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Abstract 

Leaf Area Index (LAI) is an important parameter for monitoring vegetation status and 

estimating crop yield, essential for precision agriculture, forestry and natural resource 

management. Therefore, estimating the LAI with high spatial resolution and temporal 

flexibility is crucial for providing precise and timely information to make informed 

decisions. This study focuses on optimizing the estimation of LAI in winter wheat 

across different growth stages by integrating spectral data and plant height, with a 

high spatial resolution of 4 cm × 4 cm and 5 cm × 5 cm respectively, which derived 

from Unmanned Aerial Vehicle (UAV) imagery. The research investigates which 

spectral bands or vegetation indices (VIs) are most effective for LAI estimation, the 

variability of LAI estimation across growth stages, and the enhancement of LAI 

estimation through the addition of plant height data. The result of the coefficient of 

determination (R2) showed that the Normalized Difference Red Edge (NDRE) was the 

most effective single feature for LAI estimation (R2 = 0.64), followed by the 

Chlorophyll index with red edge (CIrededge) with an R2 of 0.56, while red edge (REG) 

reflectance showed limited predictive capability (R2 = 0.01). Models incorporating 

multiple features generally improved estimation accuracy, demonstrating the benefit 

of multi-feature models. The combination of height and CIrededge achieved the 

highest predictive accuracy and lowest error rates for multi-feature models, with an R2 

of 0.82 and a root mean square error (RMSE) of 0.37 m²/m². Growth stage-specific 

models further refined LAI estimation, with vegetative and productive  stages 

showing distinct performance variations. The study concludes that NDRE can 

estimate LAI with a high accuracy overall while integrating the CIrededge and height 

data from UAVs enhances the precision of LAI estimation significantly, and the 

consideration of growth stages is necessary. 
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1. Introduction 

Winter wheat (Triticum aestivum L.) is a commonly grown grain crop in Europe 

(Kristensen et al., 2011). The entire growing cycle of winter wheat begins from the 

vegetative phase, then to the early reproductive phase and late reproductive phase, 

plus the stage of grain filling complete one growing cycle (Slafer et al., 2021). In 

Northern Europe, winter wheat is usually sown from mid to late September and 

initiates the tillering before the winter dormancy period. As light and temperature 

conditions become suitable, winter wheat greens up and progresses into the 

reproductive phase. This period is called the vernalization. Harvesting of winter wheat 

generally occurs from late July to early August.  

According to the Eurostat (EuropeanCommission, 2024) common wheat and spelt 

account for about 43% total Europe's annual production of main cereals (2019-2021 

average). Within the common wheat and spelts category, winter wheat took over 96% 

of the total production which was one very important main food supplement. In 

Sweden, winter wheat accounted for approximately 51% of the total cereals 

production in 2022, with a yield of 3.018 million tonnes (SCB, 2023). However, the 

stability of grain production is under the threat of global warming, which has been 

proven that climate change can lead to a change in wheat yield (Faye et al., 2023; 

Webber et al., 2018). Therefore, monitoring the growth status of winter wheat to 

achieve the expected yield is crucial for ensuring food security. 

Over the years, various methods have been developed to ensure the healthy growth of 

winter wheat and accurately estimate its final yield. From the early use of radar to 

estimate plant moisture content (BUSH, 1976) to the more recent development of 

spectral vegetation indices for detecting wheat diseases (Ashourloo et al., 2014), these 

techniques cover a wide range of applications and have significantly advanced our 

understanding of wheat crop management. Among them, the leaf area index (LAI) 

which is defined as the sum of green leaf area per unit area of land (WATSON, 1947) 

has become a common and useful variable for monitoring crop growth, health and 

production. Since the LAI of winter wheat exhibits systematic variations within a 

certain range in different growth stages, monitoring changes in LAI can be used to 

assess its growth status, especially in assisting the final yield prediction (Kanning et 

al., 2018). The direct method of LAI estimation is to cut off every leaf within one unit 
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area and sum up the areas of these cut-off leaves, which provides the most precise 

LAI value. It is suitable for a small range of measurements but when the monitoring 

range is larger than a couple of fields, it is very common to use indirect methods to 

estimate LAI. Indirect methods generally analysed the relationship between the LAI 

and other variables which are more easily to obtain.  

Variables such as various vegetation indices can be acquired through remote sensing. 

Satellite remote sensing as the most typical remote sensing method has a large-scale 

temporal and spatial extent. However, satellite remote sensing commonly with a low 

spatiotemporal resolution. Furthermore, the vast distance between satellites and 

observed objects also results in images being greatly affected by weather conditions 

such as the block of the clouds. So, there will be a data gap for overcast days. In this 

study which aims to monitor LAI on a field scale and at high spatial resolution, a high 

precision is necessary. Thus, satellite remote sensing is not the best option. On the 

contrary, unmanned aerial vehicles (UAV) remote sensing, with its high spatial 

resolution and flexibility in time and location, is more suitable for small-scale areas. 

Since the VIs are computed based on the radiation reflectance of the plants, the 

abnormal values often represent the suboptimal health status of plants. Besides VIs 

combined different bands can overcome the limitations of the single band (Fang et al., 

2019). Based on the usage, UAV can be equipped with different sensors to compute 

different VI.  For example, Yan et al. (2022) chose sixteen common VIs to estimate 

cotton LAI. Many researchers have analysed the relationship between VIs and LAI. 

The common models for estimating the LAI include simple linear, polynomial, 

exponential, or logarithmic relationships (Qi et al., 1994). More sophisticated methods 

such as using machine learning to build the regression model have been widely used 

these years (Fang et al., 2019). For it can not only handle complex associations 

between many variables (Azadbakht et al., 2019) but can provide a better regression 

model for the large dataset. 

The main aim of this study is to optimize the accuracy of LAI estimation of winter 

wheat across growth stages at high spatial resolution. By using UAV remote sensing, 

the data can be captured on flexible dates according to the actual usage. So, the study 

will focus on a better understanding of the variables which can be used to estimate 

LAI or will influence the measurement of LAI from UAVs in different growth stages. 
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The possible variables are the VIs based on the red edge band (REG) and near-

infrared band (NIR); and the plant height based on the UAV-derived digital surface 

model (DSM).  

The following questions will be answered: 

(1) Which spectral band or which VI perform the best in estimating winter wheat LAI? 
(2) Does the estimation of LAI vary across different growth periods? 
(3) Does the addition of the plant height enhance the LAI estimation? 
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2. Background 

2.1 Growth stage of winter wheat 

The growth stage can be defined on a quantified scale make ensure the consistency of 

the winter wheat across different times, locations, cultivation methods, and various 

species. According to Zadoks growth scale, winter wheat together with other cereal 

crops have ten principal growth stages which are: 0- Germination; 1- Seeding growth; 

2- Tillering; 3- Stem elongation; 4-Booting; 5- Ear emergence; 6- Flowering 

(anthesis); 7- Milk development; 8- Dough development; 9- Ripening (Zadoks et al., 

1974).  

