Bachelor’s Thesis

Efficient Invoice Interpretation:
Practical and AI-Powered
MicroService for Automated Data

Extraction

By

Hassan Hussin and Martin Lind

Department of Electrical and Information Technology

Faculty of Engineering, LTH, Lund University
SE-221 00 Lund, Sweden

© Copyright Hassan Hussin, Martin Lind
LTH School of Engineering

Lund University

Box 882

SE-251 08 Helsingborg

Sweden

LTH Ingenjorshogskolan vid Campus Helsingborg

Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden

Lunds universitet

Lund 2024

Abstract

This thesis details the development, implementation, and optimization of a local mi-
croservice designed to enhance invoice processing at Hulo, a company that manages au-
tomatic payment invoices. This is conducted through Artificial Intelligence (AI) and Ma-
chine Learning (ML) techniques, focusing particularly on Computer Vision and Object-
detection. Motivated by the need to address the inefficiencies of traditional manual pro-
cessing which is error-prone, slow, and costly, this project employs a structured method-
ological approach. Initial data gathering, meticulous data labeling, and extensive training
and validation of an Al model using tools like Roboflow [I] are key components. The
chosen You Only Look Once (YOLO) model [2], known for its robust object detection
capabilities, demonstrates significant improvements in recognizing and classifying invoice

data through successive training phases.

Challenges such as class imbalances are tackled through dataset enrichment and augmen-
tation techniques, enhancing the model’s robustness and generalization capability across
diverse invoice formats. The system effectively transforms invoices into structured JSON

data, thus automating and streamlining business practices.

The thesis encapsulates the project’s journey from conceptualization to deployment, high-
lighting strategic solutions for data quality enhancement and computational efficiency.
The challenges and opportunities of the transition of this microservice into a production
environment, where it undergoes rigorous real-world testing, ensures robustness, data
security, and operational reliability. The successful implementation of this project under-
scores Al’s role in improving business processes and aligning with industry trends toward

digital automation and intelligent systems.

Keywords

Artificial intelligence (AI), Automation, Computer vision, Invoice extraction, Machine

learning (ML), Object-detection, YOLO

Acknowledgments

We would first like to express our profound gratitude to HULO for their invaluable sup-
port and the opportunity to pursue this thesis. We are also immensely thankful to Sara
Ramezanian for her supervision and guidance in structuring this report. Additionally, we
appreciate Marcus Klang for his assistance in navigating our search for Al tools. Lastly,

we wish to thank Christian Nyberg for his role as our examiner.

Hassan Hussin and Martin Lind

May 2024, Helsingborg

Contents

[Abstract]

Keywords

[Acknowledgments|

(1 Introduction|

(1.1 Background|

1.2 Purposel

2.2 Python|.

2.3 Machine learning| oL

[2.3.1 Machine learning systems|

[2.3.2 Machine learning process|

[2.3.3 Linear regression|

2.4 Al model training|

2.5 Computer vision|
2.5.1 OpenCV|.
252 OCRI. e

11
11
13
13
14
15
15
16

2.5.4 Object detection|

2.5.5 Youonly lookoncelo

[2.6 Evaluating the model| . .

[2.7 Natural language processing|

[2.8 Named entity recognition|

3 Method

[3.1.2 Labeling the datal

[3.1.3 Training the YOLO modelf

[3.1.5 Training the NER modell

[3.1.6 Creating JSON objects|

[3.1.7 Testing approach|

[3.1.8 Object detection model testingl

[3.1.9 Information filtering testingl

[3.1.10 Integrated system testingl.

4 Resultl

]

4.1 Initial training ot YOLO)

[4.1.1 Final training ot YOLO]

[4.1.2 Training NER] . .

Analysis

31
31
31
32
33
33
34
35
36
36
36
36
37
37

38
38
44
49

52

[>.2 Language considerations| L. 53

[>.3 Strategies for document type handlingl 54
[>.4 Refining the invoice reading model 55
[>.4.1 Model evaluation and tuning. 55

[>.4.2 Enhancing data quality|. 55

b.4.3 Managing model complexaty| 000000 56

[>.4.4 Hyperparameter optimization| 56

[>.5 Transition to production|o o7
6 Conclusion| 59
(Bibliography| 67
[Appendix A| 68
[Appendix B| 73

List of Figures

[2.1 Steps for machine learning process|.o 18
[2.2 Confusion matrix by yolof. 26
[3.1 Named Entity Recognition example| 35
.1 Initial normalized confusion matrixlo 40
[4.2 Graphical representation of train loss metrics during initial model training| 41
4.3 Graphical representation of validation loss metrics during initial model |

Tralning] e e e 42
4.4 Trends in evaluation metrics across epochs from initial model performance| 44
4.5 Final normalized confusion matrixl. 0000 45
4.6 Graphical representation of train loss metrics during final model training] 46
4.7 Graphical representation of validation loss metrics during initial model |

training) e 47
4.8 'Trends in evaluation metrics across epochs from final model performance| 48
(1 Samples of annotated invoices with their respective labels| 68
[2 'The models prediction ot the sample showcasing the probability of the |

labels being detected|o oL 69
[3 Python notebook to train and upload the modelf 70
|4 Method tfor pertorming object detection|. 71
15 Method for converting pdf files into images| 72
(6 Main method for processing | oL 72
[7 Method to apply OCR] 73
[8 NER method to turn annotations into spacy objects|. 74
9 classes to JSONI oo 75

List of Tables

p1

Confusion matrix for binary classification|

A1

Initial train performance metrics by epochl

A2

Initial model validation performance metrics by epochl.

‘.3

Initial evaluation metrics across epochs tor the model|

A

Final model train performance metrics by epoch|

4.5

Final model validation performance metric by epoch|.

4.6

Final evaluation metrics across epochs for the modell

.7

Entity recognition performance metrics by epoch for company detail| . . .

4.8

Initial entity recognition pertormance metrics by epoch for table items|. .

4.9

Final entity recognition performance metrics by epoch for table items| . .

10

24

41
42
43
46
47
48
49
20
51

Preface

This thesis represents a collaborative effort between Hassan and Martin, focusing on
object detection models with an equitable division of labor. The project began with
both collaborators jointly defining the goals and research questions, which established

the direction of the study.

Hassan is responsible for writing the introduction and addressing research questions three
through five in the analysis and conclusion sections. Martin handles research questions
one and two, and he also focused on the future work section, proposing potential exten-

sions and applications of the research.

The technical background, methodology, and results sections are collaborative efforts.
The division of labor is clearly defined by each collaborator’s part in the implementation:
Hassan focuses on training the object detection model, while Martin concentrates on data
extraction. This cooperative approach not only enhances the depth of the research but
also ensures that each section is managed by the collaborator most familiar with that

aspect of the project. For a detailed overview of the division of responsibilities, see Table

[

Table 1: Division of labor in thesis

Section Responsibility
Introduction Hassan
Goal formulation and research questions Joint effort
Research question 1-2 Martin
Research question 3-5 Hassan
Technical Background Joint effort
Method Joint effort
Results Joint effort
Future work Martin
Implementation part 1 (Training of object detection model) | Hassan
Implementation part 2 (Data extraction) Martin

10

Chapter 1

Introduction

This chapter outlines the subject and scope of the bachelor thesis. It provides a compre-
hensive background to the reader and engaging them in a discussion of the problem that
paves the way to the main purpose and research questions of the study. Additionally, it
covers the objectives of the study and its limitations. Information regarding the target

and the structure of the bachelor thesis is also included.

1.1 Background

In the evolving landscape of digital transformation, businesses are increasingly turning to
technological innovations to streamline operations and enhance efficiency. Among these
operational challenges, invoice processing stands out as an area ripe for optimization.
Traditionally reliant on manual labor, the process of managing invoices is often inconve-
nient, error-prone, and time-consuming. The introduction of Artificial Intelligence (AI)
technologies has initiated a significant shift towards greater efficiency and accuracy in
invoice processing [3]. These solutions is instrumental in reducing manual labor and

operational costs.

The deployment of Intelligent Document Processing and Al technologies like Computer
Vision, Machine Learning (ML), and Text Classification facilitates the handling of un-
structured data, enabling the automation of more complex processes. Building upon this
foundation, recent research conducted by Hedberg [4] has delved into the application of

ML for automated decision-support in the context of invoice processing. This approach

11

aims to provide accountants with suggestions on appropriate accounts and cost centers for
invoices, thereby streamlining the financial operations within organizations. The findings
of the research conducted by Hedberg suggests that decision-support systems powered by
ML offer significant benefits, including time savings, reduced mental effort, more coherent
book keeping, error detection, and enhanced levels of automation [4]. These systems are
perceived as a valuable addition to the arsenal of tools available for optimizing invoice

processing [5].

However, the research conducted by Hutter et al. [6] also highlights potential challenges
associated with implementing machine learning automation. Differences in how different
organizations use accounts and cost centers coupled with the complexity of processing
some invoices, may lead to uneven performance. Despite these challenges, experiments
conducted within the study demonstrated the potential of machine learning to accurately
suggest appropriate accounts and cost centers, with accuracy rates ranging from 73-76%
for accounts and 50-62% for cost centers. Additionally, a method for filtering machine
learning output was developed, aiming to improve the accuracy of automated suggestions,

with some filtered suggestions achieving up to 100% accuracy [4].

The project outlined in this thesis seeks to contribute to this field by developing a local
microservice for reading invoices. By exploring the potential of Al and machine learning
through training of models from scratch this project addresses the need for an automated,
efficient, and reliable invoice processing system. Hulo, the company at the center of this
project, handles and leverages automatic payment invoices to other companies. Hulo
stands to benefit from a solution that enhances productivity, reduces dependency on
external services, and ensures data security and operational autonomy. By leveraging the
insights and methodologies outlined in the aforementioned research, this project aims to
deliver a microservice capable of transforming Hulo’s invoice management processes. In
doing so, the project aligns with the broader industry trend towards digital automation
and the specific challenges and opportunities presented by machine learning in invoice

processing.

The thesis project is undertaken in partnership with Hulo IT AB, a Swedish firm with

12

approximately 20 employees. Based in Malmo, this enterprise specializes in providing
direct debit invoicing services to businesses globally and developing innovative digital

solutions for their needs.

1.2 Purpose

The main goal of this project is to develop a microservice that can read and interpret
invoices accurately and quickly. This project aims to reduce the need for outside services,
giving Hulo full control over the service. This control is important for avoiding issues
with internet connectivity and data security, ensuring a smooth and dependable process

for reading invoices that meets Hulo’s needs for independence and local use.

The purpose is to give Hulo a reliable and efficient service for processing invoices in-
house. Expected benefits include a big increase in productivity, less risk of disruption
from external problems, and better control and oversight of how invoices are managed.
Currently, Hulo mainly uses manual methods to pull information from invoices, which
takes a lot of time, effort, and is prone to mistakes. Moving to an automated system aims
to make this process faster and more accurate, and make it easier to use invoice data in

the company’s financial systems.

With this commitment in mind, the project aims to include automation technology to im-
prove the current state of invoice management by Hulo. Shifting from manual, error-prone
methods to a more accurate and efficient approach will not only elevate the company’s
overall operations but also improve data security and privacy. Consequently, this will

lead to stricter control and enhanced protection of Hulo’s financial records.

