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Abstract

With future technologies and Industry 4.0, the need for robust and accurate posi-
tioning to optimize productivity and industrial operations increases. The previous
positioning methods using triangulation or angle-of-arrival are not good enough,
especially not for clutter-dense factories with poor line-of-sight conditions.

For this thesis project, a convolutional neural network model was trained to
better estimate time-of-arrival and classify line-of-sight for a clutter-sparse sim-
ulated factory. For the clutter-dense factory, a residual network fingerprinting
model was trained to map channel impulse responses to a position. Both the
clutter-sparse and clutter-dense factories were modified by moving and rotating
machines as well as adding robots in order to investigate the robustness to changes
in the factory environment.

The factories simulated production areas, assembly areas, beam structures and
robots using the Ericsson state-of-the-art version of Nvidia Omniverse.

The fingerprinting model was also used in a real scenario from Mobile World
Congress 2024, where a robot drove two routes in an open office environment.

The results show that both neural networks gave a positioning error below 1 m.
For the modified scenarios, the convolutional neural network was more robust than
the residual network fingerprinting model. The modifications mainly impacted
positioning errors locally where changes were introduced.

Keywords: Indoor positioning, 5G, Industry 4.0, Simulations, AI, ML, Neural
Networks
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Popular Science Summary

Indoor positioning in simulated factory environments and
generalization aspect with AI

Industrial processes are moving to-
ward automation, in what is called
Industry 4.0, the fourth industrial
revolution. For factories and ware-
houses, the need for efficiency and
precision is paramount. For in-
stance, precise indoor positioning
of autonomous vehicles or manu-
factured goods. The use of Ar-
tificial Intelligence (AI) could be
a way to facilitate improved posi-
tioning accuracy and adaptibility
for these needs.

In factory environments, machinery
and equipment are often densely de-
ployed with other obstructions like pil-
lars and beam structures. For such sce-
narios with limited visibility, conven-
tional positioning solutions face chal-
lenges in providing accurate positioning.
Consequently, leveraging AI methods to
address issues of conventional solutions
is a growing interest.

This thesis has been conducted by
creating two baseline factory environ-
ments, designed to have different line-of-
sight conditions. The simulated baseline
factories have been modified by intro-
ducing changes to the physical arrange-
ment of machines and equipment.

Simulated 5G data for the factory
environments was used to train two AI
models, learning patterns in the data
to do positioning predictions. Besides
evaluating positioning for the two base-
lines, the models’ capability to general-
ize to modified factory environments is
investigated. The generalization aspect
is of interest as it would provide robust
and flexible solutions for autonomous
industries, aligning with the Industry
4.0 transformation.

The positioning results are promis-
ing and lead to significant improve-
ments compared to conventional solu-
tions, especially for scenarios with poor
line-of-sight conditions. Moreover, the
generalization aspect is assessed to do
quite well, depending on how drastic the
changes are.

Towards the end, real 5G data mea-
surements from an office environment is
evaluated with one of the AI models.
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Chapter 1
Introduction

1.1 Background
In an era of continuous advancements in technology and connectivity, innovative
solutions allow for increased efficiency and precision across various domains. In
the context of Industry 4.0, the fourth industrial revolution with ongoing shift to
wireless factories, the need for precise indoor positioning solutions is emphasized.
Accurate positioning is paramount for enabling efficient automation and increased
productivity in the modern industrial landscape. For companies, positioning can
be used for optimizing logistics with autonomous vehicles, enhancing safety, or
accurately locating assets [1]. Asset localization could be of manufactured goods,
robots, or personnel with user equipment (UE). It is already in use today, but
with improved positioning accuracy, this can be better applied and new fields can
be explored.

Technology advancement in localization indoors is important since global nav-
igation satellite systems such as GPS can not be utilized indoors due to absence of
clear line-of-sight (LoS) communications with satellites. Today, indoor position-
ing is a topic researched using several technologies such as WiFi, Bluetooth and
5G. Although, there is not one best solution when it comes to accuracy, cost and
availability, this thesis will look deeper into the possibilities using 5G.

Nonetheless, most positioning solutions struggle to provide accurate position-
ing for environments with heavy non-line-of-sight (NLoS) conditions causing mul-
tipath propagation. Multipath propagation is a phenomena arising from radio
signals interacting with surrounding obstacles in the environment, for instance by
reflections. In [2] a method for mitigating the negative impact of NLoS on posi-
tioning accuracy is studied. Even though the effects of NLoS are dampened, the
results therein are desired to be improved upon. Consequently, leveraging Artifi-
cial Intelligence (AI) and Machine Learning (ML) methods to address such issues
is a growing interest.
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2 Introduction

1.2 Previous Work
The application of AI/ML in the field of indoor positioning has been explored with
various models. A Convolutional Neural Network (CNN) model is presented in [3],
stating that CNN in combination with multiple input multiple output (MIMO)
datasets is better than other neural networks thus far due its accurate positioning.
Another Deep Neural Network (DNN) model, namely a recurrent neural network,
is studied with the conclusion that DNNs perform better than positioning ap-
proaches based on decision trees [4].

Over the last few years, fingerprinting models have gained prominence due to
their applicability to scenarios with heavy NLoS conditions, taking advantage of
multipath transmission to serve as a fingerprint, characterizing the communication
channel for a transmitting device [5][6]. The fingerprinting approach using DNNs
is proposed for indoor localization in [7] and [8].

Ericsson has conducted previous work regarding indoor positioning using AI/ML,
and developed CNN and Residual Network (ResNet) models for this purpose, tai-
lored for sparse (moderate LoS) and dense (heavy NLoS) scenarios respectively.
These models have been trained with data from statistical channel models defined
by the 3rd Generation Partnership Project (3GPP), which is a standardization or-
ganization developing specifications within telecommunication technologies [9][10].

1.3 Problem Formulation
This master thesis aims to expand the research about AI/ML for indoor positioning
using 5G data. By evaluating the performance, this study seeks to enhance indoor
positioning accuracy, and thus potentially pave the way for optimizing industrial
operations and productivity, aligning with the ongoing shift to wireless factories
described in Section 1.1.

For indoor environments with moderate LoS conditions, a CNN model is ap-
plied. This model aims at enhancing input data to a legacy time-of-arrival based
solution. For environments with heavy NLoS, a ResNet fingerprinting model is
applied. This approach does not rely on the legacy time-of-arrival solution and
can therefore withstand these harsh conditions.

The generalization capabilities of the models in terms of physical changes to
the indoor environment are of particular interest for this project. Specifically,
simulated factory environments are studied from which site-specific ray-tracing
channel models are used to obtain 5G data through a series of simulations. There
are fundamental differences for the statistical and ray-tracing channel model ap-
proaches. Most prominently, a ray-tracing model requires highly detailed environ-
ment models, including material properties which is not needed for a statistical
channel model [11]. Using a ray-tracing channel model also makes it possible to
investigate how different physical changes to the environment affect the results.

In addition to simulated 5G data, real measurements from an office environ-
ment is used to see if a ResNet fingerprinting model is applicable not only to
simulated data.
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1.3.1 Research Questions
• RQ1: To what extent can AI/ML models improve positioning ac-

curacy in industrial indoor environments compared to legacy time-
of-arrival based solutions?

• RQ2: How robust are these models in terms of generalizing to
physical changes in the environments?

1.3.2 Limitations
The positioning using the simulated 5G data will be limited to stationary objects,
even though robots and people often move with a certain speed. This is because
of the limited time doing this master thesis. Thus, tracking of moving objects is
not in the scope of the project.

Also, the antenna patterns on the transmitter and receiver are implemented
as omni-directional for the simulated 5G data. This is an ideal antenna and is
not possible to replicate in reality. This is because other aspects, such as rotating
the UE and using different antenna patterns would need to be applied in order to
draw conclusions. Although this is an interesting aspect, it will not be covered in
this thesis due to time limitations.

The AI/ML models used in this project is a CNN for moderate LoS scenarios
and a ResNet fingerprinting model for heavy NLoS scenarios. This is because they
have have shown promising results with data from statistical channel models and
due limitation in time, only two AI/ML models are investigated.

1.4 Disposition
Chapter 2 of this thesis introduces the theory of 5G communication, channel mod-
eling, and legacy positioning solutions with 5G. Furthermore, principles of machine
learning are given to describe the two AI/ML models leveraged in this project for
indoor positioning. Chapter 3 describes the methodology with steps taken to ar-
rive at the results, including how factory environments were generated and how 5G
data was collected through simulations and later used to train two AI/ML mod-
els. The last section of Chapter 3 describes how real 5G data has been collected
through measurements in an office environment.

In Chapter 4, the results of the thesis are presented. First, positioning results
with a legacy time-of-arrival triangulation method are presented, followed by the
results produced by the two AI/ML models. The presented results are discussed
in Chapter 5. Following the discussion, Chapter 6 presents the conclusions and
answers to the research questions.
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Chapter 2
Theory

To understand more about 5G and how it is currently used for positioning, this
chapter introduces the theory of 5G communication, channel properties, and how
legacy positioning solutions work. Then, an overview of machine learning is given,
including deep learning and the core mechanisms of neural networks, leading to
the introduction of two neural network architectures used to do positioning in this
master thesis.

2.1 5G Communication
The first initiative that later on became 5G started in 2015 by 3GPP as a workshop
to set the scope for New Radio (NR). The goal of NR was to exploit the possibilities
to achieve even stricter requirements. Three years later in 2018, the requirements
for commercial deployment were reached [12, p. 5].

As a difference from the previous generations of cellular network, 5G provided
features allowing more applications in today’s society. It has possibilities to sup-
port Enhanced Mobile Broadband (eMBB), allowing to transmit and receive data
with a higher rate and increased reliability. This leads to better quality when
streaming, opening more opportunities for internet of things and much more. An-
other feature was Ultra Reliable Low Latency Communications (URLLC). This
puts a strict requirement on latency and reliability allowing precise operations
when low latency is critical. A third feature is Massive Machine-Type Communi-
cations (mMTC). This provides support for more devices within a small area than
the previous cellular network 4G, as long as data is sent intermittently.

