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Abstract

This body of work covers the utility of the development of a tool for automatically
configuring the transistors in an existing netlist, according to a set of specifications.
By swapping out transistors for transistors with other Voltage Thresholds it can
achieve target speeds with acceptable accuracy and reduce the static power con-
sumption of a circuit. To make this process feasible, the tool uses approximations
to predict what configurations would meet its constraints.

In testing, it was found that the tool could affect the leakage by up to a factor
of 246 and frequency by a factor of 2.14. The tool could predict leakage with
high accuracy, while the accuracy of frequency estimations was dependent on the
architecture in question. As the tool has been iterated on, it has become more
reliable in that regard as well.

Using results from the tool it is possible to tell how big an impact Voltage
Threshold has on the performance of the circuit varies wildly with size and archi-
tecture. Depending on the technology in question, a lot of power can be saved
with relatively little effort.
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Popular Science Summary

Integrated circuits are paramount in a vast range of everyday devices, in virtually
anything that has a power cord or runs on batteries nowadays. They control vari-
ous components on the devices to enable sophisticated functionality, after specific
instructions. For basic functionality, the circuit can be painstakingly designed in
a smart way to achieve it.

But if those circuits are going to direct tasks that are more complicated than
the very simplest, they need an efficient and modular way of storing the instruc-
tions. The industry standard is using an integrated memory.

A customer will want the most efficient memory of sufficient size for their pur-
pose, to save on manufacturing costs, and to make a more energy-efficient product.
When using an off-the-shelf memory, this means they have to find a memory that
meets their minimum requirements for speed. In all likelihood, the memory will
be faster than required, but that is of no benefit to the device. That extra speed
will still come at the cost of power consumption.

For this reason, creating designs for integrated memories after precise specifi-
cations can be valuable to customers since they can now have access to memories
with minimal wasted capacity. However, creating designs is a lengthy process. In
this project, an attempt was made to create a means of slightly altering existing
designs to fit other constraints, possibly removing the need for new designs if the
specs are sufficiently close to existing designs.

To accomplish this, a tool was programmed. The tool automatically adjusts
one of the primary components of the memory, the transistors. Swapping tran-
sistors in a design is a lesser effort, as different transistor types come in the same
size. The challenge is in how many transistors there are, but for an automatic tool
that is of little consequence.
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Chapter 1
Introduction

Circuits today can contain billions of transistors [1], with several parameters that
contribute to power consumption and speed. There are also different types of
transistors with varying characteristics that make certain transistors better suited
to certain use cases. Given the quantity of components and many different ways of
adjusting a circuit, it is unfeasible to manually conduct optimizations. One qual-
ity that is of particular interest is static power consumption, also known as leakage.

After a circuit is designed, further optimizations can be achieved by swapping
out transistors for other variants. This is possible due to the transistors having
the same footprint, rather varying in characteristics such as oxide thickness and
amount of doping, among others [2]. By selecting transistor types with different
VT values the circuit can be better tailored to achieve a target frequency. This ap-
proach to optimizing circuits is further corroborated as useful by prior work such as
that by Daboul et al. [3], and Rahman and Sechen[4], at least in regards to leakage.

Discussed in the aforementioned work are implementations of optimization
algorithms that aim to reduce static power leakage while maintaining delay con-
straints. It was found in these articles that optimizing circuits based on transistor
VT could give a static power reduction as high as 34% [3] and when including
changes to transistor sizing as well it could give an average of 37% static power
reduction [4].

Reducing the power consumption of an integrated memory has the obvious
benefit of directly reducing the overall power consumption of a System-on-chip
(SoC), considering that embedded memories account for 50% of the area and 50-
70% of the overall power dissipation [5].
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4 Introduction

1.1 Scope of the thesis

This thesis project aims to design a tool that can automatically assign VT to the
transistors in the circuit in such a manner that:

• It is possible to identify what frequencies a circuit is able to achieve using
only changes to VT .

• Find at least a near-optimal VT configuration for a given frequency.

The practical reasons for designing such a tool are to save a lot of manual time
optimizing these circuits and to easily be able to determine whether a given circuit
is able to operate at the desired speed. This allows tailoring of the circuits to their
application. It could also be used for characterization of the circuit, to identify
weak spots and find which parts of the circuit can be specifically optimized to
yield higher performance. Additionally, it can serve as a powerful analytical tool
for transistor behaviors in circuits.

Eventually, the tool would be used to further analyze relationships between
transistor types and physical properties of circuits such as:

• Areas where VT has a high impact on performance.

• Total range of transistor impact on current leakage.

• Transistor behaviors between different node sizes and architectures.

This is to hopefully give an overview of the behaviors of circuits in different
circumstances, and further characterize them.



Chapter 2
Background

In this chapter, a brief overview of topics that are relevant to the project will be
given.

2.1 Basics of Integrated Circuit Components

Integrated circuits (ICs) are small chips that contain electrical components es-
sential for modern electronics. These components enable a variety of functions
in devices due to their compact size and high level of customizability. This sec-
tion highlights some of the fundamental components and concepts critical to IC
functionality.

2.1.1 The MOSFET

The MOSFET is the most basic building block in today’s digital electronics. It
is a switch that can be put in an ON or OFF state, representing the binaries
’1’ and ’0’, respectively. There are two types of these MOSFETs, N-type and P-
type. These are complimentary to each other, meaning that the N-type MOSFET
(NMOS) conducts current when a positive bias is applied to the gate, and the P-
type (PMOS) conducts current when a negative bias is applied. These two types
allow for the creation of CMOS logic units, the most common technology used in
the chip design industry [6].

Looking at Figure 2.1 it is possible to observe the cross-section of an N-type
transistor, and the terminals connected to the device. Applying a high enough pos-
itive bias to the gate terminal will create a channel beneath the oxide, conducting
current between the drain and the source terminals.

2.1.2 The Inverter

By using the MOSFET devices is possible to create the building blocks for digital
logic. In Figure 2.2 the most basic of these building blocks, an inverter, can be
observed. Giving an input of logic ’1’ to the inverter will cause the PMOS to
be shut off, and the NMOS to be switched on, causing a connection between the
output and ground, thus the output will be logic ’0’. Similarly, for a logic ’0’ input
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6 Background

Figure 2.1: Cross-section of an N-type MOSFET. Illustration by [7]

the NMOS will be switched off, and the PMOS switched on, which will pull the
output towards Vdd and subsequently give an output of logic ’1’.

