAE of 2.90, 

a weight ratio of 1.49, and a slope of 0.10 (Figure 17). A low slope value indicates a flawed 

model fit for this different year. The predicted values range from only 7.5 to 9.5, whilst the 

actual values have a much more comprehensive range. The MAE and weight ratio also show a 

bad model quality, being almost 50% off of the actual total yield.  

 

Figure 17. Distribution graph showing the predicted values vs. winter wheat's actual values in 2023. 

Blue line indicates the fitted line through all points, the black line indicates the ‘perfect’ model. 

The full sequence model performed slightly better on the barley field in 2022. The MAE is 1.03, 

the weight ratio is 0.88, and the slope is 0.23 (Figure 18). The model underestimates the 

eventual crop yield of the barley field. However, the model slope does have a slight positive 

trend, indicating the model finds a relationship in the image data of the barley, like for the 

winter wheat in 2022. 

 

Figure 18. Distribution of predicted vs actual yield for the full sequence model when tested on barley. 

Blue line indicates the fitted line through all points, the black line indicates the ‘perfect’ model. 
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5.3.1.  Full Sequence: Two-Year Training Data  

The full sequence model trained on a mixed 2022 and 2023 dataset achieves a MAE of 0.42, a 

weight ratio of 0.99 and a slope of 0.82. The plot showing the predicted yield vs the actual yield 

can be seen in Figure 19. The model performs better on the two-year training data than the full 

sequence model trained on only 2022. It has a clear positive trend and a near-perfect weight 

ratio.  

 

Figure 19. Distribution graph of the full sequence model trained on multiple years on its training 

dataset. Blue line indicates the fitted line through all points, the black line indicates the ‘perfect’ 

model. 

The model performs very differently on the adjacent field in 2022, on which it was not trained. 

A MAE of 1.19, a weight ratio of 0.87 and a slope of -0.05 was achieved (Figure 20), indicating 

a low model accuracy. No clear trend is visible in the predicted data, and the model consistently 

underpredicts the actual yield.  

 

Figure 20. Distribution graph of the performance of the two-year training data full sequence model on 

validation data from 2022. Blue line indicates the fitted line through all points, the black line indicates 

the ‘perfect’ model. 
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Twenty per cent of the patches of winter wheat in 2023 were kept separate during the model 

training for validation. When applying the full sequence model on this part of the validation 

data, it performs better than for the validation winter wheat of 2022, with an MAE of 0.94, a 

weight ratio of 0.98, and a slope of 0.53 (figure 21). The model overpredicts for lower yield 

values and underpredicts for higher yield values but shows decent predictions all-round.  

 

 

Figure 21. Distribution graph of the two-year training data full sequence model on validation dataset 

from 2023. Blue line indicates the fitted line through all points, the black line indicates the ‘perfect’ 

model. 

5.4.  Experiment 3: Part sequence testing 

All part sequence model results of the original training data set are shown in Table 10. Model 

results are highest for winter wheat in 2022, on which it was trained. The part sequence models 

are not as accurate as their full sequence counterparts for fields other than winter wheat 2022. 

The weight ratio of spring wheat is high, even though the model does not accurately predict 

individual patch yields. Model accuracy of winter wheat in 2022 is better for part sequence 

models closer to the harvesting date of the crop. The weight ratio is near perfect for all model 

predictions for 2022 winter wheat.  
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Table 10. Performance metrics for all part sequence models trained on winter wheat data from 2022. 

Noteworthy values were highlighted.

 

5.4.1.  Part Sequence: Two-Year Training Data 

Table 11 displays all part sequence model results on the two-year training dataset. The weight 

ratio scores above 0.82 for all part sequence models. However, the slope and MAE do not score 

highly on most part sequence models. Some higher slope values were found on the winter wheat 

of both 2022 and 2023, indicating a better relationship between actual and predicted values. 