2.2 LAI and crop growth monitoring 

According to Watson (1947), the leaf area index has been defined by summing all of 

the leaf areas within one unit area of land. In other words, in one unit area, the more 

leaves area it has, the higher LAI it will be. Since plants acquire energy and 

accumulate carbon through photosynthesis conducted by the green leaves, the value of 

LAI can indicate the growing condition of the vegetation. When the plants are under 

water and nutrition stress, insect and disease attacks and unsuitable weather, the 

number and area will change thus leading to the changing of the LAI. Monitoring the 

changing of LAI during the growing season can help understand crop growth status, 

optimize the irrigation and fertilization of the farmland and inspect the negative 

factors in an early stage (Cheng et al., 2024). LAI also has been widely used to 

estimate the biomass, chlorophyll content and yield of crops (Yu et al., 2023). By 

measuring LAI regularly, farmers can optimize field management and predict the 

potential yield which can minimize planting expenses and mitigate resource 

inefficiencies to increase the financial returns. 

2.3 Vegetation index and remote sensing 

Vegetation absorbs a portion of solar radiation while simultaneously reflecting other 

parts of the electromagnetic spectrum. Water accounts for 50% to 80% of the leaf's 

fresh weight which leads the leaf to absorb more electromagnetic radiation in NIR 

(700 – 1300 nm) and shortwave infrared (SWIR, 1400 – 3000 nm) wavelengths (Liu 

et al., 2016). Besides, plant leaves contain plant pigments, particularly chlorophyll, 

absorbing the blue and red regions of the visible waveband (450 – 495 nm and 620 – 
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750 nm) strongly while performing high reflectivity and transmissivity in the green 

band (495 – 570 nm) (Arkebauer, 2005). Based on reflectance characteristics, 

different bands can be combined in many ways according to the specific objectives 

(Foley et al., 1998).  

Remote sensing detects and records the reflectance information by using passive 

sensors on the remote sensing equipment at a distance (Xue & Su, 2017). Therefore, 

spectral characteristics changes of green leaves, canopy and the soil are the common 

objectives for vegetation remote sensing. Because the canopy is a collection of leaves, 

the canopy spectral reflectance is functionally linked to the LAI which has been 

researched by many studies in recent years (Haboudane et al., 2004).  

2.4 Methods to estimate LAI 

The main categories for methods to estimate LAI include direct, semi-direct and 

indirect methods.  

The direct method or the traditional method provides the real LAI which is only 

related to foliage (Bréda, 2003). In this method, LAI is simply computed by summing 

up the areas of all cut-off leaves within one unit area. The direct method can be very 

precise but needs to destroy the samples and thus cannot be used at a high frequency. 

It also cannot be used on a large scale because it highly depends on human labour and 

consumes time. The way to choose the samples can lead to a high deviation result so 

the direct method always needs several repetitions to reduce the errors (Černý et al., 

2020). Moreover, the limited dataset size further constrains relevant research avenues.  

Based on the direct method, the semi-direct methods can estimate LAI by correlating 

the LAI with plants' dry mass (Bréda, 2003) or counting the number of leaves that 

touched a vertical probe equipment (Wilson, 1960) without cutting the plants every 

time. Semi-direct method can not only decrease the disruption to the plants but 

relatively reduce the workload as well. However, the method still can only focus on 

the selected time and points which is not suitable for large scale or high temporal 

resolution. 

Indirect methods estimate LAI by establishing and utilising mathematical models to 

predict LAI. Unlike the direct or semi-direct methods, indirect methods do not harm 

the plant and can be used with a range of scales. They can be divided into the 
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proximal and remote sensing methods, deriving the LAI according to some more 

easily measurable parameters (Černý et al., 2020). The proximal methods are using an 

active sensor such as the spectrometer to measure the radiometric reflectance or using 

a digital camera to take plant images to calculate the gap fraction (Yang et al., 2023). 

The remote sensing methods measure and acquire the radiometric data at a distance. 

Based on the radiometric data, the VIs and texture features can be calculated and 

extracted. Many papers have described the variation of different VIs and different 

vegetations (Qiao et al., 2022) and have extracted six texture features to analyse 

maize LAI. And for the gap fraction computed from the cameras, can be used as the 

independent variable in the Beer–Lambert law which defines the relationship between 

the gap fraction and LAI (Yang et al., 2023). 

Among these methods, spectrometers and digital cameras are mostly used in field 

work to compute the ground truth LAI. Remote sensing techniques such as drones and 

satellite RS are more suitable for establishing predictive models on larger temporal 

and spatial scales. Due to its multispectral bands and diverse products, satellite remote 

sensing has been widely used to compute various VIs. However, the data is sensitive 

to weather conditions (Yan et al., 2022). Furthermore, the low spatial resolution 

restricts its estimation precision on LAI and the fixed orbit restricts the temporal 

flexibility of satellite remote sensing data acquisition. UAV is often chosen to 

estimate field scale LAI in order to ensure the timeliness of data and the accuracy of 

prediction. Depending on the budgetary constraints and research objectives, UAVs 

equipped with varying sensors can be selected accordingly. 
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3. Materials and methods 

3.1 Study area 

The study was conducted in Alnarp on the three rainfed winter wheat fields in 

Southern Sweden (Figure 1). The area is characterized with a relatively flat terrain. 

The mean annual temperature and precipitation (1981- 2010) are around 8 °C and 

5500-750 mm (Williams et al., 2020) in this region (Skåne County). In 2023, over 40% 

of the agricultural area in Skåne was used for grain plants, and 46% of the grain 

farmland was used for planting winter wheat (JordbruksverketsStatistikdatabas, 2023). 

 

Figure 1. Study area in Sweden map and local county map. Fields are located in Alnarp, southwest 

Skåne, south Sweden. Coordinates are displayed in the projected Coordinate System SWEREF99 TM. 

 

3.2 Field data measurements 

Field data included wheat LAI and wheat height, collected during almost the entire 

growing season (from April to July) at approximately two-week intervals. The growth 

stage of wheat at each sampling time was defined based on the Zadoks growth scale 

(Zadoks et al., 1974), which allowed the analysis of changes in LAI and various 
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variables during different growth periods. Based on the date of sowing in the 

experimental fields and the phenological characteristics, the rough growth stages with 

the date of each field data measurement are displayed in Table 1. The example photos 

of four representative growth stages are displayed as oblique images (Figure 2). Since 

the data was collected about every other week, there was no specific data for the ‘Ear 

emergence’ period and ‘Flowering’ period. Instead, the data indicated a middle stage 

of these two periods. 

Field data were collected within three experimental fields in this study (Figure 3).  

Every field had two measurement sampling plots. The size of each of the sampling 

plots was approximately 50 × 50 square meters. Every sampling plot contained five 

sampling points (four on each vertex and one on the centre) and there were two 

separate sampling points distributed among the experimental field one. In summary, 

the total number of samples was 32 (Table 1), where field one had 12 sampling points, 

and fields two and three both had 10 sampling points. The distribution of sampling 

plots is displayed in Figure 3. On each sampling point, a flag marked with a sample 

identifier was fixed in the soil to ensure location consistency. The sampling point 

number and its specific coordinates can be found in Appendix 1. 

Table 1. Date and growth stages of field measurement for winter wheat. ‘Nr.’ Represents ‘The number’. 

