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Euklidisk geometri var den första ge-
ometrin som man stötte på i grundskolan, allt
från trianglar till cirklar. Samtidigt fick man
lära sig att inget av dessa objekt finns i verk-
ligheten. Det var inte förrän Benoı̂t Mandelbrot
(1924-2010) insåg att många naturfenomen är
så oregelbundna och komplexa att de inte kan
beskrivas med euklidisk geometri. I detta sam-
manhang verkar Mandelbrots citat vara mest
lämpligt att nämna.

Why is geometry often described
as “cold” and “dry”? One reason
lies in its inability to describe the
shape of a cloud, a mountain, a
coastline, or a tree. Clouds are not
spheres, mountains are not cones,
coastlines are not circles, and bark
is not smooth, nor does lightning
travel in a straight line.

Mandelbrot var motiverad av flera matem-
atiker och deras arbete för att introducera
ett nytt ramverk från vilket man kan studera
denna mera komplexa geometri. Exempelvis
Andrej Kolmogorovs (1903-1987) teori om tur-
bulens samt hans definition av ”capacity” av
ett geometrisk objekt, samt den polska matem-
atikern Felix Hausdorffs (1868-1942) definition
av fraktal dimension (Hausdorff dimension).
En fraktal är, på ett ungefär, ett geometriskt
objekt vars struktur och mönster upprepas om
och om igen då man förstorar den.

Mandelbrot nämner en varierande mängd av
olika fraktaler i hans kända bok ”The Fractal
Geometry of Nature”. I detta arbete studeras
hur den fraktala dimensionen av en viktig in-
variant mängd (s.k. Julia mängden) för ett dy-
namiskt system påverkas då man stör systemet
genom att ändra på parametern. I detta arbete
undersöker vi mer precist hur dynamiken av
fc(z) = z2 + c ändras när c = −2 − ϵ där ϵ
är något litet reellt eller imaginärt tal. I ett
ostört läge som vi startar med, dvs. c = −2 så
är Julia mängden ett intervall alltså en fraktal
dimension 1 men när systemet störs, dvs. när
ϵ inte är noll längre, får vi något likt följande
figur, med en fraktal dimension mindre än 1.

Figure 1: Julia mängden för f (z) = z2 − 2 + 0.1i

Målet var att undersöka hur fort den frak-
tala dimensionen av Julia mängden konverger-
ade till 1 då störningen ϵ går mot noll i vänstra
halvplanet. Vi bevisar ett nytt resultat om hur
snabbt denna konvergens sker, då denna störn-
ing är rent imaginär. Arbetet var bl.a. inspir-
erat av Ludwik Jaksztas artikel 1.

1 On the directional derivative of the Hausdorff dimension of quadratic polynomial Julia sets at -2

1
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Abstract

Let dimH(Jϵ) and dimH(Jiϵ) denote the Hausdorff dimension of the Julia set of the polynomials
fϵ(z) = z2 − 2 − ϵ and fiϵ(z) = z2 − 2 + iϵ receptively for small ϵ > 0. This thesis contains two
main Theorems, both dealing with the upper bound for the asymptotic behaviour of dimH(Jϵ)
and dimH(Jiϵ) when ϵ → 0. The novelty of this thesis lays in the imaginary perturbation case.
Before proving the main Theorems, we introduce the general framework and techniques to
calculate Hausdorff measure.

1 Introduction

Let f be a complex polynomial in one variable of degree at least 2. We define the filled-in Julia
set K f as the set of point that stay bounded under iterations of f

K f := {z ∈ C : f n(z) ̸→ ∞}.

The Julia set J f is the boundary of the filled-in Julia set J f := ∂K f . The Julia set exhibits
elegant fractal structures that have captured the interest of mathematicians for centuries. The
approach of fractals has gone through increasingly rigorous mathematical treatment. One
example is to study the fractal dimension (Hausdorff dimension), the framework of this thesis,
which was first introduced by Felix Hausdorff (1886–1942). Fractals were reintroduced to the
mathematical scene by Benoit Mandelbrot (1924-2010) who used Hausdorff dimension as a
new tool to study more complex geometry. His motivation was partly because nature is too
complex to be modelled by Euclidean geometry. In his book The Fractal Geometry of Nature
[Mandelbrot (1983)] Mandelbrot says:

Why is geometry often described as “cold” and “dry”? One reason lies in its inability
to describe the shape of a cloud, a mountain, a coastline, or a tree. Clouds are not
spheres, mountains are not cones, coastlines are not circles, and bark is not smooth,
nor does lightning travel in a straight line.

There have recently been multiple statistical applications using fractals to further extract struc-
tures from experimental data or as a tool from computer visuals. In their book, Novak & Dewey
list a small portion of papers from vastly different areas of science that have utilised techniques
from fractals geometry [Novak & Dewey (1997)]. From the perspective of practical application,
it is very important to study and develop these tools.

In this thesis, we specifically study how the Hausdorff dimension of the Julia set generated
by the quadratic maps (z 7→ z2 + c) varies while perturbing the parameter c ∈ C. We begin
by introducing the tools required for this analysis such as Hausdorff dimensions and their
properties, Iterated function systems (IFS). Then I define and prove some equivalent definitions
for the Julia set. Lastly in Section 5 I work to prove Grötzsch inequality. The scope of this thesis
began as an attempt to complete the details in [Dobbs et al. (2022)] proof sketch for the negative
real perturbation around c = −2, which is done in Theorem 6.8. The novelty of this thesis is
presented in the proof and statement of Theorem 6.10.

First we introduce the framework on which the thesis rests. Section 2 contains a short in-
troduction to Hausdroff measure and Hausdorff dimension. This section is without any proofs
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and only serves as a collection of results to refer to during the reading of the thesis. Section 3

contains some results relating to Iterated function systems (IFS), which can be used to estimate
the Hausdorff dimensions. Section 4 contains, with proofs, the basic terminology for complex
dynamics, for which the goal is to prove the four equivalent definitions of the Julia set. Section
5 is on quasiconformal mappings and moduli of curve families which will serve as the vital
instruments to prove Theorem 6.10. The last section will combine all previous sections and
estimate Hausdorff dimension for Julia sets depending on the choice of the parameter.

I wish to acknowledge and express my deepest gratitude for my advisor Magnus Aspen-
berg for his time and engaging conversation about the subject as well as surrounding matters. I
also want to thank Victor Ufnarovski and Jörg Schmeling for engaging my interest in this subject
already in the second year of my bachelors during the complex analysis seminar classes. At the
same time, I want to extend this gratitude to my family and friends for their understanding
and compassion during the troubling and uncertain times while I was writing this thesis.
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2 Hausdorff measure and dimension

In this section, the Hausdorff dimension and the corresponding maps which preserve dimension
are introduced along with some of its elementary properties. First, an extension of the usual
Lebesgue measure, called the Hausdorff measure, is presented. No proofs will be presented.
For a full treatment consult Falconer (2013) and Evans & Gariepy (2015).

2.1 Hausdorff measure

Definition 2.1. (Diameter of a set in metric spaces)
Let (X, d) be a metric space and E ⊂ X, we define the diameter of E as

|E| = sup{d(x, y) : x, y ∈ E}.

Definition 2.2. (δ-cover of a set)
A δ-cover of a set E is a countable (or finite) collection of sets {Ui}∞

i=1 with 0 < |Ui| ≤ δ for each i such
that

E ⊂
∞⋃

i=1

Ui.

Definition 2.3. (Hausdorff measure) Let (X, d) be some metric space, s ≥ 0 and E ⊂ X the Hausdorff
measure of E is,

Hs
δ(A) = inf{

∞

∑
i=1

|Ei|s : {Ei}∞
i is a δ-covering of A}

where infimum is taken over all possible δ-covers. When δ → 0 we get the s-dimensional Hausdorff
measure

Hs(E) = lim
δ→0

Hs
δ(E).

In words, Hausdorff measure is the smallest s-dimensional ”volume” of δ-covers for E.
While s-dimensional Hausdorff measure is passing the Hausdorff measure to infinitesimally
fine δ-covers. Note that, as the δ-covers become finer, the set of possible covers decreases,
hence making the s-dimensional Hausdorff measure increases. Hausdorff measure has many
properties, some of which will be stated below. First, we define Hölder continuous maps, which
will serve as a starting point for the maps that preserve Hausdorff dimension.

Definition 2.4. (Hölder continuous) Let E ⊂ Rn a map f : E → Rm is Hölder continuous with
exponent 0 < α if the following is satisfied

| f (x)− f (y)| ≤ C|x − y|α,

for each x, y ∈ E and for some universal constant C.

Theorem 2.5. [Properties of the Hausdorff measure]
Let E ⊂ Rn and s ≥ 0.

i) For all 0 ≤ s < ∞, Hs is a Borel regular outer measure in Rn.

ii) H0 is the counting measure.
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iii) H1 = L1 i.e. the Hausdorff measure coincides with the Lebesgue measure in R1.

iv) If λ > 0 and λE = {λx : x ∈ E}. Then

Hs(λE) = λsHs(E).

v) Let f : E → Rm be a mapping with Hölder condition of exponent α > 0. For each s

Hs/α( f (E)) ≤ cs/αHs(E).

2.2 Hausdorff dimension

Here, we motivate and define the Hausdorff dimension with the maps which preserves the
dimension.

Consider a set F ⊂ Rn and let δ < 1, the Hausdorff measure is non-increasing with s, and
by extension, is also true for the s-dimensional Hausdorff measure. Assume now that if t > s
and {Ui} is a δ-cover of F, then

∞

∑
i=1

|Ui|t =
∞

∑
i=1

|Ui|t−s|Ui|s ≤ δt−s
∞

∑
i=1

|Ui|s.

Taking the infimum of both sides, we get Ht
δ(F) ≤ δt−sHs

δ(F). Since the Hausdorff measure is
non-decreasing in δ, with δ → 0, we get

Hs(F) < ∞ =⇒ Ht(F) = 0.

Plotting the s-Hausdorff measure against s, we get

Figure 1: The s-Hausdorff measure with respect to s.

The s for which we get discontinuity is defined to be the Hausdorff dimension of the set F.
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Definition 2.6. (Hausdorff dimension & s-sets)
Let E ⊂ Rn. The Hausdorff dimension of F is

dimH E = inf{s ≥ 0 : Hs(E) = 0} = sup{s ≥ 0 : Hs(E) = ∞}.

Note that

Hs(F) =

{
∞ if 0 ≤ s < dimH(F),
0 if s > dimH(F).

The Hausdorff measure at dimH(F) can attain any value 0 ≤ HdimH(F)(F) ≤ ∞. Sets for which
0 < HdimH(F)( f ) < ∞ are called s-sets.

Intuitively, the definition tells us the optimal s-dimension intervals that is needed to cover
the set F. For instance, if we let F = [0, 1]2 be the unit square in R2, then a δ-cover with s = 1
has infinite measure. But with s = 3, the Hausdorff measure of F is zero. The Hausdorff
dimension gives the ”adequate” space for which the set belongs to. We will now state some
properties of the Hausdorff dimension.