The MAE and weight ratio are relatively good for barley and spring wheat. However, the model 

accomplishes this by predicting the average value of the whole field instead of predicting 

particular values. Slope, weight ratio and MAE for winter wheat improve closer to the 

harvesting date, but sequence length does not have as much of an impact. Table 11. Performance 

metrics for all part sequence models trained on winter wheat data from 2022 and 2023. Noteworthy 

values were highlighted. 

Table 11. Performance metrics for all part sequence models trained on winter wheat data from 2022. 

Noteworthy values were highlighted.
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The figures below show the distribution of yield predictions against the actual yield values for 

different part sequence model tests. Not all model tests have a distribution graph; some 

noteworthy results have been selected to display the overall distribution. Figure 22 shows the 

distribution for barley using a 4-5-6 sequence model and a 5-6-7 sequence model. The slope of 

the 4-5-6 model shows a better model fit than the final 3-part sequence model.  

 

Figure 22. Distribution graph of model performance of three sequence models 4-5-6 (a) and 5-6-7 (b) 

on barley. Blue line indicates the fitted line through all points, the black line indicates the ‘perfect’ 

model. 

 

Figure 23 shows the distribution of winter wheat field 3, on which the model was not trained. 

Figure 23a shows the distribution of part sequence model 2-3, which is similar in shape and 

slope to the results of the full sequence model for this field. The model shows a much better fit 

for part sequence 6-7 (Figure 23b). The predicted values are much closer to the actual values, 

and the slope is closer to 1. The part sequence model using sequences 4-7, Figure 23c, shows a 

similar distribution to Figure 23b but has more underpredicted values, lowering the intercept of 

the fitted line.  
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 Figure 24 shows the distribution graph for the spring wheat field's 6-7 part sequence model. 

The fitted line has a slope of 0.23 and shows overprediction for lower values and 

underprediction for higher values.  

 

 

Figure 24. Distribution graph of predicted values of the two-year training part sequence model 6-7 on 

spring wheat. Blue line indicates the fitted line through all points, the black line indicates the ‘perfect’ 

model. 

 

Figure 23. Distribution graphs for 

two-year training part sequence 

models 2-3 (a), 6-7 (b), and 4-5-6-7 

(c). Blue line indicates the fitted line 

through all points, the black line 

indicates the ‘perfect’ model. 
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5.4.2. Performance of part sequence models over time 

The figures below were created to better display the performance of the different part sequence 

models. Figure 25 shows the development of the three model criteria for 2-image part sequence 

testing using two years of training data. The MAE steadily decreases for the validation data of 

both 2022 and 2023. The slope and weight ratio also improve for sequences using later 

timesteps for both 2022 and 2023.   

 

Figure 25. Model performance metrics per timestep for 2-image sequence models. The timestep on the 

x-axis indicates the final timestep in the two-part sequence. Performance on the validation data from 

2022 is on the top, and 2023 is on the bottom. 

Figure 26 shows the slope and MAE over time for different lengths of sequences. The slope 

was left out of the image to avoid crowding. No clear differences in model performances can 

be seen in the image. 
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Figure 26. Evaluation metrics MAE and Slope for different sequence lengths over time. The x-axis 

indicates the last timestep of the sequence.  
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6.  Discussion 

6.1.  Prediction accuracy on winter wheat 

The initial model performances on the validation data showed promising results. The model 

performed well on its validation data and found clear patterns in the data to make accurate 

predictions. The best model performance on the validation data was found for the full sequence 

modelling, reaching an MAE similar to Nevavuori et al. (2020). This full sequence allows the 

model to include the full temporal domain with all available data, achieving the highest 

accuracy. Some apparent differences were found in the part sequence modelling on the 

validation data.  