The frequencies used in 5G can be divided into two ranges. Frequency range 1
covers frequencies from 0.41 GHz to 7.125 GHz and frequency range 2 and covers
frequencies between 24.25 GHz and 71 GHz [13]. Frequency range 1 is often used
for indoor positioning.

In the 5G architecture, the Radio Access Network (RAN) includes one or sev-
eral gNodeB (gNB) units that control all radio-related functions in one or several
cells by the baseband processing unit. This includes connection establishment,
admission control and more. A logical setup of the gNB could be one or more
Transmission Receiver Points (TRPs) transmitting and receiving radio signals.
These radio signals are then processed by the baseband processing unit placed
elsewhere.

5



6 Theory

When doing positioning with 5G, the location management function (LMF)
has an important role in the architecture. This function, together with the access
and mobility management function (AMF), is located in the core network and is
the function that estimates the position of the UE. In order for the LMF function
to get the information needed from the RAN, the information is transferred via
the AMF as a link between the core network and RAN [14][15, p. 73-78]. Figure
2.1 shows an illustration of this architecture.

Figure 2.1: 5G architecture visualizing how the different parts communicate.
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2.2 Multipath Propagation
The propagation of radio signals describes how the electromagnetic waves travel
and interact with the surrounding environment [16, p. 19-20]. Multipath propaga-
tion arise from interactions with surrounding obstacles in the environment. This
means that the same radio signals gets received multiple times by the same re-
ceiver, but with different amplitude, delay and phase. A way to capture multipath
propagation in simulations is by using a ray-tracer. This traces paths between one
or several transmitters and receivers, using descriptions of the environment and
properties of the antennas [17].

The different interactions that can occur to a radio signal propagating through
space are described below, and depicted in Figure 2.2.

• Specular reflection refers to when a radio signal hits a smooth surface with
angle of reflection, θr equal to the angle of incidence θi following Snell’s law
[12, p. 49-53].

• Diffuse scattering refers to when the radio signal is reflected from a rough
surface. Diffuse scattering causes multipath components with spread angle
of departures, smaller amplitude, different phase shifts, and different delays
[12, p. 65-68].

• Diffraction can be explained using Huygens’ principal, which states that
each point in a wave-front can be considered as a source of a spherical wave
[12, p. 55-64]. When a radio signal hits an edge, it spreads in all directions
similar to diffuse scattering. This gives the effect of signals curving an edge.

• Transmission refers to when the radio signal penetrates into and through
the interfering object. The angle of refraction, θr follows Snell’s law both
entering and leaving the interfering object [12, p. 49-53]. Assuming the
interfering object has a homogeneous material, the angle of incidence, θi is
equal to the angel of transmission θt.
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(a) Specular reflection. (b) Diffraction.

(c) Diffuse scattering. (d) Transmission.

Figure 2.2: Interactions causing multipath propagation.

2.3 Channel Impulse Response
The Channel Impulse Response (CIR) describes valuable characteristics of the
wireless channel between a transmitter and receiver. As the name implies, an
impulse is sent from the transmitter and interacts with its surroundings. When
it is received by the receiver, the different multipath propagations’ amplitude,
delay and phase after the specular reflections, diffuse scatterings, transmissions
and diffractions can be visualized.

The channel includes noise and is dependent on parameters such as angle of
the transmitter and receiver. Since this is cumbersome to express in mathematical
terms, a way to describe the CIR without these parameters can be seen in Equation
2.1.

h(τ) =
M∑

i=1
ciδ(τ − τi) (2.1)

In the equation above, ci is the complex value characterizing the phase- and
amplitude of multipath component i, δ(τ − τi) is the Dirac function delayed τi

time instances and M is the number of multipaths included.
The time-of-arrival (ToA) is the time it takes for the impulse to be received by

the receiver and can be seen in the CIR as the delay for the first multipath to be
received. If the first multipath is affected by only transmission or no interaction
at all, the receiver is deemed as having line-of-sight (LoS). On the contrary, if
the receiver does not have LoS, it is said to be non-line-of-sight (NLoS). This
classification is often difficult due the complexity of the CIR.



Theory 9

2.4 Positioning with 5G
When doing positioning using 5G, there are different methods that can be used.
One method is to use angle-of-arrival that uses algorithms to determine the angle
of the arriving radio signal in order to position the UE [18].

Another way to estimate position is to use the ToA followed by triangulation.
This requires precise time synchronization between the TRPs which sometimes
can be hard to acquire. This can be done using either downlink or uplink radio
signals [14].

For both angle-of-arrival and ToA positioning methods, LoS between the trans-
mitter and receiver is crucial for accurate positioning.

2.4.1 Uplink Time-of-Arrival Positioning
When estimating the positioning using uplink signals, the receiver evaluates at
the Sounding Reference Signals (SRS) sent from the UE. These signals are used
to estimate the channel and from that, the time of arrival can be calculated. The
RAN decides where to schedule the SRS in the uplink and which SRS configuration
to use. When the SRS later on is received, cross-correlation is done with the
reference SRS to see how the channel has affected the SRS. This cross-correlation
gives information about the channel and with some signal processing, a channel
impulse response can be estimated.

As described in Section 2.3, the ToA is estimated as the delay to the first
peak, corresponding to the first received multipath of the SRS. Since the LoS is
difficult to classify accurately, a soft classification can be used. This means that a
number is set depending on how likely the receiver is to have LoS, usually a number
between 0 and 1. Otherwise, hard classification can be used. This classifies the
link as either LoS or NLoS.

In order to do 2D triangulation, at least three ToA measurements are needed
[19]. When this is fulfilled, these measurements are converted to distances by
multiplying with the speed of light. With these distances, triangulation is achieved
by solving the equation system 2.2



d1 =
√

(x − x1)2 + (y − y1)2

d2 =
√

(x − x2)2 + (y − y2)2

d3 =
√

(x − x3)2 + (y − y3)2

...
di =

√
(x − xi)2 + (y − yi)2

(2.2)

where (x, y) is the position of the UE, and (xi, yi) is the position of the i:th
TRP and di is the distance from the i:th TRP to the UE. When more than nec-
essary ToA are involved in the triangulation, the system becomes overdetermined
and several possible solutions are given. A visualization of four TRPs triangulating
a UE can be seen in Figure 2.3.
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(a) (b)

Figure 2.3: A visualization of triangulation with and without noise
or synchronization errors.

In Figure 2.3a, the UE is positioned perfectly at the intersection of the four
TRPs’ estimated range. For Figure 2.3b, the triangulation is affected by noise and
synchronization errors, leading to a less accurate positioning within an area. To get
a single position estimation, a weighted least square method can be utilized [20].
This weighs the range from the receivers depending on the number from the LoS
soft classification. All this computation, among other possible input parameters,
are fed to the LMF that estimates a position.
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2.5 Machine Learning
The term AI is prominently used and is a broad field. A subset of AI is Machine
Learning (ML), which is the way of enabling machines or systems to learn from
large amounts of data. ML applies algorithms to analyze and find patterns in the
training data, rather than giving a computer explicit instructions. This training
dataset contains samples of how an input x is related to an output variable y.
In other words, learning the mapping y = f(x). A training dataset containing n
observed pairs of input-output samples can be denoted T = {xi, yi}n

i=1.
The purpose of an ML model is to fit a mathematical model to the training

data such that it accurately predicts an output ŷ and generalizes to previously
unseen data, in which only the input variable x is known to the model. A too
simple model is underfitting and fails to capture data complexities, which gives
poor performance even on the training data. On the other hand, if the model is
too complex it will be overfitting the training data which shows by large prediction
errors due to a less general model.

2.5.1 Accuracy Metrics
Assuming having target values {yi}n

i=1, and predicted output values {ŷi}n
i=1 from

a trained model, the prediction errors {ei}n
i=1 can be formed to measure model

accuracy using different metrics.

Metrics for numerical errors

The following metrics are often used for numerical errors:

• Root Mean Squared Error, RMSE =
√

1
n

∑n
i=1 e2

i

• Cumulative Distribution Function, CDF: FX(x) = P (X ≤ x)

The RMSE metric penalizes large prediction errors, capturing outliers in the
predictions [21, p. 214-215]. It is desired to be as small as possible, implying a
model with better accuracy.

The CDF denoted FX(x), is a way to inspect the distribution of errors, X.
The CDF evaluated at x is the probability that the error takes a value less than
or equal to x [22, p. 76-77]. Different CDF percentiles are used to inspect the
error distribution. If the positioning error is x meters at 90% of the CDF, then
FX(x) = 0.90, and consequently, a randomly selected sample has a positioning
error below x meters with 90% probability.

Metrics for categorical errors

For a model performing binary classification, the following error metrics
are commonly used:

• Accuracy = TP+TN
TP+TN+FP+FN

• F1-score = 2TP
2TP+FP+FN
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Binary classification uses true negatives (TN), false negatives (FN), true posi-
tives (TP) and false positives (FP) to measure accuracy and F1-score [21, p. 216-
217]. The accuracy metric shows the proportion of correct classifications, com-
pared to the total number of predictions, while the F1-score focuses on TP, FP,
and FN [23]. Both accuracy and F1-score are metrics within [0, 1] and desired to
be as close to 1 as possible, as it means the classification performance is better.

2.6 Deep Learning with Neural Networks
A neural network is a specific type of ML algorithm, consisting of layers of inter-
connected neurons that process input data and generate an output, learning from
previous experience in the form of training data. Figure 2.4 shows an example of a
fully connected neural network with five sequential layers. Fully connected means
that every neuron in one layer are connected to all neurons in the adjacent layer
through weights.

Figure 2.4: Fully connected neural network with five layers.

