
MASTER’S THESIS 2024

Exploring Behavior-Driven
Development at IKEA Using
Design Research
Annie Börjesson, David Jobrant

ISSN 1650-2884
LU-CS-EX: 2024-23

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-23

Exploring Behavior-Driven Development
at IKEA Using Design Research

En utforskande designstudie av
Behavior-Driven Development på IKEA

Annie Börjesson, David Jobrant

Exploring Behavior-Driven Development
at IKEA Using Design Research

Annie Börjesson
an5416bo-s@student.lu.se

David Jobrant
da2311jo-s@student.lu.se

June 1, 2024

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisors: Andreas Trattner, andreas.trattner1@ingka.ikea.com
Emelie Engström, emelie.engstrom@cs.lth.se

Examiner: Per Runeson, per.runeson@cs.lth.se

mailto:an5416bo-s@student.lu.se
mailto:da2311jo-s@student.lu.se
mailto:andreas.trattner1@ingka.ikea.com
mailto:emelie.engstrom@cs.lth.se
mailto:per.runeson@cs.lth.se

Abstract

In software development, testing plays a crucial role in ensuring fulfilled re-
quirements and thereby the quality of products. However, despite its signifi-
cance, testing is frequently undervalued and deprioritized due to constrained
resources. This report investigates how teams within a software department at
IKEA work with testing and requirements, how behavior-driven development
(BDD) can be instantiated, and the impact of applying it.

We performed a study using design research consisting of three main steps:
Problem Conceptualization, Solution Design and Implementation, and Evalu-
ation, where the output of each step was utilized as input to the following ac-
tivity. The problem conceptualization phase involved a multifaceted approach,
including interviews as well as meetings and observations, to gain a thorough
understanding of the current situation at IKEA. For the solution design, we un-
dertook an extensive literature review to explore existing BDD instances and
different aspects of BDD. Subsequently, we made an implementation following
BDD principles based on the gathered insights. Our implementation was evalu-
ated during a workshop with a team at the department.

Interview results reveal that the teams experience issues primarily related to
testing and consequently to requirements. We also learned that respondents had
a positive attitude towards BDD. The evaluation of our process indicates that it
can be beneficial in terms of test relevance and fulfilling requirements. However,
additional evaluation is suggested and described to further anchor the validity
of our approach.

Keywords: Behavior Driven-Development, BDD, Software, Testing, Requirements

2

Acknowledgements

Thanks to Magnus at IKEA for giving us the opportunity to write our thesis in collaboration
with your team. Thanks to our supervisor Andreas at IKEA; your encouragement, excitement
for BDD, constant feedback and support helped and inspired us to do our best with this thesis.
A big thanks to the rest of the team who welcomed us dearly and made us feel at home with
all the lunches and fika. Thanks also to Linn, who organized the thesis programme this spring
and took us on a trip to Älmhult to learn more about IKEA; we had so much fun!

We want to thank everyone at IKEA who has participated in our study in any way; the
respondents of our interviews, the people we had meetings with and everyone else we have
been in contact with.

Thanks to friends and family who have supported us when writing this thesis. A special
thanks to our supervisor at LTH, Emelie. Through countless meetings, you have given us
guidance, supported and encouraged us. We also want to thank our examiner Per for exam-
ining and giving us feedback.

3

4

Contents

1 Introduction 7
1.1 Research Questions . 8
1.2 Contributions . 8
1.3 Thesis Outline . 8

2 Background 11
2.1 Test-Driven Development . 11
2.2 Behaviour-Driven Development . 11

3 Related Work 15

4 Research Methodology 19
4.1 Research Method Selection . 19
4.2 Design Research . 20

5 Problem Conceptualization 23
5.1 Interviews . 23

5.1.1 Method . 23
5.1.2 Results . 28
5.1.3 Key Takeaways and Discussion of Results 37

5.2 Meetings and Observations . 40
5.2.1 Method . 41
5.2.2 Result . 41
5.2.3 Highlights and Interpretation of Results 42

5.3 Requirements on the Solution Design and Implementation 43

6 Solution Design and Implementation 45
6.1 Literature Review . 45

6.1.1 Method . 45
6.1.2 Result . 47
6.1.3 Influence of Results on Implementation 52

5

CONTENTS

6.2 Implementation . 53
6.3 Fulfillment of the Requirements on the Implementation 57
6.4 Limitations of Implementation . 59

7 Evaluation 61
7.1 Workshop . 61

7.1.1 Method . 61
7.1.2 Results . 62
7.1.3 Summary and Discussion of Results 65

7.2 Further Evaluation . 66

8 Discussion 69
8.1 What is the current state of software testing at the IFE-department at IKEA? 69
8.2 How can BDD improve the state of software testing at the IFE-department

at IKEA? . 70
8.3 Threats of Validity . 72
8.4 Generalizability . 73
8.5 Ethics . 74
8.6 Future Work . 74

9 Conclusion 75

Appendix A Popular Science Summary 85

6

Chapter 1

Introduction

Testing is fundamental for producing quality software. Bugs and problems are unavoidable
in software development. Without testing, the issues may be hard to control and keep track
of, leading to unreliable software.

Achieving a good test quality requires managing possible threats. Performing manual
testing is often inefficient and leads to testers working more than they should, which in turn
leads to fatigue and possibly bad tests. Another threat to the quality of the tests is commu-
nication issues. Testers who work with manual testing must be good at communication [1].
If the tester fails to understand the business requirements due to misunderstandings or lack
of communication, the test quality will be reduced. Parts of the code may not be tested if
the tester has not understood all scenarios which could result in a loss in the quality of the
product.

Testing can be conducted in several ways using strategies with different focuses. The two
main undertakings for testing are to discover issues and to demonstrate that requirements
are fulfilled. Testing is thus suitable to use for quality assurance. However, getting maximal
effect out of testing requires relevant tests.

Teams at IKEA have encountered challenges in maintaining the accuracy of tests and cre-
ating new ones. The issues are shared among several teams and there exists an Objectives and
Key Results (OKR) group that aims to improve the test state within and among teams. The
awareness of the problems with keeping tests relevant has prompted a desire to automate the
testing process. Additionally, there is a desire to improve the involvement of all stakeholders
at the initial and later stages of projects, anticipating that it would result in projects aligning
more closely with requirements and expectations.

Behavior-driven development (BDD) has been suggested by IKEA as a possible solution
to their current issues. The idea of working with it has arisen as a possible way to avoid
irrelevant tests and to implement end-to-end testing among teams. Several teams share an
interest in adapting BDD, which is a methodology that focuses on testing and using user
scenarios to define requirements, further elaborated in Chapter 2. A central part of it is how
requirements are expressed and documented. As a result, communication and collaboration

7

1. Introduction

between all stakeholders are meant to be improved. BDD can be used in many different
environments and industries, for example in the development of self-driving cars [2], IoT
home applications [3], smart contracts on blockchain [4], game-making [5], and finance [6].

We aim to resolve current issues at IKEA and explore BDD. We will examine the current
way of working with testing and requirements in a department at IKEA to determine a pre-
cise problem description. Furthermore, we will implement and present an instance of BDD
in one of the teams to investigate whether IKEA’s suggested solution, BDD, can be beneficial
in solving the identified problems.

1.1 Research Questions
A way to determine if BDD is a viable solution is to consider test relevance and fulfillment
of requirements. The scope of our research questions is the IFE-department (IKEA Family
Experience), a department of software teams at IKEA. They identified test irrelevance as
one of their main issues. Fulfillment of requirements can be used to ensure the quality of a
product. Our thesis aims to answer the following research questions:

1. What is the current state of software testing at the IFE-department at IKEA?

(a) How relevant are the tests?

(b) How are requirements ensured to be fulfilled?

2. How can BDD improve the state of software testing at the IFE-department at IKEA?

(a) Can BDD help the IFE-department to have more relevant tests?

(b) Can BDD help the IFE-department in ensuring that requirements are fulfilled?

1.2 Contributions
Scientifically, this thesis contributes by giving insights and potential improvements to the
software development processes at IKEA, as well as an evaluation of an instance of BDD in
an industrial context. The results can be used in the industry as a way to improve the software
development processes and testing suites at various companies.

The authors collaborated thoroughly throughout the thesis project. Both participated
in the main activities such as the interviews and meetings with few exceptions. David was
responsible for creating the graphics and Annie had the main responsibility for the thematic
analysis. The authors were equally responsible for writing the thesis although we divided
sections between the two of us.

1.3 Thesis Outline
This report begins with Background 2, which gives the reader details of BDD. Thereafter fol-
lows Related Work 3, which presents previous work related to ours. The following chapter,
Research Methodology 4, covers how we applied the design research methodology. Then follows

8

1.3 Thesis Outline

three chapters, Problem Conceptualization 5, Solution Design & Implementation 6 and Evaluation
7, each describing one of the steps of our design research study. The subsequent chapter, Dis-
cussion 8, covers reflections on the answers to our research questions, as well as discussions of
validity threats, generalizability, ethics and future work. Lastly, we conclude the thesis in the
final chapter, Conclusion 9. In the Appendix A, our popular science summary can be found.

9

1. Introduction

10

Chapter 2

Background

Behavior-driven development (BDD) is an agile methodology used in software development
focused on describing the behavior of applications to enhance working with testing and re-
quirements. This chapter begins with an introduction to the foundation and predecessor of
BDD, test-driven development (TDD). Thereafter follows a profound description of BDD,
some key aspects, and its tools.

2.1 Test-Driven Development
Test-driven development (TDD) is an agile method developed by Kent Beck as part of Ex-
treme Programming in the late 1990’s [7]. TDD emphasizes writing unit tests before imple-
menting production code. Each test will initially fail until a developer writes code to make
the test pass. When it does, the code is refactored to make sure it is clean and that duplica-
tion is avoided. By implementing a block of code after creating a test or several tests for it,
various advantages over working non-interactive and writing the tests last can be achieved.
One of them is that the code is more simple. When focusing on testing the functionality
first rather than getting into the technical implementation immediately, it becomes easier to
focus on the requirements and produce code that fulfills them. Another benefit is that when
only writing code that aims to make a test pass, all parts of the code will be tested [8].

2.2 Behaviour-Driven Development
The approach used in TDD is the foundation of behavior-driven development (BDD). In
BDD, just like in TDD, tests are written before implementing the actual code. However,
the main focus of the methods is relatively different, as the names reveal. While TDD is all
about testing, BDD emphasizes the behavior of the application. This means that discussing
requirements is highly prioritized, leading to higher user acceptance than TDD.

11

2. Background

BDD was first introduced by Daniel Terhorst-North in 2006 [9]. To tackle misunder-
standings from TDD, he emphasized expressing tests as behaviors to make them more un-
derstandable and accessible. Terhorst-North states that source code should be written in a
readable behavior-oriented specification, where method and class names indicate what they
do. Central aspects are that acceptance criteria are expressed in tests as executable behaviors
because when a test fails, the reason for it should be intuitive. The behaviors are templated
using a ubiquitous language, or a domain-specific language (DSL), i.e. a language whose con-
structs are derived from a domain model.

Today, BDD is widely used. A study from 2020 of 50,000 GitHub projects found that
BDD tools were used in 27,25% of them [10]. Results from a survey of 75 people who use
BDD show that adopting BDD is usually optional and not mandatory by organizations [11].
However, 50% of the respondents said that they perceived the use of BDD in projects as very
important or important. Additionally, concerning future projects, almost half said that BDD
was going to be used, and more than 25% said it would be used as a key method.

BDD encourages an iterative process where business requirements are broken down into
behaviors and scenarios, templated and described using plain text. Chemnitz et al. state that
since BDD requirements are based on user scenarios, they represent acceptance criteria from
stakeholders [12]. Hence, BDD scenarios contain quality assurance, and once the production
code is implemented, it is directly accepted by stakeholders.

The usage of a ubiquitous language is a central aspect of BDD. Its purpose is to give all
stakeholders, whether from a technical or business background, a shared understanding of
the project [13]. The gherkin language is widely used to write BDD scenarios and is supported
by tools such as Cucumber and SpecFlow [14]. An online poll performed in 2020 by Gojko
Adzic, the author of the book Specification by example, showed that writing the scenarios on the
form Given, When, Then (GWT) was the most popular [15]. GWT-clauses are the foundation
of the gherkin language. The scenarios are written in Feature Files, and each file consists of
several scenarios together describing specific behavior of an application.

A scenario covers one behavior and exemplifies it. GWT-clauses consist of three main
parts: Given defines the context, When expresses an action or event and Then formulates what
the expected outcome of said event is. The statements can handle scenarios at different levels
of detail, and additional conditions using keywords such as And and But can be applied. A
simple structure of a scenario can be seen in Table 2.1.

Scenario: Defines the example

Given A context

When An action or event

Then An expected outcome

Table 2.1: Structure of a BDD scenario.

With tool support, scenarios are mapped to executable automatic tests. Examples of such
tools include Cucumber, Concordion, JBehave, FitNesse and SpecFlow [16]. These tools have sep-
arate features and support different programming languages. All do not necessarily support
gherkin, but other alternative languages that can specify BDD scenarios. However, the most
popular one is Cucumber [11]. In Cucumber, Step Definitions are generated based on the GWT-

12

2.2 Behaviour-Driven Development

clauses in gherkin. The step definitions are the methods that define the actual tests that are
executed automatically. The type signature and gherkin tags are generated, and an exam-
ple of that is seen below. The method content within the curly brackets is written by the
programmer.

@Given("A context")
public void a_context() {...}

BDD is often used in combination with other methodologies [14] [17]. For example, Lopes
de Souza et al. combines Scrum, ontologies and BDD to address previously encountered prob-
lems using only Scrum, such as ambiguous requirements and misinterpretations of stories
[18].

Implementing BDD is time-consuming work that requires team members to be ready to
implement a change in their development practices. It takes time to learn how to work with
BDD and get used to the practice. How much time is required to start working with BDD
is affected by various parameters. The total time consumption is bigger for BDD compared
to traditional testing, where tests are written last [2]. It is however clear that it enables time
to be reallocated and used for other, perhaps more valuable, activities. Students who tried
working with BDD mentioned that less time was spent on debating a feature, allowing more
time to create user scenarios, which enabled a better collective understanding of the features
among the team members [19]. Investing time to work with BDD can also lead to a faster
development process and higher customer satisfaction can be achieved [20].

13

2. Background

14

Chapter 3

Related Work

In this chapter, we present previous work on behavior-driven development (BDD) and de-
scribe how it is related to our work, to position our report in relation to others and examine
what has already been explored.

Several case studies on BDD have been conducted to explore the current use of BDD. Bi-
namanungu et al. studied the use of BDD, its benefits and challenges by surveying 75 BDD
practitioners [11]. Their survey outlined the current usage of BDD in the industry, as well as
attitudes towards using it. Zampetti et al. studied 50,000 projects on GitHub to investigate
if and to what extent BDD was used [10]. In addition, they performed a survey where de-
velopers gave their opinions on BDD. It showed that while the respondents understood the
purpose of using BDD frameworks and thought that working with them led to cleaner and
more consistent specifications, the required effort and the risk of it not leading to enough
improvement was too high. In this thesis, we similarly look into benefits and challenges of
BDD and investigate to what extent employees have heard of or used BDD. However, we focus
on introducing BDD rather than exploring the current use of it.

Introduced BDD processes can be evaluated in case studies. Scandaroli et al. performed
a case study and found that a key challenge when adopting BDD was to engage both the
developers and the business stakeholders [21]. The authors investigated how two adoption
processes of BDD unfolded in two different teams, one where the initiative came from the
development side and one where it originated from the business side. They used slightly
different BDD processes adjusted to their way of working. When adopting the processes,
challenges identified in both teams were that engagement was low, and product owners did
not design requirements clearly or in a correct BDD format, leading to ambiguity being intro-
duced when they were translated by the developers. Some developers also found it frustrating
when BDD scenarios took longer to implement than the feature itself. However, with time
the workflow stabilized and everyone thought the process yielded several benefits: better
communication, better alignment of requirements, confidence in tests and implementation
and better documentation. On an abstract level, their process is similar to our implementa-
tion and yields the benefits we hope to accomplish.

15

3. Related Work

Action research can be used similarly to case studies but with more focus on solving im-
mediate problems and improving specific areas. Natarajan and Pichai conducted two action
research studies in a scrum team, one study to define a metrics framework and one to adopt
BDD practices [22]. The first study aimed to establish a comprehensive metric framework for
assessing the performance of a Scrum team. In the second study, the focus shifted to adopt-
ing BDD principles alongside the team’s agile methodology. The team had identified areas
for improvement that aligned well with BDD principles. It included communication gaps,
varying interpretations of user stories, lack of detailed discussions with concrete examples,
and inadequacies in user story documentation. An instance of a BDD process was created
and followed, and it improved the above-mentioned areas and also increased automation ac-
cording to the team members. In-sprint automation served as a key metric to measure the
impact of BDD, and it showcased a substantial increase in the number of test cases automated
per sprint. In our study, we identify similar issues to Natarajan and Pichai which could be
improved using BDD. Just like them, we propose a process suitable to the needs of the team
at hand.

A significant amount of related work treat automation related to BDD. Alferez et al. pro-
posed a UML-based modeling methodology together with an automated solution to generate
acceptance criteria in the Gherkin format [23]. The modeling had to be done according to
a certain structure in UML and was done manually, whereas the creation of Gherkin accep-
tance criteria was automated. A design research study was performed by Gupta et al., where
the generation of conceptual models from BDD scenarios were investigated [24]. A template
was used for writing BDD scenarios. Our focus regarding automation will not only be on the
creation of Gherkin statements, but also on automating test results and several parts of our
BDD implementation.

Automatic test generation is one aspect of automation that is the center of several papers.
Raharjana et al. created a GUI tool to write scenarios and generate test cases in Codeception,
a PHP testing framework [25]. They focused on entry-level programmers, hence the GUI,
and accelerated the process of moving from user stories to tests. However, the tool itself was
quite limited as it did not allow for changes in requirements. Instead, new scenarios had
to be created if requirements change. Hijriyani et al. used Katalon Studio to generate test
cases from BDD scenarios for a school information system [26]. Their process was as follows:
Specify requirements, write BDD scenarios, use the Katalon recorder while performing the
scenarios manually to generate tests and lastly run the tests in Katalon. The authors state that
25 BDD scenarios were successfully implemented and 23 out of the 25 automated tests passed.
The ones that did not pass were caused by misuse of APIs, something that was easily fixed
manually. Alferez et al. have automatically generated Gherkin specifications from a system
specification in UML [23]. Using the result from a case study, the authors argued that the
extra work put into modeling the system created a lesser need to rework the requirements,
which was helpful due to how often requirements change in software development. Our work
also includes automated generation of test cases.

Writing BDD scenarios can be done using different low-code tools, which aim to facilitate
the task. An alternative to writing BDD scenarios was presented by Patkar et al. [27]. The
authors wrote that stakeholders perceived writing BDD scenarios as an overhead and per-
formed an analysis of existing BDD tools which showed that they all lacked features needed
to engage non-technical stakeholders. Therefore, they suggested an approach of interacting
with graphical interfaces rather than letting stakeholders write the scenarios themselves. No

16

evaluation was presented in the report. Another attempt to improve the scenario writing
was presented by Lubke and Van Lessen [28]. BDD via BPMN (Business Process Model and
Notation) has been applied as a visual tool to model requirements and tests for business ana-
lysts and developers alike. The analysts were already using it which made it easy to introduce.
It led to automated tests and shifted the focus from small unit tests to larger more compre-
hensive integration tests, improving the currentness of tests and their maintainability. In the
authors’ experience, using BDD with BPMN led to better modeling of test cases and better
communication between the involved stakeholders. In our study, we do not specify how the
requirements are written. However, the positive results from Lubke and Van Lessen’s report
imply that using low-code alternatives for writing scenarios could be beneficial.