1.3 Goal formulation

The project aims to develop an Al model tailored for invoice interpretation, targeting a
minimum accuracy of 90% in data extraction. Achieving this accuracy is fundamental
for providing Hulo with a reliable invoice reading service. Alongside this, the initiative

seeks to develop a local microservice capable of processing invoices in just 3 seconds on

13

average. The emphasis on speed ensures the automation process not only meets the
demand for swift response times but also supports Hulo’s goal of maintaining operational
autonomy with a system that is both efficient and secure. This rapid processing is not
just a requirement but a strategic advantage, allowing Hulo to enhance productivity and

data privacy simultaneously.

Another crucial objective of the project is to ensure support for both Swedish and English,
with a minimum accuracy rate of 90% in correctly interpreting invoices in these languages.
This language support is vital to accommodate the linguistic diversity of the invoices
received by Hulo. Moreover, the project prioritizes the capability for model training from
scratch. This involves the development and implementation of a training module that
allows the Al model to learn directly from local data, providing flexibility to either utilize

pre-trained models or develop a custom model tailored to Hulo’s specific needs.

Lastly, a fundamental goal is to eliminate any dependence on external services, aiming
for 100% autonomy in performing invoice reading tasks locally. This ensures that Hulo
maintains complete control over the invoice reading service. Each of these objectives is
carefully measured and directly aligned with the overarching purpose of enhancing Hulo’s

invoice management processes through the application of advanced technology.

1.4 Problem formulation

These questions will be answered throughout the thesis project and aim to investigate
and improve the manual invoice reading process at the company Hulo. By analyzing the
current situation and identifying challenges and opportunities, it is possible to develop
a more efficient and secure method for invoice reading. Research questions (RQ) to be

addressed in the work include:

e RQ1: In what way can the invoice reading service be implemented to handle dif-

ferent document types and easily expand with new models?

e RQ2: What technical and language aspects need to be considered to ensure accu-

rate interpretation of invoices in Swedish and English?

14

e RQ3: How can the performance and speed of the developed microservice be im-

proved to meet the requirements for fast and efficient invoice reading?

e RQ4: What methods and criteria should be used to train and evaluate the Al

model used for invoice reading?

e RQ5: What opportunities and challenges may arise when transferring the devel-

oped service to a production environment?

1.5 Motivation for the thesis

The selection of the thesis project was driven by its focus on Al, a field considered
crucial and highly relevant in today’s industries [7]. Given the escalating demand for Al
technologies across diverse sectors, acquiring expertise and comprehension in this area is
paramount. The anticipation of future engagement in the industry underscores the thesis
project as a pivotal opportunity to amass specific knowledge and practical experience in
Al. This effort will provide a competitive advantage and prepare for future technological

challenges.

Engagement with AI within the thesis project presents a chance to delve into and discern
how technology can be tailored and deployed to satisfy emerging needs. This exploration
is anticipated to foster innovative solutions and contribute to the advancement of technol-
ogy in this domain. In essence, the thesis project was chosen for its significant alignment
with and timeliness in the field of Al, promising a blend of practical skills and theoretical
insight. The company perceives this as an investment in future technological progress,

yielding benefits both internally and for the wider community.

1.6 Limitations

To optimize the Al model for efficiency and precision, its document reading capability has
been deliberately confined to Swedish and English languages. This constraint is designed

to cultivate a more specialized and focused Al service.

The initial step involves a definitive selection and refinement of the specific information

15

to be extracted from invoices. The focus will initially be on essential details such as
the list of items or services provided, the issuer’s name and contact details, the payment
due date, and critical payment information including account and reference numbers,
in addition to significant contact details like sender name, email addresses, and postal
addresses. Establishing these foundational details is crucial for developing a robust ap-
proach to information management. Progressively, with the objective of enhancing the
utility of the information gathered, there is an intention to incrementally broaden the
system’s capabilities. This expansion will include integrating additional types of data
for extraction, such as payment dates, tax amounts, and subtotals, thereby gradually

advancing the data collection and analysis methodologies.

1.7 Disposition

The thesis is structured into six detailed chapters that systematically build upon each
other. Chapter 2 sets the technical foundation, covering essential concepts and tools
ranging from Python programming to advanced machine learning and computer vision
techniques. Chapter 3 outlines the methodological approach, detailing each phase of
the research from data collection to testing the models. Chapter 4 reports the results
from the training and tuning of the models. In Chapter 5, the analysis delves deeper
into the challenges and solutions related to the model’s development and its readiness
for real-world application. The concluding chapter, Chapter 6, summarizes the findings
and discusses their implications for future research. This structure allows for a clear
and logical progression of research, ensuring that each chapter builds on the knowledge

established in the previous ones.

16

Chapter 2

Technical Background

This chapter embarks on a comprehensive exploration of the foundational technologies
underpinning Al, with a focus on machine learning, computer vision, and Python. It
delves into how machine learning algorithms harness data to predict outcomes, the ways
in which computer vision seeks to emulate human visual perception, and Python’s pivotal
role as a programming language in Al development. This foundation sets the stage
for understanding advanced Al applications, from the construction and execution of Al
models to the practical applications of OpenCV and the intricacies of Optical Character
Recognition (OCR) technologies.

2.1 Data

The significance of possessing both a substantial quantity and diversity of data in Al
development is paramount and cannot be overstated [8]. The process of pre-processing
data, which includes collecting, cleaning, and annotating, constitutes more than 80%
of the workload in AI development [9]. Therefore, it is crucial to allocate resources
where they yield the highest returns. A diverse dataset enhances the model’s ability to
accurately detect varying data inputs. Additionally, the volume of data is equally critical.
As noted by Imran et al. [10], training a model reveals a clear inflection point between
150 to 500 images per class. It is at this range where the initial rapid improvement in

performance begins to level off.

17

2.2 Python

Python is an open-source, high-level programming language created in the 1990s. It is
designed to be highly readable and user-friendly. Compared to other languages, Python
allows for achieving desired software behavior with less code [I1]. It also supports differ-
ent ways of programming, including object-oriented, functional, and imperative program-
ming. Additionally, Python boasts a large community on platforms like Stack Overflow,

making it easy to obtain support for the language [11].

2.3 Machine learning

Machine learning is a part of artificial intelligence where we are trying to make computers
learn by studying different kinds of data and statistics. By analyzing incoming data and
comparing it with former data, the computer is trying to find patterns and predict an

outcome.

2.3.1 Machine learning systems

Machine learning systems contain algorithms for the purpose of training Al models. Se-
lecting algorithms for a certain system can be challenging. If an algorithm is chosen
wrongfully, it may necessitate rebuilding the entire system, wasting precious resources.
Moreover, the algorithm that is required may vary depending on the data or the desired

output.

2.3.2 Machine learning process

There are several steps for a system to be created. These steps are shown in Figure 2.1.

Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: Step 7:
p L Prepare the Choose Train the Evaluate the Tune Make
Gather data : .
data algorithm model model data predictions

Figure 2.1: Steps for machine learning process

18

The process of preparing the data includes labeling, which is where we tell the computer
what the data actually is. For example, if a picture is presented containing an apple we
could label the apple in the image and tell the computer “this is an apple”. This is also

where the data is partitioned into data for training and data for testing.

In the training of the model, the chosen algorithm is being used together with the “train-
ing” data. A model can be trained in different ways, one way is having supervised training

for the model. Supervised training is when the input and output are given.

2.3.3 Linear regression

Linear regression is a statistical method used to predict future outcomes by identifying a
linear relationship between two variables: an independent variable and a dependent vari-
able. The dependent variable, which is the focus of prediction, relies on the independent
variable. However, the independent variable provides the basis for the prediction of the
dependent variable’s value. This technique is integral to predictive analysis within the
fields of data science and machine learning, serving as a foundation to make predictions

based on past data, offering a basic but powerful tool for predictive analysis [12].

2.4 Al model training

In machine learning, an epoch denotes a complete pass through the entire training dataset
during which the model adjusts its parameters to minimize discrepancies between its
predictions and the actual data. This process is fundamental as it underpins how a

model learns from data over time [13].

Imagine a machine learning model trained to classify different types of fruits based on
images. The training dataset includes numerous images labeled with specific fruit types
such as apples, oranges, and bananas. During each epoch, the model reviews every image
in this dataset, tweaking its parameters to better predict the correct fruit type for each
image. After processing all images once, the model completes one epoch and initiates the

next one [14].

19

Epochs are crucial in machine learning because they incrementally improve the model’s
ability to classify or predict accurately [I5]. As the model cycles through more epochs,
it refines its understanding of the features that distinguish different categories within the
dataset. This continuous parameter adjustment helps the model make more accurate

predictions on new, unseen data.

However, it’s essential to balance the number of epochs to avoid overfitting—where a
model learns the training data too well, including its noise and errors, which harms its
performance on new data [16]. An optimal number of epochs ensures that the model
learns enough to make accurate predictions while retaining the flexibility to generalize
from new data. Too many epochs can make the model overly specialized to the training

dataset, reducing its effectiveness on broader applications [17].

2.5 Computer vision

Computer vision seeks to replicate human visual perception through computational means.
By leveraging Al technologies, computers can process and interpret visual data from var-
ious sources, including images and videos. This process involves scanning visual inputs
and employing pattern recognition technologies, enabling computers to detect and iden-

tify objects within these images [1§].

Within the realm of computer vision, classification models represent a specific category
of machine learning algorithms. These models are tasked with assigning new input data
to predefined categories or labels. The complexity of this task varies, if the model is
distinguishing between two categories, it is engaged in binary classification. On the other
hand, when the classification involves more than two categories, it is dealing with a

multi-class classification scenario [19].

20

2.5.1 OpenCV

OpenCV E] or Open Computer Vision is an open-source library for computer vision. The
project for the library was started by Intel and the Alpha was released in January 1999.
OpenCV is used to transform and manipulate videos and images. There are different
types of transformations in OpenCV some examples that are used for the purpose of the

thesis are:

e turning images to grayscale.
e turning images to black and white.
e crop parts of an image.

e Additional function in OpenCV is to show the image [20].

2.5.2 OCR

The idea of Optical Character Recognition (OCR) started in 1929 but could not be
realized until the computer came during the 1950s. OCR is used to recognize, read, or
extract data from images to be able to manipulate the text. Instead of storing the actual
image, the text from the image is stored. This can be useful if other software or programs

are used that would want to utilize the text.

Before the image is scanned it may need to go through some pre-processing. Depending
on the image, the pre-processing may include a different amount of methods. These
processing methods are used to make it easier to extract the desired data from an image.

Here are the processing methods used in the thesis [21].

e Inverted image: This process inverts the pixels colors, such that, white pixels

turn black and black pixel’s turn white.
e Rescaling: Changes the scale of video or image.

e Binarization: Converts image to black and white.

Thttps://github.com/opencv/opencv

21

e Noise removal: Removes pixels, text, or other data that is irrelevant to the data

that is needed to be extracted from the image.

e Dilation and Erosion: Makes for example text thicker (dilate) or thinner (ero-

sion).
e Rotation/Deskewing: Rotates the image to the wanted angle.
e Removing borders: Removes empty space of the outline on the image.

e Missing borders: Adds borders to the image, used when text is right at the border

of the image.