Figure 2.2: Schematic of an inverter

2.1.3 Dynamic Switching

A benefit of CMOS logic over other logic architectures is that it has low power
dissipation during activation, as well as low static power consumption. This is due
to how the logic units are built. Looking back to Figure 2.2, there cannot be an
instance in a steady state where the input to the inverter causes both the NMOS
and the PMOS to be switched on, which would cause a short circuit [8].

However, during a switching event, there is a small time frame during which
both transistors could be considered half-on, which causes a short-circuit current
from supply to ground [9].

Looking at Figure 2.3 the short current spikes as a result of switching can be
observed. The contribution of short circuit current to the current spike in the
figure is not significant, but rather the discharging and charging of the parasitic
capacitance CL has a large impact on the power consumption during a switching
event. The parasitic capacitance CL arises from the transistors themselves, as well
as the wire connected to the output. The capacitance is charged when the output
is connected to VDD and subsequently discharged when the output is connected
to ground.
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Figure 2.3: Current as a result of input switching. Illustration by [9]

This current spike may not be significant for only one inverter, but for larger
circuits where many components are activating simultaneously, this can have a
great impact.

2.2 SRAM

The work in this thesis was done on Static Random Memory Access (SRAM)
memories and its corresponding control circuitry. An SRAM memory bitcell is a
cell consisting of 6 transistors, seen in the schematic in Figure 2.4. It consists of
two cross-coupled inverters (transistors Q1, Q3, and Q2, Q4) as well as two tran-
sistors (Q5, Q6) which connect the bitcell to the bitlines. Each of these cells can
store one (1) bit of data. To increase the number of bits per word, these bitcells
can be stacked horizontally, sharing only the wordline (WL) between them, while
increasing the number of words possible to be stored in memory, cells can also
be stacked vertically, which will cause the cells to share bitlines (BL, BLB). This
allows for these memory cells to have a matrix configuration, typical of any RAM
cell. Having more cells increases the capacity of the memory but makes it slower
since having multiple cells share either WLs or BLs causes these wires to be more
capacitive, i.e. slower [9].

The two latched inverters in the middle of the cell are complementary, meaning
that one side of the cell will have stored the value ’0’, and on the other ’1’. Which
side of the cell that stores the actual memory bit the cell holds is a designer choice,
and the control circuitry is designed around it.

2.2.1 Write Operation

During a write operation of the SRAM cell, one of the BLs is set to ’1’ and the
other ’0’. Which bitline is ’1’ and which is ’0’ is dependent on what bit is to be
written to the cell, and is again dependent on design choice and control circuitry.
Subsequently, the WL is set to ’1’ which would open the transistors Q5 and Q6,
setting the value at each side corresponding to the bitline at that side [9].
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Figure 2.4: Schematic of an SRAM bitcell. Illustration by [10]

2.2.2 Read Operation

For the read operation the bitlines are instead both precharged to ’1’ and after-
wards the WL is set to ’1’. This will now evaluate the state inside the cell. Recall
that in an SRAM cell, on one side the value ’0’ is always stored, and on the other
’1’ is stored. When the WL is set to ’1’ this will cause one of the bitlines to be
discharged through the side of the cell that has ’0’ stored, causing a difference in
voltage level between the bitlines. This difference will be measured by a sense am-
plifier connected to the bitlines, which will give what value the bitcell is currently
storing [9].

2.3 Voltage Threshold

Voltage Threshold represents the minimum voltage required between the gate and
source terminals of the transistor to achieve conduction in the channel. VT is im-
pacted by multiple factors during manufacturing but is ultimately a design param-
eter. Technology node refers to the semiconductor generation or manufacturing
process, they are denoted as 40nm, 22nm, 5nm, etc. The smaller technology node
means smaller feature sizes, higher transistor density, and better performance.

At manufacturing level, a higher doping concentration in the transistor chan-
nel (highlighted by x in Figure 2.1) will lower the VT , and decreasing the doping
will increase the VT . Similarly, increasing or decreasing the oxide thickness will
increase or decrease the VT respectively [2].

When designing a circuit, the designer will have a catalog of transistors made
available to them by the manufacturer of that particular technology node. This
same catalog can be used when choosing transistor types for the tool to use.
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2.3.1 Impact of Voltage Threshold on Transistor Behavior

Changing the VT of a transistor will affect the reactivity of the transistor, power
leakage in an idle state, and power consumption during operation.

A lower VT will make a transistor react to a change in voltage faster, and
can significantly reduce the time required for a circuit to produce an output.
Conversely, a higher VT will make the transistor react slower, delaying the output
of the transistor.

A lower VT will also allow more current to pass through in an idle state. In
practice, this means there will be a higher leakage from a circuit while it is not
operating. Consequently, if a loss of speed is acceptable it would be pertinent to
have as high VT as possible, to reduce this leakage effect.

In Figure 2.5 the effect of lower VT can be observed, this effect will drastically
increase the current in the idle state, while increasing the current for lower input
at the gate. This effectively means the transistor reacts to a change in voltage
quicker, resulting in a faster transistor.

Figure 2.5: Channel current effect of lowering VT . Illustration by
[9]

The relationship between the effects of VT on speed and leakage is not uniform
and varies with circuit parameters. Additionally, depending on the use case, the
circuit might spend different amounts of time in its idle state, which may further
affect what VT is ideal.

For this project, the impact of switching transistor types was evaluated in
order to understand the effect it has on delay and leakage. This can be seen in
Tables 2.1 and 2.2. To measure delay, a series of inverters were designed, as seen
in Figure 2.2 with the different transistor types mentioned, where the input was
toggled from ’1’ to ’0’ and measured the delay of the signal. For leakage measure-
ment the same configuration was used but instead, the input remained idle.

