
Dynamic Update of CSP Allocations in
Federation Orchestration

MARIEKE BEKE
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2024

M
A

R
IEK

E B
EK

E
D

ynam
ic U

pdate of C
SP A

llocations in Federation O
rchestration

LU
N

D
 2024

Series of Master´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2024-993
http://www.eit.lth.se

Dynamic Update of CSP Allocations in
Federation Orchestration

Marieke Beke
ma8112be-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisors: Emma Fitzgerald, William Tärneberg

Examiner: Christian Nyberg

June 14, 2024

© 2024
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

This paper discusses the project in which an algorithm was written to dynamically
approach federation orchestration. This builds on and is part of the REINDEER
project. In an environment with goods and online agents, and in this specific case,
Contact Service Points (CSPs) and User Equipments (UEs), where the agents have
different applications and make unpredictable changes such as moving around a
room, finding a dynamic reallocation algorithm is a significant challenge.

The use of diverse case studies, encompassing both minor and significant adjust-
ments to an allocation, has proven to be an effective approach in identifying more
optimal solutions. An iterative methodology has been employed, wherein a ran-
domly selected case is evaluated in each iteration. Only if a superior utility value
is achieved is the new solution accepted. The utility values are calculated by a
entity, designated as the oracle, which was not a part of the original project scope.

This approach has yielded higher, yet more consistent utility values compared to
random reallocation. This is the case for different numbers of iterations, different
numbers of CSPs and different numbers of UEs.

The runtime can become a bottleneck of the algorithm if more iterations have to
be chosen. This is due to the fact that the oracle must be called every iteration.
Overall, the addition of the dynamic reallocation algorithm is a relevant addition.

i

ii

Popular Science Summary

Development of a Dynamic Reallocation Algorithm for fed-
eration orchestration in the RadioWeaves infrastructure

In today’s rapidly evolving technological landscape, efficient resource
management is crucial for the optimal performance of distributed sys-
tems. This project, part of the innovative REINDEER research project,
focuses on dynamic resource allocation within federated networks, where
multiple independent entities collaborate to share resources like pro-
cessing power, storage, and connectivity. These networks must swiftly
adapt to the unpredictable movements and varying demands of users.
The intelligent algorithm continuously adjusts resource distribution,
based on data input, saving computing time and improving efficiency.
This research has implications for the future of networked systems,
enabling technologies that support next-generation communication in-
frastructure.

In the realm of federated environments,
efficient resource management is pivotal
for optimal performance. The REIN-
DEER project, funded by the European
Union’s Horizon 2020 programme, aims
to revolutionize connectivity through
RadioWeaves technology, focusing on
resilience, interactivity, hyper-diversity,
and energy efficiency.

A crucial part of the RadioWeaves in-
frastructure is federation orchestration,
this implies managing Contact Service
Points (CSPs) and User Equipments
(UEs). CSPs are the resources, indi-
visible goods that serve the UEs, on-
line agents. UEs with similar applica-
tions are grouped into federations to

streamline resource allocation. The key
challenge addressed in this project is
the development of a dynamic reallo-
cation algorithm. Unlike traditional
static methods, this algorithm adapts
to changes such as UEs coming online
or moving within a room, ensuring op-
timal CSP allocation. It leverages an
iterative approach where adjustments
are made incrementally based on utility
evaluations by an evaluation compo-
nent, the oracle.

Testing and analysis demonstrate the
algorithm’s effectiveness across varying
scenarios, including different numbers
of CSPs and UEs. Results consistently
show improved utility values compared

iii

to static allocation methods, confirm-
ing its suitability for dynamic environ-
ments.

Looking ahead, future enhancements
could relax constraints on application
homogeneity among UEs within feder-

ations, explore weighted case prioriti-
sation, and optimise computational ef-
ficiency to further refine allocation re-
sults. These efforts will pave the way
for more efficient and adaptable network
infrastructures in the future.

iv

Table of Contents

1 Introduction 1

2 Degree project as part of REINDEER project 3
2.1 REINDEER . 3
2.2 Federation Orchestration in REINDEER 4
2.3 Abstract problem formulation . 6

3 Dynamic reallocation for devision of goods to agents 9
3.1 Indivisible Goods . 9
3.2 Online agents . 10
3.3 Federations . 11
3.4 Dynamic approach . 12
3.5 Santa claus algorithm . 15
3.6 A dynamic multiple traveling salesman problem 15

4 The algorithm 17
4.1 The simulator . 17
4.2 Approach . 17
4.3 Structure . 18
4.4 The cases . 18

5 Testing 27
5.1 General Results . 27
5.2 Tests on different configuration files 28

6 Conclusion 35
6.1 Project result . 35
6.2 Future work . 36
6.3 Endword . 37

References 39

v

vi

List of Figures

2.1 An example RadioWeaves deployment in a smart factory, with federa-
tions and their served devices colour coded. The four applications are
augmented reality (AR) for professional applications (purple), track-
ing of robots and unmanned vehicles (UVs) (green), tracking of goods
and real-time inventory (blue), and human-robot co-working (red)[9] 5

3.1 Architecture of the multi-UAV cooperative task reallocation algorithm
in different scenarios[11] . 13

4.1 Visual representation of the code structure 19

5.1 Comparison of initial and new utility values over time for 100 and 1000
iterations . 29

5.2 Utility values over time for 1000 iterations with and without the dy-
namic algorithm . 30

5.3 Utility values over time for 1000 iterations for 20, 40 and 80 CSPs . 31
5.4 Utility values over time for 1000 iterations for 2, 3 and 4 UEs 32

vii

viii

Chapter 1
Introduction

Modern distributed systems landscape requires effective resource management and
optimization for it to be efficient and scalable. This paper explores federated en-
vironments in the REINDEER project focusing on orchestration of resources to
support dynamic workload demands and operational challenges. Fundamentally,
REINDEER aims at defining a network framework supported by RadioWeaves
technology using advanced algorithms, and dynamic methodologies to enhance
performance[10].

Within REINDEER, federation orchestration is emerging as a critical component
that serves as a focal point of resource allocation of Contact Service Points (CSPs)
among different User Equipments (UEs)[9]. This paper navigates through intricate
levels of federation orchestration by clarifying the abstract problem formulation
and investigating techniques aimed at optimizing resource utilization.

The primary concern addressed in this thesis is how goods can be reallocated
dynamically to agents operating in a federated environment. Through an interme-
diate exposition that discusses issues arising from indivisible goods distribution,
online agent behavior, dynamics of federations, this manuscript lays the founda-
tion for a dynamically driven approach towards allocating resources different from
traditional static approaches.

The core of this thesis project is the development and utilisation of a sophisticated
algorithm that is capable of addressing the specific characteristics of federated en-
vironments. The algorithm is iterative, operating through nine distinct cases that
implement adjustments to the allocation. The Oracle, an existing tool within
REINDEER, is employed to assess and contrast the allocations.

This thesis reviews, through extensive testing and analysis, the efficacy and per-
formance of the proposed algorithm. With graphs and numbers positive results of
the algorithm are evaluated and weaknesses are exposed.

Finally, this research brings the project’s achievements to a conclusion by dis-
cussing the significant advances made in the field of resource management and
optimisation in federation orchestration. The findings of this thesis work demon-
strate the efficacy of a working algorithm for the continued development of the

1

2 Introduction

REINDEER project. This thesis also suggests potential areas for further investi-
gation and development with a view to improving the efficiency and adaptability
of resource allocation strategies within distributed computing settings.

Chapter 2
Degree project as part of REINDEER project

2.1 REINDEER

To achieve a clear problem formulation, it is necessary to consider the bigger
picture. Although the problem itself is abstract and can be separated from the
REINDEER project, understanding this project is useful as it demonstrates how
a larger research project arrives at the point of requiring an allocation algorithm.
If such an algorithm is not readily available in existing research resources, it must
be developed. That is why the abstraction is only made in the thinking process.
However, during the implementation and testing phases, the naming and concepts
of REINDEER will be used.

2.1.1 The next Generation of Connectivity

The REINDEER project is a research initiative that aims to develop an advanced
connectivity platform. The project’s name is an acronym for REsilient INteractive
applications through hyper Diversity in Energy Efficient RadioWeaves technology,
encapsulating several key concepts. In this context, resilience refers to the frame-
work’s ability to adapt and maintain effective functionality in the face of challenges
or disturbances[10].