Two algorithms that are used for OCR are Pattern matching and Feature extraction.
Pattern matching tires to capture a character in the image and then it compares it with
other characters from a database. The problem with pattern matching is that the font
needs to be similar to the font used in the database for this to work efficiently. Feature
extraction however takes a character and divides it into different segments like lines,
line intersections, and closed loops. Then it tries to match the divided character with

something that looks similar from a database [22].

2.5.3 Tesseract

Tesseract is an open-source OCR engine that was developed at HP between 1984-1994
which utilizes OCR to recognise text from images [23].To use Tesseract within Python

there is a library called Pytesseract [24].

2.5.4 Object detection

Object detection algorithms are pivotal in computer vision and can generally be catego-

rized into two main groups based on their operational methodologies [25]:

e Classification-based Algorithms: This approach operates in a two-step process.
Initially, regions of interest (ROIs) within the image are identified. Subsequently,

these selected regions are classified using convolutional neural networks (CNNs).

22

A notable characteristic of this method is its relatively slower performance, at-
tributed to the necessity of running a prediction for each identified region. Exam-
ples of classification-based algorithms include Region-based Convolutional Neural
Networks (R-CNN) and its more advanced iterations, Fast R-CNN and Faster R-
CNN.

e Regression-based Algorithms: Diverging from the classification-based approach,
regression-based algorithms simultaneously predict both the classes and the bound-
ing boxes for objects within an image in a single execution of the algorithm. This
method is known for its efficiency and speed, as it eliminates the need to individually
select regions of interest. A prominent example of this type of algorithm is YOLO
(You Only Look Once), which is celebrated for its rapid processing capabilities [26].

Both approaches offer unique advantages and are chosen based on the specific require-

ments and constraints of the application at hand.

2.5.5 You only look once

YOLO simplifies object detection by treating it as a straightforward regression problem
[2]. It processes an input image to simultaneously predict the classes of objects present
and determine their locations with bounding box coordinates. Unlike other methods that
apply a model across various sections and scales of an image, YOLO uses a single neural
network for the entire image [26]. This approach involves dividing the image into a grid of
regions. For each region, the network predicts bounding boxes and assigns a probability

to these boxes, indicating the likelihood of an object’s presence.

The probabilities are then utilized to prioritize the bounding boxes, with higher scores
indicating a greater confidence in the detection. To finalize the detection process, YOLO
filters out the bounding boxes, keeping only those with probabilities above a certain
threshold. This efficient method enables YOLO to achieve real-time object detection,
making it exceptionally fast and effective for applications requiring immediate processing

126).

23

2.6 Evaluating the model

The evaluation of the performance of a machine learning model is crucial to ensure its
effectiveness and accuracy before deployment in real-world applications [6]. This evalu-
ation process utilizes various metrics, each designed to assess different aspects of model
performance. These metrics facilitate an understanding of how well a model has learned
from training data and its ability to predict unseen data points. In tasks such as object
detection and classification, which require nuanced interpretations of visual data, specific
metrics are employed to quantify the precision and accuracy with which the model iden-
tifies and categorizes objects within an image. This section explores several key metrics

that are essential for evaluating the robustness of machine learning models.

2.6.1 Intersection over union

Also known as the Jaccard Index [27], Intersection over Union (IoU) measures the over-
lap between the predicted bounding box and the actual ground truth bounding box to
assess the accuracy of the prediction. The IoU score varies from 0 to 1, with a score
of 1 indicating a perfect match where the predicted and ground truth bounding boxes
align exactly. To validate object detections, a threshold IoU value can be established.
Predictions with an IoU score exceeding this threshold are generally considered accurate
and retained. This method provides a clear criteria for evaluating the precision of object

detection models [27].

2.6.2 Confusion matrix

A confusion matrix is a widely utilized tool for assessing the performance of classification
models [19]. It is applicable to both binary and multiclass classification scenarios. For

instance, Table illustrates a confusion matrix in the context of binary classification.

Table 2.1: Confusion matrix for binary classification
Predicted Negative | Predicted Positive

Actual Negative TN FN
Actual Positive FP TP

24

In this matrix, the elements represent the number of predictions versus actual outcomes.
TN refers to True Negatives, indicating correctly classified negative instances. TP rep-
resents True Positives, denoting accurately classified positive instances. Conversely, FP
stands for False Positives, which are negative instances incorrectly classified as positive,
and FN denotes False Negatives, reflecting positive instances wrongly classified as nega-

tive [28].

Rows correspond to the actual labels (ground truth) of the data, while columns mirror
the labels as predicted by the model. Each cell quantifies the proportion of data the
model classified into each category, with the highest values typically found in the diag-
onal cells [29], denoting correct predictions. Conversely, the off-diagonal cells highlight

misclassifications, pinpointing errors in the model’s predictions.

The term ”background” in the confusion matrix of Figure 2.2 indicates true negative
detections, where the model accurately identifies areas without any target objects. A
prediction of "background” when a label should be present is considered a false nega-
tive, illustrating a missed detection by the model. Conversely, predicting a label where
the actual situation is ”background” results in a false positive, indicating an incorrect

detection where none should exist [29).

25

Confusion Matrix

drone

Predicted

-0.4

background
°
8

-0.2

! ! -0.0
drone background

True

Figure 2.2: Confusion matrix by yolo

Accuracy is one of the primary metrics derived from a confusion matrix [2§], calculated

as the sum of true positive and true negative predictions divided by the total number of

cases as seen in Equation 2.1}

TP+ TN

A —
Y = TP Y FP+TN + FN

(2.1)

However, in the presence of imbalanced datasets, accuracy alone may not provide a
complete picture of model performance [I9]. This is because it can disproportionately
reflect the majority class’s influence. Thus, other metrics derived from the confusion

matrix become crucial for a more comprehensive evaluation.

26

2.6.3 Precision and recall

Precision and recall are integral metrics for evaluating the performance of classification
models [30]. Precision, also known as the positive predictive value, assesses the model’s
accuracy in predicting positive instances. It quantifies the proportion of true positive
predictions in all positive predictions made. Recall, on the other hand, measures the
model’s ability to correctly identify all actual positive instances. It is synonymous with

the model’s sensitivity and evaluates the coverage of actual positive outcomes [19)].

Improving recall without compromising precision is a common goal in model optimization
[19], aiming for a balanced approach to classification accuracy. These metrics offer critical
insights into the model’s performance, particularly in scenarios where the costs of false
positives and false negatives vary [30]. The computation of these metrics is based on the

following formulas:

TP
Precision = ———— 2.2
recision = oo p (2.2)
TP
ll = ——F— 2.
Reca TPLFN (2.3)

Precision scores fall within the range of 0 to 1, where a higher precision indicates a
significant alignment between the detected objects and the actual ground truth objects
[19]. For example, a precision of 0.8 means that when the model identifies an object,
there is an 80% likelihood that this identification is accurate. This high precision score
reflects the model’s effectiveness in ensuring that the vast majority of its detections are

indeed correct [28].

The recall metric varies between 0 and 1, with a higher score indicating a greater ability
to correctly identify all relevant instances in the dataset [19]. For instance, a recall score
of 0.6 suggests that the model successfully detects 60% of the actual objects. This means
it has a high proficiency in capturing the majority of the ground truth objects within its

predictions [2§].

27

The Equations & provide a straightforward way to quantify the accuracy and
sensitivity of classification models, enabling developers and data scientists to fine-tune

their algorithms effectively.

2.6.4 Average precision

Average precision (AP) and mean average precision (mAP) serve as critical metrics for
evaluating the efficacy of object detection models, providing a nuanced, unified measure-

ment that encapsulates both precision and recall [31] [32].

Average precision: This metric synthesizes the model’s performance into a single value
by averaging the precision achieved at each recall level across the spectrum from 0 to
1. AP effectively measures how well the model identifies objects with a high degree of
accuracy over the entire range of possible recall values, thereby capturing the essence of

the Precision-Recall curve [31].

Mean average precision: For datasets encompassing multiple class categories (N
classes), mAP refines the evaluation by averaging the AP calculated for each class, based
on a defined IoU threshold for accurate detections. The computation of mAP unfolds in

two primary stages [32]:

1. Calculating AP for Each Class: Determine the AP for every class by assessing
the model’s precision and recall at various thresholds, with consideration given to

the specific IoU threshold that defines an accurate detection [32].

2. Deriving the mAP: The mean of these individual AP values across all classes pro-
duces the mAP, which succinctly reflects the model’s overall precision and accuracy

in detecting objects across different categories [32].

The YOLO model calculates two key metrics to evaluate its detection accuracy: mAP50
and [1] mAP50-95. The mAP50 metric stands for mean average precision at an IoU
threshold of 0.50. This measurement assesses the model’s accuracy by focusing on the

simpler detections, often referred to as ”easy” detections, where the required overlap

28

between the predicted and actual bounding boxes is minimal. On the other hand, mAP50-
95 provides a more comprehensive evaluation by averaging the mean average precision
at varying IoU thresholds, ranging from 0.50 to 0.95. This range includes varying levels
of detection difficulty, thus offering a holistic view of the model’s performance across

different challenges in object detection.

Importantly, a higher mAP indicates that the model demonstrates greater precision and
accuracy in its predictions. This metric is pivotal in quantifying the model’s ability to not
only correctly detect the presence of objects but also to minimize false positives and false
negatives across all classes in the dataset. As such, mAP offers a comprehensive view of
a model’s performance, highlighting its efficacy in object detection tasks and guiding the

optimization of detection algorithms for improved accuracy and precision.

2.6.5 Loss functions

Class loss and box loss are two critical metrics used in object detection models to evaluate
their performance. Class loss measures how accurately the model predicts the correct class
labels for each detected object [33]. It quantifies the discrepancy between the predicted
class probabilities and the actual class labels, typically using a cross-entropy loss function.

Lower class loss indicates better performance in classifying objects correctly [33].

Box loss, on the other hand, evaluates how well the model predicts the bounding boxes for
detected objects. This involves calculating the difference between the predicted bounding
box coordinates and the ground truth coordinates. A lower box loss signifies more precise

localization of objects within the image [33].

Distribution Focal Loss (dfl) is an advanced loss function that enhances model perfor-
mance by addressing the issue of class imbalance, where some classes are underrepresented
compared to others. dfl dynamically adjusts the focus on harder, misclassified examples,
giving them more weight during training. This adaptive approach helps improve the

model’s accuracy, particularly in datasets with significant class imbalances [33].

29

2.7 Natural language processing

Natural Language Processing (NLP) emerged in the 1950s [34] at the onset of AI. NLP
is a way through technology to mimic human language processing [35]. NLP is used for
different kinds of processing of texts such as translation, summarization, and assessing

the purpose of a text [35].

2.8 Named entity recognition

Named Entity Recognition (NER) is an NLP method and the concept of NER started
in the 1990s [36]. NER is used to identify so-called entities within a text. Entities are
a group of terms, examples of entities could be companies, addresses, food, and planets.
To identify the entities the NER method tries to find patterns in the text if not the word
itself is enough to make an identification. To utilize NLP and NER methods in Python,
you can use spaCy. spaCy is a free, open-source Python library that was initially released

in early 2015 [36].