The output of a neural network is produced by feeding the network with train-
ing data which propagates through the layers from left to right. During this prop-
agation, the input data to the network is transformed by weights and activation
functions being applied, allowing the network to learn complex patterns by intro-
ducing non-linearity [21, p. 62-63]. Apart from weights, there is also a bias term
b for each neuron in a layer allowing the activation function to be shifted by an
offset b, giving better flexibility of fitting the training data [24, p. 4][25].

Networks of greater depth are referred to as DNNs or Deep Learning algo-
rithms, which are capable to learn input-output mappings by building complex
representations expressed in other simpler representations [26].
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2.6.1 Training a Neural Network
Collected data is split into train, validation and test datasets, with training and
validation data used for training the neural network. Prior to using collected data
for training the model1, data normalization is applied as a pre-processing technique
to enhance model performance. Normalizing data ensures that the magnitude of
different features in the data are of similar scale, which is beneficial for the model
to learn and helps accelerating training [27]. After training, the neural network is
given test data to see how it performs on previously unseen data.

During training epochs, the validation data is used to detect if the network is
being under- or overfitted to the training data. The term epoch is a hyperparam-
eter2 that defines the number of times that the learning algorithm will go through
the entire training dataset. Another hyperparameter is the batch size, which deter-
mines the number of training samples to use before updating the internal network
parameters – the weights and biases. The batch size has shown to have impact on
generalization ability [28].

The network learns by updating its network parameters, with the aim of ap-
proximating an output for all training inputs. A cost function C(w, b) is defined
to measure the error between predicted and target output values in the training
process [24, p. 17-20]. For instance, the RMSE metric could be used to measures
how well the parameters are adjusted to achieve a minimal error for the training
data. Moreover, gradient descent is an algorithm for minimizing C(w, b) using
the gradient of the cost function, computed by a backpropagation algorithm [24,
p. 39]. The gradient vector ∇C contains partial derivatives of C with regard to
all depending variables, n weights and m biases.

∇C =
(

∂C

∂w1
, . . . ,

∂C

∂wn
,

∂C

∂b1
, . . . ,

∂C

∂bm

)
(2.3)

Consequently, C changes according to ∆C ≈ ∇C · ∆w, where ∆w is a trans-
posed vector with the amount of change for each network parameter.

In each iteration of the algorithm, ∆w should be chosen such that ∆C < 0 to
descend the cost function. In this fashion, the network parameters are updated
until a minima of C is found. The cost function is sometimes also called loss
function3, which is the term used in this thesis. Readers interested in learning
about the gradient descent algorithm in more detail are referred to [24, p. 16-22]
by Michael Nielsen.

2.6.2 Convolutional Neural Network
Convolutional Neural Networks (CNNs) use an architecture making them well
suited for multidimensional input and are commonly used for various image recog-
nition tasks. A task could be to classify images of handwritten digits. CNNs take

1Model and network is used interchangeably in the context of neural networks.
2A hyperparameter specifies details for the training process, in contrast to parameters

that define the model itself.
3Loss function is usually defined to measure the error on a single data point, while

cost function is the average of loss functions across an entire dataset.
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advantage of local receptive fields, pooling and parameter sharing [24, p. 170]. The
architecture is comprised of stacked convolutional layers, pooling layers and fully
connected layers [29], see Figure 2.5.

A key difference with CNNs compared to the fully connected network in Figure
2.4 is that there is no longer a one-to-one correspondence between layers. Instead,
a small region called local receptive field of the input will be connected to a single
neuron in the following hidden layer.

Figure 2.5: Illustrated CNN architecture with receptive field and kernel.

For receptive fields of size 5 × 5, as in Figure 2.5, each hidden neuron will be
assigned a bias term and 25 weights connected to its local receptive field. This set
of parameters will be the same for all hidden neurons, called parameter sharing
and is often defined as a kernel [24, p. 148-150].

The receptive field is applied using a sliding window to iterate the entire input
from left to right, top to bottom. For each position of the local receptive field, the
output of the hidden neuron at j, k is determined by Equation 2.4 where σ is the
activation function [24, p. 170-172][30, p. 150].

σ

(
b +

4∑
l=0

4∑
m=0

wl,m · xj+l,k+m

)
(2.4)

Input to σ is the shared bias b, shared weights wl,m and xj+l,k+m denoting
the input activation at position j + l, k + m.

A convolutional layer is usually followed by an immediate pooling layer that
reduces the dimensionality of the convolutional output of hidden neurons. Max-
pooling is a common pooling method that summarizes a small region of neurons
by using the maximum value within the local region. Lastly, the pooled layer is
flattened into a fully connected layer, represented by the vertically aligned neurons
in Figure 2.5. For this example there are 10 neurons in the output layer, corre-
sponding to the possible output classes for digit classification (0-9). The neuron
with highest value is chosen as the predicted output class.
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2.6.3 Residual Network
An issue with CNNs is the so-called vanishing gradient problem, arising during
backpropagation while training deep networks, increasing with the network depth.
What happens is that the gradient in Equation 2.3 gets too small and is gradu-
ally diminished [31]. To mitigate this problem, the Residual Network (ResNet)
architecture was introduced in [32] as a special form of a CNN.

The ResNet architecture allows for building much deeper networks by using
residual skip connections. These are used to bypass one or more layers, adding the
input of a previous layer to the output of a later layer. A deeper network makes
it feasible to learn more complex patterns in the training data.

Instead of learning a desired mapping H(x), the layers approximate a residual
function F(x) := H(x) − x such that the original mapping becomes F(x) + x.
Figure 2.6 illustrates a small part of a ResNet with a skip connection bypassing
two convolutional layers. This neither adds extra network parameters nor compu-
tational complexity [32].

Figure 2.6: Illustration of a skip connection in ResNet.
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Chapter 3
Methodology

The forthcoming sections in this chapter goes into further detail about the work-
flow, describing the different tools and their roles in the chain of work. Following
the general description of the workflow steps, details on sparse and dense factory
scenarios are given, respectively. In these sections, the used AI/ML models are
described with high-level structures of how collected data is used. The final sec-
tion of this chapter describes how real data measurements have been collected and
processed for AI/ML training.

3.1 Workflow
The indoor environments that specifically are of interest for this project are fac-
tories conforming to 3GPP’s specifications on indoor factory small halls [9, p. 85].
The factory environments are generated by a version of Nvidia Omniverse1, used
internally at Ericsson. Henceforth, this tool is referred to as factory generator.
The studied factory environments are categorized as sparse and dense scenarios.
Figure 3.1 shows a schematic overview of the workflow.

Figure 3.1: Overview of workflow.

1Nvidia Omniverse is a real-time 3D graphics tool used to build 3D environments etc.

17
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Initially two baseline factories are generated using the factory generator, a
sparse and dense scenario, respectively. Modified factory scenarios are generated
by introducing different types of changes to the baseline factories. The purpose is
to see if a model trained on a baseline factory can generalize to a modified factory
scenario, as described in Section 1.3. For evaluating a model’s generalization in
terms of robustness to changes in the factory environment, the model is trained on
data from a baseline factory and then evaluated by testing the model on test data
collected from modified factory environments. The training of a model encom-
passes the usual training procedure for neural networks, as described in Section
2.6.1.

The collection of simulated 5G data starts by calculating the radio propagation
paths using an Ericsson state-of-the-art 3D ray-tracing channel model. The ray-
tracing is simulated for an individual factory scenario to create a site-specific
channel model. Then, by running an internal localization simulation tool, data for
positioning with 5G is obtained. This workflow is iterated to collect data for the
baselines and modified factory scenarios.

The localization simulation tool is also used to calculate positioning errors
using a legacy solution based on triangulation with ToA. The legacy positioning
results are to be used as a performance baseline when comparing the performance
of AI/ML based solutions.

The mentioned tools above existed prior to our thesis work. However, training
AI/ML models for indoor positioning using simulated data collected with site-
specific channel models through this chain of tools has not been extensively ex-
plored previously, as described in Sections 1.2 and 1.3.
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3.2 Factory Generation
In order to generate representative 3D models of factories, a commercial simulator
from Nvidia named Omniverse is used with an Ericsson extension [33]. All 3D
objects are modeled with realistic surface properties depending on material, which
is of importance when performing ray-tracing simulations as described in Section
3.3.1. Factory beams and pillars and machines are all metallic. The walls, ceiling
and floor are of concrete. The generated 3D factory is later used as input to
the ray-tracer, representing the factory environment. Ericsson’s internal version
of Omniverse makes it feasible to create factory environments resulting in site-
specific channel models, rather than using statistical channel models from 3GPP.

When generating the factory environments, a set of parameters are tuned
to change the outcome of the generation. The parameters in direct connection
to the factory environment layout are set in the factory generator GUI. Setting
parameters for the node deployment is done by editing the code base prior to
deploying nodes via the GUI. The factory environments have dimensions 60 ×
120 × 10 meters and have realistic machines and equipment placed in them. The
factory is partitioned into an assembly and production area, see Figure 3.2.

Furthermore, a parameter can be set to adjust the density of machines and
equipment, also referred to as clutters, in the factory. Fewer machines and equip-
ment yields a factory with a lower clutter density. There is also a possibility to add
robots to the factory floor. These robots are automated guided vehicles (AGVs)
and forklifts.

Figure 3.2: Generated factory example with marked factory areas.
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3.2.1 Baseline Factories
To generate factory environments with different LoS conditions – sparse and dense
scenarios – the parameter settings in the factory generator are adjusted appropri-
ately. For the sparse scenario, a LoS probability around 50% is desired and 15% is
desired for the dense scenario. The parameters for generating the baseline factories
are stated below.