Nr. of field 

measurement 
Date  Zadoks growth scale 

Nr. of sample 

points 

1 April 5, 2023 2- Tillering 32 

2 April 20, 2023 3- Stem elongation 32 

3 May 3, 2023 3- Stem elongation 32 

4 May 17, 2023 4- Booting 32 

5 May 24, 2023 4- Booting 32 

6 June 7, 2023 
5- Ear emergence 

6- Flowering 
32 

7 June 20, 2023 7- Milk development 32 

8 July 4, 2023 8- Dough development 32 

9 July 18, 2023 9- Ripening 32 
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Figure 2. Oblique images of winter wheat of various growth stages. 
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Figure 3. Orthomosaic image of three experimental fields in 2023, displaying the location of 32 

sampling points for this study. Coordinates are displayed in the projected Coordinate System 

SWEREF99 TM. Field 1 includes sampling plots 1 (north) and 2 (south); field 2 includes sampling 

plots 9 (west) and 10 (east); field 3 includes sampling plots 17(north) and 18(south). 

 

3.2.1 Field LAI data collection 

Field LAI data was used to train and test LAI estimation models. It was computed 

through oblique images which were taken by RGB camera (a-6000, SONY). At each 
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point, oblique images were taken at the place of each sampling point’s flag marker 

twice. The camera was mounted on a tripod with a bubble level to ensure its 

horizontal position. During every measurement, the camera took two images in 

opposite directions whose orientations were perpendicular to the sunlight to avoid 

shadow effects. Additionally, the camera captured images at a 57.5-degree zenith 

angle. The oblique images were then processed by the UPSCALE project of the 

department through the software CAN-EYE V6.4.7 (French National Institute of 

Agronomical Research, 2003) to compute wheat LAI.  

3.2.2 Field wheat height data collection 

Wheat height was defined as the distance from the ground to the highest point of the 

plant (Jamil et al., 2022). The field wheat height data in this study referred to the 

ground truth height which was measured manually in the field. They were measured 

by a scale with a 1-millimetre graduation value. The field height of winter wheat was 

measured on the same day as the acquisition of oblique images. Similar to the method 

previously described for capturing oblique images, the height of two randomly 

selected plants on each side of the sample point, perpendicular to the incident sunlight, 

was measured. Therefore, four plant heights were measured at each sample point, and 

the average value was calculated to represent the height at that sampling point. Field 

wheat height was used as height reference when estimating height by using the UAV 

images in order to evaluate the accuracy. 

3.3 UAV Data collection and processing 

The UAV data used in the study were images taken by a P4 Multispectral DJI drone. 

UAV images were collected approximately the same day or one day after each field 

measurement. The dates of flights are displayed in Table 2 which contains the detailed 

weather conditions as well. Additionally, there were no other flights between 17th 

May and 6th June. So, for field data collected on 17th May and 24th May (Nr. 4 and 5 

of field measurement), the UAV data was the same (Nr. 4 of UAV collection). 

 

Table 2. Date of UAV flights and weather conditions. Mixed weather means both have sunny and 

cloudy conditions. ‘Nr’ Represents ‘UAV data collection number’. 

Nr.  Date Field 1 Field 2 Field 3 
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1 April 5, 2023 sunny sunny cloudy 

2 April 21, 2023 cloudy cloudy cloudy 

3 May 4, 2023 mixed cloudy cloudy 

4 May 21, 2023 sunny sunny mixed 

5 June 8, 2023 cloudy cloudy cloudy 

6 June 21, 2023 mixed mixed sunny 

7 July 7, 2023 mixed sunny mixed 

8 July 21, 2023 sunny sunny mixed 

 

Regarding the UAV images, the drone had a multispectral camera array with five 

monochrome sensors (red, green, blue, red edge and near-infrared) and one RGB 

camera for visible light imaging. Each time when the drone took a shot, images of 

five bands were saved individually in the memory card of the drone. At the same time, 

the RGB camera automatically generated a true colour image which was also stored in 

the memory card. The detailed information on each band is displayed in Table 3.  

Table 3. The wavelength ranges of each band for individual sensors. Data download from DJI official 

website (https://www.dji.com/se/p4-multispectral/specs, accessed on 30 March 2024). 

Band name Abbreviation Wavelength range 

Blue B 450 nm ± 16 nm 

Green G 560 nm ± 16 nm 

Red R 650 nm ± 16 nm 

Red edge REG 730 nm ± 16 nm 

Near-infrared NIR 840 nm ± 26 nm 

 

All flights were done in pre-programmed flight paths between 10 am and 3 pm to 

maintain the relative stability of image range and solar radiation. Before every flight, 

three reflectance panels with 9%, 23% and 44% reflectance were laid out on the 

ground on top of the green tarp. The flying height of the drone was set at 40 meters 

above the ground level and reflectance panel images were captured both before and 

after each flight mission. At least three reflectance panel images were acquired with 

panel centred on each of these images which was later used for radiometric calibration. 

Then the drone flew at the planned route to collect images. The front overlap was set 
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to 80% and the side overlap was 60%. Every flight had the same parameters and 

settings to control the variables.  

After completing the flight mission, UAV photos collected were downloaded to the 

computer to perform image processing. For every single spectral band and RGB 

images captured in each flight, they were processed separately with the method 

explained in (Thapa et al., 2021). The same steps were applied to process other flights 

too. The flow chart of UAV image processing (Figure 4) is shown below. First, 

photos took by UAV were pre-processed. Photos that focused unproperly were 

removed. Besides, for flights that under mixed weather conditions, irradiance data 

from all images of the flight was retrieved and plotted to check the consistency. The 

irregular plots together with the images were removed. The rest of the irradiance data 

was normalised according to the light and weather conditions (Olsson et al., 2021). 

Second, images after pre-processing were orthomosaiced and subjected to the next 

step according to the different aims. The resolution of the orthomosaic maps was 5 cm. 

The pre-processing and image orthomosaic preparation was carried out by the 

UPSCALE project at the department, which provided multispectral images and DSMs 

as well. 

For generating the reflectance map, orthomosaic maps needed to be calibrated 

radiometrically. The radiometric calibration was done by using the empirical line 

corrections method which constructs a linear relationship between the mean pixels 

value of the reflectance panels in the image and the standard reflectance of the panels. 

The DN values were extracted by drawing the region of interest manually on the 

reflectance panels first (Figure 5) and then computing the average (Olsson et al., 

2021). Next, based on the average DN values and the standard reflectance of each 

panel, a linear equation was calculated. In this experiment, the raw orthomosaic was 

calibrated using the derived equation, thereby producing a reflectance map. The plant 

height map was generated from the crop surface model which is a digital surface 

model obtained from the photogrammetric process. 
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Figure 4. The diagram with steps of UAV image processing.  

 

 

Figure 5. Example of extracting digital number on reflectance panel from DN map. Figure A and B 

were captured before the flight mission, while Figure C and D were captured after the flight route. A 

and C were in the red-edge band, B and D were in the near-infrared band. Images captured on 5th 

April, 2023. 
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3.4 UAV data calculation 

VIs and reflectance data were then calculated and extracted based on processed UAV 

reflectance maps. Wheat height data were computed based on DSMs.  