When applying the initial models on the same crop but for a different year, accuracies were 

lower. The full sequence model, which was expected to perform best, deviates by nearly 50% 

in total yield for the field. Moreover, the mean absolute error is off 30% of the mean yield, 

showing that the model could not be applied to other years with reasonable accuracy. The 

predictions are off for the full sequence and part sequence modelling, with all mean absolute 

errors ranging from 2.32 t ha-1 to 3.02 t ha-1. Figure 17, in full sequence modelling, shows what 

is going wrong in the model prediction. The model predicts a crop yield consistently between 

7 t ha-1 and 10 t ha-1, overestimating the yield in 2023. The trendline does show that the 

prediction values are lower when the actual yield is lower but does not come close to the actual 

values.  

To understand why this is happening, looking at the yield distributions in Figure 4 is essential. 

Fields 2 and 3, on which the models were trained, have a different yield distribution than those 

harvested in 2023, where average yield was consistently lower. Because of this, the models are 

trained to predict values only within this range, causing problems in model training (Paul et al., 

2021). However, the full sequence prediction for 2023 still shows a correct trendline, which 

leads to believe it recognises when lower yields are expected. Following these results, the 

models were also trained on two years of training data to help mitigate the issue of training data 

distribution.  

The models trained on a training dataset consisting of data from both 2022 and 2023 performed 

better on winter wheat than models trained on only 2022. On the data it was not trained on, it 

achieved weight ratios close to 1 and a relatively good linear trend in predictions. The slope 

and MAE improve closer to the harvesting date, and sequence length also positively influences 

winter wheat modelling. The model performance is less accurate on barley and spring wheat. 

All evaluation metrics indicate an inaccurate model performance.  

The difference in model predictions between the initial training dataset with only data from 

2022 and the two-year training dataset with data from 2022 and 2023 displays some problems 
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with the robustness of the modelling. Crop yield depends on climatic factors such as rain and 

temperature, which vary yearly (Wang et al., 2016). 2023 was a harsher year for agriculture 

than 2022, affecting crop yields. Ceglar et al. (2016) have highlighted these issues of inter-

annual crop yield variability due to meteorological drivers. Figure 4 shows the yield distribution 

of the different fields, where the winter wheat in 2023 has a very different distribution than in 

2022. Models must be trained on a broader range of years, including different distributions of 

yield values, to be more generally applicable to different years. For years where not droughts, 

but flooding is a problem, can still lead to unpredictable yield values with the current training 

dataset.  

The CNN-LSTM model outperformed the separate LSTM and CNN model runs in experiment 

1 (Table 9). The CNN-LSTM model uses the temporal and spatial domain, allowing it to 

explore more available patterns in the data (Yan et al., 2021). The LSTM model accuracy 

decreased for increasing grain size (Table 9), but the spatial features the CNN extracts from the 

larger images used, 8×8 pixels, made up for this decreased performance. The LSTM likely 

performed better with lower grain size because of the increased training data. This was lower 

for the single-pixel model as there might be too much noise in the data to make predictions 

accurately.  

 

6.2.  Developments in accuracy throughout the growing season 

To answer RQ2, ‘Does the accuracy of crop yield predictions increase further in the growing 

season?’ the three evaluation metrics must be evaluated for sequences at different times. Figure 

24 displays the evaluation metrics for the 2-sequence models of winter wheat in 2022 and 2023 

for the models trained on 2022 and 2023. All model evaluation metrics improve for sequences 

closer to the harvesting date. For all fields where reasonable model accuracy was achieved, 

such as winter wheat in 2022 and 2023, the best part sequence model results are achieved with 

sequences closer to the harvesting date (Table 11). In earlier stages of the growing season, the 

crop still has to go through its entire development, and two similar patches could still end up 

with entirely different yield values. The further along the growing seasons, the closer the 

relationship between the reflectance of the plant and its eventual yield.  