Sparse factory scenario

• Assembly area coverage: 50%
• Production area coverage: 50%
• Clutter density: 50%

Dense factory scenario

• Assembly area coverage: 20%
• Production area coverage: 80%
• Clutter density: 80%

The listed parameters for sparse and dense factory scenarios result in the
factories seen in Figure 3.3a and 3.3b, respectively. Figure 3.4 and 3.5 depict the
corresponding LoS heatmaps and histograms, confirming that the LoS conditions
are drastically different for the two scenarios. The LoS heatmaps display the
scenarios’ LoS probability and how LoS conditions vary depending on where in
the factory a UE node is placed.

By increasing the clutter density to 80% and allocating a larger partition
for the production area, the LoS property is successfully decreased for the dense
scenario. The sparse scenario’s LoS probability is 56%, which is decreased to 14%
for the dense scenario. The calculation of a scenario’s LoS probability is described
in Section 3.3.2.

(a) Sparse baseline factory. (b) Dense baseline factory.

Figure 3.3: Baseline factories.
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(a) LoS heatmap. (b) LoS histogram.

Figure 3.4: LoS overview for sparse baseline factory.

(a) LoS heatmap. (b) LoS histogram.

Figure 3.5: LoS overview for dense baseline factory.
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3.2.2 Node Deployment in Factory
With a generated factory environment, UE and TRP nodes are deployed to sim-
ulate radio propagation from transmitter to receiver [33, p. 34]. For the scenarios
studied, there are 18 TRPs attached to the ceiling 10 meters above the floor, see
Figure 3.6. The number of deployed UE nodes vary depending on available floor
space and the distance between them, dUE. For sparse factory scenarios, dUE = 1
meter while for dense scenarios is decreased to dUE = 0.75 meter. This is done
by editing the code base. The reason for decreasing dUE is to deploy UEs tighter
since the available floor space has been reduced due to higher clutter density in
the factory. The nodes are uniformly placed across the entire factory floor at 1.5
meters height, except for locations occupied by already placed machines or robots.

Figure 3.6: TRP node deployment.

In addition to the original UE deployment, with wall offset by one dUE for
both x and y, three other shifted versions are deployed. For instance, the shifted
deployment in y assigns the nodes a wall offset by 3

2 dUE with regards to the y
axis, see Figure 3.7. The wall offset is also edited in the code base. This method
of shifting the UE node deployment allows for running more advanced ray-tracing
calculations, enriching the resulting channel model without causing memory issues
due to a too large number of deployed nodes in the same run. This might seem
counter-intuitive for a state-of-the-art ray-tracer, however it is not designed to
simulate such large number of nodes that these deployments encompasses.

The alternative would be setting a lower dUE, yielding more UE nodes and cor-
respondingly more training data, but limiting the simulations, see Section 3.3.1. To
successfully run the ray-tracer with a large number of deployed nodes, the tracing
parameters for multipath propagation modeling would require adjustment. Thus
resulting in a less detailed channel model. See Table 3.1 for used tracing parame-
ters. For this reason, the ray-tracing simulations are run for different shifted node
deployments with fewer nodes in each simulation.
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Figure 3.7: Original UE node deployment from factory generator with dUE =
1m and schematic deployment with shifted wall offsets.

3.2.3 Modifications to Baseline Factories
To test the ability of the models to generalize to changes in the factory environ-
ment, different types of changes are introduced to the baseline factory.

Descriptions of different types of factory modifications are given below, provid-
ing a sense of what has physically changed from the baseline factory. However, the
descriptions lack a quantifiable metric to compare different changes to each other.
In Section 3.2.4, a method for quantifying the amount of change is described. For
an overview of the different modified scenarios, see Appendix A and B.

• Added robots: For this modification, AGVs and forklifts are added to the
factory floor. This type of modification is the most subtle change since the
factory layout is unchanged. Nonetheless, this type of change is likely to
be the most frequent and common variation taking place in a real factory
environment. Hence, it is of interest to see if the AI/ML models generalize
to such changes.
Moreover, varying setups of added robots have been introduced. Adding
different number of robots (12 or 20), and adding robots exclusively in the
assembly or production area, respectively.

• Moved machines: This type of modification physically moves objects in
the factory. Individual or groups of machines are moved in the production
area, whereas the assembly area is moved in its entirety. The moved dis-
tance is different depending on whether the scenario is sparse or dense since
available floor space is limited in the dense scenarios.

• Rotated machines: In contrast to changing the location of machines, this
modification rotates machines both in the production and assembly area.
The machines are rotated more in the sparse scenario modifications than in
the dense scenario modifications, since more room for rotation is possible in
the sparse scenario.

• Flipped factory layout: The factory areas are rearranged such that the
production and assembly area switches location.
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• Different factory layout: This scenario does not originate from the base-
line factory, instead a completely new factory is generated with 40% assem-
bly area and 60% production area.

3.2.4 Quantifying Factory Changes
For quantifying the amount of change that a modified factory scenario has in-
troduced compared to the baseline factory, a method using Voronoi diagrams as
input images to compute the Jaccard Similarity Index (JSI) has been developed
[34][35][36][37, p. 3-9].

The JSI is computed according to Equation 3.1. This is done using Matlab’s
built-in jaccard function, which is used for image segmentation of two binary
images, A and B. Taking the intersection divided by the union quantifies how
many pixels in the images are similar. In [35] a similar method has been used to
compare images of source code and in [36], the JSI is used for image matching. As
the JSI value decreases, the modified factory scenario becomes less similar to the
baseline.

J(A, B) = |A ∩ B|
|A ∪ B|

∈ [0, 1] (3.1)

The binary images, A and B, are generated by plotting Voronoi diagrams for
the deployed UE nodes for the baseline and a modified factory, respectively. Such
a Voronoi diagram will enclose all the UE positions in regions shaped as polygons
with equidistant boundaries between two or more data points.

Consequently, by processing the Voronoi diagram, it is possible to set aside
regions whose area exceeds a tuned threshold, and thus capture factory areas
with no deployed UE nodes. The areas with no deployed UE nodes correspond
to factory areas occupied by machines and other equipment. With these areas
highlighted in black, changes in a modified factory are efficiently distinguishable.
Figure 3.8 shows a processed Voronoi diagram for a baseline and modified factory
scenario, with segmentation differences highlighted.

Figure 3.8: Processed Voronoi diagram of baseline factory and factory with
moved machines, where segmentation differences are highlighted.
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3.3 Data Collection Through Simulations
For a generated factory environment with deployed UE nodes, training data is col-
lected for the deployed nodes by running ray-tracing and localization simulations,
as the following sections describe.

3.3.1 Channel Modeling with Ray-tracing
The ray-tracing is done using Ericsson’s 3D ray-tracing channel model, which takes
a scenario environment and node deployment as input, coming from the factory
generator. The ray-tracer traces the propagation paths between every UE and
TRP antenna, and applies a propagation model to output link information and
a channel model. The UEs are simulated to transmit with carrier frequency 3.5
GHz, within frequency range 1. This tool makes it possible to model the commu-
nication channels between UE and TRP in the generated factory environments,
by simulating multipath propagation as described in Section 2.2.

The aim with the ray-tracing simulations is to retrieve site-specific channel
characteristics of the radio propagation for the generated factory environments.
The physical properties of 3D objects in the factory are taken into account to get
correct behavior of reflections and scattering interactions.

How detailed the channel model can get depends on, as mentioned in Section
3.2.2, the number of deployed nodes, but also the scenario. With a more cluttered
scenario, more interactions arise thus leading to a more computationally heavy
simulation for the ray-tracer. Table 3.1 lists parameters used for ray-tracing sim-
ulations in factories with sparse and dense clutter. Max paths per link refers to
the number of stored links between UE and TRP.

Table 3.1: Ray-tracing parameters for factories with sparse and dense clutter.

Parameter Sparse clutter Dense clutter

Carrier frequency 3.5 GHz 3.5 GHz
Max specular reflections 6 4
Max diffuse scattering 1 1
Max total interactions 7 5
Max paths per link 100 50
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3.3.2 Localization Simulation Tool
In this step, the data which is to be used for training the two AI/ML models is
obtained through simulations in a Matlab based simulator. Obtained data from
simulations includes CIR, ToA and LoS. The true UE positions are obtained during
the factory generation and node deployment in Section 3.2.2. Furthermore, posi-
tioning errors using the legacy triangulation solution based on ToA, is computed
in this simulator.

To get a more realistic channel model, additive white Gaussian noise (AWGN)
is added to the simulated CIR measurements. The simulations are divided into a
number of so-called drops. In each drop, n = 1000 non-overlapping UE nodes are
randomly selected, meaning that no UE node is selected more than once. This is
of importance when it comes to training and testing of the ML models, since all
files in a dataset will contain diverse node deployments as opposed to just having
nodes from a certain subarea of the factory floor.

Moreover, the scenario LoS probability is calculated and a script has been
developed to plot a heatmap visualizing the number of LoS links per UE node
in the factory, see Figures 3.4a and 3.5a. For the factory environments that this
project encompasses, the scenario LoS probability is calculated based on Boolean
matrices. Each row in such a matrix, M , corresponds to a UE node and the
columns represents the 18 different TRPs. That is, UE node at row i has a value
0 or 1 in each column j depending on if it has LoS to the TRP at column j or not.
Therefore, Mij = 1 means that the UE node at row i has LoS to the j:th TRP.
The Boolean flags in M are determined according to Equation 3.2,

Mij =
{

1 if |τij − dij | ≤ T

0 otherwise
(3.2)

where τij is the first path delay for a signal sent from UE i to TRP j, converted
from time to distance domain with meters as unit. The threshold T is a parameter
chosen in the simulator. The geometrical distance between UE i and TRP j is
denoted dij . The LoS probability, PLoS, is then calculated as in Equation 3.3.

PLoS = 1
18n

n∑
i=1

18∑
j=1

Mij (3.3)
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The LoS data used for training is determined by Equation 3.2 and is considered
to be the ground truth since it depends on the true UE position. The ground truth
ToA is determined as the geometrical distance converted to time, which is only
valid for LoS links.