Studies have been made concerning how to increase the maintainability of an ever-growing
suite of BDD scenarios in feature files. If not maintainable, they can be costly, introduce re-
dundancy and introduce difficulties in getting an overview of actual test coverage, according
to Binamungu et al. [29]. To tackle issues of maintainability, they introduced a duplication
detection algorithm that receives a detection rate exceeding 70%. Irshad et al. similarly pro-
posed a semi-automated approach using normalized compressions similarity and similarity
rate to identify refactoring candidates in BDD scenarios [30]. Results indicated that their
approach was up to 60 times faster than having a practitioner go through scenarios manually.

Maintainability issues are further approached in two articles which aim to improve the
connection between source code and feature files containing BDD scenarios. Yang et al. inves-
tigated if it was possible to have better synchronization between feature files and source code
files using Natural Language Processing [31]. They aimed to discover relations between fea-
ture files and their corresponding source code files and predict necessary updates, to ensure
that the BDD scenarios accurately describe the behavior and to stay on top of test coverage.
According to Diepenbeck et al., as a BDD project grows, test coverage tends to fall below 80%
[32]. Therefore, they proposed an algorithm for generating BDD scenarios from source code
not covered by tests, to stay on top of test coverage. In future work, they want to implement
and evaluate it by applying it to different projects. While the maintainability of BDD sce-
narios is of importance, our focus lies in establishing BDD at IKEA. Solving maintainability
issues as well as ensuring high test coverage over longer periods is something to consider once
the proper BDD workflow has been established.

Architecturally, BDD can be integrated in various ways. Rahman and Gao emphasized
the reusability of step definitions, decoupling of BDD scenarios and source code and ease
of audibility when proposing an architecture for microservices [33]. While architecture is
not the main focus of our implementation, it also covers the aspects mentioned by Rahman
and Gao: step definitions can be reused, changes of requirements are considered and the BDD
scenarios will be separate from the source code since they are located in different repositories.

A BDD-driven approach used to handle requirements and tests for multi-agent systems
(MAS) was presented by Carrera et al. [34]. A tool and a process, BEAST, was proposed with
foundations in the BDD methodology, adapted to suit the needs of multi-agent systems. In
BEAST, behaviors are set by stakeholders and thereafter transformed by a MAS designer into
agent stories, a set of scenarios that are broken down into test cases. The tool automatically
generates JUnit test cases skeletons from BDD scenarios. According to the evaluation in the
article, applying BDD in the context of MAS proved successful. Apart from reducing the
number of lines of code needed, it benefited communication between stakeholders and the
traceability of requirements to test cases. Just like us, Carrera et al. proposed a BDD process,

17

3. Related Work

but their focus differed slightly from ours, not only in the respective contexts. We do not
specify any BDD tools, but Carrera et al. present a tool package. A similarity however is that
we conclude that the tracability of requirements is important.

We have noticed that there exists an extensive amount of related work. Our work does
however fill a gap due to the context at IKEA and our two-sided focus on keeping tests
relevant and fulfilling requirements. Our contributions are described in Section 1.2.

18

Chapter 4

Research Methodology

In this chapter, we provide a detailed description of our research methodology. First, we
explain the choice of research method. Thereafter, we describe our implementation of design
research methodology (DRM) consisting of three main steps.

4.1 Research Method Selection
We based the choice of our research method on our research questions RQ1 and RQ2. Our
goal was to get a clear view of the current issues regarding testing and handling requirements
and to evaluate if behavior-driven development (BDD) can improve the original state. We
planned to investigate the existing problems, and based on our findings, we wanted to create
an implementation of BDD that we could evaluate to some extent.

Several methods were considered when we selected a research method suitable for our
goal. We considered Action Research, Case Studies, and Design Research. These are described
by Säfsten and Gustavsson [35]. Action research is described as driven by a strive towards
change through an action to identify and solve problems, and usually involves the researcher
in the practitioner context. The authors further define a case study as a study of a certain
matter which is suitable when aiming to gain a deep understanding of a situation or an event,
or when specific aspects of them are of interest. The third method we considered, design
research, includes an artifact created by the researcher aimed to be useful for the target group,
according to Säfsten and Gustavsson. The contribution of the artifact is lastly evaluated.

Our plan aligned well with the characteristics of action research since it handles a prac-
tical problem in its natural context and we were focused on what IKEA wants to change and
aimed to provide some sort of change. However, as we were not employed at IKEA, we were
not participating in the researched context and therefore chose not to consider our study as
action research. Case studies emphasize studying phenomena in a certain setting and gener-
ating theories, not necessarily designing and evaluating phenomena in that context. Design
research is similar to case studies, but adds the aspect of creating and designing an artifact.

19

4. Research Methodology

It is stated by Wohlin and Runeson to be a suitable research choice when designing concrete
artifacts and extracting knowledge through them [36]. Since our plan aligned well with both
Wohlin and Runeson’s and Säfsten and Gustavsson’s descriptions of design research, it most
closely resembled our intended process. Hence, we chose to implement DRM.

4.2 Design Research
After choosing to use design research, we decided to adhere to guidelines included in design
science, described by Runeson et al. as a "research paradigm that helps frame research and aims
to improve an area of practice" [37]. The pattern of design science was applied to our design
research. Runeson et al. list the research activities of design science: Problem Conceptual-
ization, Solution Design, and Evaluation. These activities match the steps of design research
methodology (DRM) described by Säfsten and Gustavsson [35].

Figure 4.1 describes how our design research is structured. The main activities of design
science constitute the three blocks of the figure. The arrows indicate how we used the result
of one step as an input to the next. The brackets on the right-hand side describe which
activities concern which research question. In the Problem Conceptualization phase, we
collected data through interviews and meetings and observations, which were analyzed and
used as input for the following activity, Solution Design and Implementation. This phase
started with a literature review, in which findings were added to the previous input used for
the implementation. The implementation was then evaluated in the third phase, where we
conducted a workshop and later proposed further evaluation. Each phase is further described
below.

1. Problem Concept.

2. Solution Design and
 Implementation

3. Evaluation

Interviews Meetings & Observations

Literature Review Implementation

Workshop Further evaluation

RQ1:
What is the current

state of software testing
at the IFE-department

at IKEA?

RQ2:
How can BDD improve

 the state of software testing
at the IFE-department

at IKEA?

Figure 4.1: A model of our implementation of DRM.

Problem Conceptualization
The first step, Problem Conceptualization, was performed to investigate the current state
at IKEA and gain a comprehensive understanding of their problems regarding testing and

20

4.2 Design Research

requirement handling. We chose to conduct interviews since we wanted extensive first-
hand empirical data from employees at IKEA. They were performed with members of the
IFE-department (IKEA Family Experience), the department which is the scope of our the-
sis. Meetings were performed to gain broad and team-specific knowledge directly from team
members of one of the teams at the IFE-department, hereby called the CRM-team (Customer
Relationship Management), combined with the knowledge retrieved from the observations of
their documentation and test repository. Meetings also gave us information about the Test
Objectives and Key Results (OKR), an initiative at IKEA. The activities helped us answer
RQ1.

Interviews
Our research questions directed the focus of the interviews toward specific topics, i.e.
testing and requirement handling, and guided the formulation of interview questions.
These interviews were conducted across various teams within the IFE-department,
aiming to gain practical insights into the identified problem areas. The interviews
are further described in Section 5.1

Meetings & Observations
To further widen our knowledge of the current state, we invited an employee from the
Test OKR. We also had frequent communication with our supervisor at IKEA and a
few meetings with a tester within the CRM-team who worked with BDD. Observa-
tions of the tester’s code and the CRM-team’s documentation were performed. This is
described in Section 5.2.

Solution Design and Implementation
The second step consists of both a solution design and an implementation. The goal of the
solution design was to map the problem identified in the first step to a general solution, i.e.
some implementation of BDD. We therefore performed a literature review where existing
instances of BDD were investigated. Leveraging the gathered insights, we created an imple-
mentation to solve the problem identified in the first step.

Literature Review
The literature review was conducted to gain insights from existing implementations
of BDD. We formulated questions that stated what we wanted to answer with our lit-
erature review. The questions were based on the interview results and were considered
when choosing a search term. The procedures and results of the literature review are
described in Section 6.1.

Implementation
We proposed a BDD instance based on all the previous steps, focusing on automation
aspects and adhering to existing ways of working and tool usage. It is described in
Section 6.2.

Evaluation
The third and last step, evaluation, was to validate whether our solution was applicable in
its context and solved the issues identified in our problem conceptualization. We chose to

21

4. Research Methodology

perform a workshop with an attached survey to get an opportunity to present the imple-
mentation and effectively collect opinions on the implementation from the CRM-team, i.e.
the target group. A suggestion for further evaluation is included since we find it valuable to
conduct a more extensive evaluation, to which the workshop results can be used as input.

Workshop
The workshop session was performed to evaluate whether our implementation of BDD
could solve the previously identified problems and answer RQ2. The workshop is de-
scribed in Section 7.1.

Further Evaluation
Due to time limits, a comprehensive evaluation was not conducted in this report. A
description of how further evaluation could be performed is described in Section 7.2.

22

Chapter 5

Problem Conceptualization

This chapter describes the first step of our design research, the Problem Conceptualization.
First, we describe how the interviews were conducted and how they were analyzed. Then
follows a presentation of the results. Its key takeaways are concluded and discussed in the
following subsection. The second part of the chapter covers the meetings we had and the
observations we made. It starts with a method description, then follows a presentation of
the result, and lastly, it concludes with a section highlighting and interpreting results. The
chapter concludes by listing and discussing the requirements for the solution design and
implementation.

5.1 Interviews
Interviews were performed with 16 members from five different teams of the IFE-department
to gain an understanding of current workways, existing issues and ambitions going forward.
The results are used as input to the second step of our research design, the Solution Design
and Implementation.

5.1.1 Method
The methods chosen for conducting and analyzing the interviews influence the arrangement
of questions and processing of the collected data. The following section outlines the method-
ological approach we utilized in the interview process.

Setup of Interviews
The interviews we held were semi-structured. It is the most common way to structure in-
terviews in engineering science according to Säfsten and Gustavsson [35]. We chose to set
up the interviews accordingly to be able to change the order of the questions based on the

23

5. Problem Conceptualization

respondent’s answers. Another advantage was that we could ask follow-up questions if a re-
spondent talked about an interesting topic that we had not prepared questions for. On the
contrary, we could also skip questions if it became obvious that they were not relevant for
some respondents.

During the interviews, one researcher asked the questions, focused on the respondent’s
answers, made sure the conversation was kept on-topic, asked follow-up questions to cover
all topics, and skipped questions if they had already been answered. The other researcher was
responsible for note-taking and focused on writing down as much as possible of the answers
from the respondents. Each interview was around 45 minutes and once time was running
out, the researcher asking the questions was responsible for winding down the interview.

Half of the interviews were performed physically at IKEA in their Malmö offices. Due to
some teams having members scattered across the world, the remaining eight interviews were
performed online through Microsoft Teams. Either way, Teams was used to record and auto-
matically transcribe the interviews. Recording the interviews is recommended by Runeson
and Höst as note-taking and automatic transcriptions might not catch all details [38]. Such
was the case for us, the transcriptions did not catch all sentences and occasionally made some
miss-transcriptions, but due to our time limit, we decided to allow transcriptions that were
not replicas of the interview. However, if something did not match between the notes and
the transcription, or if the note-taker missed something, we used the recording to go back
and correct our notes to make sure that we had a sound understanding of the respondent’s
answers.

The second to last interview was held by just one researcher, due to an impediment. The
questions were asked as usual, but the notes were taken after the interview by the researcher
who could not attend. The process became more time-consuming, but because of the record-
ing, no information was lost. It was beneficial that many interviews were held already since
both researchers were used to the process and could perform the interview even with a slightly
different setup.

The questions of the interviews were ordered according to the time-glass principle, de-
scribed by Runeson and Höst [38]. After asking some initial background questions about the
respondent and their team, we asked in-depth questions related to the topic. These began
with open questions, where we wanted descriptive answers. After that, we asked more spe-
cific questions, including short questions that respondents were asked to answer with a scale
from 1-5. Thereafter, the character of the questions once again went towards being more
broad and focused more on attitude instead of specifics.

Selection of Respondents

The demographics of the 16 respondents within the IFE-department are presented in Table
5.1. Product owners (PO), developers/engineers, and in some cases also engineering managers
(EM) were interviewed. POs are responsible for the product and its delivery, focused on the
business aspects. EMs are responsible for the developers and have some technical insight.
Developers are the ones coding and creating functionality based on directions from POs and
EMs. We had respondents from five of the 19 teams within the IFE-department. From every
team, 3-4 respondents representing at least two different roles were picked. We found this
amount of respondents sufficient to identify trends and draw conclusions.

24

5.1 Interviews

ID Team Product nature Role Years at IKEA
R1 TM1 Fullstack Product Owner 13
R2 TM1 Fullstack Software Engineer 6
R3 TM1 Fullstack Senior Software Engineer 7
R4 TM2 Frontend Product Owner 4
R5 TM2 Frontend Junior Software Developer 1.5
R6 TM2 Frontend Software Engineer 3
R7 TM3 Backend Product Owner 2.5
R8 TM3 Backend Junior Software Engineer 1.5
R9 TM3 Backend Senior Software Engineer 5
R10 TM4 Backend Product Owner 6
R11 TM4 Backend Engineering Manager 8
R12 TM4 Backend Software Engineer 6
R13 TM5 Fullstack Product Owner 2.5
R14 TM5 Fullstack Junior Software Engineer 1.5
R15 TM5 Fullstack Junior Software Engineer 1.5
R16 TM2, TM5 Fullstack Engineering Manager 3.5

Table 5.1: Demographics of respondents.

Rights of Respondents
We wanted to respect the privacy of the respondents. Therefore, before starting to ask the
questions, we asked if we were allowed to record the interview. They had access to both the
automated transcription and the recording of the interview afterward. The respondents were
informed that they could withdraw their participation at any time. We also said that they
have the right to change, add, or remove content from their interviews. The respondents got
information about when and where the results from the interviews would be published, and
that their answers would be anonymized.

Questions
During the interviews, we obtained a thorough understanding of the current state of software
testing at IKEA, which is the focus of RQ1. We asked explorative questions related to RQ2
and BDD, to determine if there already existed knowledge and interest in it within IKEA. The
main questions that relate to the research questions can be grouped into a few categories:

Agile practices and communication
We asked about which agile methods were used in the team and how the communica-
tion within the team works to get a good understanding of the regular practices in the
problem domain. We also asked if they used or had used TDD previously. The reason
why we wanted to chart team members’ experiences is because BDD builds on TDD.

Testing
The respondents were asked questions about how they work with testing, both indi-
vidually and within the team. We also asked about their thoughts about the testing and
the time spent on it. The reason was to collect data for RQ1 and deepen our problem
understanding.

25

5. Problem Conceptualization

Designing and fulfilling requirements
We asked about how the respondent and its team view requirements, how they work
with quality assurance and ensure fulfillment, and if they have any definition of done.
As for the testing questions, we wanted to get knowledge for RQ1 and identify prob-
lems.

Behavior-driven development (BDD)
Establishing whether the respondent has used or knows of BDD already. If not, we
shortly presented its key aspects to determine attitude towards using it. Experienced
users were asked about their opinions. These questions are related to RQ1, but focus
mainly on motivating the next step after the interviews; the implementation.

Table 5.2 lists all the interview questions in the prepared order. Apart from them, we
asked some introductory background questions and for their consent in storing their data
and recording the interview.

Question
1 Tell us about the (agile) practices within your team.
1a Do you work according to any established agile method?

If yes, do you do anything differently from what’s decided according to that
method? Why?

1b How do you divide the work/time in? (e.g. in sprints)
1c Have you ever worked with Test Driven Development (TDD) or Acceptance

TDD?
1d Have you considered using any other agile practices in your team?
2 How do you communicate within your team?
2a How do you make sure that everyone has the same understanding of your prod-

uct?
3 Do you use testing in your team?
3a Tell us about how testing is used.
3b How do you keep your test cases relevant?
3c Why do you use testing?
4 How involved are you in your team’s testing (on a scale of 1-5)? Motivate.
5 How well do you think the testing works within your team (on a scale of 1-5)?

Motivate.
6 How much of your time (in one sprint) would you estimate that you/the team

spend on designing requirements?
6a How do you ensure you fulfill requirements?
6b How do you handle changes in the requirements?
6c How do you make sure that you don’t lose quality with a change?
6d Do you have any definition of done?
6e Is testing involved?
7 How much of your time (in one sprint) would you estimate that you/the team

spend on testing?
7a Do you wish that more/less time was spent on testing?

26

5.1 Interviews

7b Which potential benefits would make you find it worth spending more time on
testing and why?

8 How well would you say your understanding of your team’s code is (on a scale of
1-5)? Motivate.

9 How would you compare your previous testing experiences to the testing in your
team at IKEA?

10 Do you see any potential problems with your team’s way of working with quality
assurance?

11 Do you see any potential improvements/solutions to your team’s way of working
with quality assurance?

12 Have you heard anything about Behaviour Driven Development (BDD)?
12a If yes, what would you say are the key aspects of it?
12b If yes, what are your thoughts about it?
13 Have you worked with BDD?
13a If yes, in your team at IKEA or elsewhere?
13b If yes, how did you like it?
13c If yes, how was it practiced?
14 Are you positive, negative, or neutral about BDD being introduced in your team?

Motivate.
14a Are you willing to spend time learning about BDD?
14b What are your expectations on using BDD?

Table 5.2: Interview questions.

Analysis of Interviews
To analyze the collected data from the interviews, we conducted a thematic analysis. The
goal was to find themes and categories from the data to be able to comprehend the answers.
We followed the processes and tips presented by Larsson et al. in the book Tematisk analys
[39]. It contains guidelines for performing a thematic analysis.

There is a clear connection between the research questions and the themes we found.
The research questions are the basis for the interview questions. The questions about current
ways to work with testing and requirement handling address RQ1 directly. RQ2 is addressed
indirectly since we gather information about employees’ attitudes toward BDD. The answers
to the questions were coded after each interview. The codes were divided into categories,
which were grouped into themes when most of the interviews had been held. The themes are
therefore evolved from the research questions.

The researcher who took notes during the interview was responsible for coding that in-
terview afterward. The interview was coded within three days after it was held, often right
afterward when the interview was still fresh in mind. The codes were collected in a spread-
sheet, where each column represented a respondent and each row represented a code. This
layout allowed us to easily add already existing codes to new respondents when several peo-
ple answered similarly. We could also efficiently see how frequent each code was since the
rightmost column held the number of respondents for each code.

When coding the first interview, we worked deductively and decided on four main groups
based on the interview questions; Agile processes, Testing, Requirements and BDD. The

27

5. Problem Conceptualization

groups were marked by color-coding rows of the spreadsheet. As we went through the in-
terviews, we put the codes in the color blocks where they belonged. This part of the analysis
was inductive. We did not limit the codes in any way, instead, we added codes that covered
everything the respondents said. The analysis was therefore both inductive and deductive.

A collection of rows in the spreadsheet formed a category. These were formed when some
of the interviews had been held. We divided each of the four groups into several subgroups
based on the codes. The interviews that were performed after the categories had been made
were coded as the previous ones, with the exception that the codes were put directly into
categories. We still did not limit the codes and if no category matched a certain code, a new
category was made. We did this to keep the inductive part of the analysis and maintain an
open approach as we performed more and more interviews.