The project includes interactive applications, such as software or systems that
dynamically engage with real-time user input and feedback. The term ’hyper-
diversity’ emphasises an exceptionally wide variety or range, highlighting the
project’s commitment to versatility. The project prioritises energy efficiency and
optimising the use of energy resources within the infrastructure. This emphasis on
sustainability ensures that the technology can operate efficiently over long periods
without depleting energy resources. The RadioWeaves technology is at the heart
of the project, enabling smart wireless and battery-free devices.

The European Union’s Horizon 2020 research and innovation programme provides
funding for this. The project will run for a period of 42 months and is divided into
seven work packages. The workload of the project is divided into seven work pack-
ages. Lund University is responsible for Work Package 2 (WP2), which involves
the RadioWeaves platform, including models, architectures, and topologies.

3

4 Degree project as part of REINDEER project

2.2 Federation Orchestration in REINDEER

The emerging field of 6G development aims to achieve unparalleled data rates, im-
perceptibly low latency, unparalleled dependability, and ultra-low power consump-
tion. Additionally, there is a crucial emphasis on reducing the carbon footprint of
network operations. To address these challenges, wireless access architectures are
evolving, incorporating distributed radios. Computing resources are leveraged to
their full potential through the emerging paradigm of cell-free networking. How-
ever, practical deployment of such architectures poses several challenges, including
efficient resource coordination, infrastructure and service scalability, and the need
for a robust foundation. REINDEER has introduced a part of this infrastructure.
Dynamic federations are a crucial solution to address the challenges mentioned.

The landscape of 6G is rapidly evolving and requires support for a wide range
of services, including an expected increase in connected devices and diverse ap-
plications. This requires infrastructures that can provide unparalleled capacity,
ultra-reliable low-latency communication, and connectivity for a massive number
of low-power devices. Furthermore, new features such as position-based applica-
tions and connections to energy-neutral devices highlight the need for advanced
radio access architectures.

The proposed radio access concepts comprise Reflective Intelligent Surfaces (RIS),
Cell-Free Massive MIMO (multiple input, multiple output), and Large Intelli-
gent Surfaces (LIS). These innovations address wireless communication challenges.
However, they do not cover the full spectrum of 6G services, including precise po-
sitioning and wireless energy transfer. The RadioWeaves system is introduced as a
comprehensive solution that provides a distributed infrastructure capable of sup-
porting a variety of services.

Recognising the limitations of current network architectures, dynamic federations
are proposed as a solution for practical deployment. These federations consist
of constellations of antennas, edge computing units, data storage, and other re-
sources tailored to serve specific applications or application classes. The dynamic
nature of federations, both in temporal and spatial domains, addresses the diverse
requirements of applications. The term ’federation’ refers to a cooperative group
of resources that serve a common purpose, usually coordinated by an Edge Com-
puting Service Point (ECSP).

To aid in the design and implementation of these systems, a specific set of termi-
nology is introduced to differentiate between logical entities and physical elements.
Logical entities consist of Contact Service Points (CSPs), ECSPs, and Federations,
each with a distinct role in the dynamic federation concept. Physical elements in-
clude Sensing Elements, Data Storage Elements, Processing Elements, Charging
Elements, and Radio Elements, which form the hardware foundation of the pro-
posed architecture[9].

In this project we focus on a smaller part of this RadioWeaves implementation,

Degree project as part of REINDEER project 5

more specifically on routing resource allocation for the scope of a room or a hall.
We can consider the network as consisting of UEs and CSPs. The UEs are the
User Equipments. These have their own application and behavior. Communica-
tion is possible through the CSPs, Contact Service Points. To put it simple, UEs
need CSPs to serve them. Given a set of requirements of the UEs there should be
an allocation that meets these requirements. However, it is important to carefully
consider the selection process to ensure the system is efficient, fast, and consumes
minimal power. The REINDEER project team developed the federation orches-
tration setup with this in mind. This approach involves grouping UEs with the
same application to be served together, resulting in a smarter allocation. A group
of User Equipments (UEs) is referred to as a federation. Within a federation,
UEs share the allocated CSPs. The challenge in making an allocation is to group
UEs with similar applications, locations or behaviours and provide them with a
set of CSPs that can fulfil the requirements of the federation. This setup is sat-
isfactory for the project, but as soon as circumstances change, the usefulness of
the federation orchestration may become questionable. Possible changes include
UEs coming online or going offline, UEs changing location, or objects entering the
room. Figure 2.1[9] provides an example of a deployment as described.

Figure 2.1: An example RadioWeaves deployment in a smart factory,
with federations and their served devices colour coded. The
four applications are augmented reality (AR) for professional
applications (purple), tracking of robots and unmanned vehicles
(UVs) (green), tracking of goods and real-time inventory (blue),
and human-robot co-working (red)[9]

6 Degree project as part of REINDEER project

2.2.1 Dynamic reallocation

The current existing algorithm is insufficient for adapting to changes. Constructing
a full new allocation for every change results in unnecessary calculations. A better
approach is to keep the allocation and make minor modifications to adapt to new
situations, such as switching CSPs or adding/removing UEs from the allocation.
A new algorithm is required to enable the handling of UEs coming online and
going offline, as this has not yet been developed in the REINDEER project. The
algorithm should be able to adapt to changing positions of UEs and their varying
needs for the number of serving CSPs. Additionally, it should conduct regular
checks of the utility value of the full federation orchestration.

2.3 Abstract problem formulation

In the specific problem context of this paper, the term CSPs refers to a particular
class of problems. In the broader literature, however, there are different approaches
to solving similar problems. In abstract problem formulations, the term CSPs can
be replaced by the concept of goods, which represent the entities or resources sub-
ject to allocation constraints.

Similarly, in a more generalised formulation, UEs can be likened to agents. Agents
embody different roles and behaviours, similar to how UEs represent individual
preferences and utilities in the context of CSPs.

The use of a more abstract problem formulation offers several advantages, includ-
ing increased flexibility and generalisability. By adopting generic terms such as
’goods’ and ’agents’, researchers can apply methods and techniques to a wider
range of problems beyond CSPs. This facilitates interdisciplinary collaboration
and the transfer of knowledge between different domains.

Within the problem framework, the agents are organised into federations. These
federations serve as groupings that aggregate agents with common goals or char-
acteristics. This organisational structure allows for more efficient coordination,
thereby increasing the overall effectiveness of the allocation process.

Furthermore, the goods involved are indivisible, meaning that each CSP is associ-
ated with a specific federation and cannot be divided among multiple federations.
This constraint highlights the importance of strategic allocation decisions within
each federation, as the indivisibility of the goods requires careful consideration of
resource utilisation and distribution within the limits of each federation’s capabil-
ities.

In addition to abstracting CSPs into goods and UEs into agents, the use of an
online algorithm further complicates the problem. Online algorithms are particu-
larly valuable in dynamic environments where decisions must be made in real time
or with incomplete information. In the context of resource allocation with UEs as
agents, the use of online algorithms is unavoidable in order to respond adaptively

Degree project as part of REINDEER project 7

to changing conditions and unforeseen events. It is possible for agents to join
and leave the system at any time. These algorithms are designed to continuously
update their allocation strategies based on incoming data or feedback, thereby
enabling agile decision-making even as the situation evolves. As agents interact
within federations to allocate indivisible goods, online algorithms can dynamically
adjust allocation decisions based on changing demands, emerging preferences, or
new constraints. The utilisation of online algorithms, which are characterised by
their flexibility and real-time decision-making capabilities, enables the enhance-
ment of the overall efficiency and effectiveness of the allocation process in a dy-
namic and unpredictable environment.

