
MASTER THESIS’S THESIS 2024

Comparison of Concurrency
Technologies in Java
Elias Gustafsson, Oliver Nederlund Persson

ISSN 1650-2884
LU-CS-EX: 2024-31

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

MASTER THESIS
Computer Science

LU-CS-EX: 2024-31

Comparison of Concurrency Technologies
in Java

Elias Gustafsson, Oliver Nederlund Persson

Comparison of Concurrency Technologies
in Java

(Structured Testing in a High Load Environment)

Elias Gustafsson
elias@gustafsson.at

Oliver Nederlund Persson
oliver.nederlund.persson@gmail.com

June 17, 2024

Master Thesis’s thesis work carried out at Sinch AB.

Supervisors: Jonas Skeppstedt, jonas.skeppstedt@cs.lth.se
Samuel Alberius

Thomas Lundström

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:elias@gustafsson.at
mailto:oliver.nederlund.persson@gmail.com
mailto:jonas.skeppstedt@cs.lth.se
mailto:flavius.gruian@cs.lth.se

Abstract

This study was conducted in order to test the performance of Java’s vir-
tual threads against platform threads and reactive systems in the context of a
high load server / client system. As virtual threads were only introduced in Java
21 (2023) they have yet to be thoroughly tested. We took great care to ensure
that the constraints of the testing environment did not unduly influence the re-
sults. The experiments were designed to test performance in several ways, entail-
ing methods with various mixes of simulated IO operations and computational
tasks.

In regards to pure computational operations, neither virtual threads nor re-
active streams outperformed regular platform threads. However, when it came
to IO-heavy operations both of the high-concurrency technologies performed
significantly better than platform threads. Reactive streams utilized signifi-
cantly less memory and had fewer fluctuations, while virtual threads had much
lower latencies. For instance, latencies for virtual threads where up to 44%
shorter than for reactive in the 99th percentile for the IO tests, and had the
best performance in three out of four benchmarks. Reactive had about half the
memory usage of virtual threads in three out of four benchmarks, and had the
best memory performance in all four benchmarks.

Because of their different strengths and performance that varies with the
benchmark composition, we cannot conclude that either one of the technolo-
gies is generally better. Rather it is a matter of what metrics to prioritize. In
our report, we provide all of the data from the benchmarks and explain the test-
ing methodology in detail. In order to provide some guidelines, we can state
that virtual threads and reactive performed better than platform threads in the
benchmarks containing blocking operations, and that virtual threads were gen-
erally faster than reactive. However reactive was more stable and memory effi-
cient than both virtual- and platform threads.

Keywords: Reactive, Virtual threads, Java, Load testing, Concurrency

2

Acknowledgements

Firstly, we would like to extend a special thank you to our supervisor at LTH, Jonas Skepp-
stedt, who in addition to clear and concise guidance on this thesis has held truly inspiring
lectures during our time here. Secondly, we would like to thank Sinch and our supervisors
Samuel Alberius and Thomas Lundström, who have given us a warm welcome and an inter-
esting look inside an IT company. Thirdly, we thank Dora Beronić for responding to our
questions about her previous studies in this field. We also extend thank yous to Alexan-
der Svarvare for proof-reading our report and to Richard Lundberg et al for giving us an
introduction to stack trace analyzis.

3

4

Contents

1 Introduction 9
1.1 Research Questions . 10
1.2 Justification of our Study . 10
1.3 Previous Research . 11

1.3.1 Structured Concurrency Constructs (2022) 11
1.3.2 On Analyzing Virtual Threads (2021) 12
1.3.3 Efficient Structured Concurrency through

Lightweight Fibers (2020) . 13
1.3.4 Integrating virtual threads in a Java framework (2023) 13

1.4 Distribution of Work . 14

2 Theoretical Background 17
2.1 Central Concepts . 17

2.1.1 Virtual Threads . 17
2.1.2 Reactive Systems . 18

2.2 Spring Framework . 20
2.2.1 Spring Boot . 21
2.2.2 Spring WebFlux . 21
2.2.3 Spring web MVC framework . 21
2.2.4 Summary spring . 21

2.3 Testing . 22
2.3.1 On Performance Testing . 22
2.3.2 Java Testing . 23
2.3.3 Analysing the performance and costs of reactive programming li-

braries in Java . 24
2.3.4 Examples of test implementation 25
2.3.5 Overhead Analysis . 25
2.3.6 Hardware metrics . 26

2.4 Tools . 26
2.4.1 Vegeta . 26
2.4.2 VisualVM . 27
2.4.3 Wireshark . 27

5

CONTENTS

2.4.4 Flame Graphs . 27

3 Method 29
3.1 Overview . 29
3.2 Test Setup . 30

3.2.1 Benchmark Design . 30
3.3 Testing within the JVM . 31

3.3.1 Hardware Setup . 33
3.3.2 Metrics Collected . 33
3.3.3 Handling Errors . 33

3.4 Parameters . 33
3.5 Load Ramping Experiment . 34
3.6 Constant Load Test and Additional Profiling 35

3.6.1 Constant Load Test . 35
3.6.2 Stack Profiling . 36

3.7 Validation . 36
3.7.1 Network Connection . 37
3.7.2 Impact of Profiling Software . 37

4 Results 39
4.1 Ramping Load Experiment . 39

4.1.1 CPU Intense . 40
4.1.2 I/O intense . 43
4.1.3 Matmul . 46
4.1.4 Mixed method . 48
4.1.5 Thread Creation . 51
4.1.6 Stability . 52

4.2 Constant Load Experiment . 53
4.2.1 CPU Measurements . 53
4.2.2 Memory Measurements . 54
4.2.3 Safepoint Measurements . 55
4.2.4 Sync Measurements . 56
4.2.5 Call Stack Analysis . 57
4.2.6 Network Connection Analysis . 58

4.3 Summary of the Results . 58

5 Conclusions 61
5.1 Addressing Research Questions . 61
5.2 Contribution and Future Research . 62
5.3 Limitations and Considerations . 63
5.4 Conclusions in Summary . 63

Appendix A A 71
A.1 Scripts . 71

A.1.1 Script for sending HTTP requests 71

Appendix B Data 73
B.1 Iteration tests . 73

6

CONTENTS

Appendix C Benchmark Methods 75
C.1 Imperative . 75

C.1.1 IO . 75
C.1.2 Compute . 75
C.1.3 Matmul and Mixed . 75

C.2 Reactive . 76
C.2.1 IO . 76
C.2.2 Compute . 76
C.2.3 Matmul and Mixed . 77

7

CONTENTS

8

Chapter 1

Introduction

As the world and all its inhabitants and actors become ever more connected, efficient systems
for communication and data transfer are more important than ever. In many applications,
such as messaging servers, efficiency entails handling blocking I/O calls and a high level of
concurrency in a good way. One well established option for scaleable and non-blocking code
is reactive systems, which entails asynchronous code based on data streams with publishers
and subscribers. For instance, several backends at Sinch AB where this study was conducted
are implemented as reactive systems. Although efficient, reactive systems are considered
difficult, and therefore expensive to program and maintain as developers are often uncom-
fortable with abandoning imperative programming (Brian Olson 2019).

Virtual threads, a new feature in Java 21 (Ben Weidig 2023), are intended to solve the
same problems as the various reactive frameworks without the need for difficult syntax and
new coding paradigms. As they are an implementation of the Java.lang.Thread interface,
they can be used interchangeably with regular platform threads (traditional Java threads,
implemented as a thin wrappers on a kernel threads) although it is of course not always a
good option as we will explain in the background section. The virtual threads are decoupled
from the kernel threads of the operating system, instead being handled by the Java virtual
machine which mounts and unmounts virtual threads from platform threads. In this context,
mounting a virtual thread means moving its states and local variables to a platform thread,
and unmounting means moving the states and local variables of the virtual thread to the
heap so that a different virtual thread can be mounted to the platform thread. When a
blocking method is called from a virtual thread, it is unmounted from its kernel thread and
saved on the heap for the duration of the waiting period, all without interference from the
programmer.

This study aims to compare the performance of reactive systems, virtual threads and
platform threads, specifically for a system with a high and dynamic load which is the primary
use case for both of these methodologies. As Java 21 was only released in 2023 the body of
research on its virtual threads is still very thin, which is the raison d’etre for this study.
There is some limited research on virtual threads which serves as part of the theoretical
foundation of this study, and it is presented under section 1.3. In order to make the tests
as fair as possible, the reactive and virtual thread-based servers both utilize the Spring Boot

9

1. Introduction

framework, are called over HTTP (which is how Sinch AB tests its servers) and implement
the same functions. They are run in a controlled environment, and system statistics are
recorded with VisualVM (Oracle Corporation 2024b). There is a number of parameters that
are of interest for measuring and comparing the performance of these technologies. In this
study, we look thoroughly at latency, throughput, memory usage and CPU utilization. These
metrics are looked at in much of the previous research cited in this report. We also consider
them intuitively relevant, as latency and throughput are important for the user experience
and memory usage and CPU utilization are important for dimensioning server hardware.
Special care is also taken to ensure that testing software and the server-client connection
have minimal impact on the measurements.

1.1 Research Questions
Small gains in efficiency for software handling high loads (e.g. servers) can lead to an in-
creased customer satisfaction and loyalty (Kim et al. 2007), and we also believe that more
efficient software is generally desirable. To optimize high load software systems, Java 21
introduced virtual threads in 2023. This is a promising project that is intended for "high-
throughput concurrent applications, especially those that consist of a great number of con-
current tasks that spend much of their time waiting" (Oracle Corporation 2023). If virtual
threads are deemed to have similar or better performance than the previous state-of-the-art
approach of asynchronous programming, it would be very interesting. Even if they perform
similarly to other technologies, they may also offer a lot of other advantages such as software
that is easy to read, write and debug.

As of now there are not many studies comparing virtual threads to other concurrency
approaches in Java due to their recent introduction. Furthermore, we believe that many of
these comparative studies are performed by corporations and are not published. There are
studies that compare beta versions of virtual threads in Java with platform threads (Beronić
et al. 2022) (Beronić et al. 2021) (Pufek et al. 2020) and one study that compares virtual
threads with a reactive approach in Quarkus using Java 21 (Navarro et al. 2023). However,
we have found these studies to have a somewhat limited scope. For example, some limit the
number of maximum platform threads, and most do not test a wide array of methods (e.g.
mixes of computational and IO tests that may disadvantage some of the technologies unduly).
Another aspect we could add to this research topic are tests performed on a wide variety of
loads. In short, the aim of this study is to compare virtual threads, platform threads and
reactive systems for high-concurrency applications

The research questions of this thesis are:

• RQ1: What are the differences between these different concurrency techniques within
the JVM on high load systems?

• RQ2: Are virtual threads a viable alternative to replace platform threads and asyn-
chronous data streams on high load applications?

1.2 Justification of our Study
As virtual threads are a very recent addition to the JVM, the body of research on them is
relatively slim. It is even slimmer on comparisons between virtual threads and asynchronous

10

1.3 Previous Research

programming, which we consider particularly relevant as asynchronous programming has
very similar use cases to virtual threads. We also feel that we can contribute a lot on perfor-
mance testing methodology for virtual thread performance testing, seeing as the studies we
cited have generally not publicized the details of their test setups and have not performed a
particularly large and varied set of tests.

We have gathered a large amount of data by using scripts that run our test cases many
times with different parameters. A large amount of data is absolutely necessary for our tests
to be conclusive and our research to be relevant. This comprehensive set of data is an im-
portant contribution to this field.

1.3 Previous Research
The body of previous research on comparisons between reactive systems and virtual thread-
based system is still relatively thin, however we have benefited greatly from research that
has studied each of these technologies separately. Especially methodologies of studying and
measuring the performance of high-concurrency systems have been very applicable to this
study.

1.3.1 Structured Concurrency Constructs (2022)
In the study “Comparison of Structured Concurrency Constructs in Java and Kotlin - Virtual
Threads and Coroutines” (Beronić et al. 2022), the authors compare concurrency constructs
in languages implemented in the JVM, including Java. The testing was done on a machine
running Ubuntu with 16 GBs of memory and an Intel i7 (3,4 GHz) processor using Open-
JDK’s JDK-19, an early access version with support for virtual threads. The test case was a
HTTP server waiting for incoming standard requests. The study tested four different con-
cepts, two of which were implemented in Java including virtual threads and platform threads.
The primary measurements used were heap memory, latency and number of kernel threads
started. The tools used for testing were Vegeta (used for application testing that can per-
form attacks on a HTTP server as described in the background section) and VisualVM. The
testing procedure was to use Vegeta to do attacks with two different rates (2000 and 8000
requests per second) for 10 seconds. They also perform pre-runs to warm up the testing rig.
The latencies were calculated by Vegeta and VisualVM was used to collect the remaining
measurements.

The first result they presented was the total number of threads started. For 2000 attacks
per second the average amount of started kernel threads were 101 017 for regular Java plat-
form threads and 36 for virtual Java threads. For an attack rate of 8000 the average amount
of started threads was 388 749 for regular Java threads and 268 for virtual Java threads.

The second result presented was heap usage. With an attack rate of 2000 requests per
second, regular java threads used 128.28 MB while virtual threads used 16.22 MB. With a rate
of 8000 requests per second regular java threads used 386.08 MB while virtual threads used
64.66 MB.

The third and last test concerned latency measured in milliseconds. Here the researchers
used mean value, 50th percentile and 95th percentiles. For 8000 request per second the
latency results for platform threads were 0.99, 0,16 and 0.83 respectively. For virtual threads
they were 0,16, 0,10 and 0,13. This indicates that there is a notable difference between the
percentiles.

11

1. Introduction

The authors concluded that virtual threads are promising but more extensive testing
need to be done on the official version of virtual threads. Some elements from this study
that we decided to incorporate were the inclusion of memory usage and latency metrics,
as well as the Vegeta testing tool. However, we collect a larger set of metrics over a larger
spectrum of loads as well as perform several verifications of our testing environment.

1.3.2 On Analyzing Virtual Threads (2021)

The study “On Analyzing Virtual Threads - a Structured Concurrency Model for Scaleable
Applications on the JVM” (Beronić et al. 2021) aims to explore structured concurrency in
Java with a focus on virtual threads. The authors argue that blocking operations such as I/O
cause problems regarding efficiency due their ‘single access policy’. These threads rely on
kernel threads which require a lot of resources, leading to an inefficient use of hardware.
They tested how virtual threads compared to platform threads.

The testing environment was hosted on a machine running Ubuntu with an 8-core pro-
cessor and 13 GBs of memory. They used an early version of JDK loom-17ea.2 (project loom)
that supports virtual threads. To compare the results they used creation speed, efficiency and
concurrency level. The tests consisted of a merge sort algorithm, as well as generic parallel
and sequential run algorithms.

To measure the creation speed, they used latency measured in milliseconds. The test
simply created multiple threads with different type of scales. The four different scales was
0.1, 0.5, 1 and 1.5 million. The result was that the creation of regular threads was 1.7 , 2.2 and
2.7 times slower then virtual threads for 0.1, 1 and 1.5 million created threads. Furthermore,
the creation of threads for both regular and virtual threads seemed to scale linearly.

Regular threads were also tested against virtual threads in terms of performance. They
tested this using a merge sort algorithm, sorting arrays with 1000 through 512 000 elements.
They measured how long it would take regular threads and virtual threads to execute the
algorithm, with both approaches having access to 16 kernel threads. The result was that for
smaller scale (up to 60 thousand elements) virtual threads outperformed platform threads
with a factor of 80. The difference became smaller when the array became bigger but on
average virtual threads had 30% better performance.

To test the concurrency level, they measured the latency for performing an unspecified
task, where they gradually increased the number of threads symbolizing requests. The num-
ber of threads started at a hundred thousand and was gradually increased to ten million due
to an increasing number of requests. For both threading types, the latencies increased with
the increased number of requests. With 2500 requests virtual threads outperformed platform
threads by 38%, but as the requests increased to ten thousand, they outperformed platform
threads with 591%. From this the authors concluded that virtual threads should be able to
handle more load given the same amount of CPU resources.

