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Abstract

Through my thesis I have implemented and compared some different graph
drawing algorithms in addition to some methods to speed up the slow parts of
these algorithms. These algorithms were then used to test what to the best of
my knowledge is a novel approach to select parameter values for graph drawing
algorithms. For this, I use methods similar to those used in Machine Learning
to select parameter values and measure the utility of any set of parameters by
creating my own utility function. I created this function by looking at objective
measures of drawing quality that are commonly known, such as the number of
edge crossings, along with the time it took to draw a given graph. The resulting
method for parameter optimisation could find significant increases in the speed
of graph drawing for several of my implemented drawing algorithms without
compromising drawing quality. Furthermore, the approach is not specific to any
parameter set, and can with some modification be applied to any graph drawing
algorithm dependent on some constants.

Keywords: graph, drawing, parameter, optimisation



2



Acknowledgements

Thanks go out to my colleagues at Neo4j, specifically my supervisor Jens Oknelid who pro-
vided me with consistent feedback and was always open to new ideas, as well as my supervisor
Jonas Skeppstedt at Lund University who was easy to contact and provided good guidance
for any concerns. I also got some good advice and suggestions from my friend Niklas Simandi
and my brother Jonathan Nilsson.

3



4



Contents

1 Introduction 7
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Dot’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Spring-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Electric- and Spring-based . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Electric- and Constraint-based . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Methodology 11

3 Drawing Algorithms 13
3.1 Sublayout-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Common algorithm improvements . . . . . . . . . . . . . . . . . . . . . . . 18

4 Techniques for improving running time 21
4.1 Grid-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Quadtree-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Quality of a graph drawing 25
5.1 Measures of graph beauty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Parameter selection 27
6.1 Random Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Grid Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Per-parameter search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Analysis 35

5



CONTENTS

8 Conclusions and Future Work 45

References 49

6



Chapter 1

Introduction

1.1 Background
Graphs are mathematical structures consisting of nodes, also known as vertices, where some
pairs of nodes are connected by edges. Graph drawing is a field combining mathematics and
computer science to create aesthetically pleasing and informative images of mathematical
graphs. Since the positions of nodes are not given in the structure a graph can be drawn in
many ways and it is therefore up to the drawer to position them in a good way. A common
approach for drawing a graph is using what is known within the graph drawing community
as force-directed algorithms, where nodes are simulated as particles acting with forces on
one another. Nodes are then moved in a loop of steps based on forces calculated at each step.
For large graphs, these forces can become quite time-consuming to calculate and it is hence
common to simplify the number of calculations with various approaches. Fortunately, this
approach has quite a large overlap with simulating physical bodies, what is known as n-body
simulation, and one can thus borrow algorithms from this field.

An interesting aspect of optimising these algorithms stems from the fact that one tries
to optimise the time until stability has been reached, in combination with the quality of the
graph drawn. This means that even if an approach drastically decreases the time to stabilise,
for example massively increasing the electric charge of nodes (causing all disconnected nodes
to spread out very far from each other), it might still reduce the quality of the drawing to such
a level that it is unacceptable. One also needs to consider the difference between speeding
up a single cycle of calculations in comparison to speeding up the total time to stabilise.
Sometimes one can speed up the stabilisation by making quicker, less thorough, calculations,
but other times the decrease in quality of calculations is so large that the time to stabilise
actually increases even if each cycle is quicker.

This thesis was written together with Neo4j. I have therefore implemented my algorithms
in Typescript in order to be able to use them in tandem with their existing drawing software
Bloom.
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1. Introduction

1.2 Research questions
This thesis focused on how to optimise graph drawing. The main aim is summarised by the
following research questions:

• How do different known algorithms for graph drawing compare to each other?

• Can one create a programmatic evaluation function of a graph drawing that will cor-
respond to the beauty or quality evaluation of the user?

• Is it possible to use a programmatic evaluation function to optimise the parameters of
a given algorithm for drawing a graph?