3.4.1 Reflectance and Vegetation Indices (VIs) extraction 

The study computed vegetation index CIrededge and NDRE based on the calibrated 

data. Both CIrededge and NDRE are sensitive to chlorophyll content in plant leaves 

which is a key component of photosynthesis (Steele et al., 2008; Xie et al., 2018). 

Higher chlorophyll content typically indicates a higher LAI. 

According to the coordinates of sample points measured before, a three-meter radius 

buffer was created around each sample point (Figure 6). Average spectral values of 

REG and NIR within each buffer were extracted then. Then two vegetation indices 

were computed and extracted in the same way. The name and the computing formula 

of the VIs can be seen in Table 4.  

 

Figure 6. Example of buffer area. Background map was the chlorophyll index with red edge on 21st 

May,2023, sampling points (P01-1, P01-2, P01-3, P01-4, P01-5) were in position one. 
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Table 4. Vegetation indices used in this study 

Name Abbreviation Equation Reference 

Chlorophyll index with 

red edge 
CIrededge 

𝑁𝐼𝑅

𝑅𝐸𝐺
− 1 

(Pôças et al., 

2020) 

Normalized difference 

red edge 
NDRE 

(𝑁𝐼𝑅 − 𝑅𝐸𝐺)

(𝑁𝐼𝑅 + 𝑅𝐸𝐺)
 (Li et al., 2014) 

 

3.4.2 Wheat height estimation 

In this study, wheat height was estimated by computing the DSMs difference between 

the base layer and flights by using ArcGIS Pro 2.7 (Esri, 2020). The baseline layer 

here indicated the DSMs constructed by the first flight (flight of 5th April 2023). To 

compute the difference, DSMs values of flights and sample points needed to be 

extracted. Processes for extracting average DSM values are displayed in the diagram 

below (Figure 7). In general, the method for extracting DSM at sample points was 

similar to that used for extracting VIs, wherein constructed a 3m radius buffer around 

each sample point. However, due to the influence of non-vegetated areas within the 

buffer on the DSM values, the average plant height was lower than the actual height. 

Therefore, this study composited Normalized Difference Vegetation Index (NDVI, 

Equation 1) maps based on DN values. Because NDVI could distinguish vegetation 

from various landcover effectively with high precision (Huang et al., 2021). Regions 

with NDVI values greater than a threshold were then classified as vegetation. The 

thresholds were defined according to the NDVI time series of winter wheat (Dong et 

al., 2019; Li et al., 2021) and displayed in Table 5.  
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Figure 7. Diagram of extracting digital surface model value of samples. The circles represent data, 

with blue indicating input data, and green indicating intermediate and output data respectively. The 

yellow rectangles represent the calculation. Some of the intermediate data was used as input data as 

well. 

 

Table 5. Date of UAV flights and normalized difference vegetation index threshold when classifying 

vegetation and other land cover. Normalized difference vegetation index higher than the threshold was 

considered a plant. ‘Nr’ Represents ‘The flight number. 

Nr.  Date Threshold Nr.  Date Threshold 

1 April 5, 2023 0.2 5 June 8, 2023 0.5 

2 April 21, 2023 0.2 6 June 21, 2023 0.3 

3 May 4, 2023 0.5 7 July 7, 2023 0.2 

4 May 21, 2023 0.5 8 July 21, 2023 0.2 

 

After classifying the data, the average DSM value for the vegetation within the buffer 

zone of each sample point was extracted. Subsequently, the difference in average 

DSM values between the flights and the baseline layer was calculated. This difference 

was then added to the baseline plant height, which was the measured wheat height in 

the field as of April 5th, 2023. This approach allowed for the estimation of plant 

height for each flight. The height estimation method is represented in Equation 2 

below. 

 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 
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𝑃𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 = (𝐷𝑆𝑀𝑡𝑛𝑝𝑖
− 𝐷𝑆𝑀𝑡1𝑝𝑖

) + 𝐻𝑝𝑖
   , 𝑓𝑜𝑟 𝑛 ∈ [2,8] 𝑎𝑛𝑑 𝑖 ∈ [1,32]  

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 

 

where 𝐷𝑆𝑀𝑡𝑛𝑝𝑖
 represents the DSM value at the nth time flight and sample point 𝑃𝑖, 

𝐷𝑆𝑀𝑡1𝑝𝑖
 represents the DSM value at the initial time and sample point 𝑃𝑖 , 𝐻𝑡1𝑝𝑖

  

represents the field plant height of April 5th, 2023 at sample point 𝑃𝑖, 𝑛 ranges from 2 

to 8, indicating the flight number, 𝑖  ranges from 1 to 32, indicating sample point 

number. 

After estimating plant height, the study did the linear regression analysis to 

quantitatively assess the relationship between the estimated plant height values and 

the actual measured plant height values. The analysis could validate the reliability of 

the estimated plant height. 

3.5 Model building and evaluation 

The final dataset included LAI data and variables data for the year 2023. Variables 

included single band REG and NIR, VIs CIrededge and NDRE, and wheat height. 

LAI data were computed based on REG images taken from the camera. Spectral-

related data including single band data and VIs were obtained and computed from 

UAV images. The total number of sampling data was 288, which was collected in 32 

sampling spots and covered eight growth stages of winter wheat (tillering, stem 

elongation, booting, ear emergence, flowing, milk development, dough development 

and ripening). However, due to influences such as unstable weather conditions and 

insufficient battery power of the equipment, there was an LAI data gap on 17th May 

and a UAV data gap on 4th July. Therefore, a total of 268 data was used in this study. 

3.5.1 Data distribution 

Before analysing the correlation, it was important to see the distribution pattern of 

LAI and variables for different growth stages. Took the average of LAI and variable 

value for every sampling time and distributed the data in a time series. Some growth 

stages had more than one sampling time, so mean LAI and variable value were also 

computed according to the growth stage and distributed in a time series. 
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Variable or LAI might display a consistent increase or decrease over time or display a 

parabola shape with the growth of crops. Based on the distribution characteristics of 

LAI, all data or part of the data were applied to analyse the correlation which ensured 

variable remained consistent with LAI. For those data that have been segmented, 

correlation with LAI was analysed separately. 

Due to the saturated value of reflectance panels in red, green and blue bands, only the 

REG band and NIR band managed to be calibrated, which has limited the usable of 

VIs. Therefore, the study also analysed and compared the distribution of DN value 

with reflectance, which can give information regarding to the possibility of using DN 

value to estimate LAI.  

3.5.2 Correlation analysis 

In order to assess the relationship between LAI and variables, the study computed 

both the Pearson correlation coefficient and the Spearman correlation coefficient. 

Since the data's characteristics encompassed both standard and non-standard normal 

distributions, with and without outliers. Pearson correlation coefficient can measure 

the strength of the linear relationship between LAI and a variable and is sufficient 

when data is in normality distribution (Hauke & Kossowski, 2011). Spearman 

correlation coefficient has the advantage that it is not sensitive to outlier data and not 

a linear relationship measurement between LAI and one variable (Croux & Dehon, 

2010). Based on the correlation coefficient, a strong correlation (correlation 

coefficient >= 0.75) with high statistically significant (P-value < 0.05) between the 

variable and LAI implied a good performance of the model. Because it would be able 

for the machine learning algorithm to learn some correlated information from the data. 