30

Chapter 3

Method

This chapter provides an overview of the various phases the thesis project is going through,
as well as the specific methodology chosen by the authors to navigate through the project.
Furthermore, it discusses the communication strategies employed for effective coordina-
tion and collaboration between the authors. A significant portion of the chapter is ded-
icated to exploring and explaining the rationale behind the decisions and choices made
during the course of the work. This includes insights into how these choices have influ-
enced the direction and outcomes of the project, as well as the challenges and solutions
identified. The review aims to give the reader a deeper understanding of the work’s

structure and the considerations that have underpinned the research process.

3.1 Phases

This section starts with initial research and data collection, then moves to the detailed
task of data labeling. This is followed by training our selected AI model. Next, we
apply OCR technologies for data extraction, and conclude by organizing and storing the
processed data into JSON objects for database insertion. Each phase is crucial, building
upon the previous one to ensure a seamless flow and integration of processes, ultimately

contributing to the robustness and efficiency of the project outcome.

3.1.1 Research and data collection

Achieving a comprehensive understanding of the project’s objectives involves gathering

a wide range of information, specifically about the variety of available AI models and

31

identifying which ones are suitable for the specific task. The requirement is to identify a
model that excels in object detection and classification, specifically one that can efficiently
locate and identify different types of data on invoices. YOLO version 8 (YOLOVS) is
ultimately chosen for this purpose. For the scanning of invoices, OpenCV is utilized. The
choice to employ both YOLO and OpenCV is driven by their compatibility within the

same programming language, Python, eliminating the need to switch between languages.

Simultaneously, data collection for training and testing the model is undertaken, a critical
phase underscoring that without adequate data, training the model to perform as desired
is impossible [37]. Sources of this data included GitHub [38] and a cooperative company

that provides two templates of their invoices for use in the project.

During the research phase, the specific labels or classes to be extracted from the invoices

are identified. The established labels selected for use include:
e invoice# (invoice number)

due_date

e company_detail

customer_detail

shipping_detail

table

e table_total

These classes are chosen to capture the essential data points from the invoices for pro-

cessing and extraction.

3.1.2 Labeling the data

After collecting a substantial dataset of approximately 500 invoice samples EL the next
step involves annotating these invoices to identify the aforementioned labels. This an-

notation can be accomplished using tools like Labellmg [39] or through an online Al

1|f0r more information about the invoices see Figure 1 in Appendix A|

32

training platform such as Roboflow [I]. Roboflow is the preferred tool due to its col-
laborative features [I], allowing the dataset to be shared and annotated jointly by the
authors. Additionally, Roboflow offers robust data augmentation capabilities, such as
converting images to grayscale or inverting them, which can significantly enhance the
dataset by creating varied conditions for the model to learn from [10]. After completing
the annotation and utilizing these augmentation features, the dataset is partitioned into

training, validation, and testing sets with respective proportions of 80%, 15%, and 5%.

3.1.3 Training the YOLO model

Once a portion of the data, roughly around 100 invoices, is annotated with the various
labels, the next step involved converting these annotated images into YOLOvVS file format.
These files are then used to adapt the data into a format suitable for training the model.
The Roboflow platform is used to convert the annotated dataset directly into a YOLOvVS8
file format [1].

The training process is conducted using a Jupyter notebook provided by Ultralytics on
GitHub [38], offering a straightforward approach to model training E| Adjustments to
the code are minimal, mainly involving the specification of the dataset from Roboflow
and the modification of training epochs to 25. The initial training phase is relatively
brief, lasting about 10 minutes, as it only utilizes a subset of the complete dataset. An
additional benefit of using Roboflow is its capability to upload the model to the platform
after partial training [I]. This feature enables the trained model to be employed to
annotate the remaining invoices. This functionality greatly increases the efficiency of
the annotation process, streamlining the workflow, and enhances productivity. After
continuous annotation is concluded with the assistance of the model, a final training

session is conducted using the entire dataset.

3.1.4 Data extraction

The data extraction process from invoices through OCR involves several stages of image

handling and processing. This sequence begins with image loading and display, where the

ﬂFor more information about the invoices see Figure 3 to Figure 6 in Appendix A|

33

function initiates by loading the invoice image from a specified path. This step confirms
that the image is successfully loaded into the system, and the image is briefly displayed.
This temporary visualization serves an essential function during the debugging or manual
verification phases, allowing developers or operators to visually confirm that the correct

document is being processed.

ROI extraction is the next step. Since invoice layouts can differ greatly, it is important
to accurately and flexibly pinpoint the area in the image where the data needs extraction
[37]. The ROI coordinates specified as (x1, y1, x2, y2) define this region as a rectangle.
These coordinates are input parameters to the function and are crucial for accurately slic-
ing the image array to isolate the ROI. Isolation is essential as it ensures that subsequent
operations focus solely on the text-containing part of the image, enhancing processing

efficiency and accuracy [37].

The image pre-processing for OCR involves several established techniques to prepare the
extracted ROI for text recognition. These steps include resizing the ROI to a uniform
dimension (typically 500x500 pixels), converting the image to grayscale, and applying
binary thresholding to enhance text visibility. Additionally, advanced techniques such as
inversion, dilation, and noise reduction are used to improve the prominence of text and

clarity of the image.

After these pre-processing steps, the prepared ROI undergoes text recognition. The image
is processed by the Tesseract OCR engine through the Pytesseract interface, which scans
the image and extracts textual data, converting it into a machine-readable string. This
string represents the crucial data extracted from the invoice, ready for further processing

and analysis [I]

3.1.5 Training the NER model

To train the NER model, the text data from the invoices is extracted and saved into a
text file. Each row in this file represents a single instance of the extracted data. For

example, if company details were extracted, each row would include the company name,

3]F0r more information see Figure 7 in Appendix B |

34

address, and email.

To label the data, the file is loaded into a designated website[] On this website, different
labels such as company name, address, and email are created. These labels are then
applied to the corresponding words in the invoice text see Figure 3.1 When all the data
is annotated, a file can be downloaded from the website. This file will be used to train

the model.

. Company Inc.| o O - 123 street| socass: © . info @ company.com :. O ‘

Figure 3.1: Named Entity Recognition example

3.1.6 Creating JSON objects

After successfully extracting textual data from invoices using OCR, the next essential
step involves structuring this data into a usable format and storing it in a database for
further processing and analysis. This process is facilitated through the transformation
of data into JSON objects and the subsequent use of a MySQL connector package in

Python for database operations.

The extracted data from invoices, which includes details like sender, receiver, due date,
total amount, and invoice number, is first encapsulated into JSON objects. This struc-
turing is crucial as JSON offers a flexible, text-based format that easily integrates with
web applications and supports hierarchical data structures. The Python classes such
as Invoice, Sender, Receiver, and related classes are used to organize the data into this

format.

Each Invoice instance captures comprehensive details of individual invoices, and through
the InvoiceToJson class, these instances are converted into JSON format |E| The conver-

sion process involves collecting all invoices into a list, which is then iterated over to create

“https://tecoholic.github.io/ner-annotator/

5|F01“ more information see Figure 8 and Figure 9 in Appendix B|

35

a JSON-friendly dictionary for each invoice. Similar processes are employed for sender

and receiver details using their respective classes.

3.1.7 Testing approach

Testing is conducted separately for each component of the implementation and then
collectively to ensure that all parts function seamlessly together. This approach allows
for immediate identification and resolution of specific issues in each component before

integrating the entire system.

3.1.8 Object detection model testing

The object detection model is tested on its own to verify its accuracy in detecting and
classifying various data types on invoices. This is crucial for ensuring that the model
reliably identifies and categorizes elements like invoice numbers, due dates, and other
specified classes without human intervention. The model’s performance metrics, such as
precision and recall, are monitored continuously to assess its effectiveness throughout the

training and deployment phases.

3.1.9 Information filtering testing

Every component of the information filtering process, developed to refine and authenticate
the data captured by the object detection model, is subjected to thorough testing. This
involves ensuring the precision of data parsing and the validation of the extracted data
against established formats. Additionally, the integrity of the final output is confirmed.
The primary objective is to enhance the accuracy of the extraction process, particularly
when converting data into JSON format, ensuring that each piece of information is cor-
rectly categorized and stored. This rigorous validation helps to eliminate irrelevant or

incorrect data, significantly elevating the quality and reliability of the final data output.

3.1.10 Integrated system testing

Following the testing of individual components, a comprehensive evaluation of the entire
integrated system is carried out. This final phase of testing involves processing complete

invoices, from object detection to data extraction and conversion into JSON format. The

36

evaluation assesses the system’s capacity for seamless end-to-end data extraction and
processing across a range of conditions, including different invoice layouts and levels of
data complexity. This ensures the system’s robustness and adaptability in effectively

handling real-world scenarios.

3.2 Documentation

The documentation for this report is carried out in parallel with the project’s ongoing
activities. The process begins with an initial description, followed closely by a research

phase, leading seamlessly into the implementation of the microservice.

Documentation of the technical background for each part is initiated as soon as its imple-
mentation is finalized. This timely approach to writing is advantageous because it allows
for the immediate recording of detailed and accurate information while the subject matter

is still fresh, eliminating the need to backtrack to earlier phases of the project.

Once the technical aspects are documented, the focus shifts to compiling and analyzing
results, which naturally progresses into the writing of the conclusions section. Throughout
the project, updates to references are made to keep pace with the evolving research,
ensuring that all aspects of the report are current and comprehensive. Additionally,
adjustments to the report’s format are made as needed to improve overall coherence and

readability.

3.3 Source criticism

The foundation of the decisions made in this project, particularly in terms of model
selection and implementation strategies, is established on high-quality and trustworthy
sources. In the process of acquiring knowledge, the authors strictly utilize information
from reviewed materials such as peer-reviewed academic journals and books. This is
achieved to deepen understanding of specific concepts and investigate innovative solu-
tions. Any information lacking verification from reputable sources is purposefully left out

of this report, ensuring the integrity and reliability of the research undertaken.

37

Chapter 4

Result

This section presents the outcomes of the training and evaluation of the invoice extraction
model, detailing its performance across various classes. We employ confusion matrices
to explain the model’s predictive accuracy and identify areas requiring refinement. Ad-
ditionally, the training and validation dynamics over multiple epochs are analyzed to

measure the model’s progression and its adaptation to the dataset.

4.1 Initial training of YOLO

For this preliminary run, the model is trained on a dataset comprising 80 invoices. This
initial dataset serves as a foundational test to verify the setup and functionality of the
model, as well as to enable the model to annotate additional invoices for inclusion in the
dataset. This first phase of training and validation provides critical insights into which
classes are most prone to errors, guiding subsequent adjustments and improvements in
the model’s training process. The initial evaluation of our model employs a confusion
matrix, a crucial tool for analyzing the performance and accuracy of our classification

system.

From the confusion matrix of Figure 4.1}, several key observations can be made regarding

specific classes:

1. The model demonstrates strong performance in identifying the ”Table” class, with

a high score of 0.75, suggesting a high level of reliability in this area.