The codes were thoroughly reviewed once after roughly half of the interviews were per-
formed, and once when all the interviews were completed. Codes that were not relevant to
the topic of the interviews, i.e. our research questions, were removed. Similar codes were
grouped to make the sheet more compact and easier to work with.

With only one interview remaining, we formed all but one of the themes. The grouping
of categories was already relatively clear because of the four color-coded groups. We made
minor changes and when we had a good overview of the categories, we chose to remove some
of them. The sifting was performed with the research questions in mind since we wanted
every category to be linked to them somehow. The remaining categories were then reviewed
to formulate themes. These are, as previously mentioned, naturally linked to the research
questions because of how they came about. We made sure that the connection was still clear
after creating the themes by comparing the themes to the research questions.

When writing the result part of this report, we performed an unplanned review of the
codes, categories and themes. We realized during this process that we missed a theme where
the agile ways of working were collected. Therefore, we created a new theme to include the
codes and categories covering the subject. Some minor changes were also made, e.g. a change
in the name of a category and replacements of some codes.

5.1.2 Results
Eight different themes were formed during the thematic analysis: T1 Agile Working, T2.1 Im-
portance of testing, T2.2 Current way of working with testing, T2.3 Ambitions with testing, T3.1
Importance of requirements, T3.2 Current way of working with requirements, T3.3 Ambitions with
requirements and T4 BDD. Figure 5.1 groups the themes with their corresponding categories,
which is presented in this chapter. As the themes and categories are presented, some results
are described in terms of number of teams and some are connected to individuals, depending
on how relevant the team affiliation was in relation to the code. Other results are presented
both related to teams and to individuals to present the division of respondents among the
teams. All of the codes that build up the categories are not be presented due to the large
amount of codes. Instead, we share a selection of the codes that were common for several
respondents. A few interesting and representative quotes are also included as the content of
the categories is described.

The arrangement of the themes is as follows. Theme T1 covers agile working. The di-
visions of the themes within T2 Testing and T3 Requirements follow the same structure. T2.1
and T3.1 cover the importance of testing and requirements management and include cate-

28

5.1 Interviews

gories that explain why it is used. T2.2 and T3.2 describe how the respondents and their
teams work with testing and requirements management, which is directly connected to RQ1.
T2.3 and T3.3 include how respondents would want to work with testing and requirements
management. These are therefore connected to RQ2, which focuses on improvements in test
relevance and requirements. T4, BDD, is also focused on RQ2 since it investigates experiences
and attitudes towards BDD.

T1
Agile Working

T4
BDD

TDD

Methods

Relation to other teams

T2.1
Importance

T2.2
Current way of working

T2.3
Ambitions

Experiences

Attitudes

Benefits

Drawbacks

T3.1
Importance

T3.2
Current way of working

T3.3
Ambitions

Reasons to test Testing procedure

Responsibility

Problems

Test Coverage

Test Quality

Code understanding

Type of tests

Time

Automation

Goals Designing

Communication

Fulfillment

Changes

Problems

Areas of improvement

Advantages

T2 Testing

T3 Requirements

Figure 5.1: The identified themes from the thematic analysis of the
interviews. Each color box represents a theme, and every white box
underneath represents a category within that theme.

29

5. Problem Conceptualization

T1 Agile Working
We asked about the agile ways of working of the respondents and their teams. The category
called TDD considers individual work, while the two other categories, Methods and Relation
to other teams, focus on whole teams.

TDD
We explicitly asked whether the respondents had any experience of individually using
TDD, as it is a predecessor and closely related to BDD. Eleven people said that they
did not use TDD, while one respondent answered that they used TDD. R16, an engi-
neering manager, claimed that some developers in TM2 and TM5 use TDD. Two other
respondents claimed that they would want their team members to use TDD.

Methods
Several respondents from each team, in total 13 respondents, said that their team used
Scrum or a similar approach. Seven of them had previously used Kanban. All of the
respondents, 16 people, answered our question about sprint lengths. The most popular
length was two weeks and it was used by three teams. Both one and two weeks sprints
were used by one team each. Included in Scrum is the usage of stand ups, which were
mentioned by 12 respondents from four teams and by three people described as a way
to keep the vision of the product unified. Nine respondents from four teams mentioned
that their team had a retrospective meeting at the end of each sprint to reflect on the
work.

Scrum was appreciated by most respondents, but one respondent, R12, was not happy
with working with sprints and explained how the way of working negatively affects the
testing. Their team, TM4, had recently switched back to Scrum after using KanBan.
R12 said: "No one in our team likes sprints. [. . .] If it is for example only testing left of something,
then testing will not be prioritized into the next sprint. Instead, the PO says ’We will take that
in the next sprint after that’ and we keep on pushing it forward all the time."

Relation to other teams
Four respondents from four different teams declared that their team depended on
other teams. Two of them said that it was hard and time-inefficient to test other teams’
functionality.

T2.1 Importance of testing
The category below consists of codes pointing out the goals with testing and why it is per-
formed.

Reasons to test
Seven respondents argued that testing is important. The two most frequently men-
tioned codes to why, with six respondents each, were to create trust for the product and
to detect errors instantly. One respondent, R14, highlighted how the performance of the
product is connected to the customer experience: "It is super important that what we
upload actually work as it should, since it is live towards the customers. And everyone knows
that when something does not work, you get irritated and a bad customer experience." Other
common answers covered the importance of not breaking anything in production, the

30

5.1 Interviews

want to feel secure, and the advantage that testing increases the understanding of the
code.

T2.2 Current way of working with testing
The respondents were asked about how they currently work with testing and the answers we
received are presented below, divided into categories.

Testing procedure
Answers regarding the current way of working that did not fit into the categories below
are gathered in this category. Eight respondents said that they used unit tests. A way to
work with testing used in several teams was that developers wrote unit tests for their
own code after implementing it. One respondent, R6, worked in one of the teams who
worked that way and said: "Twice as much code is required for unit tests [as for UI tests] [. . .],
while UI tests can cover extremely big flows with very little code."

Five people from four teams mentioned that they had a blocking pipeline, meaning
that tests had to pass before making a pull request and uploading the code. End-to-
end testing was used and brought up by five respondents from four teams.

Responsibility
When asked about the responsibility for the testing, eight respondents from five teams
said that it was up to the whole team, while three people, all from team TM1, said that
the team had a designated tester.

Problems
The most common problem regarding testing was that too few tests were used due to
time limits. Two respondents specifically mentioned that they had problems because
of the absence of tests. One of them, R5, said: "We have had a test set up earlier. It has
above all else been unit tests. Since it took so long time to run through all these tests, we turned
them off .. . which has been a problem, now things break because we do not have tests that try it
before we send it out to production. It is annoying not to have a test framework that we know we
have to pass before going live. That is a problem." This quotation emphasizes the problem
of having too few tests and the importance of effectiveness. Another issue mentioned
by two respondents was that it was hard to keep the tests updated as new features were
added to the product. One PO respondent, R10, commented on the approach towards
testing and said: "Developers think ’When I am done with this component and its unit tests,
I am done’, but we need a bigger perspective for testing".

Test coverage
There was no direct interview question regarding test coverage. However, six respon-
dents mentioned it in different ways. Four of them was in two different teams and said
that their team had a threshold for how high the coverage should be, which was around
80%. Two people saw issues with aiming for a specific percentage since developers of-
ten stop writing tests when the said percentage is achieved and easily forget to test all
scenarios.

Test quality
The question about putting the team’s test quality on a scale of one to five generated

31

5. Problem Conceptualization

quantitative data, is presented in Table 5.3. Rating 5 meant very good and 1 was very
bad.

Rating Number of respondents
1 0
2 6
3 1
4 4
5 1

Did not quantify 4

Table 5.3: Rating of test quality within teams.

Code understanding
Table 5.4 shows the result of the question about how well the respondents rate them-
selves to understand the team’s code on a scale of one to five. Rating 5 meant very good
and 1 was very bad.

Rating Number of respondents
1 4
2 0
3 5
4 6
5 0

Did not quantify 1

Table 5.4: Rating of respondents’ understanding of the team’s code.

T2.3 Ambitions with testing
This theme consists of categories and codes regarding how the respondents would want to
work with testing and their plans.

Type of tests
UI tests were something that three respondents mentioned as an ambition. Unit tests,
gherkin tests, and end-to-end tests were also brought up. One respondent said that
they wanted to use TDD within the team as a part of the sprint planning.

Time
Four respondents replied that they would want to spend more time on testing and
four other respondents said that the time currently spent on testing was good. Three
people answered that they did not want to spend more time on testing. One of them
did however claim that automation could be worth spending more time on.

Automation
Seven respondents argued that they wanted to automate the testing. The automation
was specified by two respondents from the same team, who described that they wanted

32

5.1 Interviews

to use videos as user guides for their product. The videos should be updated automat-
ically as new features are added to the application. One respondent did however say
that everything does not have to be automated, and another person said that it is too
hard to test everything automatically due to security protection.

T3.1 Importance of Requirements
The respondents were asked questions related to why requirements and quality assurance
were used.

Goals
We had no explicit questions regarding desired achievements from the use of require-
ments. However, a few respondents mentioned it nonetheless. Three respondents said
that the goal of having requirements was to prioritize the customer and its satisfaction.
One of them elaborated and added that the focus was to make sure that changes did
not impact the user negatively. Four others said that the main goal with requirements
was to rely on them to make sure everything was working as expected.

Advantages
Some respondents saw general advantages to using requirements. The most commonly
said things were that it gave better code quality and that developers were more self-
going when they understood the needs of the end-users. One respondent, R11, put the
advantage of requirements this way: "To me, it is important that both the team and those
who create new functions are aware of the importance of requirements. Exactly how they are
written doesn’t really matter . . . but they have to exist because there has to be some form of
expectation from the one making decisions, so it is possible to evaluate and understand that
we’re making the correct solution."

T3.2 Current way of Working with Requirements
The following categories are related to current used practices realted to requirements.

Design of requirements
No explicit questions were asked regarding how requirements were designed, but many
respondents brought it up when asked about how much time was used for designing
them. The roles of the PO and developers were mentioned frequently. Six respon-
dents from three teams said that it was the responsibility of the PO to design the
business requirements, and two POs specified that it was done before the start of a
sprint. One of them also stated that they discussed the requirements with the stake-
holders first. Two developers in different teams claimed that their respective POs did
not have much knowledge of technical aspects and the corresponding POs said the
same. Four respondents from three different teams mentioned that the developers set
their technical requirements, and an EM said that it was not the PO’s job to care about
implementation details.

Opinions regarding the clearness and existence of requirements varied. The impor-
tance of clear requirements corresponds to the size of the task according to one respon-
dent, arguing that well-defined requirements were less important for smaller tasks.

33

5. Problem Conceptualization

One PO said that they had not considered requirements much, and an EM explained
that they did not have requirements in place.

Communication of requirements
The requirements were commonly discussed with the team after being designed. Seven
respondents from three different teams explained that requirements were communi-
cated to and discussed with the team after the initial development. This was done
through meetings, sprint plannings, refinements, and/or solution discussions. The
most common way to sort out potential questions regarding requirements was to use
direct communication with the responsible person, as stated by four respondents from
three teams. One respondent said that the developers kept track of what to do through
tasks in Jira that contained notes and descriptions from the PO.

Fulfilling requirements
Quality assurance (QA) is a way of validating that requirements are fulfilled, and the
respondents explained how they worked with it quite differently. Five respondents
from four teams said that they used some form of testing for QA. Two respondents
from the same team mentioned that they used peer reviews for QA, and R14 said that
it ensured quality: "I think the quality is quite high, as we use peer reviews where we make
sure that two developers review [the code]." One respondent stated that their PO regularly
followed up so everything worked as expected. Feedback was also mentioned by one
respondent as a way to ensure that quality was not lost. Two other respondents from
two teams stated that it was important to be able to communicate and receive feedback
from the users easily and early.

Several answers regarding QA included tools. Three respondents from three different
teams said that requirements were listed in their Jira tickets and one of them added
that it worked well. Another conveyed that they had acceptance criteria for every
ticket. Two respondents from the same team said that they used various methods of
monitoring for QA. One of them exemplified this by saying that they used a dashboard
in Power BI and the GCP console for automatic alerts as a form of QA.

In connection to the requirements questions, we asked if the respondents had a def-
inition of done. Eight respondents, at least one from every team, said that they did,
whereas five respondents explicitly said that they did not have a definition for it. That
members of the same team answered differently indicates that there was not a unified
view of the definition of done in some of the teams. Out of those who did not have
a definition, one argued that it would be superfluous and two of them said that they
avoided it because of divided opinions within the team. Teams that did have a defi-
nition of done used it differently. One respondent mentioned that there was a lot of
flexibility in their definition and that it could vary between tasks. Three respondents
from two teams explained that they used a combination of documentation, testing and
coding as thresholds for being done. Another respondent stated that test coverage was
part of their definition of done. Two respondents from different teams answered that
they considered a finished ticket in Jira as being done, and another said that fulfill-
ment of the acceptance criteria in Jira meant being done. Code review and pushing
the feature to production were also mentioned in the context. Two respondents, R4
and R6 from TM2, gave short and simple answers: "When the problem is solved it is done"

34

5.1 Interviews

and "I am done when the one who made the requirement is happy". One EM stated that
the definition was focused on what was good enough, including for example fulfilling
requirements, testing and security checks, rather than what the PO expected.

Changes of requirements
Changes of requirements were handled similarly in some of the teams. One respondent
said that changes of requirements could be technical or come from stakeholders. Five
respondents from four teams stated that they handled changes to requirements in the
following sprint. One respondent explicitly said that they were very strict about not
changing the scope during the sprint. Another respondent explained in detail that if a
change concerned a finished task, it was pushed to the next sprint. For ongoing tasks,
the requirements were updated and changes could be made immediately.

Some teams were organized in how they handled and prioritized changes. One respon-
dent explained that they handled changes in stories in Kanban, and prioritized them in
the sprint according to urgency. Jira tickets and thorough testing were also mentioned
when handling changes of requirements. One respondent noted that upon changes,
code often had to get thrown away and be redone. Another respondent said that they
did not currently have any proper way to handle changes of requirements.

Problems
Three respondents from two teams answered that they did not see any issues with how
they worked with QA. However, a few issues were identified by others. In one team,
TM4, those issues were related to their product being inherited from another team that
did not have requirements set. Hence, it had been difficult to identify requirements
for the product, and therefore also to connect QA to requirements. Other respondents
also mentioned that requirements were time-consuming and difficult if not planned
thoroughly from the start and that it could lead to a more difficult time with QA.
One respondent, R12, put it this way: "No one addresses them [the requirements] because
everyone knows how time-consuming it is to establish requirements and create testing that covers
all of them". Unclear requirements could lead to misunderstandings, as mentioned by
another respondent. Similarly, one respondent argued that it was difficult to get a
proper overview of requirements, especially when changes to them occurred. Another
respondent identified not testing enough as one of the main issues with QA, and two
others said that it would be good if they tested more. Three respondents mentioned
that there was a conflict between delivery speed and quality, and prioritizing delivery
speed impacted the testing and thereby the quality negatively. Lastly, one respondent
said that it was not possible to measure the quality of a whole system due to time
restrictions.

T3.3 Ambitions with Requirements
We identified ambitions forward when asking about eventual improvements of the require-
ments.

Areas of improvement
We had a question that asked whether the respondents saw any room for improvement
related to requirements. While most had no answer, some respondents mentioned a

35

5. Problem Conceptualization

few key areas to improve. Retrospecting and long-term goals were considered neces-
sary, according to R10, who explained: "There is a positive attribute for me to work towards
it [better QA] because then our product gets better from a long-term perspective [. . .] What mea-
sures I can take, is cultivating that there is a QA mindset to start with so that that mindset will
help them [the developers] think about QA from the start." Another respondent said that
there existed many team-specific areas to improve regarding requirements, but did
not provide any details. Two respondents from the same team said that their ambition
was for their PO to write stories where the requirements were clarified as the tickets
were created. This fits well with trying to make the developers understand the im-
portance of requirements before they start implementing features, one of them added.
One PO stated that they would need more formal requirements, but also did not want
to overcomplicate the workflow. The respondent also added that they would need to
measure more as a form of QA. Three respondents from two teams had ambitions of
having traceability between requirements and testing. They had slightly different fo-
cuses, ranging from system tests to test coverage and monitoring, but altogether argued
that testing would improve working with requirements. Another respondent said that
their team would need good tools for creating, handling and storing requirements to
improve them.

T4 BDD
The third theme is centered around BDD, including previous experiences and thoughts about
implementing BDD in the team.

Experiences
Nine respondents had heard of BDD, whereof three also had worked with BDD to
some extent. Two other respondents of the same team, who had not heard of BDD,
described that they worked similarly to BDD but they did not label their routines. A
third respondent said the same thing, with the exception that the tests were written
after the implementation, instead of before as TDD and thereby also BDD suggests.
One team had a designated tester who used gherkin.

Attitudes towards using BDD
A large number of codes regarding attitudes were collected. The ones with a positive
approach were a majority and some examples were e.g. A common product understanding
would be helpful, Would like to spend time on learning BDD and I like gherkin with a couple
of respondents each. Four people said they were interested in BDD and one respondent
mentioned that they were planning to use gherkin in the near future. Other codes were
more incredulous, like BDD can be useful, but not for all kinds of problems, Want to avoid
too much administration and Do not think the productivity will increase if PO is involved in
the development/testing.

In summary, the attitudes towards starting to work with BDD were relatively scattered.
What one respondent saw as a benefit, was considered a drawback for another respon-
dent. However, the positive attitude was shared among a majority of the respondents,
while the skeptical attitude was concentrated to a few individuals.

Benefits
When asked about what benefits BDD could have, five respondents replied that BDD

36

5.1 Interviews

could involve PO more, which would be good. One of them, R15, argued: "The PO is ul-
timately responsible for the product and in contact with stakeholders. If they can be connected to
the technicalities too, I think it is really good." Two respondents answered that BDD would
improve communication. Other mentioned benefits were that BDD makes it easier to
connect tests to requirements, avoid misunderstandings and improve structure.

Drawbacks
One drawback identified by three respondents was that it could be hard to get everyone
engaged and interested in using BDD, and they saw that as a necessity to successfully
work with BDD. One of these respondents, R16, was still interested in using BDD and
said: "All changes are considered badly in a team, so it requires an effort where you have to see
use of the change." Another problem mentioned by three people was the time needed for
learning and start working with BDD. A disadvantage stated by one respondent was
that gherkin is too logical and limits the possibility of speaking unrestrained.

5.1.3 Key Takeaways and Discussion of Results
The results from the interviews were comprehensive and provided valuable insights repre-
sentative of the IFE-department. Below, we conclude the interview results and list them in
order based on the current way of working, experienced issues, ambitions and BDD. We dis-
cuss coherent list points, focusing on their relationship to BDD, before we present further
results.

Current Way of Working
This section presents how the five teams within the IFE-department currently work with
software development. Below, we start with listing general information about their current
way of working.

• Most teams used a variation of scrum with 2-week sprints. A lot of teams had previ-
ously used KanBan.

• In most teams, everyone was responsible for testing, while some teams had a dedicated
tester.

• Many respondents used unit tests. Test coverage of around 80% was used by several
teams as a required threshold.

• Many teams had some end-to-end tests in place.

• In a few teams, if changes in requirements occurred in a sprint, they were handled in
the following sprint.

• Most POs responded that they had a low understanding of the team’s code, whereas
the developers overall said they had a very good understanding of it.

The above-listed results provide insight into how teams structure their work. All of these
points are compatible with BDD, as it can be adapted to many different environments. Be-
low, we continue with how requirements currently are handled in the teams according to
respondents.