Incorporating the concept of dynamic reallocation adds another layer of sophis-
tication to an allocation strategy. Dynamic reallocation algorithms are designed
to adapt and optimise allocation decisions in the face of changing circumstances.
This type of algorithms are particularly valuable in environments where initial
conditions can change unpredictably. Whether due to fluctuating demand, unfore-
seen events or evolving preferences, the ability to dynamically reallocate resources
ensures that the algorithm remains robust and effective over time. Despite the un-
certainties and complexities inherent in dynamic environments, these algorithms
continue to operate effectively by continuously reassessing and adjusting allocation
decisions based on the latest available information. The definition of reallocation
conditions is essential to guide the behaviour of dynamic reallocation algorithms.
These conditions act as triggers or thresholds that indicate when a reallocation
event should occur. By establishing clear criteria for reallocation, can be ensured
that resources are reallocated in a timely and appropriate manner, thereby opti-
mising the overall performance of the allocation system.

There are many situations that may require a change in allocation. Here are a
few to give an insight. Changes in the composition of federations, such as agents
joining or leaving a federation, may require a reallocation to ensure that each fed-
eration remains adequately equipped to fulfil its objectives. Online agents within
federations may experience shifts in their priorities or resource requirements over
time. For example, an agent moving from one side of the room to the other may
require reallocation to meet these evolving needs and ensure equitable distribution
across federation members. Federations may seek to optimise their performance
by reallocating indivisible goods based on real-time feedback and performance
metrics. If one federation is under-utilising certain resources while another is ex-
periencing resource shortages, reallocation can help balance resource distribution
and improve overall federation efficiency.

In light of the above considerations, it is possible to explore the relevant literature
in order to identify a solution that takes all of these factors into account. The
required components are indivisible goods and online agents, which necessitate
the use of an online algorithm. The agents form federations, and the goods are
allocated to these federations. A dynamic approach is required. The above context
needs to be incorporated into a dynamic reallocation algorithm.

8 Degree project as part of REINDEER project

Chapter 3
Dynamic reallocation for devision of goods

to agents

3.1 Indivisible Goods

The article Fair Allocation of Indivisible Goods[6] discusses what it means
to have indivisible goods. This refers to the division of a set of objects, goods,
or items, where each object must be allocated as is, without being broken or di-
vided into pieces. This concept is relevant in real-world situations such as divorce
settlements involving physical objects like houses or cars. The fair allocation is
complex, especially in determining whether a fair solution even exists for a given
instance.

Several works talk about fairness. The authors in [8] explain fair division through
the experimental exploration of two mechanisms, namely DYNAMIC DRF and
CAUTIOUS LP. They discuss fairness in the context of the allocation of goods
or resources among multiple agents in a manner that is perceived as equitable.
The article analyses data to evaluate the effectiveness of mechanisms in achieving
fairness objectives, specifically the sum of dominant shares (maxsum objective)
and the minimum dominant share (maxmin objective) of the agents involved.

[1] serves as an introduction to the literature on discrete fair division, with a
specific emphasis on additive valuation functions. Discrete fair division involves
allocating indivisible goods or resources among agents, where each agent has a
discrete valuation for the items being allocated. The article presents an overview
of the advancements made in the field over the past decade, highlighting key find-
ings and breakthroughs including the introduction of appropriate relaxations of
envy-freeness and proportionality, such as envy-freeness up to one good (EF1)
and envy-freeness up to any good.

The discussion on the dynamic adjustment of CSP allocations in Federation Or-
chestration is intertwined with the broader discourse on the fair division of re-
sources. Fair division requires the development of mechanisms or algorithms ca-
pable of allocating indivisible resources in a manner that aligns with specified
fairness criteria. The challenges faced in Federation Orchestration are similar to

9

10 Dynamic reallocation for devision of goods to agents

those in resource allocation within federated networks.

However, in Federation Orchestration, the challenge extends beyond resource allo-
cation to ensuring fairness among participating entities, such as federated service
points and users. Federation Orchestration, like the fair division problem, must
address factors such as asymmetric entitlements and dynamic settings.

Dynamic Adjustment of CSP Allocations in Federation Orchestration involves the
adaptation of resource allocations to accommodate changing network dynamics
and user demands. This task involves developing computational approaches that
can dynamically adjust CSP allocations while adhering to fairness principles, such
as maximin share fairness (MMS) and envy-freeness up to any good (EFX).

In summary, the discussion on equitable resource allocation provides insights that
can be used in the dynamic adjustment of CSP allocations within federated net-
works but also demonstrates that achieving full fairness is hard to reach and prove.

3.2 Online agents

Three articles intersect in their discussion of the dynamic adjustment of CSP allo-
cations in Federation Orchestration and the challenges and algorithmic approaches
in the context of online resource allocation and fair division. They shed light on
pertinent issues faced in dynamic online environments.

Banerjee, Gkatzelis, Gorokh and Jin [4] explored the complexities of online re-
source allocation and fair division. It discusses the challenges of distinguishing
between agents that will be easy to satisfy later on and those that will be hard
to satisfy, highlighting the limitations of online algorithms in achieving fairness
in resource allocation. The text discusses the challenges faced in Federation Or-
chestration, where CSP allocations must be dynamically adjusted to meet varying
resource demands and shifting user requirements while ensuring fairness among
participating entities.

Additionally, online agents can be linked to the allocation of goods in online mar-
kets and considerations for revenue maximisation[3]. The authors elaborate about
the dynamic nature of online resource allocation, specifically in adversarial arrival
orders. This mirrors the need for dynamic adjustment of CSP allocations in Fed-
eration Orchestration to adapt to changing network conditions and demands.

Additionally, the paper Online Algorithms for the Santa Claus Problem[7]
studies online assignment with a focus on the max-min objective. The text em-
phasizes the necessity of relaxing the problem in various ways due to significant
gaps in approximation ratios. It highlights the intricate balance between fairness
and efficiency in resource allocation. This resonates with the challenges faced in
Federation Orchestration, where dynamic adjustments of CSP allocations must
strike a balance between maximizing resource utilization and ensuring fair distri-

Dynamic reallocation for devision of goods to agents 11

butions among federated entities.

The articles collectively contribute to the understanding of challenges and algo-
rithmic approaches in online resource allocation. The research provides valuable
insights applicable to the dynamic adjustment of CSP allocations in Federation
Orchestration, ultimately enhancing efficiency of resource allocations in federated
network environments.

3.3 Federations

The concept of federations in distributed computing infrastructures presents an
intriguing approach to resource allocation. Dynamic adjustment of CSP alloca-
tions in federation orchestration is crucial for ensuring efficient resource utilization
and fair distribution among users.

One of the key challenges in federation orchestration is managing resource allo-
cation dynamically to adapt to changing demand and user preferences. This ne-
cessitates the development of robust allocation algorithms capable of dynamically
adjusting resource allocations based on data and user feedback. Such algorithms
should be able to optimize resource allocation while maintaining fairness and en-
suring that all users receive their required resources in a timely manner.

Combinatorial auction bids serve as a mechanism for users to express their prefer-
ences for specific resources and their willingness to pay for them. The centralized
auctioneer plays a critical role in facilitating these auctions and determining the
allocation of resources based on the submitted bids. However, the dynamic adjust-
ment of CSP allocations requires more than just auction mechanisms; it involves
continuously monitoring resource usage, predicting demand trends, and adapting
allocation strategies accordingly.[2]

Furthermore, the agreed-upon currency distribution policy mentioned in the ab-
stract is essential for ensuring fairness and preventing resource starvation among
users. By establishing clear guidelines for currency distribution, federations can
mitigate the risk of heavy users monopolizing resources at the expense of lighter
users. This policy can also incentivize users to accurately represent their resource
needs and valuation, thus contributing to the overall efficiency of the allocation
system.

The use of the Trusted-based Resource Allocation (TRA) algorithm in cloud fed-
eration environments is related to the ongoing discussion about the dynamic ad-
justment of CSP allocations in Federation Orchestration. The TRA algorithm
is designed to address resource allocation challenges and improve the reliability
of identity providers in cloud federations. However, its suitability for Federation
Orchestration needs to be carefully considered.[12]

In Federation Orchestration, users operate independently of each other and rely on

12 Dynamic reallocation for devision of goods to agents

the system for fair and reliable resource allocations. The TRA algorithm empha-
sizes leveraging mutual trust relationships between identity providers and clouds,
which may not always align seamlessly. In contrast to traditional resource allo-
cation systems, Federation Orchestration requires a system that users can trust
implicitly, without the need for individual users to establish trust relationships.