Proposition 2.7. (Properties of Hausdorff dimension)

(i) Monotonicity: If E ⊂ F then dimHE ≤ dimH F.

(ii) Countably stability: If {Fi} is a countable sequence of sets then

dimH ∪∞
i=1 Fi = sup

1≤i<∞
{dimH Fi}.

(iii) Countable sets: If F is countable then dimH(F) = 0.

(iv) Open sets: If F ⊂ Rn is open and non-empty, then dimH F = n.

Next, we introduce the morphisms that preserve the Hausdorff dimension.

Proposition 2.8. (Hausdorff dimension under Hölder condition maps)
Let F ⊂ Rn and a map f : F → Rn which satisfies α-Hölder condition, then dimH f (F) ≤ 1

α dimH F.

Definition 2.9. (bi-Lipschitz)
A mapping f : F → Rn is said to be a bi-Lipschitz transformation if there exists c1 and c2 such that
0 < c1 ≤ c2 < ∞ and,

c1|x − y| ≤ | f (x)− f (y)| ≤ c2|x − y| (∀x, y ∈ F).

Combining this with Proposition 2.8 gives.

Proposition 2.10. (Hausdorff dimension preserving maps)

(i) If f : F → Rn is a Lipschitz transformation then dimH f (F) ≤ dimH F.

(ii) If f is bi-Lipschitz transformation, then dimH f (H) = dimH F.

We end this section by stating a proposition that connects the value of the Hausdorff
dimension to the geometry of the set.

Proposition 2.11. (Geometric property of sub 1 Hausdorff dimensional sets)
A set F ⊂ Rn with dimH F < 1 is totally disconnected.
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3 Iterated function systems (IFS)

In this section, we introduce a core technique for estimating the Hausdorff dimension. To
begin, consider a system of functions {Si}m

i=1 with m ≥ 2. Iterating {Si}m
i=1 in all possible

combinations on the domain yields what is called an Iterative function system (IFS). Let F be
the sub-set of the domain which stays invariant under iterations. This is called the invariant set
or the attractor set. The attractor set F usually exhibit fractal-like behaviour. Further in some
certain settings, the Hausdorff dimension can be calculated precisely or be given an upper and
lower bounds depending on the nature of these maps. The material in this chapter follows
Falconer (2013) and presented here for the convenient of the reader.

Definition 3.1. (Contraction and similarities)
Let D ⊆ Rn be closed. A map S : D → D is called a contraction map if there exists some 0 < c < 1
such that

|S(x)− S(y)| ≤ c|x − y| ∀x, y ∈ D.

If |S(x)− S(y)| = c|x − y| instead, then S is called a contracting similarity.

If an IFS {Si}m
i=1 is comprised of contractions, then the attractor set F fulfils the following

F =
m⋃

i=1

Si(F).

The following Theorem tells us that the attractor set exist, is unique, and can be found by
intersecting iterations of some non-empty compact set. It can be viewed as an extension of the
famous Banach’s fixed point Theorem.

Theorem 3.2. (The fundamental Theorem for IFS)
Consider the IFS given by the contractions {S1, . . . , Sm} on D ⊂ Rn such that

|Si(x)− Si(y)| ≤ ci|x − y|

with ci < 1 for each i. Then, there is a unique attractor set F, i.e. a non-empty compact set, such that

F =
m⋃

i=1

Si(F).

Moreover, if we define a transformation S on the class S̃ of non-empty compact sets by

S(E) =
m⋃

i=1

Si(E)

for E ∈ S̃ , and write Sk to be the kth iteration of the set E, then

F =
∞⋂

k=0

Sk(E)

for every set E ∈ S̃ such that Si(E) ⊂ E.
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The proof uses the Banach’s contraction mapping Theorem on the complete metric space
(S̃ , dH) where dH : S̃ × S̃ → R is the Hausdorff metric- that is,

dH(A, B) = inf{δ : A ⊂ Bδ and B ⊂ Aδ}

where Aδ = {x ∈ D : |x − a| ≤ δ f or some a}. A full proof can be found in [Falconer
(2013),Theorem 9.1]. Note that if we assume that the union

⋃m
i=1 Si(F) is disjoint we will get

Hs(F) = Hs(
m⋃

i=1

Si(F)) =
m

∑
i=1

Hs(Si(F)) =
m

∑
i=1

cs
iHs(F) =⇒

m

∑
i=1

cs
i = 1.

Where in the last implication, we assumed that F has positive finite s-dimensional Hausdorff
measure. If one manages to find the s such that ∑m

i=1 cs
i = 1 then one has found the Hausdorff

dimension. But, since the union is not disjoint we will require a weaker criteria called the open
set condition. We say Si satisfies the open set condition if there exists some non-empty bounded
open set V such that

m⋃
i=1

Si(V) ⊂ V

with the union disjoint. With this condition, we are ready to state the Theorem calculating the
Hausdorff dimension.

Theorem 3.3. (Hausdorff dimension of IFS with similarities)
Suppose that the open set condition holds for the similarities Si on Rn with ratios 0 < ci < 1 for
1 ≤ i ≤ m. If F is the attractor set of the IFS {S1, . . . , Sm},

F =
m⋃

i=1

Si(F) (3.1)

then dimH F = s, where s is given by
m

∑
i=1

cs
i = 1. (3.2)

Moreover, the s-Hausdorff measure will be positive and finite.

Example 3.4. (Hausdorff dimension for the Sierpiński triangle)
For the Sierpiński triangle, the three similarities scale down a triangle into three equal-sized triangles
(figure 2), hence ci = 1

2 . Previous Theorem give us ∑3
i=1(

1
2 )

s = 1, then dimH F = s =
log(3)
log(2) ≈

1.585 . . . .
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Figure 2: Construction of the Sierpinski triangle (dimH F =
log 3
log 2 = 1.585 . . . )

Theorem 3.5. (Hausdorff dimension of contracting IFS)
Let {Si}m

i=1 be an IFS consisting of contractions on a closed subset D of Rn i.e.

|Si(x)− Si(y)| ≤ ci|x − y| (x, y ∈ D).

Now, let F be the attractor for the IFS. Let s be such that ∑m
i=1 cs

i = 1, then,

dimH F ≤ s.

Next, we obtain a lower bound for the case when F =
⋃m

i=1 Si(F) is a disjoint union.

Theorem 3.6. (Lower bound for the Hausdorff dimension)
Consider the IFS {Si}m

i=1 on a closed subset D of Rn, such that

bi|x − y| ≤ |Si(x)− Si(y)| (x, y ∈ D).

with 0 < bi < 1 for each i. Assume that the union F =
⋃m

i=1 Si(F) is disjoint. Let s be such that

m

∑
i=1

bs
i = 1.

Then F is totally disconnected and s ≤ dimH F.
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4 Concept in complex dynamics

This section contains a basic introduction with proofs for complex dynamics. It will be the
framework based on which the rest of the essay will be presented. We begin by defining the
Julia set for a complex polynomial. The goal is to prove four equivalent definitions for the Julia
set.

4.1 Julia sets and their properties

The Julia set can be defined in four equivalent ways: (1) as the boundary of the filled-in Julia
set, (2) as the set of points z ∈ C for which the sequence { f k}∞

k fails to be normal, (3) as
the closure of the repelling periodic points, and (4) if we have a polynomial with a critical
point (points with derivative is equal to zero) and an attractive periodic point, then as the
boundary of the corresponding basin of attraction. These definitions provide different perspec-
tives on the same object, with some being more favourable than others depending on the context.

First, we introduce some notation and terminology from dynamics. Let f ∈ C[z] be a complex
polynomial. We will write f k = f ◦ · · · ◦ f as the k-th composition of the function f while the

k-th derivative will be written inside a parenthesis i.e. f (k) = dk f
dzk for k ≥ 3. Recall that we call

w a periodic point of period p for f if f p(w) = w where p is the smallest non-zero integer with
this property. If p = 1, then we call w a fixed point, now with ( f p)′(w) = λ.

Definition 4.1. (Attractive/repelling fix points)

1. Attractive periodic point: 0 < |λ| < 1.

2. Repelling periodic point: |λ| > 1.

An attractive periodic point ”pulls” nearby points to it under iteration of f while repelling
periodic points ”pushes” nearby points. If λ = 0, we call it superattracting. Part of studying
the dynamics for some complex function is to classify what initial points stay bounded under
iteration, this set of point is called the filled-in Julia set- named after the famous mathematician
Gaston Maurice Julia.

Definition 4.2. (Filled-in Julia set)
For a complex polynomial f , we define the filled-in Julia set to be the points in the complex plane that do
not diverge.

K( f ) = {z ∈ C : f k(z) ↛ ∞}.

Note that this set contains points that neither diverge nor converge. For instance, we can
have periodic points or non-returning points. The next definition is more analytical, which will
play a role in describing uniformity of a family of functions in an open set or around a specific
point.

Definition 4.3. (Normal family of analytic functions)
Let U be an open set in C, and

F = {g : U → C : g analytic on U},

a family of analytic functions on U. We call the family F normal if, for every sequence gk in F and
every compact subset Ũ of U, there exists some subsequence {gnk} which converges uniformly on Ũ ,
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either to some bounded analytic function or ∞. The family F is normal at a point z ∈ U if there exists
an open set V ⊂ U containing z such that the family is normal on V.

Definition 4.4. (Basin of attraction)
If w is an attractive fixed point of f ∈ C[z], the basin of attraction is

A(w) = {z ∈ C : f k(z) → w as k → ∞}.

Definition 4.5. (Julia set) Let f ∈ C[z]. The Julia set is defined to be the boundary of the filled-in Julia
set.

J ( f ) = ∂K( f ).

The complement of the Julia set is the Fatou set, named after the famous French mathemati-
cian Pierre Fatou (1878-1929).

Definition 4.6. (Fatou set)
The Fatou set is the complement of the Julia set.

F ( f ) = J c.

We are now equipped to state the main Theorem of this section.

Theorem 4.7. (Equivalence of Julia set)
Let f ∈ C[z], the following are equivalent,

i) The boundary of the filled-in Julia set.

J ( f ) = ∂K( f )

ii) The set of points on the complex plane for which { f k}∞
k fails to be normal on.

J ( f ) = {z ∈ C : { f k}∞
k=0 is not normal at z}.

iii) The closure of the repelling periodic points.

iv) The boundary of the basin for any attractive fixed point w of f .

Note that the four definitions serve different roles when studying the Julia set. The first
and last serves as geometric interpretation, and most importantly, as an instrument to calculate
the Julia set. The second enables us to use the theory of complex functions, and in particular,
Montel’s theorem, while the third connects us to dynamics . To prove this Theorem we need to
establish some properties of the Julia set.

This Theorem also tells us that we can view the Fatou set as the complement to the boundary
of the Filled Julia set or as the collection of point for which the family of composition of { f k}∞

k
are normal on. Here is a simple example to demonstrate the equivalences.