In Tables 2.1 and 2.2 some sample data from these tests can be seen, and it can
be observed that in a general scenario having every transistor with as high VT as
possible is the most effective, since changing from Extreme High Voltage Thresh-
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Table 2.1: Performance metrics for different transistor types, using
SVT as a reference point (40nm technology)

Metrics ELVT LVT SVT HVT EHVT
Delay(Factor) 0.50 0.70 1 1.77 2.05

Current leakage(Factor) 612 5.80 1 0.22 0.14

Table 2.2: Performance metrics for different transistor types, using
SVT as a reference point (5nm technology)

Metrics ELVT LVT SVT
Delay(Factor) 0.68 0.79 1

Current leakage(Factor) 115.8 11.6 1

old (EHVT) transistors to Extreme Low Voltage Threshold (ELVT) transistors in
40nm technology results in about 4 times higher frequency while increasing leak-
age by a factor of 4371. Similarly, for 5nm technology, it can be observed that
switching from Standard Voltage Threshold (SVT) transistors to ELVT transistors
yields a decrease in delay of 0.68 while increasing leakage by a factor of 115.8.

Another effect of switching VT is the impact on dynamic power consumption
during the operation of logic gates as described in section 2.1.3. Since changing the
VT will impact the speed of the circuitry, it will subsequently minimize the time
during which both transistors are switched on, as well as the speed with which the
parasitic capacitance CL discharges. This will make the current peak time seen in
Figure 2.3 shorter, but steeper.

In Figure 2.6 the effect that different VT have on dynamic current can be seen.
It is known that the switching event is faster for low VT but has a higher peak
current. This means that a circuit with full low VT transistors can be expected to
have a larger power spike when many components are being activated at the same
time, as opposed to high VT .

This data has a very clear trend. The trade-off between speed and leakage is
in clear favor of the transistor types with lower leakage, and thus in the optimal
scenario that choice would be best. But as will be detailed in this report, this
might not always be the case. Depending on how the circuit is built, a circuit
might have certain weak spots where lowering the VT will have a great impact on
the overall speed of the circuit, while not contributing much to the overall leakage
of the circuit.

2.3.2 Impact of Temperature on Voltage Threshold

Temperature has a range of effects on the behavior of a circuit in general, but for
this project, they will be mostly disregarded. If a specific operating temperature
is expected, that can be adjusted in the simulations.
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Figure 2.6: Current during a switching event for low VT and high
VT transistors. Upper: supply currents as a function of time.
Lower: Input voltage as a function of time.

One important factor of temperature is its effect on VT . Higher temperature
lowers the effective VT of transistors, and vice versa. This effect can vary between
transistor types.

According to the literature on the subject, increasing the temperature de-
creases the VT between 2-4mV/◦C [11]. Granted, this literature is from 1993, and
since then semiconductors have significantly improved. To better understand this
effect in the context of modern technologies, simulations were conducted for dif-
ferent temperatures. It was estimated that the range for the 40nm technology the
VT decrease as a function of increasing temperature was instead 0.24-0.30mV/◦C.

To compensate for these effects on temperature, simulations had to account
for temperature extremes by being run at the worst case for the desired metrics.
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2.4 Interconnect Delay vs Gate Delay

During the initial phase of the project, effort was put into understanding the
extent to which transistors influence the delay of the circuit, the two primary of
them being the gate delay (transistor delay) and interconnect delay (wire delay).
Studies and data have shown that as technologies continue to become ever smaller
with each new technology node, the interconnect delay seems to be dominating
the total delay of a path [12].

Figure 2.7: Trends in gate delay vs interconnect delay as technology
nodes continue to scale down. Illustration by [12]

Studies have shown, as can be seen arbitrarily in Figure 2.7, that the tech-
nology nodes scaling down eventually reaches a point where interconnect becomes
the dominant contributor to overall delay [12]. In the case of this project, this
would imply the power of the tool being developed also goes down as technology
nodes continue to scale. This information is further corroborated by [13] where it
is discussed how the scaling down of wires does not proportionately increase the
speed to the extent that happens when scaling down transistors.

In Figure 2.8 the measured impact that transistors and interconnects have
had on overall delay over time is shown, and as technologies continue to scale,
interconnects seem to strongly dominate the overall delay. Such information is of
interest when developing this tool since it gives an indication of what performance
can be expected.
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Chapter 3
Circuit Optimization

When designing a circuit the main consideration is function, but there are other
considerations as well. Those might for example be constraints concerning size,
shape, inputs, speed, or power usage. Furthermore, if these constraints are ful-
filled, it might be possible to optimize for some of these characteristics.

In practice, this can be difficult to do. Modern circuits can have billions
of transistors in them [14], which means manual changes are prohibitively time-
consuming. Additionally, small incremental changes will often be impractical due
to simulation times, which can be prohibitive for larger circuits.

3.1 Optimization Challenges

The purpose of the adjustments being made will generally be to reduce the leakage
of a circuit while meeting a target speed constraint. There are several complica-
tions to this goal. The largest two are

• Design Rule Checking (DRC) Issues
Issues with translating from a digital space to a physical one.

• Parameter space
A too-large number of parameters will make both simulations and estima-
tions challenging.

3.1.1 DRC Issues

DRC is the rulebook that layout designers have to adhere to when designing the
layout of the circuit. The layout is what is sent to foundries for manufacturing of
the chip and thus has to follow strict rules since not every design is manufacturable.
This rulebook is growing ever larger and with each new (smaller) technology node
the number of rules increases exponentially, making it increasingly difficult to de-
sign circuits that comply with these rules [15].

Figure 3.2 shows the layout of a full adder component with its respective
schematic in Figure 3.1, a design that is a lot more complex than the inverter pre-
viously discussed. This one instead has 28 transistors, with T different transistor

15



16 Circuit Optimization

types each transistor can assume, giving T 28 different combinations this simple
circuit could be arranged into. This would make optimization, even at a scale as
small as this, difficult. However, it turns out it is not possible to change the VT

of each transistor in the layout since they are closely packed with each other, and
this would violate DRC.

Looking at the layout in Figure 3.2 it is shown just how densely packed these
transistors are. The bottom row consists entirely of NMOS transistors and the up-
per row of PMOS transistors. The lines in between are all interconnects connecting
the transistors to the output, input, and between themselves. The straight lines
indicate the gate connections of the transistor, and to the sides of these straight
lines, the drain and source of the transistor can be seen. At this level, it is simple
to change the VT of the transistor since this would mean simply drawing a rect-
angle that signifies the desired VT over the transistor. This would as previously
mentioned cause a DRC violation since there needs to be a certain spacing between
these VT rectangles.