Some elements of this study that influenced our own were the merge sort benchmark
and concurrency data. The merge sort benchmark served as the inspiration of a matrix mul-
tiplication benchmark we used, and the superior performance of virtual threads as a reason
to investigate them further.

12

1.3 Previous Research

1.3.3 Efficient Structured Concurrency through
Lightweight Fibers (2020)

The study “Achieving Efficient Structured Concurrency through Lightweight Fibers in Java
Virtual Machine” (Pufek et al. 2020) explores Java fiber threads (an early working name for
virtual threads). The authors argue that systems that handle incoming requests tend to use
kernel threads poorly, wasting a lot of resources. The study investigates structured concur-
rency techniques trying to find more efficient methods to handle high load systems.

The tests were conducted on a virtual machine running Ubuntu with 9GBs of memory.
For the fiber threads they used an early access version of OpenJdk. Like the previous study,
they used Vegeta to simulate load. The server side of the test setup was an HTTP server
implementation provided in the JDK. The number of threads were limited to 64.

In the test, each thread was assigned a task where they added a delay (Thread.sleep) to
artificially simulate load. After that, latency was measured for different delay lengths. While
under heavy load, the result was that the latency for virtual threads were 16% of that for the
platform threads. The authors concluded the report with stating that virtual threads will
have a prominent role in the future, but that further investigation is needed due to their
experimental status.

The study’s simulation of I/O operations as simple delays as well as varying delay dura-
tion is something that we decided to also include in our experiments. Their arguments for
how a high level of concurrency might require more specialized techniques also helped serve
as a justification of our study.

1.3.4 Integrating virtual threads in a Java framework
(2023)

A recent study on the matter of virtual threads in Java was recently published (Navarro et al.
2023). The study aims to investigate reactive and virtual threads in the JVM and integrate it
to the Quarkus framework, thus offering an approach for integrating virtual threads into Java
reactive frameworks. Quarkus was used due to it being optimized for cloud environments by
having low resource usage compared to for example Spring Boot, due to it’s native compila-
tion capability and optimized runtime. The authors also defended their choose of Quarkus
over the Spring framework since the Spring implementation of virtual thread servers do not
allow for virtual threads to easily run in the same application as reactive systems (imple-
mented in Spring Webflux). Quarkus allow for all three technologies to be used in the same
application.

The experimental part of the study was conducted on a machine with a twelve core i7-
10850H (2.7 GHz) chip and 32 GBs of memory running Ubuntu. They split the application
and had the servers and clients run in Docker containers with constraints on CPU and mem-
ory. The study implemented load testing for the three different technologies where latency,
throughput, CPU usage and heap usage where measured for varying request rates.

The server functions used in the study were inspired by the Fortune test from the Techempower
benchmark suite, where an object is fetched from a database and added to a list, after which
the list is sorted and a JSON object is returned. In this study, an additional delay was added
in order to make the heap grow. The study’s authors also outlined different working condi-
tions for the different server functions that they called: normal (throughput equal to request
rate, CPU usage less then 80%), critical (throughput equal to rate but latency increase and

13

1. Introduction

memory usage increase) and overload (throughput less than rate and high resource utiliza-
tion).

The result was that for no added delay the reactive approach had the lowest latency, high-
est throughout and lowest resource utilization. The platform threads also outperformed the
virtual threads. With a constant 200 ms delay the reactive approach still had the best perfor-
mance. The comparison between blocking and virtual threads, however, was more difficult.
Virtual threads had a higher overall CPU and memory usage, and they had higher through-
put than blocking threads until it reached a critical level and crashed. The conclusions they
drew from this were:

• i) That virtual threads in Quarkus reached a plateau in regard to memory usage quickly.

• ii) For shorter blocking operations virtual threads are more computationally expensive
than platform threads.

• iii) Reactive threads have the best resource utilization of these technologies.

After performing comparisons between the different technologies, the authors used a
fixed request rate and compared virtual threads and the reactive approach. They speculated
that the garbage collector was the major reason for the difference between the technologies.
In this experiment they collected metrics from the garbage collector including count, average
pause, collection pause and sum of pauses. They concluded that virtual threads had a much
higher garbage collection usage which was the root cause of it performing worse then the
Quarkus reactive approach.

One thing from this study that is readily applicable to ours is procedures to prevent
introducing noise to the test data causing an unfair comparison between the technologies.
The authors used warm-up runs before every test, to make sure that the appropriate classes
had been loaded and that the just in time (JIT) compiler had optimized hot methods. Fur-
thermore, they ran each test three times. Even though they took these precautions the tests
were still somewhat unstable and unpredictable. They attributed this instability to ‘chaos’
introduced by the garbage collector and JIT compiler. Due to this they opted to choose the
best of the three tests each test run instead of aggregating an average of the test runs. The
use of a database might also be a pitfall according to the authors. The relatively complicated
benchmarks used by the authors may have introduced additional noise to the results which
can be seen in their presented result, where the performance of the servers sometimes have
unexpected dips. Furthermore, the benchmark test used in this study is somewhat unfair
since it forces the server to use a lot of memory which is not the intended use case for virtual
threads (clearly stated in project loom, the project name for Java’s implementation of virtual
threads).

1.4 Distribution of Work
Distribution of work between the authors has been practically equal. Every step of both the
experimental methodology and the writing of the report has been subject to fervent discus-
sion and thorough revisions. Good results are generally the result of engaged discussions and
different perspectives.

There are however some areas where one person contributed more than the other. For
instance, Oliver Nederlund Persson contributed more to the implementation of the client
and automated test cases while Elias Gustafsson contributed more to the implementation of

14

1.4 Distribution of Work

the server and tests on the network connection. Oliver is also more responsible for finding
and compiling previous research while Elias looked more closely at the JVM.

15

1. Introduction

16

Chapter 2

Background

In this chapter we present some theoretical background on the central concepts of this study.
We also summarize a few select studies on similar topics.

2.1 Central Concepts
Here we introduce the important concepts of this study, including everything the reader
needs to know about them to capitalize on our results and conclusions. We introduce vir-
tual threads and reactive, which the reader might not be familiar with, and also the Spring
framework in which the servers were implemented.

2.1.1 Virtual Threads
The concept of virtual threads has been around for a long time. (Vahalia 1996, p 53 - 55) de-
scribe a lightweight process (LWP) as a process that is more decoupled from the kernel threads
than what for instance a platform thread is. LWPs do not block kernel threads when the
LWP is blocked due to I/O. The limitation of LWPs is that they require expensive system
calls for synchronization, creation and destruction. However, multiple user Threads (Vahalia
1996, p 55 - 58) can later be mounted on LWPs or regular processes. User Threads being a high
level thread abstraction on the user level managed by libraries without the kernel knowing
about the threads. For User threads the Library manage schedules and context switches fur-
thermore it also save the User Threads individual stack. However, the kernel still manages
scheduling between the processes or the LWPs. If the User Thread is mounted on a LWP, a
user level block (e.g. I/O) will not block the kernel thread (only the LWP). User Threads that
not block the underlying process, Virtual threads, have been implemented in the Go language
as Goroutines and now in Java 21 as virtual threads.

Virtual threads in java were proposed in JDK Enhancement proposal 425 (JEP) and were
implemented as a preview feature in java 19 and later java 20. They were finalized in Java
21. Virtual threads are not intended to replace existing threads nor to replace existing asyn-

17

2. Theoretical Background

chronous styles. Instead, they are intended as a tool for implementing regular ‘thread-per-
task’ programming while operating in an unblocking manner.

In JEP 444, the authors brought up how server applications tend to handle multiple users
that are independent of each other. Dedicating one thread per user is a simple way to handle
concurrency, but this approach is not scaleable with regular platform threads. That is be-
cause these traditional java threads are implemented by the JVM as wrappers around kernel
threads. Therefore, the underlying system (hardware and OS) dictates how many parallel
requests that can be handled at once which generally puts a low ceiling on concurrency as
they are stuck waiting for blocking operations. An asynchronous style of programming can
be used to handle this. However, as stated in JEP 444, this style of programming introduces
some problems and makes debugging difficult.

The virtual threads in Java are instances of java.lang.thread just like platform threads. A
platform thread runs on a kernel thread and captures it for the entire duration of the code,
while virtual threads do not. As virtual threads are implementations of the java.lang.thread
interface, they could be considered a user-friendly way of enabling high concurrency as most
Java developers would probably be familiar with the interface. All of the context switching
in regards to virtual- and platform threads are handled automatically, and the programmer
is not intended to handle virtual threads differently than platform threads. Just like virtual
memory simulates abundant resources by mapping a large number of addresses to a smaller
memory, a large number of virtual threads are mapped to a smaller number of kernel threads.

Java’s platform threads rely on the OS scheduler while virtual threads are managed by the
JVM assigning the virtual threads to platform threads. Virtual threads are not restricted to
one specific platform thread during their lifetime, and can be assigned to different platform
threads by the scheduler after each context switch. A virtual thread gets unmounted from
its platform threads when it is blocked (for example I/O operations), which ensures that
the underlying platform threads are not being blocked. However, the JVM does not always
unmount virtual threads. Two situations where the virtual threads are not unmounted are
certain blocking situations and pinning. The first situation is due to JVM and OS limita-
tions were the JVM compensates by temporarily increasing parallelism, i.e. creating more
platform threads. The second scenario, called pinning, happens when blocking operations
are performed inside of a synchronized block. In both these situations the underlying plat-
form thread is also being blocked (Oracle Corporation 2023).

The stack frames of virtual threads are stored in the garbage-collected heap in between
context switches. The heap grows and shrinks dynamically. This allows the program to run
many virtual threads. There is also support for thread-local variables, but it is recommended
to avoid this since the number of virtual threads can grow a lot which may cause memory
related errors as heap usage increases. According to the documentation of Java 21, a single
JVM can potentially handle millions of virtual threads (Oracle Corporation 2024a) and the
frameworks used in this study do not impose limits on the number of virtual threads created.

2.1.2 Reactive Systems
There are a number of implementations of reactive systems, but a common denominator is
that they rely on asynchronous data streams. When describing reactive systems, the Reactive
Manifesto (Jonas Bonér 2014) is usually cited. It is written and signed by a number of IT
professionals and says reactive systems should be flexible, modular and easily scale-able. The
manifesto enumerates four distinct properties that reactive systems should have:

18

2.1 Central Concepts

• Message driven: Asynchronous message passing enables compartmentalization and
monitoring the message streams makes it easy to apply e.g. load management and
back pressure. Components can be publishers or subscribers in these systems, and
subscribers react on data from the publishers.

• Responsive: The responsiveness of a system is the key to make it user friendly and
thus use-able, so a reactive system should be focused on responsiveness. As an added
benefit, this also simplifies error handling.

• Elastic: A reactive system should be elastic, meaning responsiveness and efficiency
should not degrade with a varying workload. Various methods are employed to achieve
this, for example backpressure.

• Resilient: A reactive system should stay responsive even in the case of failures. Compo-
nents should be compartmentalized and there should be a well defined way of handling
recovery without delegating error handling to the clients of the failed components.

Asynchronous, event driven programming is often considered to be a difficult process. To
implement and maintain, and the resulting code is often difficult to debug and understand
(Madsen et al. 2017), (Kambona et al. 2013). Non-imperative code is harder to debug not
only for the obvious reasons such as difficulty inserting break points, but also because most
automated debugging features have trouble handling asynchronous code. The phenomenon
of asynchronous programming has been described as ‘callback hell’ (Edwards 2009), (Belson
et al. 2019), (Brodu et al. 2015). The resulting code has been compared to ‘asynchronous
spaghetti’ and modern ‘goto’ (Kambona et al. 2013).

In listing 2.2 and 2.1, the implementation differences between reactive services and syn-
chronous services (same code for virtual threads and platform threads) are illustrated. In
these examples the services perform a blocking call fetching an array from a database, con-
vert the values to integers, sort them and remove all entries with a certain ID. For the reactive
service to work asynchronously the implementation must be in the form of callbacks usually
resulting in long lines of code, like functional programming. Meanwhile the implementa-
tion of virtual and platform threads follows a more imperative approach that can make it
significantly easier to implement and read.

1 import reactor .core. publisher .Flux;
2 import reactor .core. publisher .Mono;
3 @Service
4 public class ReactiveService {
5 @Autowired
6 private ReactiveDataRepository reactiveDataRepository ;
7 public Flux <Data > fetchDataConvertSortAndFilter () {
8 Flux <Data > dataFlux = reactiveDataRepository . findAll ();
9 return dataFlux . flatMap (data -> {

10 try {
11 int value = Integer . parseInt (data.

getValue ());
12 data. setValue (String . valueOf (value)

);
13 return Mono.just(data);
14 } catch (NumberFormatException e) {
15 return Mono.empty ();
16 }
17 })

19

2. Theoretical Background

18 . filter (data -> data.getId () != 31)
19 . collectSortedList (Comparator . comparingInt (

data -> Integer . parseInt (data. getValue ())))
20 . flatMapMany (Flux :: fromIterable);
21 }
22 }

Listing 2.1: Reactive service

1 @Service
2 public class RegularThreadService {
3 @Autowired
4 private DataRepository dataRepository ;
5 public List <Data > fetchDataConvertSortAndFilter () {
6 List <Data > dataList = dataRepository . findAll ();
7 for (Data data : dataList) {
8 try {
9 int value = Integer . parseInt (data. getValue ());

10 data. setValue (String . valueOf (value));
11 } catch (NumberFormatException e) {
12 return null;
13 }
14 }
15 Collections .sort(dataList , Comparator . comparingInt (data ->

Integer . parseInt (data. getValue ())));
16 dataList . removeIf (data -> data.getId () == 31);
17 return dataList ;
18 }
19 }

Listing 2.2: Threads

2.2 Spring Framework
The spring framework (Spring 2024) is used to build enterprise-grade Java applications.
Spring provides functionalities and features that facilitate development of robust, scalable
and maintainable applications. The framework handles dependency injection that promotes
a loose coupling for components of the application by externalizing their dependencies.
Spring also offers functionalities such as data access (integration with databases), security,
testing, the model view controller (MVC), WebFlux and Spring Boot. MVC is a framework
that helps building web applications and provides components for managing session state
and HTTP requests. Spring Boot is a framework that extends the spring framework by pro-
viding auto-configuration and some default functions which helps in building production-
ready applications. WebFlux is a reactive programming framework allowing for non-blocking
and asynchronous concurrency.

All in all the Spring framework allows for developing solid production-ready applica-
tions. It is used in the industry, including the host company, thus it will be used to imple-
ment the servers in this project. The reason for this is that the framework offers a good
base for comparison between the different concurrency approaches, reducing potential dif-
ferences between them compared to if said approaches would have been entirely created by
the authors.

20

2.2 Spring Framework

2.2.1 Spring Boot
Spring boot (Spring 2024) is used to simplify the process of configuring, deploying and build-
ing applications. It includes applications that can handle HTTP request. There are three
main features to this: autoconfiguration, the ability to create standalone applications and
an opinionated approach to configuration. Autoconfiguration reduces some of the need for
the developer to perform certain configurations regarding dependencies, although it is pos-
sible to override these autoconfigurations. Opinionated approach means that Spring Boot
adds starter dependencies and configurations based on the needs of the project. Standalone
applications means applications that run without relying on an external web server.

2.2.2 Spring WebFlux
Spring WebFlux is a reactive framework that is non-blocking and asynchronous (Spring
2024). WebFlux is based on project Reactor and implements reactive streams. The goal
of reactive streams is to handle ‘live’ data with an unknown volume. This is done through
controlling the exchange of data across asynchronous boundaries (data between threads and
thread pools) without having the receiver buffering an unknown amount of data. An example
is backpressure, where the consumer of the reactive steam (data) controls the rate at which
it receives data, thus preventing potential overload (Reactive Streams 2024).