For the legacy triangulation solution, LoS is determined using hard classifica-
tion based on if the first peak in the CIR also is the strongest peak. The ToA is
estimated as the delay to the first peak in the CIR. It is also assumed that the
UE was not positioned outside the factory and therefore, the x and y coordinates
were bounded within the factory area.

3.3.3 Resulting Data
Retrieved data after localization simulation is processed by a script developed to
extract the necessary attributes for AI/ML training. This is done on a per drop
basis and the resulting files in Matlab contain the data fields with shapes shown
in Table 3.2. That is, every file contains n = 1000 samples corresponding to one
drop.

Table 3.2: Resulting data from localization simulation tool with data shapes.

CIR Observed ToA LoS flags UE position

(n, 18, 256, 2) (n, 18) (n, 18) (n, 2)

Regarding the 4-dimensional CIR data, the first dimension represents the num-
ber of samples, which is equal to the number of UE nodes per drop (n transmitters).
The second dimension corresponds to the number of TRPs (receivers). The third
and fourth dimension represents the time instances and the communication chan-
nels for each TRP antenna, respectively. That is, each TRP has two receiving
antenna ports, one for each polarization.

Figure 3.9 shows two samples of the collected CIR data. The two samples
correspond to two UEs transmitting to a randomly chosen TRP. The transmitting
UEs are chosen such that one has a LoS link (solid line) to the receiving TRP, while
the other is a NLoS link (dashed line). Two markers are placed along the delay
axis indicating when a transmitted signal would have arrived to the receiver if it
propagated in a direct path, corresponding to a LoS link. Consequently, according
to Equation 3.2, a NLoS link should have its marker (hollow) placed with an offset
greater than T from its detected first peak. In Appendix C more sample CIR plots
are shown.

Prior to using the CIR data for training the AI/ML models, it is normal-
ized. Data normalization is a standard pre-processing technique to enhance model
performance, with benefits described in Section 2.6.1.
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Figure 3.9: CIR data plotted as |h(τ)| for UEs 1 and 6 transmitting to TRP 6.

3.4 Sparse Factory Scenarios with CNN
Indoor positioning for sparse factory scenarios is studied with a CNN model. This
model uses CIR data as input and outputs ToA delay estimation and LoS classi-
fication, see Table 3.3.

The intention of the CNN model is to achieve better ToA estimations and LoS
classifications by learning patterns from the CIR data. This avoids further ToA
and LoS calculations with varying degree of accuracy. Since the ground truth ToA
is only valid for the LoS links, the NLoS links and corresponding ToA estimations
are poorly estimated and therefore excluded in the triangulation. Based on this
LoS classification and estimated ToA delay from the model output, a conventional
triangulation algorithm is used to estimate UE position. The CNN model also had
boundaries and only predicted the UE to be inside the factory area.

Table 3.3: Input and output data shapes for CNN model.

Input Output

CIR ToA estimation LoS classification
(18n, 256, 2) (18n, 1) (18n, 1)

The ToA training data includes a few undefined NaN values caused by total
blockage between UE and TRP. To handle such cases, the ToA is set to 0 and
corresponding link is classified as NLoS.

The input CIR data is of shape (18n, 256, 2), with the number of transmitting
UEs (n) and TRPs (18) flattened into a joint dimension. Hence, each row of the
dataset represents the CIR for one instance of a transmitter to receiver link, each
with two receiving TRP antenna ports. A visualization of this can be seen in
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Figure 3.10, where each of the 18n rows is represented as an input image to the
CNN with 256 × 2 pixels. Each pixel corresponds to a complex CIR value at some
delay instance 1 ≤ τ ≤ 256 for one of two receiving antenna ports.

Figure 3.10: Visualization of input to CNN model.

3.4.1 Data Splitting and Training CNN
Training the CNN model for sparse factory scenarios is done by training on data
collected from the sparse baseline factory in Figure 3.3a. Data collection is per-
formed according to Section 3.3 and results in 324n samples, out of which 72n,
are assigned as test data for the baseline. For the remaining 252n samples, 10%
is set aside as validation and 90% as training data.

In order to get the optimal solution, a series of different batch sizes and number
of training epochs have been tested. This showed that a batch size of 500 and
300 epochs was the best choice as it gave the best prediction performance for
validation data, and prevented the model from being overfitted. Extending the
number of training epochs resulted in the validation ToA delay error abruptly
increasing towards the training loss curve, indicating that the model was overfitted,
as described in Section 2.6.1.

The resulting training plot is seen in Figure 3.11. This plot shows the training
loss, LoS accuracy and delay for LoS links, evaluated with the validation dataset.
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Figure 3.11: Training loss and validation errors for CNN model.
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3.5 Dense Factory Scenarios with ResNet
For the dense factory scenarios with heavy NLoS conditions, a ResNet model is
used with a fingerprinting approach, which takes CIR data as input and directly
outputs predicted UE positions, see Table 3.4. The reason for using a fingerprinting
approach is due to poor LoS conditions, where a conventional triangulation method
is not feasible since at least three TRPs with LoS links are needed, as described
in Section 2.4.1.

Table 3.4: Input and output data shapes for ResNet model.

Input Output

CIR UE position
(n, 256, 36) (n, 2)

Input CIR data to the neural network is reshaped such that each of the n
rows in Figure 3.12 corresponds to one 2-dimensional input of size (256, 36). The
number of receivers (18) and antennas per receiver (2) are flattened into a joint
dimension to get 36 combinations of receiving TRP and antenna port. The input
can thus be seen as an image consisting of 256×36 pixels. Each pixel holds a value
corresponding to the complex CIR, h(τ), at some delay instance 1 ≤ τ ≤ 256, for
a receiving TRP and antenna port.

Figure 3.12: Visualization of input to ResNet model.

Figure 3.13 visualizes the norm of complex CIR values, |h(τ)|, for one of n
samples of size (256, 36). The magnitude is represented with increasing pixel
intensity. The model is trained to map such an input image – corresponding to 256
CIR values across 18 TRPs each with two antenna ports – to a specific UE position
in the factory. This way of viewing the CIR data provides a deeper interpretation of
how the model manages to learn patterns within the data, compared to inspecting
a single CIR in isolation. More CIR plots in this view are found in Appendix C.
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Figure 3.13: Visualized CIR input image of size 256 × 36.

3.5.1 Data Splitting and Training ResNet
The ResNet model was trained on data collected from the dense baseline factory,
see Figure 3.3b. A total of 32n data samples were collected according to Section
3.3, with a 12.5% test split to leave out 4n samples as test data for the baseline.
Furthermore, 6.25% is used as validation data. The remaining 26n samples are
used as training data, denoted T . Recall that n = 1000, as described in Section
3.3.2. Table 3.5 summarizes the splits.

Furthermore, data is collected from modified factory scenarios described in
Section 3.2.3. Data from modified scenarios is mainly used as test datasets for a
network trained on the baseline dataset T . However, they are also used for mixed
training, see Section 3.5.2.

Table 3.5: Summary of splits for training, validation and test datasets.

Training Validation Test

81.25% 6.25% 12.5%

To enhance model performance, tuning hyperparameters for the specific setup
should be done. Therefore, a series of different batch sizes have been tested to fit
the number of training samples employed for the model. Figure 3.14 shows the
training loss for batch size 100 over 2000 epochs, which gave the best results.
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Figure 3.14: Training loss and validation positioning error with baseline dataset T .

3.5.2 Mixed Training
Mixed training refers to that the model is trained on data from a mixed setup
of factory scenarios, effectively increasing the number of training samples and
forming a diverse training dataset. For this project, it was decided to include
aggregated data collected from four scenarios with added robots deployed in the
factory, in addition to data collected from the baseline scenario to form a mixed
dataset Tmixed. This increased number of training samples from 26n to 52n. The
inclusion of data from modified scenarios with added robots is due them being the
most likely changes to a factory, which is a possible incentive to do this kind of
mixed training.

Figure 3.15 depicts how data is aggregated and split for the mixed training.
The horizontal dashed line separates data used for training and data used for
testing the model. It might seem that the data from the modified factory scenar-
ios with added robots, is used for both training and testing. However, the test
sets used for testing has shifted the node deployment according to Section 3.2.2,
indicated by the notes in Figure 3.15.

Figure 3.16 shows the training loss and positioning error for validation data,
against the training epochs when training the ResNet model on dataset Tmixed.
Different batch sizes and number of epochs were tested, but remained unchanged
from when training on dataset T in Section 3.5.1.
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Figure 3.15: Illustration of data splitting for mixed training.

Figure 3.16: Training loss and validation positioning error using Tmixed dataset.
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3.6 Real Data Measurements
For the factory scenarios in previous sections, 5G data has been collected through
simulations with certain simplifications. Omni-directional antennas for both trans-
mitter and receiver have been assumed, as well as limited multipath propagation
and simulated noise. Therefore, one can ask how well the simulated environment
and modeled channel also reflect the real world. To better understand this, real
data measurements have been used to train and evaluate the ResNet fingerprinting
model, and compared to the current legacy triangulation solution. The reason for
not using the CNN model was because ground truth LoS and ToA are needed.
Due time limitations, only the ResNet fingerprinting model was therefore used in
this work.

A robot ran for three days during Mobile World Congress 2024 (MWC) with
a maximum velocity of 0.2 m/s, following two different routes in an office envi-
ronment with dimensions 28 × 35 meters, seen in Figure 3.17a. During MWC,
the open-source software Robot Operating System (ROS) [38] was used to give
navigational instructions to the robot, but also collect the true position of the
robot.

To receive CIR measurements from the robot SRS transmissions, eight TRPs
placed on the ceiling, see Figure 3.17b. This placement assured a high percentage
of LoS between the robot and each TRP, thus leading to a sparse scenario.

(a) (b)

Figure 3.17: Office environment depicted in (a) with location of TRPs in (b).