Figure 3.1: Schematic of a full adder. Illustration by [16]

As a silver lining to the issues the DRC presents it is not possible to change
the VT of every individual transistor, which would have most given rise to DRC
violations. Instead, the transistors have to be grouped in such a way that does
not violate these rules. This significantly reduces the number of changes that are
possible, and thus reduces the number of variables on which to optimize the circuit.
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Figure 3.2: Layout of earlier full adder schematic. Illustration by
[17]

3.1.2 Parameter Reduction

Even when DRC is accounted for, the number of changes that can be made to
transistor VT s is too large. As the number of variables scales exponentially, brute
force, ie. simulating all possible combinations, is completely obsolete for all but
the smallest of circuits. As the granularity of changes increases, so does the need
for more effective approaches to optimization.

There are many approaches to reducing the amount of variables that have
to be iterated upon. As earlier stated, identifying which areas of the circuit see
heavier traffic and which are less critical allows for increasing granularity in the
critical areas, while decreasing granularity in less important areas. Another way
to reduce variables would be to identify common trends among components and
transistors, which could allow for setting some initial components to their most
efficient configuration in the initial circuit, removing the need for adding its tran-
sistors to the list of configurable transistors.

The number of transistor types during this project often remains at or below
5. The amount of blocks can be slightly larger, but due to the aforementioned
DRC issues, they will rarely be more than 10. Only a select few will have a
measurable impact on leakage or delay, and thus many blocks without an impact
could be discarded given the need for speed. This leaves a relatively small span of
variables to work with, in the upper limit reaching single digits of millions. More
often it is beneficial to only look at the most important blocks to reduce simulation
times, which means barely thousands or sometimes even hundreds of combinations.
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3.1.3 Critical Path

Ideally, a circuit would be optimized according to its critical path. A critical path
is defined as the series of nodes with the longest combinational path in a circuit,
which will be the bottleneck for its frequency (speed). In the case of SRAM
memories, which are covered in this thesis, the speed of the circuit is known as
the access time, or read time. It is the time from when you ask the memory to
receive the stored value at the desired address (Clock is enabled) until you receive
the stored value at the output of the memory.

Figure 3.3: Critical Path defined as the longest path the input sig-
nals(A,B,C,D) take to reach the output (Y). Paths n1 + n2 is
the critical path in this image. Illustration by [18]

Focusing on optimizing the circuit primarily along its critical path would give
the best improvement of speed to leakage when shifting voltage thresholds. How-
ever, this would be too granular and could cause DRC problems, which is why in
this thesis, a more high-level approach is implemented.

3.1.4 Divide and Conquer

Divide and Conquer is a common approach to simplifying a problem by identifying
independent areas of the problem and solving those by themselves, reducing the
size of the problem temporarily, and finally adding the solutions together to solve
the entire problem. The challenge lies in finding which areas can be independently
solved, and how they are connected.

This approach was considered, and even trialed with promising results, but de-
mands an excessive amount of manual labor compared to the goal of an automated
tool. The reason is that circuits are divided into subcircuits based on function-
ality, and those subcircuits can still be interconnected. As such, simulating one
subcircuit may require the output of other subcircuits, making isolation difficult.
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Finally, this manual process would have to be repeated for each circuit design,
since the connections between subcircuits can be different, further hindering au-
tomation.

A solution could be to implement an algorithm for automatically finding a
partition with a minimal amount of connectivity, but in the case of circuits finding
a partition with minimal connectivity is an NP-hard problem known as graph
partition [19], which is outside the scope of this project.
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Chapter 4
Timing Issues

One of the primary components of a memory circuit is the timing block. This
component is responsible for making sure the different signals in the circuit are
enabled at the right times. This is done by adding capacitors that essentially act
as a sequence of timers once triggered. This requires the timers to be tuned to
certain conditions, with some pessimism to compensate for variance. Recall in
section 2.2.2 that to read an SRAM bitcell, the circuit first needs to precharge the
bitlines, followed by switching on the wordline to read the bit stored. Also, recall
that bitcells can be stacked in a matrix configuration. This means that there is a
variable amount of bitcells on each wordline and on the bitlines that depend on
the memory configuration. This will, in turn, affect how capacitive the bitlines
and wordlines are, affecting their speed.

As a result of this, bitlines will take a longer time to precharge if the bitline is
more capacitive, and similarly it will take a longer time for the bitline to discharge
through the bitcell if it has a higher capacitance. In effect, this sequence of timers
will determine the speed of the memory circuit, but this raises problems:

• How can the difference in circuit speed be measured as a result of VT changes
when speed is predetermined by the timers?

• Changing VT s might impact the conditions that are used to set these timers,
further compromising the reliability of the circuit.

The problem is that these timers will have to be attuned to every specific
circuit, which means that any adjustment to VT s calls for updated capacitances in
the timing block.

These timers are not automatically updated to account for changes in VT . This
means measurements of speed will be inaccurate, as the timers will still be set to
the time when the original circuit had its conditions fulfilled. This can lead to
wasted time if the conditions are now fulfilled faster, or a non-functional circuit
if the conditions are fulfilled slower. For this reason, the timers will have to be
updated to the new conditions, see Figure 4.1.
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Figure 4.1: Example of how a timer-controller sequence might look
before VT changes, after VT changes, and after updating timers

4.1 Timers

Sizing the capacitors is a straightforward task, but a time-consuming one. Each
change to capacitors needs to be verified with several simulations, and will likely
not be correct on the first try. Even when applying smart methods of sampling,
it will take multiple simulations to achieve an optimized timing block.

For this project, there needs to be dozens of independent adjustments at a
minimum. Since correct measurements of the delay are of the essence, this process
of running several simulations per adjustment will become prohibitively large,
even for a small circuit. Instead, an approximation method was used to idealize
the timing block using logic.