Additionally, comparative analyses that demonstrate the effectiveness and superi-
ority of the TRA algorithm over alternative approaches may not fully account for
the unique requirements and dynamics of Federation Orchestration. Although the
TRA algorithm may be efficient in allocating resources, enhancing security, and
being cost-effective in traditional cloud federation environments, its suitability for
the decentralized and disparate nature of Federation Orchestration is uncertain.

Considering these factors, it may be more appropriate for Federation Orchestra-
tion to prioritize decentralised decision-making and equitable resource distribution,
without relying on mutual trust relationships. This approach would allow users
to trust the system itself, rather than having to establish trust relationships with
individual identity providers or clouds.

The TRA algorithm shows potential for addressing resource management chal-
lenges in cloud federations. However, its compatibility with the objectives and
requirements of Federation Orchestration, particularly regarding user trust and
decentralized decision-making, may require further evaluation and exploration of
alternative approaches.

In conclusion, dynamic adjustment of CSP allocations in federation orchestration
is a multifaceted problem that requires careful consideration of various factors, in-
cluding user preferences, resource availability, and fairness concerns. By developing
advanced allocation algorithms and implementing effective currency distribution
policies, federations can achieve optimal resource utilization and ensure a balanced
distribution of resources among users.

3.4 Dynamic approach

Tang[11] in their article argues for dynamic resource allocation mechanisms like
what is required by multiple UAV tasks and emergent adjustments. Even though
the article has emphasized UAV task management, the principles and methodolo-
gies behind it are useful for developing dynamic adjustment mechanisms within
federated resource orchestration.

This emphasizes the need for adaptive resource allocation strategies that can
adapt to changes in the workload’s scenario. Also, when orchestrating federa-
tions, CSP allocations should be dynamically adjustable in response to variable
demand, changing resources and end-user needs thereby optimizing resource uti-
lization and ensuring efficient operation.

Dynamic reallocation for devision of goods to agents 13

Figure 3.1: Architecture of the multi-UAV cooperative task reallo-
cation algorithm in different scenarios[11]

These redistribution approaches involve complete reallocation; partial change; and
pooling, which present a subtle way of dealing with changes occurring in task en-
vironments and state of UAVs. These techniques mirror the necessity for pliability
and flexibility in a federated resource routing where there may be need to alter
resource allocation dynamically in response to shifting demands of workloads and
the constraints imposed by resources.In figure 3.1 the architecture scheme of UAV
approach is shown. The idea of evaluating the situation and based on those results
going for different kinds of redistributions or adjustments is relevant for federation
orchestration.

Moreover, this research introduces the ant colony algorithm and FCM clustering
based multi-UAV cooperative task reallocation algorithm which is a manifestation
that it is possible to employ sophisticated optimization techniques for dynamic re-
source allocation. Similarly, in federation orchestration, incorporation of advanced
allocation algorithms can improve the effectiveness and efficiency of resource dis-
semination procedures leading to enhanced system performance as well as user

14 Dynamic reallocation for devision of goods to agents

satisfaction.

The diagrams produced from simulation showing how UAV tasks are carried out
under different preallocation schemes also provide important information on how
effective this model works after reallocation with various assumptions. Similarly, in
federation orchestration, simulative feedback evaluations can offer insights into its
dynamic adaptation mechanisms and further modify allocation algorithms looking
at ever changing requirements of end-users’ community as well as applications
growth.
The dynamic reallocation model for multiple UAV tasks offers valuable insights
and methodologies for managing resource allocation in specific contexts. However,
it may not directly translate into an optimal solution for the dynamic adjustment
of CSP allocations in federation orchestration.

One reason is the domain specificity of the model. It is tailored specifically for
managing multiple UAV tasks in emergent adjustment scenarios, addressing chal-
lenges unique to UAV task management. These characteristics and constraints
may differ significantly from those of federated resource orchestration, where a
diverse range of resources and requirements must be considered.

Additionally, federated environments involve resource heterogeneity, encompass-
ing various types such as computational resources, storage, and networking. The
dynamic reallocation model may not adequately account for this heterogeneity and
the diverse needs of users and applications in a federated context.

Scalability is another concern. Federated systems often comprise a large number of
nodes and resources distributed across geographically diverse locations. Solutions
for dynamic resource allocation must be capable of efficiently managing allocation
at scale, a consideration not explicitly addressed in the UAV task management
model.

Moreover, the complexity and overhead introduced by the reallocation strategies
and algorithms proposed in the UAV task management model may not be suitable
for federation orchestration. Federated systems prioritize simplicity, efficiency, and
low overhead in resource allocation mechanisms to ensure optimal scalability.

Lastly, federated systems operate in a distributed environment, where nodes may
have limited communication and coordination capabilities. Solutions for dynamic
resource allocation in federation orchestration need to account for the distributed
nature of the system and ensure that allocation decisions can be made efficiently
and effectively in such environments.

In conclusion, while the dynamic reallocation model for multiple UAV tasks pro-
vides valuable insights and methodologies for managing resource allocation in spe-
cific contexts, it may not provide an optimal solution for the dynamic adjustment
of CSP allocations in federation orchestration. Tailored solutions specifically de-
signed for federated environments, considering the unique characteristics and chal-

Dynamic reallocation for devision of goods to agents 15

lenges of such systems, would be more suitable for addressing the complexities of
resource allocation in federated environments.

3.5 Santa claus algorithm

The Santa Claus problem is a concept in the context of goods allocation, where
Santa Claus has to allocate p gifts to n children with modular preferences. The
goal is to maximize the utility of the unhappiest child, which corresponds to the
maxmin allocation. This problem is relevant for goods allocation because it demon-
strates that even in this restrictive setting, the problem remains NP-hard. This
highlights the complexity of allocating goods in situations where the recipients’
preferences are modular.[6]

When examining the dynamic adjustment of CSP allocations in federation or-
chestration, parallels can be drawn with the Santa Claus problem. This problem
involves the allocation of gifts by Santa Claus to maximize the utility of the un-
happiest child, a concept known as maxmin allocation.

The Santa Claus problem offers insightful parallels within dynamic adjustment of
CSP allocations. Dynamic CSP allocations aim to distribute computational re-
sources effectively among federated nodes to maximize system performance. How-
ever, the NP-hard nature of the problem suggests that there are formidable com-
putational challenges inherent in dynamically adjusting CSP allocations, much like
the task of Santa Claus distributing gifts to optimize the happiness of each child.

The potential for creating algorithms that can provide allocations with minimal
envy or close approximations is existing. However, it raises a significant con-
cern: the excessive amount of information transmission required by algorithms,
especially in situations with general preferences. Additionally, any deterministic
algorithm would require an exponential number of queries to calculate any finite
approximation for the minimal envy problem or maxmin allocation.

3.6 A dynamic multiple traveling salesman problem

The comparison between the multiple Traveling Salesman Problem (mTSP) and
dynamic adjustment of CSP allocations in federation orchestration reveals intrigu-
ing parallels. Both scenarios involve optimizing resource allocation within complex
systems.
In the mTSP, the objective is to determine the most efficient sequence of visits
for multiple salesmen to a set of cities, minimizing the total distance traveled.[5]
Similarly, in federation orchestration, the objective is to dynamically allocate com-
putational resources among federated nodes to optimize system user satisfaction.
The mTSP offers both exact and heuristic solution techniques, including Neural
Network-based approaches. However, federation orchestration requires a combi-
nation of methods to handle the dynamic nature and scale of resource allocation

16 Dynamic reallocation for devision of goods to agents

challenges.
The mTSP aims to minimize the total distance traveled by salesmen. In con-
trast, federation orchestration involves optimizing resource utilization, minimizing
latency, and maximizing system throughput, among other objectives.
It is important to note that direct application of Traveling Salesman Problem
(TSP) algorithms to federation orchestration is not feasible. The TSP is concerned
with finding the shortest route that visits each city exactly once. This differs
significantly from the dynamics and objectives of federation orchestration.
While insights from mTSP research can inform optimization techniques for dy-
namic allocation in federated systems, tailored approaches are needed to address
the unique challenges of federation orchestration. To effectively manage resource
allocation dynamics in federated environments, researchers must explore custom
solutions as direct application of TSP algorithms is not suitable.