3.6.1 Data Extraction
The real CIR data was received for 25 time instances over eight TRPs, each with
four antenna ports. In comparison, simulated CIR data was measured for 256 time
instances over 18 TRPs, each with two antenna ports as described in Section 3.3.3.

As ground truth positions for the ResNet fingerprinting model, the ROS soft-
ware was used to collect the robot positions with a sampling rate of 10 samples
per second. During periods of the day, the robot stood still. This led to the data
being unevenly distributed and therefore, such measurements were omitted. To
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achieve this, measurements were removed for periods when the robot was static
for more than 20 consecutive samples, mitigating an uneven distribution.

In order to map the CIR captured by the LMF with the corresponding robot
positions, the timestamps needed to be matched between the two systems. Since
the timestamps were not synchronized, they were matched with seconds precision
and trailing milliseconds were excluded from the timestamps. Consequently, all
CIRs with the same timestamp were matched with the first robot position with
that timestamp, leading to several CIRs for the same position. With CIRs and
robot positions matched, the CIR data was parsed and reshaped conforming to
ResNet model input.

For the legacy solution using triangulation, Ericsson’s estimation of the po-
sitioning shown at MWC was used. This data had the estimated position of the
robot timestamps. Since these timestamps were not synchronized with the times-
tamps of the robot positions, they were also matched the same way as for the
CIR.
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3.6.2 Training ResNet
The ResNet fingerprinting model used and described in Section 3.5 is also ap-
plied for the real data measurements. However, the input data shape is instead
(n, 25, 32) as seen in Figure 3.18. This is a consequence of the different measure-
ment format described in Section 3.6.1.

Figure 3.18: Visualization of real data input to ResNet model.

For training the ResNet fingerprinting model, 60n training samples were used.
For validation, 8n samples were used and the model was tested on 4n samples.
Different batch sizes were tested, showing that 400 gave the best result and was
therefore chosen. The number of epochs was decreased from 2000 to 1250 to
prevent the model from being overfitted. The training loss and the positioning
error for the validation can be seen in Figure 3.19.

Figure 3.19: Training loss and validation errors for real data measurements.
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Chapter 4
Results

In this chapter, the positioning results are presented for the sparse and dense
factory scenarios with simulated data as well as for an office environment using real
data measurements. Initially, the results for the legacy solution using ToA based
triangulation are presented, followed by the CNN and ResNet results, respectively.

The positioning errors are shown by the RMSE metric and four CDF per-
centiles, highlighting the 90% CDF positioning errors since reliability is needed.
In Tables 4.3-4.5, the left-most column lists the test sets for different modified
scenarios, described in Section 3.2.3. The second column lists the JSI value, indi-
cating how similar the scenario is relative to the baseline factory. See Appendix
A and B for an overview of the different modified scenarios.

4.1 Legacy Triangulation Solution
For the legacy solution, triangulation based on ToA is used to estimate UE posi-
tion, as described in Section 2.4.1. Figure 4.1 shows the CDF positioning errors,
for sparse and dense factory scenarios, respectively. In Table 4.1, a comprehensive
view of the positioning errors is given.

(a) Sparse factory. (b) Dense factory.

Figure 4.1: CDF plots of legacy positioning results.

39
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Table 4.1: Summarized test results for legacy solutions.

Scenario CDF positioning error [m] RMSE [m]
50% 80% 90% 99%

Sparse baseline 0.571 1.877 3.540 12.650 3.112
Dense baseline 3.620 6.610 8.747 15.967 5.718

4.2 Sparse Factory Scenarios with CNN
For the sparse scenarios, the CNN model produces LoS classifications and ToA
estimations. The results can be seen in Table 4.2. Since triangulation only uses LoS
links, the ToA estimations with NLoS are excluded in the triangulation algorithm.
The ToA estimation error is converted from time to distance with meters as unit.

Table 4.2: Summarized LoS and ToA errors for CNN model with
test sets from modified scenarios.

Scenario test set LoS classification [%] CDF ToA estimation error [m]
TP FN FP TN Accuracy F1 50% 80% 90% 99%

Baseline 89.9 10.1 18.3 81.7 86.3 88.1 0.088 0.187 0.271 0.728
Rotated machines 90.1 9.9 19.2 80.8 85.9 87.5 0.088 0.185 0.268 0.721
Added robots (20) & moved machines 85.8 14.2 21.6 78.4 82.5 84.7 0.094 0.200 0.292 0.858
Flipped factory layout 83.2 16.8 23.0 77.0 80.9 84.4 0.099 0.221 0.343 10.689
Different factory layout 85.6 14.4 30.1 69.9 77.3 78.0 0.099 0.149 0.311 9.344

The positioning errors when using the LoS classifications and ToA estimations
in Table 4.2 used for triangulation can be seen in Table 4.3. The CDF plot of
the positioning errors can be seen in Figure 4.2. In Appendix A.1, the positioning
errors are plotted in 3D space to see where errors occur in the sparse factory
scenarios.

Table 4.3: Summarized positioning results for sparse scenarios.

Scenario test set JSI CDF positioning error [m] RMSE [m]
50% 80% 90% 99%

Baseline 1.000 0.554 0.772 0.939 5.985 2.852
Rotated machines 0.954 0.574 0.807 1.000 5.069 1.444
Added robots (20) & moved machines 0.798 0.571 0.826 1.080 5.482 1.588
Flipped factory layout 0.761 0.563 0.779 0.964 6.335 2.081
Different factory layout 0.732 0.685 1.077 1.413 5.490 2.320
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Figure 4.2: CDF plot of positioning errors for sparse factory scenarios.
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4.3 Dense Factory Scenarios with ResNet
In this section, the positioning results for the dense factory scenarios are presented.
These results are produced by the ResNet fingerprinting model. The results for
different scenario test sets are summarized in Table 4.4, and Figure 4.3 shows the
complete CDF plots. In Appendix B.1, the positioning errors are plotted in 3D
space to see where errors occur in the dense factory scenarios.

Table 4.4: Summarized positioning results for ResNet model with
test sets from modified scenarios.

Scenario test set JSI CDF positioning error [m] RMSE [m]
50% 80% 90% 99%

Baseline 1.000 0.373 0.683 0.987 4.446 1.177
Added robots (12) 0.998 0.145 0.304 0.470 1.517 0.432
Robots in production area (12) 0.998 0.124 0.286 0.448 1.618 0.711
Robots in assembly area (12) 0.998 0.200 0.479 0.711 2.704 1.012
More robots (20) 0.997 0.235 0.528 0.771 2.931 0.858
Rotated machines 0.921 0.688 1.685 2.925 7.342 1.910
Added robots (12) & rotated machines 0.918 0.708 1.766 3.013 7.093 1.9334
Moved machines 0.857 1.967 3.952 5.521 11.221 3.483

Figure 4.3: CDF plot of positioning errors for dense factory scenarios.
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4.3.1 Mixed Training Results
The results using mixed training, as described in Section 3.5.2, are presented here.
Table 4.5 summarizes the positioning results for different scenario test sets. Figure
4.4 shows the complete CDF plots for all the modified scenarios. In Appendix
B.1.1, the 3D representations of the positioning errors are shown.

To clarify which scenarios the model has been trained on, a horizontal line is
drawn separating these. The scenarios above this line are used for training the
model and the scenarios below the line are used for testing. The JSI values for
the aggregated scenarios in mixed training are left empty because the modified
scenarios used for testing are only compared to the baseline.

Table 4.5: Summarized positioning results for ResNet model with
mixed training.

Scenario test set JSI CDF positioning error [m] RMSE [m]
50% 80% 90% 99%

Baseline 1.000 0.125 0.303 0.472 2.127 0.650
Added robots (12) - 0.132 0.268 0.404 1.292 0.992
Robots in production area (12) - 0.122 0.259 0.394 1.365 1.104
Robots in assembly area (12) - 0.141 0.314 0.478 1.857 1.168
More robots (20) - 0.170 0.358 0.525 1.890 0.936
Rotated machines 0.921 0.612 1.523 2.621 7.026 1.796
Added robots (12) & rotated machines 0.918 0.626 1.557 2.699 6.953 1.801
Moved machines 0.857 1.837 3.736 5.243 12.529 3.534

Figure 4.4: CDF plot of positioning errors for mixed training.
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4.4 Real Data Measurements
The results from the real data measurements, described in Section 3.6, can be seen
in Table 4.6 and Figure 4.5. The positioning errors are shown for a legacy solution
and for the ResNet fingerprinting model.

Table 4.6: Summarized positioning results for real data measurements.

Positioning method CDF positioning error [m] RMSE [m]
50% 80% 90% 99%

Legacy 0.743 1.188 1.413 1.927 0.915
ResNet 0.324 0.695 0.969 4.462 1.032

Figure 4.5: CDF plot of positioning errors for real data measurements.

In Figure 4.6, the true and predicted positions are shown for the test routes
that the robot has traveled. The same test positions are used for the ResNet model
and the legacy solution to get comparable results. The location of the TRPs can
be seen in the same figure as stars.

(a) Legacy errors. (b) ResNet errors.

Figure 4.6: Positioning errors along test routes.



Chapter 5
Discussion

In this chapter the results presented in Chapter 4 are discussed with special con-
sideration of the research questions stated in section 1.3.1, so that they can be
answered in Chapter 6. The positioning errors discussed in the following sections
refer to the error at 90% of the CDF, unless otherwise specified.

5.1 Sparse Factory Scenarios with CNN
The positioning estimates in the sparse scenario are affected by both the LoS clas-
sifications and ToA estimations presented in Table 4.2. An especially important
part of the LoS classification is the FP, since it is the links with LoS that the trian-
gulation is dependent on. If a link is falsely classified as LoS, that corresponding
ToA estimation will have a large error.

When comparing the trained CNN model’s positioning errors seen in Table
4.3 with the legacy positioning errors in Table 4.1 for the sparse baseline, the
CNN model performs better. When comparing the CDF at 90%, the positioning
accuracy is almost 73% better, which is a great improvement to the positioning.