37

5. Problem Conceptualization

• Some respondents argued that requirements were relied upon to achieve customer sat-
isfaction and ensure that the product works and behaves as intended while others had
not considered requirements or did not have them in place in their team.

• Some respondents said their team had a definition of done, while others from the same
team stated they did not. Those using a definition relied on requirements, testing,
documentation and completed Jira tickets.

• In most teams, the PO wrote the requirements and then discussed them with the team.
Developers set their technical requirements.

• Questions often arose regarding requirements and direct communication was used by
most respondents to sort them out.

How requirements were looked upon varied between teams. Although many brought
up its importance, some teams did not have proper requirements in place. Questions often
arose regarding requirements indicating that they were not clear enough, despite discussing
them within the teams. Responses on whether a definition of done existed within teams
varied between members from the same teams, highlighting the ambiguity regarding quality
assurance, and by extension requirements, further. This indicates that there is a need to
improve requirements and organize requirements better, which is a key aspect of BDD. The
following items cover how teams used testing according to respondents.

• The average estimated test quality by respondents was mediocre.

• Many respondents found testing important.

• Some teams used testing as quality assurance, while others used peer reviews or feed-
back.

• Most teams had a blocking pipeline.

• Most respondents did not use TDD.

• Some respondents believed enough time is spent on testing within their team, others
too little, and some just enough.

Testing was mentioned to be used as quality assurance and to block merges of new code
when they did not pass. Despite a common opinion that testing is important, the estimated
test quality was relatively low, indicating that respondents want to improve their current
testing situation and that BDD would serve a purpose. However, applying BDD could be
smoother if more respondents had already used TDD, and if more respondents were open to
spending more time on testing since getting started with BDD is an extension of TDD and
can be time-consuming.

Experienced Issues
In this section, answers related to experienced issues of testing are concluded. We begin with
listing and discussing issues regarding testing.

• Some respondents mentioned having too few tests which occasionally led to system
breaks.

38

5.1 Interviews

• Some respondents mentioned that it was difficult to keep tests updated and relevant.

• Some respondents argued that fixating on test coverage risks missing testing key sce-
narios.

Experiencing issues due to having too few tests was a common problem among respon-
dents, as well as difficulties keeping tests relevant. Whether there exists a causality between
the issues was not investigated, but a possible coherence is that troubles with test relevance
lead to too few actively used tests, which in turn could lead to system breaks. Focusing too
much on test coverage was however said to be negative. Following BDD principles is a way
to achieve more tests since tests are written to cover all formulated user behaviors, with-
out focusing too narrowly on test coverage. Further issues regarding quality assurance are
presented below.

• Some respondents stated that there exists a tradeoff between delivery speed and qual-
ity, affecting quality negatively.

• Some respondents said that they did not test enough which affects quality assurance.

• Some respondents stated that they had insufficient quality assurance in various ways.

Prioritizing delivery speed can lead to insufficient testing, as insufficient time is allo-
cated to properly implement tests. Consequently, quality assurance is negatively affected as
developers can not be sure that their code works as expected. BDD assists in these issues as
implementing tests are incorporated into its workflow. However, there also has to exist a will
to sacrifice some delivery speed to achieve better quality. The last section of issues regards
requirements and is listed below.

• Some respondents argued that frequent requirement changes prolong coding.

• Some respondents argued that requirements are sometimes unclear, leading to misun-
derstandings.

• Some thought it was difficult to get an overview of requirements.

Some teams lacked effective methods for handling requirements, which could lead to in-
efficiencies and confusion. Changes of requirements could arise from misunderstandings, or
simply because stakeholders or other circumstances have changed. Either way, they can be
costly and should therefore be avoided. Improved communication is a consequence of BDD,
and thereby also fewer misunderstandings. For unavoidable changes, a well-defined struc-
ture is required to handle them effectively. By providing a distinct structure and by making
requirements more useful in connection to tests, leveraging BDD can reduce ambiguities of
requirements.

Ambitions
In this section, the ambitions of the interview respondents are gathered. We begin by listing
the ambitions regarding testing below.

• Several respondents wanted UI tests that could cover bigger flows with less code.

39

5. Problem Conceptualization

• Some respondents wanted more end-to-end tests.

• Some respondents wanted to use gherkin and TDD for testing.

• Almost half of the respondents wanted to automate as much testing as possible.

Both UI tests and end-to-end tests are compatible with BDD since BDD focuses on users’
interactions with systems. gherkin is the most commonly used ubiquitous language when
applying BDD, and can thereby together with ambitions regarding TDD and test automa-
tion be achieved directly when applying BDD. In summary, BDD meets respondents’ testing
ambitions. Below, the ambitions of the interview respondents in terms of requirements are
gathered.

• Two respondents wanted the PO to specify requirements clearly in tickets in Jira.

• Some respondents said that requirements should be more clear and easier to fulfill.

• A respondent said that requirements should be more formal without too much over-
head.

• Several respondents believed that requirements should have traceability to tests.

• A respondent mentioned that they need good tooling for requirements.

While BDD does introduce some overhead, it provides a clear structure of requirements
which makes them easier to fulfill by functioning as acceptance criteria. They also act as
stepping stones for tests, meaning traceability between the two is provided. Several tools
exist for BDD, and Jira is quite compatible with it.

BDD
Below, we conclude some opinions that were mentioned regarding BDD.

• Most respondents had already heard of BDD, but not worked with it.

• There was an overall positive attitude towards BDD. The mentioned benefits were
that it involves PO, improves communication and makes it easier to connect tests to
requirements.

• Most respondents wanted a low threshold for adopting new ways of working.

The positive attitude implies that respondents would like to adopt BDD in their teams.
It can initially be a relatively demanding task and the threshold may not seem low enough
for some respondents as a majority have not used BDD previously. However, achieving the
benefits mentioned by the respondents could be argued to be worth investing in and the
awareness of BDD should simplify the adoption.

5.2 Meetings and Observations
This section is focused both on the IFE-department and on the CRM-team, which is our
supervisor’s team. We wanted to complement the knowledge we gained from the interviews
with practical insights from their daily work. Additionally, we wanted to learn more about
the test initiative, Test Objectives and Key Results (OKR), at the department.

40

5.2 Meetings and Observations

5.2.1 Method
We had weekly meetings with our supervisor at IKEA. The regular discussions were an op-
portunity to get valuable insights and feedback on our progress and decisions from a person
with knowledge of IKEA and the CRM-team.

The CRM-team had a designated tester, whom we invited to a couple of meetings. The
tester was new to the team and had started to set up acceptance tests using BDD principles
and tools. Our discussions and observations of their work helped us understand BDD as well
as the team’s way of working better.

To gain knowledge about the Test OKR, we spoke to a person within the IFE-department
active in the Test OKR. During two meetings that altogether lasted roughly three hours,
we discussed and received information about the plans of the initiative, their goals and the
current state of testing at the department. We also participated in a meeting with the Test
OKR, to observe their plans ahead.

5.2.2 Result
In the following two sections, we describe what we learned about the CRM-team and the
Test OKR from meetings and observations.

CRM-team
As also learned from interviews, the CRM-team worked with Scrum in two-week sprints.
Jira was used for planning sprints and dividing tasks while providing an overview of past,
current and future work. GitHub was used for version control. In production, unit tests
were run according to automated workflows created using GitHub Actions, triggered when
pull requests were made. At pushes to certain branches, the production code was built and
deployed. When exploring the team’s Jira board and comparing it to a non-enterprise Jira
board, we realized that there existed limitations due to IKEA policies. Plugins such as GitHub
and Cucumber were unavailable. However, scripts could be leveraged to implement similar
functionality to some extent. These could be run on the internal Google Cloud Platform
(GCP) server.

From meetings with the tester of the CRM-team, we learned which tools were used for
testing and how it was set up. They worked in a testing repository separated from the pro-
duction code, also using automated workflows in GitHub Actions. They had implemented
UI tests scheduled to run regularly to determine whether a build was stable or not. This
was however not activated yet for production as it was not finished. The tester wrote re-
quirements in gherkin, using Cucumber to automatically generate step definitions. Another
utilized tool was Selenium, a web driver that offers automatic UI testing. The step definitions
were implemented using a Selenium driver, which automatically navigates and performs ac-
tions in the web browser when tests are run. The tester viewed the results in the IDE. The
tester recently started using the test management tool Zephyr, planning to use it to structure
tests and display test results in Jira in the future. Another tool that we encountered was Xray,
which we discovered through observations of IKEA’s documentation. It was previously used
at IKEA before getting banned due to slowing down Jira.

41

5. Problem Conceptualization

Test OKR
The Test OKR is a collaborative test initiative at the IFE-department at IKEA. Developers
from most teams of the department partake in monthly meetings. The ambition of the Test
OKR is to bring people with similar expertise and interests together, share knowledge and
potentially adopt some common principles. Teams within the Test OKR collaborate to de-
termine their alignment in testing. As of now, every team optimizes separately and that can
lead to trade-offs in the experience of the customer, according to the person we spoke to.

The teams have experienced difficulties testing end-to-end between teams and felt a need
for automated testing to eliminate the time-consuming manual work. The person we spoke
to said that 100% quality assurance is not always practical, but that they needed an element
of trust so that products from different teams could be pieced together nicely. However,
coordinating and engaging numerous teams has proven challenging, thus resulting in slow
progress.

BDD is being introduced and recommended across the teams to facilitate end-to-end
testing at the whole department. The team of the person we have spoken to uses BDD and
wants to spread it in the Test OKR to improve communication and bridge the gap between all
stakeholders: "Some people in our domain are experts but not coders. Domain-driven design is about
that. Given-when-then ensures a common language because it is natural and everyone understands it.
We can build on the common language, and consequently build common expectations." The idea was
to start with acceptance tests in one team and its most related teams. Later on, the testing
should be extended to include more teams and their dependencies. Another ambition is
to move from mock data and create automated testing between teams. Those not directly
involved in the initial acceptance testing had difficulties understanding their tasks, again
emphasizing the difficulties in getting everyone on board.

5.2.3 Highlights and Interpretation of Results
The meetings and observations we conducted served as a valuable complement to the inter-
view results that preceded them. Unlike the structured nature of our interviews, these inter-
actions were more open-ended and flexible. This enabled the individuals we spoke with to ex-
press themselves more freely, offering insights and perspectives that might not have emerged
in the interviews. By engaging with our supervisor, the CRM-team’s tester, and the member
of the Test OKR, we were able to gain additional details that enriched our understanding
of testing and requirements in the CRM-team and the IFE-department. Furthermore, these
interactions provided us with information of their tools usage and how we could integrate
them into our implementation. Results from our meetings and observations are concluded
below.

CRM-team
The following items concern what we learned about how the CRM-team currently works
and which tools the team members use.

• Tools and frameworks utilized in the team were Jira, GitHub, Cucumber, Selenium,
and Zephyr. The gherkin language was also used.

42

5.3 Requirements on the Solution Design and Implementation

• The team leveraged Jira to structure sprints. The enterprise Jira had constraints that
made the GitHub plugin unavailable.

• Unit tests were utilized and automatically run through GitHub Actions. UI tests based
on BDD principles were also implemented.

• The team had plans for improving the testing.

The above-mentioned tools can be used with BDD. Cucumber and Gherkin directly re-
late to BDD, whereas Selenium can be used for UI testing and Zephyr for test management
independently from BDD. Jira and GitHub are suitable tools to use together with BDD since
they both include automation and integration capabilities. That the team wanted to im-
prove testing and already had started implementing UI tests with BDD principles indicates
that there is a will to establish BDD in the team.

Test OKR
These items cover the issues and ambitions that had been identified in the Test OKR.

• Experienced difficulties in collaborative testing across teams. The Test OKR wanted
to set up automated end-to-end testing where BDD is encouraged to be used by all
teams.

• BDD could improve communication between stakeholders of different expertise be-
cause of its domain-specific language yielding common expectations.

The Test OKR had identified issues aligning with key aspects of BDD and therefore de-
cided to apply it to determine whether it could improve the collaboration between teams.
Our interviews further indicate that several teams of the IFE-department could use better
setups for testing and requirement handling, so applying BDD was a sensible decision.

5.3 Requirements on the Solution Design and
Implementation

The findings from the interviews and the meetings and observations were used as input to
the next step which is Solution Design and Implementation, Chapter 6. It consists of two
parts: a literature review and our implementation, an instance of BDD.

We observed that automation was used in the CRM-team to some extent and it was
frequently mentioned as an ambition by respondents in the interviews. Therefore, we decided
to focus partly on automation in the literature review to investigate it before designing our
implementation. We also decided to focus our implementation on a partly automated process
rather than other important parts of BDD, such as how requirements are written. Focusing
on the last mentioned parts would require more attention and time from the product owner
of the team at IKEA, which was a restricted resource.

Both from the interviews and our meetings, we saw a desire to have clear and fulfilled re-
quirements without too much overhead. BDD provides clarity in its structured scenario for-
mat, and while it might take time to get used to it, it can lead to faster development and more

43

5. Problem Conceptualization

satisfied customers as mentioned in Section 2.2. When performing the literature review, we
decided to focus partly on requirements to emphasize their importance and find relevant ar-
ticles before creating our implementation. We considered allowing flexibility when working
with requirements alongside the structure BDD provides when creating our implementation.

Another aspect mentioned by respondents in the interviews was that they wanted more,
relevant tests. There was also an ambition to have better traceability between requirements
and tests. Providing traceability between tests and requirements ensures relevance, as long
as the requirements properly describe the expected behavior of the system. Therefore, we
decided to focus on traceability in our implementation.

Interview results reveal that respondents needed new processes to be easy to adapt to.
Together with that insight and our observations of how the team currently works, we decided
to design our implementation to align well with their practices. Tools we decided to include
in our implementation were already used by the team, allowing an easy adoption. We also
opted to detach our implementation from other ways of working to make it adaptable while
using Scrum, which the CRM-team did.

We learned from the interviews that respondents had positive attitudes toward BDD and
were interested in using it. It was also used by the tester in the team already. These findings
speak for an openness towards adapting BDD. In the Test OKR, end-to-end testing was seen
as an important step in ensuring quality and they have encountered problems with collab-
orating across teams. Using BDD can improve collaboration due to the usage of a unified
language and view of testing.

To summarize, here is a concluding list of requirements for our implementation of BDD.
These requirements are extracted from the interviews.

IR1: The process should result in more test automation.

IR2: The process should lead to more clear requirements.

IR3: The process should lead to better fulfillment of requirements.

IR4: The process should yield more relevant tests.

IR5: The process should include traceability between requirements and tests.

IR6: The process should be easy to adopt.

The above-listed requirements, based on the results from interviews and meetings and
observation, constitute our understanding of the current situation at the IFE-department at
IKEA. Aiming toward our goal of investigating whether BDD can be implemented at IKEA
and the possible resulting benefits, we decided to consider the listed requirements in our
literature review and map them to a solution based on BDD. This is further discussed in
Section 6.3.

44

Chapter 6

Solution Design and Implementation

This chapter outlines the second step of our design research, Solution Design and Imple-
mentation. First, we conducted a literature review to determine how BDD has been applied
previously, and what impact it had. The methodology and results are described before we
conclude the review with how the results influence our implementation. The following sec-
tion covers our implementation, which was inspired by the results from the literature review.
To conclude the chapter, we discuss how our process fulfills the requirements of the imple-
mentation specified at the end of the last chapter.

6.1 Literature Review
We reviewed the literature on BDD, partly to investigate current implementations of BDD
before designing our own, partly to retrieve information for comparison to interview results,
both to strengthen our previous findings and to add other perspectives.

Some articles that we found when performing our literature review search were excluded
from the literature review, but included in Related Work 3. Others were included in both
Related Work and our literature review, since they were considered both to constitute inter-
esting previous work and provide useful information in our literature review.

6.1.1 Method
Based on the results from the problem conceptualization, we wanted to discover articles
about requirements, automation, relevant tools, and implementations of BDD. Kitchenham
and Charters propose guidelines for systematic literature reviews in software engineering
[40]. They state that the most important part of the review is to formulate questions, and
that other activities of the review must be centered around the questions. They describe
that the search process has to find studies relevant to the questions and that data needed
for answering the questions must be extracted and synthesised so that the questions can be

45

6. Solution Design and Implementation

answered. We followed these guidelines and formulated questions for our literature review.
They are defined below with a context linking back to our previous results.

What are the main benefits and challenges of BDD?
By understanding the potential benefits and challenges of BDD, we aimed to assess its
suitability as a solution to the issues identified in the problem conceptualization.

How can BDD be implemented?
By examining existing approaches to implementing BDD, we aimed to gain insights
into effective implementation strategies that could be adapted to our context.

How can automation be utilized when implementing BDD?
Automation was identified as a key ambition by respondents during interviews, re-
flecting a desire for increased efficiency in testing processes. By investigating the role
of automation within BDD implementations, we aimed to identify opportunities for
streamlining testing workflows.

Which tools can be utilized when implementing BDD?
This question addresses the need for identifying tools that can support the adoption of
BDD methodologies while aligning with existing processes and technologies currently
used within the IFE-department and the CRM-team.

How can requirements be handled when implementing BDD?
This question addresses the challenges surrounding requirements management high-
lighted during the problem conceptualization. The need for clear and fulfilled require-
ments was a recurring theme in both the interviews and meetings.

We formulated the search string so that we could retrieve articles that could answer these
questions. We extracted tools, automation and requirements as keywords for the search. The
answers are concluded in Section 6.1.3.

Search String
We conducted a few searches in LUBSearch using different variations of search terms ex-
tracted from our research questions. We started very widely with just BDD as a search term,
which resulted in a lot of articles that were far from our research topic. Quickly, we real-
ized BDD is also an abbreviation for Body dysmorphic disorder, hence we we added behavior-
driven and software to our search to ensure that only articles related to our domain were
retrieved. We also added additional keywords based on the questions mentioned above.
Kitchenham and Charters suggest that spelling variations should be used [40]. Therefore, we
added spelling variations of behavior-driven development and the asterisk (*) was applied
to cover variations of words. We placed the logical operator OR between tool*, automat*
and requirement* as we were interested in articles that touched on all three subjects, not
necessarily present in the same article.

The final search string used in LUBSearch is shown below. The search string was applied
to all fields, including title, abstract and subject terms. Using it resulted in 124 articles.

"Behavior Driven*" OR "Behavior-Driven*" OR "Behaviour Driven*" OR "Behaviour-
Driven*"
AND BDD

46

6.1 Literature Review

AND software
AND tool* OR automat* OR requirement*

Selection of Articles
To narrow our search and exclude articles lacking direct relevance to our literature review,
we filtered the results according to the following criteria:

Inclusions
IC1: Studies that investigate benefits and challenges of BDD
IC2: Studies that propose BDD processes or workflows
IC3: Studies that utilize automation aspects of BDD
IC4: Studies that investigate BDD tool usage
IC5: Studies that investigate BDD requirement handling

Exclusions
EC1: Studies that are duplicates
EC2: Studies that are not written in English
EC3: Studies that are not peer-reviewed
EC4: Studies where BDD is not the focus
EC5: Studies outside of the software development domain

The publication year span was automatically set to 2010-2023, which we did not change as
we thought it was a reasonable time frame for our search. Abstracts are often poorly written
in studies in the software development domain, therefore conclusions should also be reviewed
[40]. Hence, we decided to sift among the results by reading titles, abstracts and conclusions.
Some articles could be disregarded by just reading the title while others were considered until
we read the abstracts and conclusions. We judged their relevance to our study based on the
inclusion and exclusion criteria above. This procedure resulted in 18 articles that we studied
carefully and used as input to our implementation.