Therefore, the variable was considered a usable feature of models. 

3.5.3 Model establishment 

Although the entire dataset contained 268 data, however, when data corresponding to 

LAI values equal to zero, which indicated there was no green leaf existed, were 

considered invalid. So, a total of 233 data was used as input data to establish the 

model. And ripening stage was excluded to estimate LAI because LAI was always 

zero in this stage.  
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Input data for the models mentioned above was divided into training dataset and 

testing dataset. It was done by random split method which randomly allocated input 

data into the training dataset and testing dataset with an 8:2 proportion.  

The study used the Random Forest algorithm (Breiman, 2001) to obtain the regression 

model between LAI and variable(s). The Random Forest approach which was 

developed from a decision tree is widely used to deal with data with many features. 

Each variable was considered as one feature when establishing models.  

For LAI estimation using single model, all growing stages data was used. Model was 

constructed by using one feature first. More features were added based on the results 

obtained from the initial models and the correlation between features and LAI. For 

model based on growth stages, data of each growth stage was used respectively. The 

result from the model in each growth stage could show which variable were most 

useful to estimate LAI in a certain period. 

3.5.4 Model validation 

Performance metrics are an essential component of quantifying the estimation 

performance of models. When using machine learning methods for regression 

analysis, metrics are used to compare the difference between the predicted values 

from the model and the actual values from the measurements (Botchkarev, 2018). 

Both training data and testing data can be used to compute metrics depending on the 

aim. The most commonly used metrics are mean absolute error (MAE), mean square 

error (MSE), root mean square error (RMSE) and the coefficient of determination (R-

Square/R2).  

The formulas of metrics can be seen below, where 𝑦𝑖  is the true value for the 𝑖𝑡ℎ 

observation, ŷ𝑖 is the predicted value for the 𝑖𝑡ℎ observation, 𝑦̅ is the average of the 

true values and n is the number of observation samples. 

 

𝑀𝐴𝐸 =
1

𝑛
∑|(𝑦𝑖 − ŷ𝑖)|

𝑛

𝑖=1

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=1
 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖− ŷ𝑖)2

𝑛

𝑖=1

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5 

 

R-Square/R2 = 1 −
∑ (𝑦𝑖− ŷ𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖− 𝑦̅)2𝑛
𝑖=1

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6 

 

MAE (Equation 3) simply calculates the absolute differences between predicted and 

actual values and then takes the average of the differences. It is easy to interpret and 

not sensitive to outliers (Chai & Draxler, 2014). The smaller the MAE is, the better 

the predicted results made by models there will be. MSE (Equation 4) and its rooted 

variant RMSE (Equation 5) are calculated in a similar way as MAE which takes the 

average of squared differences between the predicted values and the measurement 

value. MSE and RMSE are more sensitive to outliers and ambiguous when 

interpreting their meaning (Cort & Kenji, 2005). However, Chai and Draxler (2014) 

have proved that MSE and RMSE can represent model performance well for error in 

Gaussian distribution. The lower RMSE represents a smaller dispersion of 

experimental results which means a better prediction for the model. Although these 

three-performance metrics have been widely used when estimating model fitting, their 

values range was influenced by the values of data. Therefore, a single value of MAE, 

MSE and RMSE cannot be interpreted properly (Chicco et al., 2021). 

The coefficient of determination (Equation 6) represents the proportion of the 

variance in the dependent variable that is predictable from the independent (Wright, 

1921). It can evaluate the goodness of the model fitting. The closer the R-squared is to 

one, the better the model fits the data. R2 does not need to be positive, however, if the 

value of R2 is less than zero, it means the model is even worse than the mean value of 

all of the predicted LAI. Thus, the model is not good enough to use and the R2 will be 

recorded as NA, which means not acceptable. R2 of train data and R2 of test data 

could also used to evaluate if the model was overfitting. If the difference between the 

R2 values of the training and testing data was greater than 0.1, the model was 

considered a high risk of overfitting (Hawkins, 2004; Tetko et al., 1995).  
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Therefore, based on the performance metrics mentioned above, every model used a 

grid search method in order to obtain optimal hyperparameters, which could improve 

model performance. The main hyperparameters adjusted in the study were the number 

of the estimators and the maximin depth. The optimal hyperparameters were primarily 

determined by two factors. First, ensuring that the difference in R2 value between the 

training set and the test set was less than 0.1. Otherwise, the smaller the better. 

Second, minimizing the RMSE or MAE in the test set. The changing of parameters 

might be changed several times until the model fitted the data well but not overfitting, 

and with the minimal error rate. 
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4. Result 

4.1 Wheat height estimation from UAV data 

Wheat height was estimated using UAV derived DSMs. The linear regression analysis 

performed between UAV data derived wheat heights and in-field measured heights 

did not include wheat on the first flight (April 5, 2023). The result revealed a strong 

positive correlation (Spearman correlation coefficient = 0.837) between the two 

variables. Moreover, with R² of 0.61 (Figure 8), the wheat height estimated by DSM 

data was highly indicative of actual wheat heights in the field. Therefore, UAV height 

data was reliable and the UAV techniques in estimating vegetation height were 

efficacy. The regression equation obtained from the model was: 

𝑦 = 0.797𝑥 − 5.747 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7 

where 𝑦 refers to the field height, 𝑥𝑎𝑛𝑑  refers to the estimated height.  

It indicated the tendency of the height based on UAV data to slightly underestimate 

field height, with a slope less than 1 (0.z797) and a negative y-intercept (-5.747). 

 

Figure 8. Estimated wheat height using digital surface models and measured wheat height. The red line 

is the fitted line and the dashed black line represents 1:1 line. 

R2=0.61 
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4.2 Time series analysis  

The average LAI values computed from oblique images taken in 32 experimental 

points in each growth stage are shown in the box plots (Figure 9). From Figure 9 it 

can be observed that the LAI was dynamic across different growth stages. LAI values 

first increased gradually with the growth of wheat until it reached a peak at the 

booting stage. During the tillering stage, the LAI values are relatively low, indicating 

the initial phase of vegetative growth. The slope of LAI at the stem elongation stage 

shows that the mean LAI value increased quickly, suggesting leaves were developed 

at a quite high speed in this growth stage. The variability in LAI is high at this stage, 

indicating the great variability among individual plants. The booting stage marked the 

peak of LAI, with median and mean values exceeding 2.0, indicating the maximum 

leaf area development. From booting to ear emergence and flowering stage, LAI 

decreased very fast. Since this period was when wheat transferred from the growth 

stage to the mature stage. Subsequently, as wheat matured, the wheat leaves turned 

yellow and wither gradually, leading to a decline in LAI values. Eventually, at the 

ripening stage, all leaves turned yellow which meant there were no more green leaves 

on the wheat, therefore the LAI decreased to zero. 
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Figure 9. Boxplot graph of average LAI over the winter wheat growth stages in 2023. The horizontal 

line in orange indicates the median, each box indicates the interquartile range of LAI values, whiskers 

of each box indicate the maximum and minimum values (without outliers). 