Spring WebFlux provides a reactive web client that handle HTTP requests in a purely
asynchronous manner without blocking I/O. Its client-side applications allows for outbound
requests to external services or APIs without blocking through leveraging reactive streams
and handling backpressure efficiently. It offers a multitude of HTTP operations (for example
POST and GET) and support error handling and integration with other Spring applications.

2.2.3 Spring web MVC framework
This framework is designed to build web applications following the MVC pattern (Spring
2024). This includes three components: model, view and controller. In the context of this

project the controller is the primary component. When a request has been received, the
Spring dispatcher servlet intercepts the request and forwards it to the right controller. The
controller handles incoming HTTP requests from clients. Within the controller there is a
request mapping that map a certain request to a certain handler function for example POST
‘/path’.

This framework offers a simple method to create servers that can handle incoming HTTP
request in an effective way. It is compatible with Java 21 and offer support for both regular
platform threads and virtual threads through a simple configuration process.

2.2.4 Summary spring
To summarize, the Spring framework offers a simple way to create production-ready appli-
cations including web clients. The framework will be used in this project due to these main
reasons:

• i) It is a commercial framework, so by using it instead of implementing something
ourselves we reduce the risk of the implementations not being equally good for all
technologies tested.

21

2. Theoretical Background

• ii) It is commonly used in enterprises including the host company.

2.3 Testing
Good methodologies for testing performance are absolutely central to this study. As we are
interested in comparing virtual threads with reactive systems, care has to be taken so that
other parts of our setup do not influence the results unduly. In the first subsection ("On
Performance Testing"), we present some terminology and ideas that are useful to know for
readers of our study.

2.3.1 On Performance Testing

To compare different approaches there must be a system of how to compare them. For per-
formance there is a multitude of possible test data that measure different aspects of the
application. Furthermore, the application has multiple areas of operation and thus measur-
ing with different loads and load types is important. Steven Haines write about this in the
book “Quantifying Performance” (Haines 2006) in the context of a Java enterprise. Haines
outline three primary measurement categories which are response time, throughput and re-
source utilization. These three categories share a relation under increasing loads (measured
by Haines as number of concurrent users). When the load increases the resource utilization
increases alongside the throughput. Eventually the available resources become saturated due
to either ineffective utilization or due to limited hardware. When the resources are saturated,
the throughput will stagnate, and it may decline due to the system having to spend more re-
sources managing itself (for example by conducting context switches). Also, the response
time increases due to increased strain on the system.

Haines mentions both performance and scalability. Performance means an application’s
ability to handle a high load and and scalability entails how the system handles an increase
in load. Although performance and scalability are usually seen as similar, they are not. The
performance of a system is measured for a certain load while the scalability measures the
ability for a request to uphold the same performance during increased loads. A way to test
scalability is to test the system while gradually increasing the load while measuring important
metrics. When the load get too high the system will experience a decrease in throughput
and increase in response time which marks the point in which the system has reached its
maximum load potential.

Load testing is the act of testing a system under heavy loads such as having many con-
current users. The purpose is to detect load related problems (Jiang & Hassan 2015). It can
also be extended to find load related problems regarding performance such as response time
and throughput (Jiang et al. 2009). Recommendations for effective load testing is to perform
it during a longer duration of time (Jiang et al. 2009) and to not only focus on the average
result but also include factors such as 95th percentile (Jiang & Hassan 2015). The reasoning
for longer test runs is due to small fluctuations in memory, CPU usage etc. looking at the
more extreme cases such as the 95th percentile also provide certain insights as one can detect
unacceptable deviations in performance.

22

2.3 Testing

2.3.2 Java Testing
To answer the research questions and fulfil the aim of the thesis, custom benchmarking was
utilized. A benchmark can be viewed as a test to evaluate the performance of a tool or
technique (Sim et al. 2003).

The aim of the benchmarks is to test the applications in different areas of operation,
such as CPU and I/O intense operations. For benchmarking to be a fair, comparison certain
requirements need to be fulfilled on the individual benchmark tests. According to (Bull et al.
1999), a few properties of a successful benchmark is:

• Representative: If the benchmark intends to test I/O these operations ought to be
included.

• Interpretable: The result should give insights to why that particular result was achieved.

• Robustness: The test itself should not be an uncertainty when repeating tests.

• Portability: Be able to recreate it.

• Standardized: Performance metrics should mean the same.

• Transparent: Clear what is being tested.

In short, the benchmarks should test a specific area where the metrics and measure-
ments should have the same meaning between the technologies. The test should also be
interpretable to explain potential differences.

Doing performance testing on runtime environments can be very difficult and the perfor-
mance of Java applications can sometimes seem unpredictable due to various reasons such
as the garbage collector, JRE and JIT. The performance of a Java application can depend
on the JVM it is running on or how long it runs for (Eeckhout et al. 2003). The complex
and dynamic runtime of Java applications may require more well thought out tests while
benchmarking compared to compiled languages such as C and C++ that have a predictable
runtime environment (Blackburn et al. 2006). Performance of Java applications can be diffi-
cult to test with benchmarking due to high variance within the virtual machine, so therefore
quantitative methods are recommended for ensuring a good benchmarking test (Gu et al.
2006). Prevalent methodologies for testing the performance of Java applications have been
criticized for leading to incorrect and misleading results (Lion et al. 2016). Some reasons are
that Java applications can give different results between runs due to different sources of non-
determinism such as just-in-time optimization in the virtual machine, garbage collection and
thread scheduling. There are multiple way to present the result from Java benchmarking tests
such as:

• i) Taking the average.

• ii) Taking the median.

• iii) Only including the best run.

• iv) Only including the worst run.

23

2. Theoretical Background

Ways of mitigating the seemingly unpredictable effects in the JVM include forced garbage
collections between different test iterations to avoid having the garbage collector starting at
different times between the test runs. One can also perform back-to-back measurements
(‘cccddd’ instead of ‘cdcdcd’, c and d being specific tests) on the same VM instance. Warm-
up runs and being careful not to include initial class loading can also give better data (Lion
et al. 2016). We undertook all of these measures in our study.

Previous studies that used similar methods as our project (load testing with Vegeta) did
not specify eventual server crashes or a high variance between test iterations (Beronić et al.
2022), (Beronić et al. 2021), (Pufek et al. 2020). A member of these three studies was asked
by us (Beronić 2024) regarding her test results. The consulted researcher stated that she
did in fact experience server crashes, but it was due to ‘Fibers’, an early version of virtual
threads. However, they did state that server crashes would happen if they would have tested
with a higher load. Furthermore, the researchers stated that they did not experience notable
differences between test iterations, however they did notice seemingly random spikes in
latency after further analysis which they attributed to the garbage collector. Finally she
stressed the importance of warm-up runs, where she stated that her group noticed notable
difference between the warm-up iterations. This inspired us to look closely at latency and
server behaviour at higher rates.

In general, handling the test data carefully is especially important when testing Java ap-
plications. The unpredictable nature of the Java runtime may lead to a high variance in
repeated measurements, which should of course be analyzed. For instance it could be con-
catenated with some kind of statistical approach (Lion et al. 2016).

2.3.3 Analysing the performance and costs of reac-
tive programming libraries in Java

Ponge et. al. compares the performance of different reactive libraries. The study (Ponge et al.
2021) may not be related to virtual threads but it provides insight in how to make compar-
isons of similar systems. The study compares three of the commonly used Java libraries for
reactive programming including SmallRye Mutiny, RxJava and project Reactor.

The study split the tests into three domains: individual operations, I/O bound opera-
tions and multiple-operator pipelines. This is roughly the same domains as the tests we used
in our study. They aimed to make these tests like what is regularly used in reactive program-
ming. For individual and multiple operations, they compared the performance on variable
transformation for the three reactive libraries. For the I/O bound operations they did two
tests. The first test was file processing were read and write are blocking operations. The
second test was based around network requests. Instead of using a manual delay operation
they decided to create a realistic blocking operation. In this test, text from a book is fetched
from a server and afterward operations are performed on the server response.

A study tested asynchronous versus thread-based HTTP servers (running Tomcat NIO
and Tomcat BIO) using apache bench to simulate high loads with concurrent users (Fan
& Wang 2015). The test setup was one server machine and one attacking machine both
having 2.5 GHz Zeon six-core CPU and 16 GB of RAM, although only one CPU was active
to reduce complexity. The use of two separate machines is another element we included in
our experiments. The result was the both the asynchronous and thread-based servers had
similar average response times on increasing workload. However, when looking at the tail
respond times (for example 95th and 99th percentile) the asynchronous server had much

24

2.3 Testing

lower response time then the thread-based approaches with an increasing difference at higher
loads. The authors concluded that the thread-based server did not scale well due to a limited
queue size. We took note of this and decided to look closely at parameters in Spring and the
JVM that we had the ability to adjust.

2.3.4 Examples of test implementation
The process of comparing different concurrent approaches in the context of I/O operations
shares a lot of similarities with comparing different server applications. Both the server tests
and the concurrent approaches utilize methods such as load and stress testing. Furthermore
they share a lot of valuable metrics. Previous research related to comparing servers may be
valuable for selecting metrics and test methods (for example how to create tests with I/O
operations).

For the interested reader, here are some studies we have drawn inspiration from when
designing our tests:

• i) Comparing .NET and Java by measuring latency and memory with different loads
(Hamed & Kafri 2009).

• ii) Comparing different web server architectures (for example thread per client) with
load testing and measuring throughput and response time (Pariag et al. 2007).

• iii) Comparing servers using throughput and response time for I/O heavy situations
(using a MySQL database) and CPU intense situations (calculating Fibonacci) (Chitra
& Satapathy 2017).

• iv) Comparing multi-core web-server architectures through load testing using through-
put as the primary metric using a server with two hard drives and 21600 files to sim-
ulate I/O (Harji et al. 2012).

• v) Using load testing (large amount of HTTP requests) to compare performance of
cloud-based services using throughput, response time and CPU utilization as the pri-
mary metrics(Salah et al. 2017).

2.3.5 Overhead Analysis
The three technologies under test are all part of the Java ecosystem. Despite their different
implementations, each technology relies on the fundamental threading engine inherent to
the Java Virtual Machine (JVM). Notably, the JVM assumes an important role in the manage-
ment and scheduling of these technologies. Especially when managing reactive and virtual
threads, which rely less on the operating system than platform threads. Consequently, this
managerial function introduces an overhead. That is clear when examinating of the source
code for these technologies. We investigated the code bases of these methods, and found
indications that they may lead to extensive call stacks, which means looking at call stacks
could be useful for explaining performance differences.

25

2. Theoretical Background

2.3.6 Hardware metrics
Hardware is usually a limiting factor of programs both in terms of computation speed and
load capacity. From a developer’s standpoint there is not much he or she can do to improve
the physical hardware, but the developers do have control of making applications that utilize
the hardware resources in an optimal way.

In concurrent applications with many blocking instances due to for example I/O there
is a risk that the CPU resources remain idle due to non-optimal program structures where
certain operations block kernel threads. This can cause queue-like conditions that have the
potential to reduce throughput and increase latency. A way to detect these ineffective blocks
is to investigate the CPU utilization and monitor how high it is and also how stable it is, for
example going from a low utilization to a high utilization periodically during constant loads.
This is something we look at in our report.

CPU utilization
Even though CPU utilization as a metric does not explicitly give insight about efficiency
metrics such as latency and throughput it is still a metric that is valuable for assessing the
overall performance and evaluating resource utilization. CPU utilization may provide valu-
able information on bottlenecks, since the metric includes the ratio of the time the CPU is
idle and whether or not the system reaches saturation (full resource utilization). The optimal
CPU usage for saturation level and ideal performance may vary for different architectures
and machines but around 80 % seem to be a good threshold for a server (Liu & Ding 2010)
(AWS) (Cloud 2024). CPU usage is also considered to be a valuable economical metric
from a stakeholder perspective in cloud environment (Liu & Ding 2010). We measure CPU
utilization for all our benchmarks using VisualVM.

2.4 Tools
The tools described below will be used throughout the study.

2.4.1 Vegeta
Vegeta is an open source load testing tool that generates and transmits HTTP requests and
saves data such as latency and success rate to a file. Vegeta is used through the command line
and is easy to integrate into e.g. python and bash scripts. The tool allows for load testing
by simulating many concurrent users. There are many parameters that can be manually
adjusted, such as duration, requests per second, number of concurrent users and more. The
tool then returns a report containing important parameters such as latency (average, 50th,
90th, 95th and 99th percentile), throughput, the actual rate and server responses.

Vegeta is written in GO which is a relatively high performing language with built-in
support for concurrency. This allows for testing with high load for the attacking machine
(i.e. the client sending requests to the server). If Vegeta does not manage to uphold the
requested specifications such as requests per second it will inform the users of this. This
makes the tool reliable.

Vegeta was used in similar studies in this area (Beronić et al. 2022), (Pufek et al. 2020).
Additionally Vegeta has been used in a lot of studies as a load testing tool. See (Schuler et al.

26

2.4 Tools

2021), (Park et al. 2021), (Nor Sobri et al. 2022), (Choi et al. 2021) and (Zhang et al. 2023).
Other popular tools for HTTP load testing were also evaluated such as Apache JMeter and
Apache benchmark. However, these tools were not as reliable in simulating a high level of
concurrency and requests per second resulting in the client side tools suffering performance
issues before the actual server (at least when we tested and evaluated them).

2.4.2 VisualVM
VisualVM was used for profiling the servers in our study. This tool allows for the real-time
monitoring of a large number of parameters in Java applications. This includes parameters
such as CPU usage, memory usage, thread metadata and garbage collector usage. VisualVM
collects data about the JVM application from the JVM. This tool was chosen due to ease of
use and its ability to trace multiple performance parameters and isolate resource usage to
individual Java applications. Furthermore, the tool is deemed to be solid due to it having
been managed by Oracle and having been used in previous studies such as (Beronić et al.
2022).

2.4.3 Wireshark
Wireshark was used by us to analyze server crashes that occurred during our experiments.
When the server was running on high loads the sender was blocked and reported an error.
This error is not correctly reported in Vegeta and additional tools had to be used to analysis
errors and if they were due to the server or external sources.

Wireshark allows the user to analyze network traffic in a useful way. It can for instance
list all of the network traffic over a connection, displaying URLs, protocols used, sender,
receiver and timestamps. During a high server load the server may block additional connec-
tions, not be able to send acknowledgements or not capable of receiving acknowledgements.
This can be seen in Wireshark as the server machine sends reset commands (closing the con-
nection due to being overloaded) or through messy communication regarding DUP ACKs
(packet may have been lost or received out of order) and re-transmissions. This occurs when
the server’s processing capacity is exceeded, and some packets might be processed out of
order or dropped.

2.4.4 Flame Graphs
Flame Graphs Gregg (2016) is primarily used as a tool to visualize the stack trace outputs
from profilers such as Perf, Dtrace, Jstack and Xtrace. Flame graph was implemented to get
a better understanding of the stack traces that are generated by profilers. For multithreaded
applications, multiple threads may perform the same procedure thus flame graph aggregates
these threads to show the overall patterns of the applications related to function calls and
relative frequency.

Flame graphs are relatively easy to use and they are presented in two dimensions. The
y-axis represents the call stack while the x-axis represents the relative frequency and the
percentage of the CPU time spend in a certain function. Figure 2.1 illustrates a sample flame
graph, and a simple interpretation of it may be that functions e(), g(), i() and a() all run on
the CPU after being called through the functions or procedures below them. In the example
above the stack trace for ‘g’ is :a -> b -> c -> d -> f ->g.