38

2. Significant errors are noted in the "Company details” and ”Customer details”
classes, with respective scores of 0.20 and 0.25. The frequent confusion between

these classes indicates a need for focused improvement.

3. The classes "Invoice”, "due_date”, and ”shipping_detail” exhibit the lowest accu-
racy, with scores hovering around 0.0, indicating significant challenges in accurately

recognizing these vital invoice elements.

These observations suggest that while the model is capable of accurately identifying some
invoice elements, considerable improvements are necessary, particularly in the areas of
company and customer details, as well as in the accurate extraction of invoice totals and

due dates.

This preliminary evaluation serves as a baseline for future improvements. As the training
dataset is expanded and the methodologies of the model are refined, an enhancement
in performance across all categories is anticipated. This continuous refinement will help

achieve more precise and reliable model predictions.

39

Confusion Matrix Normalized

company_detail - 0.20 033 0.11

customer_detail - 0.25 0.11

0.8

due_date -

invoice- -

Predicted

shipping_detail -

table - 0.20

table_total - 0.25

background 0.60

o
o
~
S
I
=)

.
) Q
g 2
o

: 8
£

True

company_detail
customer_detail
due_date
shipping_detail -
table_total
background -

Figure 4.1: Initial normalized confusion matrix

During the evaluation of the invoice extraction model across multiple epochs, the training
and validation losses, as well as various metrics, are systematically recorded. The model
undergoes significant training iterations, evident from the values across the epochs. The
x-axis in all graphs represents the number of epochs, ranging from 1 to 25, with each
epoch signifying one complete pass through the entire training dataset, thereby providing
a measure of the training duration and progression. The y-axis showcases the values of
the different loss functions and metrics being monitored. These include box loss, class
loss, and distribution focal loss. The training losses for box, class, and dfl of Figure 4.2
showing an overall trend of decrease across epochs as presented in Table[d.1} For instance,
the training box loss reduces from 2.4544 in epoch 1 to 1.2131 by epoch 25. Similarly,
the class loss decreases from 7.8587 to 1.8756, and the dfl loss from 2.1186 to 1.2678 over
the same period as presented in Table

40

Table 4.1: Initial train performance metrics by epoch

Epoch | Train/Box Loss | Train/Class Loss | Train/Dfl Loss
1 2.4544 7.8587 2.1186
2 2.4762 7.372 2.1184
3 2.2979 7.1205 2.0617
4 2.5142 7.1292 2.1306
5 2.3706 5.7302 2.1098
23 1.0943 1.8103 1.2229
24 1.1458 1.8362 1.2919
25 1.2131 1.8756 1.2678
train/box_loss train/cls_loss train/dfl_loss
8 .
2.50 1 —e— results
2251 - ++r smooth
6 -
2.00 ~
5 .
1.75 A
4 -
1.50 ~ ‘
1.25 ~ R
w 2
(I) 110 2l0 0 1IO 2IO

Figure 4.2: Graphical representation of train loss metrics during initial model training

In terms of validation, the box loss shows a general decrease, while the class loss exhibited
considerable variation, peaking significantly in certain epochs (e.g., 47.796 in epoch 7)
before tapering off to 3.5622 by epoch 25, as it is reported in Table The dfl loss in

validation also trends downward overall as seen in Figure 4.3]

41

Table 4.2: Initial model validation performance metrics by epoch

Epoch | Val/Box Loss | Val/Class Loss | Val/Dfl Loss
1 2.4113 6.9616 2.1081
2 2.4288 7.0176 2.1404
3 2.4176 7.2546 2.1674
4 2.4092 7.3089 2.1404
d 2.4765 8.5674 2.2334
6 2.4623 14.897 2.255
7 2.7816 47.796 2.3215
23 1.7005 3.7832 1.6035
24 1.6793 3.6213 1.5905
25 1.6333 3.5622 1.5854
val/box_loss val/cls_loss val/dfl_loss

Figure 4.3: Graphical representation of validation loss metrics during initial model train-

ing

The precision metric evolves from a low of 0.01129 in the first epoch to a more robust

0.53783 by epoch 25 as seen in Table 4.3] indicating an improvement in the model’s

ability to correctly identify positive instances. The recall, which measures the model’s

42

capability to detect all relevant cases, similarly showed progress, particularly notable in

the significant increase in mAP50 and mAP50-95 scores from the earlier epochs to later
stages, as depicted in Figure For example, mAP50 increases from 0.015 to 0.28006,
and mAP50-95 from 0.00306 to 0.142. This is equivalent to 28% and 14% respectively

by the end of the training sessions.

Table 4.3: Initial evaluation metrics across epochs for the model

Epoch | Metrics/Precision | Metrics/Recall | Metrics/mAP50 | Metrics/mAP50-95

1 0.01129 0.09722 0.015 0.00306
2 0.01209 0.09722 0.00968 0.002

3 0.00019 0.04167 0.00015 0.00009
4 0.00019 0.04167 0.00015 0.00009
5 0.67549 0.04167 0.00305 0.00174
23 0.55245 0.25227 0.28586 0.13742
24 0.53782 0.29689 0.28729 0.13478
25 0.53783 0.29722 0.28006 0.142

43

metrics/precision(B) metrics/recall(B)

0.35 A
0.30 -
0.25 A
0.20 -
0.15 -
0.10 -
0.054
0 1|O 2I0
metrics/mAP50(B) metrics/mAP50-95(B)
0.30 A1
0.25 4 0.125 A
0.20 A 0.100 -
0.15 A 0.075 -
0.10 1 0.050 -
0.05 A1 0.025 A
0.00 | "vesse 0.000 -
6 110 ZIO 0 1|0 2I0

Figure 4.4: Trends in evaluation metrics across epochs from initial model performance

4.1.1 Final training of YOLO

As we expand the dataset and iteratively refined our model, we observe a notable en-
hancement in its predictive accuracy and reliability. This is evidenced by the gradual
improvement in mAP scores and the reduction in class-specific errors, the model demon-

strates commendable performance in accurately classifying several key invoice elements,

lsee Figure 2 in Appendix A] as depicted in the confusion matrix of Figure [£.5] Notably,

the classes ” Company_detail”, ” Customer_detail”, " Table”, and ”Table_Total” exhibited
high values (around 0.9 or 1.0) on the diagonal, indicating that the model effectively
recognized and categorized the majority of data points in these areas. In contrast, classi-
fications such as ”"Due date,” "Invoice#,” and ”Shipping detail” presented lower diagonal

values (around 0.7 or 0.8), suggesting the model encountered more challenges in these

44

specific categories.

Confusion Matrix Normalized Lo

company_detail

customer_detail -

0.8
due_date - 0.11
0.6
invoice- - 0.11
°
L
=
o
<
& shipping_detail -
-0.4
table - 0.11
table_total - 0.08 -02
background - 0.07 0.08
-0.0

company_detail -
customer_detail -
due_date -
invoice- -
shipping_detail -
table -
table_total -
background -

True

Figure 4.5: Final normalized confusion matrix

During the initial training phase, the model faced relatively high losses. Specifically, in the
first epoch, training losses were recorded for bounding box, class, and dfl at 1.8148, 3.548,
and 1.6402, respectively, as presented in Table 4.4l These figures gradually decreased over
subsequent epochs, see Figure reflecting the model’s evolving capability to interpret

and learn from the training data effectively.

45

Table 4.4: Final model train performance metrics by epoch

Epoch | Train/Box Loss | Train/Class Loss | Train/Dfl Loss
1 1.8148 3.548 1.6402
2 1.3634 1.8638 1.3154
3 1.3781 1.7321 1.3363
4 1.324 1.5978 1.2938
5 1.2556 1.4414 1.2609
23 0.92313 0.65106 1.0887
24 0.89865 0.6205 1.0792
25 0.8793 0.61117 1.0732
train/box_loss train/cls_loss train/dfl_loss
1.8 1 3.517 1 —— results | 161
i smooth
1.6 A 3.0 1.5 -
2.5 A
1.4 1.4
2.0 -
1.3 A
1.2 A 1.5
1.2 -
1.0 A 1.0~
o, 1.1
T T T 0'5 - T T T T T
0 10 20 0 10 20 0 10 20

Figure 4.6: Graphical representation of train loss metrics during final model training

For instance, training and validation losses displayed a consistent decline over 25 epochs,

demonstrating the model’s improved ability to learn from the data. The training losses

for bounding box, class, and dfl by the 25th epoch had decreased to 0.8793, 0.61117,

and 1.0732 respectively, as seen in Table [4.4] and Figure [4.6] showcasing substantial

improvements. Similarly, validation losses mirrored this trend as seen in Figure 4.7 and

Table [4.5] contributing to a growing confidence in the model’s predictive accuracy.

46

Table 4.5: Final model validation performance metric by epoch

Epoch | Val/Box Loss | Val/Class Loss | Val/Dfl Loss
1 1.3326 2.6805 1.3667
2 1.46 1.7951 1.4986
3 1.4192 1.7017 1.4615
4 1.4736 1.7647 1.4946
5 1.2938 1.3828 1.3557
23 0.96094 0.60175 1.1475
24 0.92937 0.56566 1.1359
25 0.92269 0.56539 1.1416
val/box_loss val/cls_loss val/dfl_loss
15
1.5
1.4 - M 257
1.3 2.0 147
1.2 4 15 1.3 4
1.1+
1.0~ 4
1.0 1 . 1.2
09 B T T 0.5 - T T B T T
0 10 20 0 10 20 0 10 20

Figure 4.7: Graphical representation of validation loss metrics during initial model train-

ing

Moreover, there was a significant advancement in the precision and recall metrics. Start-
ing from moderate values, the precision and recall progressively reached peaks of 0.91337
and 0.93389 by the 25th epoch as seen in Table and Figure 4.8, The increase in mAP
score of 95.3% further underscored the model’s enhanced accuracy and robustness, indi-

cating its reliable capacity to detect and classify diverse invoice elements across varying

categories.

47

Table 4.6: Final evaluation metrics across epochs for the model

Epoch | Metrics/Precision | Metrics/Recall | Metrics/mAP50 | Metrics/mAP50-95
1 0.53939 0.38425 0.36472 0.23302
2 0.48771 0.4922 0.44229 0.26554
3 0.49007 0.37845 0.457 0.27535
4 0.50512 0.51606 0.53116 0.30723
5 0.57689 0.64464 0.67647 0.41382
23 0.84932 0.93472 0.94143 0.67063
24 0.91388 0.90121 0.94514 0.68276
25 0.91337 0.93389 0.95331 0.69268

metrics/precision(B)

metrics/recall(B)

0.9 1 .,\[' 09 2h'e
0.8 0.81
0.7 1
0.7
0.6 A P
0.6 0.5 -
[]
0.5 - 0.4 -
0 10 20 0 10 20
metrics/mAP50(B) metrics/mAP50-95(B)
0.7
0.9 rl"‘*ﬂ'
0.6
0.8 A
0.7 1 ,\ 0.5 A
0.6 1 0.4 -
0.5 A
0.3 A
0.4 -
0 10 20 0 10 20

Figure 4.8: Trends in evaluation metrics across epochs from final model performance

48

4.1.2 Training NER

In the Tables 4.7, 4.8 and 4.9, the data represents the results obtained from training
various NER models. The information displayed includes the following metrics: Epochs
(number of training epochs), (number of invoices processed, ENT_P (entity precision),

ENT_R (entity recall), and ENT_F (entity F-score, a mean of precision and recall).