• Is it possible to create a generalised programmatic parameter selection to improve the
speed and quality of drawing for any graph?

In chapters 3, 4, 5 and 6 I will go through the algorithms and methods used to answer the
research questions. Later in chapter 7 I will present my answers to them, with some further
discussion in chapter 8.

1.3 Related Work

1.3.1 Dot’s algorithm
Graphviz is a very popular graph visualisation software. One approach they utilise is known
as "dot’s algorithm". This algorithm is used to draw graphs in the plane, but with the addition
that it takes edge direction into consideration. Unlike the algorithms I have implemented,
this one tries to aim edges such that they point in the same direction. In addition, this al-
gorithm also allows for curved edges. Quickly summarised each iteration of this algorithm
goes through 4 steps, the first ranking each node, the second using a heuristic to reduce edge
crossings by setting vertex order based on rank, the third finding actual coordinates by con-
structing an auxiliary graph and the final fourth step drawing edges. The full paper describes
the algorithm in detail [5]. Since Neo4j uses force-directed algorithms, I have focused espe-
cially at these, in order to find ways Neo4j’s Bloom can be improved.

1.4 Spring-based
One of the first suggestions for force-directed layout algorithms was one proposed in the
paper "An algorithm for drawing general undirected graphs" [7]. In this paper they propose a
system where each node in a connected subgraph is connected to all other nodes in the graph
by a spring with a desired length proportional to the "graph theoretic" distance between the
nodes, meaning the number of steps in the shortest path between the nodes. In this way, both
global separation and local connection over edges is maintained using a single method. The
approach is rather simple, but a good starting point when just getting familiar with graph
drawing, and shows some of the strength of force-directed algorithms, such as the symmetric
nature of images that is often achieved. The algorithm for finding the graph theoretic distance
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1.5 Electric- and Spring-based

between all pairs of nodes is however O(n2), where n is the number of nodes, and thus quite
slow.

1.5 Electric- and Spring-based
Another common approach, which is also the one used by Neo4j, is one that utilises electric
forces as well, keeping springs only between nodes that are connected by an edge and separat-
ing all nodes by simulating an electric repulsion between them. In this way, local separation
is maintained by springs while global separation is maintained by the electric force. This
algorithm is also O(n2) for the electric calculations but some improvements can be made to
speed up the algorithm, which we will look at in the next chapter. This algorithm also has
the advantage that it works for graphs consisting of multiple disconnected subgraphs without
any addition, while the fully spring based algorithm would need some kind of complement to
separate the disconnected components. An example of utilizing this approach can be found
in the paper "Graph Drawing by Force-directed Placement" [6].

1.6 Electric- and Constraint-based
Another algorithm I have looked at used a constraint-enforcing algorithm instead of forces
to maintain the local separation for the edges. This approach was proposed in the paper
"Towards Visualizing Big Data with Large-Scale Edge Constraint Graph Drawing" [4]. The
algorithm works by setting some constraint on how far nodes that are connected with an
edge can be apart, with some error tolerance. As long as the distance between the nodes is
outside an error factor from the desired distance, the nodes are moved towards satisfying this
constraint. One clear advantage of this algorithm is that the constraint satisfaction will never
overshoot the target distance unlike a spring could. For pseudocode of my implementation
of this see figure 3.4.

9
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Chapter 2

Methodology

At Neo4j the graph drawing algorithm is used for a multitude of different graphs, and we
would like to find an algorithm that performs well for all of them, both in terms of time and
in terms of drawing quality. A drawing of high quality should show the structure of the graph
in a simple way. Time becomes an issue for large graphs, and in these cases we would like to
optimise our algorithm so that it runs quickly. At the same time it is quite important that
the algorithm draws smaller graphs in an illustrative way, not for example with certain nodes
being spread out too far from the rest. Since a lot of work has gone into implementing the
current algorithm, we are looking primarily at algorithms that are similar to the electric- and
spring-based algorithm currently used, but with different modifications.