27

2. Theoretical Background

Figure 2.1: Enter Caption

In summary the flame graph is a visualization of the aggregated stack trace for an appli-
cation. It can be used to investigate the number of calls required to reach the function that
actually runs on the CPU and it can also be used to spot overhead. For example if function
g in the figure 2.1 is the primary function, then function ‘e’ and ‘i’ may be functions that add
overhead such as the garbage collector and thread scheduler.

28

Chapter 3

Method

3.1 Overview
An overview of the method can be described by the following steps:

1. Design Benchmarks: Design four benchmarks testing I/O, computation, and two mixes
between computation and I/O.

2. Create Servers: Create three servers using platform threads, virtual threads, and reac-
tive streams. All servers will implement the four benchmarks.

3. Load Ramping Experiments: In the load ramping experiments, a client machine will
send concurrent requests to a server that is hosting one of the three technologies, for
one of the four benchmarks. The concurrency level is decided by requests per second
and will linearly increase until resource saturation occurs for the server. During these
tests, the client and server metrics will be collected (such as CPU usage and latency).

4. Constant Load Experiments: Similar to the load ramping experiments, except now the
request rate is kept constant at a level corresponding to about 70% resource utilization
(of whatever the limiting factor is for the benchmark in question). Also we use one
test series instead of five, as variance was much lower than for load ramping in our dry
runs.

5. Validation and Additional Experiments: Perform validation and additional experi-
ments to explain the results and validate the work. This includes stack profiling, ex-
amining the network connection, and assessing the impact of the profiling software.

In the following sections the method will be further elaborated regarding benchmark
design, test environment and other considerations.

29

3. Method

3.2 Test Setup
In this section we present our test setup, including the benchmark implementations.

3.2.1 Benchmark Design
In Java there are a lot of common benchmarks such as the Java Grande benchmark suite (Jils
Matthew et al. 1999) that is a collection of benchmarks made to evaluate the performance
of certain Java implementations. However, if these Java implementations cannot run the
same or very similar source code, for example asynchronous concurrency vs virtual threads,
these tests may introduce uncertainty. For example, the programmer’s implementation of
the benchmark of technology A and B in Java might lead to compiler optimizations for one
of the technologies but not the other. That might in turn lead to unfair testing due to errors
from the implementation of the benchmark rather than errors in the technology itself. To
prevent possible differences in the implementation of benchmarks between different tech-
nologies (e.g. reactive vs virtual threads) a good approach is to make the benchmarks simple.
The simplicity of the individual benchmarks reduces the risk that the potential differences
between the technologies tested are due to implementational error. However, it is worth
pointing out that these simple benchmarks may lead to benchmark specific optimizations.
We have taken precautions have been taken to remove these, such as including loop variables
to prevent optimizations within loops.

Since this thesis is focused on high-concurrency systems, we selected a server approach
to implement the testing environment. Spring was used to run the server-side applications
(benchmarks) since it is a commonly used library and thus increasing the relevance of po-
tential results.

Four benchmarks were designed by us to test the technologies in different areas, see the
previous chapter for guidelines on our benchmark design. The first benchmark tests a strictly
I/O-bounded operation, the second benchmark test a strict computationally bounded opera-
tion, and the other two benchmarks test mixes between computational and I/O intense oper-
ations. Note that all I/O operations were simulated through different versions of ‘thread.sleep‘
or ‘delay’ instead of using for example a database. The reason for this was to remove potential
bottlenecks as the usage of a database as I/O was suspected to be a bottleneck in the study
published by Navarro et al. (2023).

All four benchmarks had different parameters that regulate the behavior of said bench-
mark. For I/O it was sleep/delay duration and for computational tasks it was the number of
floating-point operations. These parameters were manually tuned to make said benchmark
test the intended area, for example CPU or I/O. The tests are available in Appendix C.

I/O Test
This method simulates a simple blocking I/O operation with minimal to zero computational
operations. It is inspired by Beronić et al. (2022). Here we used a fixed delay of 100 ms. The
delay might be somewhat high, but it is not unreasonable for blocking operations such as
messages, fetching items from remote servers or databases. Despite the arbitrary nature of
the delay length, it still does a good job of testing how well the different servers handle IO
and how well they perform when the number of concurrent requests increases.

For platform threads and virtual threads, the delay is a simple thread sleep operation. For

30

3.3 Testing within the JVM

the reactive approach the delay is set on the return object itself rather than the thread (see
Appendix C), as this emulates how asynchronous applications handle blocking operations.

The fixed sleep/delay was set to 100 ms since it is a reasonable latency that can emulate
realistic conditions (OpenSignal 2020) for a messaging server.

Computation Test
This method does not contain any I/O operation apart from actually receiving a request
to perform a computation and returning the result. Instead, it contains a computation with
squared time complexity that aims to load the different applications. The purpose with this is
to investigate potential differences between the approaches in regard to simple computation.

Mixed Test - computation
As previously mentioned, one of the main concerns with virtual threads is that they can use
a lot of space on the heap, as their stack frames are stored there when context switches occur.
In order to test this (with a somewhat extreme case) our servers implement a matrix multi-
plication method. Matrix multiplication is a very common test case in performance measure-
ments, and is also a common operation in practical applications (e.g. computer graphics).
The matrix multiplication is on a 200x200 matrix, followed by a 25ms sleep operation. The
dimensions of the matrix were chosen experimentally so that the load ramping test would
run for a reasonable duration of time when ramping up the load.

The purpose of this benchmark was to test a mix between computational and I/O oper-
ations, with a focus on computation. Hence the matrix dimensions were tuned to put high
constrains on the CPU while the sleep duration was kept short.

Mixed Test - I/O
This method is similar to above method, but the dimensions of the matrix was reduced to
150x150 and the delay increased to 100 milliseconds. This weights this test more toward I/O,
while still containing significant elements of computation and memory requirements.

The purpose of this benchmark is like previous benchmark but with an additional focus
on I/O and lower CPU utilization. The matrix dimensions were reduced to decrease floating
point operations while the sleep/delay duration was increased.

3.3 Testing within the JVM
As mentioned in previous chapters, testing Java applications can lead to different results
between iterations even though the test variables and test environment are seemingly the
same. To mitigate this as much as possible the following precautions are taken. We deem
them to be effective and within reasonable scope of this thesis.

Manual garbage collection between each test iteration. To allow all test iterations to
have the same starting point (Lion et al. 2016). Before every iteration the attacking machine
will send a HTTP request that forces the server to perform a garbage collection.

Warm up the JVM before tests (Lion et al. 2016), (Lion et al. 2016), (Navarro et al. 2023),
(Pufek et al. 2020), (Beronić et al. 2021), (Beronić et al. 2022). This allows the application
to load necessary classes and allow the JIT to do warm optimizations. This allows for a

31

3. Method

more consistent results. The warm-up is performed by running a prolonged load test with
the same testing method before each iteration. The warm-up also intend to force JIT com-
pilation. The machine running the server has a threshold counter for JIT compilation of
equal to 10 000 (accessed by the command (java -XX:+UnlockDiagnosticVMOptions
-XX:+PrintFlagsFinal -version), meaning a method can be compiled after being called
that many times. Thus the warm-up specifics (number of requests) will be designed to call
methods more then 10 000 times with margin of safety. Another potential options is to dis-
able the JIT compiler. However, the JIT compiler is an integral part of java and it is not
recommended to disable it. Also, the JIT compiler will most likely always be running dur-
ing similar conditions as this experiment test (servers), thus the study become more realistic
with the JIT compiler enabled.

Back-to-back measurements will also be done, where a JVM running a certain approach
will remain live between measurements (Lion et al. 2016).

Furthermore, the tests will be performed multiple times. As seen in previous research
there are multiple ways to process the data. One way is to take the average of all runs (Pufek
et al. 2020), (Beronić et al. 2022), but this may lead to high variance resulting in misguiding
results. Another approach is to take the best performing result from each iteration (Navarro
et al. 2023). The idea behind it is that the best run for all three technologies for a certain
method will be compared thus leading to a fair comparison. The third approach is to take a
statistical approach (Lion et al. 2016) using confidence intervals. All these options are viable,
and they offer different pros and cons. Taking the average have a possibility to reduce some
of the variance between the test runs. However, if one technology is very volatile, e.g. if it
performs well on some runs and poorly on other runs, the results may be misleading. Taking
the best iteration offers a fair comparison between the technologies considering they all are
compared during their peak performance.

All these approaches were considered when designing the experiment. However it was
decided to take the average of the tests, similar to previous studies (Pufek et al. 2020),
(Beronić et al. 2022). This study considered the average of five tests instead of the three
tests used in previous studies. Of course, taking the average of more tests could lead to a
more accurate result. Due to time restrictions, five tests were the most reasonable and is still
more than what previous studies did (Pufek et al. 2020), (Beronić et al. 2022), (Navarro et al.
2023).

To reduce bias the technologies will be tested with different types of benchmarks. For
example, virtual threads are not recommended to be used for tasks requiring a lot of memory
(Oracle Corporation 2023). Therefore, there ought to be some tests that also test them in
other areas such as computation tasks, I/O tasks and of course more memory-intensive tasks.

In summary; previous research and critique seem to indicate that performance testing
Java applications can lead to unpredictable results in some runs. To reduce this volatility,
measures have been taken inspired by previous studies as stated in the Introduction and
Background sections. Furthermore, other measurements have been taken such as monitoring
the network between the machines, keeping a consistent and stable test environment and
keeping the tests consistent. For example, if technology A is tested through an attack (a
batch of HTTP requests) every two minutes, then technology B will also be tested that way.
To ensure consistency between tests, they will be automated to ensure equal timings (e.g.
time between request batches for the load ramping test), garbage collections and request
increment.

32

3.4 Parameters

3.3.1 Hardware Setup
Our experiments were run on two identical machines (MacBook Pro 2019) with the following
specifications: 2.6 GHz-6 core Intel Core i7, Memory 16 GB 2667 MHz DDR4, MacOS 14.2.1.
One machine hosted a server and collected profiling data while the other machine performed
load testing through Vegeta. The machines were connected with an one-gigabit ethernet
cable. OpenJDK version 21.0.2+13-58 was used both for the runtime environment and JVM
(64 bit server VM). Spring Boot version 3.3.2 was used.

3.3.2 Metrics Collected
Both the client machine and the server machine collect metrics during the attacks. The
client machine collects the following metrics: latency (minimum, maximum, mean, 50th
90th, 95th, 99th percentile), throughput, rate, server responses (for success rate), bytes in
and bytes out. This is done through Vegeta.

The server machine collect metrics regarding CPU-utilization, number of threads (live
and started), heap (total size and used size). The reasoning behind including these metrics is
explained in previous sections. We also collect data on sync point inflations and deflations, as
well as safepoints. Sync- and safepoints relate to concurrency, and will be explained quickly
when they occur in the report. Studying this data might be useful for explaining our results.
All data is then concatenated into files and processed.

3.3.3 Handling Errors
Both the attacking machine and server machine were monitored for errors (printed to the
terminal or the output files), which only occurred under high loads or during moments where
the resources (CPU, heap or threads) were very strained. Errors are not included during the
comparison, but they still may be important for the study, especially when monitoring the
technologies in critical zones with high loads.

On the receiving side, the errors mostly occurred due to not receiving a server response on
the requests. These errors were either displayed through a token ‘EOF’ in Vegeta or through
a message like ‘TCP connection reset’ in Wireshark. To confirm that the errors originated
from the server side, Wireshark was used on the server machine to monitor its traffic during
high loads. Note that Wireshark was not present during the actual test runs but rather incor-
porated after the actual tests. This confirmed that the server crashes were due to server over-
load and were displayed through either a clearly stated message ‘reset’ or through a chaotic
dialog between the receiver and sender regarding re-transmissions and ACK-DUP. These
scenarios are usually due to servers being overloaded, and they were not present during tests
without errors. Of course, this does not with certainty prove that there may not be any
network problems, although during the test runs the connection was monitored along side
other variables related to server overload such as high resource utilization, high latency, and
low throughput.

3.4 Parameters
We had to choose several parameters for our experiments, explained quickly below.

33

3. Method

• A test run was terminated after three consecutive failed requests. After this had hap-
pened latencies were several minutes long, with falls outside the scope of this study as
we are interested in practical use cases.

• We performed each test series five times and calculated averages. As each test series
took several hours, doing more was not practical.

• The length and request rates used in the warm-up were calculated to call the server
over ten thousand times with some margin of error, as up until that number the JVM
might perform JIT-compilations (as explained in the background chapter).

• Delays of 60 seconds before garbage collections and 20 seconds after. This was de-
cided empirically by studying time series from VisualVM and choosing numbers that
allowed CPU utilization and memory usage to drop to nominal values between test
iterations.

3.5 Load Ramping Experiment
The four different benchmarks described above (computation, I/O, mixed-I/O, mixed-Compute)
were performed on our three different servers. They were automated through a script and
consisted of staggered Vegeta attacks with a delay and a forced garbage collection in between
each run. This test series was performed five times for each server-method configuration and
all test series were preceded by warm-up attacks.

The tests are performed by an automated script to ensure equal timings (time for warmup,
time to garbage collections etc) between the different approaches and methods. This script
includes a warm-up attack between each iteration of test. After each individual test the
client send a request to the server to manually perform garbage collection and after that the
client machine has a constant delay before it starts the next HTTP attack.

The variable that changes between the individual attacks is requests per second (con-
currency level) with increment of 50 request per second (50 chosen so that the experiments
could be conducted within reasonable time while still being somewhat fine grained). This
will continue until either the server fails three consecutive times or the throughput becomes
too low compared to the attack rate, leading to a crash for the attacking machine due to
time-outing while waiting for results (70 seconds). Only tests with a 100% success level will
be considered during this experiment, however all test data will be included and discussed.

During this experiment several metrics were collected. The machine sending the HTTP
requests collected latency (minimum, maximum, mean, 50/90/95/99 percentile), through-
put, request per second rate (actual rate and the intended rate), total requests sent, total
failed and successful requests and eventual error codes. The server machine sampled CPU
usage, heap usage, number of threads, safe points, inflation points, contended lock attempts
and deflation points.

The tests were performed five times each, meaning that a total of sixty tests were per-
formed during this experiment (four test methods, three technologies tested, five test runs).

Each test iteration (for example virtual threads I/O test) was conducted like in the lists
below.

Warm-up:
1. 60 seconds with 300 requests per second

34

3.6 Constant Load Test and Additional Profiling

2. Manual garbage collection

3. Sleep operation for 20 seconds

4. Repeat three times with rates adjusted for the specific method

The three later warm-up rates are adjusted to 70 % of the max rate for the method (as
explained in the background chapter this is a good operating area for a messaging server).
After the warm-up the actual tests are performed according to the list below.

Attacks:
1. Send HTTP requests with rate ’RATE’ for 10 seconds. Save results.

2. Sleep operation for 60 seconds

3. Manual garbage collection

4. Sleep for 20 seconds

5. Increase ’RATE’ by 25/50 repeat

The above procedure is repeated N times until three consecutive failures, e.g. the server
crashes. See Appendix B for the automated script.

3.6 Constant Load Test and Additional Pro-
filing

3.6.1 Constant Load Test
To verify the primary testing outcomes, longer test runs were conducted to investigate if
the difference between the technologies were still present and that it scales with time. Ac-
cording to our supervisor at Sinch, servers are usually scaled up when around 80 percent of
hardware resources are utilized. Thus these more specific tests were conducted at a request
rate translating to about a 70 percent load of either the CPUs (computation tests) or the
memory (IO tests). Since 80% resource usage means scaling up the server and that there is
some variance in resource usage, a reasonable mode of operation would be a bit lower than
80% (e.g. 70%). The long runs were only performed with one specific rate that was selected
to emulate realistic working conditions. The rates for the benchmarks were different but
the rates were the same for all technologies, e.g. the compute method for virtual threads and
reactive streams had the same request rate.

Each test run was performed according to the following:

1) 3 x 60 seconds warm-up runs with 300 requests per second each.