6.1.2 Result
We included 18 articles that were deemed relevant to our project based on the inclusion
and exclusion criteria above. Nine out of these 18 are also included in Related Work 3, [11]
[21] [22] [24] [25] [27] [28] [33] [34]. All 18 articles are divided into sections below, detailing
contents that correspond to the title of the section. The sections are based on the questions
formulated for the literature review.

Six articles described BDD processes. Four of them propose instances of BDD that could
be applied or abstracted to other contexts [21] [41] [22] [34]. Automation was seldom men-
tioned separately from a BDD process, therefore it is included in this section. The two re-
maining articles identify a few considerations when implementing BDD [42] [33].

Six articles included benefits and challenges of BDD. The four articles concerning BDD
processes are included, as they performed evaluations of their respective process. One of
these [41] and two additional articles [20] [11] have collected opinions on the benefits and
challenges of BDD in cases where BDD had already been used.

47

6. Solution Design and Implementation

Seven articles described tools that can be used for BDD. These include the four articles
presented in BDD processes, as we wanted to include the tools they leverage. The others
describe BDD tools in various ways [16] [13] [26].

Seven articles described different ways to produce requirements. Three consider visual
aids [27] [28] [25] and four discuss ontologies and templates as a way to structure requirements
[43] [44] [45] [24].

BDD Processes
Five BDD processes, P1-P5, from four different articles [21] [41] [22] [34], are included in
our literature review. We have identified their common steps, numbered from 1 to 4 and
presented boldly in Table 6.1. How detailed each step was in the different processes varied,
hence, we have combined smaller steps from the processes into larger more general ones in
the table. We did this to more easily describe the common steps. The table also contains
additional steps that were present in some of the processes but not all.

The steps of Table 6.1 are described in this paragraph. In P3, a search is performed to
find existing behaviors to allow for reuse of them. In step 1, all processes define new be-
haviors. Typically, the product owner (PO) collects requirements from the customer and
organizes them before communicating them to the team. Precisely how requirements were
transformed or mapped to user stories and behaviors varied between the five processes. Ad-
ditional refinement sessions with developers and testers occur in P1 and P4. Step 2 in Table
6.1 involves creating feature files with scenarios, which ranges from initially writing user sto-
ries to directly formatting BDD requirements. This task is accomplished by requirement and
verification engineers in P1 and by developers in the other processes. In step 3, the testers or
developers focus on test automation, defining step definitions and other code that may be
necessary for testing purposes. Subsequently, source code is implemented by the developers
in P1, P2 and P4. Finally, in step 4, tests are executed and results verified. The most frequently
mentioned benefits and challenges of the processes described in the articles are summarized
in Table 6.2. In the following paragraphs, we describe the studies of the processes.

Step Explanation Actor Process
Search for existing reusable behaviors Requirement Engineers, Domain Experts P3

1 Specify new behaviors Product Owner, Customer All
Refine behaviors Product Owner, Developers, Tester P1, P4

2 Create feature files with scenarios Requirement & Verification Engineers / Developers All
3 Test automation Tester / Developers All

Source code implementation Developers P1, P2, P4
4 Execute tests and validate results Tester, Developers All

Table 6.1: Steps of BDD Processes. The steps common for all pro-
cesses are numbered and marked in bold.

Scandaroli et al. conducted a case study investigating how two adoption processes of
BDD, P1 and P2, unfold in two different teams, one where the initiative came from the de-
velopment side and one where it originated from the business side [21]. P1 and P2 are slightly
different and adjusted to their corresponding team’s way of working.

Using a technology transfer model, Irshad et al. propose a BDD process, P3, for large-
scale software systems [41]. BDD was presented in workshops, and participants were asked to
identify potential challenges and benefits. Thereafter, a process was suggested and evaluated

48

6.1 Literature Review

through interviews in an industrial context. The process is defined abstractly and focuses
on the input and output of certain steps, and who is responsible for each step. Hence, the
authors suggest a way of working that can be adapted freely from a team’s internal way of
working and toolset.

Natarajan and Pichai conducted an action research study in a Scrum team where BDD
practices are proposed and adopted [22]. The team had identified areas for improvement that
aligned well with BDD principles. It included communication gaps, varying interpretations
of user stories, lack of detailed discussions with concrete examples, and inadequacies in user
story documentation. An instance of a BDD process was created and followed, and the team
members gave feedback on the process. In-sprint automation served as a key metric to mea-
sure the impact of BDD, and it showcased a substantial increase in the number of test cases
automated per sprint. To further validate these findings, a similar but improved approach,
P4 in Table 6.1, was applied to a second team. This process also resulted in a significant
improvement in in-sprint automation rates.

Carrera et al. used a BDD-driven approach to handle requirements and tests for multi-
agent systems [34]. A tool and a process, BEAST, was proposed with foundations in the
BDD methodology, adapted to suit the needs of multi-agent systems. The tool automatically
generates JUnit test cases skeletons from BDD scenarios. According to the evaluation in the
article, applying BDD in the context of MAS proved successful. The process, P5, is specific
to the context of MAS, but the BDD aspects are similar to the other processes. The steps that
are not strictly related to BDD are excluded from Table 6.1.

Contan et al. did not propose a BDD process but instead described three needs when
applying BDD [42]. These needs were: Reusing the implementation steps for the BDD scenar-
ios, Uncoupling the code sequences in business, testing and implementation models and Reader and
user-friendliness. Rahman and Gao also identified three needs, focused on microservices de-
velopment using BDD [33]. They were: Reusability of step implementations for BDD scenarios,
Separation of concern among developers, testers and business analysts and Ease of auditability. The
steps from the two different articles are very similar, but the last steps are the ones that differ
the most. While Contan et al. focused on the easy execution of scenarios, Rahman and Gao
highlighted the need for easy revision.

Benefits and Challenges of BDD
Three articles [41] [20] [11] were included in our literature review, they collected and dis-
cussed benefits and challenges of BDD. We also included the articles from BDD processes
that evaluate their respective processes. The most frequently mentioned opinions in the arti-
cles and aspects considered to be of relevance based on results from our interviews are listed
in Table 6.2 and 6.3. Irshad et al. performed workshops investigating BDD in a large-scale
context [41]. A systematic literature review is compiled by Farooq et al. [20]. Binamungu
et al. surveyed 75 BDD practitioners to gather opinions about BDD, focusing on challenges
regarding maintenance [11].

Tools
Several tools can be used when adapting BDD and the choice usually depends on which pro-
gramming language the team uses. Table 6.4 lists the tools present in seven articles included

49

6. Solution Design and Implementation

Benefits of BDD Reference and nature of study
Improves understanding of requirements Workshop [41], Survey [11]
Improves clarity of requirements Process Evaluation [22]
Improves quality of requirements Process Evaluation [41], Litera-

ture Review [20]
Improves requirement verification Literature Review [20]
Improves alignment of requirements Process Evaluation [41] [21]
Improves traceability between requirements and tests Process Evaluation [34]
BDD scenarios clarify system behavior Workshop [41]
Focuses on user needs Literature Review [20], Process

Evaluation [41]
Improves communication Literature Review [20], Survey

[11], Process Evaluation [41]
[21] [22] [34]

Improves collaboration Literature Review [20], Process
Evaluation [22]

Increases and streamlines test automation Process Evaluation [22]
Great reusability of code, scenarios and/or features Workshop [41]
Scenarios act as executable requirements Survey [11]
Improves organization of tests Workshop [41]
Increases confidence in tests and/or implementation Process Evaluation [21]
Improves code quality Literature Review [20], Survey

[11]
Improves documentation Process Evaluation [21] [22]
Reduces number of code lines Process Evaluation [34]

Table 6.2: Identified Benefits of BDD. Workshop, Survey and Lit-
erature Review cover opinions expressed in cases where BDD was
already used. Process Evaluation gathers opinions on when a spe-
cific BDD process was introduced and evaluated.

in our literature review. Three specifically discussed tools [16] [13] [26]. Cucumber, JBehave,
SpecFlow and RSpec are all BDD frameworks. FitNesse and Concordion are automated test-
ing frameworks with limited BDD support. Katalon is a quality management platform that
supports a wide range of testing frameworks, for example, Cucumber for BDD testing. Se-
lenium enables browser automation which is primarily used for UI-testing. Jenkins is an
automation server that automates parts of software development, namely building, testing
and deployment. Table 6.5 displays which tools were used for the various BDD processes
described previously.

Requirements
BDD requirements can be produced in different ways. This was discussed in seven articles
included in our literature review [27] [28] [25] [43] [44] [45] [24]. Requirements can be written
with or without support, or by using a low-code alternative. Patkar et al. state that stakehold-
ers perceive writing BDD scenarios as an overhead and perform an analysis of existing BDD

50

6.1 Literature Review

Challenges of BDD Reference and nature of study
Maintainance of requirements Workshop [41]
Poorly written requirements Literature Review [20]
Difficulty writing requirements Workshop [41]
Unclear requirements from POs Process Evaluation [21]
Might be expensive to implement Workshop [41], Literature Re-

view [20]
Difficulty writing test cases Workshop [41]
Duplicated test cases Literature Review [20]
Absence of instruction Literature Review [20]
Changes team’s traditional approach to software devel-
opment

Survey [11]

Hard to quantify benefits Survey [11]
Steep learning curve Survey [11], Workshop [41],

Literature Review [20]
It requires learning of new technologies Process Evaluation [41]
May lower team productivity Survey [11]
Dependence on far too many stakeholders Process Evaluation [41] [21]
Behaviors may be hard to define for large-scale systems Process Evaluation [41]
Time consuming to write BDD scenarios Process Evaluation [21]

Table 6.3: Identified challenges of BDD. Workshop, Survey and Lit-
erature Review cover opinions expressed in cases where BDD was
already used. Process Evaluation gathers opinions on when a spe-
cific BDD process was introduced and evaluated.

Tool Features References
Cucumber BDD Framework that supports several programming lan-

guages. Uses Gherkin syntax in .feature files
[16]

JBehave BDD Framework for Java. Supports JBehave and Gherkin
syntax

[16]

SpecFlow BDD Framework for .NET, uses Gherkin Syntax [16]
RSpec BDD Framework for Ruby, uses its own syntax. [13]
FitNesse Automated testing framework, limited BDD support [16]
Concordoin Automated testing framework, limited BDD support [16]
Katalon Testing and quality management platform. Supports

BDD through Cucumber.
[26]

JUnit Testing framework for Java. [34]
Selenium Web driver for browser automation, primarily used for

automated testing.
[22]

Jenkins Automation server for building, testing and deploying.
Commonly used for CI/CD.

[22]

Table 6.4: Tools for BDD and testing.

tools which shows that they all lack features needed to engage non-technical stakeholders

51

6. Solution Design and Implementation

Process Tools used References
P1 Cucumber (for Java) [21]
P2 JBehave, JUnit [21]
P3 Abstract process, no tool suggestions [41]
P4 Cucumber, Jenkins on Docker, JUnit, Selenium [22]
P5 JBehave, JUnit, MAS-specific tools [34]

Table 6.5: Tools used in processes described in Section 6.1.2.

[27]. Therefore, they suggest an approach of interacting with graphical interfaces rather than
letting stakeholders write scenarios themselves. Lubke and Van Lessen have also introduced
a visual tool to model requirements and tests [28]. In the author’s experience, the usage of
the tool led to better modeling of test cases and better communication between the involved
stakeholders. Another GUI tool for writing scenarios and generating test cases is presented
by Raharjana et al. [25].

Silva et al. state that it is difficult to write initial requirements using existing tools, and
address the issue with an ontology [43] [44]. A succeeding evaluative case study with four par-
ticipants conducted by the same authors reveals that Product Owners (POs) exhibit strong
adherence to the ontology, even in instances where they are unaware of its existence [45].
When presented with an example of a user story in BDD format utilizing templates from the
ontology, and subsequently writing their own stories, the majority of statements (62.26%)
drafted by the POs closely matched the templates.

Gupta et al. came to different conclusions when describing a template for writing BDD
scenarios [24]. It was expected to result in standardized statements and the authors assumed
that relevant fields would always be filled. However, a concluding limitation mentioned is
that it may not be the case in reality. How to ensure scenarios are always written correctly is
not specified by our implementation.

6.1.3 Influence of Results on Implementation
Here, the results from the 18 studied articles of the literature review are concluded. We also
discuss how the literature review results influenced our implementation.

We have identified four key steps common in five processes in four different articles,
presented in Table 6.1. These steps were: (1) Specify new behaviors, (2) Create feature files
with scenarios, (3) Test automation and (4) Execute tests and validate results. Apart from
these four steps, we identified two additional steps present in at least two processes: Refine
behaviors and Source code implementation.

The benefits achieved from the five processes are included in Table 6.2. Benefits raised
by the evaluation of these processes included improved communication and collaboration.
Using BDD improved the clarity, quality, and alignment of requirements. BDD focused on
scenarios and clarified system behaviors that acted as executable requirements. It improved
traceability between requirements and tests, as well as automation of tests. Using the pro-
cesses increased documentation and confidence in source code. Most of the benefits aligned
with the ambitions of the interview respondents and are therefore benefits we want to focus
on achieving. Hence, we chose to include the four common steps and the additional two
mentioned above in our process.

52

6.2 Implementation

Challenges mentioned from evaluations of the processes are that requirements were am-
biguous and that BDD scenarios were time-consuming to write. Other mentioned challenges
were dependence on too many stakeholders and that BDD requires learning new technologies.
Including more stakeholders was mentioned as a benefit of BDD in our interviews, indicating
that there are different opinions on the subject. The challenge of having to learn new tech-
nologies to use BDD coincides with our interview respondents’ need for a low threshold for
new methodologies. This need could constitute an obstacle when adopting BDD. However,
the benefits align very well and some learning is necessary to achieve the benefits. To avoid
the obstacle of learning new technologies, we decided to make our process easy to adopt by
tailoring it to the CRM-team’s conditions.

Maintainability is mentioned as a general challenge of BDD. We decided not to to focus
on the maintainability of our process since eventual maintainability issues tend to arise when
BDD already is in use and has been for a while. However, we decided to make our process
compatible with maintainability measures, which can be integrated at later stages. One mea-
sure is to specify a standardized way to write requirements as that can avoid maintainability
issues.

There exist several articles suggesting graphical interfaces to assist stakeholders when
writing requirements in BDD format. Ontologies are also possible to use to establish a com-
mon language, ensuring that requirements are not only written in the same format but also
using the same wording and structure of sentences. This could tackle the maintainability
issues mentioned previously. In our process, we decided not to focus on how requirements
are formulated apart from the structure BDD provides, due to time constraints. However,
either a graphical interface or ontology could be used to provide further assistance and make
requirements more standardized.

Table 6.4 lists tools that can be used with BDD for testing. These were Cucumber, JBe-
have, SpecFlow, RSpec, FitNesse, Concordion, Katalon, JUnit, Selenium, and Jenkins. We
decided to search for tools in the literature review to determine what is currently feasible by
BDD tools since it could be beneficial when creating our process. However, we decided to
describe our process abstractly and not specify any tools in our implementation of BDD to
make it more generalizable.

6.2 Implementation
Our implementation was created with input from the Problem Conceptualization in Chapter
5 and the literature review in Section 6.1. It consists of a process of twelve steps describing
a workflow that follows the BDD principles. It contains all four steps present in the BDD
processes studied in our literature review, gathered in Table 6.1. Our BDD process listed
in Table 6.6 focuses on clarity, reusability and fulfillment of requirements, uncoupling tests
from production code, traceability, test automation and a low adaptation threshold. We do
not specify any tools apart from Jira and GitHub. To define a relevant process we suggested
steps that were backed by our interviews. The literature review anchors the strength of our
suggestions. Hence, our process is evidence-based.

We experimented with Jira to familiarize ourselves with the environment and explore
existing features that could be utilized in our process. We investigated what kind of tickets
existed, the relations between them, how new ones could be created, and automation. This

53

6. Solution Design and Implementation

was done both on the CRM-team’s Jira board, which was an enterprise version, and on a sep-
arate board created on the non-enterprise version of Jira. The connection between GitHub
from Jira was explored, as well as GitHub Actions.

During the design of the process, we were in frequent contact with our industry supervi-
sor. They gave us feedback from IKEA’s perspective and described what would suit their work.
We based the information about the needs and wishes of coworkers at the IFE-department
on the Problem Conceptualization, Chapter 5, but additional aspects from our supervisor
helped us tailor the process to the CRM-team.

Some steps of the process are meant to be performed by a specific role. The roles consid-
ered were product owner (PO), developer and tester. Step 1 is carried out by the PO which
involves other roles as necessary. Steps 2-5 can be performed by any role, preferably by or in
collaboration with the PO to involve them in the process. Steps 6 and 7 are conducted by the
tester and steps 8, 9 and 10 by the developer. Steps 11 and 12 are relevant for everyone in the
team. When describing and discussing the process, the following terms will be used:

• REQ: An issue of the type Requirement. REQ always contains the latest, most updated
feature file.

• Ticket: An issue of the type Story connected to a REQ. Receives feature file of REQ
when created, does not get updated as REQ changes.

• Feature field: A field in an issue of type Requirement and Story, where BDD-requirements
are viewed and edited.

• Feature file: The content of the feature field constitutes the feature file.

Everything related to tickets refers to Jira. The issue type Requirement was not prede-
fined in Jira, so we created a new type that contained a feature field. Branches are located in
GitHub. Figure 6.1 describes the information flows and illustrates where various parts of the
process are located.

REQ A

JiraGitHub

Test Repo

Production Repo

RequirementsTickets

Task 1

Feature file
(source of truth)

Feature file

Task 2
Feature file

Copy at creation

Copy at creation

Updates

Updates

Task_1_test_branch

Task_2_test_branch

Scenario 1

Impl. Scenario 1

Scenario 2

Impl. Scenario 2

Tests fail

Task_1_branch

Task_2_branch

Main

Tests pass

Tests pass

Tests fail

Figure 6.1: Overview of flows in our process.

Table 6.6 below lists the steps of our process, together with motivations emphasizing the
reason for including each step. Motivations regarding the literature review are marked as

54

6.2 Implementation

(LR). By considering aspects from other processes, our process could achieve similar benefits
as them. Motivations regarding the interviews are focused on respondents’ needs and are
marked as (INT).

Step Description Motivation Role
1 Specify behaviors

The requirements are discussed and set.
Corresponds to Step 1 in
Table 6.1.

PO

2 Search for existing feature file
The search is filtered on the label BDD-
feature and issue type Requirement.
a) If file does exist
The existing REQ is found after search-
ing for relevant terms and words in-
cluded in the feature field of REQ.
b) If file does not exist
No REQ is found and a new one with
an empty feature file is created as an is-
sue of the type Requirement and labeled
BDD-feature.

Part of process P3 in Sec-
tion 6.1.2 (LR [41]).
Reusability of requirements
avoids duplicated REQs
and scenarios (LR [41]).

PO

3 Create a ticket and connect to REQ
The REQ found or created is linked to
the new ticket. This triggers a Jira au-
tomation which invokes the next step.

Traceability between new
requirement and feature file
(INT).
REQ is the source of truth,
providing clarity of require-
ments (INT) (LR [41] [22]).

PO

4 Import copy of feature file
The content of the feature field of the
REQ is automatically copied into the
feature field of the new ticket.

Traceability between dif-
ferent versions of the fea-
ture file (INT), tackling the
challenge of version control
of requirements in BDD
(LR [41]).
Automation (INT).

Auto

5 Edit feature field
A change is made to the feature field of
the new ticket according to the new re-
quirement. The change is highlighted.
As the ticket is saved, the feature field
of the related REQ is updated.