The work was split into a few steps. Firstly we needed to get some different drawing ap-
proaches. Initially we looked for different papers detailing graph drawing algorithms, focus-
ing on those that used force-directed approaches. After finding some promising papers, I im-
plemented the algorithms from these. In addition I implemented some different techniques
to optimise the drawings. During this process parameters were chosen by hand. When the
algorithms were implemented, I started work on automatic parameter selection, in order to
further improve the overall quality of the drawing algorithms, including the efficiency. After
implementation and parameter selection was complete, algorithms were compared against
each other in terms of time to draw and subjective drawing quality, to look for possible im-
provements of Neo4j’s algorithm.
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Chapter 3

Drawing Algorithms

In this chapter I will describe my implementations of the fully spring-based, the electric-
and spring-based and the electric- and constraint-based algorithms mentioned in chapter 1.
I will also describe my implementation of a new algorithm proposed by my supervisor at
Neo4j where subcomponents of the graph are drawn separately.

Our algorithms for drawing graphs all have a common goal. We want to illustrate the
structure of the graph, by keeping all nodes apart to some degree, while still keeping nodes
that are connected close together. Often [4] [6], this is done by splitting the algorithm into
two parts, one local separation, working to keep nodes connected with edges at a proper
distance from each other, and one global separation, maintaining distance between all nodes.

Each algorithm is based on a loop, where nodes are moved in a cycle of iterations until
a stabilisation condition is met. Force-directed algorithms, where some forces are calculated
whereafter the nodes are pushed in accordance with the current speed they have. This is done
using what is called Verlet integration [8], where speed is approximated based on the previous
position. This method of approximating speed proved preferable over what is known as the
Euler method, where speed is kept as a separate vector, computed based on previous speed
and current acceleration. Running Bloom with both of these methods, we found cases where
the Euler method would fail to stabilize, while Verlet integration allowed for a static state
to arise. The advantage lies in the fact that numerical errors can not cause the speed and the
positions to go out of sync [4]. The method to push nodes of a graph G(V,E), with vertex
set V and edge set E, is described in figure 3.1 where FV is the force acting on node v, T is
a temperature factor in [0, 1] that causes stability as it is cooled down, and ξ is a damping
factor on the speed, also in [0, 1]. As the name suggests coolingFactor is a factor for reducing
the temperature over time. G(V,E) will be used to symbolise the graph in other figures as
well, with G(V) meaning the set of vertices and G(E) the set of edges.
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3. Drawing Algorithms

Listing 3.1: Pseudocode describing the method used in all my algo-
rithms for pushing nodes based off forces.

for v in G(V) do
vt+1 = (vt + T * (ξ * (vt - vt−1) + Fv * dt2)

end for
T = T * coolingFactor

My implementation for the fully spring based algorithm can be seen in listing 3.2, where
k is the spring constant and L is the desired distance between two neighboring nodes in the
graph. BFS is here a standard breadth-first search to find the shortest graph distance to all
connected nodes from the input node. distv(u) is the graph theoretic distance between nodes
v and u.

14



Listing 3.2: Pseudocode describing the spring-based algorithm.
for v in G(V) do

distv = BFS(v)
end for
for e = (v1 ,v2) in G(E) do

if v1 \neq v2 then
d = v1 - v2
k = k_0 * d
F = k * (L * distv(v2) - d) * d / d
Fv1 = Fv1 + F

end if
end for
pushNodes ()

Pseudocode describing the electric and spring-based algorithm is shown in listing3.3,
where k is the fspring constant, r the spring’s rest length, ck the electric force constant and
q the charge of particles.