4.2 Overriding the Timing Signals

To circumvent these signals and to save a lot of simulation time, Verilog-A modules
were created to control these signals based on conditions rather than predetermined
timers. Verilog-A is an analog hardware description language that allows for the
creation of any type of analog circuit functionality [20]. With these modules the
original timing signals are overridden with the ideal Verilog-A modules, essentially
allowing the speed of the circuit to be adjusted on the fly. The conditions used for
the timing signals when designing the circuit were determined, which were then
subsequently embedded into the Verilog-A modules.
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For example: the timer for precharging is set to 1 nanosecond with the default
VT configuration. Lowering the VT of certain blocks in the circuit now makes the
precharge sequence faster, and allows the timer to be shorter, for example, 0.85
nanoseconds. The Verilog-A module will then find that the speed of the signal has
changed and will thus fire the response signal at the appropriate time. This means
the actual effect of the VT shift can now be measured, which would be that the
effect of lowering these VT s gives a speed increase of 0.15 nanoseconds to the circuit.

With this the actual effect of lowering the VT can be determined and what
the timer should be in the new circuit created from the tool. It is possible to do
this since the Verilog-A modules evaluate the signals in real-time, as opposed to
having to iteratively find the appropriate timer after the creation of the memory.
Without these modules, a complete evaluation of VT shift effects in the memory
would take weeks to a month for any mid-size memory and multiple months for
large memories. By using these modules, the time consumed is a fraction of the
original time.

4.2.1 Example Verilog-A Code

Provided here is an example of the Verilog-A code for the precharge sequence
discussed in the previous section. In SRAM memories, to read from the bitcell,
it is required that both bitlines connected to the cell are precharged to VDD, and
thus the condition the Verilog-A code uses is set such that all bitlines are at VDD

or close to VDD.

Algorithm 1 Verilog-A
procedure bitlinesPrecharged(bitlines)

for bitline in bitlines do
if bitline < 0.95*VDD then

return False
end if

end for
return True

end procedure
bitlines, enable← input
if bitlinesPrecharged(bitlines) and enable > 0.5*VDD then

precharge_finished← VDD

else
precharge_finished← gnd

end if
return precharge_finished

The pseudocode provided in Algorithm 1 shows the idea behind the precharge
module used for the thesis. The module takes all the relevant bitlines, as well as
an enable signal as input. When all the bitlines have been precharged to above
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95% VDD, it returns that the precharging has finished, and subsequently, the
next Verilog-A module uses that to continue the sequence of control signals. It
is important to note that since this is a hardware description language, the code
does not operate sequentially, as for regular programming languages. Instead it
operates concurrently, similarly to the parallel nature of circuits. As a result, the
output of all Verilog-A modules will be updated immediately upon any change to
the inputs.



Chapter 5
Algorithm

During the project, an algorithm was implemented in the Python language. This
chapter outlines how the algorithm processes a netlist to find an optimized version
of that netlist that fulfills the constraints. A netlist is a file that describes a circuit
and all its components in text format, which allows a simulation tool to simulate it.

The tool developed during the thesis is divided into three subroutines. A full
flowchart can be seen in Figure 5.1. The first subroutine uses the original netlist
and input from the user to create permutations of the original netlist. The second
subroutine simulates the permuted netlists and stores the results in a database.
The third subroutine reads the database and outputs estimations based on user-
given constraints.

5.1 Preparations

A post-layout schematic of the circuit to be evaluated is required, and it has to
have a timing block that has been optimized for the current circuit. A copy of the
circuit is created, with Verilog-A code included in it. The Verilog-A code is spe-
cific for each architecture and technology, but independent of size, since it probes
the circuit at various points and overrides the inherent signals to control them.
The names of these nodes and what is to be controlled may change depending
on architecture and technology. This means that for the optimization to work
appropriately for new architectures or technology, the Verilog-A code needs to be
adjusted beforehand.

5.2 Database

Once preparations are completed the tool will read the entire schematic of a cir-
cuit with Verilog-A code included, henceforth referred to as the ’default’ schematic.
Both an unmodified schematic with Verilog-A, as well as the original schematic
with optimized memory timings, are simulated, and the results are stored in a
database to be used as reference points for the optimization.

When the original circuit was implemented, different sections of it were de-
fined as subcircuits by the designer. These subcircuits may contain other smaller
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subcircuits, meaning the entire circuit is essentially built from a hierarchy of sub-
circuits.

In the configuration file of the tool, the user may specify any subcircuit that is
to be changed, though for subcircuits at lower levels the risks of DRC issues (from
section 3.1.1) are present.

Memory circuits are standardized enough that the same areas in the same ar-
chitecture are the usual suspects when it comes to optimizations, giving the option
to focus on those areas if the user is familiar with the circuit.

Once the different areas of optimization have been selected, as well as the differ-
ent transistor types that can be chosen, one schematic is generated from the default
for each combination of bounded area and transistor type. The schematics are sim-
ulated in a standardized manner, and the results are saved to the database that
will be used for optimization. Additionally, the difference between each schematic
and the references (default with and without verilog-a) are stored in the database.

Simulations are done in worst-case scenarios for frequency and leakage respec-
tively, accounting for both variations in manufacturing and temperature. While
this increases simulation time, it also ensures that the database gains pessimistic
data. If simulations were only made with no regard for variations or temperature,
the results could be unreliable, as previously discussed in section 2.3.2.

5.3 Optimization

From the database, statistics for all different transistor configurations are read.
These statistics are then used to extrapolate all possible combinations of transis-
tor changes, to create a set of theoretical circuits that can be achieved through
changes to VT . By comparing the theoretical to the ’default’ schematic, these
combinations are each given an estimation of what frequency and leakage they
would have.

Any combinations that do not fit the constraint are removed from the set. The
set is then converted to a list and sorted by leakage. A sample of the most efficient
combinations that still fulfill the constraint will then be provided.

The user may also specify if the tool is to create an actual netlist based on the
optimal configuration.