This becomes especially clear for the 2-image sequential models trained on the renewed training 

data when applied to the winter wheat field in 2022, which it was not trained on. Figure 23a 

shows that the model cannot accurately predict the final crop yield. The prediction accuracy 

improves with every sequence until the harvesting date (figure 25). The final distribution plot 

of sequence 6-7 in Figure 23c shows improvements in model accuracy and is only 3% off the 

field's total yield. These same improvements in model accuracy hold for 3 and 4-image length 

sequences, starting with a weight ratio under 0.9 for the sequences furthest away but 

approaching a slope of 1 for the closest sequences.  
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Moreover, using only the earliest growing season sequences, from April and May, consistently 

produces poor modelling results. On the initial training dataset, the MAE and weight ratio for 

winter wheat in 2022 is low, mainly due to the models being trained on this data. However, the 

models still struggle to find a clear pattern in the data. This becomes especially clear looking at 

its slope value in Table 11. Here, the model tries to minimise the MAE mainly by choosing a 

value close to the mean of the dataset, regardless of the data fed into the model. This is a clear 

example of why the calculated slope is essential in assessing modelling accuracy; it displays a 

lack of actual understanding of the model.  

6.3.  Effects of sequence length 

To answer RQ3, ‘Using a sequence of bi-weekly UAV data, does the accuracy of crop yield 

predictions keep increasing when adding to the sequence?’ a comparison must be made between 

the model accuracies for different sequence lengths. This comparison can be difficult under the 

assumption that models using sequences closer to the harvesting date provide more accurate 

results. The comparison must be made by adding ‘historical’ sequential data to negate this. Does 

the model accuracy increase by providing a historical record of what the crop looked like at 

different phases of its growing stage? Figure 26 shows the development of the model slope and 

MAE for different sequence lengths. The x-axis displays the number of the final sequence used 

in the model.  

Adding images to a sequence does not improve the model's performance. The different 

sequence length models all increase in performance for later sequences, again conforming to 

the hypothesis made for RQ2, suggesting that timing is more important than sequence length. 

The evaluation metrics vary greatly per timestep, making it difficult to draw any conclusions 

about the effectiveness of increased sequencing. Moreover, increasing sequence length to the 

full sequence modelling does not positively affect the model results. This suggests that the most 

recent reflectance values are more important than the reflection changes over time.  

Figure 20's full sequence model for winter wheat in 2022 does not accurately predict crop yield. 

The part sequence models using only sequences closer to the harvesting date seem to 

outperform this full sequence model by using data that is better representative of the final yield. 

Figure 23c shows the distribution of the 2-part sequence model, which predicts the final yield 

much more accurately than the full sequence model. Using imagery captured earlier in the 

growing seasons can add unnecessary ‘noise’ to the modelling process. The CNN-LSTM model 

attaches too much value to these earlier sequences, whilst they may not be very representative 

of the final yield. Smaller sequences using newer data only use the most relevant data for 

predicting crop yield and can outperform the full sequence models. Additionally, shorter 

sequences require less computational power than longer sequences. They are trained more 

quickly and can make quicker predictions, which can be especially useful on larger datasets.  
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6.4.  Prediction accuracy on other cereals 

RQ4, ‘Can deep learning models tuned for a specific crop be applied to similar crop species? 

can be answered by the evaluation metrics in Table 10 and Table 11 for barley and spring wheat. 

Unfortunately, fewer barley and spring wheat sequences were available with a correct match at 

the time of captured images. This makes a full sequence comparison more complex, and only a 

few part sequence models can be run. In the initial model set-up, using training data from 2022, 

the model performance on barley and spring wheat seems accurate at first glance. The MAE 

and weight ratio scores both indicate accurate performance. However, figure 18 shows a 

different explanation. The model estimates all values within the yield distribution of the fields 

on which it was trained. The model estimates within this range for barley and spring wheat, 

whose total yields coincide with spring wheat in 2022. The slope suggests that the model does 

not do well in predicting specific yields, which can also be seen in the figure.  

Model performance for models trained on the two-year dataset decreases for spring wheat and 

barley. The models now make predictions in a more extensive range of values but still do not 

accurately predict yield for different cereals. This decrease in performance compared to the first 

training dataset is explained by this broader range of prediction values, but its inability to predict 

yield has a different underlying cause. Accurately modelling crop yield for different cereals 

using models trained on winter wheat is only possible if the cereals behave similarly spectrally. 