15



3. Drawing Algorithms

Listing 3.3: Pseudocode describing the electric and spring-based al-
gorithm.

while notStable () do
for e in G(E) do

v1 = e(1)
if v1 ̸= v2 then

d = v1 - v2
F = k * (r - d) * d / ∥d∥
Fv1 = Fv1 + F

end if
end for
for v1 in G(V) do

for v2 in G(V) do
if v1 ̸= v2 then

d = v1 - v2
F = c_K * q2 / ∥d∥2 * d / ∥d∥
Fv1 = Fv1 + F

end if
end for

end for
pushNodes ()

end while

Pseudocode describing the electric and constraint-based algorithm is displayed in list-
ing 3.4, where r is the desired distance between nodes and e the error tolerance. Γ is the
constraint-precision, defining how hard we should enforce the constraints in each loop. ck
the and q are the same as in Listing 3.3.

16



3.1 Sublayout-based

Listing 3.4: Pseudocode describing the electric and constraint-based
algorithm

while notStable () do
for v in G(V) do

for u in G(V) do
if v ̸= u then

d = v - u
F = c_K * q2 / ∥d∥2 * d / ∥d∥
Fv = Fv + F

end if
end for

end for
pushNodes ()
for i = 0; i < Γ; i++ do

for e = (v1 ,v2) in G(E) do
if v1 ̸= v2 then

d = v1 - v2
if ∥d∥ > r or ∥d∥ < e * r then

D = 1 - r / d
if ∥d∥ < r * e then

D = 1 - r * e / d
end if
v1 = v1 + 1/2 * D * T * d
v2 = v2 - 1/2 * D * T * d

end if
end if

end for
end for

end while

3.1 Sublayout-based
The final algorithm I have implemented uses the fact that disconnected components can be
seen as a graph of their own. Drawing graphs using this concept was suggested to me by my
supervisor at Neo4j. One could then draw each disconnected component independently, cre-
ate a "supernode" to represent the subgraph and try to lay out the supernodes in a pleasing
pattern. The total node positions can then be acquired by summing up the position of the
supernode and the position of the node inside the sublayout. For pseudocode describing my
algorithm for this, see listing 3.5. I have decided to try to connect the supernodes with edges in
a grid pattern as in figure 3.1, where the desired length of an edge is determined by the radius
of the two layouts it connects. I chose for the width of the grid to be

⌈√
numSuperNodes

⌉
so that we would get a perfect square when we have a square number of nodes. I also set the
charge of each supernode as the sum of the number of nodes inside. Unlike the other algo-
rithms where I bootstrap (pick a good initial value for) centres for connected nodes randomly
I have chosen to also bootstrap the starting positions in the grid pattern described in figure
3.1. Since this layout method allows us to ignore other subcomponents when calculating a
sublayout, it could reduce the total number of calculations for the electric forces.

17



3. Drawing Algorithms

Figure 3.1: A figure illustrating how supernodes are placed and con-
nected in a grid when setting up the sublayout-based algorithm.

Listing 3.5: Pseudocode describing the sublayout-based algorithm.
Gs = [G_1 , G_2 , ...] = BFS ()
constraints = [0 ,0 ,...]
superNodes = initSuperNodes ()
while notStable () do

for (i = 0; i < Gs. length ; i++) do
G_i = Gs[i]
G_i. layout ()
constraints [i] = largestCoord (G_i)
for v in G_i do

G(v)
end for

end for
for e in G(E) do

v1 = e(1)
if v1 ̸= v2 then

d = v1 - v2
F = k * (r - ∥d∥) * d / ∥d∥
Fv1 = Fv1 + F

end if
end for
pushNodes ()

end while

3.2 Common algorithm improvements
Certain techniques can be used across multiple algorithms. Through the work I experimented
and found some common things that can be implemented across the different drawing meth-
ods that can have a large impact on the speed or quality of the final drawing. Most significant
of these is the use of a ceiling on forces. The use of a ceiling helps prevent very large single
pushes when nodes are close together, that could otherwise push nodes out in a way that