5.4 Algorithm Pseudocode

In this section, the steps of the algorithm are detailed in pseudocode: partitioning
the netlists (algorithm 2, Partitioner in Figure 5.1), running the simulations
(algorithm 3, Simulation in Figure 5.1), and finally doing optimizations from the
database generated from the simulations (algorithm 4, Optimizer in Figure 5.1).
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Algorithm 2 Partitioning
sub_blocks, transistor_types← input
InjectV erilogA(default_netlist)
SaveNetlist(default_netlist)
for every sub_block in sub_blocks do

for every transistor_type in transistor_types do
new_netlist← CreateNetlist(sub_block, transistor_type)
InjectV erilogA(new_netlist)
SaveNetlist(new_netlist)

end for
end for

Algorithm 3 Simulating
sub_blocks, transistor_types← input
default_netlist← ReadNetlist(input)
speed_data← SimulateSpeed(default_netlist)
leakage_data← SimulateLeakage(default_netlist)
SaveToDatabase(speed_data, leakage_data)
for every sub_block in sub_blocks do

for every transistor_type in transistor_types do
edited_netlist← ReadNetlist(input)
speed_data← SimulateSpeed(edited_netlist)
leakage_data← SimulateLeakage(edited_netlist)
SaveToDatabase(speed_data, leakage_data)

end for
end for

Algorithm 4 Optimization
database, constraint← input
combinations← GenerateCombinations(database)
for combination in combinations do

if combination < constraint then
combinations.Remove(combination)

end if
end for
SortByLeakage(combinations)
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Chapter 6
Results

This chapter gives an overview of the final results of a few different circuits that
were adjusted with the tool.

6.1 Circuit spans

A tool was developed that allows optimizing a circuit with little input from the
user. A schematic has to be provided and some configurations have to be speci-
fied. When optimizing a circuit it is important to keep in mind that the results are
approximations and to make sure to have an error margin. Especially in smaller
circuits, approximation is more difficult.

The following plots represent all the estimations the tool has made for a specific
circuit. Every cross and dot represents one single configuration. Dots represent
combinations that may be optimal depending on constraints, and the line indicates
the trend of optimal configurations. Frequency is displayed on the horizontal axis,
and leakage is displayed on the vertical axis. The vertical axis is logarithmic.

Note that all of the plots in the following result sections have normalized
results, to comply with NDAs and instead show factor increase, where the (1.0,1.0)
datapoint is the slowest circuit, with the lowest leakage. Circuits will henceforth be
referred to by their size in Kilobits(Kb) and their technology node. In this section,
four circuits of two different node technologies will be covered, one smaller and
one larger each.
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6.1.1 4Kb 40nm circuit

Plots of the circuit can be seen in Figures 6.1 and 6.2. The plot in Figure 6.1 has
a logarithmic y-axis, to allow for a better view of results in low leakage ranges.

Compared to the permutation with the lowest leakage, the fastest permutation
shaved off almost half of the total delay, equivalent to a factor of about 1.88 increase
in frequency. However, this comes at the cost of an increase in leakage by a factor
of over 230.

Figure 6.1: Normalized plot of different combinations for a small
memory cut in 40nm technology. Circles show the best possible
combinations, other combinations shown with crosses
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Figure 6.2: Normalized plot of different combinations for a small
memory cut in 40nm technology. Circles show the best possible
combinations, other combinations shown with crosses

Combination Frequency Leakage
Minimum Leakage 1 1.02
Maximum Leakage 1.82 246.1

Minimum Frequency 1.07 1
Maximum Frequency 1.88 236.6

Table 6.1: Relative effects of extremum points in the Small 40nm
circuit.
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6.1.2 32Kb 40nm circuit

For the large 40nm circuit 5 different VT s and 4 different blocks were chosen to
optimize, this gave 625 different permutations of the circuit. In Figures 6.3 and
6.4 all of these permutations can be observed as datapoints (denoted by crosses),
as well as the line denoting the optimal configurations for the desired frequency.
Figure 6.3 has a logarithmic y-axis, which allows results in the lower leakage range
to be compared.

For this circuit, the range of frequencies available through VT changes alone
can accomplish a factor increase of 2.14 as opposed to the slowest possible circuit,
while in that case also increasing leakage by more than 200. This relationship of
a larger leakage increase compared to a smaller speed increase was also observed
in 2.5.

Figure 6.3: Normalized plot of different combinations for a large
memory cut in 40nm technology. Circles show the best possible
combinations, other combinations shown with crosses. The y-
axis is logarithmic.
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Figure 6.4: Normalized plot of different combinations for a large
memory cut in 40nm technology. Circles show the best possible
combinations, other combinations shown with crosses. The y-
axis is logarithmic.

Combination Frequency Leakage
Minimum Leakage 1 1
Maximum Leakage 2.14 202

Minimum Frequency 1 1
Maximum Frequency 2.14 202

Table 6.2: Relative effects of extremum points in the Large 40nm
circuit
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6.1.3 1Kb 5nm circuit

Figure 6.1 shows the plot extracted from the 1Kb 5nm circuit, this circuit was
initially skewed towards lower VT transistors, which allowed for large leakage re-
ductions. Again, this comes at the cost of reduced frequency. The minimum and
maximum frequency differ by a factor of roughly 1.5, while minimum and maxi-
mum leakage differ by a factor of almost 2. In the 5nm circuits, fewer variables
had a large impact on the speed. This leads to larger gaps between configurations.
It is possible that in small circuits like these, it could be useful to increase the
granularity of variables to get a better selection of options.

Figure 6.5: Normalized plot of different combinations for a small
memory cut in 5nm technology. Circles show the best possible
combinations, all combinations shown with crosses

Combination Frequency Leakage
Minimum Leakage 1.007 1
Maximum Leakage 1.48 1.93

Minimum Frequency 1 1.26
Maximum Frequency 1.50 1.88

Table 6.3: Relative effects of extremum points in the Small 5nm
circuit
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6.1.4 40Kb 5nm circuit

In the 5nm circuit, there were not as many variables used as there were for the
40nm circuit. There were only 3 different threshold voltages available as well, and
only 3 blocks could be identified that would yield any increase in speed along the
critical path. As a result of this, there were only 27 different permutations. It
was observed that there is a frequency span of 1.0-1.39 and a leakage span of 1.0-
2.3, and again the plot seen in Figure 6.6 displays the optimal configurations for
each desired frequency that can be achieved, although the data points are highly
discretized as a result of few variables.

Figure 6.6: Normalized plot of different combinations for a larger
memory cut in 5nm technology. Circles show the best possible
combinations, all combinations shown with crosses

Combination Frequency Leakage
Minimum Leakage 1 1
Maximum Leakage 1.39 2.30

Minimum Frequency 1 1
Maximum Frequency 1.39 2.30

Table 6.4: Relative effects of extremum points in the Large 5nm
circuit
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6.2 Tool-generated Circuit

Running the tool will output a list of combinations that are estimated to meet
the constraints that have been given to the tool. For each combination, the differ-
ent selections of VT are displayed along with the estimated frequency and leakage.
This list will be sorted by leakage, displaying the lowest leakage combinations first.
Table 6.5 provides a few combinations selected from an output using an arbitrary
constraint, on an arbitrary circuit. Only a few results were selected to be displayed
in this table, to help highlight noteworthy results.