Table displays the results obtained from training the NER model to identify company
details. The model is trained using a dataset comprising information from 500 invoices,

achieving the current level of performance.

Table 4.7: Entity recognition performance metrics by epoch for company detail

Epoch | # | ENTS_F | ENTS P | ENTS R
0 0 0.00 0.00 0.00
13 200 97.31 97.31 97.31
29 400 98.49 98.32 98.65
49 600 99.83 99.66 100.00
73 800 99.83 100.00 99.66

103 1000 99.83 99.66 100.00
140 1200 99.83 100.00 99.66

183 1400 99.83 99.66 100.00
234 1600 99.83 99.66 100.00
300 1800 99.83 100.00 99.66

373 2000 99.83 99.66 100.00
473 2200 99.83 99.66 100.00

The data presented in Table [4.8] shows the results from the initial training of the NER

model to identify various table items. This training utilizes information from 300 invoices.

The results presented in Table are from the second training run of the table items

49

Table 4.8: Initial entity recognition performance metrics by epoch for table items
Epoch | # | ENTS_F | ENTS P | ENTS_R

0 0 4.19 4.80 3.71
6 200 97.32 97.29 97.36
15 400 99.29 99.29 99.29
25 600 99.18 99.21 99.14

37 800 100.00 100.00 100.00
52 1000 100.00 100.00 100.00
71 1200 100.00 100.00 100.00
94 1400 100.00 100.00 100.00
121 1600 100.00 100.00 100.00
154 1800 100.00 100.00 100.00
194 2000 100.00 100.00 100.00
244 2200 100.00 100.00 100.00
305 2400 100.00 100.00 100.00

model. For this iteration, a dataset containing information from 500 invoices is utilized,
incorporating a broader range of formats to enable the identification of different types of

table items.

20

Table 4.9: Final entity recognition performance metrics by epoch for table items

Epoch | # | ENTS_F | ENTS P | ENTS R
0 0 0.00 0.00 0.00
4 200 87.90 88.00 87.81
9 400 92.94 92.89 92.99
15 600 94.50 94.50 94.50
22 800 97.95 97.95 97.95
32 1000 97.52 97.52 97.52
43 1200 98.27 98.27 98.27
57 1400 98.60 98.60 98.60
74 1600 98.71 98.71 98.71
94 1800 98.71 98.71 98.71
119 2000 98.71 98.71 98.71
150 2200 98.71 98.71 98.71
187 2400 98.71 98.71 98.71
227 2600 98.71 98.71 98.71
267 2800 98.71 98.71 98.71
307 3000 98.71 98.71 98.71
347 3200 98.71 98.71 98.71

51

Chapter 5
Analysis

This chapter delves into an analysis of the results and addresses the research questions
(RQs) posed in Chapter 1. In this part, we explore various strategies that aim to re-
fine the performance and adaptability of our invoice reading model. This analysis in-
spects the model’s performance, identifying strengths and pinpointing areas that require
improvement, from class imbalances to handling diverse document types and language

considerations.

Each subsequent section presents targeted discussions on specific aspects of model op-
timization, ranging from the technical adjustments to strategic overhauls. We assess
the effectiveness of different approaches to model training and adaptation, ensuring each

strategy aligns with the practical demands of real-world invoice processing.

5.1 Class imbalance solutions

After achieving the results, an important observation from both the initial and final
evaluations of the invoice processing model reveals consistent underperformance in specific
classes, notably 'Due date,” ’Invoice,” and ’Shipping detail.” Despite various iterative
improvements and adjustments over the training epochs, these classes consistently show
lower accuracy. This recurring issue largely stems from the inconsistent appearance of

these labels on invoices.

Often, these crucial classes are not only formatted differently across various invoice types

52

but are also less frequently represented in the training dataset compared to other labels.
This irregular presence and variability challenge the model’s ability to learn and generalize

effectively, leading to diminished predictive accuracy for these categories.

To tackle this issue, it is essential to enrich the training dataset with a more diverse array
of examples that include these underrepresented labels. Expanding the range of data
to include a broader and more balanced representation of all invoice classes is critical.
Enriching the dataset in terms of label frequency and diversity facilitates a more com-
prehensive learning process, enabling the AT model to perform more consistently across

all categories of invoice data.

Further enhancing the dataset not only helps reduce the model’s bias towards more
frequently seen labels but also strengthens its capability to handle currently challeng-
ing labels due to their sparse occurrence. Dataset augmentation, involving systematic
modifications to training images, becomes a practical approach to creating new training
samples from existing data. Techniques such as flipping images horizontally can simulate
different invoice orientations, which is useful for training the model to recognize variably
oriented text. Scaling techniques can mimic invoices being closer or farther from the cam-
era, adjusting for size differences. Additionally, modifying color variations aids the model
in managing different lighting conditions and color schemes, which are common in real-
world scenarios. These enhancements aim to make the model robust against the diverse
formats and presentations of invoices, ultimately improving its accuracy and reliability

in commercial applications.

5.2 Language considerations

The desired output for invoice extraction varies depending on whether the invoices are
in Swedish or English. When identifying ROI coordinates, the model primarily focuses
on invoice patterns rather than the language itself. It analyzes where different types of
information are typically located and in what format. However, language still influences
the search results. Additionally, the overall format of Swedish and English invoices often

differs, which affects the search in a significant way.

53

The text extraction model, powered by OpenCV, is not affected by language differences
because it autonomously identifies letters. Since Swedish and English use the same al-

phabet, language is inconsequential in this context.

The model most affected by language is NER. NER actively seeks specific words and
patterns within the text, such as those used to identify companies, addresses, or emails.
These patterns vary significantly between Swedish and English addresses and compa-
nies. However, email formats remain consistent regardless of language, as emails follow

a standardized structure of text.

5.3 Strategies for document type handling

There are different approaches to handling various document types efficiently. One
method involves using distinct models for each type of document. Depending on the
type of document to be scanned, a specific model would be employed. This strategy of-
ten leads to higher success rates as each model specializes in a particular document type.
However, a drawback is the need to determine which document types to include and how
many. Developing multiple models can be time-consuming and requires a substantial

amount of data collection for each model.

Alternatively, another approach is to standardize different document types into a single
format. By converting all document types into a unified format, only one model needs
to be trained. Several open-source libraries are available that can perform document
conversions (e.g., from PDF to JPG). Even if a specific conversion library is not readily
available, developing a custom converter could be less time-intensive. However, a chal-
lenge with this method is the potential loss of data and reduction in quality during the
conversion process. For instance, when converting a PDF (which uses vector graphics) to
a JPG (which is pixel-based), the loss of detail may occur [40]. Unlike PDFs that can be
zoomed without quality loss due to their mathematical representation, JPGs lose quality
when zoomed in, as they consist of fixed pixels. The reverse is also true. Zooming out in

a JPG can make the content unrecognizable due to pixelation.

54

Additional models could be incorporated based on the desired information extraction
from invoices. Initially, during the system’s implementation, YOLO was utilized solely to
extract the ROI coordinates from the invoices. Subsequently, openCV was employed to
extract text from these ROI coordinates. In certain scenarios, this extracted information
might suffice for the system’s requirements, negating the need for further development.
However, in our case, we aimed to refine this extracted data by identifying specific text

using NER.

5.4 Refining the invoice reading model

As we look towards the continuous improvement of the invoice reading model, this section
outlines a range of potential strategies that are being considered to refine its performance
and adaptability. These strategies are theoretical enhancements not yet implemented
but represent possible avenues for future development. Each strategy targets specific
aspects of the model’s functionality. This includes rigorously evaluating performance
metrics, enhancing the quality and diversity of the training dataset, and managing the
model’s complexity. This section proposes a systematic approach to optimizing the model,

ensuring it is better equipped to handle the complexities of real-world invoice processing.

5.4.1 Model evaluation and tuning

The evaluation of the model’s performance utilizes essential tools such as confusion ma-
trices and key performance metrics including precision, recall, and mAP scores. These
evaluations are critical for identifying the model’s strengths and pinpointing specific areas
that require improvement, particularly in accurately classifying complex invoice elements
like 'Due date’, 'Invoice’, and "Shipping detail’. Through regular analysis of these metrics,
targeted enhancements are systematically applied, allowing for precise fine-tuning of the

model to address its specific weaknesses effectively.

5.4.2 Enhancing data quality

At the core of any machine learning model is its dataset. The efficiency of the invoice

reading model highly depends on the quality and diversity of its dataset. Accuracy in

95

labeling and a diverse range of image data are crucial. High-quality, accurately labeled
images ensure the model learns the correct features and relationships essential for precise

predictions upon deployment.

Moreover, the diversity in the dataset, encompassing variations in lighting, angles, and
backgrounds of invoice images, is vital for the model’s ability to generalize effectively to
new, unseen data. Invoices from varied sources exhibit different formats, colors, and con-
ditions, including wear or distortion. Incorporating a wide spectrum of these variations
into the training dataset is a strategic move to combat overfitting, a prevalent challenge

in machine learning that can impede the model’s performance in real-world scenarios.

5.4.3 Managing model complexity

The complexity of the model is fundamentally linked to its ability to process and learn
from data comprehensively. For intricate tasks such as invoice reading, which demands
handling multiple formats and detailed content, employing advanced architectures like
YOLOv8 1’ (large), 'x’ (extra large), or YOLOV9 is advantageous. These sophisticated
models are designed to capture finer details and subtle nuances, which can significantly

enhance accuracy in object detection and classification tasks.

However, deploying more sophisticated models comes with increased computational de-
mands. This can potentially impact the microservice’s efficiency, particularly in environ-
ments with limited computational resources like processing power, memory, and storage.
The primary challenge lies in achieving the right balance between model complexity and
computational efficiency. This balance is crucial to ensure that the model is capable
enough to deliver high accuracy without exceeding the resource constraints of its deploy-

ment environment, thereby maintaining optimal processing speeds.

5.4.4 Hyperparameter optimization

Further enhancement of the model can be achieved through meticulous hyperparameter
tuning. Adjusting key parameters like learning rate, weight decay, and momentum in
response to trends observed in performance metrics such as loss rates and accuracy is

essential. This continuous optimization process tailors the training regimen to maximize

26

the model’s performance across various training epochs. Each iteration of training not
only aims at improving precision and reducing errors but also to enhance the model’s

capacity to adapt dynamically to complex data landscapes.

5.5 'Transition to production

Transitioning a developed Al service from the development or testing phase to a produc-
tion environment marks a pivotal stage in the lifecycle of any technological solution. The
production phase is where the service becomes fully operational and integrates into real-
world business operations. This phase is essential as it rigorously tests the application’s
functionality, reliability, and usability under typical business conditions, serving as the

ultimate test of its readiness and efficacy.

During this transition, various compatibility issues surface, necessitating additional cus-
tomizations or modifications to the Al service or the existing enterprise systems. Such
adjustments are crucial to ensure seamless data flow and functionality, integrating the

new technology smoothly with the old to create a cohesive system.