Example 4.8. (Julia set for z2)
Let f (z) = z2. Then, it follows that f k(z) = z2k

. Hence, for |z| < 1 we get that f k(z) → 0
while f k(z) → ∞ when |z| > 1. The filled-in Julia set is then the disc. The Julia set is hence
J ( f ) = ∂K( f ) = S1. In the same way, any open neighbourhood around a point on the circle will not be
normal under { f k}∞

k . The boundary of the respective basins for the two attractive fixed points, origin
and ∞, is, in both cases, the unit circle. Lastly, the repelling periodic points are all the point on the circle.
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(a) c = 1
2 (b) The basilica: c = −1

(c) The dendrite: c = i (d) c = 0.2 − 0.56i

Figure 3: Examples of Julia sets for the quadratic map f (z) = z2 − c for different c

To be able to prove the equivalences in Theorem 4.7, a number of general statements will be
needed. The first one gives us an estimate of the disc that contains the filled-in Julia set. We
move on to prove some topological properties of J ( f ) and K( f ), then two statements of the
invariance of the Julia set.

Lemma 4.9. Let f ∈ C[z] with degree n, with f (z) = ∑n
i=0 aizi. There exists some r > 0 such that

|z| ≥ r =⇒ | f (z)| ≥ 2|z|.

In particular, if | f m(z)| ≥ r for some m, then f m(z) → ∞.

Proof. Choose r such that if |z| ≥ r then 2|z| ≤ 1
2 |an||z|n and ∑n−1

i=0 |aizi| ≤ 1
2 |an||z|n, simple

calculations shows that the following r suffices:

r ≥ max
{(

2|z|
|an|

)1/n

,
(

2
|an|

n−1

∑
i=0

|aizi|
)1/n}

.

Then, for |z| ≥ r we have

| f (z)| ≥ |an||z|n −
n−1

∑
i=0

|aizi| ≥ |an||z|n −
n−1

∑
i=0

|aizi| ≥ 1
2
|an||z|n ≥ 2|z|.
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For the second statement, note that if f m(z)| ≥ r for some m, then, applying the previous result
inductively, we get | f m+k(z) ≥ 2m| f k(z)| ≥ r thus f k(z) → ∞.

Proposition 4.10. [Compactness of the (filled-in) Julia set ]
Let f ∈ C[z] and deg( f ) ≥ 2. Then, both the filled Julia set and the Julia set are non-empty compact
sets with J ( f ) ⊂ K( f ). Furthermore, J ( f ) has an empty interior.

Proof. We prove compactness via Heine–Borel Theorem, which is sufficient to prove closed and
boundedness. Using r from Lemma 4.9, we can see that K( f ) is contained in a disc of radius r,
hence bounded. Then, J ( f ) = ∂K( f ) will be bounded by the same disc.
To show that K( f ) is closed, we show that the complement is open. Take z ̸∈ K( f ) then
f k(z) → ∞ so | f m(z)| > r for some integer m. Now, since f is continuous, there exists an open
ball B around z such that f k(w) → ∞ for any w ∈ B i.e. w ̸∈ K( f ). Hence K( f )c is open and
K( f ) is closed. Since J ( f ) is the boundary, it is also closed.

The complex numbers are algebraically closed, hence f (z) = z has at least one solution
z0, thus giving us f k(z0) = z0 for all k. This means z0 ∈ K( f ), and hence, is non-empty. Let
z1 ∈ C \ K( f ). Taking the line λz0 + (1 − λ)z1 contacting z0 and z1, the line will intersect the
boundary for some λ. Taking the

λ = inf{λ : λz0 + (1 − λ)z1, λ ∈ [0, 1]}

will suffice for such a λ. Thus, J ( f ) = ∂K( f ) is non-empty.
To prove that the Julia set has an empty interior, assume first that U is a non-empty open subset
of J ( f ) ⊂ K( f )

Note that the restriction on the polynomial’s degree ensures a solution to f (z) = z. This can
be relaxed to simply requiring f (z) = z to have a solution.

Proposition 4.11. [invariance of the Julia set]
The Julia set is invariant under forward and backward iterations of f . The Julia set is also invariant if the
underlying function is a composition of f .

• J ( f ) = f (J ( f )) = f−1(J ( f ))

• J ( f p) = J ( f ) for any positive integer p.

Proof. If z ∈ J ( f ), then f k(z) ̸→ ∞, and since J ( f ) is closed, we may find wn → z with
f k(wn) → ∞ for all n. Now, since f is continuous, one can choose f (wn) arbitrarily close to f (z).
Since f k( f (wn)) → ∞ and f k( f (z)) ̸→ ∞, that means f (z) ∈ J ( f ), hence f (J ( f )) ⊂ J ( f ).
Taking the inverse image of the inclusion we get J ( f ) ⊂ f−1( f (J ( f ))) ⊂ f−1(J ( f )).

In the same way, let z and wn be as above with z0 such that f (z0) = z. Since f is a com-
plex polynomial, one may find vn → z0 such that f (vn) = wn for all n. Hence, by the
previous arguments, we get that, f k(z0) = f k−1(z) ̸→ ∞ and f k(vn) = f k−1(wn) → ∞ as
k → ∞, which is that z0 ∈ J ( f ), and for that matter, f−1 ⊂ J ( f ), which implies as above,
J ⊂ f ( f−1(J ( f ))) ⊂ f (J ( f )), finishing the proof of the first statement.

The proof of the latter statement follows from the fact that f k(z) → ∞ iff ( f p)k(z) = f kp(z) → ∞.
Thus, both filled Julia sets are identical, i.e. K( f ) = K( f p),and thus, the same Julia set.
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To prove the first equivalence we need Montel’s theorem, which describes the behaviour of
abnormal family of analytical functions by considering images for the family of functions.

Theorem 4.12. [Montel’s theorem]
Let {gk}∞

k=1 be a family of analytic functions on an open domain U. If the family is not normal on U,
then for each w ∈ C with possible one exception, there exist some z ∈ U and k̂ such that gk̂(z) = w.

We are now ready to prove the first equivalence of the main Theorem.

Proof. [Theorem 4.7 (i) ⇐⇒ (ii)]

(i =⇒ ii)
Let z ∈ J ( f ). Then for each open neighbourhood V contains some point w that diverges
under iteration of the complex polynomial, f k(w) → ∞, while f k(z) stays bounded. Thus, no
subsequence of { f k}∞

k converges uniformly on all compact subsets of V. Thus, the family of
compositions are not normal on z.

(ii =⇒ i)
We lead with a contra positive proof. Assume that z ̸∈ J ( f ), then either z ∈ int(K( f ))
or z ∈ C \ K( f ). For the first case, take any open neighbourhood V around z such that
z ∈ V ⊂ int(K( f )).Since every point in the filled Julia set stay bounded under iteration of f . In
particular we have, f k(w) ∈ K for all w ∈ V and k1. By Montel’s Theorem 4.12 we have that
{ f k}∞

k is normal.
In the other case z ∈ C \ K( f ), taking a open neighbourhood which contains z, we get that
there exist some k such that | f k(w)| > r for some r via Lemma 4.9 for all w ∈ V. Thus, by the
same Lemma, we get that f k(w) → ∞ uniformly on V. Thus, { f k}∞

k is normal.

Remark 4.13. Using normality gives a natural extension for the definitions of Julia sets to more
general settings such as rational functions or meromorphic functions. Furthermore, the function
f (z) = ((z − 2)/z)2 gives an example of a non-bounded Julia set J ( f ) = C.

With Montel’s Theorem 4.12 we get a remarkable result. That is, for any point z ∈ J ( f ) and
any open neighbourhood V around z, we can cover the whole complex plane with iterations of
f with possibly one exception.

Proposition 4.14. [J is mixing]
If f is a complex polynomial and w ∈ J ( f ), then for each open set V containing w we have that
W =

⋃∞
k=j f k(V) is the whole of C expect possibly one point, this point will not be in the Julia set for f ,

and moreover, is independent of both w and V.

Proof. Since the family { f k}∞
k is not normal at w. Further { f k}∞

k=j is not normal at w. By
Montel’s Theorem, we get that for every open set V containing w, there exist some ŵ ∈ V and
some p such that f p(ŵ) = z for any z ∈ C with possible one exception. This is the same as.
W covering the complex plane with possibly one exception. Now, assume that v ̸∈ W and
f (W) ⊂ W, then if f (z) = v, then z ̸∈ W. Hence, v = z (since C \W contains at most one point).
Since f is an n dimensional polynomial, f (z)− v = 0 implies f (z)− v = c(z − v)n where c

1 One sees this since, otherwise, the sequence will diverge if it lands outside the filled Julia set and contradict the initial
point that was inside the filled Julia set.
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is some complex constant. Taking z to be sufficiently close to v, we get that f k(z)− v → 0
uniformly.

f k(z)− v = f ( f k−1(z))− v = c( f k−1(z)− v)n + v − v = c( f k−1(z)− v)n = · · · = ck(z − v)kn.

If we take z to be in, for instance, {z : |z − v| < (2c)−1/n}, then we get that the convergence is
uniform thus v ̸∈ J ( f ).

A further classification of Julia sets is, if W omits one point, then the Julia set is the a circle
with centre v and radius c−1/(n−1). Now we state a Theorem that stands as a basis for the
reason why one can create computer pictures of the Julia sets. The idea is that one point in the
Julia set can ”generate” the whole of the Julia set. Making computation easier since one only
need to find one point in the Julia set.

Proposition 4.15. [Computation of the Julia set]

• For all z ∈ C with at most one exception: if V is an open set intersecting J ( f ), then f−k(z)
intersects V for infinitely many values of k.

• If z ∈ J ( f ) then J ( f ) =
⋃∞

k=1 f−k(z)

Proof. The first statement follows from the previous Proposition 4.15. Assume z ∈ W is not the
exceptional point, then z ∈ f k(V) for all k, hence f−k(z) intersects V for infinitely many k. For
the second statement, let z ∈ J ( f ), and since the Julia set is backwards invariant under f , then
f−k(Z) ∈ J ( f ) for all k. Hence,

⋃∞
k=1 f−k(z) is also contained in the Julia set. Because the Julia

set is a closed set, then the closure is also contained in the Julia set. On the other hand, let V be
an open set containing z ∈ J ( f ), then by the first part of this proposition, f−k(z) intersects V
for some value k and z is not the exception point so J ( f ) =

⋃∞
k=1 f−k(z)

To further understand the topological properties of the Julia set, we will prove that it is a
perfect set.

Definition 4.16. [Perfect set]
The set A in a topological space X is called perfect if it is both closed and contains no isolated points.

Lemma 4.17. Every non-empty perfect set is uncountable

Proposition 4.18. [The Julia set is a perfect set]
The Julia set J ( f ) has no isolated point, hence it’s a perfect set.

Proof. Let v ∈ J ( f ) with an open neighbourhood V of v. The aim is to show there exist other
points of J ( f ) in V. We consider three cases,

• If v is not a fixed point. Since the Julia set is invariant under f , the second statement in
proposition 4.15 gives that f−k(v) ⊂ J ( f ) for some k ≥ 1. This point will different from
v.