In Table 6.5 the values are normalized. Frequency is normalized to the arbi-
trary constraint that was set for the tool in this specific case, meaning a frequency
above 1 meets the constraint, and a frequency below 1 fails to meet the constraint.
Leakage was normalized to the default circuit so that the leakage is represented as
a factor of the default circuit leakage.
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6.3 Runtimes

Runtimes from the tool were evaluated for the circuits that the optimization was
run on. The results can be seen in table 6.6. For this evaluation, the number of
variables ran for 40nm technology was 5 subcircuits and 5 transistor types, while
for 5nm technology, it was 3 subcircuits and 3 transistor types. Creating the plots
and running the optimizations from the generated databases had a runtime of less
than a second in all cases, and were thus omitted from the table.

Run type 4Kb 40nm 32Kb 40nm 1Kb 5nm 40Kb 5nm
Partitioning 00:01:40 00:06:22 00:03:57 00:35:19

Simulation + DB creation 01:05:01 09:22:40 01:36:55 23:08:40

Table 6.6: Runtimes for different chip sizes and technologies, in-
cluding the different types of runs for the thesis, times shown
in HH:MM:SS.

As can be seen in table 6.6, most of the time is spent on the simulations. For this
tool, they are the bottleneck when it comes to the runtime of the algorithm. As
can be seen in the simulation time of the 40Kb 5nm, not overriding the timing
signals would cause runaway simulation times, see section 4.2. There are some
other ways of speeding up simulation time, other than reducing the number of
simulations, such as increasing the number of cores the simulator is run on or
reducing the size of the netlist. Reducing the netlist is a very attractive way of
reducing simulation times, however it is at present out of reach. For the presented
runtimes, an unreduced netlist with overridden timing signals was simulated using
8 cores.

Comparing the 40nm simulations, an increase in size by a factor of 8 leads to
an increase in the total simulation time by about 8.7. For the 5nm, an increase
by a factor of 40 in chip size leads to an increase of about 14 in overall simulation
time. This data is insufficient to predict the relationship between chip size and
simulation time. It is interesting to note the difference in simulation times between
the technology nodes, although the 1Kb 5nm chip is a quarter as spacious as the
4Kb 40nm chip, the simulation time, as well as partitioning time were both larger.
This can also be observed when comparing the 32Kb 40nm with the 40Kb 5nm
chips. The difference in partition and simulation times can be attributed to the
increased circuit complexity and larger file sizes for smaller technology nodes.
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Discussion

This chapter will discuss the results and interesting findings during the project.
Additionally, potential sources of error that could compromise the validity of the
results will also be discussed.

7.1 Results

As can be seen in the earlier results, the effect VT has on a circuit can vary dramat-
ically. Frequency can be more than doubled in some cases, while in other cases
it can not reach more than a 30% speedup. Leakage has an even larger range,
sometimes increasing a hundredfold for a modest increase in frequency.

Depending on the use case, even these large leakage increases may be accept-
able. An off-the-shelf memory that fits the constraints for frequency and memory
size might be too large, or drain an unacceptable amount of power. The limita-
tions of physical space can be as challenging as those of speed.

The plots in section 6.1 give some insight into circuit behavior. Using plots
of circuit characteristics when changing VT , it is possible to compare circuits of
the same technology but different sizes. These comparisons help to give an idea
of how circuit size affects the flexibility of the tool. At several places in the plots,
there are large steps in either the horizontal or vertical axis. This indicates that
granularity might be too low for some components, and can be used to identify
interesting areas of optimization.

The non-logarithmic plots for the 40nm circuits show that after a certain point,
increasing the frequency of these circuits becomes very costly. This can also be
observed in the 5nm circuits, though not to the same extent. Knowing at what
point this increase in cost occurs can inform if a frequency can be achieved at a
reasonable cost or not. It is worth pointing out that due to the low granularity,
the real cut-off point might have been offset slightly.

Table 6.5 highlights how the output of this tool can be used to identify trends
in circuit behavior. For example, subcircuit 3 seems to consistently be set to SVT
in this case, meaning that it is likely an efficient change compared to some of the
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transistors of other subcircuits, which are more varied. As earlier mentioned, this
may be a result of low granularity, and in this case might hint at good areas for
increasing granularity, if possible.

Also of note is that the frequency margin is very small. Table 6.5 shows
that many results have less than a percent of margin from the constraint. It is
important that the user is aware of this, and adds their pessimism to the initial
constraint or makes sure to select a result with sufficient margin.

7.2 Verilog-A

The final method uses the Verilog-A as a key component to reduce the number
of simulations and allow the tool to evaluate the effect that VT shifts have on
each subcircuit. This method of using Verilog-A to determine pulse widths just in
time can be applicable in many different areas. It could be used for optimization
of other types of circuits, not just memories, given that the circuit has control
signals with pulse widths that need to be altered as a result of a VT shift. It could
also be used for any process that uses iterations to determine pulse widths, such as
the one for sizing the capacitors for the timers discussed in section 4.1. Employing
Verilog-A would enable a single-step determination of the timers, with reservation
for potential errors that might occur with the Verilog-A method, discussed later
in section 7.3.3.

7.3 Potential Sources of Error

In this section, potential sources of errors identified that might cause the approxi-
mations from the tool to be incorrect will be discussed. In most cases, the tool was
able to correctly estimate speed and leakage within 5%. This 5% error remains
unexplained but might come from the reasons listed below.