Moreover, handling invoices means dealing with sensitive financial information. When
such systems move to a production environment, they are subjected to heightened data
security and privacy concerns. It is imperative that the Al system is secure and adheres
to relevant regulations, such as the General Data Protection Regulation (GDPR), to

safeguard against data breaches and maintain user trust.

Additionally, the variability of real-world scenarios often presents unforeseen challenges
that the system must be prepared to handle. These challenges may include processing
poorly scanned invoices, adapting to unexpected invoice formats, or correcting data input
errors. Building robustness and reliability into the system to perform consistently under

all operational conditions is critical to its success.

Thus, moving to the production phase is not merely a procedural step but a significant

milestone that signifies the Al service’s readiness for full-scale operational deployment.

o7

This phase requires careful preparation and a well-defined strategy to navigate the com-
plexities of real-world applications. Ensuring the system’s performance meets the high
standards of efficiency and effectiveness promised during its conception is essential for its

long-term success.

o8

Chapter 6

Conclusion

This section synthesizes the key findings and insights derived from addressing RQ 1 to
RQ 5 posed in this study. By examining various aspects of implementing and optimizing
an Al-driven invoice reading service, this conclusion offers valuable reflections on the
technical considerations, performance enhancement strategies, and practical implications

for real-world deployment.

e In what way can the invoice reading service be implemented to handle

different document types and easily expand with new models?

When aiming to manage multiple document formats efficiently, adopting a standardized
approach for handling a specific format is the preferred strategy. By concentrating on
a single format, the number of required models is reduced. This is leading to a more
streamlined and less time-consuming system development process for file conversion, as
discussed in Section 5.3. This is particularly advantageous given the variety of open-
source Python libraries available for file conversion tasks. With a narrowed focus on
one format, the data collection efforts can be more targeted, requiring less overall data
acquisition for training a model. This approach optimizes both development efforts and

resource utilization.

e What technical and language aspects need to be considered to ensure

accurate interpretation of invoices in Swedish and English?

When addressing language considerations, a primary factor to consider is the performance

29

of the NER model. As mentioned in Section 5.2, one of the key challenges faced by the
NER model is the varying formats between English and Swedish text. This issue can
be mitigated by training the model on a more extensive dataset that encompasses both
languages and a wider range of text formats. By incorporating diverse data during train-
ing, the model s ability to accurately identify the desired information will significantly

improve.

e What methods and criteria should be used to train and evaluate the Al

model used for invoice reading?

The methods and criteria for training and evaluating the AI model used for invoice read-
ing are paramount for its effectiveness. As discussed in Section 5.1, addressing class
imbalance through dataset enrichment is crucial. By incorporating a diverse range of ex-
amples, particularly for underrepresented classes the model can learn to generalize more
effectively across various invoice formats. This aligns with the analysis presented in Sec-
tion 5.4.2, highlighting the importance of dataset diversity and augmentation techniques

in improving model performance.

For evaluation, employing tools such as confusion matrices and key performance metrics
including precision, recall, and mAP scores, as discussed in Section 5.4.1, is essential.
These metrics facilitate a comprehensive understanding of the model’s strengths and
weaknesses, enabling targeted improvements. Regular evaluation using these tools ensures
that the model is finely tuned and capable of accurately classifying complex invoice

elements.

The training and evaluation of the Al model for invoice reading demands a comprehensive
strategy that encompasses the use of sophisticated model architectures, rigorous data
handling, and meticulous performance assessment. Through such an approach, the model
not only achieves high accuracy but also adapts to the complexities of real world invoice

processing tasks.

e How can the performance and speed of the developed microservice be

improved to meet the requirements for fast and efficient invoice reading?

60

Improving the performance and speed of the developed microservice involves managing
the balance between model complexity and computational efficiency. Deploying advanced
architectures like YOLOvVS '’ or 'x’ enhances the model’s ability to detect and classify
detailed invoice content accurately, as discussed in Section 5.4.3. However, these sophis-
ticated models demand higher computational resources, which can impact the microser-

vice’s efficiency.

To address this, optimizing hyperparameters such as learning rate, weight decay, and
momentum based on observed performance metrics is critical, as outlined in Section
5.4.4. This optimization tailors the model’s training to its operational environment,
maximizing performance without overwhelming system resources. Additionally, ensuring
a diverse and high-quality dataset, as emphasized in Section 5.4.2, is crucial for preventing
overfitting and maintaining high accuracy under varying real-world conditions. These
strategies collectively contribute to a model that is not only accurate but also operates

with the designated speed and efficiency.

e What opportunities and challenges may arise when transferring the de-

veloped service to a production environment?

Transitioning the Al service for invoice processing from a development stage to a pro-
duction environment presents several challenges, as detailed in Section 5.5. Key issues
include integration complexities with existing enterprise systems, strict data security de-
mands, and the necessity to manage diverse real-world scenarios effectively. Strategic
adjustments are crucial to ensure that the Al service integrates smoothly with exist-
ing systems, complies with rigorous data protection regulations such as GDPR, and is

versatile enough to handle varying invoice formats.

Effectively addressing these challenges is vital for the Al service to fulfill its potential
and operate reliably within a real-world context. This transition phase is not merely
a technical step but a critical determinant of the AI service’s long-term effectiveness
and scalability in commercial environments. By successfully managing these hurdles, the

service can demonstrate its value and readiness for broader operational deployment.

61

Future Work

In this part, we discuss the possible ways the system can evolve and methods to continue

the work.

One crucial step to improve the system is to find more data. To improve and build an
Al model, data is necessary to make the AI behave as desired. The data or invoices
used for the project can be considered limited in many ways. Currently, the data used is
only in English, which might make the model less accurate when encountering invoices in
different languages. The invoices are also limited in variation of formats. Here, a different
format would be defined by having various types of information placed differently. Having
limited formats to train the model with could lead to the model wrongfully identifying
different areas of information. The risk of this happening can be minimized by using a
bigger variety of data in greater quantities, including invoices of the desired languages

and, within each language, many different formats.

At the time of writing this thesis, the system can only scan JPG images, while the most
common format for invoices is PDFs. Indirectly, the system can scan PDFs; there is a
built-in code module within the system that checks whether there are any PDFs within
the folder of JPG invoices. If a PDF is found, it is converted to a JPG. The problem with
this type of conversion is that it could lead to a loss of information, which could make it
more difficult for the system to accurately scan and identify the information within the
invoice. A possible improvement would be to enable direct scanning of PDFs to negate

the potential information loss by conversion.

Currently, the system lacks a defined endpoint for processing invoice data effectively. To
address this, a database solution could be implemented to store and facilitate access to
invoice information. This database will serve as a centralized repository for managing
invoices, making it easier to retrieve specific ones as needed. Additionally, the system
requires a user-friendly interface for uploading invoices for scanning. The program will

utilize this database to efficiently send and retrieve invoices.

62

Ethical Reflection

In the development and implementation of Al technologies for invoice processing, several
ethical considerations must be prioritized to safeguard human values and societal norms.
Ensuring the privacy and security of sensitive data contained in invoices is crucial. This
involves implementing strong data protection mechanisms to prevent unauthorized access

and misuse, clearly detailing how the AI handles and securely stores data.

Transparency and accountability also play critical roles in building trust and reliability in
AT applications. It is essential that the methods by which the Al interprets and processes
invoices are transparent to all stakeholders, with clear accountability measures in place to
handle any discrepancies or errors that occur. Moreover, the importance of user consent
is fundamental. Users must have substantial control over their data, with clear protocols

for how their consent is obtained and respected.

The impact of Al on human labor, particularly through the automation of routine tasks
such as invoice processing, poses significant ethical questions. While Al can enhance
efficiency, it is vital to consider how it changes job roles and responsibilities, ensuring
that workers are fairly and effectively transitioned into new roles. Environmental consid-
erations are also crucial. The energy consumption and carbon footprint associated with

running Al models must be minimized to promote sustainability.

Finally, continuous monitoring and evaluation are essential to ensure the AI model ad-
heres to ethical standards over time. Regular inspections and reviews can help in quickly
addressing any emerging ethical concerns, thereby maintaining the integrity and societal

acceptance of Al technologies in business processes.

63

Bibliography

1]

B. Dwyer, J. Nelson, and T. et al. Hansen. Roboflow (version 1.0) [software|. https:
//roboflow.com, 2024. Accessed: 2024-04-25.

G. Jocher, A. Chaurasia, and J. Qiu. Ultralytics yolo (version 8.0.0) [computer
software|. https://github.com/ultralytics/ultralytics, 2023. Accessed: 2024-
03-10.

D. Desai, A. Jain, D. Naik, N. Panchal, and D. Sawant. Invoice processing using rpa
& ai. In Proc. of the International Conference on Smart Data Intelligence (ICSMDI
2021), May 2021. Accessed: 2024-03-20.

N. Hedberg. Automated invoice processing with machine learning: Benefits, risks

and technical feasibility, 2020. Accessed: 2024-03-20.

J. D. Kelleher, B. M. Namee, and A. D’Arcy. Fundamentals of Machine Learning for
Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT
Press, Cambridge, 2 edition, 2020. Accessed: 2024-03-20.

F. Hutter, L. Kotthoff, and J. Vanschoren. Automated Machine Learning: Methods,
Systems, Challenges. Shi jie tu shu chu ban gong si, Beijing, 2023. Accessed: 2024-
03-20.

N. Kraus, K. Kraus, O. Shtepa, M. Hryhorkiv, and I. Kuzmuk. Artificial intelli-
gence in established of industry 4.0. https://elibrary.kubg.edu.ua/id/eprint/
43298/, 2024. Accessed: 2024-04-04.

J. Cho, K. Lee, E. Shin, G. Choy, and S. Do. How much data is needed to train
a medical image deep learning system to achieve necessary high accuracy?, 2015.

Accessed: 2024-04-12.

64

https://roboflow.com
https://roboflow.com
https://github.com/ultralytics/ultralytics
https://elibrary.kubg.edu.ua/id/eprint/43298/
https://elibrary.kubg.edu.ua/id/eprint/43298/

[9]

[12]

[13]

[15]

[16]

[17]

[18]

[19]

Gil Press. Cleaning big data: Most time-consuming, least enjoyable data science

task, survey says, 2016. Accessed: 2024-04-12.

Imran et al. A survey of datasets, preprocessing, modeling mechanisms, and simula-
tion tools based on ai for material analysis and discovery. MDPI, 15(4):1428, 2022.
Accessed: 2024-04-20.

K. R. Srinath. Python - the fastest growing programming language issue 12 december

2017. IRJET, Dec 2017. Accessed: 2024-03-20.

S. Weisberg. Applied Linear Regression. John Wiley, 3 edition, 2021. Accessed:
2024-04-11.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. General reference for deep learning and epochs, Accessed: 2024-04-12.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing

Systems, 2012. Example study using image classification, Accessed: 2024-04-12.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436-444, 2015. Discussion on the importance of epochs, Accessed: 2024-
04-12.