If cereals look different from one another, the models cannot accurately predict the eventual 

crop yield. 

Figure 27 shows the three crops at the beginning of July, at step 7, the end of the image 

sequence. These RGB images already display apparent differences in colour between the three 

cereals. Table 12 displays the mean RGB reflectance of the three different cereals for the final 

two images in the sequence at the end of June and the beginning of July. These differences 

present in mean reflectance likely cause the decreased performance of the model. Especially in 

timestep seven, the other cereals are not similar to winter wheat. This can be seen within the 

model performance in Table 12 as well. Part sequence model 5-6 performs better on barley than 

6-7, containing timestep 7. The mean reflectance values deviate more from the winter wheat, 

decreasing model performance. This decrease in model performance can be explained by the 

fact that the full-grown crop looks different for barley and spring wheat than for winter wheat, 

which can also be seen in Figure 27.  
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Figure 27. RGB images displaying the visible colours for barley (left), spring wheat (middle), and 

winter wheat (right) on the 21st of June. 

6.5.  Image calibration 

The images collected by the drone were of high spatial resolution but had some evident 

problems, which put doubts on their reliability. All images were radiometrically calibrated 

using mean DN values from the reflectance panels. However, at least 1 of the panels was often 

saturated, leading to calibration only being done with two panels. Furthermore, the 44% 

reflectance panel was sometimes included in the radiometric calibration, although it should 

have been discarded. This led to miscalculations for the reflectance. This situation occurred 

when the DN values were below 255 for the 44% panel but should have been far higher, 

following a linear relationship. This can be seen in Figures 10 and 11, where, at many timesteps, 

the mean reflection is negative, which is impossible. A clear example are the images taken on 

06-07-2022, with all values far below zero.  

A CNN-LSTM can still find patterns in negative values, and if all images were calibrated using 

the same reflectance panels, this would not be an issue. However, because all images are taken 

at different times and calibrations are done separately each time, this leads to inconsistency in 

the data. By including the 44% panels the line plotted becomes too steep, which leads to 

negative values. These mistakes in calibration decrease model performance and the overall 

reliability of the data. However, most of the data was calibrated correctly and not all model 

error should be attributed to the effects of the calibration process. The multispectral calibration 

was done separately and did not include negative values. Table 12 shows a clear difference in 

the multispectral bands between the three cereal types.  
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Table 12. Average reflection values of three fields for timestep 6 and 7 for all RGB  and multispectral 

bands. 

Field Wavelength band and Timestep 

 Red Green Blue RE NIR 

 6 7 6 7 6 7 6 7 6 7 

Winter Wheat Field 2 6.7 8.4 5.9 1.5 5.3 -3.8 10.0 12.0 33.8 27.4 

Spring Wheat 7.6 4.5 7.6 5.9 4.6 -0.1 10.6 9.3 22.5 26.6 

Barley 6.5 9.7 5.8 -0.2 4.7 -8.7 12.0 16.5 36.6 36.4 

 

6.6.  Limitations  

First, assessing modelling accuracy from a CNN-LSTM can be very complex. The models used 

have an architecture that can be summarised in a diagram, but they are much more of a ‘black 

box’ model, where an input goes in, and a particular output is achieved without knowing what 

happens. The relationships the models find within the data can be incredibly complex, and this 

makes it difficult to assess how well a model performs. This research used three metrics to 

evaluate model performance: MAE, weight ratio, and slope. None of these metrics are 

appropriate when viewed separately.   

From a practical perspective, the weight ratio is the most critical metric. The eventual goal of 

modelling crop yield is to predict the yield of a whole field. If the weight ratio is 1, it could be 

said that it is a ‘perfect’ model, but it does not tell anything about what is happening within it. 