Corresponds to Step 2 in
Table 6.1.
REQ is the source of truth,
providing clarity of require-
ments (INT) (LR [41] [22]).
Traceability between dif-
ferent versions of the fea-
ture file (INT), tackling the
challenge of version control
of requirements in BDD
(LR [41]).

Tester

55

6. Solution Design and Implementation

Step Description Motivation Role
6 Create a branch on the test repo on

GitHub
The tester opens the ticket and clicks
create branch. The feature file on GitHub
is updated according to the change in
the ticket.

Traceability between tests
and requirements due to au-
tomatic updates of the fea-
ture file (INT) (LR [34]),
which ensures correctness
between Jira and GitHub.
Separate repositories to un-
couple tests and production
code (LR [42]).

Tester

7 Implement step definitions and merge
test branch
Type signatures and Gherkin tags de-
scribing the corresponding statements
(Given, When or Then) for step defini-
tions are suggested based on the new re-
quirement. The tester implements code
for the step definitions and merges the
branch.

Test automation (INT) (LR
[11] [22]).
Corresponds to Step 3 in
Table 6.1.

Tester

8 Create a branch on production repo on
GitHub
The assigned developer opens the ticket
and clicks create branch. A branch for the
ticket and its scenario is created on the
production repo on GitHub.

Separate repositories to un-
couple tests and production
code (LR [42]).
Traceability between
branch and ticket due to
automatic branch naming
and visibility of the branch
in the ticket (INT).

Developer

9 Implement production code
The developer implements production
code on the created branch.

Code is implemented after
tests to follow TDD princi-
ple included in BDD.

Developer

10 Merge the production branch on
GitHub
GitHub Actions triggers the execution
of the tests at the merge and blocks it
until all tests pass.
A merge request is then raised and peer-
reviewed by two other developers in the
team. When accepted, the branch is
merged and closed.

Reliance on tests facilitates
the process and improves
confidence and reduces
error proneness along with
peer reviews (INT) (LR
[21]).

Developer

56

6.3 Fulfillment of the Requirements on the Implementation

Step Description Motivation Role
11 View test results

Test results are visible in Jira. The re-
sults for individual scenarios are pre-
sented in their respective tickets. REQs
show results for the corresponding fea-
ture file.

Visibility and validation of
test results, enabling tests
as quality assurance (INT).
Corresponds to Step 4 in
Table 6.1.

Any

12 View feature history
The history of a feature file is stored in
the REQ. Related tickets are linked and
their contributions can be found in their
respective feature fields.

Traceability between dif-
ferent versions of the fea-
ture file (INT), tackling the
challenge of version control
of requirements in BDD
(LR [41]).
Living documentation (LR)
[22] [21].

Any

Table 6.6: Our BDD process.

6.3 Fulfillment of the Requirements on the
Implementation

Our process follows BDD principles, introducing a structured way of working with tests and
requirements and establishing clear connections between them. It is aimed to be used for Jira
tickets where BDD is suitable. This may not be the case for e.g. internal changes and small
updates. However, BDD should be applicable for a majority of requirements for a product
such as the CRM-team’s, where a UI is central. Below, we discuss how our process fulfills the
requirements of our implementation listed in Section 5.3.

Our process leads to more clear requirements [IR2] and better fulfillment of them [IR3],
two of the requirements for our implementation. By following BDD principles on how to
write requirements, through using for example Gherkin, the requirements will be clearly
expressed and documented. Having clear requirements facilitates fulfillment of them since
all involved employees know what is expected. It is easy to view if requirements are fulfilled.
Tests are based on the requirements and passed tests are therefore equivalent to fulfilled
requirements, and test results are displayed directly in Jira. How much more clear and how
much better the requirements become after applying our process is not yet determined, but
can be evaluated through comparisons of how often requirements have to be clarified and
through comparisons of the proportion of fulfilled requirements. The number of fulfilled
requirements can be hard to measure in teams at the IFE-department who do not have a
definition of done. Instead, surveys can be conducted to collect employees’ opinions.

Relevant tests [IR4] is a consequence of applying our process, and a requirement of our
implementation. Our process, following the principles of BDD, emphasizes writing tests
based on the expected behavior of the application, which naturally leads to creating tests
that are directly relevant to the requirements and use cases of the software. When a new

57

6. Solution Design and Implementation

requirement is added, or if one is changed, the step definitions that make up the test have to
be changed accordingly, based on suggestions that are provided according to our process. If a
requirement is removed, the corresponding test is no longer run, even though it still exists in
the code base. Hence, all tests that are run are kept relevant. How much applying our process
impacts test relevance can be measured by determining what percentage of requirements have
corresponding test cases before and after applying it.

Applying our process results in more test automation [IR1], and automation was a re-
quirement of our process. Step definitions are automatically suggested based on new or al-
tered requirements. The tests are run automatically upon changes in production code, and
the test results can be viewed in Jira. Feature files are updated and fetched automatically both
within Jira and on the test branch on GitHub. There is also automatic naming and creation of
branches on GitHub through the tickets in Jira. How much our process has resulted in more
test automation can be measured by determining the test coverage of the automated tests.
Since some respondents in our interviews mentioned that creating tests often is deprioritized
and moved ahead to following sprints, one could also measure in-sprint automation, i.e. how
many tests the developers manage to automate within a sprint before and after applying the
process.

Easy adoption [IR6] was a requirement of our process. Our process aims to be natural
and easy to adopt while contributing to improved quality. Due to the process being BDD
tool agnostic, i.e. not dependent on specific tools, its generalizability is high. However, our
knowledge of tools from the literature was beneficial when creating our process, as we knew
how various tools could be leveraged when applying the process and what is currently feasi-
ble. To meet the requirement that the process should be easy to adopt, we decided that the
environment of the process should be the one currently used in the CRM-team, i.e. Jira and
Github. We did however not investigate alternatives due to our focus on creating an easily
adopted process. How easy the process is to adopt can be measured through user feedback
and surveys.

The inclusion of traceability between requirements and tests [IR5] is part of our process.
Traceability was found to be of high interest to the interview respondents, especially between
tests and requirements. We achieve this both since tests are built on requirements and since
the requirements are linked to Jira tickets, which also are connected to test branches. We also
achieve traceability by connecting Jira tickets to REQs, and having the possibility to view test
results in both of them. Traceability between different versions of feature files is provided.
The requirements history can be found in Jira tickets and REQs, as well as in GitHubs version
history. The requirement on our implementation regarding traceability was that it should be
included, which it is. The proportion of tests that are connected to requirements can be used
as a metric for measuring this requirement.

Our process is aimed to be applied within a software development team in general, and
is tailored to fit the CRM-team. Therefore, we decided to evaluate the process with them
specifically. After creating the process, we decided to get feedback from the CRM-team to
investigate what could be improved before potentially applying the process.

58

6.4 Limitations of Implementation

6.4 Limitations of Implementation
Most steps of the process are feasible and have been performed by us. However, some of
them have limitations. Due to time constraints, we have not investigated these limitations
further. In a further iteration of our process, the limitations should be investigated, since
an implementation of them would improve the process. The limitations are, together with
possible solutions, listed below:

• The highlighting of the current changes can not be done automatically. An alternative
is to write the addition in bold to make it differ from the recent scenarios.

• Updates of the feature field of the req issue may overwrite content. This will occur
when several tickets are ongoing simultaneously. When the tickets are created, they
will retrieve the current version of the feature file. If a ticket is created while another
one is already ongoing and not yet finished, only the change from the latest finished
ticket will remain in the REQ, since it will overwrite the other version. This issue could
preferably be solved by implementing version control. For now, we suggest that there
is no more than one ongoing change of a ticket at any time.

• External plugins such as the GitHub plugin for Jira are blocked for IKEA’s Jira projects.
This could be worked around with webhooks to GCP (Google Cloud Platform) func-
tions together with Jira and GitHub automation.

• Test results can not be viewed directly in the ticket or the REQ. With Cucumber, the
results can be retrieved and presented nicely in a separate section in Jira, but not in
the tickets or REQs.

59

6. Solution Design and Implementation

60

Chapter 7

Evaluation

The third and last step of our design research, Evaluation, is outlined in this chapter. We
begin with describing the method and results of the evaluative workshop we performed. The
results are then summarized and discussed. We finish the chapter with suggestions for a
further evaluation.

7.1 Workshop
Our process was evaluated in a workshop session of 45 minutes with the CRM-team. The
setup of the workshop is described below, followed by a presentation of the results and a
conclusion of them, and a discussion of the performed evaluation.

7.1.1 Method
We presented the process to five members of the CRM-team during the workshop. Two of
them were also respondents of our interviews in Section 5.1, one of the two and another of
the five participants were included in meetings described in Section 5.2. The remaining two
were not previously included in our design research activities.

We had an open discussion during the workshop, so the participants were allowed to
ask questions, discuss and compare our process with how they work currently. Afterward,
the participants were asked to fill out a small anonymous survey that contained questions
about the process. Nine questions required answers put on a linear scale from 1 to 5, where
1 meant Completely disagree and 5 meant Completely agree. These questions were derived from
the requirements of our implementation, Table 7.1 presents which of the requirements IR1-
IR6 each question relates to. The final three questions were free text and touched on benefits,
negatives and general thoughts about the process. The questions are outlined in table 7.1.

61

7. Evaluation

Question Scale Requirement
1 The process seems difficult to adapt to. 1-5 IR6
2 The process would improve traceability between re-

quirements and test cases.
1-5 IR5

3 The process would improve quality assurance in the
team.

1-5 IR3

4 The process would help ensure that requirements are
fulfilled.

1-5 IR3

5 The process would improve my understanding of re-
quirements.

1-5 IR2

6 The process would improve the testing in the team. 1-5 IR1, IR4
7 The process would improve the test relevance in the

team.
1-5 IR4

8 I would not have to change much in my way of working
to be able to adapt to the process.

1-5 IR6

9 I would want the team to adapt to the process. 1-5 All
10 What is good about the process? Free text
11 How could the process be improved? Free text
12 Do you want to add anything else? Free text

Table 7.1: Survey to evaluate the process.

7.1.2 Results
The results of the workshop are divided into two parts based on their nature; free text answers
and linear scale answers.

Free text answers
All participants answered at least one of the three free text questions. Their responses are
summarized below under each corresponding question. The participants are labeled from P1
to P4 based on the order of submission of the survey.

What is good about the process?
P2, P3 and P4 wrote that the process would improve the clarity, readability and trace-
ability of requirements and test cases. P3 argued that it adapts BDD well and would
improve the quality assurance of their product. P4 mentioned the benefit of require-
ments as documentation in the process, as well as having a great automation potential:
"[. . .] In a perfect world where all the step definitions for the system were in place, this would
ensure that tests can be generated on the fly as requirements are added or changed. Today the
process is very cumbersome, as our tester would need to go through each affected test and correct
it.".

How could the process be improved?
P2 saw an improvement in having the linkage between the requirement to task in the
opposite direction as well, i.e. to propagate changes from the requirement to all linked
tasks.

62

7.1 Workshop

P4 wrote that it would be fantastic if the feature file is automatically sent from Jira to
git when a branch is created, and if step definitions could automatically be created. P4
continued by noting that stakeholders often prefer a low bar for adaptation, expressing
that they typically prefer crafting requirements according to their preferences, thereby
complicating adherence to a predefined structure. However, the participant had a po-
tential solution to the problem: "One of our engineers said it could be worth it to investigate
the possibility of having a generative AI analyze the requirements produced by the stakeholder,
and have it link it up to existing step definitions.". The participant also mentioned the abil-
ity to generate a report with the results and automatically deprecate old requirements
in Jira as potential improvements to the process.

P3 was skeptical, not of the process itself, but of implementing it: "Not really a critique
of the process, but rather that it would require a large overhaul of the ways of working. It feels
like it would take a lot of work to get in place."

Do you want to add anything else?
P4 wrote that they are optimistic about our solution. P1 emphasized the importance
of having a process like ours in place while allowing for agile flexibility: "I would say
we need a process like this to assure the quality of our service. Especially so for established
features which should not break when development is continued. I think it has its place, but
experimentation and agility is important to keep in mind, so perhaps it should not be used all
the time (especially for proof of concepts and experimental implementations)."

Linear scale answers
The answers to the linear scale questions are presented in Figures 7.1, 7.2, 7.3 and 7.4. The
horizontal axis represents the answers put on a scale from 1 to 5, where 1 meant Completely dis-
agree and 5 meant Completely agree. The vertical axis indicates how many respondents selected
a certain number on the scale.

N
um

be
r o

f r
es

po
ns

es

0

1

2

3

4

1 2 3 4 5

The process would improve traceability
between requirements and test cases.

(a) Question 2

N
um

be
r o

f r
es

po
ns

es

0

1

2

3

4

1 2 3 4 5

The process would improve quality
assurance in the team.

(b) Question 3

Figure 7.1: Survey questions 2 and 3.

63

7. Evaluation

As seen in Figure 7.1a, all survey respondents agreed completely that the process would
improve traceability between requirements and test cases [IR5]. The respondents also be-
lieved that quality assurance would be improved by adopting the process [IR3] according to
Figure 7.1b.

N
um

be
r o

f r
es

po
ns

es

0

1

2

3

4

1 2 3 4 5

The process would help ensure that
requirements are fulfilled.

(a) Question 4

N
um

be
r o

f r
es

po
ns

es

0

1

2

3

4

1 2 3 4 5

The process would improve my
understanding of requirements.

(b) Question 5

Figure 7.2: Survey questions 4 and 5.

The results of Figure 7.2a indicate that all respondents believe that the process would
help ensure that requirements are fulfilled [IR3]. They also strongly believe that their under-
standing of requirements would be improved when using the process [IR2], as illustrated in
Figure 7.2b.

N
um

be
r o

f r
es

po
ns

es

0

1

2

3

4

1 2 3 4 5

The process would improve the testing
in the team.

(a) Question 6

N
um

be
r o

f r
es

po
ns

es

0

1

2

3

4

1 2 3 4 5

The process would improve the test
relevance in the team.

(b) Question 7

Figure 7.3: Survey questions 6 and 7.

The respondents answered that both testing in general and test relevance would be im-
proved by adapting to the process [IR1] [IR4]. The answers are presented in Figures 7.3a and
7.3b.

64

7.1 Workshop

N
um

be
r o

f r
es

po
ns

es

0

1

2

3

4

1 2 3 4 5

The process seems difficult to adapt to.

(a) Question 1

N
um

be
r o

f r
es

po
ns

es

0

1

2

3

4

1 2 3 4 5

I would not have to change much in my way of
working to be able to adapt to the process.

(b) Question 8

N
um

be
r o

f r
es

po
ns

es

0

1

2

3

4

1 2 3 4 5

I would want the team to adapt to the
process.

(c) Question 9

Figure 7.4: Survey questions 1, 8 and 9.

There were different opinions on whether the process seemed difficult to adapt to [IR6]
as seen in Figure 7.4a, and most answered that they would have to change their way of working
in order to adapt to the process [IR6], presented in Figure 7.4b. Figure 7.4c shows that half
of the respondents would want their team to adapt to the process, while the other half were
negative towards adopting it.

7.1.3 Summary and Discussion of Results
Half of the respondents had a skeptical attitude toward adapting to the process, and some
answered that they did not want the CRM-team to adapt to the process. However, all re-
spondents answered that the process could lead to the benefits we asked about and were
prominent in the ambitions of the interview respondents.

Improvements mentioned by the participants are valuable when considering further iter-

65

7. Evaluation

ations of our process. However, a few of the mentioned improvements were already included
in the process. These improvements were to automatically send the feature file from Jira to
git and automatically create step definitions. The rest of them could act as a foundation for
improved versions of our process.

A skepticism towards applying the process due to the time and effort required could
be seen in the linear scale answers of the survey. This finding aligns with results from our
literature review, where steep learning curve and might be expensive to implement are two of the
presented challenges. It is reasonable to assume that there exists a conjunction between the
skepticism of the survey respondents towards adopting the process and the answers saying
that the process seems difficult to adapt to as well as the ones stating that the participants
would have to change much in their way of working to be able to adapt to the process. Other
reasons behind the skepticism are not covered by the linear scale answers, but one participant
emphasized the required work to adapt the process. The respondents’ answers indicate that
easy adoption is more important than achieving the benefits we asked about in the survey. All
respondents answered that adapting the process would imply the benefits we asked about,
but there was still skepticism towards adopting it. This suggests that improved instances
of the process should show further consideration for a low threshold when introducing the
process.

We did not perform further evaluation due to time constraints. Results from the work-
shop can however be considered as starting points for what to dive deeper into in a further
evaluation.

7.2 Further Evaluation
The process was evaluated in a workshop presented in Section 7.1 held with developers and
the tester in the CRM-team. Our workshop can work as a reference for how the process
could be experienced in a team as well as a collection of opinions on a theoretical level. Due
to the constrained time, we could not test the process in practice within the team. It may
however not be viewed as a complete evaluation. A more rigorous evaluation did not fit into
this thesis but is described in this section and can be conducted in future work.

In future evaluations, the process as a whole should be applied in practice to a team.
It could be either the CRM-team or any other team at the IFE-department, depending on
resources. Venable et al. present a framework for how the evaluation of a design science pro-
cess could be done [46]. They do not state for how long the evaluation phase should last, but
we have used their evaluation as a benchmark. The average duration of the type of projects
the framework was evaluated in was three months. This is equivalent to six sprints in the
CRM-team. Before these six sprints of evaluation, the before-metrics mentioned in Section
6.3 related to the requirements on the implementation in Section 5.3 should be measured
during two sprints as the team continues working as presently. Thereafter, during the eval-
uative six sprints, the team should work according to the process. The researchers then take
measurements to compare with the previous state to gain an indication of how much the re-
quirements that were set for our implementation have been improved. The members of the
team should then be interviewed about their experiences. Observations of the requirements,
tests, and production code, along with conducting interviews, should also be performed to
give the researchers insights which can further indicate whether the requirements of the im-

66

7.2 Further Evaluation

plementation are fulfilled and help improve the process in future iterations.
Venable et al. list three goals of evaluation design. These are rigor, efficiency and ethics, and

we will use them to describe and motivate how future evaluation of our proposed process can
be performed.

Rigor
Efficacy is one aspect, meaning that it has to be the implementation itself that leads to
observed improvement. Other, independent factors may not be the reason for the im-
provement. Another aspect is effectiveness, the implementation must work in practice.
To evaluate the implementation in terms of rigor, both aspects need to be considered.
However, that may not be possible if the test period is relatively long. On the other
hand, it would be hard to evaluate the efficacy if the period of applying the process were
too short. Six sprints should be enough to avoid collision with other changes within the
team and a reasonable period for the team to avoid other significant changes. When
the test period occurs can affect the effectiveness. Different phases of the work within
the team adopting the process may come with different challenges. The CRM-team’s
product is currently live and they have a consistent flow of incoming requirements,
where BDD could be used. While that part is suitable for applying the process, one
constraint at the moment is the current limitations with the process, which need to be
fixed in order to actually enable all steps.

Efficiency
The second goal listed by Venable et al. is that the evaluation should work despite, or
minimize, constraints of resources. The team must allocate some time to start working
on the process. To make the test period as smooth as possible, the researchers should
prepare the team well before starting the evaluation by informing them about the pro-
cess. The test period should also not be too long, both due to the rigor goal and to be
careful with people’s time. As long as the previously described issue with the team’s
Jira connection to GitHub is solved, resources other than time should not be a barrier.

Ethics
The evaluation may not cause any unnecessary risks to animals, people, organizations
or the public. Implementing the process as it is described in Section 6.2 requires
GitHub to be integrated into Jira, which may expose the organization. This is cur-
rently not possible due to safety restrictions. The benefits must be weighed against
the risks before allowing the integration and using it in the evaluation. Risks regard-
ing animals, people and the public should not be possible.