 

For variables, Figure 10 displayed multiple line graphs representing the variations 

over growth stages. Different from the trend of LAI, the wheat height in field kept 

increasing until it reached the peak at the ear emergence and flowering stage. During 

subsequent growth stages, the plant height remained stable. UAV derived height 

measurements also exhibited a similar trend but with a lag in time, increasing 

continuously until reaching a peak slightly lower than field height measurements.  

Unlike the stability in plant height after reaching its peak, the NIR band showed a 

slow increase from the initial stage, reaching its peak at the booting stage. It then 

slowly decreased, with values at the maturity stage regressing to those at the tillering 

stage. The overall trend in NIR is consistent with LAI. REG band, however, remained 
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relatively stable throughout the growth stages, with minor fluctuations. There was no 

significant trend for REG values, which suggesting the consistent reflectance 

characteristics of the crop canopy, unaffected significantly by the growth stages. 

 

Figure 10. Statistical line graph of reflectance of red-edge and near-infrared band, and height of 

winter wheat in time series in 2023. Field Height represents wheat height measured in the field. UAV 

Height is the wheat height estimated from UAV images. 

 

4.3 The correlation between LAI and variable 

A total of were 234 samples used for analysing the correlation coefficient. As shown 

in Table 6 the correlation between REG and LAI was weak and negative (Spearman 

correlation coefficient = -0.134). The Spearman correlation coefficient for NIR was 

0.698, reinforcing a moderate positive relationship between NIR and LAI (p < 0.005). 

Both VIs showed a strongly positive correlation with LAI (Spearman correlation 
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coefficient > 0.75). Height estimated from UAV exhibited a moderate negative 

correlation with LAI. The Pearson correlation coefficient was -0.309 (p < 0.005), and 

the Spearman coefficient was -0.260 (p < 0.005), suggesting that as UAV height 

increases, LAI tends to decrease. All variables except the height had a higher 

coefficient value in the Spearman correlation coefficient which double proved that the 

data was more like non-standard normally distributed. All p-values of the Spearman 

correlation were less than 0.05, so the results were statistically significant at 0.05 level.  

Table 6. Correlation analysis result between variable and LAI. Height is the wheat height estimated 

from UAV images. 

 

Pearson 

correlation 

coefficient 

Pearson 

p-value 

Spearman 

correlation 

coefficient 

Spearman 

p-value 

REG -0.096 0.145 -0.134 0.040 

NIR 0.672 <0.005 0.698 <0.005 

CIrededge 0.712 <0.005 0.786 <0.005 

NDRE 0.738 <0.005 0.786 <0.005 

Height -0.309 <0.005 -0.26 <0.005 

 

4.4 LAI estimation using single model 

Modelling efforts to estimate LAI using individual features highlighted significant 

differences in model performance across various variables. In single model, a total of 

223 data were used to train and test models. 

When putting only one feature into the model, the result (Table 7) shows that using 

NDRE value to estimate LAI can lead to the best model performance (MAE = 0.425 

m2/m2, RMSE = 0.540 m2/m2). The R² values reached 0.721 for training and 0.645 for 

testing, suggesting excellent model accuracy. On the opposite, the model utilizing 

REG values as a predictor exhibited limited predictive capability, as reflected in the 

highest errors (MAE = 0.803 m2/m2, RMSE = 0.899 m2/m2). In contrast, the other 

single band feature NIR demonstrated moderate effectiveness (R2_train = 0.508, 

R2_test = 0.403). It also had a lower error than REG which reflects a better estimation 

capability (MAE = 0.543 m2/m2, RMSE of 0.7 m2/m2). The errors with the use of 

CIrededge were slightly higher than NDRE (MAE = 0.47 m2/m2, RMSE of 0.597 

m2/m2), but still showed a good model performance. The plant height-based model 
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also showed reasonable predictive power, with R² values of 0.394 in training and 

0.334 in testing. The errors were moderate with MAE and RMSE at 0.593 and 0.739, 

respectively. Regarding model fitting, except REG, other models showed a reasonable 

model fitting. Since the difference between R2_train and R2_test was nearly lower 

than 0.1. For REG, the difference between R2_train and R2_test was 0.194, suggesting 

a high risk of overfitting. The primary reason for this overfitting was that the data 

characteristics were not suitable for the Random Forest algorithm. Or the data might 

be. Consequently, regardless of how the hyperparameters are adjusted, the models 

cannot achieve a good fit. 

In summary, NDRE emerged as the most effective single feature for LAI estimation, 

demonstrating high reliability and accuracy. Conversely, REG reflectance showed 

significant limitations in its predictive capability.  

Table 7. LAI estimation results when using a single feature. REG and NIR are reflectance data after 

radiometric calibration. CIrededge and NDRE were computed based on the calibrated data. Height 

indicates the wheat height estimated from UAV images. The unit of MAE, MSE and RMSE is m2/m2. 

Single Feature R2_train R2_test MAE MSE RMSE 

REG 0.209 0.015 0.803 0.808 0.899 

NIR 0.508 0.403 0.543 0.490 0.700 

CIrededge 0.627 0.566 0.470 0.356 0.597 

NDRE 0.721 0.645 0.425 0.291 0.540 

Height 0.394 0.334 0.593 0.546 0.739 

 

Based on the results above, the study extended the LAI model based on NDRE to 

estimate LAI for Field One across three different growth stages: tillering, booting, and 

dough development (Figure 11). The LAI map of Field One indicated a spatial 

variability in LAI. From the map on April 5, 2023, it could be observed that areas in 

the western part of the field had higher LAI values compared to the eastern areas. 

Additionally, wheat in the southwest corner showed a slower growth rate than the 

crops overall. This is particularly noticeable in the maps from May 21 and July 7, 

2023. 
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Figure 11. LAI estimation map based on NDRE model in field one. Coordinates are displayed in the 

projected Coordinate System SWEREF99 TM. 

 

The result above suggested that combining multiple features could potentially 

enhance the accuracy of LAI estimation models, further analyses were conducted 

using combinations of height and spectral features. From the result (Table 8), the 

combined model of UAV Height with REG showed a slight improvement compared 

to single-feature models using REG alone but still had considerable error and 

variability. In contrast, the integration of UAV Height with NIR substantially 

enhanced model performance. The R² for training increased to 0.842 and to 0.785 for 

testing, suggesting good model fit and predictive power. Additionally, the model 

combining UAV Height I with VIs also showed highly favourable results. The 

combination of UAV Height and CIrededge achieved the highest predictive ability 

and the lowest error rates (R2_train = 0.901, R2_test = 0.829, MAE = 0.275 m2/m2, 

RMSE = 0.375 m2/m2).  

Overall, models incorporating multiple features significantly enhanced the accuracy 

and reliability of LAI estimation. Specifically for the combinations of plant height 

with CIrededge. 