18



3.2 Common algorithm improvements

(a) (b)

Figure 3.2: A comparison of drawing a graph consisting of many
small subcomponents with and without a ceiling on the forces acting
on nodes. Both drawing algorithms are in other parts identical.

drastically increases the drawing area. An easy way to do this would be to simply let the force
become some maximum value if it becomes larger than the ceiling. Another approach I tried
was to use a logarithm of the force after the unaltered force becomes larger than the loga-
rithm of it. By altering the base of the logarithm, one can set when this occurs, and create a
sort of "soft ceiling" for the force, such that it can grow indefinitely still, but far slower after
it hits the soft ceiling. When comparing this logarithm-based ceiling with just a set maxi-
mum, I found no large differences, but using either one of the two proved very important
for drawing quality. A comparison between using no ceiling and using the log-based ceiling
can be seen in figure 3.2. We can note that the graph in figure 3.2b becomes much harder to
analyse in total since certain nodes get pushed needlessly far away from the rest. In order to
not have to zoom out too much the drawing without a ceiling had to be cropped to only a
part of it, but there were certain nodes that were around twice as far from the centre as the
furthest visible.

Another important thing was the starting positions of nodes. For most papers I have read
these are initialised randomly. In graphs with large disconnected subcomponents, I have how-
ever found that randomly placing each node in a grid before starting the physics simulation
will often lead to a drawing where disconnected subgraphs are tangled up in each other. My
solution for this is to bootstrap initial positions by finding each connected subcomponent
using a BFS at the beginning of the drawing and randomly generating a centre point in a
large grid and then generating all nodes of the subcomponent in a smaller grid around this
centre. Since we will only need to visit each node once this search is a quick O(n) operation
that should not slow down drawing. In figure 3.3 you can see a comparison between the sta-
ble drawings when using this bootstrapping and not for a graph consisting of some rather
large subcomponents. In the figure on the left where bootstrapping was used, the three sub-
graphs are clearly separated, while the other drawing is too entangled to show the number of
disconnected components.
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3. Drawing Algorithms

Figure 3.3: A comparison of drawing a graph consisting of three
rather large disconnected subgraphs with and without bootstrap-
ping. Both drawing algorithms are in other parts identical.

20



Chapter 4

Techniques for improving running time

Graphs stored in databases such as neo4j are often very large, which can lead to slow perfor-
mance when drawing. Fortunately, it is often possible to speed up the slow part of drawing
algorithms. My implementations of some of these methods will be discussed in more detail
here.

4.1 Grid-based
A rather simple approach for speeding up the electric calculations is to split the drawing space
into a grid and then store nodes in a data structure like a matrix. If the grid is recreated each
cycle, which can be done in O(n) time, then one can choose the grid size to fit all nodes each
iteration. Another approach, which in practice proved a bit quicker, is to create an initial
grid, moving nodes inside this, and only recreate the grid with a larger size if some node is
moved outside. By storing nodes in cells corresponding to their location in the grid one can
determine which nodes to compare to based on their location in the matrix. When calculating
the electric force acting on any node within a cell one can then cut down the calculations to
the ones from nodes within a certain proximity. My implementation of this algorithm can
be seen in figure 4.1. The method gridNeighs() that returns neighbors of v I takes neighbors
within a certain circular radius. For the speed of a single calculation, it would obviously
be better to have a closer proximity - however for the correctness of the computation the
opposite would be true. Since the force fades based on distance it also makes sense to choose
which cells should be included based on distance, creating a circular neighbourhood of cells
around the one we are currently calculating for. Note that the neighbourhood selects cells,
not individual nodes so that we only need to check the distance to a cell rather than the
distance to each node inside a cell - see figure 4.1. Since multiple, or even all nodes could
be inside a single cell, there is no guarantee for speed-up in terms of time complexity, but in
practice, this algorithm is often several times faster.
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4. Techniques for improving running time