67

7. Evaluation

68

Chapter 8

Discussion

In this chapter, we discuss our research questions RQ1 and RQ2. We also discuss some validity
threats of the three steps of our design research, focusing on the undertaking of the activities.
Thereafter, the generalizability and ethics are covered. The chapter is rounded off with a
section describing future work.

8.1 What is the current state of software
testing at the IFE-department at IKEA?

(a) How relevant are the tests?
The tests of the teams at the IFE-department are not relevant enough. Testing is often not
prioritized in sprints, according to the interview results. Irrelevant and too few tests lead
to issues related to quality assurance and system stability. The current testing state must be
improved to fulfill interview respondents’ needs and wishes since many of them currently
are unsatisfied. However, there exist ambitions to improve the testing. On a team level,
ambitions for testing include implementing UI tests, leveraging Gherkin, and end-to-end
tests, with a desire for more automation.

(b) How are requirements ensured to be fulfilled?
The process for ensuring that requirements are fulfilled differs between teams at the IFE-
department. Some teams use various forms of quality assurance to make sure that their re-
quirements are fulfilled. Testing, peer reviews, feedback from users, monitoring tools, and
dashboards are leveraged, according to respondents. Most teams also have a definition of
done in place. Some respondents viewed a finished ticket, met requirements, or fulfilled
acceptance criteria in Jira as being done. Others had more loose descriptions, saying require-

69

8. Discussion

ments are fulfilled when the problem is solved or the functionality works well enough. Some
said there is flexibility in the definitions depending on the task at hand.

Teams without a definition of done or any quality assurance lack proper ways to ensure
requirements are fulfilled. Respondents viewed its importance differently, and not every-
one had considered how they make sure that their requirements are fulfilled or do not even
have requirements for their product in place. Having a definition of done was regarded as
superfluous by a respondent and by others it was regarded as unnecessary since people had
different opinions on its purpose.

The issues that exist with requirement handling probably make it difficult to fulfill re-
quirements. Challenges related to connecting requirements with testing and communicating
them properly make the purpose of the requirements vague. The requirements themselves
are often not planned adequately, resulting in unclear requirements that often lead to mis-
understandings. Hence, the requirements have to be changed often and require a lot of un-
necessary communication and time for several stakeholders. Combined with emphasizing
delivery speed over quality, it is difficult to ensure that requirements are fulfilled and that
the product is functioning as expected.

Improving requirement handling and how they are ensured to be fulfilled across all teams
in the IFE-department is essential. Requirements should be in place to prioritize the cus-
tomer and ensure its satisfaction, respondents in our interviews said. It is relied upon to avoid
things breaking, while also encouraging developers to understand the needs of the users.

8.2 How can BDD improve the state of soft-
ware testing at the IFE-department at
IKEA?

The learning curve, difficulty in writing test cases due to its structured nature and poten-
tial impact on productivity are acknowledged as challenges associated with BDD in both our
interviews and the literature review. Challenges related to resistance to change and the per-
ceived difficulty of adapting to the suggested BDD process are highlighted in our evaluation.
However, our results indicate that our process and BDD provide a lot of improvements that
respondents in the interviews are seeking.

(a) Can BDD help the IFE-department to have more relevant
tests?
Implementing BDD at IKEA can lead to more relevant tests and generally enhanced testing
processes. This conclusion is derived from both the problem conceptualization and the litera-
ture review, where we learned about needs of the employees and what BDD could contribute,
as well as from our process evaluation, where we investigated one instance of BDD.

Generally, BDD practices emphasize aligning tests with requirements and user behav-
iors, increasing the relevance of tests as the tests act as executable requirements. BDD also
improves the organization of tests due to its structured nature of requirements that are in-
terlinked.

70

8.2 How can BDD improve the state of software testing at the IFE-department at IKEA?

Test automation is incorporated in BDD and a key aspect of test relevance since it reduces
work and keeps tests up to date. This implies that using BDD would be beneficial for the
test relevance. Implementing automation was an ambition of a lot of respondents in our
interviews and already used in the CRM-team.

The tester of the CRM-team is leveraging Gherkin when writing UI tests to automate
their testing workflow. This indicates that they already experience some of the benefits of
BDD, and are open to establishing it more to increase the test relevance. The CRM-team also
uses automation in GitHub Actions to trigger the execution of unit tests, as we learned from
our meetings and observations.

Our BDD process leverage automation which reduces time spent on testing. It should
eliminate pushing the implementation of tests forward to the next sprint, as they are incor-
porated into the daily workflow of all stakeholders. Implementing our process would improve
the testing including the test relevance within the CRM-team, according to the workshop
evaluation.

(b) Can BDD help the IFE-department in ensuring that require-
ments are fulfilled?
Establishing BDD at IKEA can lead to enhanced quality assurance, ensuring better fulfillment
of requirements. This conclusion is derived using results from all steps of our design research.

BDD involves all stakeholders, including Product Owners (POs), in the requirement pro-
cess, improving collaboration and communication leading to a better understanding of sys-
tem behavior, according to the studied literature. Interview respondents highlighted the
importance of involving POs more to improve requirement handling. The Test OKR be-
lieves BDD is central to achieving better collaboration and communication across the IFE-
department. In teams, our BDD process fosters collaboration at every step, ensuring every-
one is aligned. Workshop evaluations indicate that participants believe our process enhances
their understanding of requirements, which in turn ensures they can be fulfilled.

Traceability between requirements and tests is fundamental in BDD for verifying require-
ment fulfillment. Traceability was a focus of improvement according to respondents in our
interviews, who also believed BDD could enhance it. Literature also highlights traceability
as a key benefit of BDD, since requirements serve as acceptance criteria, with tests directly
derived from them. By leveraging tools currently used within IKEA like Jira and GitHub,
our process enhances traceability, enabling easy tracking of requirements through test out-
comes and related production and test branches on GitHub. Visibility of test results in Jira
ensures that everyone remains updated on requirement fulfillment status. Workshop evalu-
ation results further support the belief that our process enhances traceability between tests
and requirements.

Improved quality of requirements, a benefit of BDD seen in the literature review, can
lead to fulfillment by ensuring that the requirements accurately reflect the needs and expec-
tations of stakeholders. When requirements are well-defined, it becomes easier for devel-
opment teams to understand and implement them correctly, a wish that was mentioned in
our interviews. This reduces the likelihood of misinterpretation or misunderstandings, ulti-
mately resulting in a higher probability of meeting stakeholder expectations and achieving
the desired outcomes. Additionally, clear and high-quality requirements facilitate more ef-
fective testing and validation processes, allowing teams to verify that the delivered solutions

71

8. Discussion

align with the specified requirements, thus enhancing fulfillment. Ensuring a standard of re-
quirements across the teams in the IFE-department, just like the Test OKR aims to do with
BDD, will also facilitate easier collaboration. Workshop evaluation results suggest that par-
ticipants see potential in our suggested BDD process to improve quality assurance and ensure
requirements fulfillment, although some anticipate significant changes in their current way
of working, just like the interview results indicated.

8.3 Threats of Validity
For each step of our design research, we have identified a few validity threats that we discuss
in this section. They should be considered if our work is applied or continued.

Altering how many respondents, who we chose to interview and which questions we
asked could have improved our problem conceptualization. We chose to interview respon-
dents from at least five of the 19 IFE-department teams, ensuring a roughly equal number
from each team to balance coverage. Sixteen respondents were deemed sufficient to identify
trends and draw representative conclusions for the entire department. However, interview-
ing more engineering managers (EM) could have led to better insights, as they are involved
in several teams and already have a good understanding of what works and what does not
in different teams. We also realized our questions were mainly oriented toward developers
rather than product owners (PO), leading to some difficulties for POs in answering. Sepa-
rate questions for POs and developers could have provided better insights, leveraging their
respective expertise.

We split longer answers from respondents into smaller codes when analyzing the inter-
view data. One consequence of this was that we lost context of the answers. For example,
recording Do not use sprints instead of Do not use sprints because of . . . did not entail a context
that could help us assess whether it was a positive, neutral or negative statement. Being more
specific would have increased the workload when grouping the codes into categories and
themes, but could have made some of the results more meaningful. Another consequence of
the split codes was that we did not conder causality between them. For example, if a respon-
dent said that they found their current testing perfect and also that they were not interested
in using BDD, a possible conclusion to draw is that the respondent does not want to spend
time on improving something that they consider to be flawless. If we had connected the
codes instead of treating them individually, it could have resulted in interesting conclusions.
However, there would be a risk of drawing conclusions where no causality exists.

In our literature review, a validity threat is that our search was narrow and did not con-
sider alternative solutions to BDD. The search terms could have been broader to include more
articles. For example, test* could have been added after another OR, as a narrow search risked
that interesting articles were left out. However, we did receive a sufficient amount of articles
with different perspectives and focuses in our search. Another aspect of our choice of search
terms is that we explicitly searched for articles concerning BDD, meaning we did not read
about alternative solutions. Since our research questions are based on BDD, and IKEA had an
interest in it, other methods were out of our scope despite what they could have contributed.

Another validity threat is that our evaluation was rather small. Due to time constraints,
we could not perform a more comprehensive evaluation. The workshop does however consti-
tute an important first evaluation, which could be utilized both to improve the process and

72

8.4 Generalizability

for designing future evaluations. To collect the feedback from the workshop participants, we
conducted a survey. Unfortunately, one of the five participants did not respond. One person
constitutes a relatively large percentage of the total in this case, and one more respondent
could have added valuable information and contributed to a more extensive result. We do
nevertheless consider the results representative for the CRM-team.

8.4 Generalizability
The scope of our research questions is the IFE-department at IKEA and the design research
acitivites had different perspectives. The generalizability is however high for both RQ1 and
RQ2, and the results can be adapted to different levels of detail. Inside IKEA, we focused on
the whole IFE-department in the interviews in the Problem Conceptualization, Chapter 5.
We believe that the respondents were chosen so that they represented the whole department.
Because of this, the results apply to most, if not all, teams within the IFE-department. The
results are more substantial than if we had included only the CRM-team due to the number
of respondents as well as their distribution between teams.

Our implementation is designed with the CRM-team in mind. We used interview results
as input since they represent the department in which the CRM-team is included. Combined
with team-specific results from the meetings and observations and findings from academia
retrieved in our literature review, the implementation input had a suitable diversity.

All participants in the evaluation workshop were members of the CRM-team. Their
response does not only represent their team’s attitudes towards our process but also indicates
how the IFE-department would find it. The similarities in the interview answers between
teams in the IFE-department indicate that different teams experience similar issues regarding
testing and requirement handling, denoting that they would benefit from similar solutions.

Apart from suiting the CRM-team and the IFE-department, we believe that the process
can be applied to teams in other departments at IKEA also working with software engi-
neering, as long as they work similarly to teams within the IFE-department. The literature
review is not connected to the IFE-department and is therefore relevant to other depart-
ments. The interview results also have high generalizability and the respondents’ opinions
can conceivably be consistent with opinions of employees from other departments similar to
the IFE-department.

The majority of our contribution can also be used in contexts outside of IKEA. Results
from the Problem Conceptualization, Chapter 5, are specific to IKEA but were found to be
similar to other environments when compared to the literature review results. The results of
the literature review are not related to IKEA and can be applied in any relevant setting. Our
process could also be used outside of IKEA. Assuming that the test and requirement state
are similar for other companies operating in the software development domain, our process
has a high generalizability. However, it was designed to fit the CRM-team, and is therefore
influenced by them through the meetings and observations results. If the assumption of sim-
ilar states is false, the generalizability may be lowered. Our process is however based upon an
extensive literature review where other processes were used as inspiration; therefore, it could
be abstracted to suit the needs of teams working in similar fashions (without explicitly using
Jira and GitHub).

73

8. Discussion

8.5 Ethics
We stored sensitive data, mainly collected from the interviews, meetings and observations,
securely. All documents were created with IKEA accounts to keep the information within
the organization. By asking for interview respondents’ consent and explaining our intention
with the data, we made sure that they were informed of the data handling and knew that
they could withdraw their participation whenever they wanted. Combined with letting the
respondents know that answers would be anonymized, we could make the respondents feel
comfortable sharing information that would be valuable for us. However, since some groups
of our respondents were quite few, such as the POs, their anonymity could be threatened.
Therefore, we did not present detailed information about the respondents to protect their
anonymity. This also applies to the respondents of the workshop evaluation survey, since the
number of respondents was small.

8.6 Future Work
While this study has provided valuable insights into the current state of software testing
and requirements at IKEA and the potential impact of BDD, there remain several routes for
future research and improvement. Addressing these areas could further enhance our process
and its applicability at IKEA and other companies in the software development domain.

• The limitations of the implementation brought up in Section 6.4 should be considered
and fixed.

• A more substantial evaluation is suggested in Section 7.2. According to it, a team
would work according to our process for six sprints before being interviewed about
the experience.

• Over time, maintainability of the BDD requirements will become an important as-
pect. Several articles of Chapter 3, Related Work, have suggested and evaluated viable
solutions that can be investigated.

• Ensuring standardized BDD requirements in terms of language is key. Several articles
of Chapter 3, Related Work, have suggested solutions such as graphical interfaces and
ontologies which can be further explored.

74

Chapter 9

Conclusion

Testing has been shown to be of great importance. Through interviews with employees rep-
resenting a whole department at IKEA and meetings and observations focused on one of the
teams at the department, we have discovered that testing is found to have a significant role
in creating trust for a product and detecting errors instantly. However, a common problem
mentioned by interview respondents was that they had too few tests and that their tests were
irrelevant. Emphasizing the necessity of tests further, testing was found to be used to vali-
date the fulfillment of requirements. With tests representing requirements focused on user
behavior, passed tests are equal to fulfilled requirements, which in turn are equal to satisfied
stakeholders.

We have performed a study using design research to explore and improve mentioned
issues. It consisted of three steps: Problem Conceptualization, Solution Design and Imple-
mentation, and Evaluation. To achieve a state with relevant tests and thereby fulfill require-
ments, Behavior-driven Development (BDD) was instantiated. We proposed a process based
on BDD, tailored to solve the current issues within teams at IKEA.

Following our process could, despite a revealed skepticism, lead to valuable benefits, ac-
cording to an evaluative workshop we conducted. The potential benefits that the process
specifically was intended to contribute were based on previous activities included in our de-
sign research. They were mentioned by interview respondents or in meetings we had with the
CRM-team as wanted benefits or expressed as issues that had to be solved. These issues were
listed as benefits from processes found in the literature review, indicating that the issues could
be solved. The benefits were: improved traceability between requirements and test cases, im-
proved quality assurance, helped to ensure fulfilled requirements, improved understanding
of requirements, improved testing and improved test relevance. We asked the workshop par-
ticipants how well they agreed with statements that claimed that the process implied said
benefits and the result showed that all respondents agreed that the process would entail all
mentioned benefits. Additional benefits, such as that requirements constitute documenta-
tion and the automation potential of the process, were also mentioned in the evaluation.

Achieving the mentioned benefits could improve software teams way of working signifi-

75

9. Conclusion

cantly. Implementing our process could result in better collaboration between stakeholders,
which is of the greatest importance, both in terms of earned resources and established trust
for the product. Further evaluation to determine the practical use of our process is suggested
in our report.

76

References

[1] Tefo Sekgweleo and Tiko Iyamu. “Understanding the factors that influence software
testing through moments of translation”. In: Journal of Systems and Information Technol-
ogy 24.3 (Jan. 2022), pp. 202–220. issn: 1328-7265. url: https://doi.org/10.
1108/JSIT-07-2021-0125.

[2] Hisham M. Abushama, Hanaa Altigani Alassam, and Fatin A. Elhaj. “The effect of
Test-Driven Development and Behavior-Driven Development on Project Success Fac-
tors: A Systematic Literature Review Based Study”. In: 2020 International Conference on
Computer, Control, Electrical, and Electronics Engineering (ICCCEEE). Khartoum, Sudan:
IEEE, Feb. 2021, pp. 1–9. isbn: 978-1-72819-111-9. url: https://doi.org/10.
1109/ICCCEEE49695.2021.9429593.

[3] Rareş Cristea, Mihail Feraru, and Ciprian Paduraru. “Building blocks for IoT testing:
a benchmark of IoT apps and a functional testing framework”. In: Proceedings of the 4th
International Workshop on Software Engineering Research and Practice for the IoT. Pittsburgh
Pennsylvania: ACM, May 2022, pp. 25–32. isbn: 978-1-4503-9332-4. url: https://
doi.org/10.1145/3528227.3528568.

[4] Chun-Feng Liao et al. “Toward A Service Platform for Developing Smart Contracts on
Blockchain in BDD and TDD Styles”. In: 2017 IEEE 10th Conference on Service-Oriented
Computing and Applications (SOCA). Kanazawa: IEEE, Nov. 2017, pp. 133–140. isbn: 978-
1-5386-1326-9. url: https://doi.org/10.1109/SOCA.2017.26.

[5] Ciprian Paduraru, Miruna Paduraru, and Alin Stefanescu. “RiverGame - a game testing
tool using artificial intelligence”. In: 2022 IEEE Conference on Software Testing, Verification
and Validation (ICST). ISSN: 2159-4848. Apr. 2022, pp. 422–432. url: https://doi.
org/10.1109/ICST53961.2022.00048.

[6] Maria Gerliane Cavalcante and José Iranildo Sales. “The Behavior Driven Development
Applied to the Software Quality Test:” in: 2019 14th Iberian Conference on Information
Systems and Technologies (CISTI). ISSN: 2166-0727. June 2019, pp. 1–4. url: https:
//doi.org/10.23919/CISTI.2019.8760965.

[7] Kent Beck. Test Driven Development: By Example. Google-Books-ID: zNnPEAAAQBAJ.
Addison-Wesley Professional, Mar. 2022. isbn: 978-0-13-758523-6.

77

https://doi.org/10.1108/JSIT-07-2021-0125
https://doi.org/10.1108/JSIT-07-2021-0125
https://doi.org/10.1109/ICCCEEE49695.2021.9429593
https://doi.org/10.1109/ICCCEEE49695.2021.9429593
https://doi.org/10.1145/3528227.3528568
https://doi.org/10.1145/3528227.3528568
https://doi.org/10.1109/SOCA.2017.26
https://doi.org/10.1109/ICST53961.2022.00048
https://doi.org/10.1109/ICST53961.2022.00048
https://doi.org/10.23919/CISTI.2019.8760965
https://doi.org/10.23919/CISTI.2019.8760965

REFERENCES

[8] Pedro Calais and Lissa Franzini. “Test-Driven Development Benefits Beyond Design
Quality: Flow State and Developer Experience”. In: 2023 IEEE/ACM 45th International
Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). ISSN:
2832-7632. May 2023, pp. 106–111. url: https : / / doi . org / 10 . 1109 / ICSE -
NIER58687.2023.00025.

[9] Daniel Terhorst-North. Introducing BDD. Backup Publisher: Dan North & Associates.
Sept. 2006.url: https://dannorth.net/introducing-bdd/ (visited on 01/28/2024).

[10] Fiorella Zampetti et al. “Demystifying the adoption of behavior-driven development in
open source projects”. In: Information and Software Technology 123 (July 2020), p. 106311.
issn: 0950-5849. url: https://doi.org/10.1016/j.infsof.2020.106311.

[11] Leonard Peter Binamungu, Suzanne M. Embury, and Nikolaos Konstantinou. “Main-
taining behaviour driven development specifications: Challenges and opportunities”.
In: 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). Campobasso: IEEE, Mar. 2018, pp. 175–184. isbn: 978-1-5386-4969-5.
url: http://doi.org/10.1109/SANER.2018.8330207.