Chapter 4
The algorithm

4.1 The simulator

The algorithm is an integral part of an existing project called the simulator, serving
as its backbone. Every aspect, from the workings of UEs, CSPs to the allocation
algorithms, has been outlined and implemented.

The project’s core is the initial setup, which provides a visually intuitive repre-
sentation to understand the way CSPs are allocated and represent how UEs are
moving. This visualization offers valuable insights into the allocation process,
enabling them to make informed decisions and adjustments as necessary. Addi-
tionally, the visual representation is a powerful communication tool, facilitating
seamless collaboration and idea exchange among team members.

The base project integrates the oracle, a mechanism designed to evaluate alloca-
tions. The oracle considers various parameters that contribute to the quality of
an allocation, such as network capacity, resource availability, and user preferences.
The oracle generates a utility value by analysing these parameters, serving as a
quantitative measure of the allocation’s effectiveness.

In order to facilitate analysis, this text abstracts the parameters under consider-
ation, focusing solely on the results provided by the oracle. By simplifying the
intricacies of individual parameters, we can adopt a more comprehensive perspec-
tive, enabling us to assess allocations in an objective manner. This simplifies the
analysis process and enhances the algorithm’s scalability and adaptability to di-
verse scenarios and environments.

4.2 Approach

The approach is predicated on the comparison of utility values, which serve as a
foundational element in the assessment and evaluation of the efficacy of disparate
allocation solutions. The objective is to identify optimal allocation strategies that
maximize utility while minimizing resource consumption and operational costs.
This is achieved through rigorous evaluation and benchmarking. The insights

17

18 The algorithm

gained from these comparisons can be used to improve and refine the algorithms
continuously, ensuring optimal performance in real-world deployment scenarios.

One of the reasons why the random cases approach is preferred. It involves select-
ing simple random cases and tracking the best changes from them, which ensures
that a wide range of potential improvements can be tested with relatively low
complexity. This approach also includes resets to aid in escaping local optima and
a more thorough exploration of the solution space. Indeed, this technique assists
in examining scenarios holistically as well as uncovering unexpected insights and
optimizations.

4.3 Structure

An overview of the code structure is given in figure 4.1. When the algorithm is
called, it checks whether there are any UEs online at that time. If not, it simply
returns an empty allocation. If there are online UEs, the algorithm can start
searching for the best allocation. This is done iterative. The number of iterations is
hard-coded in advance and can be set depending on how much runtime is available,
as more iterations will provide a better allocation. For each iteration, a case is
randomly selected. There are nine cases, each making a small or large adjustment
to the current allocation. After performing the adjustment, the utility value of
the new allocation is queried. If it is better than the previous best utility value,
the new allocation is set as the chosen allocation. If there is no improvement, the
new allocation is ignored. If the maximum number of iterations is reached, the
allocation that currently achieved the highest utility value is returned. Listing 1
gives a code snippet to illustrate the working of this iterative executing random
modifications approach as described.

4.4 The cases

4.4.1 Case 1: Swap two UEs between federations

This scenario facilitates the swapping of two UEs between two distinct federations
within a network. If the network consists of only one federation, the algorithm
remains inactive as there is no need for any swaps. However, when the network
comprises multiple federations, the algorithm selects two federations from the pool
at random, ensuring that they both host the same application. This selection cri-
terion is crucial because in order for UEs to be swapped between federations, they
must possess the same application as the federation they are destined for. Once
two federations with identical applications are identified, the algorithm proceeds
to the next step.

Within each selected federation, the algorithm randomly selects a UE. These UEs
are then exchanged between the federations, effectively executing the swap oper-
ation. The algorithm maintains a fair and unbiased approach to the swapping

The algorithm 19

Figure 4.1: Visual representation of the code structure

20 The algorithm

process by ensuring randomness in both the selection of federations and UEs.

This method not only facilitates the efficient redistribution of UEs across federa-
tions but also ensures compatibility between the UEs and the applications hosted
by their respective federations. Additionally, the random selection process helps
to prevent favouritism or bias, promoting fairness and equity in the allocation of
resources within the network.

4.4.2 Case 2: Swap two CSPs between federations

In this scenario, the algorithm facilitates the exchange of two CSPs between two
distinct federations within a network. The algorithm remains inactive if the net-
work consists of only one federation, as there would be no need for any CSP swaps.
However, once the network expands to encompass multiple federations, the algo-
rithm becomes active.

The process starts by randomly selecting two federations from the pool. The
algorithm ensures an unbiased approach to the swapping operation by randomly
selecting two federations. Once identified, the algorithm proceeds to the next step.

Within each selected federation, a CSP is randomly chosen. These CSPs are then
exchanged between the federations, effectively executing the swap operation. The
algorithm maintains fairness and impartiality throughout the swapping process by
ensuring randomness in both the selection of federations and CSPs.

This method facilitates the redistribution of CSPs across federations and ensures
diversity and equilibrium in resource allocation within the network. The random
selection process also helps to mitigate the risk of bias or favoritism, promoting
transparency and equality in the management of communication services within
the network ecosystem.

4.4.3 Case 3: Delete a federation

To remove a federation, the process starts by randomly selecting one from the
allocation. Next, a list of receiving federations is generated. This step is crucial
because the UEs from the soon-to-be-removed federation require a new federation
with CSPs to serve them. A receiving federation must meet the qualification of
serving UEs with the same application. If no such federation is found, the removal
process halts, and the randomly selected federation remains untouched.

However, if there are any receiving federations available, all UEs scheduled for re-
location will be systematically removed from their original federation one by one,
using a for loop. Subsequently, they will be added to a randomly selected feder-
ation from the list of receiving federations. Once the UEs have been relocated,
the CSPs will be redistributed among the receiving federations to ensure optimal
resource allocation and service delivery.

The algorithm 21

Finally, once the UEs and CSPs have been successfully reallocated, the federation
can be safely removed from the network. This meticulous process ensures that the
removal of a federation does not disrupt the continuity of service for the UEs and
maintains the efficiency and functionality of the network as a whole.

4.4.4 Case 4: Add a new federation

The process starts by creating a new federation object. This object is then passed
to a function that attempts to add UEs to it.

The function responsible for this task begins by randomly selecting the application
of the new federation from the existing federations within the network allocation.
The function identifies potential donating federations within the allocation that
serve UEs with the same application as the newly created federation. If more than
one such federation is available, the function proceeds with the allocation process.

To determine the number of UEs to allocate to the new federation, the function
calculates the allocation parameters, considering both the total number of online
UEs and the number of federations in the allocation. This method ensures a fair
distribution of UEs across the network.

To allocate each UE, the function randomly selects a donating federation from
a list of potential donors. It then randomly chooses a UE from the selected do-
nating federation, removes it from the donor federation, and adds it to the new
federation. Once the UEs have been allocated, the function updates the allocation
by removing any donating federations that become empty. It then reallocates the
CSPs that were originally assigned to the removed federation to the remaining
federations.

If any UEs are found during this process, the federation also receives CSPs through
the allocate_csps_to_new_fed function. The function first determines the total
number of federations in the network allocation, which is crucial for subsequent
calculations. If there are no federations present, indicating the initialization of the
network or the absence of any federations, all CSPs are allocated directly to the
newly created federation. Otherwise, the function calculates the number of CSPs
to allocate to the new federation, ensuring a balanced distribution.

To allocate each CSP, the function randomly selects a donating federation from
the existing ones in the allocation. It then randomly chooses a CSP from the
selected federation, removes it from the donor federation, and adds it to the new
federation while maintaining equilibrium. This process ensures that CSPs are only
allocated from federations with available resources.

Finally, the newly created federation, which includes UEs and CSPs, is added to
the allocation, completing the allocation process.

22 The algorithm

4.4.5 Case 5: Swap all CSPs between two federations

The function swap_all_csps_between_federations exchanges all CSPs between
two federations within a given allocation. It operates by receiving an allocation
object as input, which represents the current state of resource allocation among
federations.