Figure 4.1: An illustration of which cells and nodes are selected when
using my circular neighbourhood algorithm, with selected cells in
yellow and selected nodes in blue.

for v in G(V) do
Gv = gridNeighs (v)
for u in Gv do

if u ̸= v then
d = u - v
F = c_K * q2 / ∥d∥2 * d / ∥d∥
Fv = Fv + F

end if
end for

end for

4.2 Quadtree-based
A more advanced approach involves using a data structure known as a quadtree to split up
the drawing space. This data structure starts off as a 4-cell grid, but each cell is then split
into a quadtree of its own if the number of nodes inside the cell exceeds some limit. One
example is what is known as Barnes-Hut simulation where one splits the quadtree as long as
there is more than 1 node in each cell [1]. An example of this can be seen in figure 4.2. This
process creates a data structure that has a high amount of detail where it is necessary and low
where it is not. This in turn allows one to only do detailed calculations for the nodes that
are closest, and thus most relevant for electric repulsion, while computing an approximated
force for nodes in cells further away, similar to how the grid works. Only dividing cells with
many nodes can also allow us to save memory by not allocating a very large but sparse array
for locations which the grid-based approach could do. Pseudocode for electric calculations
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4.2 Quadtree-based

Figure 4.2: An image of the cells of a quadtree split into subtrees in
accordance with the Barnes-Hut algorithm. Note that any cell that
is not subdivided only contains one node, or none at all.

using this method can be seen in listings 4.2 and 4.3 where 4.2 starts the calculation where 4.3
recursively calculates forces. Since we recreate the quadtree every cycle we can also compute
the center of mass and number of nodes in each subtree at this time and store it for force
calculations. Theta is a parameter that determines when we start approximating. As can
be seen in the expression, a high theta means that we will start approximate calculations
for bigger cells at a shorter distance. Similar to the grid-based approach we can make no
broad guarantee that the speed of drawing is quicker than O(n2), however, when the points
are well spread the algorithm will be of speed O(n logn) [1]. One could also try having the
tree split into fewer pieces by limiting the maximum depth from the root, or the amount of
nodes required to be inside a cell for it to continue splitting. I have added these options as
parameters which we will look at in chapter 6.
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4. Techniques for improving running time

Listing 4.2: Pseudocode describing the loop that starts a recursive
calculation of forces from the root of the quadtree for each node.

quad = mainQuad
for v in G(V) do

quad. calcForce (v)
end for

Listing 4.3: Pseudocode describing the recursive quadtree-based al-
gorithm.

c = quad. centerOfMass
d = c - v
if quad. width / d < θ then

n = subQuad . numNodes
F = n * cK * q2 / ∥d∥2 * d / ∥d∥

else
for subQuad in quad do

if subQuad . isDivided then
subQuad . calcForce (v)

else
for u in subQuad do

if u ̸= v then
d = u - v
F = cK * q2 / ∥d∥2 * d / ∥d∥
Fv = Fv + F

end if
end for

end if
end for

end if
Gv = gridNeighs (v)
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Chapter 5

Quality of a graph drawing

5.1 Measures of graph beauty
The quality of a given drawing can of course be subjectively measured by a person. Often I
have experienced that there is quite a bit of overlap between different people for what they
find to be an appealing graph. This is however frustrating for any approach where we want to
analyse the quality of graph drawing in a predictable manner. It also does not work at all for
an automatic process where the quality of a drawing is needed, for example in the parameter
selection described in the following chapter.

Fortunately, there are some commonly known measures of graph beauty [2]. Many of
these are easy and quite quick to calculate for most graphs, such as the "density" of the draw-
ing (meaning the amount of empty space between nodes), how short the longest edge is, the
number of edge crossings and the variance of edge lengths. It is also agreed that symmetrical
drawings are more pleasing, although this is a harder metric to calculate. In many applica-
tions, Bloom being one example, it is also very important that the model stabilises quickly,
which is impacted by the parameter values.