2) 2 minutes warm-up run with the intended request rate.

3) Manual garbage collection.

4) Delay for 60 seconds.

35

3. Method

5) Start test. 10 minutes.

For these tests Vegeta and VisualVM were utilized to sample results.

3.6.2 Stack Profiling
To investigate the call stacks and get an overview of the overhead within these three tech-
nologies FlameGraphs were utilized. These graphs are an abstraction of the output from
profilers, such as perf and Dtrace. We used Dtrace. The graphs visually show the extent
of the call stack, and also approximate the CPU time spend in each method presented as a
fraction of the sampling time.

The testing procedure followed the same protocols presented in previous section, in-
cluding extensive warm-ups. The test itself was shorter however (at 240 seconds) as we did
not see any difference in results from longer tests in our dry runs. Each test iteration was
performed according to the following procedure:

1) Warm-up (3 X 60 seconds Vegeta attacks with the same rates that would be used on
the actual test. Including manual garbage collections)

2) Manual garbage collection

3) Manual delay 60 seconds

4) Start of test. 240 seconds with a constant rate

This procedure was performed for all three technologies with all four methods. The
rates were different between the methods but were kept the same for all three technologies.
The rates were manually tuned with the goal to not crash the servers during testing while
keeping the hardware utilization within realistic working conditions (i.e. 70% utilization of
the limiting factor). This proved to be difficult due to some methods crashing before others.
The final rates where:

• 1200 requests per second for Compute

• 1600 requests per second for I/O

• 300 requests per second for matmul compute

• 600 requests per second for matmul sleep

When the measurements were finished the profiling result was processed using Brendan
Gregg’s Flamegraph scripts to collapse the stacks and convert them into FlameGraphs. The
current implementation of the Jstack (Oracle Help Center 2024) processing script was not
updated to handle virtual threads, but a few adjustments of ours fixed that.

3.7 Validation
It would be poor form to perform these kinds of tests without proper validation to make sure
that the constraints and configurations of our testing environment did not unduly influence
the results. Below we present the major validations and tests of our setup.

36

3.7 Validation

3.7.1 Network Connection
When load testing was performed in this study, the tests ran until the server crashed or
the network connection was severed. Of course, questions arose as to whether it really was
server overload that led to the network shutting down. In order to test this, two experiments
were performed. Firstly, an empty endpoint was set up at each of the servers (empty in that
they simply returned an acknowledgement and did not force the server-side computer to
take any other action). When calling this method, we should be able to reach very high
rates if the network connection does not set a low limit on capacity. Secondly, a selection
of our ordinary tests where performed again and monitored in WireShark (described in the
previous chapter). Results of the measurements are presented in the next chapter.

3.7.2 Impact of Profiling Software
It is a fundamental law of nature that by observing something you affect it (Heisenberg
1927). It holds especially true for profiling software, as some kind of probes will have to be
embedded into it and data has to be recorded by the same hardware that is supposed to be
under test. To make sure that our profiling software had a negligible impact on our exper-
iments, we ran our tests once without profiling. Through measurements on the client side
it was verified that any deviation in performance was well within normal margins of error,
i.e. performance as measured from the client (latency and throughput) were not noticeably
affected by the absence of profiling software.

37

3. Method

38

Chapter 4

Results

This study consists of two major experiments, a constant load and a ramping load bench-
marking, as described in chapter 2. The results of these experiments will be presented here.
When we measure latency, we present different percentiles as stated in the theory section.
Here follows a quick recap of what a percentile is.

Percentile x of the probability distribution function P, henceforth denoted as Px (or by
x:th percentile) indicates the x:th percentile. Notably is the 50:th percentile P50 which from
the probability distribution function is defined as the median value which is the same value
the average (A) of N-samples converges to if N grows (in the case of symmetric P). The 50:th
percentile can be defined as follows.

50% = P (X ≤ a) =
∫ a

−∞

f (t)dt

More general, the Px percentile is when the cumulative distribution function reaches
x/100. Thus, percentiles are useful for describing worst case scenarios.

4.1 Ramping Load Experiment
In this experiment, virtual threads, platform threads and a reactive system were tested on
our custom benchmarking methods. Data from these tests will be presented below.

As stated in the theory section, the results between identical tests can vary a lot due to
the inner workings of the JVM. Many precautions were taken to mitigate this, and they are
explained in detail in chapter 2. Every individual test resulted in between twenty and eighty
series of samples depending on the test (the samples are concatenated by VisualVM).

The rate described in the following sections is requests per second. In this section, differ-
ent latency percentiles will also be displayed. The 99th percentile for latency is the latency
(time) that 99% of requests are faster than. Meaning that it somewhat describes the worst-
case scenarios. Due to instability of the tests. For the plots in the following section, each
sample is the mean from five successful attempts.

39

4. Results

4.1.1 CPU Intense

This method consists of computations vaguely inspired by the calculation of a Fibonacci se-
quence with some elements of randomness introduced (see Appendix). It contains no delays
or server calls, and is thus not the intended use case for either virtual threads or reactive
streams. It is however an interesting measure of performance and is thus included in this
report.

0 500 1000 1500 2000 2500 3000
Rate

0

20

40

60

80

M
ea

n
CP

U

Compute - Mean CPU
Reactive
Virtual
Platform-Limited
platform-Unlimited

(a) Mean CPU usage
in percentage for reac-
tive, platform, and vir-
tual threads.

0 500 1000 1500 2000 2500 3000
Rate

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n
He

ap

1e8 Compute - Mean Heap

Reactive
Virtual
Platform-Limited
platform-Unlimited

(b) Mean heap usage
in bytes for reactive,
platform, and virtual
threads.

Figure 4.1: CPU and Heap usage

Figure 4.1a and 4.1b illustrates the hardware utilization attributable to the three tech-
nologies during a CPU intense operation. The CPU utilization for the methods differ signif-
icantly. The reactive approach has the highest CPU utilization overall, closely followed by
virtual threads. The blocking platform threads have the lowest CPU utilization. The mem-
ory utilization for the three concurrency approaches are also different (as can be seen in
figure 4.1b). At lower rates the platform threads have the highest memory utilization while
virtual and reactive have lower memory utilization. However, as the request rate increases
the virtual threads start to consume more memory.

40

4.1 Ramping Load Experiment

0 500 1000 1500 2000 2500 3000

101

102

103
Regular

0 500 1000 1500 2000 2500 3000
Rate

4

6

8

10

12

14

16

18

20

la
te

nc
ie

s (
m

s)
Zoomed

Reactive
Virtual
Platform-Limited
Platform-Unlimited

Compute Mean Latencies 99th Percentile

Figure 4.2: Mean of 99th percentile latency in milliseconds for re-
active, platform, and virtual threads.

0 500 1000 1500 2000 2500 3000

101

102

103 Regular

0 500 1000 1500 2000 2500 3000
Rate

3.5

4.0

4.5

5.0

5.5

6.0

la
te

nc
ie

s (
m

s)

Zoomed

Reactive
Virtual
Platform-Limited
Platform-Unlimited

Compute Mean Latencies 90th Percentile

Figure 4.3: Mean 90th percentile latency in milliseconds for reac-
tive, platform, and virtual threads.

41

4. Results

0 500 1000 1500 2000 2500 3000

101

102

Regular

0 500 1000 1500 2000 2500 3000
Rate

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

la
te

nc
ie

s (
m

s)

Zoomed

Reactive
Virtual
Platform-Limited
Platform-Unlimited

Compute Mean Latencies 50th Percentile

Figure 4.4: Mean 50th percentile latency in milliseconds for reac-
tive, platform, and virtual threads.

0 500 1000 1500 2000 2500 3000
Rate

0

500

1000

1500

2000

2500

3000

M
ea

n
Th

ro
ug

hp
ut

Compute - Mean Throughput
Reactive
Virtual
Platform-Limited
platform-Unlimited

Figure 4.5: Mean throughput (messages per second) for reactive,
platform, and virtual threads.

Figures 4.2, 4.3, 4.4 and 4.5 illustrate performance metrics for the different technologies.
Platform threads have the best performance regarding latency in all percentiles having an
almost 25 % lower latency than virtual threads and reactive streams in the 99th percentile.
Virtual threads have a slightly lower latency than the reactive approach for rates lower than
2200 request per second. However, for request rates exceeding that, the latency for virtual
threads increases and subsequently becomes very unstable leading to a uneven performance.

42

4.1 Ramping Load Experiment

4.1.2 I/O intense

The result for all three technologies for the I/O intense operation will be presented here.
First plots comparing the different approaches will be presented. After that individual plots
for the three approaches will be illustrated. The purpose of the individual plots is to visualise
the relation between utilization of hardware resources and performance metrics which may
give insight into the technologies’ performance.

0 1000 2000 3000 4000
Rate

1

2

3

4

5

6

M
ea

n
CP

U

IO - Mean CPU
Reactive
Virtual
Platform-Limited
platform-Unlimited

(a) Mean CPU usage
in percentage for reac-
tive, platform, and vir-
tual threads.

0 1000 2000 3000 4000
Rate

0.5

1.0

1.5

2.0

M
ea

n
He

ap
1e8 IO - Mean Heap

Reactive
Virtual
Platform-Limited
platform-Unlimited

(b) Mean heap usage
in bytes for reactive,
platform, and virtual
threads.

Figure 4.6: IO method CPU and Heap usage

Figures 4.6a and 4.6b illustrate the hardware utilization from the three technologies dur-
ing an I/O operation. All three technologies have rather small CPU utilization (as can be seen
in figure 4.6a), but in the comparison between virtual threads and the reactive approach the
reactive threads clearly have a smaller CPU utilization. Note that the CPU utilization for this
method is low meaning that a lot of different factors can affect it relatively much, such as a
garbage collection. Both virtual and platform threads utilize a lot of heap memory compared
to the reactive approach (as can be seen in figure 4.6b). When the servers are overloaded the
heap usage increases drastically for platform and virtual threads.

43

4. Results

0 1000 2000 3000 4000
102

103

Regular

0 1000 2000 3000 4000
Rate

100.0

102.5

105.0

107.5

110.0

112.5

115.0

117.5

120.0

la
te

nc
ie

s (
m

s)

Zoomed
Reactive
Virtual
Platform-Limited
Platform-Unlimited

IO Mean Latencies 99th Percentile

Figure 4.7: Mean of 99th percentile latency in milliseconds for re-
active, platform, and virtual threads.

0 1000 2000 3000 4000
102

103

Regular

0 1000 2000 3000 4000
Rate

100

102

104

106

108

110

la
te

nc
ie

s (
m

s)

Zoomed
Reactive
Virtual
Platform-Limited
Platform-Unlimited

IO Mean Latencies 90th Percentile

Figure 4.8: Mean of 90th percentile latency in milliseconds for re-
active, platform, and virtual threads. Each sample is the mean from
5 successful attempts.

44

4.1 Ramping Load Experiment

0 1000 2000 3000 4000
102

103

Regular

0 1000 2000 3000 4000
Rate

100.0

100.5

101.0

101.5

102.0

102.5

103.0

la
te

nc
ie

s (
m

s)

Zoomed
Reactive
Virtual
Platform-Limited
Platform-Unlimited

IO Mean Latencies 50th Percentile

Figure 4.9: Mean 50th percentile latency in milliseconds for reac-
tive, platform, and virtual threads.

0 1000 2000 3000 4000
Rate

0

1000

2000

3000

4000

M
ea

n
Th

ro
ug

hp
ut

IO - Mean Throughput
Reactive
Virtual
Platform-Limited
platform-Unlimited

Figure 4.10: Mean throughput (messages per second) for reactive,
platform, and virtual threads.

Figures 4.7, 4.8, 4.9 and 4.10 illustrate performance metrics for the three technologies.
Virtual threads and reactive streams are relatively equal in terms of latency, but virtual
threads has slightly better 90th percentile latency. Platform threads have a noticeably worse
performance regarding latency compared to reactive and virtual threads in the median case
and the 90th percentile. Reactive threads can handle higher concurrency loads performing
better than virtual threads in the 99th percentile for loads higher than 4000 requests per
second.

45

4. Results

4.1.3 Matmul

0 200 400 600 800
Rate

0

20

40

60

80

M
ea

n
CP

U

Matrix multiplication - Mean CPU
Reactive
Virtual
Platform-Limited
platform-Unlimited

(a) Mean CPU usage
in percentage for reac-
tive, platform, and vir-
tual threads.

0 200 400 600 800
Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
ea

n
He

ap

1e9 Matrix multiplication - Mean Heap
Reactive
Virtual
Platform-Limited
platform-Unlimited

(b) Mean heap usage
in bytes for reactive,
platform, and virtual
threads.

Figure 4.11: Matrix Multiplication CPU and Heap usage

Figures 4.11a and 4.11b illustrate the hardware utilization from the three technologies during
a mixed operation. The CPU utilization for the methods is relatively similar (as can be seen in
figure 4.11a). The reactive approach has the highest CPU utilization overall closely followed
by platform threads (unlimited) and virtual threads. The memory utilization for the three
technologies also differ (as can be seen in figure 4.11b). At lower rates the three approaches
have similar memory utilization but as the rate increases the memory usage for both virtual-
and platform threads increases exponentially.

0 200 400 600 800

102

103

104

Regular

0 200 400 600 800
Rate

30

40

50

60

70

80

la
te

nc
ie

s (
m

s)

Zoomed
Reactive
Virtual
Platform-Limited
Platform-Unlimited

Matrix multiplication Mean Latencies 99th Percentile

Figure 4.12: Mean of 99th percentile latency in milliseconds for re-
active, platform, and virtual threads.

46

4.1 Ramping Load Experiment

0 200 400 600 800

102

103

104

Regular

0 200 400 600 800
Rate

30

32

34

36

38

40

42

44

la
te

nc
ie

s (
m

s)
Zoomed

Reactive
Virtual
Platform-Limited
Platform-Unlimited

Matrix multiplication Mean Latencies 90th Percentile

Figure 4.13: Mean of 90th percentile latency in milliseconds for re-
active, platform, and virtual threads.

0 200 400 600 800

102

103

104

Regular

0 200 400 600 800
Rate

30

32

34

36

38

40

42

44

la
te

nc
ie

s (
m

s)

Zoomed
Reactive
Virtual
Platform-Limited
Platform-Unlimited

Matrix multiplication Mean Latencies 50th Percentile

Figure 4.14: Mean 50th percentile latency in milliseconds for reac-
tive, platform, and virtual threads.

47

4. Results

0 200 400 600 800
Rate

0

100

200

300

400

500

600

M
ea

n
Th

ro
ug

hp
ut

Matrix multiplication - Mean Throughput
Reactive
Virtual
Platform-Limited
platform-Unlimited

Figure 4.15: Mean throughput (messages per second) for reactive,
platform, and virtual threads.

Figures 4.12, 4.13, 4.14 and 4.15 illustrate performance metrics for the three technologies.
For lower rates corresponding to a CPU usage of less then 60 % Virtual threads perform
the best regarding 99th, 90th and 50th percentile latencies and having similar throughput
as the other two technologies. However, when the load increases to around 550 the latency
for virtual threads increases drastically alongside a reduced throughput and an increasing
memory utilization. This results in the server crashing. Platform threads and reactive streams
also exhibit increases in latency decreases in throughput, however not drastically enough to
cause a crash on the server-side. Platform threads were able to reach the highest rate.

4.1.4 Mixed method

The "mixed method" is the matrix multiplication with a 100 ms delay, meaning it entails
significant loads in regards to computation, delay operations and memory usage.

48

4.1 Ramping Load Experiment

0 200 400 600 800 1000 1200 1400 1600
Rate

0

10

20

30

40

50

60

70

80

M
ea

n
CP

U

Mixed Method - Mean CPU
Reactive
Virtual
Platform-Limited
platform-Unlimited

(a) Mean CPU usage
in percentage for reac-
tive, platform, and vir-
tual threads.