• v is a fixed point, f (v) = v. If f (z) = v has no solution other than v, then v ̸∈ J ( f ). Let
w ̸= v and f (w) = v, again by proposition 4.15, V contains a point of f−k(w) = f−k−1(v)
for some k ≥ 1. Any of such point is in the Julia set because of backwards invariance and
if further distinct from v.
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• If we have a periodic point of order p > 1, f p(v) = v. Since J ( f p) = J ( f ), we can
employ the same argument as in the last point, since v is a fixed point for the function
g = f p.

We are now ready to prove the remaining equivalences in the main Theorem of this section.

Theorem 4.19. (Uniform limit of holomorphic functions is holomorphic)
Let U be an open subset of the complex plane, and fn : U → C be a sequence of holomorphic functions
converging uniformly on every compact subsets of U to f . Then, f is holomorphic moreover f (k)n → f (k)

uniformly on compact subsets of U.

Proof. [Theorem 4.7 (ii) ⇐⇒ (iii)]

Let w be a repelling periodic point of f of period p. Then, it is a repelling fixed point of
g = f p, since the Julia set of g and f is the same we can study g. Now, assume that w ̸∈ J ( f )
that is {gk} is normal at w, that is there exists some open set V containing w such that for every
subsequence {gki} and every compact subset of V, {gki} converges to some analytic function
g0. Since gk(w) = w for all k, then g0 ̸= ∞. Via Theorem 4.19 the derivatives also converge
(gki )′(z) → g′0(z) if z ∈ V. However, since w is a repelling fixed point for g, |g(z)′| > 1. Using
the chain rule we get that |(gki )′(w)| = |(g′(w))ki | → ∞, contradicting faintness of g′0(w). Thus,
{gk} cannot be normal at w, which implies that w ∈ J (g) = J ( f p) = J ( f ). Since the Julia set
is a closed set, it also contains the closure of the repelling periodic points.

For the opposite inclusion, let E = {w ∈ J ( f ) : ∃v ̸= w with f (v) = w and f ′(v) ̸= 0},
that is the set of points w in the Julia set which are the images of some non-critical point v ̸= w.
Let w ∈ E, which implies f ′(w) ̸= 0 and there exist some open neighbourhood V of w with
some local analytic inverse f−1 : V → C \ V such that f−1(w) = v ̸= w by choosing the values
of f−1(z) in a continuous manner. Now, define a new family of functions

hk(z) =
f k(z)− z

f−1(z)− z
.

Let U be any open subset of V which contains w. Since { f k} is not normal on U, then {hk} is
also not normal on U. Now, using the key Theorem by Montel, hk(z) must take either the value
0 or 1 for some k0 and z0 ∈ U.

• In the first case, we get, hk0(z0) = 0, which implies that f k0(z0) = z0 for z0 ∈ U.

• In the latter case, we get hk0(z0) = 1, which implies that f k0(z0) = f−1(z0) so f k0+1(z0) =
z0.

Thus, any open subset U of V contains a periodic point of f . Furthermore, since f is a
polynomial, E contains all of J ( f ) expect for a finite number of points. This combined with
the fact that the Julia set is a perfect set, that is, it contains no isolated points- hence, we can
chose a sequence of periodic points pn that accumulate to w. Mitsuhiro Shishukur proved
[Shishikura (1987)] that for a rational function the number of non-repelling periodic points
is finite. More precisely, for a rational map f with degree d, the non-repelling orbits was
proved to be sharply bounded above with 2d − 2. Using this, we can remove the finite set of
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non-repelling periodic point from pn leaving us with a sequence of repelling periodic points
accumulating to w. Hence, any w ∈ E is in the closure of the repelling periodic points. But,
since f is a polynomial, then E will contain all of J ( f ) except of finite number of points. Thus
J ( f ) ⊂ Ē ⊂ {repelling periodic points}, and we are done.

One can prove similar equivalence for more general families of functions. Fatou proved that,
when f is a rational function with degree d ≥ 2 then the equivalence holds [Fatou (1919)]2.

Proof. [Theorem 4.7 (iii) ⇐⇒ (iv)]

First, assume z ∈ J ( f ). Since the Julia set is invariant under iterations of f , we get that
f k(z) ∈ J ( f ) for all k. Now, let U be some open set containing z. Then, f k(U) contains points
of A(w) that is, there exist arbitrary close points to z that iterate to w. Thus, z ∈ A(w), since
z ̸∈ A(w), hence z ∈ ∂A.

Suppose z ∈ ∂A(w), but z ̸∈ J ( f ). Thus, there exist some connected open set around z
on which { f k} has a subsequence that converges uniformly to some analytical function or ∞.
Note that on the open and connected set V ∩ A(w), the sequence converges to w. Note that
analytical functions are constant on connected set if they are constant on any open subset. But
this means that all the points in V gets mapped to A(w) under iterates of f , which contradicts
z ∈ ∂A(w).

2 For a proof in English, consult [Schwick (1997)] where W.SCHWICK proved the case when f is an entire function.
Consult also chapter five in Blanchard [Blanchard (1984)] for similar results on the Riemann sphere.
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4.2 The Mandelbrot set for quadratic polynomials

If we consider the family of functions fc depending on a complex constant c, then a natural
question is ”how the Julia set varies with the parameter?”. In this thesis, we will study the
family of complex quadratic functions. We assert that it’s enough to study polynomials of the
form

fc(z) = z2 + c.

This is the case since for any other polynomial g of degree 2, we can find an affine map
h = αz + β which conjugate with fc,

g = h−1 ◦ fc ◦ h =⇒ gk = h−1 ◦ f k
c ◦ h.

This in turns, means that the Julia set J (g) is the same as J ( f ) up to some affine translation.
We only need to pick α and β correctly according to the following explicit formula.

h−1( fc(h(z))) =
α2z2 + 2αβz + β2 + c − β

α
.

Example 4.20. Let g : z 7→ z2 + 2z. If we wishes to find the Julia set, we observe that g conjugates
with f0 : z 7→ z2 via, h : z 7→ z + 1.

g(z) = z2 + 2z = (z + 1)2 − 1 = (h(z))2 − 1 = (h−1 ◦ f0 ◦ h)(z).

From example 4.8, we know that the Julia set of f0 is the circle centred at zero. Hence, the Julia set for g
becomes

J (g) = h−1(J ( f )) = {z − 1 : |z| = 1}.

Definition 4.21. (Mandelbrot set)
Let fc be a family of complex function depending on the complex parameter c.

M = {c ∈ C : J ( fc) is connected}.
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Figure 4: The Mandelbrot set

This definition is difficult to work with, especially when checking if some c is in the
Mandelbrot set. We hence give an equivalent characterisation of the Mandelbrot set in terms of
iterates of the origin.

Theorem 4.22.
M = {c ∈ C : { f k

c (0)}k≥1 is bounded}.

Since the origin is a critical point for fc for each c (i.e. f ′c(0) = 0), it plays an integral role in
determining the structure of the Mandelbrot set. It’s exactly at this point for which fc fails to be
a local bijection. This will be a crucial part of the proof. To prove this Theorem, we need the
following Lemma concerning the inverse image under fc of loops in relation to the placement
of c.

Lemma 4.23. Let C be a loop that is a smooth, closed, non-self-intersecting curve in the complex plane.

i) If c is inside of C then f−1
c (C) is a loop, with the inverse image of the interior of C as the interior

of f−1
c (C).

ii) If c ∈ C, then f−1(C) is of a figure eight self intersecting at 0. Again, the inverse image of the
interior of C is the interior of the two loops.

iii) If c is outside C, then f−1(C) comprises two disjoint loops, with the inverse image of the interior
of C the interior of the two loops.

Proof. (Theorem 4.22)

First, note that { f k
c (0)} is bounded if and only if f k

c (0) ̸→ ∞. We will begin by proving
that if { f k

c (0)} is bounded, then the corresponding Julia set is connected. Begin by choosing C
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to be a great circle that contains all of { f k
c (0)} such that f−1

c (C) is interior to C and with all
points outside C iterating to infinity. Since c = fc(0) is inside C, the same follows for f k

c (c),
Lemma 4.23 (i) gives that f−1(C) will be mapped onto a loop contained inside of C. Because
the exterior of C is mapped to the exterior of f−1

c (C), hence c is inside of f−1
c (C). Applying

the same argument yields a nested sequence { f−k
c (C)} of loops, refer to Figure 5 (a). Now, let

K denote the closed set that constitutes all the points that are on or inside of f−k
c (C) for all k.

Then
A(∞) = {z : f k

c (z) → ∞} = C \ K.

This is because, if z ̸∈ K, then for some iterate k f k
c (z) ̸∈ C, hence diverges. The boundary of

K is the Julia set. Since K is attained by intersecting a decreasing sequence of loops, then K is
simply connected, and hence, the boundary is connected.

The opposite implication follows in the same manner. Pick a circle C in the same way as
the previous proof with the added conduction that for some p, then f p−1

c (c) = f p
c (0) ∈ C.

That is the forward orbit of the critical point hits the circle. The decreasing sequence of loops
{ f−k

c (C)} (figure 5 (b)). The previous argument breaks down at step 1 − p. This is since
c ∈ f 1−p

c (C)), applying the inverse image again will, by Lemma 4.23 (b), result in an ”eight”
shaped curve with a self-intersection at the origin, for brevity let E = f−p

c (C). The Lemma also
tells us, each half of E gets mapped by fc onto f 1−p

c (C). The Julia set must be contained in the
interior of E. Since the origin diverges under iterations, hence 0 ̸∈ J ( f ). Either the Julia set is
contained completely in one of the halves, or it’s disconnected. Since the Julia set is invariant
under f−1

c ,parts of it must be contained in each of the loops of E, proving that the Julia set is
disconnected.
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Figure 5: The inverse image of a great circle C, (a) c = −0.3 + 0.3i; (b) c = −0.9 + 0.5i.

The next Theorem states some of the general properties for the Mandelbrot set.

Theorem 4.24. The Mandelbrot set M is a closed set that is contained within the closed disk of radius
2. Moreover, M∩ R = [−2, 1/4].

Proof. To prove that the Mandelbrot set is contained in the closed disk of radius 2 assume
|ĉ| = 2 + ϵ for some ϵ > 0. The aim is to show via induction that

| f k
ĉ (0)| ≥ 2 + (2k − 1)ϵ k ≥ 1.

The base case follows directly

| f ĉ(0)| = |c| = 2 + ϵ ≥ 2 + (21 − 1)ϵ.
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Assume now that
| f k

ĉ (0)| ≥ 2 + (2k − 1)ϵ.

Using the triangle inequality gives

| f k+1
ĉ (0)| = |( f k

ĉ (0))
2 + ĉ| ≥ | f k

ĉ (0)|2 − |ĉ| ≥ |(2 + (2k − 1)ϵ)2| − |ĉ| =

= 4 + 4(2k − 1)ϵ + (2k − 1)2ϵ2︸ ︷︷ ︸
>0

≥ 2(2 + (2k+1 − 2)ϵ) ≥ 2 + (2k+1 − 1)ϵ.