[12] Leon Chemnitz et al. “Towards Code Generation from BDD Test Case Specifications:
A Vision”. In: 2023 IEEE/ACM 2nd International Conference on AI Engineering – Software
Engineering for AI (CAIN). Melbourne, Australia: IEEE, May 2023, pp. 139–144. isbn:
9798350301137. url: https://doi.org/10.1109/CAIN58948.2023.00031.

[13] Carlos Solis and Xiaofeng Wang. “A Study of the Characteristics of Behaviour Driven
Development”. In: 2011 37th EUROMICRO Conference on Software Engineering and Ad-
vanced Applications. Oulu, Finland: IEEE, Aug. 2011, pp. 383–387. isbn: 978-1-4577-
1027-8. url: http://doi.org/10.1109/SEAA.2011.76.

[14] Tannaz Zameni et al. “From BDD Scenarios to Test Case Generation”. In: 2023 IEEE In-
ternational Conference on Software Testing, Verification and Validation Workshops (ICSTW).
Dublin, Ireland: IEEE, Apr. 2023, pp. 36–44. isbn: 9798350333350. url: https://
doi.org/10.1109/ICSTW58534.2023.00019.

[15] Gojko Adzic. Specification by Example, 10 years later. url: https : / / gojko . net /
2020/03/17/sbe-10-years.html (visited on 02/12/2024).

[16] Rakesh Kumar Lenka, Srikant Kumar, and Sunakshi Mamgain. “Behavior Driven De-
velopment: Tools and Challenges”. In: 2018 International Conference on Advances in Com-
puting, Communication Control and Networking (ICACCCN). Greater Noida (UP), India:
IEEE, Oct. 2018, pp. 1032–1037. isbn: 978-1-5386-4119-4. url: https://doi.org/
10.1109/ICACCCN.2018.8748595.

[17] Nan Li, Anthony Escalona, and Tariq Kamal. “Skyfire: Model-Based Testing with Cu-
cumber”. In: 2016 IEEE International Conference on Software Testing, Verification and Vali-
dation (ICST). Chicago, IL, USA: IEEE, Apr. 2016, pp. 393–400. isbn: 978-1-5090-1827-
7. url: https://doi.org/10.1109/ICST.2016.41.

[18] Pedro Lopes de Souza, Wanderley Lopes de Souza, and Luís Ferreira Pires. “ScrumOn-
toBDD: Agile software development based on scrum, ontologies and behaviour-driven
development”. In: Journal of the Brazilian Computer Society 27.1 (June 2021), p. 10. issn:
1678-4804. url: https://doi.org/10.1186/s13173-021-00114-w.

78

https://doi.org/10.1109/ICSE-NIER58687.2023.00025
https://doi.org/10.1109/ICSE-NIER58687.2023.00025
https://dannorth.net/introducing-bdd/
https://doi.org/10.1016/j.infsof.2020.106311
http://doi.org/10.1109/SANER.2018.8330207
https://doi.org/10.1109/CAIN58948.2023.00031
http://doi.org/10.1109/SEAA.2011.76
https://doi.org/10.1109/ICSTW58534.2023.00019
https://doi.org/10.1109/ICSTW58534.2023.00019
https://gojko.net/2020/03/17/sbe-10-years.html
https://gojko.net/2020/03/17/sbe-10-years.html
https://doi.org/10.1109/ICACCCN.2018.8748595
https://doi.org/10.1109/ICACCCN.2018.8748595
https://doi.org/10.1109/ICST.2016.41
https://doi.org/10.1186/s13173-021-00114-w

REFERENCES

[19] Nicolas Nascimento et al. “Behavior-Driven Development: A case study on its impacts
on agile development teams”. In: Proceedings of the IEEE/ACM 42nd International Con-
ference on Software Engineering Workshops. Seoul Republic of Korea: ACM, June 2020,
pp. 109–116. isbn: 978-1-4503-7963-2.url: https://doi.org/10.1145/3387940.
3391480.

[20] M.s. Farooq et al. “Behavior Driven Development: A Systematic Literature Review”.
In: IEEE Access, Access, IEEE 11 (Jan. 2023). Publisher: IEEE, pp. 88008–88024. issn:
2169-3536. url: https://doi.org/10.1109/ACCESS.2023.3302356.

[21] André Scandaroli et al. “Behavior-Driven Development as an Approach to Improve
Software Quality and Communication Across Remote Business Stakeholders, Devel-
opers and QA: two Case Studies”. In: 2019 ACM/IEEE 14th International Conference on
Global Software Engineering (ICGSE). May 2019, pp. 105–110. url: https://doi.org/
10.1109/ICGSE.2019.00030.

[22] Natarajan Thamizhiniyan and Pichai Shanmugavadivu. “Behaviour-Driven Develop-
ment and Metrics Framework for Enhanced Agile Practices in Scrum Teams”. In: In-
formation and Software Technology (Mar. 2024), p. 107435. issn: 0950-5849. url: https:
//doi.org/10.1016/j.infsof.2024.107435.

[23] Mauricio Alferez et al. “Bridging the Gap between Requirements Modeling and Behavior-
Driven Development”. In: 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems (MODELS). Munich, Germany: IEEE, Sept. 2019, pp. 239–
249. isbn: 978-1-72812-536-7. url: https://doi.org/10.1109/MODELS.2019.
00008.

[24] Abhimanyu Gupta, Geert Poels, and Palash Bera. “Generating multiple conceptual
models from behavior-driven development scenarios”. In: Data & Knowledge Engineer-
ing 145 (May 2023), p. 102141. issn: 0169-023X. url: https://doi.org/10.1016/
j.datak.2023.102141.

[25] Indra Kharisma Raharjana, Fadel Harris, and Army Justitia. “Tool for Generating Behavior-
Driven Development Test-Cases”. In: Journal of Information Systems Engineering and Busi-
ness Intelligence 6.1 (Apr. 2020). Number: 1, pp. 27–36. issn: 2443-2555. url: https:
//doi.org/10.20473/jisebi.6.1.27-36.

[26] Siti Nadiah Hijriyani, Sri Widowati, and Dana Sulistyo Kusumo. “Application of Be-
havior Driven Development for Validation Testing (School Information System)”. In:
2022 1st International Conference on Software Engineering and Information Technology (ICo-
SEIT). Bandung, Indonesia: IEEE, Nov. 2022, pp. 96–101. isbn: 978-1-66547-303-3.url:
https://doi.org/10.1109/ICoSEIT55604.2022.10030005.

[27] Nitish Patkar et al. “Interactive Behavior-driven Development: a Low-code Perspec-
tive”. In: 2021 ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C). Fukuoka, Japan: IEEE, Oct. 2021, pp. 128–137.
isbn: 978-1-66542-484-4. url: https://doi.org/10.1109/MODELS-C53483.
2021.00024.

[28] Daniel Lubke and Tammo Van Lessen. “Modeling Test Cases in BPMN for Behavior-
Driven Development”. In: IEEE Software 33.5 (Sept. 2016), pp. 15–21. issn: 0740-7459,
1937-4194. url: https://doi.org/10.1109/MS.2016.117.

79

https://doi.org/10.1145/3387940.3391480
https://doi.org/10.1145/3387940.3391480
https://doi.org/10.1109/ACCESS.2023.3302356
https://doi.org/10.1109/ICGSE.2019.00030
https://doi.org/10.1109/ICGSE.2019.00030
https://doi.org/10.1016/j.infsof.2024.107435
https://doi.org/10.1016/j.infsof.2024.107435
https://doi.org/10.1109/MODELS.2019.00008
https://doi.org/10.1109/MODELS.2019.00008
https://doi.org/10.1016/j.datak.2023.102141
https://doi.org/10.1016/j.datak.2023.102141
https://doi.org/10.20473/jisebi.6.1.27-36
https://doi.org/10.20473/jisebi.6.1.27-36
https://doi.org/10.1109/ICoSEIT55604.2022.10030005
https://doi.org/10.1109/MODELS-C53483.2021.00024
https://doi.org/10.1109/MODELS-C53483.2021.00024
https://doi.org/10.1109/MS.2016.117

REFERENCES

[29] Leonard Peter Binamungu, Suzanne M. Embury, and Nikolaos Konstantinou. “Detect-
ing duplicate examples in behaviour driven development specifications”. In: 2018 IEEE
Workshop on Validation, Analysis and Evolution of Software Tests (VST). Mar. 2018, pp. 6–
10. url: https://doi.org/10.1109/VST.2018.8327149.

[30] Mohsin Irshad, Jürgen Börstler, and Kai Petersen. “Supporting refactoring of BDD
specifications—An empirical study”. In: Information and Software Technology 141 (Jan.
2022), p. 106717. issn: 09505849. url: https://doi.org/10.1016/j.infsof.
2021.106717.

[31] Aidan Z.H. Yang, Daniel Alencar Da Costa, and Ying Zou. “Predicting Co-Changes
between Functionality Specifications and Source Code in Behavior Driven Develop-
ment”. In: 2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR). Montreal, QC, Canada: IEEE, May 2019, pp. 534–544. isbn: 978-1-72813-412-3.
url: https://doi.org/10.1109/MSR.2019.00080.

[32] Melanie Diepenbeck et al. “Towards automatic scenario generation from coverage in-
formation”. In: 2013 8th International Workshop on Automation of Software Test (AST).
San Francisco, CA, USA: IEEE, May 2013, pp. 82–88. isbn: 978-1-4673-6161-3. url:
https://doi.org/10.1109/IWAST.2013.6595796.

[33] Mazedur Rahman and Jerry Gao. “A Reusable Automated Acceptance Testing Archi-
tecture for Microservices in Behavior-Driven Development”. In: 2015 IEEE Symposium
on Service-Oriented System Engineering. San Francisco Bay, CA, USA: IEEE, Mar. 2015,
pp. 321–325. isbn: 978-1-4799-8356-8. url: https://doi.org/10.1109/SOSE.
2015.55.

[34] Álvaro Carrera, Carlos A. Iglesias, and Mercedes Garijo. “Beast methodology: An ag-
ile testing methodology for multi-agent systems based on behaviour driven develop-
ment”. In: Information Systems Frontiers 16.2 (Apr. 2014). Company: Springer Distribu-
tor: Springer Institution: Springer Label: Springer Number: 2 Publisher: Springer US,
pp. 169–182. issn: 1572-9419. url: https://doi.org/10.1007/s10796-013-
9438-5.

[35] Kristina Säfsten and Maria Gustavsson. Forskningsmetodik för ingenjörer och andra prob-
lemlösare. Andra upplagan. Studentlitteratur Ab, 2019.

[36] Claes Wohlin and Per Runeson. “Guiding the selection of research methodology in
industry–academia collaboration in software engineering”. In: Information and Software
Technology 140 (Dec. 2021), p. 106678. issn: 09505849. url: https://doi.org/10.
1016/j.infsof.2021.106678.

[37] Per Runeson, Emelie Engström, and Margaret-Anne Storey. “The Design Science Paradigm
as a Frame for Empirical Software Engineering”. In: Contemporary Empirical Methods in
Software Engineering. Ed. by Michael Felderer and Guilherme Horta Travassos. Cham:
Springer International Publishing, 2020, pp. 127–147. isbn: 978-3-030-32489-6. url:
https://doi.org/10.1007/978-3-030-32489-6_5.

[38] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case study
research in software engineering”. In: Empirical Software Engineering 14.2 (Apr. 1, 2009),
pp. 131–164. issn: 1573-7616. url: https://doi.org/10.1007/s10664-008-
9102-8.

80

https://doi.org/10.1109/VST.2018.8327149
https://doi.org/10.1016/j.infsof.2021.106717
https://doi.org/10.1016/j.infsof.2021.106717
https://doi.org/10.1109/MSR.2019.00080
https://doi.org/10.1109/IWAST.2013.6595796
https://doi.org/10.1109/SOSE.2015.55
https://doi.org/10.1109/SOSE.2015.55
https://doi.org/10.1007/s10796-013-9438-5
https://doi.org/10.1007/s10796-013-9438-5
https://doi.org/10.1016/j.infsof.2021.106678
https://doi.org/10.1016/j.infsof.2021.106678
https://doi.org/10.1007/978-3-030-32489-6_5
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8

REFERENCES

[39] Gerry Larsson Aida Alvinius Anders Borglund. Tematisk analys: Din handbok till fascinerande
vetenskap. Studentlitteratur, 2024. isbn: 978-91-44-15102-1.

[40] Barbara Kitchenham and Stuart Charters. “Guidelines for performing Systematic Lit-
erature Reviews in Software Engineering”. In: Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report 2.3 (Jan. 2007). url: https : / / www .
researchgate.net/publication/302924724_Guidelines_for_performing_
Systematic_Literature_Reviews_in_Software_Engineering (visited on
03/15/2024).

[41] Mohsin Irshad, Ricardo Britto, and Kai Petersen. “Adapting Behavior Driven Devel-
opment (BDD) for large-scale software systems”. In: Journal of Systems and Software 177
(July 2021), p. 110944. issn: 01641212. url: https://doi.org/10.1016/j.jss.
2021.110944.

[42] Andrei Contan, Liviu Miclea, and Catalin Dehelean. “Automated testing framework
development based on social interaction and communication principles”. In: 2017 14th
International Conference on Engineering of Modern Electric Systems (EMES). Oradea, Ro-
mania: IEEE, June 2017, pp. 136–139. isbn: 978-1-5090-6073-3. url: https://doi.
org/10.1109/EMES.2017.7980399.

[43] Thiago Rocha Silva, Jean-Luc Hak, and Marco Winckler. “A Behavior-Based Ontology
for Supporting Automated Assessment of Interactive Systems”. In: 2017 IEEE 11th In-
ternational Conference on Semantic Computing (ICSC). San Diego, CA, USA: IEEE, 2017,
pp. 250–257. isbn: 978-1-5090-4284-5. url: https://doi.org/10.1109/ICSC.
2017.73.

[44] Thiago Silva, Jean-Luc Hak, and Marco Winckler. “A Formal Ontology for Describ-
ing Interactive Behaviors and Supporting Automated Testing on User Interfaces”. In:
International Journal of Semantic Computing 11 (Dec. 2017), pp. 513–539. url: https:
//doi.org/10.1142/S1793351X17400219.

[45] Thiago Rocha Silva, Marco Winckler, and Cédric Bach. “Evaluating the usage of prede-
fined interactive behaviors for writing user stories: an empirical study with potential
product owners”. In: Cognition, Technology & Work 22.3 (Aug. 2020), pp. 437–457. issn:
1435-5566. url: https://doi.org/10.1007/s10111-019-00566-3.

[46] John Venable, Jan Pries-Heje, and Richard Baskerville. “A Comprehensive Framework
for Evaluation in Design Science Research”. In: Design Science Research in Information
Systems. Advances in Theory and Practice. Ed. by Ken Peffers, Marcus Rothenberger, and
Bill Kuechler. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 423–438. isbn:
978-3-642-29863-9. url: https://doi.org/10.1007/978-3-642-29863-9_31.

81

https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering
https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering
https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering
https://doi.org/10.1016/j.jss.2021.110944
https://doi.org/10.1016/j.jss.2021.110944
https://doi.org/10.1109/EMES.2017.7980399
https://doi.org/10.1109/EMES.2017.7980399
https://doi.org/10.1109/ICSC.2017.73
https://doi.org/10.1109/ICSC.2017.73
https://doi.org/10.1142/S1793351X17400219
https://doi.org/10.1142/S1793351X17400219
https://doi.org/10.1007/s10111-019-00566-3
https://doi.org/10.1007/978-3-642-29863-9_31

REFERENCES

82

Appendices

83

Appendix A

Popular Science Summary

85

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-05-31

EXAMENSARBETE Exploring Behavior-Driven Development at IKEA using Design Research
STUDENTER Annie Börjesson, David Jobrant
HANDLEDARE Emelie Engström (LTH), Andreas Trattner (IKEA)
EXAMINATOR Per Runeson (LTH)

Hur får man nöjdare användare genom
tydligare krav och relevanta tester?

POPULÄRVETENSKAPLIG SAMMANFATTNING Annie Börjesson, David Jobrant

Modern mjukvaruutveckling kräver tydliga krav och relevanta tester för att säkerställa
funktionalitet och därmed nöjda användare. Vi har undersökt metodologin behavior-
driven development (BDD) och nått slutsatsen att den bidrar till detta, samtidigt som
samarbete och kommunikation förbättras.
Vi alla vet hur frustrerande det är när en hem-
sida inte laddar, eller hur stressad man blir när
man inte kan logga in för att köpa biljetter till sin
favoritartists konsert. Misströsta ej, det finns en
lösning som bidrar till att du slipper dessa prob-
lem!

Precis som man testar bilar för att garantera
att de är tillräckligt säkra för att köras innan de
släpps på marknaden behöver man också testa
mjukvaruprodukter för att se till att allt fungerar
som det ska innan man släpper dem till användare.
För att testningen i sin tur ska fungera som tänkt
behövs ett strukturerat sätt att arbeta med tester,
där missförstånd och otydliga krav undviks.

I BDD skrivs tester för att säkerställa att an-
vändares krav uppfylls, istället för att testa att
varje del av koden fungerar. På så sätt kan man
enklare se till att användarnas förväntningar möts
och därmed få nöjdare användare. Detta gör man
genom att skriva krav på ett tydligt format utifrån
hur en användare använder produkten. Ett exem-
pel kan ses i figuren till höger.

Vi har identifierat förbättringsområden inom
testning och kravhantering på IKEA. Gedigna in-
tervjuer med medarbetare har visat att de bland
annat önskar tydligare krav och fler (gärna au-
tomatiserade) tester. Kombinerat med resultat

Scenario: Uppdatering av varukorg
Given Jag handlar på IKEAs webb-

plats
When Jag lägger till två produkter i

varukorgen och öppnar den
Then Varukorgen ska visa rätt pro-

dukter och totalpris.

från en omfattande litteraturstudie har vi tagit
fram en process som följer BDDs principer. Den är
tänkt att följas av medarbetare inom olika roller
och ämnar till att underlätta både för skaparna
och användarna av produkten. Utvärdering av
processen bekräftar att BDD bidrar till de förbät-
tringsområden medarbetarna ser.

Vårt arbete har flera olika bidrag. Dels med-
för undersökningen av IKEAs nuvarande förbät-
tringsområden ökad förståelse bland medarbetare.
Dessutom bidrar resultat från litteraturstudien till
allmän kunskap om BDD. Vår process kan ap-
pliceras i team med liknande förbättringsområden,
både innan- och utanför IKEA.

Våra resultat har stora likheter med resultaten
från andra studier som undersöker BDD. Det
pekar på att upplevelser och åsikter av BDD
generellt sett är oberoende av kontexten.

	Introduction
	Research Questions
	Contributions
	Thesis Outline

	Background
	Test-Driven Development
	Behaviour-Driven Development

	Related Work
	Research Methodology
	Research Method Selection
	Design Research

	Problem Conceptualization
	Interviews
	Method
	Results
	Key Takeaways and Discussion of Results

	Meetings and Observations
	Method
	Result
	Highlights and Interpretation of Results

	Requirements on the Solution Design and Implementation

	Solution Design and Implementation
	Literature Review
	Method
	Result
	Influence of Results on Implementation

	Implementation
	Fulfillment of the Requirements on the Implementation
	Limitations of Implementation

	Evaluation
	Workshop
	Method
	Results
	Summary and Discussion of Results

	Further Evaluation

	Discussion
	What is the current state of software testing at the IFE-department at IKEA?
	How can BDD improve the state of software testing at the IFE-department at IKEA?
	Threats of Validity
	Generalizability
	Ethics
	Future Work

	Conclusion
	Appendix Popular Science Summary