0 200 400 600 800 1000 1200 1400 1600
Rate

1

2

3

4

M
ea

n
He

ap

1e8 Mixed Method - Mean Heap
Reactive
Virtual
Platform-Limited
platform-Unlimited

(b) Mean heap usage
in bytes for reactive,
platform, and virtual
threads.

Figure 4.16: Mixed Method CPU and Heap usage

Figures 4.16a and figure 4.16a illustrate the resource utilization for the three technolo-
gies. The platform threads have the highest CPU and heap utilization while the reactive
technology have the lowest.

0 200 400 600 800 1000 1200 1400 1600
102

103

Regular

0 200 400 600 800 1000 1200 1400 1600
Rate

100

110

120

130

140

150

la
te

nc
ie

s (
m

s)

Zoomed
Reactive
Virtual
Platform-Limited
Platform-Unlimited

Mixed Method Mean Latencies 99th Percentile

Figure 4.17: Mean of 99th percentile latency in milliseconds for re-
active, platform, and virtual threads.

49

4. Results

0 200 400 600 800 1000 1200 1400 1600
102

103

Regular

0 200 400 600 800 1000 1200 1400 1600
Rate

100

105

110

115

120

125

130

la
te

nc
ie

s (
m

s)

Zoomed
Reactive
Virtual
Platform-Limited
Platform-Unlimited

Mixed Method Mean Latencies 90th Percentile

Figure 4.18: Mean of 90th percentile latency in milliseconds for re-
active, platform, and virtual threads.

0 200 400 600 800 1000 1200 1400 1600
102

103

Regular

0 200 400 600 800 1000 1200 1400 1600
Rate

100

102

104

106

108

110

112

114

la
te

nc
ie

s (
m

s)

Zoomed

Reactive
Virtual
Platform-Limited
Platform-Unlimited

Mixed Method Mean Latencies 50th Percentile

Figure 4.19: Median latency in milliseconds for reactive, platform,
and virtual threads.

50

4.1 Ramping Load Experiment

0 200 400 600 800 1000 1200 1400 1600
Rate

0

200

400

600

800

1000

1200

1400

1600

M
ea

n
Th

ro
ug

hp
ut

Mixed Method - Mean Throughput
Reactive
Virtual
Platform-Limited
platform-Unlimited

Figure 4.20: Mean throughput (messages per second) for reactive,
platform, and virtual threads.

Figures 4.17, 4.18, 4.19 and 4.20 illustrate performance metrics. Virtual threads have
the lowest latency in all percentiles closely followed by the reactive approach. However,
the reactive approach manages to handle more requests per second. The throughput for
the technologies is relatively similar although both unlimited and limited blocking threads
reaches a plateau in throughput before crashing.

Overall, virtual threads have the best performance at rates less than 1300 requests per
second. The reactive approach seems to be the most stable being able to handle more con-
currency before failing. The platform threads have the highest hardware resource utilization
where the unlimited approach utilizes more CPU and memory, due to having more threads.

4.1.5 Thread Creation
Table 4.2 and 4.1 display the number of created threads for the different methods at the start
and end of the tests. Note that the thread count for limited platform is more than 100, but
this is due to the thread limit being set on the threads handling incoming requests. For the
reactive and virtual servers, the number of threads are not increased by much as the load
increases. However, platform threads increased the thread count as the load increases.

Table 4.1: Mean live threads (start/end) for different methods

Method Compute IO Matrix multiplication Mixed method
Reactive 29 / 30 40 / 41 40 / 41 40 / 41
Virtual Thread 30 / 32 30 / 34 33 / 34 33 / 33
Platform - Limited 120 / 121 51 / 120 98 / 121 120 / 121
Platform - Unlimited 814 / 1049 98 / 716 875 / 1076 332 / 1170

51

4. Results

Table 4.2: Mean Daemon threads (start/end) for different methods

Method Compute IO Matrix multiplication Mixed method
Reactive 27 / 28 38 / 39 38 / 39 38 / 39
Virtual Thread 27 / 28 25 / 30 29 / 30 28 / 29
Platform - Limited 115 / 117 47 / 116 94 / 117 115 / 117
Platform - Unlimited 810 / 1045 94 / 712 870 / 1072 328 / 1165

4.1.6 Stability
In figure 4.21 the percentage of failures for each benchmark is presented. Note that the
failure percentage is not based on five tests for higher loads. This is due to the tests being
stopped due to multiple errors in a row, some of the errors are not present in the above graph
due the tests being stopped due to timeout from the attacking machine meaning these are
server-side errors. From the results displayed in figure 4.21 one can deduct that the reactive
servers are more stable. Furthermore, for validation purposes, another observation is that
for higher rates the significance of the result for virtual and platform threads are reduced
due to the averaged values containing less samples.

0 500 1000 1500 2000 2500 3000
Rate

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f F
ai

lu
re

s

Compute
Reactive
Virtual
Platform Limited
Platform Unlimited

(a)

0 1000 2000 3000 4000
Rate

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f F
ai

lu
re

s

IO
Reactive
Virtual
Platform Limited
Platform Unlimited

(b)

0 200 400 600 800 1000
Rate

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f F
ai

lu
re

s

Matrix multiplication
Reactive
Virtual
Platform Limited
Platform Unlimited

(c)

0 200 400 600 800 1000 1200 1400 1600
Rate

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f F
ai

lu
re

s

Mixed Method
Reactive
Virtual
Platform Limited
Platform Unlimited

(d)

Figure 4.21: Percentage of failures for the different technologies on
different benchmarks. A test is viewed as having failed if it has one
or more failed requests.

52

4.2 Constant Load Experiment

4.2 Constant Load Experiment

In addition to testing how well the different technologies scaled with the request rate, we
also tested them under constant load. The results are presented as in the previous experi-
ment, with the measurements of the different technologies presented alongside each other
and divided by the methods tested and the measurement taken. In order to gain some deeper
understanding of the difference between the technologies, the results also contain data on
safepoints and contended lock attempts. Below in Table 4.3 are the latencies of the different
technologies as measured in this experiment, with built in delays subtracted before normal-
izing:

Table 4.3: Average latencies between benchmarks for different per-
centiles

IO mean latencies (ms)
Technology Mean 50th 90th 99th 99th Normalized
Reactive 100.79 100.62 101.33 102.45 0.36
Virtual threads 100.61 100.58 100.71 101.08 0.16
Platform threads 102.28 101.26 104.93 106.80 1.00

Compute mean latencies (ms)
Technology Mean 50th 90th 99th 99th Normalized
Reactive 7.88 6.17 11.00 22.50 1.00
Virtual threads 4.87 4.85 5.15 5.54 0.25
Platform threads 4.96 4.80 5.01 6.08 0.27

Matmul mean latencies (ms)
Technology Mean 50th 90th 99th 99th Normalized
Reactive 40.26 38.83 45.32 52.13 0.05
Virtual threads 50.85 37.78 40.83 538.44 1.00
Platform threads 38.29 37.81 41.05 45.88 0.04

Mixed mean latencies (ms)
Technology Mean 50th 90th 99th 99th Normalized
Reactive 105.99 105.36 109.38 113.17 1.00
Virtual threads 104.17 104.00 105.13 106.61 0.50
Platform threads 105.05 104.14 107.52 108.89 0.68

4.2.1 CPU Measurements

CPU utilization was similar for the three concurrency approaches for the two mixed tests,
with virtual threads being slightly more unstable than the other two approaches. However,
for the IO test there were clear differences and for the computation test reactive had signif-
icantly worse performance while virtual- and platform threads performed similarly.

53

4. Results

0 100 200 300 400
Time (s)

4

6

8

10

12

CP
U

us
ag

e
[%

]
IO - CPU

Reactive
Virtual
Platform

(a) IO test

0 100 200 300 400
Time (s)

40

45

50

55

60

65

70

CP
U

us
ag

e
[%

]

Compute - CPU

Reactive
Virtual
Platform

(b) Computation test

0 100 200 300 400
Time (s)

20

30

40

50

60

70

80

CP
U

us
ag

e
[%

]

Matrix Multiplication - CPU
Reactive
Virtual
Platform

(c) Matmul test

0 100 200 300 400
Time (s)

14

16

18

20

22

24

26

CP
U

us
ag

e
[%

]

Mixed - CPU
Reactive
Virtual
Platform

(d) Mixed test

Figure 4.22: CPU usage (%) vs time (s) for different tests.

4.2.2 Memory Measurements

The memory measurements were similar for all of the four tests, in that performance was
tiered in the same manner. The reactive server had consistently low and stable memory
usage, platform threads had high and volatile memory usage and virtual threads performed
on a varying sale in between reactive and platform, with volatility varying with the test
method.

54

4.2 Constant Load Experiment

0 100 200 300 400
Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Us

ed
 [B

]

1e8 IO - Heap
Reactive
Virtual
Platform

(a) IO test

0 100 200 300 400
Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

Us
ed

 [B
]

1e8 Compute - Heap

Reactive
Virtual
Platform

(b) Computation
test

0 100 200 300 400
Time (s)

0

1

2

3

4

5

6

Us
ed

 [B
]

1e8 Matrix Multiplication - Heap
Reactive
Virtual
Platform

(c) Matrix multi-
plication test

0 100 200 300 400
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Us
ed

 [B
]

1e8 Mixed - Heap
Reactive
Virtual
Platform

(d) Mixed test

Figure 4.23: Heap usage (bytes) vs time (s) for different tests.

4.2.3 Safepoint Measurements

In the JVM, a safepoint represents a state in which all references on the stack are mapped
and can be accounted for. The biggest difference between the technologies tested can be seen
for the mixed methods, where reactive has the most safepoints. Hence allowing the reactive
server to manage memory better due to more frequent garbage collection.

55

4. Results

0 100 200 300 400
Time (s)

0

2

4

6

8

10

sa
fe

po
in

ts
IO - Safepoints

Reactive
Virtual
Platform

(a) IO test

0 100 200 300 400
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sa
fe

po
in

ts

Compute - Safepoints
Reactive
Virtual
Platform

(b) Compute test

0 100 200 300 400
Time (s)

0

1

2

3

4

5

6

7

8

sa
fe

po
in

ts

Matrix Multiplication - Safepoints
Reactive
Virtual
Platform

(c) Matrix multi-
plication test

0 100 200 300 400
Time (s)

0

1

2

3

4

5

6

sa
fe

po
in

ts

Mixed - Safepoints
Reactive
Virtual
Platform

(d) Mixed test

Figure 4.24: Number of safepoints vs Time (s) for different tests.

4.2.4 Sync Measurements

Contended lock attempts are included to better understand the performance differences
presented above. They are a good measure of how well the technologies handle concurrency
and synchronization, as time spent waiting for a busy lock is time spent stalling (and for
virtual threads something that might cause it to be unmounted from it’s kernel thread and
stored on the heap). The main takeaway from the results below is that the reactive server
had a consistently lower number of contended lock attempts.

56

4.2 Constant Load Experiment

0 100 200 300 400
Time (s)

0

20

40

60

80

_s
yn

c_
Co

nt
en

de
dL

oc
kA

tte
m

pt
s

IO - Contended Lock Attempts
Reactive
Virtual
Platform

(a) IO test

0 100 200 300 400
Time (s)

0

5

10

15

20

25

_s
yn

c_
Co

nt
en

de
dL

oc
kA

tte
m

pt
s

Compute - Contended Lock Attempts
Reactive
Virtual
Platform

(b) Computation
test

0 100 200 300 400
Time (s)

0

10

20

30

40

50

60

_s
yn

c_
Co

nt
en

de
dL

oc
kA

tte
m

pt
s

Matrix Multiplication - Contended Lock Attempts
Reactive
Virtual
Platform

(c) Matrix multi-
plication test

0 100 200 300 400
Time (s)

0

5

10

15

20

25

_s
yn

c_
Co

nt
en

de
dL

oc
kA

tte
m

pt
s

Mixed - Contended Lock Attempts
Reactive
Virtual
Platform

(d) Mixed test

Figure 4.25: Number of Contended lock attempts vs Time (s) for
different tests.

4.2.5 Call Stack Analysis
The call stack was analyzed with Brendan Gregg’s Flame graph tool, with data collected us-
ing JStack (Oracle Help Center 2024). The call stack analysis was included in this report
in order to get a better understanding on how much overhead factored into eventual per-
formance difference between the three concurrency technologies tested. We have deemed
two measurements to be of special importance, namely the height of the call stacks and the
widths of the calls to the methods ran on the servers (i.e. what amount of the programs’ per-
formance was used to do what we wanted it to).The reason for this is that the width of the
call stack can help give a understanding how much CPU time the server spend on the actual
benchmark versus managing the server and the concurrency. The height of the call stack sim-
ply indicate how many function calls certain technologies require to manage concurrency.
The heights of the call stacks were:

• 56 for platform threads

• 56 for virtual threads

• 85 for reactive

57

4. Results

Rates: 1200 requests per second for compute, 1600 for I/O, 300 matmul compute and
600 matmul sleep.

The percentage of CPU usage dedicated to the methods implemented is presented in the
table below. It should be read as the complement to what percentage of the CPU usage was
spent on overhead.

Table 4.4: Percentage of CPU usage spend on the actual benchmark.

CPU used for method (%)
Concurrency type IO Compute Matrix MatrixSleep
Reactive 0 29 21 10
Virtual threads 3 43 28 20
Platform threads 0 35 27 20

From the data in table 4.4 we can deduct that Java Reactive (asynchronous concurrency)
has a significant amount of overhead compared to platform and virtual threads. This is
deducted by the fact that all time spend on functions outside of the primary benchmark
can be viewed as logistical overhead managing the server, network connection and foremost
the concurrency. Even though the height of the call stacks were the same for virtual- and
platform threads, it is reasonable to conclude that the scheduler for the virtual threads (they
are handled in a ForkJoinPool) is more efficient than that for platform threads.

4.2.6 Network Connection Analysis
As described in the method chapter, we conducted two tests of the network itself. First we
tried calling our "empty" method at increasing rates. When doing this very high rates were
reached. WireShark was then used to analyze the networks potential as a bottleneck during
runs of some of our load ramping tests. The tool gave interesting insights into the anatomy
of the server crashes. The most common scenario was that the client began asking for re-
transmissions as it got overloaded and could not keep up. This was often soon followed by e.g.
duplicate acknowledgements and other signs of inefficiencies. After this breakpoint, most of
the network traffic was "overhead" until the server sent a request to close the connection. The
results of these experiments speaks against the network connection being a limiting factor
of this study as we were able to transmit at much higher rates than used in our experiments
in the dry run and WireShark showed the errors originated from the server process.

4.3 Summary of the Results
In the I/O tests, virtual threads had the overall best performance regarding latency in the
99th and 90th percentiles. The virtual threads had up to 1ms less latency than the reactive
threads in the 90th percentile(figure 4.8), with the difference being higher at lower rates.
Platform threads, both limited and unlimited, had a noticeably worse performance than
reactive and virtual threads for latency in all percentiles having a median performance that
was 1-3 milliseconds slower for most of the attack rates, and a 90th percentile performance
that was around 4-5 milliseconds slower for most rates. The platform threads limited to 100
threads achieved a latency that was much higher (around a factor twenty at mid-range) than
all the other technologies. This confirms the result from Pufek et al. (2020), Beronić et al.

58

4.3 Summary of the Results

(2022) and Beronić et al. (2021) where limited platform threads had a significantly worse
performance that virtual threads. The differences between unlimited platform threads and
virtual threads were not as obvious, however unlimited platform threads used significantly
more memory. The reactive approach had the lowest resource utilization in terms of memory
and CPU. The heap for limited platform threads did increase drastically as the rate reached
1000 requests per second right before the approach crashed. The reason for the crash was
simply that it did not have enough threads for a higher level of concurrency. A delay of 100ms
means that one blocking thread can handle a maximum of ten requests per second, where 100
blocking threads can at maximum handle 1000 requests per second. After that the requests
are put in a queue leading to increased latencies. Virtual and unlimited platform threads
had a similar CPU utilization that increases linearly while their heap utilization increased
exponentially with the request rate.