Looking in Table 4.3, the RMSE for the baseline when using the CNN model
gave a 2.85 m positioning error. This is a high value, considering the positioning
error was below 1 m for the CDF at 90%. The reason for this is that RMSE mag-
nifies larger positioning errors, as seen by the large peaks in Figure 5.1 visualizing
the errors in a 3D plot. The majority of these peaks are located in the production
area behind the tall machines. The heatmap seen in Figure 3.4a confirms that
these are the locations where the UE has LoS to less than three TRPs, leading to
inaccurate positioning using triangulation.

45
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Figure 5.1: Positioning errors for baseline factory in 3D surface plot.

5.1.1 Generalization to Changes in the Factory
As seen in Table 4.3, the modifications Rotated machines, Added robots & moved
machines and Flipped scenario layout gave a positioning error between 0.96 m
and 1.08 m. This indicates that these changes to the environment do not affect
the model significantly and that the positioning algorithm can be used without
retraining the model.

When instead inspecting the RMSE for these modifications, these differs more
than the positioning errors at 90% of the CDF. This is because of the positioning
error peaks for the different modifications seen in Appendix A.1. These figures
show that most of the factory area has low positioning errors, but some peaks can
be seen locally where the modifications have taken place. Similar to the baseline
scenario, the positioning error peaks can also be seen in areas where there are
more NLoS links.

In the modification Different factory layout, a new factory was generated in-
cluding a new machine and, a different layout of the production- and assembly
area leading to a JSI of 0.732. The positioning error for this factory was 1.41 m,
which is 60% worse compared to the baseline factory for the CDF at 90%. This
is expected since different multipath propagation appears where a new machine is
added and the scenario differs a lot compared to the baseline.

When looking at the 3D representation of the positioning errors in Figure A.4,
one can see that the area with a new type of machine has higher positioning errors
and more high peaks around the areas where the machines are located. Similar to
the other scenarios, the positioning error peaks are located where a lot of changes
have been made and where there are fewer LoS links. A difference from the other
modifications is that it gives worse positioning in general, as seen in the CDF in
Figure 4.2. This means that the CNN model struggles with accurate positioning
even in open areas with more LoS. To solve this, the model likely needs to be
retrained.
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Even though the JSI for Different factory layout is relatively close to the JSI
in scenario Flipped factory layout, the positioning error differs when looking at the
CDF and RMSE. This indicates that only considering the JSI metric might not be
sufficient for all cases. The JSI value is derived from an image analysis perspective
and does not know what type of machines are used in the modification, in terms
of height, shape, and materials. It just considers the occupied floor area. The
addition of different types of machines alters the multipath propagation, resulting
in a changed CIR, which might not be captured by the JSI value.

When inspecting the FP classifications in Table 4.2, it ranges from 18% to 30%
for the different modifications and baseline. These are high values, considering the
relatively good positioning results. A way to solve this could be to put a stricter
condition for when a link should be classified as LoS. This leads to fewer links used
in the triangulation, hence having too strict requirements could lead to difficulties
in the triangulation algorithm too. The one with the worst FP classification was
the Different factory layout scenario, which is expected since this scenario had the
most changes. This modification also has the lowest F1-score and accuracy, which
is reflected in the positioning errors.
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5.2 Dense Factory Scenarios with ResNet
In Figure 4.1b, a CDF is plotted for the legacy positioning errors in a dense factory
scenario with an error of approximately 8.75 m. In order to compare this to the
ResNet results, we look in Table 4.3, where the positioning error for the baseline
test set is 0.99 m with RMSE of 1.18 m. It is clear that the ResNet model achieves
significantly improved positioning accuracy, going from 8.75 m to just below 1 m.
This corresponds to a positioning error decreased by almost 89%.

Even looking at 99% of the CDF errors, the positioning error is around 4.4 m
for the ResNet, compared to an error of nearly 16 m for the legacy solution. This
corresponds to a 72% decrease. Figure 5.2 visualizes the positioning errors in a
3D plot, making it clear that most of the test positions give low errors. However,
there are always outlier exceptions as seen by the large peak in this figure, which
yields a larger RMSE metric.

Figure 5.2: Positioning errors for baseline factory in 3D surface plot.

5.2.1 Generalization to Minor Changes in Factory
The type of changes are categorized as minor and major changes, depending on
the JSI value. Since a fingerprinting model is used for the dense factory scenarios,
it is expected to be sensitive to changes, and therefore modified scenarios with a
JSI value below 0.95 will be denoted as major changes.

When introducing small changes such as adding robots to the factory floor
with JSI values between 0.997 and 0.998, the positioning errors are all below 0.8
m. Moreover, the RMSE metrics are also improved compared to the baseline,
indicating that there are no extreme outliers not being captured by the 90% CDF
error. These minor changes are found in the first five rows of Table 4.3 and are
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labeled as Added robots (12), More robots (20), Robots in production area and
Robots in assembly area.

Surprisingly, the model performs better for test sets from these modified sce-
narios than for the baseline test set. That is, the model performs better for the
unseen test data collected from the modified scenarios than for the baseline test
set taken as a subset from the collected training data of the baseline factory. This
is strange and unexpected, so we take a closer look.

The positioning error for the baseline test set is 0.99 m, while for twelve added
robots, the error is just 0.47 m. With an additional eight robots added, the results
go to 0.77 m. Somehow, positioning accuracy is enhanced by the added robots,
but it does not improve further by adding more robots. This behavior could stem
from the fact that these minor changes, being changed by only 0.2-0.3% compared
to the baseline factory that the model was trained on, have variations that still
lie within the range of learned patterns during training. The addition of robots
in the modified scenario might have introduced alterations that in some way are
beneficial for the model, making it ignore irrelevant features or better focus on
relevant ones. For instance, it may have emphasized certain features especially
useful for the model to interpret the fingerprinting patterns in the CIR data. Or
vice versa, that previously misleading features now have been de-emphasized.

When these results were discovered we wanted to further test the effect of
adding robots to the factory floor. To see how the performance would be affected
depending on where in the factory the robots were placed, two other modifications
were created. One places robots in the very dense production area, with heavy
NLoS, and the other places robots exclusively in the more sparse assembly area.
With robots in the production area we get an accuracy of 0.45 m, while for robots
in the assembly area we get 0.71 m.

In this way, it shows that with robots exclusively placed in the confined pro-
duction area, it does not affect the positioning accuracy compared to the test
set with 12 added robots spread across the entire factory (0.47 m). That is, the
ray-tracing calculations seem to be unaffected by the robots when placed among
the large machines of the production area. A reason for this could be that the
signals transmitted by UEs in the production area, without any robots, interact
with surrounding machines such that the multipath modeling is saturated during
ray-tracing. The multipath modeling is saturated if the interactions exceed the
maximum total number of allowed interactions, set according to Table 3.1. If the
ray-tracing is saturated, any additional interactions that the robots might have
caused are not taken into account, and consequently, the resulting CIR data from
the localization simulation tool remains unchanged. If this is the case, then the
test sets 12 added robots and robots in production area would contain the same
test CIR data, explaining the similar results.

5.2.2 Generalization to Major Changes in Factory
When introducing more prominent changes, by rotating or moving machines, the
negative impact on positioning accuracy is noticed, which is more in line with what
is expected. Looking in Table 4.3, these so-called major changes have JSI values
ranging from 0.857 to 0.921 and are labeled as Rotated machines, Moved machines
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and the combination Added robots & rotated machines. Compared to the minor
changes discussed above, these changes deviate from the baseline factory between
8-15% and are thus less likely to lie within the patterns that the fingerprinting
model has learned.

Beginning with inspecting the modification with rotated machines, we get a
positioning accuracy of 2.93 m. Moreover, the largest errors also worsened, which
is seen by the larger RMSE of 1.91 m and the 99% CDF error reaching 7.34 m.
The same modification with added robots performs with similar accuracy, which
solidifies that the addition of robots has minimal negative impact on the model’s
positioning performance.

When introducing changes with moved machines having a JSI value of 0.857
corresponding to the most prominent modification, the positioning error reaches
5.52 m with an RMSE of 3.48 m. This shows a trend that the positioning accuracy
deteriorates as the JSI value decreases, corresponding to larger changes.

Not only does the positioning accuracy decrease, but the largest errors are
worsened which is reflected by the 11.22 m positioning error at 99% of the CDF.
At this point, the generalization capability of the model is questionable due to the
loss of precision. It then becomes a question of whether an accuracy in excess of
5 m is sufficient for industrial needs, and perhaps the model requires retraining.

Interesting observations can be made by visually inspecting the 3D represen-
tation of the positioning errors in the factory environment. This allows us to
investigate where the errors occur. Figure 5.3 shows where the positioning errors
are found for the modified factory with moved machines. To the left, the baseline
and modified factory scenarios are shown from above to see what has changed. To
the right, the positioning errors are visualized in 3D.

(a) (b) (c)

Figure 5.3: Positioning errors in baseline factory (a) when introducing mod-
ification with moved machines (b) plotted in 3D space (c).

Although the model struggles to generalize to the modification with moved
machines, it is worthwhile noting that the largest errors are found in the specific
local areas that has been subject to the changes. In Figure 5.3c, it is seen that the
largest errors occur along the right part of the factory, which matches with where
the factory has changed, compare Figures 5.3a and 5.3b.
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For areas that has remained unchanged, a large extent of the measurements
still give positioning errors closer to 1 m than 5 m. This insight could be useful,
for instance if just a certain part of a factory has been redesigned, then it could be
enough to retrain the model with data collected from just that specific area. This
would be time saving, by not having to gather data from the entire factory again.

5.2.3 Mixed Training
Following the promising results of adding robots to the factory, mixed training was
conducted in which also the scenarios with added robots were included as training
data. This is described in Section 3.5.2.