Hence, | f k
ĉ (0)| → ∞, since for any M > 2 choosing N ≥ log2(

M−2
ϵ )− 1 will give | f k

c (0)| ≥ M,
for k ≥ N.

The Mandelbrot set is closed. Since fc(0) is a continuous function in c, the Mandelbrot is
written as follows

M =
∞⋂

k=1

{c ∈ C : | f k
c (0)| ≤ 2}.

The right side is an intersection of closed sets (continuous functions on C are closed under
compositions), hence is closed.

M∩ R = [−2, 1/4]: When c is real then fc(x) − x has no real fixed roots. Hence, for any
c > 1/4 then f k

c (0) diverges, since otherwise, the finite convergence point will be a fixed
point and hence contradicting the non-existence of real roots for fc(x). When c ≤ 1/4 let
a = (1 +

√
1 − 4c)/2 be the larger real root. If c ≥ −2

|c| = | fc(0)| ≤ a.

Then | f n
c (0)| ≤ a implies

| f n+1
c (0)| = | f n

c (0) + c| ≤ a2 + c =
1 + 1 − 4c + 2

√
1 − 4c + 4c

4
=

1 +
√

1 − 4c
2

= a.

Hence the sequence is uniformly bounded by a, and M∩ R = [−2, 1/4].

Mitsuhiro Shishikura proved the following remarkable Theorem,

Theorem 4.25. [Shishikura (1998)]
dimH(∂M) = 2

Moreover, for any open set U intersecting ∂M, has dimH(∂ ∩ U) = 2.

But it is still unknown what the Hausdorff measure of the boundary is.
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5 Quasiconformal mappings & moduli of curve families

Quasiconformal maps arose historically as a consequence of Grötzsch problem, which is stated
as follows. Let R and R′ be two rectangles, with vertices (A, B, C, D) and (A1, B1, C1, D1) with
side length (a, b) and (a1, b1) respectively. Consider f ∈ C1 such that f : R → R1 which maps
all the vertices from R onto R1.

a

b
A

B C

D
A1 B1

C1D1

a1

b1
f

Figure 6: Grötzsch problem

The problem is how ”close” f can be made into a conformal map, that is, f is a homeo-
morphism and is holomorphic. Herbert Grötzsch proved in 1928 that f cannot be conformal
unless a/b = a1/b1. In fact, there only exists such map a when a/b = a1/b1. We will now
define what it means to be close to a conformal map, which in turn, will define the notion of a
Quasiconformal maps.

Let Ω be a connected plane domain with a smooth boundary in the complex plane. Also
let f : Ω → f (Ω) be a C1-diffeomorphism. We expand f = u(x, y) + iv(x, y). The differential
defines a linear map

du = uxdx + vydy,

dv = vxdx + vydy.

Or in a compact form
d f = fzdz + fzdz.

With fz and fz are the complex derivatives. Since f is a diffeomorphism, we can approximate
its action via the linear maps. The linear map d f sends circles onto ellipses with major axis of
length α and minor axis of length β.

α
β

z w
df

Figure 7: Distortion on infinitesimal circles

The distortion at a point z0 is defined to be

D f :=
α

β
=

| fz|+ | fz|
| fz| − | fz|

≥ 1.
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Now, by Cauchy–Riemann equations, if f ∈ C1 and f is conformal, it then implies that fz ≡ 0,
which gives D f = 1. Geometrically, this means conformal functions map infinitesimal circles
onto infinitesimal circles.

Definition 5.1. Let f : Ω → C be a diffeomorphism. We say that f is a quasiconformal map if the
distortion is bounded in Ω. Further, if the distortion is bounded by some 1 ≤ K < ∞, then f is called
K-quasiconformal. Let K f be the infimum of all such K.

The set of all C1-diffeomorphism that are compactly contained in Ω are quasiconformal.
Equipped with this, the larger K f is the further away a map is from being conformal. It’s also
true that a map is conformal if, and only if, it is 1-quasiconformal. Hence, the precise formu-
lation of Grötzsch problem is to find a homeomorphism f which maps R into R1 preserving
vertices for which K f ≤ Kg for any other admissible homeomorphism g, and if this map exist,
to find what is K f . For a full treatment and solution of the Grötzsch problem, refer to any of
the following books Fletcher & Markovic (2007) or Ahlfors (1966). We will instead move on to
define module of family of curves and extremal length.

We start with fixing notation and listing some basic definitions.

Definition 5.2. [Curve] Let I ⊂ R be an interval. A continuous mapping γ : I → Rn, is called a
curve. The curve is called open or closed if I is open or closed.

Definition 5.3. [Length of curve & (locally) rectifiable curves] Let γ : [a, b] → Rn be a curve and
let {tk}n

k=0 be an ordered partition of [a, b]. The length of curve γ is defined by

l(γ) = sup
n

∑
k=1

|γ(tk)− γ(tk−1)|.

With supremum taken over all possible ordered partitions. Note that 0 ≤ l(γ) ≤ ∞. A curve γ is called
rectifiable if the length if l(γ) < ∞ and locally rectifiable if γ, restricted to each closed sub-interval
of I, is rectifiable.

Let Γ be a family of locally rectifiable curves in the plane. We shall now introduce a
geometric quantity called the extremal length λ(Γ), which is the average of the minimum length.
This quantity will later prove to be an invariant under conformal mappings and bounded under
quasiconformal mappings.

Definition 5.4. A function ρ, defined on the whole plane, is an admissible metric if

• ρ ≥ 0

• ρ is measurable

• A(ρ) =
∫ ∫

C
ρ2dxdy ̸= 0 and ̸= ∞

The length of a curve γ ∈ Γ with respect to ρ is

Lγ(ρ) =
∫

γ
ρ|dz|

Let L(ρ) define the minimum over Γ that is

L(ρ) := inf
γ∈Γ

Lγ(ρ)
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The extremal length is defined by

λ(Γ) := sup
ρ

L(ρ)2

A(ρ)
,

with supremum taken over all admissible metrics.

Note that Lγ(1) coincides with the length of the curve given in Definition 5.3. We are now
ready to define the modulus of a curve family.

Definition 5.5. Let Γ be a family of locally rectifiable curves in Rn, let

F(Γ) := {ρ : Rn → R : ρ is non-negative, Borel measurable, and
∫

γ
ρds ≥ 1 ∀γ ∈ Γ}.

A function in F(Γ) is called an admissible function, denote by dLm the m-dimensional Lebesgue measure.
Now for p ≥ 1 we set

Mp(Γ) := inf
ρ∈F(Γ)

∫ ∫
ρpdL2(z)

The number 0 ≤ Mp(Γ) ≤ ∞ is called the p-module of the family Γ. In this thesis, we will only
consider the case when p = n = 2.

Following this definition, we remark that, for a given Γ as above, we get λ(Γ) = 1
M(Γ) . It is

more natural to work with the module, for it has the following measure-theoretic property:

Theorem 5.6. Let p ≥ 1 then Mp is an outer measure in the space of all curves in Rn. That is

i) Mp(∅) = 0

ii) If Γ1 ⊂ Γ2 then Mp(Γ1) ≤ Mp(Γ2)

iii) Mp

(⋃∞
i=i Γi

)
≤ ∑∞

i=1 Mp(Γi)

Proof. Since the zero function belongs to F(∅) then Mp(∅) = 0. If Γ1 ⊂ Γ2, then F(Γ2) ⊂ F(Γ1),
hence Mp(Γ1) ≤ Mp(Γ2). For the last, we may assume that Mp(Γi) < ∞ for each i. For every
ϵ > 0 pick ρi ∈ F(Γi) such that ∫

ρ
p
i dLm(z) < Mp(Γi) +

ϵ

2i .

Then the function ρ = (∑ ρ
p
i )

1/p belongs to F(∪∞
i=1Γi), since for all i, we have ρ ≥ ρi. Thus

Mp(Γ) ≤
∫

ρpdLm(z) =
∞

∑
i=1

∫
ρ

p
i dLm(z) < ϵ +

∞

∑
i=1

Mp(Γi).

Let ϵ → 0 gives the desired inequality.

Theorem 5.7. (Composition of of quasiconformal maps) [Fletcher & Markovic (2007)]
If f is a K1-quasiconformal map and g a K2-quasiconformal map, then both f ◦ g and g ◦ f are K1K2
quasiconformal

Lemma 5.8. [Grötzsch inequality] Let Γ1, Γ2 be two disjoint families of curves. Then

M2(Γ1 ∪ Γ2) ≥ M2(Γ1) + M2(Γ2).
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Proof. Note this is the same as saying λ(Γ1 ∪ Γ2)
−1 ≥ λ(Γ1)

−1 + λ(Γ2)
−1. Without loss of

generality we can assume λ(Γ1 ∪ Γ2) ̸= 0. Consider an admissible ρ with L(ρ) > 0 and set
ρi = ρ on Ei for i = 1, 2 and ρi = 0 outside of Ei. With E1 and E2 are complementary measurable
sets such that Γ1 ⊂ E1 and Γ2 ⊂ E2. Then, we have LΓi (ρ1) ≥ L(ρ), and A(ρ) = A(ρ1) + A(ρ2)
hence

A(ρ)

L2(ρ)
≥ A(ρ1)

L2
Γ1
(ρ1)

+
A(ρ2)

L2
Γ2
(ρ2)

.

Now, we are ready to prove the important property which is invariance under conformal
mappings.

Theorem 5.9. For a map f : Ω → C, Ω ∈ C, the following is true.

i) If f is conformal, then M2(Γ) = M2( f (Γ)).

ii) If f is quasiconformal, then 1
K M2(Γ) ≤ M2( f (Γ)) ≤ KM2(Γ).

Proof. We will only prove the second statement, since the first follows with K = 1. We will
prove the similar statement for extremal lengths. Let ξ = f (z) and ρ be an admissible metric,
define

ρ1(ξ) :=
(

ρ

| fz| − | fz|
◦ f−1

)
(ξ)

and zero outside f (Ω). Then∫ ∫
f (Ω)

ρ2
1|dξ|2 =

∫ ∫
Ω

| fz|+ | fz|
| fz| − | fz|

ρ2dxdy ≤
∫ ∫

Ω

| fz|+ | fz|
| fz| − | fz|︸ ︷︷ ︸

=D f

dxdy
∫ ∫

Ω
ρ2dxdy ≤ K f A(ρ) < ∞.

In the first equality, we transform to the domain Ω and multiply by the Jacobin J f−1. The
last inequality follows that f is quasiconformal and ρ is admissible, hence ρ1 is admissible. If
γ1 = f (γ) for some γ ∈ Γ and γ1 ∈ f (Γ), then∫

γ1

ρ1|dξ| ≥
∫

γ
ρ|dz|

which implies
Lγ1(ρ1) ≥ Lγ(ρ) =⇒ L(ρ1) ≥ L(ρ).

Finally

λ(Γ1) = sup
ρ1

L2(ρ1)

A(ρ1)
≥ sup

ρ

L2(ρ)

K f A(ρ)
=

1
K f

λ(Γ) =⇒ K f M2( f (Γ)) ≤ M2(Γ).