It operates by receiving an allocation object as input, which represents the current
state of resource allocation among federations. It operates by receiving an allo-
cation object as input, which represents the current state of resource allocation
among federations. The function then calls
Reallocator.get_two_different_federations(allocation). The Reallocator
class implements this method. It selects two distinct federations, fed1 and fed2,
from the allocation.

The function then checks if fed2 is not None, ensuring that there are at least two
different federations in the allocation. If this condition is met, the function pro-
ceeds with the CSP swapping operation.

To prevent any changes to the original CSP lists linked to fed1 and fed2, the func-
tion generates duplicates of these lists, referred to as csps_fed1 and csps_fed2,
respectively.

Then, the function exchanges the CSP lists between fed1 and fed2 by assigning
csps_fed2 to fed1.csps and csps_fed1 to fed2.csps. This process effectively
swaps all CSPs between the two federations.

4.4.6 Case 6: Move a CSP to another federation

The function move_csp_from_one_federation_to_another enables the transfer
of a CSP from one federation to another within a new allocation.

The process involves selecting two distinct federations, fed1 and fed2, from the
provided new_allocation object. To select the appropriate source and destina-
tion federations for the CSP transfer, the
Reallocator.get_two_different_federations(new_allocation) method is to
be called.

The function then checks two conditions before proceeding with the transfer.
Firstly, it ensures that fed2 is not None, indicating the presence of at least two
distinct federations in the allocation. Secondly, the function checks whether the
source federation (fed1) has at least one CSP available for transfer, as indicated
by the condition len(fed1.csps) != 0.

Once these conditions are met, the function initiates the CSP transfer process by
randomly selecting a CSP from the list of CSPs associated with fed1 using the

The algorithm 23

random.choice function. This random selection ensures an unbiased choice, pro-
viding equal opportunities for all CSPs within fed1 to be considered for transfer.

The CSP is transferred from fed1 to fed2 by first removing it from fed1 using the
fed1.remove_csp(csp_to_move) method, and then adding it to fed2 using the
fed2.add_csp(csp_to_move) method. This ensures that the CSP is relocated
without any loss of data or information. The CSP is transferred from fed1 to fed2
by first removing it from fed1 using the fed1.remove_csp(csp_to_move) method,
and then adding it to fed2 using the fed2.add_csp(csp_to_move) method. This
operation transfers the CSP from its original federation (fed1) to the designated
destination federation (fed2), allowing for dynamic adjustments in resource allo-
cation strategies within the federated environment.

4.4.7 Case 7: Remove a CSP from the allocation

In some cases, it may be advantageous to not assign a CSP to a federation. This
choice could be driven by factors such as energy efficiency and resilience. By re-
fraining from assigning a CSP to a federation, energy consumption can be reduced,
which contributes to overall energy efficiency. In situations where resilience is cru-
cial, avoiding CSP allocation can improve the federation’s ability to withstand
and recover from disruptions or failures. This can enhance system robustness and
reliability.

The remove_csp_from_allocation function works on a new_allocation object
with the goal of eliminating a CSP from the allocation. It begins by randomly
selecting a federation from the list of federations within the new allocation and
storing it in the variable random_federation. Next, it randomly selects a CSP
from the list of CSPs associated with the chosen random federation. The CSP that
was selected is removed from the random federation, effectively eliminating it from
the federation’s allocation. The function then checks if the selected federation has
any remaining CSPs. If the length of the federation’s list of CSPs equals zero, indi-
cating that it has no CSPs, the federation itself is removed from the new allocation.

Essentially, this case 7 selects a federation at random and removes a CSP from
it, chosen at random from the provided allocation. If this removal leaves the
federation with no remaining CSPs, the function then removes the federation from
the allocation.

4.4.8 Case 8: Add an unused CSP to the allocation

In the add_unused_csp_to_allocation function, a CSP that hasn’t been allo-
cated yet is added to a given allocation. Firstly, the function calls
Reallocator.get_unused_csps, a method within the Reallocator class, to obtain
a list of CSPs that haven’t been allocated in the provided new allocation. This
list is stored in the variable unused_csps.

If there are unused CSPs available (i.e., if the length of unused_csps is greater

24 The algorithm

than zero), the function proceeds with the allocation process. A CSP is randomly
chosen from the list of unused CSPs using the random.choice function, and it’s
assigned to the variable adding_csp. Similarly, a federation is randomly selected
from the list of federations within the new allocation object, and it’s stored in the
variable adding_federation.

The selected CSP is then added to the chosen federation using the add_csp
method, effectively allocating the CSP to the chosen federation.

In summary, the add_unused_csp_to_allocation function ensures that an un-
used CSP is randomly assigned to a federation within the provided allocation, thus
optimizing resource utilization.

4.4.9 Case 9: Add all unused CSPs to the allocation

Case 9 is executed by a function that accepts two parameters: new_allocation
and csps. The former represents a recent allocation of resources, while the latter
refers to the resource units or entities that require allocation.

The first step is to calculate the unused CSPs by using the get_unused_csps()
method from the Reallocator class. This method identifies the resource units
that have not been allocated in the new allocation. Then, the function iterates
through each CSP in unused_csps and randomly selects one federation from the
new_allocation.federations list. This is because new_allocation has a collec-
tion of federations to which resources can be allocated. Finally, the add_csp()
method assigns the current CSP to the randomly selected federation. This step
redistributes the unused resource units among the federations randomly.

4.4.10 Complexity

The algorithmic complexity of the given code can be understood by evaluating
the efficiency of the reallocation algorithm implemented within the Reallocator
class, focusing in particular on the search_better_allocation_from_existing_
allocation method at the heart of the process.

The algorithm follows an iterative approach, constrained by a preset maximum
number of iterations defined by MAX_ITERATIONS. This iterative nature is the pri-
mary driver of the algorithm’s time complexity. In the worst case, where the loop
runs for the maximum number of iterations, the time complexity becomes linear
with respect to MAX_ITERATIONS, and is thus denoted as O(n), where n is the
number of iterations.

Within each iteration, the algorithm randomly selects from a set of predefined real-
location cases, each of which involves different operations on the federations, UEs
and CSPs. The complexity of these operations may vary. For example, swapping
UEs or CSPs between federations involves accessing and modifying sets, which
typically has a time complexity of O(1) for each addition or removal operation.

The algorithm 25

However, if the operation involves searching these sets, the complexity could in-
crease to O(k), where k is the number of elements in the set.

Furthermore, after each reallocation operation, the utility of the new allocation is
recalculated using a potentially complex utility function provided by the Oracle
class. The complexity of this calculation is will not be dived in this project, but it
is crucial to be aware as it directly affects the overall efficiency of the algorithm.
If the utility calculation is complex, it can dominate the time complexity of each
iteration.

Another point to consider is the memory requirements of the algorithm. While
space complexity is generally less of a concern in the context of reallocation algo-
rithms, it is worth noting that this algorithm creates a copy of the allocation at
each iteration for comparison with the best allocation found so far. This dupli-
cation implies a space complexity that is linear in the size of the allocation data
structure, denoted as O(m), where m is the number of elements within the alloca-
tion.

Finally, the complexity of the helper functions used within each case should not be
underestimated. For example, functions that determine whether a CSP is unused
or that find federations with a particular property add their own layer of complex-
ity, which may involve iterating over all federations or all CSPs.

In summary, the overall time complexity of the reallocation algorithm is primarily
influenced by the number of iterations and the complexity of the utility compu-
tation, with a linear relationship to MAX_ITERATIONS and potentially to the size
of the federations, UEs and CSPs involved in the utility computation. Space
complexity, although secondary, is also linearly related to the size of the alloca-
tion data structure due to the need to maintain copies of allocations during the
iterative process.