7.3.1 Linear Approximation

It is important to note here that transistors are nonlinear devices, they can be used
to create amplifiers due to their non-linear nature. In the approximations done
when optimizing in this thesis, the effect of a VT shift on a subcircuit is assumed
to have a linear impact on the rest of the circuit. The assumption being made is
that the measured impact VT shifts have on each subcircuit could be linearly com-
bined, and in that sense, the total number of circuits that could be created from
the tool was substantially increased. As mentioned in 3.1 there can be created
TB combinations of subcircuits and VT shifts, but to simulate all combinations
would be unfeasible. Instead, only the behavior of each subcircuit was simulated
for all different available threshold voltages and the estimation was that adding
the speed differences together should yield the approximate speed for the specific
circuit.
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These approximations may cause errors in the calculations since signals are
not perfectly sequential and may instead overlap, especially when moving towards
lower VT . Figure 7.1 shows the signals for an inverter chain, where one of the chains
contained purely LVT transistors, and the other purely EHVT transistors. The
non-linearity can here clearly be seen from the output of the inverters compared to
their inputs, this non-linearity effect can also be seen for LVT as an exacerbated
case, where the overlap is greater. There is a suspicion that this effect might cause
approximation issues when having signals go from a low VT subcircuit to a higher
VT subcircuit.

Figure 7.1: Upper: LVT Transistors, Lower: EHVT Transistors.

7.3.2 IR drop

To add to the previous section, IR drop is the effect of supply voltage and ground
level converging toward each other during the activation of key elements in the
circuit. This happens when many components of the circuit operate at the same
time, recall in 2.1.3 that during the switching event of CMOS logic, there is a mo-
mentary period in which both transistors of the inverter are on, creating a direct
path between supply and ground, as well as parasitic capacitances being charged
or discharged. During this time, supply and ground will converge toward each
other as seen in Figure 7.2. This affects the whole circuit and makes it slower. To
add on to that, lower VT transistors further exacerbate this effect, by making the
drop deeper but faster, as was discussed in section 2.3.1 with direct path currents.
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This effect of the change in IR drop when changing the VT of transistors is
difficult to account for when only measuring the effect of switching the VT of one
subcircuit at a time, which was the case for this thesis. As a result of this, the
approximations for switching many subcircuits to lower VT may be compromised.

Figure 7.2: Voltage drop and ground bounce as a result of direct
path current. Illustration by [21].

7.3.3 Verilog-A Models

Another source of errors in the approximations may be the Verilog-A models them-
selves. When using these models, the generated signals will be ideal. This means
that they are not impacted by parasitic effects and are instead instantaneous, some-
thing that does not occur in real circuitry. This can be seen depicted in Figure 7.3.

Figure 7.3: Top: Verilog-A generated signals, Bottom: Actual sig-
nals
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An important thing to note is that the approximation error does not arise
from the difference in pulse width between the two, since this can be accounted
for, rather the difference in rise and fall time for the signals, as well as the delay
between the signals, which the Verilog-A models do not have.
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Chapter 8
Conclusion & Future Work

This chapter is a summary of the conclusions that can be drawn by looking at
the results and comparing them to initial goals and expectations. Further, it will
detail what potential future work can be made with this project as a basis.

8.1 Voltage Threshold

It can be concluded that leakage increases greatly when changing to lower VT tran-
sistors, but not to the extent that was described in section 2.3.1. This is partly
due to the memory circuits primarily being comprised of bitcells. For this the-
sis, the VT of the bitcells remained unaltered. This choice was made for multiple
reasons, but the main one is that changing the type of bitcell can alter the lay-
out of the bitcell, which would then need larger changes in the layout of the circuit.

Furthermore, the observed effect that the tool was able to have greater control
over the 40nm circuits was also previously discussed in section 2.4. The frequency
span for the 5nm circuits was at a maximum of 1.0-1.49, while the 40nm circuits
had a frequency span maximum of 1.0-2.18. The cause of this is believed to be:

• Larger interconnect delay relative to gate delay for smaller technology nodes.

• Fewer available variables with which to optimize the circuit.

The extent to which either of these effects has an impact on the observed frequen-
cies remains uncertain.

The effect of transistors on frequency is also proven to be lower than was
observed in isolated transistors, but not as dramatic as the difference in leakage.
There is still a meaningful range of changes that can be made to affect the speed
of the circuit.

8.2 Tool

In conclusion, the tool achieved the initial goal of providing an optimized version
of a circuit given a constraint. The tool allows the user to take a circuit and make

45



46 Conclusion & Future Work

hundreds of variations of it. These all have different properties, and the tool will
provide the most optimal combination for the desired frequency.

The tool also allows for identifying parts of the circuit that have a larger effect
on the overall speed while not impacting leakage as much. The plots in section 6
only show data points for this thesis, but internally it gives a good understanding
of what changes can be made to the chip to speed it up to yield a higher frequency
at low leakage cost.

With this tool, instead of manually adjusting an existing circuit, or creating
a new one from scratch, a designer can just entice it with one or a few delectable
circuits along with some configurations and constraints. The tool will then provide
a list of the most optimal permutations of the circuit unless it is not possible to
meet the constraint. This can save a lot of time by removing the necessity of
designing a new circuit.

8.2.1 Future Relevance

As technology advances, the sizes of transistors decrease. As this thesis has shown,
smaller transistors make up less of the contribution to the total speed of a circuit,
as discussed in section 2.4. This will mean that the total effect adjustments of
transistors can have on a given circuit will likely decrease with time. In all likeli-
hood this will result in the tool having a smaller span of possible circuits, and thus
a smaller chance of successfully converting a circuit to one that meets constraints.

However, the tool requires little effort from the user. And if it successfully
finds a circuit that meets constraints, it saves a lot of work. Additionally, Moore’s
Law has been predicted as not holding for much longer [22]. Node size is still
decreasing but is unlikely to become much smaller. As such, the tool will retain
some relevance as long as transistors do.

8.3 Further Work

While this project has given some interesting results, and can to some extent
already be used, there remains work to be done to have a commercially viable VT

optimization tool.

• Increase Accuracy
While there is no accuracy error unaccounted for to the extent of 5%, subse-
quent iterations of running this tool gave greater insight into how to improve
this accuracy further and the tool should be iterated upon until an accept-
able level has been reached.

• Add bitcells as a selection variable
Since the tool is intended to be used for memory circuits, it would be a great
option to allow for different types of bitcells or different bitcell VT .

• Incorporate dynamic power consumption as a metric
In this thesis, only speed and leakage were covered as metrics on which to
optimize, however, it would be interesting to add dynamic power as a metric.
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• Increase granularity and/or design variables
For this thesis, the choice of design variables was quite shallow to limit DRC
issues, it is possible to increase the granularity or add more blocks as part
of the optimization, but it requires better insights into the inner workings
and layout of the circuits.
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