The other inequality follows from same consideration but with the inverse f−1, since the inverse
is also quasiconformal.

Example 5.10. [The module of an annulus]
An annulus consists of the region between two concentric circles. Let A = {z = reiθ : r1 < |z| =
r < r2, 0 < θ < 2π} be the annulus, denoted by Γ the family of locally rectifiable curves that joins the
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boundaries of the annulus A which do not leave A (see Figure 8). Let ρ = 1
r , we want to show that this

is indeed an admissible metric for Γ, then, via Cauchy–Schwarz inequality, bound the 2-module. Let
γ ∈ Γ, we obtain∫

γ
ρds =

1
log( r2

r2
)

∫
γ

dt
r

=
1

log( r2
r2
)

∫ r2

r1

|γ̇(t)|
|γ(t)|dt ≥ 1

log( r2
r2
)

∣∣∣∣ ∫ r2

r1

γ̇(t)
γ(t)

dt
∣∣∣∣ = 1

log( r2
r2
)

∣∣∣∣log(
r2

r1
)

∣∣∣∣ = 1

The inequality is the triangle inequality for integrals. Hence ρ is admissible for Γ. Let Γ0 ⊂ Γ be the
radial curves. Let γ0 ∈ Γ0 with following parametrization γ0 = (t cos θ, t sin θ) for t ∈ [r1, r2]. Then∣∣∣∣∣dγ0(t)

dt

∣∣∣∣∣ = √
cos2 θ + sin2 θ = 1.

Figure 8: Annulus with arcs joining outer and inner circle with radius r2 respectively r1.

Hence we get the following

∫
γ0

ρds =
∫ r2

r1

1
r log( r2

r1
)

∣∣∣∣∣dγ0(t)
dt

∣∣∣∣∣dt =
1

log( r2
r1
)

∫ r2

r1

1
r

dt = 1.

for any γ0 ∈ Γ0. Moreover, for and γ ∈ F(Γ) and any Γ ∋ γ : [r1, r2] → A

1 ≤
∫

γ
ρdr =

∫ r2

r1

ρ(γ(r))
∣∣∣∣dγ(r)

dr

∣∣∣∣dr =
∫ r2

r1

ρ(reiθ)r1/2r−1/2dr.

Now, we integrate over θ ∈ [0, 2π], giving

2π ≤
∫ 2π

0

∫ r2

r1

ρ(reiθ)r1/2r−1/2drdθ =
∫ 2π

0

∫ r2

r1

ρ(reiθ)r1/2r−1/2drdθ.

Applying the Cauchy-Shwarz inequality, we see

2π ≤
( ∫ 2π

0

∫ r2

r1

ρ2(reiθ)rdrdθ

)1/2

·
( ∫ 2π

0

∫ r2

r1

r−1drdθ

)1/2

=

( ∫ 2π

0

∫ r2

r1

ρ2(reiθ)rdrdθ

)1/2

·
(

2π log(
r2

r1
)

)1/2

.
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Squaring gives
2π

log( r2
r1
)
≤

∫ ∫
A

ρ2dL2(z).

Since this holds for every ρ ∈ F(Γ), it also holds when taking the infimum over F(Γ), that is,

2π

log( r2
r1
)
≤ M2(Γ).

Since we proved that ρ0 = 1
rlog( r2

r1
)

is admissible for Γ, we also have

M2(Γ) = inf
ρ∈F(Γ)

∫ ∫
ρ2dL2(z) ≤

∫ ∫
ρ2dL2(z) =

2π

log( r2
r1
)

.

Altogether M2(Γ) = 2π
log( r2

r1
)
.

In the next section, we will estimate the moduli of doubly connected regions to bound
the distortion of the quadratic map using the Koebe distortion theorem. The moduli, being
invariant under conformal mappings (as established by the previous theorem), have been
calculated for an annulus. Thus, it is relevant to determine if there exists a conformal map
from a doubly connected region to two concentric disks. We recall that Riemann’s mapping
Theorem gives such a map from one open simply connected region onto the unit disk. A more
general statement is needed. The following is a simplification of the Theorem presented in Lars
Ahlfor’s book: Complex analysis.

Theorem 5.11. [Ahlfors (2021), Chapter 6 Theorem 10]
Let Ω be a n-multiply connected region (that is the complement of Ω contains exactly n connected
components), n > 1. There exists a conformal mapping of Ω onto some annulus.

This theorem, combined with the previous theory, ensures that we can calculate the moduli
of a doubly connected region by first conformally mapping it onto two concentric circles. The
moduli will then be determined by the radii of these concentric circles.

We will now state two distortion Theorems that will be used in the next section:

Theorem 5.12. (Koebe distortion Theorem)
Let f : C → C be some univalent function on some open disk B(a, r). Furthermore let B(a, r̂) ⊂ B(a, r).
Then, there exist some constant that only depends on r̂ such that,∣∣∣∣ D f (z)

D f (w)

∣∣∣∣ ≤ Cr̂, z, w ∈ B(a, r̂).

Theorem 5.13. [Carleson & Gamelin (1993), theorem 1.6](Distortion Theorem)
If f ∈ S , then

1 − |z|
(1 + |z|)3 ≤ | f ′(z)| ≤ 1 + |z|

(1 − |z|)3 ,

where S is the collection of univalent functions in the open disk ∆ = {|z| < 1} such that f (0) = 0 and
f ′(0) = 1.
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6 Julia set for quadratic polynomials

In this section, we combine the previous sections to calculate the Hausdorff dimension for
different Julia sets. The importance of the Mandelbrot set on the geometry of Julia sets will also
become more apparent. The attractive periodic point plays a crucial role in the form of the Julia
set. The following Theorem gives us a way to classify the parameters c.

Theorem 6.1. If C ∋ w ̸= ∞ is an attractive periodic point of a polynomial fc then A(w) contains
some critical point.

Proof. Claim 1: The quadratic polynomial fc has at most one attractive fixed-point w with
c ∈ A(w).
Assume, for a contradiction, that c ̸∈ A(w). Now, let w ∈ U ⊂ A(w) be an open set. Then,
f k
c (c) ̸∈ U for all k. Pick for each k the branch of the inverse f−k

c to be the continuous analytic
function with f−k

c (w) = w. Now, since f−k
c (U) ⊂ A(w) for all k, and the attractive basin of w is

a bounded subset of C, then, Montel theorem implies that { f−k
c }∞

k=0 is normal on U. However,
this is a contradiction, since w is a repelling fixed point for f−1

c . Note that, by the chain rule,
we get ( f−k

c )′(w) = (( f−1
c )′(w))k → ∞. Hence, any subsequence cannot converge uniformly

to some analytical function. Hence, c ∈ A(w). Further, w is unique since it cannot be in two
different basins of attraction.

Claim 2: Let w be an attracting fixed point for some general polynomial f ∈ C[z], then
A(w) contains some critical point ẑ.
This proof follows the same structure as the above. Assume, for the sake of contradiction, that
A(w) lacks all the critical points. Pick some open disc w ∈ U ⊂ A(w). Hence, f k(ẑ) ̸∈ U for all
k and all critical point ẑ. Hence, we can choose for each k a branch of the inverse f−k on U that
is a continuous analytic function with f−k(w) = w for each k. Since U is invariant within the
basin of attraction under iterates of the inverse map, i.e. f−k(U) ⊂ A(w) for each k and A(w) is
bounded. We have again, by Montel’s theorem, that { f−k}∞

k=0 is a normal family on U, which is
a contradiction, since w is a repelling fixed point of f−1. Thus ẑ ∈ A(w) for some critical point ẑ.

Now, the Theorem follows from applying claim 2 on the function g = f p where p is the
order of w.

The only critical point of fc is 0. Then, fc can only have one attracting periodic orbit. Note
that if c ̸∈ M, then we have no attracting periodic orbits. This follows from both Theorem
4.22 and Theorem 6.1. Hence, one can categorise the points in the Mandelbrot set according to
the order of the periodic orbit p. Any points with different p are considered to be in separate
regions of the Mandelbrot set.

To begin with calculating the Hausdorff dimension, let {S1, S2} be the IFS consisting of the
two different branches of f−1

c . We will suppose that c is large enough so that the attractor for
the IFS {S1, S2} is totally disconnected and satisfy the conditions for Theorem 3.5 and Theorem
3.6.

Theorem 6.2. (Hausdorff dimension for large c)
Suppose |c| > 1

4 (5 + 2
√

6) ≈ 2.475 . . . Then J ( fc) is totally disconnected, and is the attractor set of
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the contractions given by the two inverse branches f−1
c (z) = ±(z − c)1/2. The Hausdorff dimension is

given by
2 log 2

log 4(|c|+ |2c|1/2)
≤ dimH(F) ≤ 2 log 2

log 4(|c| − |2c|1/2)
.

Proof. Let C = {z ∈ C : |z| = |c|}, and D = {z ∈ C : |z| < |c|}. Since c ∈ C then by Lemma
4.23, the preimage of C will be an eight shaped curve that self intersects at zero (see Figure 9).
Notice that f−1

c (C) ⊂ D, since if |z| > |C| > 2, then | fc(z)| ≥ |z2| − |c| ≥ |c2| − |c| > |c|. Each
interior for both loops of f−1

c (C) is mapped under fc bijectivity onto D. Now let S1, S2 : D → D
be the two branches of f−1

c , then S1(D) and S2(D) are the interior of the two loops. Now, define
V := {z : |z| < rV = |2c|1/2} hence f−1

c (C) ⊂ V.

C

V

0
f−1(C)

S1(V)

S2(V)
rV

D

Figure 9: Iteration of the circle C under f−1
c

Now the Si(V) are disjoint, we have for both Si and for the principal valued square root
branch

|Si(z1)− Si(z2)| = |(z1 − c)1/2 − (z2 − c)1/2|

=
|(z1 − c)1/2 + (z2 − c)1/2|
|(z1 − c)1/2 + (z2 − c)1/2|

|(z1 − c)1/2 − (z2 − c)1/2|

=
|z1 − z2|

|(z1 − c)1/2 + (z2 − c)1/2|
.

The scaling factor of the maps Si are

|Si(z1)− Si(z2)|
|z1 − z2|

=
1

|(z1 − c)1/2 + (z2 − c)1/2|
.

Maximising this over the condition that z1, z2 ∈ V can be found by minimising the denominator.
While the minimum is found when z1 and z2 are as close to c as possible, (see Figure 10). Hence,
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the maximum will be 1/2
√
|c| − |2c|1/2. In the same manner, the maximum for the denominator

is the furthest away zi can be placed from c, i.e the minimum will be 1/2
√
|c|+ |2c|1/2.

C

V

0

c

zmin
i

Figure 10: Maximising the scaling factor for Si, the red line has magnitude 2
√
|c| − |2c|1/2.

1

2
√
|c|+ |2c|1/2

≤ |Si(z1)− Si(z2)|
|z1 − z2|

≤ 1

2
√
|c| − |2c|1/2

.