26 The algorithm

1 for i in range(Reallocator.MAX_ITERATIONS):
2 random_case = random.choice(list(ReallocateCases))
3 new_allocation = best_allocation.make_copy()
4

5 match random_case:
6 case ReallocateCases.SWAP_UE:
7 Reallocator.swap_ue_between_federations(
8 new_allocation)
9 case ReallocateCases.SWAP_CSP:

10 Reallocator.swap_csp_between_federations(
11 new_allocation)
12 case ReallocateCases.DELETE_FED:
13 Reallocator.delete_federation(
14 new_allocation)
15 case ReallocateCases.ADD_NEW_FED:
16 Reallocator.add_new_federation(
17 env, new_allocation, ues, csps)
18 case ReallocateCases.SWAP_ALL_CSPS:
19 Reallocator.swap_all_csps_between_federations(
20 new_allocation)
21 case ReallocateCases.MOVE_CSP:
22 Reallocator.move_csp(
23 new_allocation)
24 case ReallocateCases.REMOVE_CSP:
25 Reallocator.remove_csp_from_allocation(
26 new_allocation)
27 case ReallocateCases.ADD_CSP:
28 Reallocator.add_unused_csp_to_allocation(
29 new_allocation, csps)
30 case ReallocateCases.ADD_ALL_CSPS:
31 Reallocator.add_all_unused_csps_to_allocation(
32 new_allocation, csps)
33

34 new_utility = Oracle.calculate_allocation_utility(
35 new_allocation)
36 if new_utility > best_utility + 0.001:
37 best_utility = new_utility
38 best_allocation = new_allocation.make_copy()

Listing 1: Loop in reallocator.py

Chapter 5
Testing

This chapter presents the testing conducted to evaluate the robustness and per-
formance of the resource allocation system in our federated environment. The
objective of the testing phase is to assess the responsiveness and adaptability of
the system to a range of scenarios, including changes in the number of CSPs and
the number of UEs in the environment.

The important value on which all tests are based is the utility value calculated by
oracle. This value always determines the quality of the allocations and is thus a
direct indication of whether an allocation is improved or not.

The greater part of the runtime is primarily attributed to the substantial com-
puting time required by the oracle. Since each iteration requests a value from the
oracle, a higher number of iterations is a significant addition to the runtime.

The tests were carried out with configuration files representing real situations as
closely as possible. There are files for UEs, CSPs, applications, the environment
and general variables. An example of an UE configuration file is listed in listing
2. The python project from which this project builds further on consisted already
of certain configuration files. All these upcoming tests are executed with these
or variations on these files so no new configuration files were constructed for this
project.

5.1 General Results

In this part, the algorithm is tested on overall is tested for overall utility perfor-
mance in two scenarios: one with 100 iterations and the other with 1000 iterations.
It is expected that more iterations will result in higher utility value.

In the 100-iteration scenario, depicted in figure 5.1a, we observe significant fluc-
tuations in utility values over time. The utility value at each time point after
improved algorithm allocation is significantly higher. It is visible that after each
time point, due to the dynamic nature of the UEs, there is a drop in the value so
although it is possible to get the values higher, there is the same amount in utility
to make up each time.

27

28 Testing

In the 1000 iteration scenario, figure 5.1b, a similar trend in the dynamics of the
utility values is observed. Thanks to the increased number of iterations, the min-
ima and maxima of the new utility value curve reach higher numbers.

For a direct visual confirmation of the effectiveness of a dynamic approach for
reallocation, figure 5.2 is added. This test is executed with the MAX_ITERATIONS
variable set on 1000.
The dynamic optimisation strategy shows immediately higher utility values com-
pared to the non-dynamic approach. Since the non-dynamic algorithm keeps fluc-
tuating in all directions, it is incidentally random-based, the curve of dynamic
reallocation shows more consistency and invariably achieves high utility values.

5.2 Tests on different configuration files

5.2.1 Increased amount of CSPs

It is hypothesized that an increase in the number of CSPs would lead to an in-
crease in utility. This hypothesis is supported by figure 5.3, which demonstrates
that when more goods are available, agents are served better.

It is noteworthy that, despite the reduction in the quantity of CSPs, utility re-
mained relatively stable. This stability persisted despite the inherently more chal-
lenging nature of the environment, where the algorithm encountered fewer avail-
able CSPs. Remarkably, we found that utility never plummeted to significant
lows under these circumstances. This resilience in utility amidst decreased CSP
quantity suggests several promising outcomes. Firstly, this underscores the al-
gorithm’s adaptability in navigating an array of problem instances. Secondly, it
demonstrates the resilience of our decision-making processes, which were able to
maintain utility levels despite increased complexity. Furthermore, the consistent
performance of the algorithm highlights its reliability and effectiveness in handling
a larger workload.

5.2.2 Increased amount of UEs

In the subsequent testing phase, where the algorithm’s performance was assessed
with a reduced number of UEs, analogous conclusions were reached. Notably, it
was observed in figure 5.4 that when fewer agents needed to be served, the algo-
rithm consistently yielded higher utilities. However, a distinctive pattern emerged
when comparing the impact of varying quantities of CSPs versus UEs. The sta-
bility of the system remains unaltered when the quantity of CSPs is modified,
whereas a change in the quantity of UEs results in a notable shift in stability. The
graph illustrates a greater disparity in measurements for four UEs than for fewer
UEs. It is noteworthy that during the testing of varying CSP quantities, four UEs
were consistently employed.

Testing 29

20 30 40 50 60 70 80 90 100

0.7

0.75

0.8

0.85

Time

U
ti

lit
y

V
al

ue

Initial Utility Value
New Utility Value

(a) 100 iterations

20 30 40 50 60 70 80 90 100

0.7

0.75

0.8

0.85

Time

U
ti

lit
y

V
al

ue

Initial Utility Value
New Utility Value

(b) 1000 iterations

Figure 5.1: Comparison of initial and new utility values over time
for 100 and 1000 iterations

30 Testing

20 30 40 50 60 70 80 90 100

0.7

0.75

0.8

0.85

0.9

Time

U
ti

lit
y

V
al

ue

Without dynamic algorithm
With dynamic algorithm

Figure 5.2: Utility values over time for 1000 iterations with and
without the dynamic algorithm

Testing 31

20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

Time

U
ti

lit
y

V
al

ue

20 CSPs
40 CSPs
80 CSPs

Figure 5.3: Utility values over time for 1000 iterations for 20, 40
and 80 CSPs

32 Testing

This observation suggests that the number of UEs plays a defining role in deter-
mining the complexity of the allocation process when employing this algorithm.
Despite the increased complexity associated with a higher number of UEs, it is
noteworthy that even in scenarios with the maximum number of UEs, utility con-
sistently remained above a certain threshold, never dropping below 0.8. This
resilience indicates the algorithm’s robustness and its capacity to maintain satis-
factory levels of utility across a spectrum of challenging conditions.

20 30 40 50 60 70 80 90 100

0.85

0.9

Time

U
ti

lit
y

V
al

ue

2 UEs
3 UEs
4 UEs

Figure 5.4: Utility values over time for 1000 iterations for 2, 3 and
4 UEs

Testing 33

1 id: 0
2 coords: [6.394267984578837, 0.25010755222666936,

0.4125439775536789]↪→

3 application: application_0
4 speed: 0.1
5 online: 0
6 offline: 9999999999999
7 utility_check_interval: 60
8 trajectory:
9 - [1.395379285251439, 1.024951761715075,