Comparing the results of mixed training with the legacy solution in Table
4.1, the positioning accuracy is improved by almost 95% for the dense baseline
scenario.

When performing tests for the model trained with the mixed dataset, Tmixed,
the positioning accuracy increased tremendously for the baseline test set, see Table
4.4 and 4.5. Indeed, the error is slightly more than halved when comparing with
the baseline test result from using the original dataset T . For scenarios that are
part of the Tmixed dataset, the positioning accuracy improved by at least 12%,
reaching 53% for the baseline test set specifically. For these scenarios, positioning
errors around 0.5 m are achieved.

Positioning enhancement is achieved especially for scenarios that make up the
mixed training dataset. Still, modified scenarios excluded from Tmixed experience
an increase in positioning performance. Distinguishing test cases for which the
scenario is not part of Tmixed, the relative improvements range from 5-10%.

While the CDF positioning errors at 90% all decreased, it is a different story
for the RMSE metric. The baseline test set gets a lowered RMSE, but the test sets
with added robots and robots in production area give larger RMSE values for the
mixed training setup. It is difficult to see any pattern for this behavior and there
is no obvious explanation. However, it could be that some randomly selected test
UE nodes are unfortunate in terms of placement – being located directly next to
a nearby obstruction – causing an abnormal CIR which is difficult for the ResNet
model to predict, and thus yielding large outlier errors.
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5.3 Real Data Measurements
Even though the tracking errors in Figure 4.6b seem to be very precise for the
AI/ML solution, it does not give the full picture. Almost all predictions are along
the routes but the errors stem from the predictions being placed too far ahead
or behind the true position. This behavior comes from that the trained model is
biased to the given routes for training. This is because the measurements are not
placed exhaustively in the office environment, as described in Section 3.6.

Also, when looking at the CDF positioning errors in Figure 4.5, the ResNet
fingerprinting model is heavy-tailed. This is not the case when looking at the
legacy triangulation solution in the same figure. It can be seen in Table 4.6 that
the ResNet fingerprinting model gives higher accuracy up to 90% of the CDF, but
after that, the legacy solution performs better. Meaning that the legacy solution
performs better than the fingerprinting model concerning the worst 10% of the
predictions.

Another thing to consider is the matching of the CIR and robot position
timestamps. Since this matching is done with precision of seconds and the robot
moved at a top speed of 0.2 m/s, this means that the CIR could be mapped to a
position up to 0.2 m from its actual position. This also affects the legacy solution
for the real data measurements.

5.4 Validity of Results
The indoor factories used in this thesis comply with the agreed scenario definition
by 3GPP, commonly used in their work and in scientific papers. This assures that
the indoor factory scenarios are relevant both today and for future work, with
comparable results. Although this thesis used site-specific ray-tracing channel
model, the positioning accuracy results can be comparable with 3GPP studies
using statistical channel models.

Data obtained through simulations depend on Ericsson’s state-of-the-art ray-
tracing channel model, described in Section 3.3.1, which performs computationally
heavy calculations describing realistic site-specific multipath propagation. Spec-
ular reflections and diffuse scattering interactions are modeled, as listed in Table
3.1. However, a deficiency is that further interactions arising from diffractions and
transmissions, have not been modeled. The impact of not modeling transmissions,
is negligible since objects in the studied factories are metallic, which would not
make full penetration feasible for the signals. The lack of modeled diffractions
could deteriorate the level of realism to the ray-tracing channel model, but has
been omitted to make simulations feasible, since they are costly in terms of ray-
tracing with added computational complexity. Nonetheless, it does not render
the simulated ray-tracing calculations invalid. Actually, if inclusion of diffraction
would be possible, it would enrich the channel modeling resulting in CIR data
containing further patterns for an AI/ML model to learn from.

Since this thesis generates specific baselines for the different scenarios, the
modifications need to be relevant. Although minor changes are more likely to
be applied to the factories, major changes are just as important to stress the
AI/ML models. The changes selected provide an overview of different kinds of
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modifications that possibly could take place in a factory, yet there are endless
other ways to change the environment.
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Chapter 6
Conclusions

6.1 Research Question 1
To what extent can AI/ML models improve positioning accuracy in industrial in-
door environments compared to legacy time-of-arrival based solutions?

The AI/ML positioning methods perform better than the legacy triangulation
positioning solution. For both sparse and dense factory environments, the two
AI/ML models give positioning errors below 1 m. Corresponding errors for the
legacy solution are 3.5 m and 8.7 m for the sparse and dense baseline factories,
respectively. Even though smaller positioning errors always are desired, the models
massively improve positioning accuracy compared to legacy solutions, which is
essential for being applicable in the modern industrial landscape.

In regards to the real data measurements taken from an open office environ-
ment, the positioning accuracy using AI/ML also improved compared to the legacy
solution, going from 1.5 m to just below 1 m.

It is evident that the AI/ML models improve positioning accuracy for the
studied environments compared to legacy solutions. This is especially the case for
scenarios with heavy NLoS conditions, in which the legacy solution faces difficul-
ties, and the positioning improvement is more prominent.

6.2 Research Question 2
How robust are these models in terms of generalizing to physical changes in the
environments?

The CNN model applied to sparse factory scenarios, with relatively high LoS
probability, generalizes well to physical changes in the environment and is consid-
ered to be robust.

The ResNet fingerprinting model applied for dense factory scenarios is not as
robust, and it is concluded that the ResNet fingerprinting approach is more sensi-
tive to changes in the environment compared to the CNN model. Nonetheless, it
shows robustness to minor changes. From the results, it is seen that the ResNet
model performs unexpectedly well, as discussed in Section 5.2.1, in terms of gen-
eralizing to scenarios with added robots. The presence of added robots across the
factory floor is likely the most frequent type of change in a factory.
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However, for larger changes, the positioning accuracy deteriorates and the
ResNet model does not generalize well. Yet, the accuracy is mainly affected in the
local area that changed, which could suppress the need to retrain the model with
data collected from the entire factory.

6.3 Future Work
This project used simulated 5G data and since the time was limited, some as-
sumptions had to be made. The antennas patterns for both the UE and TRP are
omni-directional. Different antenna patterns could be applied using the simula-
tions to see how much they affect the results. With omni-directional antennas,
a LoS link is usually the strongest signal received by the antenna. If the an-
tenna pattern have directional gain, this does not have to be the case anymore.
This is because the signal strength is dependent on angle-of-arrival and angle-of-
departure. Comparing these results would give a better understanding of how
much the antenna pattern affects performance of the AI/ML models.

For the real 5G data, the robot only drove in two specific routes in an open
office environment rather than the exhaustive node deployment as in the simulated
factory environments. Therefore, another future work could be to collect data
from the entire office room. The CNN model could also be used for this scenario,
although requiring the ground truth ToA and LoS for every measurement.

Another future work is to explore other mixed training setups, with other fac-
tory scenarios constituting the mixed training dataset. This thesis only aggregated
data from the baseline scenario and the scenarios with added robots, but endless
varieties are possible. Since mixed training gave promising results, the possibility
to further improve positioning accuracy exists.
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Appendix A
Sparse Factory Scenarios

This Appendix gives an overview of the sparse factory scenarios, including all the
different modifications and positioning errors plotted in 3D space to see where
errors occur.

Figure A.1: Perspective view of sparse baseline factory.
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(a) Baseline factory. (b) Added robots (20) & moved machines.

(c) Rotated machines. (d) Flipped factory layout.

(e) Different factory layout.

Figure A.2: Sparse factory modifications.
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A.1 Positioning Errors

(a) Baseline. (b) Added robots & moved machines.

(c) Rotated machines. (d) Flipped factory layout.

Figure A.3: Positioning errors in sparse factory scenarios.
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Figure A.4: Positioning errors in sparse factory scenarios (continued).



Appendix B
Dense Factory Scenarios

This Appendix gives an overview of the dense factory scenarios, including all the
different modifications and positioning errors plotted in 3D space to see where
errors occur.

Figure B.1: Perspective view of dense baseline factory.

65



66 Dense Factory Scenarios

(a) Baseline factory. (b) Rotated machines.

(c) Moved machines. (d) Added robots (12).

(e) More robots (20). (f) Added robots (12) & rotated machines.

Figure B.2: Dense factory modifications.
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(a) Added robots in assembly area (12). (b) Added robots in production area (12).

Figure B.3: Dense factory modifications (continued).
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B.1 Positioning Errors

(a) Baseline. (b) Rotated machines.

(c) Moved machines (d) Added robots.

(e) More robots. (f) Added robots & rotated machines.

Figure B.4: Positioning errors in dense factory scenarios.
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(a) Robots in assembly area. (b) Robots in production area.

Figure B.5: Positioning errors in dense factory scenarios (continued).
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B.1.1 Positioning Errors for Mixed Training

(a) Baseline. (b) Rotated machines.

(c) Moved machines (d) Added robots.

(e) More robots. (f) Added robots & rotated machines.

Figure B.6: Positioning errors in dense factory scenarios for mixed training.
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(a) Robots in assembly area. (b) Robots in production area.

Figure B.7: Positioning errors in dense factory scenarios for mixed training
(continued).
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Appendix C
Plots of CIR Data

This Appendix contains plots of CIR data to provide visualization of what data has
been used in this thesis. In Figures C.1 and C.2, CIR data is plotted differentiating
LoS and NLoS cases. Links having LoS are plotted in solid lines, while NLoS links
are dashed.

Figures C.3 and C.4 visualize the CIR data in the form of 256 × 36 images,
with pixel intensities corresponding to the CIR magnitudes.

Figure C.1: CIR data for randomly selected UEs transmitting to
TRP 15.
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Figure C.2: CIR data for randomly selected UEs transmitting to
TRP 17.

Figure C.3: Visualized CIR data in the form of 256 × 36 images.
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Figure C.4: Visualized CIR data in the form of 256 × 36 images.
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