30 

 

Table 8. LAI estimation results when using multi-features. REG and NIR are reflectance data after 

radiometric calibration. CIrededge and NDRE were computed based on the calibrated data. UAV 

Height indicates the wheat height estimated from UAV images. The unit of MAE, MSE and RMSE is 

m2/m2. 

Multi-features R2_train R2_test MAE MSE RMSE 

UAV Height + REG 0.371 0.318 0.645 0.559 0.748 

UAV Height + NIR 0.842 0.785 0.318 0.177 0.420 

UAV Height + CIrededge 0.901 0.829 0.275 0.141 0.375 

UAV Height I + NDRE 0.893 0.811 0.283 0.155 0.394 

 

4.5 Model based on growth stage 

According to the temporal distribution of LAI (Figure 10), LAI increased 

continuously from tillering until booting, with a continuous decrease after. Therefore, 

to further analyse LAI estimation over growth stages, the study divided the growth 

cycle into two parts, using the booting stage as the boundary. The first part included 

the tillering, stem elongation and booting stages which were named periods of 

vegetative growth (Noggle, 1946). The second part included the rest of the growth 

stages (ear emergence, flowering, milk development and dough development), which 

were named periods of productive growth (Noggle, 1946). The ripening stage was not 

included in model development since the LAI value was zero. Data from these stages 

were randomly split in an 8:2 ratio to create training and testing subsets. The specific 

number of data used to train and test model is shown in Table 9. 

Table 9. Sample number of train data and test data for vegetative and productive stages. 

Data 
Samples number 

Vegetative stage Productive stage 

Total data 150 73 

Train data 120 58 

Test data 30 15 

 

The estimation models for the vegetative stage demonstrated varying performance 

(Figure 12). NIR and VIs such as CIrededge and NDRE exhibited good prediction, 

with R² values on the training set being 0.666, 0.868, and 0.857, respectively (Table 

10). The test results for CIrededge and NDRE maintained high R² values of 0.862 and 
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0.84, suggesting a good estimation ability. Conversely, REG had an R² of 0.121 in 

training and was not applicable (NA) in testing due to negative values, indicating poor 

model fit. 

In the productive stage, the performance of all models generally decreased. VIs 

continued to perform best among the variables, with R² values of 0.858 and 0.847 for 

CIrededge and NDRE in training, and about 0.625 each in testing, respectively. NIR, 

while showing a good accuracy with an R² of 0.663 in training, dropped significantly 

to 0.018 in testing. Thus, the model was overfitted and NIR data was not a good 

option for estimating LAI in the productive stage. 

In general, estimation accuracy decreased from the vegetative to the productive stages 

for all variables. CIrededge data can estimate LAI with the most accuracy, both in the 

vegetative to the productive stages. 

Table 10. LAI estimation results when using a single feature over growth stages. REG and NIR are 

reflectance data after radiometric calibration. CIrededge and NDRE were computed based on the 

calibrated data. Height indicates the wheat height estimated from UAV images. ‘NA’ refers to not 

applicable. 

 
Vegetative stage Productive stage 

R2_train R2_test R2_train R2_test 

REG 0.121 NA 0.463 0.336 

NIR 0.666 0.583 0.663 0.018 

CIrededge 0.868 0.862 0.858 0.624 

NDRE 0.857 0.840 0.847 0.625 

Height 0.584 0.437 0.331 0.170 
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Figure 12. Measured and estimated LAI in the vegetative stage (black dots) and productive stage (red 

cross. The dashed line indicates the ideal 1:1 relationship. 
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5. Discussion  

5.1 Weather impacts on LAI  

Weather conditions can significantly impact the accuracy of LAI estimation. Cloud 

cover, for instance, can affect the quality of spectral data by reducing the 

effectiveness of the VIs. Besides, unstable weather conditions can introduce more 

noise and improve the challenge to calibrated ND values. Additionally, wind can 

cause crop movement, leading to blurred images and inaccurate height measurements. 

To avoid the influenced by the weather, UAV flights were scheduled during clear and 

calm weather conditions. And more weather relative data like humidity and wind 

speed could be considered when processing UAV images.  

5.2 Uncertainties of plant height data  

The plant height data in this study can be categorized into two parts. One is wheat 

height collected manually in the fields, which was used as the ground truth data. The 

other is wheat height estimated by DSM data processed from UAV images, which 

was used to establish LAI estimation models. And both parts have several factors 

which can contribute to the uncertainties of the plant height data. 

For in-field data, the average height of four plants around each sample point was 

computed to represent the ground truth height at that sample point. However, the plant 

height had a variation in the field so the in-field data may contain errors. Additionally, 

field height was measured from the ground to the highest top of the plant manually. 

So, it was not influenced much by the change of ground height. However, the 

inconsistencies in ground surface height could cause a significant impact on the UAV-

based wheat height estimation. There was a significant variety of ground surface 

height in different fields. Even the surface height of a small area of bare soil in the 

same position can have over 10 centimetres difference over two DSMs. Moreover, 

environmental factors might have an impact on plant height based on UAV estimation. 

For instance, strong winds could cause wheat to shift from an upright state to a tilted 

state. So, it was easy to see that the height from UAV estimation was always lower 

than the height from in-field measurement. Besides, since wind often occurs in gusts, 

it is challenging to maintain consistent plant surface heights during UAV image 

capture, resulting in a significant number of noise points in the collected data. Wind 
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also causes UAV platform vibration when acquiesced images (Jamil et al., 2022). The 

vibration affects the stability of sensors, which influences image mosaics (Zhang & 

Kovacs, 2012). These adverse conditions may decrease the quality of the dense point 

cloud, reduce the quality of the mesh, and result in higher errors during the generation 

of the DSM (Xie et al., 2021). 

Thus, when using field height data as a reference, it is common to observe significant 

variability between the height estimated by UAV and the ground measurements. 

However, it is hard to define the source of the variety due to the uncertainties which 

made adjusting the height estimation models became very difficult. 

5.3 Model overfitting 

Overfitting is a common concern when developing predictive models (Ying, 2019). 

Model overfitting always happens when model learns noise in the training data 

instead of the underlying pattern, which leads to poor generalization on testing data or 

new data (Hawkins, 2004). Therefore, to prevent model overfitting, the study split the 

data into training and testing data sets and tried to restrict the difference of R2 

between training and testing sets lower than 0.1. However, for some models, it is 

nearly impossible to avoid overfitting. The possible reason is the data characteristics 

are not suitable for the Random Forest algorithm. Or the data might be insufficient. 

Therefore, in future research, different machine learning algorithms should be 

employed and the data should be expanded to avoid the problem of model overfitting. 

5.4 The availability of REG band 

From the result (Figure 10), the REG band was very stable throughout the study time. 

It also showed that there was nearly no practical relationship between REG and LAI 

(Pearson correlation coefficient = -0.096, Spearman correlation coefficient = -0.134). 