1.1110016170015138, 8]↪→

10 - [0.8693883262941615, 4.2192181968527045,
0.044695829157105516, 3]↪→

11 - [2.326608933907396, 6.020187290499804,
0.8418675944079195, 10]↪→

12 - [7.01324973590236, 4.195198209616588,
0.6738135694257804, 4]↪→

13 - [8.094304566778266, 0.06498759678061017,
1.2087288777492118, 6]↪→

14 - [3.4025051651799187, 1.5547949981178155,
1.4358196083101717, 5]↪→

15 - [1.022102765198487, 3.7992730063733737,
0.5384690707269426, 5]↪→

16 - [6.037260313668911, 8.071282732743802,
1.0945976800407269, 8]↪→

17 - [1.2482616285320935, 9.222953720281598,
0.11820029711768726, 4]↪→

18 - [8.294046642529949, 6.185197523642461,
1.2925603504661658, 9]↪→

19 - [1.922885902566599, 0.6955514882374092,
0.9918949778515652, 4]↪→

20 - [9.852215206607578, 8.55317721015147,
1.2997255001329044, 6]↪→

21 - [2.779736031100921, 6.356844442644002,
0.5472482684551263, 5]↪→

22 - [3.552707002275215, 6.701751743776933,
1.052730470187827, 10]↪→

23 - [6.480353852465935, 6.091310056669882,
0.2567079722971455, 3]↪→

24 - [1.634024937619284, 3.794554417576478,
1.4842850259548928, 10]↪→

25

Listing 2: UE configuration file

34 Testing

Chapter 6
Conclusion

6.1 Project result

The dynamic adjustment of CSP allocations in federation orchestration has led to
advancements in resource management and optimization within the REINDEER
projects use case. The proposed solution has yielded several notable outcomes,
including enhanced resource utilisation. The algorithm enables federations to re-
allocate CSP allocations in a manner that is responsive to changing workload
demands and resource availability. This flexibility has resulted in a significant
improvement in the efficiency of resource utilisation throughout the federation,
ensuring optimal allocation of resources to meet operational requirements.
The simulator project serves as the foundation of the algorithm, seamlessly inte-
grated to handle various aspects such as UEs, CSPs and allocation strategies. The
oracle evaluates allocations based on parameters like network capacity and user
preferences, generating utility values as a measure of effectiveness. The approach
focuses on maximizing utility while minimizing resource consumption, employing
random case selection for testing improvements efficiently. The algorithm itera-
tively selects random cases to modify allocations, optimizing utility values based
on predefined criteria. This iterative process ensures flexibility and robustness in
handling allocation scenarios. The algorithm’s structure facilitates iterative ad-
justments to allocations, optimising utility values through random modifications.
The cases encompass various allocation scenarios, including swapping UEs and
CSPs between federations, adding or removing federations, and redistributing re-
sources to optimise the allocation. The algorithm’s complexity lies in its iterative
nature, influenced by the number of iterations, the complexity of utility computa-
tion, and the size of the allocation data structure.

Extensive experimentation and evaluation have validated the effectiveness and ef-
ficiency of our dynamic adjustment approach. The testing assesses the system’s
responsiveness to various scenarios, such as changes in the number of CSPs and
UEs. The utility value, determined by an oracle, serves as a benchmark for the
quality of allocations. The runtime is primarily attributed to the substantial com-
puting time required by the oracle and thus by the high amount of calling the
oracle. Testing is conducted using configuration files that represent real situations
as closely as possible. The results of the testing indicate that there are signifi-

35

36 Conclusion

cant fluctuations in utility values over time, with higher iteration amounts leading
to higher utility values. Dynamic allocation strategies consistently outperform
non-dynamic ones, showcasing higher utility values. Tests with varying CSPs and
UEs demonstrate that there is a positive correlation between the number of goods
(CSPs) and the quality of service for agents. Even with fewer CSPs, utility re-
mains relatively stable, showcasing the algorithm’s adaptability and robustness.
Conversely, the number of UEs has an impact on system stability. In general,
higher numbers of UEs result in greater fluctuations. However, utility consistently
remains above a certain threshold, indicating the algorithm’s effectiveness across
diverse conditions.

In conclusion, the project results demonstrate the transformative impact of dy-
namic allocation adjustment in federation orchestration. These findings provide
a foundation for further advancements in resource management and optimization
within federated systems.

6.2 Future work

Although the current algorithm has demonstrated its effectiveness, there are sev-
eral avenues for future enhancement to address existing limitations and improve
overall performance. One significant limitation is the constraint that UEs within
the same federation must have identical applications. Future iterations of the
reallocation algorithm could explore methods to relax this constraint to allow het-
erogeneous applications between UEs while still ensuring system operation. This
would add significant flexibility to construct robust allocations.

One approach to enhance the reallocation algorithm would be to introduce a mech-
anism to assign higher weights to critical cases. This would enable more informed
resource allocation decisions, thereby optimising system efficiency. The objective
would be to have the more improving cases being called more often than other
cases.

Future iterations of the algorithm could explore alternative evaluation approaches,
such as event-triggered evaluations, to better adapt to changing environments and
optimise resource allocation over time.

As utility values increase, the computational complexity of the reallocation al-
gorithm can escalate, resulting in longer run times and reduced responsiveness.
Therefore, it is of paramount importance to investigate methods to reduce run
times for computations with higher utility values per second. Techniques such
as algorithmic optimisation, parallel processing or hardware acceleration can be
employed to streamline computation and improve reallocation efficiency without
compromising accuracy.

Conclusion 37

6.3 Endword

The project has successfully developed and evaluated a dynamic reallocation algo-
rithm tailored for federation orchestration within the REINDEER project frame-
work. The algorithm dynamically reallocates resources in order to ensure that the
desired performance is maintained in response to fluctuating demands and condi-
tions. The implementation of the solution demonstrated significant improvements
in throughput and latency, thereby confirming the hypothesis that dynamic reallo-
cation can effectively meet the challenges of next-generation network environments.
As the project draws to a close, it is appropriate to reflect on the accomplishments
and the lessons learned. Future work will concentrate on enhancing the algorithm’s
functionality and investigating more profound integrations with other components
of the REINDEER project. This project not only advances our comprehension
of federation orchestration but also provides a pragmatic solution to the ongoing
challenges in managing complex network infrastructures.

38 Conclusion

References

[1] Georgios Amanatidis et al. “Fair division of indivisible goods: A sur-
vey”. In: arXiv preprint arXiv:2202.07551 (2022).

[2] Alvin AuYoung et al. “Resource allocation in federated distributed
computing infrastructures”. In: Proceedings of the 1st Workshop on
Operating System and Architectural Support for the On-demand IT
InfraStructure. Vol. 9. 2004.

[3] Yossi Azar, Niv Buchbinder, and Kamal Jain. “How to allocate goods
in an online market?” In: European Symposium on Algorithms. Springer.
2010, pp. 51–62.

[4] Siddhartha Banerjee et al. “Online nash social welfare maximization
with predictions”. In: Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM. 2022, pp. 1–19.

[5] Tolga Bektas. “The multiple traveling salesman problem: an overview
of formulations and solution procedures”. In: omega 34.3 (2006), pp. 209–
219.

[6] Sylvain Bouveret et al. Fair Allocation of Indivisible Goods. 2016.

[7] MohammadTaghi Hajiaghayi et al. “Online Algorithms for the Santa
Claus Problem”. In: arXiv preprint arXiv:2210.07333 (2022).

[8] Ian Kash, Ariel D Procaccia, and Nisarg Shah. “No agent left behind:
Dynamic fair division of multiple resources”. In: Journal of Artificial
Intelligence Research 51 (2014), pp. 579–603.

[9] REINDEER. “D3.2: Methods for Communication and Initial Access
with RadioWeaves”. In: 2022, pp. 48–52.

[10] REINDEER. Resilient interactive applications through hyper diversity
in energy efficient radioweaves technology. url: https://reindeer-
project.eu/.

39

https://reindeer-project.eu/
https://reindeer-project.eu/

40 REFERENCES

[11] Jun Tang et al. “Dynamic reallocation model of multiple unmanned
aerial vehicle tasks in emergent adjustment scenarios”. In: IEEE Trans-
actions on Aerospace and Electronic Systems 59.2 (2022), pp. 1139–
1155.

[12] Kuo-Hui Yeh. “An efficient resource allocation framework for cloud
federations”. In: Information Technology and Control 44.1 (2015),
pp. 64–76.

Dynamic Update of CSP Allocations in
Federation Orchestration

MARIEKE BEKE
MASTER´S THESIS
DEPARTMENT OF ELECTRICAL AND INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING | LTH | LUND UNIVERSITY

Printed by Tryckeriet i E-huset, Lund 2024

M
A

R
IEK

E B
EK

E
D

ynam
ic U

pdate of C
SP

 A
llocations in Federation O

rchestration
LU

N
D

 2024

Series of Master´s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2024-993
http://www.eit.lth.se

	Exjobb_Marieke Beke.pdf
	Introduction
	Degree project as part of REINDEER project
	REINDEER
	Federation Orchestration in REINDEER
	Abstract problem formulation

	Dynamic reallocation for devision of goods to agents
	Indivisible Goods
	Online agents
	Federations
	Dynamic approach
	Santa claus algorithm
	A dynamic multiple traveling salesman problem

	The algorithm
	The simulator
	Approach
	Structure
	The cases

	Testing
	General Results
	Tests on different configuration files

	Conclusion
	Project result
	Future work
	Endword

	References