The IFS is a contraction if the upper bound less than 1,

|c| > 1
4
(5 + 2

√
6) =⇒ 1

4(|c| − |2c|1/2)
< 1 =⇒ 1

2
√
|c| − |2c|1/2

< 1

Hence by Theorem 3.2, there exist some non-empty, compact, totally disconnected attractor set
F, which is invariant under Si,

F = S1(F) ∪ S2(F).

Furthermore, this attractor set is the Julia set, since V contains some repelling periodic point
z ∈ V of fc. By the equivalence Theorem 4.7 of Julia sets we have, J ( fc) =

⋃∞
k=1 f−k

c (z) ⊂ V.
Since the Julia set is non-empty compact invariant subset of V, then J ( fc) = F, since F was
unique. Now, a simple calculation to estimate the Hausdorff dimension, relying on Theorem
3.5 and Theorem 3.6, is

m

∑
i=1

cs
i = 1 =⇒ 2(

1

2
√
|c| − |2c|1/2

)s = 1 =⇒ s =
2 log 2

log 4(|c|+ |2c|1/2)
.

The lower bound can be found in the similar way and we get in summary,

2 log 2
log 4(|c|+ |2c|1/2)

≤ dimH(F) ≤ 2 log 2
log 4(|c| − |2c|1/2)

.

Which was to be proven.

The following corollary follows easily from the previous Theorem 6.2.

Corollary 6.3.
|c| → ∞ =⇒ dimH J ( fc) → 0

For small c, we have the following Theorem proved by David Ruelle.
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Theorem 6.4 (Ruelle (1982)). The Hausdorff dimension of the Julia set for fc where c is in the main
cardioid (the big bulb containing 1/4) of the Mandelbrot set is

dimH(J ( fc)) = 1 +
|c|2

4 log 2
+ O(|c|3).

In fact Ruelle proves a more general statement. Consider maps fp,q : z → zq − p, then

dimH(J ( fc,q)) = 1 +
|p|2

4 log(q)
+ O(p3)

A parameter point of specific interest is c = −2, since it’s a Misiurewicz’s parameter that is
a the critical point is strictly preperiodic (that is preperiodic but not periodic), in this case
0 7→ −2 7→ 2, with 2 a fixed point. Further by the following proposition the corresponding Julia
set is the interval [−2, 2].

Proposition 6.5. When c = −2 the Julia set is the compact interval J−2 = [−2, 2].

Proof. In Section 4.2 we showed that two conformally conjugate functions will provide the same
Julia set. Consider the conformal map, h : {ξ ∈ C : |ξ| > 1} → C \ [−2, 2] that maps according
to h(ξ) = ξ + 1/ξ. Then

f−2(h(ξ)) = (ξ +
1
ξ
)2 − 2 = ξ2 +

1
ξ2 = h(ξ2) =⇒ h−1 ◦ f−2 ◦ h = ξ2.

This tells us that all the points outside of [−2, 2] are in the attracting basin of ∞ for the map
f−2, since they behave like z2. Furthermore, the interval [−2, 2] is invariant under f−2. By the
equivalence of Julia sets, the proposition is proven.

Proposition 6.6. [Dobbs et al. (2022), Proposition 1.1](Discontinuity of dimH(Jc) at -2)
The dimension function c ∈ M∩ R 7→ dimH(Jc) is discontinuous at -2 and moreover

lim sup
c→−2

dimH(Jc) = sup
c∈M∩R

dimH(Jc) > 1 = lim inf
c→−2+

dimH(Jc)

The remaining of this thesis will concentrate on estimating Hausdorff dimension for Julia
sets when it perturbed around −2. Specifically we will consider negative real perturbations
and imaginary perturbations.

Lemma 6.7. [Rudin (1987)] If (v1, . . . , vN) are complex numbers, and if

PN =
N

∏
k=1

(1 + vk) P∗
N =

N

∏
k=1

(1 + |vk|)

then
P∗

N ≤ e ∑N
k=1 |vk |

and
|PN − 1| ≤ P∗

N − 1.
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Proof. By the power series for ex we get the inequality 1 + x ≤ ex, hence

1 + |uk| ≤ euk ∀k =⇒
N

∏
n=1

(1 + |un|) ≤
N

∏
n=1

e|un | = e∑N
n=1 |un |.

This gives the first statement. For the second statement, we proceed by induction: for N = 1 is
trivial and for the general case

Pk+1 − 1 = Pk(1 + uk+1)− 1 = (pk − 1)(1 + uk+1) + uk+1,

hence if the inequality holds for N, then also

|pk+1 − 1| ≤ (p∗k − 1)(1 + |uk+1|) + |uk+1| = p∗k+1 − 1.

The following Theorem is proved in [Fan et al. (2005)] by studying the geometry of Cantor
systems, and ultimately, they bound the GAPϵ geometry. For a given Cantor system G = {I ,G}
the GAP geometry is defined to be the set of ratios of the diameter of the gaps over diameters
of all the bridges.

GAP :=
∞⋃

n=0

{
|G|
|J| : I = L ∪ G ∪ R ∈ In with J = L or R ∈ In+1 and G ∈ Gn+1

}
Using techniques from real analysis [Jiang (1999)]. The proof in this paper relies on the

outline presented in [Dobbs et al. (2022)]. To the best of my knowledge, the initial conjecture
originated from the doctoral dissertation of Y. Jiang.

Theorem 6.8. (Real valued perturbation)
Let fϵ = z2 − 2 − ϵ, with sufficiently small ϵ > 0, such that c ∈ (−3,−2). There exist some universal
C′ such that

dimH(Jϵ) ≤ 1 − C′√ϵ.

Proof. Let pϵ be the repelling fixed point of fϵ for which the orientation of R is preserved.
Solving fϵ(x) = x conditioned on |D fϵ(x)| > 1 preserving the orientation gives the following

fϵ(x) = x =⇒ x2 − 2 − ϵ = x =⇒ x =
1
2
(1 ±

√
9 + 4ϵ)

Checking the magnitude of the derivative for respective fixed points gives that only the positive
root is repelling and orientation-preserving for all ϵ. Hence, pϵ = 1

2 (1 +
√

9 + 4ϵ), denoted by
±y the preimage of −pϵ, that is f−1

ϵ (−pϵ) = {−y, y}. To get an estimate for
√

y, we calculate
the distance |c − pϵ|. Taylor expands the pre-image gives |y| ∼

√
ϵ,

|c − pϵ| = | − 2 − ϵ − 1 +
√

9 + 4ϵ

2
| = | − 2 − ϵ −

1 + 3 + 2ϵ
3 + O(ϵ2)

2
| = |1

3
ϵ + O(ϵ2)|

Taking the pre-image of this will yield the desired estimation - that is, |y| ∼
√

ϵ, denoted by
I = [−pϵ, pϵ]. Since we have an quadratic polynomial which is expanding and if we assume
|z| > |pϵ|, then the future orbit of z will be strictly bounded away from pϵ, |z2 − 2 − ϵ| ≥
|p2

ϵ| − | − 2− ϵ| = pϵ and diverge - hence not in the Julia set. In this case, the Julia set is a cantor
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set. To see this, consider the one iteration of the origin fϵ(0) = −2 − ϵ < −pϵ combined with
the fact that fϵ is a continuous map. Thus the open set (−y, y) will also be mapped outside of I.
Now, all of the pre-images of the interval (−y, y) will not be in the Julia set. Hence the Julia set
is

Jϵ =
⋂

n≥0
f−n
ϵ (I).

(See figure 11 of a virtual representation for I mapped under fϵ). Informally, one can view this
process as repeating folding I in the middle and placing 0 at c and cutting out the excess- the
remaining will be the Cantor set. Further iterations of fϵ will be a process of folding.

−pϵ pϵ0c −y y

fϵ

Figure 11: Iteration of f−1
ϵ on the interval I

Define In,ϵ to consist of all intervals in (i.e. connected components of) f−n
ϵ (I). And let

A ∈ In,ϵ, Since A ∈ In,ϵ, there exists at most two iterates k(0 ≤ k ≤ n − 1) for which
f k
ϵ (∂A) ∩ {±y} ̸= Ø, one of which equals n − 1. Denote by k0 the other one. We can thus

decompose f n
ϵ in into

f n
ϵ = fϵ ◦ g1 ◦ fϵ ◦ g2,

where g2 = f k0
ϵ and g1 = f m

ϵ such that k0 + m + 2 = n. If k0 does not exist, then f n
ϵ = fϵ ◦ g1,

with g1 = f n−1
ϵ . This is the case if, and only if, ∂A ∩ {±y} ̸= Ø. Now, we need to find upper

bounds on the distortion for the maps.

The proof that g2 has bounded distortion is a consequence from Koebe distortion Theorem
5.12. Since first k0 iterations of A are separated from {−y, y}, one can find some B ∈ Ik0,ϵ such
that A ⊂ B and B is mapped diffeomorphically onto I, and g2(A) is far from ∂I. Hence, by
Koebe, the distortion is bounded (The notation DF = dF

dz is just the normal derivative),∣∣∣∣ Dg2(z)
Dg2(w)

∣∣∣∣ ≤ Cr̂ for all z, w ∈ A.

To show that g1 has bounded distortion we use Lemma 6.7

|
N

∏
k=1

(1 + vk)− 1| = |PN − 1| ≤ P∗
N − 1 ≤ e∑N

k=1 |vk | − 1

that is

|
N

∏
k=1

(1 + vk)− 1| ≤ e∑N
k=1 |vk | − 1.

With the substitution vk = uk − 1, we get

|
N

∏
k=1

(uk)− 1| ≤ e∑N
k=1 |uk−1| − 1.
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Now, we calculate the distortion for g1. Let A ∈ In−k0−1,ϵ that contains pϵ and let z, w ∈ A. We
need the following quantity to be small.∣∣∣∣ D f m

ϵ (z)
D f m

ϵ (w)
− 1

∣∣∣∣ = ∣∣∣∣ m−1

∏
k=0

D fϵ(zk)

D fϵ(wk)
− 1

∣∣∣∣ z, w ∈ A

With zk = f k(z), wk = f k(w), that is the derivative along the orbits of z and w respectively. Let
uk =

D fϵ(zk)
D fϵ(wk)

, using Lemma 6.7.∣∣∣∣ m−1

∏
k=0

D fϵ(zk)

D fϵ(wk)
− 1

∣∣∣∣ ≤ e∑m−1
k=1 |uk−1| − 1.

Hence e∑m−1
k=1 |uk−1| needs to be bounded that is equivalent to bound ∑m−1

k=1 |uk − 1|.

m−1

∑
k=1

|uk − 1| =
m−1

∑
k=1

∣∣∣∣ D fϵ(zk)

D fϵ(wk)
− 1

∣∣∣∣ = m−1

∑
k=1

∣∣∣∣D fϵ(zk)− D fϵ(wk)

D fϵ(wk)

∣∣∣∣ = m−1

∑
k=1

∣∣∣∣ zk − wk
wk

∣∣∣∣.
Since pϵ is a fixed point, zk = f k

ϵ (z0) = pϵ. Furthermore wk = f k
ϵ (w0) which is bounded by 1.