For the computationally intensive method, platform threads had the best overall 50th,
90th and 99th percentile latencies. They were around 0.75 ms faster than virtual threads in
the median case. For rates less than 2200, virtual threads had a slightly better performance
than reactive streams in terms of latency in all percentiles. After that the results became
unstable, most likely due to a high resource utilization. Regarding resource utilization the
platform threads had the lowest CPU utilization followed by virtual threads and lastly re-
active. For memory utilization, reactive streams are the most efficient followed closely by
virtual threads, although the memory utilization for virtual threads increases exponentially.
Both the platform threads have overall worse memory utilization than reactive and virtual
threads.

For the matrix multiplication with 25 milliseconds of delay, virtual threads had lower
latencies for all percentiles followed by platform threads and lastly reactive. For higher rates
platform threads perform better than reactive. The CPU utilization for all technologies is
relatively similar although limited platform threads have a lower CPU usage than unlimited
platform threads (most likely due to the additional CPU requirements created by managing
more platform threads). Reactive has the lowest memory utilization overall. Both types of
platform threads have a relatively constant and stable memory utilization, while that of the
virtual threads increase exponentially at higher rates.

For the mixed method virtual threads had lower latencies than the other technologies
in all collected samples for the 50th, 90th and 99th percentile. They were followed by re-
active, with a decreasing gap as the rate increases. Limited platform threads do have an
exponentially increasing latency as it cannot create more threads. Virtual threads fail before
platform threads (unlimited) and reactive threads. The reactive server performed best after
virtual threads had failed. For lower rates, reactive, virtual and limited platform threads had
similar CPU utilization while unlimited platform threads have a higher CPU utilization. Re-
active had the lowest memory utilization followed by virtual threads and limited platform
threads.

The constant load tests leads to similar conclusions to the varying load ones. The reac-
tive server runs more stably and utilizes less memory than the platform- and virtual thread
servers. However it has significantly larger latencies than the virtual thread- based one.

59

4. Results

60

Chapter 5

Conclusions

5.1 Addressing Research Questions
Given the collected data and the rigorous methodology we feel comfortable to answer the
research questions in the context of Spring and the hardware utilized. RQ1 asks if there is
a difference between different concurrency techniques within the JVM for high load sys-
tems. The findings of this thesis indicate that there are in fact differences. The performance
differences between the technologies can be summarized by:

i) For purely computational tasks platform threads perform better than virtual threads
and reactive in terms of latency.

ii) For I/O-bounded tasks, virtual threads and reactive perform better than platform
threads, where virtual threads has slightly better latency in the 90th and 99th per-
centile.

iii) For a method utilizing both I/O and computation (matrix multiplication) virtual
threads has the best performance regarding latency.

iv) For a method utilizing both I/O and computation (with more I/O), virtual threads has
the best performance. However, it is closely followed by reactive streams.

The hardware utilization differences between the technologies can be summarized by:

a) For purely computational tasks platform threads have the best CPU utilization while
they have the worst memory utilization (using more memory) while reactive streams
have the best memory utilization.

b) For purely IO tasks reactive streams have the best CPU and memory utilization. Vir-
tual threads and unlimited platform threads have similar memory and CPU utilization
even though platform threads create 20x more kernel threads.

61

5. Conclusions

c) For a method utilizing both I/O and computation (matrix multiplication) all technolo-
gies have similar CPU utilization. Reactive streams have the best memory utilization,
while virtual threads and unlimited platform threads have a poor memory utilization.
Unlimited platform threads have an overall higher memory utilization, but it scales
exponentially for virtual threads.

d) For a method utilizing both I/O and computation (with more I/O) reactive streams
have the best CPU and memory utilization. Unlimited platform threads have the worst
memory and CPU utilization.

Another observation is that reactive streams are less inclined to fail requests compared
to the other approaches.

The reason why platform threads have the best performance in purely computational
tasks (i) can be explained by the approach being more effective for managing CPU resources.
The reason why reactive streams and virtual threads perform better than platform threads
for pure I/O (ii) can partly be explained by the fact that platform threads are limited to
kernel threads where additional kernel threads lead to an increased CPU usage for overhead.
The reason for virtual threads performing the best in a mix between I/O and computation
(iii) and (iv) can most likely be described by less overhead (compared to reactive streams)
and less resources spend on managing threads.

To explicitly answer RQ1, there is a difference between the technologies. Overall, virtual
threads offer the best latency for all methods that contain some I/O elements while reactive
streams have the overall best hardware utilization. Furthermore reactive streams are superior
to the other technologies regarding failure rates. It is important to state that this conclusion
is based on the experiment where the servers are not overloaded due to hardware saturation
(unrealistic high usage of CPU and memory). The reason that these observations are dis-
carded is that the servers tend to act unpredictably as they get too overloaded. Furthermore,
the zero acceptance for failures means that the significance of the results decreases as the
rate increase due to increased error rates for all technologies but reactive streams.

RQ2 investigates whether virtual threads is a viable alternative to reactive systems. Based
on the answer from RQ1 the answer is yes. However, it is important to state that reactive
systems is still a very viable method. When choosing between virtual threads or reactive
streams one must consider important factors such as performance (latency), hardware uti-
lization and stability. The results in this thesis indicate that reactive streams have higher
latencies than virtual threads, but have a superior hardware utilization (especially regarding
memory) and reactive streams are overall more stable. Thus, introducing virtual threads may
lead to higher hardware costs and it may lead to more failed requests even though they can
be expected to be faster for some use cases.

5.2 Contribution and Future Research
Our study confirms the result from (Beronić et al. 2021), (Beronić et al. 2022) and (Beronić
et al. 2022) regarding virtual threads performing better than limited platform threads for
I/O operations. Furthermore the study partly extends Navarro et al. (2023) by comparing
virtual threads and reactive stream in Spring applications. Our study achieved similar con-
clusions as Navarro et al. (2023) related to reactive streams having the best resource utiliza-
tion. However, the performance results where different as Navarro et al. (2023) concluded
that reactive streams had better performance, although it is very important to state that

62

5.3 Limitations and Considerations

Navarro et al. (2023) compared the performance at higher loads when the CPU utilization
was between 50% and 100% while in this thesis the comparison was mainly based on results
for lower loads. This was done as results on loads that lead to high hardware utilization
was deemed to be unreasonable and less precise. Thus, the studies complement each other
evaluating the performance of the technologies on the entire spectrum of concurrency levels.
The results from our study supports their results as the latency for virtual threads tend to be
worse than reactive streams for some methods during high loads. Other potential differences
can be attributed to different testing methodologies and different benchmarks.

Our study contributes to the current knowledge base by giving a detailed comparison
between platform threads, virtual threads, and reactive streams in a high load context. The
results of our study indicates that there are differences between the technologies and that
virtual threads is a valid option to be used to handle server concurrency, as it performed
very well regarding latencies. The result supporting virtual threads suggests that additional
research should be conducted on this subject. Areas of particular importance for future
research within this subject are stability, scalability, and bigger applications (with a risk of
introducing black-box effects to the tests). Potential research questions could be:

Q1. Do virtual threads, reactive streams, and platform threads scale differently with chang-
ing hardware resources?

Q2. How do reactive streams and virtual threads differ in stability?

5.3 Limitations and Considerations
In our methodology, many precautions have been taken to stabilize the testing environment
and mitigate the somewhat unpredictable behaviour of the JVM. After taking these precau-
tions, the variance between the different test iterations was reduced. However, there is still
some variance within the tests which may affect the results. This is very prevalent on the
upper end of the load spectrum where high hardware utilization led to an increased number
of failed tests. Even though the failed tests where not considered in our study, they led to
fewer samples from which to form an average which reduces the significance of some por-
tions of our tests. This, alongside relatively unpredictable behaviour at higher loads, made it
difficult to draw any conclusions regarding the results with high resource utilisation. Since
a very high resource utilisation is not used in real world servers, these results were not con-
sidered for our conclusions. Another limitation of our study is hardware. The results may be
different on different hardware configurations and operative systems. Our hardware setup
also did not allow us to control the CPU frequency in a good manner, which makes our CPU-
intensive tests less reliable. However, we believe this is somewhat mitigated by the fact that
the hardware environment and exhibited temperature variations were practically equal for
the different technologies.

5.4 Conclusions in Summary
This thesis set out to investigate three concurrency techniques, namely virtual threads, re-
active streams and blocking platform threads. The overall goal was to investigate if virtual
threads are a viable option for highly concurrent applications. Two research questions were

63

5. Conclusions

formulated. RQ1 set up to investigate whether there is any difference in performance be-
tween the different technologies. The answer to RQ1 was yes where the primary findings
indicate that virtual threads exhibit overall better performance than the other systems dur-
ing I/O operations. However, reactive streams have better resource utilization and are far
less prone to fail client requests. RQ2 asks whether virtual threads are a viable alternative to
reactive streams. The answer to RQ2 was yes, but when selecting the technology one has to
consider fast response times vs tolerance for failed requests and hardware resources. If fast
response time is essential and there is some tolerance for failed requests, virtual threads may
be a better option than reactive streams. But if there is a zero tolerance to failed requests
and constraints on hardware reactive streams may be a better option.

In summary, this thesis found distinct differences between the technologies. The results
indicate that virtual threads may offer advantages in performance. This alongside the fact
that the implementation of virtual threads is easy compared to reactive streams indicate that
further research ought to be done in the subject. Areas of interested in further research are
related to scalability and stability. We also encourage the reader to draw their own conclu-
sions from the wealth of data presented here.

64

Bibliography

(AWS), A. W. S. (2024), ‘Amazon ecs best practices - capacity providers and auto scaling’.
URL: https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/capacity-
autoscaling.html

Belson, B., Holdsworth, J., Xiang, W. & Philippa, B. (2019), ‘A survey of asynchronous pro-
gramming using coroutines in the internet of things and embedded systems’, ACM Trans-
actions on Embedded Computing Systems (TECS) 18(3), 1–21.

Ben Weidig (2023), ‘Looking at java 21: Virtual threads’.
URL: https://belief-driven-design.com/looking-at-java-21-virtual-threads-bd181/

Beronić, D. (2024), ‘Dialog with researcher regarding their previous research’, Personal com-
munication. Email correspondence sent on 2024/03/15.

Beronić, D., Modrić, L., Mihaljević, B. & Radovan, A. (2022), Comparison of structured
concurrency constructs in java and kotlin–virtual threads and coroutines, in ‘2022 45th
Jubilee International Convention on Information, Communication and Electronic Tech-
nology (MIPRO)’, IEEE, pp. 1466–1471.

Beronić, D., Pufek, P., Mihaljević, B. & Radovan, A. (2021), On analyzing virtual threads–
a structured concurrency model for scalable applications on the jvm, in ‘2021 44th In-
ternational Convention on Information, Communication and Electronic Technology
(MIPRO)’, IEEE, pp. 1684–1689.

Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M., McKinley, K. S., Bentzur, R., Di-
wan, A., Feinberg, D., Frampton, D., Guyer, S. Z. et al. (2006), The dacapo benchmarks:
Java benchmarking development and analysis, in ‘Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems, languages, and applica-
tions’, pp. 169–190.

Brian Olson (2019), ‘Asynchronous programming is really hard’.
URL: https://devblabs.medium.com/asynchronous-programming-is-really-really-hard-
8f7d97d7cddf

Brodu, E., Frénot, S. & Oblé, F. (2015), Toward automatic update from callbacks to promises,
in ‘Proceedings of the 1st Workshop on All-Web Real-Time Systems’, pp. 1–8.

65

BIBLIOGRAPHY

Bull, J. M., Smith, L., Westhead, M. D., Henty, D. & Davey, R. (1999), A methodology for
benchmarking java grande applications, in ‘Proceedings of the ACM 1999 conference on
Java Grande’, pp. 81–88.

Chitra, L. P. & Satapathy, R. (2017), Performance comparison and evaluation of node. js and
traditional web server (iis), in ‘2017 International Conference on Algorithms, Methodol-
ogy, Models and Applications in Emerging Technologies (ICAMMAET)’, IEEE, pp. 1–4.

Choi, B., Park, J., Lee, C. & Han, D. (2021), phpa: A proactive autoscaling framework for
microservice chain, in ‘5th Asia-Pacific Workshop on Networking (APNet 2021)’, pp. 65–
71.

Cloud, G. (2024), ‘Google cloud bigtable - monitoring an instance’.
URL: https://cloud.google.com/bigtable/docs/monitoring-instance

Edwards, J. (2009), Coherent reaction, in ‘Proceedings of the 24th ACM SIGPLAN confer-
ence companion on Object oriented programming systems languages and applications’,
pp. 925–932.

Eeckhout, L., Georges, A. & De Bosschere, K. (2003), How java programs interact with virtual
machines at the microarchitectural level, in ‘Proceedings of the 18th annual ACM SIG-
PLAN conference on Object-oriented programing, systems, languages, and applications’,
pp. 169–186.

Fan, Q. & Wang, Q. (2015), Performance comparison of web servers with different architec-
tures: A case study using high concurrency workload, in ‘2015 Third IEEE Workshop on
Hot Topics in Web Systems and Technologies (HotWeb)’, IEEE, pp. 37–42.

Gregg, B. (2016), ‘The flame graph’, Communications of the ACM 59(6), 48–57.

Gu, D., Verbrugge, C. & Gagnon, E. M. (2006), Relative factors in performance analysis
of java virtual machines, in ‘Proceedings of the 2nd international conference on Virtual
execution environments’, pp. 111–121.

Haines, S. (2006), Pro Java EE 5, Springer.

Hamed, O. & Kafri, N. (2009), Performance testing for web based application architectures
(. net vs. java ee), in ‘2009 First International Conference on Networked Digital Technolo-
gies’, IEEE, pp. 218–224.

Harji, A. S., Buhr, P. A. & Brecht, T. (2012), Comparing high-performance multi-core web-
server architectures, in ‘Proceedings of the 5th Annual International Systems and Storage
Conference’, pp. 1–12.

Heisenberg, W. (1927), ‘Über den anschaulichen inhalt der quantentheoretischen kinematik
und mechanik’, Zeitschrift für Physik 43(3-4), 172–198.

Jiang, Z. M. & Hassan, A. E. (2015), ‘A survey on load testing of large-scale software systems’,
IEEE Transactions on Software Engineering 41(11), 1091–1118.

Jiang, Z. M., Hassan, A. E., Hamann, G. & Flora, P. (2009), Automated performance analysis
of load tests, in ‘2009 IEEE International Conference on Software Maintenance’, IEEE,
pp. 125–134.

66

BIBLIOGRAPHY

Jils Matthew et al. (1999), ‘Analysis and development of java grande benchmarks’.
URL: https://www.researchgate.net/publication/2610597AnalysisandDevelopmento fJavaGrandeBenchmarks

Jonas Bonér, e. a. (2014), The Reactive Manifesto.

Kambona, K., Boix, E. G. & De Meuter, W. (2013), An evaluation of reactive programming
and promises for structuring collaborative web applications, in ‘Proceedings of the 7th
Workshop on Dynamic Languages and Applications’, pp. 1–9.

Kim, K.-J., Jeong, I.-J., Park, J.-C., Park, Y.-J., Kim, C.-G. & Kim, T.-H. (2007), ‘The impact
of network service performance on customer satisfaction and loyalty: High-speed internet
service case in korea’, Expert Systems with Applications 32(3), 822–831.
URL: https://www.sciencedirect.com/science/article/pii/S0957417406000388

Lion, D., Chiu, A., Sun, H., Zhuang, X., Grcevski, N. & Yuan, D. (2016), {Don’t} get caught
in the cold, warm-up your {JVM}: Understand and eliminate {JVM}warm-up overhead in
{Data-Parallel} systems, in ‘12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16)’, pp. 383–400.