To approximate model performance, the slope was used, where a slope of 1 is ideal. A line with 

a slope of 0 cannot accurately predict singular patches but might still achieve a near-perfect 

weight ratio. Using the slope makes it possible to estimate how well the model predicts across 

different yield values, which helps understand how a model would perform in a different setting. 

However, even the distribution graphs with plotted lines only show the model's results, not the 

underlying processes. It is challenging to reason why the models are predicting in the way that 

they are. 

Additionally, the weight ratio is indirectly the parameter being optimised in building the model, 

explaining the near-perfect weight ratios for the winter wheat of 2022 in Table 10. Minimising 

the MAE separately for each patch creates a balance between negative and positive mean errors. 

This can lead to a weight ratio of 1, regardless of the size of the MAE.  

The crop yield used for predictions originally consisted of point data taken at 5-meter intervals. 

The eventual patch size used for training the model had a resolution of 8×8 pixels, which is 

40×40cm. The crop yield point data was resampled to match the resolution of the imagery. 

However, resampling from 5×5m to 40×40cm leads to considerable uncertainty in the accuracy 

of the crop yield. On average, the crop yield would still be accurate. However, this uncertainty 
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on the smaller patch scale also introduces inaccuracy into the modelling process, whereas 

accurate modelling requires accurate yield data collection (Doraiswamy et al., 2003). 

Experimentation was done with larger patch sizes, leading to lower model accuracy. This is 

likely due to insufficient training data caused by increasing the patch sizes, which lowers the 

amount batches available for training. Sufficient training data is required for a CNN-LSTM to 

be properly trained (Kamilaris & Prenafeta-Boldú, 2018). 

A final limitation is found in the data used for the modelling. The crop yield data and UAV 

imagery had a limited overlap, rendering most crop yield data unusable. Furthermore, images 

must be captured at similar dates for different fields for sequence modelling. This was a problem 

in the modelling, as barley and spring wheat imagery were taken only later in the growing 

season. This only made a part of the images usable; for barley, five orthophotos were used, and 

for spring wheat, only three were available at similar dates as the winter wheat. This made it 

impossible to perform full sequence modelling; only three-part sequence models were used on 

spring wheat. Furthermore, remote sensing data generally comes with some uncertainty 

(Gahegan & Ehlers, 2000). Environmental conditions and sensor noise introduce uncertainty, 

and the empirical line function used for calibration is an approximation for calculating 

reflection values and is far from a perfect method. 

6.7.  Future applications and considerations 

The crop yield modelling process has shown multiple positive and negative takeaways for 

future applications of crop yield modelling. The models performed reasonably well for winter 

wheat crop prediction. However, the difference in model performance for the two training 

datasets shows the importance of covering a more extensive range of values. Training a model 

on only one year of data makes the model unpredictable in its application in different years. 

Moreover, the model trained on winter wheat data from 2022 and 2023 will likely not perform 

as well when applied to different years. To produce a more robust model, input data from a 

broader range of years must be used. Even if the model is trained on multiple years of input 

data, it will remain sensitive to climatic conditions. Part sequence models using data from early 

in the growing season cannot predict extreme events such as flooding or droughts, which will 

negatively impact the eventual crop yield.    

The models used in this research were trained on winter wheat in Sweden. The models are 

trained on recognising the spatial and spectral properties of the cereal. Because of this, the 

model could also be applied to different areas outside of Sweden if appropriately trained. The 

spectral properties of winter wheat will be similar worldwide, and the model should be able to 

make accurate predictions. However, it is essential to note the soil used to grow the cereal. 

Different soils have different spectral signatures, which negatively affect crop yield predictions. 

Moreover, different countries have different management practices, affecting the final crop 
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yield during different stages of the growing season. For example, fertiliser or irrigation practices 

can influence crop yield, making the models less universally applicable.  