The weak correlations also suggest that any association might be due to the random 

change rather than a meaningful connection. Consequently, reliance on the REG band 

alone for LAI estimation resulted in significant errors. Additionally, the wavelength 

range of REG is narrow (730 nm ± 16 nm), and the reflectance of cereal farmland 

increases rapidly with increasing wavelength (Söderström & Persson, 2022). As a 

result, both environmental and sensor-related changes will be amplified, leading to a 

high level of noise in REG values. Analysis of Sentinel-2 REG reflectance (Band 5) 

data from November 2021 to October 2023 confirmed the absence of significant 
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trends (Figure 13), reinforcing the conclusion that the REG band should not be a 

primary consideration for LAI estimation. Despite this, the vegetation index 

CIrededge, derived from REG and NIR data, showed excellent performance during 

the productive growth stage. However, alternative vegetation indices not reliant on 

REG data might achieve comparable or superior performance. 

 

Figure 13. REG reflectance distribution over time, where the x-axis represents the date with format 

day. month. year, the y-axis represents reflectance. Data from Sentinel Hub (https://apps.sentinel-

hub.com/eo-browser). Cloud coverage was 0%.  

 

5.5 Impaction of the radiometric calibration 

Radiometric calibration is an important step when processing spectral data from 

drones. It converts DN to reflectance which describes the proportion of incident light 

that is reflected by the surface. The viewpoint regarding the unavailability of DN 

mainly focuses on that it is not a physical quantity but merely a numerical value 

(Dinguirard & Slater, 1999). Therefore, DN cannot be interpretable directly. DN 

values are also easily influenced by various factors including sensor characteristics, 

changes in observation conditions, and light intensity. So, it is meaningless when 

comparing DN values in different images. However, in this study, red, green and blue 

bands could not be calibrated. Therefore, only REG and NIR band was used to build 

the model which limited the choice of VIs. Therefore, the study analysed the 

possibility of using DN values to estimate LAI. 

https://apps.sentinel-hub.com/eo-browser
https://apps.sentinel-hub.com/eo-browser
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The distribution of DN value and reflectance of the sampling points are shown in 

Figure 14. When the reflectance is the same, the DN values often exhibit significant 

differences. The samples have a lower reflectance in the red edge band and are 

concentrated in the range from 15% to 20%. Reflectance is higher and more dispersed 

in the NIR band which is mostly distributed from 20% to 35%. Besides, for the DN 

value, the REG band displays a relatively narrow range (around 5000) when the 

reflectance is the same. But for one reflectance value, the range of DN value in the 

NIR band can show a variety of around 10000. Therefore, when using the DN value 

as the input data, due to deviations from actual reflectance, larger errors may result in 

the modelling. These errors might be more pronounced in the NIR band, since in the 

REG band, the distribution of DN values is relatively tight. 

 

Figure 14. Distribution of reflectance and digital number of red edge band and near-infrared band. 

 

When establishing one feature model with reflectance and DN value by using all data, 

the results indicated that the LAI estimating model based on reflectance had better 

model accuracy, with a higher R2 and lower MAE and RMSE. The values of R2 for 

testing data were below than 0.5 for all models, indicating the great error for all 
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models when estimating LAI. In summary, radiometric calibration is necessary and 

can improve model performance. 

Table 11. Model accuracy results when using a single feature. ‘NA’ refers to not acceptable. 

Single feature R2_train R2_test MAE MSE RMSE 

DN_REG 0.376 NA 0.803 0.846 0.920 

DN_NIR 0.767 0.315 0.482 0.399 0.631 

REG 0.209 0.015 0.803 0.808 0.899 

NIR 0.508 0.403 0.543 0.490 0.700 

 

Using DN values as data to estimate LAI requires ensuring that environmental factors 

remain as consistent as possible. For example, it is necessary to capture images at 

similar times of the day to ensure consistent light intensity, and to fly in cloudless 

conditions to ensure stable lighting. Furthermore, according to this study, adding the 

DN values of REG and NIR did not improve model accuracy. Using data from other 

bands and more effective vegetation indices may improve model performance. 

However, since DN is not a physical quantity, it may be difficult to interpret when the 

model shows an outlier result. 

  



38 

 

6. Conclusion  

Estimating the LAI of winter wheat with high spatial resolution temporal flexibility 

ensures that critical information can be provided to farmers in a timely and precise 

manner. The main objective of the study was to comprehensively evaluate the 

efficacy of UAV-derived spectral and height data, with a high spatial resolution (4 cm 

× 4 cm), in estimating the LAI of winter wheat across various growth stages. The 

result indicated NDRE emerged as the most reliable single feature for LAI estimation, 

with an R² of 0.645 for testing, MAE of 0.42 m2/m2, and RMSE of 0.54 m2/m2. The 

inclusion of plant height data generally improved the accuracy and reliability of LAI 

estimation models. Multi-feature models demonstrated superior performance, with the 

combination of UAV height and CIrededge achieving the highest predictive accuracy 

and lowest error rates (R2_test = 0.82, MAE = 0.27 m2/m2, RMSE = 0.37 m2/m2). 

Furthermore, temporal analysis of LAI showed LAI values peaking at the booting 

stage (average value of 2.37 m2/m2) and declining thereafter which provided 

additional insights into the distinct model performance variations between vegetative 

and productive stages. In the vegetative stage, CIrededge and NDRE exhibited high 

estimation accuracy, with R² values of 0.86 and 0.84 for testing data, respectively. In 

the productive stage, the model accuracy decreased, but CIrededge and NDRE 

remained the most effective features, with R² values of 0.62 and 0.62 for testing data. 

These growth stage-specific models suggested the importance of considering growth 

stages in LAI estimation to enhance model precision. 

Overall, the study offered a robust approach for accurately estimating LAI in winter 

wheat. Future research should include data with a broader range of spectral 

wavelengths to compare more VIs, incorporate additional features into the model, and 

explore the application of these methodologies to other crops and environmental 

conditions to further validate and refine the models developed in this study. 
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App. I 

 

Appendix 

App.1 Coordinates of the sampling spots 

Table App.1 Coordinates of the sampling spots. 'P' and the number along with it indicate the position 

number; numbers after the hyphen mean the sampling order in the position. The unit of the coordinates 

is in meters. The Projected Coordinate System is SWEREF99 TM. 

Field 
Sample 

ID 
East   (m) North (m) Field 

Sample 

ID 
East  (m) North (m) 

1 

P01-1 378306 6169565 

2 

P9-5 380023 6169366 

P01-2 378330 6169563 P10-1 379956 6169428 

P01-3 378311 6169546 P10-2 379981 6169426 

P01-4 378326 6169525 P10-3 379972 6169406 

P01-5 378303 6169528 P10-4 379981 6169382 

P02-1 378296 6169460 P10-5 379956 6169383 

P02-2 378320 6169457 

3 

P17-1 378918 6168688 

P02-3 378300 6169438 P17-2 378954 6168685 

P02-4 378315 6169416 P17-3 378933 6168675 

P02-5 378292 6169418 P17-4 378949 6168650 

PST-W 378245 6169334 P17-5 378916 6168652 

P00 378276 6169475 P18-1 378879 6168558 

2 

P9-1 380023 6169413 P18-2 378904 6168555 

P9-2 380051 6169413 P18-3 378893 6168541 

P9-3 380039 6169388 P18-4 378899 6168523 

P9-4 380051 6169365 P18-5 378875 6168523 

 

 

 

 

 