Combined with that, wk is expanding further away from pϵ i.e. |pϵ − wk| ≤ λ−1|pϵ − wk+1| for
some λ ∈ (0, 1). We have the following sequence of inequalities

m−1

∑
k=1

∣∣∣∣ zk − wk
wk

∣∣∣∣ ≤ m−1

∑
k=1

|zk − wk| ≤
m−1

∑
k=1

|zk − wm−1|λ−k ≤ |pϵ − wn−1|
1 − λ

≤ 1
1 − λ

< ∞.

The previous proves that g1 and g2 have bounded distortions. All that is left is to estimate the
length of f−n(I) via the distortions provided by each iteration. Consider the sets

Ej = {x ∈ f j
ϵ(A) : f n−j

ϵ (x) ∈ [−y, y]} f or j ≤ n.

Now, both En = [−y, y] and En−1 will have measure ∼
√

ϵ. By bounded distortion of g1, we
have that |Ek0+1|/| f k0+1

ϵ (A)| ∼
√

ϵ. Pulling back once more gives |Ek0 |/| f k0
ϵ (A)| ∼

√
ϵ. Finally

by bounded distortion of g2, |E0|/|A| ∼
√

ϵ. One can view this quantity as the probability that
a certain point inside of A diverges, since E0 contains all the points inside of A that in n-th
iteration which will be mapped into [−y, y]. Hence, | f−n

ϵ (I)| ≤ (1 − C
√

ϵ)n where C is some
uniform constant. We have that f−n

ϵ (I) contains 2n connected components like A. By Hölder’s
inequality p = 1

1−α and q = 1
α ,

∑ |A|α ≤ 2(1−α)n(1 − C
√

ϵ)αn ≤ 1.

For when α ≥ 1 − C′√ϵ. Hence the Hausdorff measure of f−n
ϵ (I) is bounded above for

α ≥ 1 − C′√ϵ. This means the Hausdorff dimension is less than α, proving dimH(Jc) ≤ α.
Another justification for the totally disconnectedness of Jc is that the Hausdorff dimension is
less than 1 and Proposition 2.11.

A. Fan, Y. Jiang, and J. Wu gave also in [Fan et al. (2005)] a lower bound.

Theorem 6.9. [Fan et al. (2005)] There exists constants K > 0 and ϵ1 > 0 with c = −2− ϵ1, such that

1 − K−1
√
|δ| ≤ dimH(Jc) ≤ 1 − K

√
|δ|.
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The case with perturbation from inside the Mandelbrot set to −2 is proved in [Dobbs et al.
(2022)], that is letting ϵ < 0 in Thorem 6.8. Now we consider the purely imaginary valued
perturbation. Below is a figure demonstrating how the Julia set for such parameter looks like.

Figure 12: Julia set for c = −2 + 0.1i

Theorem 6.10. (Imaginary valued perturbation) Let fϵ = z2 − 2 + iϵ, with sufficiently small
|ϵ| > 0. There exist some universal C′ such that

dimH(Jϵ) = dimH(J ( fϵ)) ≤ 1 − C′√ϵ.

Proof. The proof of this Theorem will follow the same structure as in the case with real valued
perturbation, Theorem 6.8. Let pϵ be the repelling fixed point for fϵ with largest modulus, and
denote {y,−y} = f−1

ϵ (−pϵ). Following the same calculations as in Theorem 6.8 gives |y| ∼
√

ϵ.
For c = −2 + iϵ ̸∈ M, the Julia set is totally disconnected, and the origin diverges, f k

ϵ (0) → ∞.
Since fϵ is continuous, the open ball B1 = B(0, |y|) will be mapped by the function fϵ onto an
open ball B2 = B(c, r′) centred at c. Now, let D = B(0, |c|). The Julia set can be written as

Jϵ =
⋂

n≥0
f−n
ϵ (D).

The underlying iterated function system will look like the figure below, which follows from
Lemma 4.23
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0

−pϵ

pϵ

c

y
−y

D

B1

B2

fϵ

Figure 13: Iterations of f−1
ϵ on D.

Note that the figure will continue in the same manner in each loop. We will get ”infinity”
curves all the way down. Let In,ϵ consist of all the connected components of f−n

ϵ (D). Now let
A ∈ In,ϵ, and define AL and AR to be the ”left” respectively ”right” connected components,
(see Figure 13). A will be an ”infinity” sign at the nth level of iteration. In the same way as
before, we decompose f n

ϵ in four parts.

f n
ϵ = fϵ ◦ g1 ◦ fϵ ◦ g2.

(or f n = f ◦ g1 if k0 does not exist) Where g2 = f k0
ϵ with k0 as the first instance for which we

return to {−y, y}, that is f k0
ϵ (A)∩ {−y, y} ̸= Ø. Additionally, g1 = f m

ϵ such that k0 +m+ 2 = n.
Note that after g2, then pϵ ∈ f k

ϵ ◦ fϵ ◦ g2(A) for all k ≤ n − k0 − 1. Since first k0 iterations of
A are separated from {−y, y} one can find some B ∈ Ik0 such that A ⊂ B and B is mapped
diffeomorphically onto D. By Theorem 5.11 there exists a conformal mapping ϕ that maps
A and B onto two concentric disks with radius r and 1. We study the map g̃2 = g2 ◦ ϕ, since
g̃2 ∈ S from Theorem 5.13, and g2 = g̃2 ◦ ϕ−1. By Theorem 5.7 we get that

|Dg2 | = |Dg̃2◦ϕ−1 | ≤ Dg̃2 · Dϕ−1 .
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It now follows that the distortion is bounded since ϕ is conformal (the inverse also has bounded
distortion) and applying the distortion Theorem 5.13 on g̃2

Dg̃2 =

∣∣∣∣ g̃′2(z)
g̃′2(w)

∣∣∣∣ ≤︸︷︷︸
5.13

∣∣∣∣
1+|z|

(1−|z|)3

1−|w|
(1+|w|)3

∣∣∣∣ = ∣∣∣∣ (1 + |z|)(1 + |w|)3

(1 − |z|)3(1 − |w|)

∣∣∣∣ ≤ 24

(1 − r)4 = K(r).

We decompose g2(A) into the right and left connected components g2(A)R and g2(A)L. We
bound the module from below for both loops separately. Let ΓR be the set of locally rectifiable
curves joining ∂g2(A)R and ∂D. Note that g2(A)R is contained in the disk with radius

√
2,

since otherwise pϵ ∈ g2(A) which contradicts minimality of k0. Hence denote by Γ1 the curves
joining ∂g2(A)R and B(0,

√
2) and Γ2 joining B(0,

√
2) with D. Bounding Modulus of Γ gives,

M2(ΓR) ≥︸︷︷︸
Monotonicity

M2(Γ1 ∪ Γ2) ≥︸︷︷︸
Grötzch ineq 5.8

M2(Γ1) + M2(Γ2) ≥ M2(Γ2) =︸︷︷︸
Ex:5.10

2π

log( |c|√
2
)
> 0.

The same inequality holds for ΓL. The combined family of curves will also be bounded from
below. Since the modulus is bounded from below it follows that r < 1 and K(r) < ∞. Now we
bound the distortion of g1 in the same manner as in previous Theorem. First define γn ∈ In,ϵ
such that pϵ ∈ γn that is the furthest loop to the right, n = 0, 1, 2 . . . n. This family of sets are
chained under iterations of fϵ, that is fϵ(γn) = γn−1 diffeomorphically. In our case we have
pϵ ∈ f ◦ g2(A) hence f ◦ g2(A) = γn−k0−1 which means that further iteration will send γn−k0−1
to γn−k0−2 until we reach γ1,

γn−k0−1 γn−k0−2 . . . γ2 γ1.
fϵ fϵ fϵ fϵ

Figure 14: Mapping γn−k0−1 under g2 = f m
ϵ .

Following the same calculations as before we get∣∣∣∣ D f m
ϵ (z)

D f m
ϵ (w)

− 1
∣∣∣∣ ≤ e∑m−1

k=1 |uk−1| − 1.

Again uk =
D fϵ(zk)
D fϵ(wk)

,

m−1

∑
k=1

|uk − 1| =
m−1

∑
k=1

∣∣∣∣ zk − wk
wk

∣∣∣∣ ≤ m−1

∑
k=1

|zk − y|λ−k ≤ |pϵ − y|
1 − λ

≤ 1
1 − λ

< ∞.

The remaining calculation is the same as in Theorem 6.8, giving the desired asymptotic
result.

I believe that this proof can be used to prove the same rate of convergences for more general
curves approaching −2, as long as the sequence of complex numbers is outside the closed ball
of radius 2. The conjectured Theorem will look similarly as Theorem 6.11, with the stated rate
of convergences.

We complete this section with stating three further results concerning the behaviour of
dim(J ( f )) for more general approach to −2. First there is Rivera-Letelier’s article in which
it he proves that for suitably ”good” approach to a parameter c0 the Hausdorff dimension
converges.
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Theorem 6.11. [Rivera-Letelier (2001)]
Let c0 ∈ ∂Md := ∂{c ∈ C|J d

c = J (zd + c) is connected} be such that fc0(z) = zd + c0 is semi
hyperbolic (the critical point 0 is not recurrent and 0 ∈ J d

c ). Then there is some C > 0 such that if a
sequence cn → c0 is such that

d(cn,Md) ≥ C|cn − c0|1+1/d =⇒ dimH(Jcn) → dimH(Jc0)

Further there are new results concerning the directional derivative for the Hausdorff dimen-
sion, proved in [Jaksztas (2023)], the main is the following.

Theorem 6.12. [Jaksztas (2023)]
For α ∈ (0, π], we write

Ω−2(α) :=
1√

6 log 2

(
cos α − 1

2

√
sin α

∫ π

α

√
sin xdx

)
.

If α ∈ (π, 2π) we define Ω−2 := Ω−2(2π − α). Let fϵ(z) = z2 − 2 + ϵ, ϵ ∈ C. For every α ∈ (0, 2π)
we have

lim
|ϵ|→0

√
|ϵ| · dim′

v(J ( fϵ)) = Ω−2(α)

with α = arg δ and v = eiα.

One can with this formula plug in different α and integrate to get formulas for the asymp-
totic behaviour for example look at the Corollary 1.2 in [Jaksztas (2023)] for the case of small
ϵ ∈ R. Lastly we state a famous Theorem which calculates the Hausdorff dimension for a dense
subset of ∂M.

Definition 6.13. (Nowhere dense) A set is said to be nowhere dense if the interior of the set closure of
X is the empty set.

For example the Cantor set is nowhere dense.

Definition 6.14. (Residual set) In a complete metric space, a countable union of nowhere dense sets is
said to be meager; the complement of such a set is a residual set.

Theorem 6.15. [Shishikura (1998)]
There exist a residual (hence dense) subset R of ∂M, such that if c ∈ R then

dimH Jc = 2.
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