Besides training the model with data from more than 1 or 2 years, the modelling output's 

resolution should also be changed. In this research, the crop yield had to be down-sampled to 

match the image resolution better and to provide sufficient training samples for the CNN-

LSTM. Ideally, higher detail crop yield data would be used for modelling purposes. High-detail 

imagery has excellent benefits because it can capture details in the structure of the plant. 

However, a model can only capture this detail if it is matched by yield resolution. Otherwise, 

the yield values it predicts will never match the actual yield collected from that area. 

Downsampling orthomosaics that match the yield data could also have its benefits, but this 

would require a much larger amount of data than used in this study. Additionally, this would 

disregard the spatial patterns crops have on a higher resolution.  

Finally, this research worked with only seven timesteps during the growing season. Imagery 

captured later in the growing season has been shown to improve model accuracy, but there were 

time gaps between each drone flight. Modelling crop yield with a more continuous series of 

UAV images might better display the development of prediction accuracy over time. This lack 

of data is especially true for spring wheat and barley, where little data was available. The 

modelling of these different cereals using winter wheat-based models did not look promising, 

but this might have been due to a lack of available data.   
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7.  Conclusion 
This research focused on the prediction of crop yield of cereals using sequential UAV imagery 

and DL. UAV images were made of five different fields using five different wavelength bands. 

These images were combined into orthophotos and then calibrated to reflection values. A CNN-

LSTM model was used to use both the spatial and temporal dimensions of this series of UAV 

data. Different models were trained to investigate the effects of sequence length and timing of 

the captured imagery on model performance. Additionally, the models were trained on winter 

wheat and tested on barley and spring wheat to explore their applicability to different cereals.  

The models initially performed well on the training dataset but performed poorly on winter 

wheat data from a different year. By varying the training dataset, the overall model performance 

increased and performed reasonably well in predicting winter wheat crop yield. The accuracy 

of crop yield predictions increased further in the growing season. Part sequence models using 

data from April and May struggled to predict crop yield accurately and were outperformed by 

models using later data. The model accuracy did not improve when adding images to the 

sequence. This finding indicates that longer sequences are not necessarily better and can, at 

times, hinder model performance instead of improving upon it. Finally, the models did not 

perform well when applied to different cereals. Barley and spring wheat predictions were not 

accurate when using models trained on winter wheat. Overall, new insights have been found on 

the influence of sequence length and prediction accuracy throughout the growing season. The 

most accurate predictions will be made closer to the harvest date, though accurate predictions 

can also be made earlier.  
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Appendices 

Appendix A. The results of the first hyperparameter exploration. The table shows the 

different hyperparameters tested, the achieved MAE, and the number of epochs until a stable 

result was reached.  

 

  

Model 

Run 

CNN 

Layers 

Filters LSTM 

Layers 

LSTM 

Units 

Learning 

Rate 

Epochs to 

stable 

MAE 

1 2 32, 32 1 32 0.001 5 0.48 

2 5 128, 64, 64, 32, 

32 

1 32 0.001 7 0.49 

3 1 32 1 32 0.001 4 0.45 

4 1 32 6 32 0.001 4 0.59 

5 1 32 3 32 0.001 7 0.47 

6 1 32 1 256 0.001 6 0.46 

7 1 32 2 128, 32 0.001 7 0.45 

8 1 32 3 256, 128, 28 0.001 7 0.47 

9 1 32 1 32 0.01 4 0.67 

10 1 32 1 32 0.0001 10 0.48 
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Appendix B. The results of the hyperparameter tuning for the CNN architecture. Results were 

based on MAE. 

 

 

Appendix C. The results of the hyperparameter testing for the LSTM architecture. The LSTM 

was trained with the CNN structure from trial 36 (see Appendix B). 

Model 

Run 

LSTM layers Units 1 Units 2 Units 3 Additional MAE 

1 1 32    0.32 

2 1 32   No max pooling layers 0.73 

3 2 64 32   0.32 

4 3 128 64 32  0.72 

5 1 32   Dropout = 0.1 0.32 

6 1 64    0.32 
 