Liu, M. & Ding, X. (2010), On trustworthiness of cpu usage metering and accounting, in
‘2010 IEEE 30th International Conference on Distributed Computing Systems Work-
shops’, pp. 82–91.

Madsen, M., Lhoták, O. & Tip, F. (2017), ‘A model for reasoning about javascript promises’,
Proceedings of the ACM on Programming Languages 1(OOPSLA), 1–24.

Navarro, A., Ponge, J., Le Mouël, F. & Escoffier, C. (2023), Considerations for integrating
virtual threads in a java framework: a quarkus example in a resource-constrained environ-
ment, in ‘DEBS’2023-17TH ACM International Conference on Distributed and Event-
Based Systems’.

Nor Sobri, N. A., Abas, M. A. H., Mohd Yassin, A. I., Megat Ali, M. S. A., Md Tahir, N.
& Zabidi, A. (2022), ‘Database connection pool in microservice architecture’, Journal of
Electrical and Electronic Systems Research (JEESR) 20, 29–33.

OpenSignal (2020), ‘Average 4g and 3g network latency by provider in the united states in
2019 (in milliseconds)’.
URL: https://www-statista-com.ludwig.lub.lu.se/statistics/818205/4g-and-3g-network-latency-in-
the-united-states-2017-by-provider/

Oracle Corporation (2023), ‘Java 21 documentation’.
URL: https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html#GUID-2BCFC2DD-
7D84-4B0C-9222-97F9C7C6C521

Oracle Corporation (2024a), ‘Java 21 documentation’.
URL: https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html#GUID-8AEDDBE6-
F783-4D77-8786-AC5A79F517C0

Oracle Corporation (2024b), ‘Visualvm’.
URL: visualvm.github.io

Oracle Help Center (2024), ‘Jstack’.
URL: https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jstack.html

67

BIBLIOGRAPHY

Pariag, D., Brecht, T., Harji, A., Buhr, P., Shukla, A. & Cheriton, D. R. (2007), ‘Compar-
ing the performance of web server architectures’, ACM SIGOPS Operating Systems Review
41(3), 231–243.

Park, J., Choi, B., Lee, C. & Han, D. (2021), Graf: A graph neural network based proac-
tive resource allocation framework for slo-oriented microservices, in ‘Proceedings of the
17th International Conference on emerging Networking EXperiments and Technologies’,
pp. 154–167.

Ponge, J., Navarro, A., Escoffier, C. & Le Mouël, F. (2021), Analysing the performance and
costs of reactive programming libraries in java, in ‘Proceedings of the 8th ACM SIGPLAN
International Workshop on Reactive and Event-Based Languages and Systems’, pp. 51–60.

Pufek, P., Beronić, D., Mihaljević, B. & Radovan, A. (2020), Achieving efficient struc-
tured concurrency through lightweight fibers in java virtual machine, in ‘2020 43rd
International Convention on Information, Communication and Electronic Technology
(MIPRO)’, IEEE, pp. 1752–1757.

Reactive Streams (2024), Reactive streams.
URL: https://www.reactive-streams.org/

Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M. & Al-Hammadi, Y. (2017), Performance
comparison between container-based and vm-based services, in ‘2017 20th Conference on
Innovations in Clouds, Internet and Networks (ICIN)’, IEEE, pp. 185–190.

Schuler, L., Jamil, S. & Kühl, N. (2021), Ai-based resource allocation: Reinforcement learn-
ing for adaptive auto-scaling in serverless environments, in ‘2021 IEEE/ACM 21st Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid)’, IEEE, pp. 804–
811.

Sim, S. E., Easterbrook, S. & Holt, R. C. (2003), Using benchmarking to advance research:
A challenge to software engineering, in ‘25th International Conference on Software Engi-
neering, 2003. Proceedings.’, IEEE, pp. 74–83.

Spring (2024), Spring web reactive.
URL: https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#web.reactive

Spring (2024), ‘Spring framework’.
URL: https://spring.io/projects/spring-framework

Vahalia, U. (1996), UNIX internals : the new frontiers., An Alan R. Apt book, Prentice Hall.

Zhang, Y., Li, M. & Tong, F. (2023), ‘Energy-efficient load balancing for divisible tasks on het-
erogeneous clusters’, Transactions on Emerging Telecommunications Technologies 34(10), e4829.

68

Appendices

69

Appendix A

A

A.1 Scripts

A.1.1 Script for sending HTTP requests
This script was used on the client for sending HTTP requests with Vegeta and saving the
results nicely in a file.

#!/bin/bash
Called with: bash bashScript "testSleep" "B" "S" "output" "final" "10s"
ulimit -u 4000
ulimit -n 20000
ulimit -s 20000
ulimit unlimited

warm-up
echo "POST http://169.254.249.75:8080/$1" | vegeta attack -duration=60s -rate=300

| tee results.bin | vegeta report
curl -X POST "http://169.254.249.75:8080/gc"
Sleep 20

Adjust rate to around 60 CPU usage
echo "POST http://169.254.249.75:8080/$1" | vegeta attack -duration=60s -rate=1000

| tee results.bin | vegeta report
curl -X POST "http://169.254.249.75:8080/gc"
Sleep 20

echo "POST http://169.254.249.75:8080/$1" | vegeta attack -duration=60s -rate=1000
| tee results.bin | vegeta report

71

A. A

curl -X POST "http://169.254.249.75:8080/gc"
Sleep 20

for i in {1..150}
do
echo "start Attack rate : :" $((50 * $i))
echo "POST http://169.254.249.75:8080/$1" | vegeta attack -duration="$6"

-timeout=70s -rate=$((50 * $i)) -timeout=0 -max-workers 100000
| tee results.bin | vegeta report --type json |
python3 script.py -rate=$((50 * $i)) -type="$2" -method="$3"
-fileName="$4" -durat="$6"

echo "sleep too reset"
Sleep 60
curl -X POST "http://169.254.249.75:8080/gc"
Sleep 20

python3 processAttack.py -fileName="$4" -resultFile="$5"

72

Appendix B

Data

B.1 Iteration tests

Method Compute IO Matrix multiplication Mixed method Sum
Reactive 247 423 160 165 995

Virtual Thread 251 373 109 115 848
Platform - Limited 276 123 139 105 643

Platform - Unlimited 265 257 51 125 698
Sum 1039 1176 459 510 3184

Table B.1: Number of observations separated by benchmark and
technology.

Method Compute IO Matrix multiplication Mixed method Sum
Reactive 10868 18612 7040 7260 43780

Virtual Thread 11044 16412 4796 5060 37312
Platform - Limited 12144 5412 6116 4620 28292

Platform - Unlimited 11660 11308 2244 5500 30712
Sum 45716 51744 20196 22440 140096

Table B.2: Number of total samples (rows times columns) separated
by benchmark and technology.

73

B. Data

74

Appendix C

Benchmark Methods

C.1 Imperative

C.1.1 IO
public void io() throws InterruptedException{

Thread.sleep(DELAY);
}

C.1.2 Compute
public double compute() {

double result = 0.0;
double rand = System.currentTimeMillis();
int N = 1000;
for (int i = 3; i < N; i += 1) {

for (int j = 1; j < N; j += 1) {
result += rand / 3;
rand -= j;

}
}

return result;
}

C.1.3 Matmul and Mixed
The dim1, dim2 and delay parameters were changed between the matmul and mixed tests in
order to achieve the desired properties.

75

C. Benchmark Methods

public long matmul() throws InterruptedException{
Random rand = new Random();
long[][] m = new long[dim1][dim2];

for (int i = 0; i < dim1; ++i) {

m[rand.nextInt(dim1)][rand.nextInt(dim1)] = System.currentTimeMillis();

for (int j = 0; j < dim1; ++j) {
m[i][j] = i * j;
for (int k = 0; k < dim2; ++k) m[i][j] += a[i][k] * b[k][j];

}
}

Thread.sleep(DELAY);

return m[rand.nextInt(dim1)][rand.nextInt(dim1)];
}

C.2 Reactive
C.2.1 IO

public Mono<ServerResponse> io(ServerRequest request) {

return ServerResponse.ok()
.contentType(MediaType.APPLICATION_JSON)
.body(BodyInserters.fromValue(("success")))
.delayElement(d);

}

C.2.2 Compute
// helper function for compute test

private double calc_res() {
double result = 0.0;
double rand = System.currentTimeMillis();
int N = 1000;
for (int i = 3; i < N; i += 1) {

for (int j = 1; j < N; j += 1) {
result += rand / 3;
rand -= j * i;

}
}

return result;

76

C.2 Reactive

}

// cpu intensive way of testing concurrency
public Mono<ServerResponse> compute(ServerRequest request) {

double result = calc_res();
return ServerResponse.ok()

.contentType(MediaType.APPLICATION_JSON)

.body(BodyInserters.fromValue(result));
}

C.2.3 Matmul and Mixed
The dim1, dim2 and d parameters were changed between the matmul and mixed tests in
order to achieve the desired properties.

public Mono<ServerResponse> matmul(ServerRequest r) {
long[][] m = new long[dim1][dim2];
Random rand = new Random();

for (int i = 0; i < dim1; ++i) {
m[rand.nextInt(dim1 - 1)][rand.nextInt(dim1 - 1)] = System.currentTimeMillis();
for (int j = 0; j < dim1; ++j) {

m[i][j] = i * j;
for (int k = 0; k < dim2; ++k) m[i][j] += a[i][k] * b[k][j];

}
}
return ServerResponse.ok()

.contentType(MediaType.APPLICATION_JSON)

.body(BodyInserters.fromValue(m[rand.nextInt(dim1 - 1)][rand.nextInt(dim1 - 1)]))

.delayElement(d);
}

77

Institutionen för Datavetenskap | Lunds Tekniska Högskola | Redovisas 31 maj 2024
Examensarbete: Study of reactive services vs regular blocking vs virtual threads for a high-load service
Studenter: Oliver Nederlund Persson, Elias Gustafsson
Handledare: Jonas Skeppstedt (LTH), Samuel Alberius (Sinch AB)
Examinator: Flavius Gruian

Undersökning av asynkron
programmering, blockerade trådar och
virtuella trådar för högt belastade system.
POPULÄRVETENSKAPLIG SAMMANFATTNING AV Oliver Nederlund Persson, Elias Gustafsson

JAVA ÄR ETT AV VÄRLDENS MEST ANVÄNDA PROGRAMMERINGSSPRÅK SOM UTGÖR BASEN FÖR ETT FLERTAL PO-
PULÄRA DATAPROGRAM, TILL EXEMPEL Minecraft OCH GLOBALA PLATTFORMAR SÅSOM Netflix OCH Spotify. 2023
INTRODUCERADES JAVA 21 SOM INNEHÅLLER ETT NYTT KONCEPT FÖR SPRÅKET, VIRTUELLA TRÅDAR. VIRTUELLA
TRÅDAR AVSES KUNNA FÖRBÄTTRA DIVERSE PROGRAMS FÖRMÅGA ATT HANTERA MÅNGA ANVÄNDARE PARALLELLT
PÅ ETT EFFEKTIVT SÄTT. DENNA STUDIE VISAR ATT VIRTUELLA TRÅDAR HAR GOD POTENTIAL.

Det är inte g̊angbart för m̊anga applikationer att han-
tera en användare i taget. Ifall det till exempel tar 0,1
sekunder att skicka ett meddelande över internet för en
användare, s̊a hade det kunnat ta en timme för mot-
tagaren att f̊a meddelandet om 36 000 användare hade
skickat samtidigt. Detta är helt enkelt inte acceptabelt
för de flesta applikationer och s̊aledes vill programme-
rare att allt detta skall ske parallellt, det vill säga att
tiden det tar för en användare att skicka ett meddelande
i ovanst̊aende exempel är nära 0.1 sekunder oberoende av
antalet användare. Detta kallas för flertr̊adad program-
vara och det bygger p̊a programs förm̊aga att använda
h̊ardvaruresurser p̊a ett effektivt sätt. Det finns flertal
tekniker för att göra detta, inom denna studie undersöker
vi virtuella tr̊adar, plattformstr̊adar och asynkron pro-
grammering.

Platfformstr̊adar är kraftiga tr̊adar som kan hantera
flera uppgifter, men de kan blockera h̊ardvara när de
väntar p̊a att en uppgift skall slutföras. Asynkron pro-
grammering löser plattformstr̊adarnas problem genom
att inte vänta p̊a att en uppgift skall slutföras innan nästa
uppgift p̊abörjas (eftersom de arbetar icke-sekventiellt).
Virtuella tr̊adar är lättviktiga tr̊adar som ej blockerar
datorer när de väntar p̊a att uppgifter skall lösas. Detta
eftersom de monteras nedöch sparas i minnet medan de
inte kan arbeta.

Denna studie testar dessa tre tekniker genom att im-
plementera tre olika servrar som drivs av de tre oli-
ka teknikerna. Därefter konstrueras fyra tester som tes-
tar de olika teknologierna i olika arbetsomr̊aden s̊asom
beräkningstunga operationer, minnestunga operationer
och framför allt I/O-begränsade operationer, där I/O in-
nebär att datorn tar emot och skickar ut data. Slutli-
gen skickar en annan dator förfr̊agningar till servrarna

med varierande belastning som simulerar flera samtidiga
användare. Ett flertal steg togs för att säkerställa en bra
testmiljö, vilket är A och O för den här typen av studier.

Resultaten av dessa tester visar att virtuella tr̊adar i
de flesta fall erbjuder bäst prestanda (d.v.s. är snabbare)
än alternativen. Däremot använder en server som drivs
av asynkron programmering minst h̊ardvaruresurser och
har den lägsta felfrekvensen. I det testfall som inte in-
nehöll n̊agra blockerande operationer presterade de van-
liga platformtr̊adarna bäst.

Implikationerna av detta är att valet mellan att
använda asynkron programmering eller virtuella tr̊adar
för en server handlar om en avvägning mellan prestanda,
stabilitet och h̊ardvarukostnader.

	Introduction
	Research Questions
	Justification of our Study
	Previous Research
	Structured Concurrency Constructs (2022)
	On Analyzing Virtual Threads (2021)
	Efficient Structured Concurrency through Lightweight Fibers (2020)
	Integrating virtual threads in a Java framework (2023)

	Distribution of Work

	Theoretical Background
	Central Concepts
	Virtual Threads
	Reactive Systems

	Spring Framework
	Spring Boot
	Spring WebFlux
	Spring web MVC framework
	Summary spring

	Testing
	On Performance Testing
	Java Testing
	Analysing the performance and costs of reactive programming libraries in Java
	Examples of test implementation
	Overhead Analysis
	Hardware metrics

	Tools
	Vegeta
	VisualVM
	Wireshark
	Flame Graphs

	Method
	Overview
	Test Setup
	Benchmark Design

	Testing within the JVM
	Hardware Setup
	Metrics Collected
	Handling Errors

	Parameters
	Load Ramping Experiment
	Constant Load Test and Additional Profiling
	Constant Load Test
	Stack Profiling

	Validation
	Network Connection
	Impact of Profiling Software

	Results
	Ramping Load Experiment
	CPU Intense
	I/O intense
	Matmul
	Mixed method
	Thread Creation
	Stability

	Constant Load Experiment
	CPU Measurements
	Memory Measurements
	Safepoint Measurements
	Sync Measurements
	Call Stack Analysis
	Network Connection Analysis

	Summary of the Results

	Conclusions
	Addressing Research Questions
	Contribution and Future Research
	Limitations and Considerations
	Conclusions in Summary

	Appendix A
	Scripts
	Script for sending HTTP requests

	Appendix Data
	Iteration tests

	Appendix Benchmark Methods
	Imperative
	IO
	Compute
	Matmul and Mixed

	Reactive
	IO
	Compute
	Matmul and Mixed