Douglas M. Hawkins. The problem of overfitting. Journal of Chemical Information
and Computer Sciences, 44(1):1-12, 2004. Study on overfitting, Accessed: 2024-04-
12.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
Accessed: 2024-04-12.

What is computer vision?: Microsoft azure. https://azure.microsoft.com/
en-us/resources/cloud-computing-dictionary/what-is-computer-vision#

object-classification, 2024. Accessed: 2024-04-02.

A. Kulkarni, D. Chong, and F. A. Batarseh. Foundations of data imbalance and

solutions for a data democracy. Data Democracy, 2024. Accessed: 2024-04-11.

65

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-computer-vision#object-classification
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-computer-vision#object-classification
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-computer-vision#object-classification

[20]

[21]

[22]

[23]

[24]

[25]

[20]

[28]

[29]

[30]

G. Bradski and A. Kaehler. Learning Opencv: Computer Vision with the Opencv
Library. O’Reilly, Beijing, 2011. Accessed: 2024-04-02.

S. Mori, C. Y. Suen, and K. Yamamoto. Historical review of ocr research and
development. Proceedings of the IEEE, 80(7):1029-1058, July 1992. Accessed: 2024-
04-02.

What is ocr? - optical character recognition explained - aws. https://aws.amazon.

com/what-is/ocr/. Accessed: 2024-04-02.
R. Smith. An overview of the tesseract ocr engine, 2007. Accessed: 2024-04-02.

S. Hoffstaetter. Pytesseract. https://pypi.org/project/pytesseract/. Accessed:
2024-04-02.

Y. Xiao, Z. Tian, J. Yu, et al. A review of object detection based on deep learning.

Multimed Tools Appl, 79:23729-23791, 2020. Accessed: 2024-04-10.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Uni-
fied, real-time object detection. https://www.cv-foundation.org/openaccess/
content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html, 2024.
Accessed: 2024-04-11.

D. Prokopenko et al. Utilizing the jaccard index to reveal population stratification
in sequencing data: A simulation study and an application to the 1000 genomes

project. Bioinformatics (Oxford, England), 2024. Accessed: 2024-04-11.

A. Jindia. International journal of innovative research in technology. https://

ijirt.org/, 2024. Accessed: 2024-04-20.

ScienceDirect Topics. Confusion matrix - an overview. https://www.
sciencedirect.com/topics/engineering/confusion-matrix, 2024. Accessed:

2024-04-12.

H. He and E. A. Garcia. Learning from imbalanced data. [EEFE Transactions on
Knowledge and Data Engineering, 21(9):1263-1284, Sept 2009. Accessed: 2024-04-
20.

66

https://aws.amazon.com/what-is/ocr/
https://aws.amazon.com/what-is/ocr/
https://pypi.org/project/pytesseract/
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
https://ijirt.org/
https://ijirt.org/
https://www.sciencedirect.com/topics/engineering/confusion-matrix
https://www.sciencedirect.com/topics/engineering/confusion-matrix

[31]

[38]

[39]

[40]

A. Jindia. Object detection: A detailed review study. https://ijcrt.org/papers/
TIJCRT2112439.pdf], 2021. Accessed: 2024-04-25.

P. Henderson and V. Ferrari. End-to-end training of object class detectors for mean

average precision. In SpringerLink, 2021. Accessed: 2024-04-25.

Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A comprehensive survey of loss
functions in machine learning. Annals of Data Science, 9(2), April 2022. Accessed:

2024-04-31.

P. M. Nadkarni, L. Ohno-Machado, and W. W. Chapman. Natural language pro-
cessing: An introduction. OUP Academic, 2011. Accessed: 2024-04-29.

E. D. Liddy. Natural language processing. surface.syr.edu. Accessed: 2024-04-29.

R. Sharnagat. Named entity recognition: A literature survey. https://www.cfilt.
iitb.ac.in/resources/surveys/rahul-ner-survey.pdf, 2024. Accessed: 2024-

04-25.

A. A. Manjunath et al. Automated invoice data extraction using image processing.
TAES International Journal of Artificial Intelligence (1J-AI), 2024. Accessed: 2024-
04-14.

Sourav(G94. Invoice dataset. https://github.com/SouravG94/invoice-dataset,
2024. Accessed: 2024-03-10.

T. Lin. Labelimg. https://pypi.org/project/labelImg/, 2024. Accessed: 2024-
04-15.

H. Yu. Converting pdf to bitmap causes partial data loss in the image - applica-
tion developer. https://learn.microsoft.com/en-us/troubleshoot/windows/

win32/converting-pdf-file-to-bitmap-imagel, 2024. Accessed: 2024-04-10.

67

https://ijcrt.org/papers/IJCRT2112439.pdf
https://ijcrt.org/papers/IJCRT2112439.pdf
https://www.cfilt.iitb.ac.in/resources/surveys/rahul-ner-survey.pdf
https://www.cfilt.iitb.ac.in/resources/surveys/rahul-ner-survey.pdf
https://github.com/SouravG94/invoice-dataset
https://pypi.org/project/labelImg/
https://learn.microsoft.com/en-us/troubleshoot/windows/win32/converting-pdf-file-to-bitmap-image
https://learn.microsoft.com/en-us/troubleshoot/windows/win32/converting-pdf-file-to-bitmap-image

Appendix A

This appendix provides visual and code-based resources related to the thesis. It includes
annotated invoice samples, model predictions, and scripts used in the processing and

analysis of the data.

d ela \ ; ticcianhliir in |
. 4 . 2 II!J*‘«! nm@g%%zeggécompany_de SV = ~ Pt =L W] traoczzfer

icustomer_detail gEEgEg

O Dd gdeld q
Company M2me |NVO|CE
O e celd
=== o
al) el
Ciry Gescriprio e =)

Make 31 chacks payabi
= Pavable to: ity o,

THANK YOU R 3y Name are

YOUR SusiNEss| Thank You for Your Business!

Figure 1: Samples of annotated invoices with their respective labels

68

company detail 0.9

Figure 2: The models prediction of the sample showcasing the probability of the labels
being detected

69

'pip install ultralytics==8.0.196

from IPython import display
display.clear_output()

import ultralytics
ultralytics.checks()

[] from ultralytics import YOLO

from IPython.display import display, Image

~ Custom Training

%cd {HOME}

yolo task=detect mode=train model=yolovBs.pt data={dataset.location}/data.yaml epochs=25 imgsz=80@ plots=True

© !ls {HOME}/runs/detect/train/

© ucd {HOME}
Image(filename=f'{HOME}/runs/detect/train/confusion_matrix.png', width=600)

[1 %cd {HOME}
Image(filename=f'{HOME}/ s/detect/train/results.png’, width=600)

© wcd {HOME}
Image(filename=f'{HOME}/runs/detect/train/v batch®_pred.j , width=608)

v Validate Custom Model

© sscd {HOME}

'yolo task=detect mode=val model={HOME}/runs/detect/train/weights/best.pt data={dataset.location}/data.yaml

Figure 3: Python notebook to train and upload the model

70

confidenc

* name
= apply

data[name]

ent.label_ ==
email ent.text
ent

addr

compamny

sender der(y, email, addr

sender_j

_data[name] = sender

Figure 4: Method for performing object detection
71

from pdf2image import convert_from_path

def convert_pdf_to_images(pdf_path, output_folder, fmt='jpeqg'):

images = convert_from_path(pdf_path, =output_folder,
image_paths = []
for i, image in enumerate(images):

image_path = f'{output_folder}/page{i}.jpg’
image.save(image_path, 'JPEG")
image_paths.append(image_path)

return image_paths

Figure 5: Method for converting pdf files into images

def process_documents(folder_path, output_folder, model_path):
pdf_paths = find_pdfs_in_folder(folder_path)
if pdf_paths:
for pdf_path in pdf_paths:
image_paths = convert_pdf_to_images(pdf_path, output_folder)
perform_object_detection(image_paths, model_path)
else:
image_paths = find_images_in_folder(folder_path)
if image_paths:
perform_object_detection(image_paths, model_path)
else:

print("No PDFs or supported image files found in the specified folder.")

main():

pdf_folder_path = 'PDF'
images = 'Fakturor'
model_path = 'best.pt'

for image_path in images:
process_documents(pdf_folder_path, images, model_path)

= perform_object_detection(image_path, model_path)

n

if __name__ == "__main__":
main()

Figure 6: Main method for processing

72

Appendix B

This appendix focuses on the OCR methods and the conversion of annotated data into

structured formats. Included are figures depicting the specific methods used.

apply ocr(image_path,a,b,c,d):
image = .imread(image_ path)
roi = image[int(b):in in int(c)]

.resize(roi, (5€ 98), interpolation= .INTER_LINEAR)
gray_roi = vtColor(rei, OLOR_BGR2GRAY)

_, threshold_roi threshold(gray roi, 127, 255, THRESH_BINARY | THRESH_OTSU)

itwise pot(threshold roi)
Dy - ones ((umpy .uint8)
ations=1)

Figure 7: Method to apply OCR

73

nlp = spacy.load("en_core

db = DocBin{)

= open{ " anno
TRAIN_DATA 1. load(f)

for text, annot in tqdm(TRAIN_DATA["ar
doc = nlp.make_doc(text)
I |
for s r entit

end, label=label, alignment_mode=":

ents.append(span)
doc.ents = ents
db.add (doc)

db.to_disk("./training_data3

Figure 8: NER method to turn annotations into spacy objects

74

al, invoiceNbr):

1f.total = total
1f.invoiceNbr =

e.dueDate,

otal,
: Invoice.invoiceNbr}
indent=2)

init_ (self, description, quantity, price, sum):
1f.description = ription

1f.quantity = quantity

1f.price = price

item.description,
item.quantity,
item.price,
um”: item.sum}
.dumps{item_temp, indent=2)

ender):
Sender.name,
il": Sender.email,
": Sender.adress,}
.dumps(sender_temp, indent=2)

elf.name = name
elf.email = email
ad

Receiver.name,
il": Receiver.email,
Receiver.adress
rer_temp, indent=2)

Figure 9: classes to JSON

75

	Abstract
	Keywords
	Acknowledgments
	Introduction
	Background
	Purpose
	Goal formulation
	Problem formulation
	Motivation for the thesis
	Limitations
	Disposition

	Technical Background
	Data
	Python
	Machine learning
	Machine learning systems
	Machine learning process
	Linear regression

	AI model training
	Computer vision
	OpenCV
	OCR
	Tesseract
	Object detection
	You only look once

	Evaluating the model
	Intersection over union
	Confusion matrix
	Precision and recall
	Average precision
	Loss functions

	Natural language processing
	Named entity recognition

	Method
	Phases
	Research and data collection
	Labeling the data
	Training the YOLO model
	Data extraction
	Training the NER model
	Creating JSON objects
	Testing approach
	Object detection model testing
	Information filtering testing
	Integrated system testing

	Documentation
	Source criticism

	Result
	Initial training of YOLO
	Final training of YOLO
	Training NER

	Analysis
	Class imbalance solutions
	Language considerations
	Strategies for document type handling
	Refining the invoice reading model
	Model evaluation and tuning
	Enhancing data quality
	Managing model complexity
	Hyperparameter optimization

	Transition to production

	Conclusion
	Bibliography
	Appendix A
	Appendix B