5.2 Implementation
Implementing algorithms to calculate most of these metrics is rather straightforward. Some
that would bear closer inspection are the density of the drawing as well as the number of edge
crossings. To measure the density of the graph I looked at the area of the smallest bounding
box of the graph and divided it by the number of nodes to get the "area used per node". This is
not the only way one could measure the density of a graph but one that is simple to compute
and understand. For calculating the number of edge crossings I have simply computed the
lines through all nodes with edges between them and then for each pair combination looked
for crossings in the segments between the nodes. This is also not too hard, but ends up in
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5. Quality of a graph drawing

score = −A ·
nCrossings

nNodes
+ |sparseness − 700000| − B ·

time
re f Time

(5.1)

Figure 5.1: The utility function for graph drawing quality, where A
and B are constants that can be set to adjust the importance of the
different beauty metrics.

an O(n2) algorithm which for large graphs can be quite slow. Some improvements exist for
this, for example, the Bentley-Ottman algorithm [3] which can be quite quick when there are
few line crossings, however since the calculation of this measurement is not necessary for the
actual running of the models, I have focused on other parts of my programs.

In the end, I settled for a utility function that weighs together the number of crossings, the
time to draw compared to the time it took for my reference parameters and the sparseness of
the graph, measured as the number of nodes relative to the area of the smallest bounding box
of the drawing. To somewhat normalise the score, I looked at the number of crossings relative
to the number of nodes and the time with these parameters relative to the time needed with
reference parameters. For sparseness, the score was already quite similar for "good drawings"
of different sizes. The utility function I used to compare fitness using different parameters
can be seen in figure 5.1. Sparseness distance from 700000 was chosen because many good
drawings with handpicked parameters had sparseness around this value.

26



Chapter 6

Parameter selection

For all drawing algorithms I have seen, there are multiple parameters that do not have a given
"best value". Nevertheless, the choice of values affects how well the algorithm performs, and
thus picking the "right" values is something to consider. This is a problem that is also common
in the field of machine learning, where the values to be tuned are often called hyperparame-
ters. Similarly to how we before could borrow methods from n-body simulation, we can now
borrow algorithms from this field to optimise our parameters. To evaluate a given parameter
choice we can use the utility function described above. Since we want parameter sets that
work for a multitude of graphs we should take care to pick a set that performs well on all of
them.

For my parameter optimisation I will look at the constraint-based algorithm and the
spring- and electric-based algorithm, using grid-based electric calculations. In addition, I
will look at a constraint-based algorithm that utilises a quadtree-based approach for electric
calculations as well as a sub-layout algorithm where all inner layouts are calculated using this
same algorithm, optionally with different parameters.

For these four different setups, I have decided to look at the parameters seen in table 6.1,
where the values shown are the default values that I handpicked.

6.1 Random Choice
A common and simple approach in machine learning is to simply pick multiple sets of pa-
rameters randomly and see how well they perform. Since we can very quickly pick random
parameter values we get an approach with high speed that allows us to explore a large pa-
rameter space. The downside would be that there is no guarantee that a given random set
is any good at all. In order for the sets to be likely to be somewhat useful it is a good idea
to have a known subspace of values that could work and only sample from this. In my case
I did some manual testing of different values and looked when the model took too long to
stabilise, using 1.5x the time of my initial handpicked parameters as a ceiling for what was
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6. Parameter selection

Table 6.1: Default parameters for different algorithms.

Parameter Value
charge 0.5
constraintPrecision 3
cool 0.98
damp 0.15
dt 0.1
e 0.8
logBase 1.00005
r 200

(a) Default pa-
rameters for
the constraint-
and grid-based
algorithm.

Parameter Value
charge 0.5
springConst 60
cool 0.98
damp 0.15
dt 0.1
logBase 1.00005

(b) Default pa-
rameters for the
spring- and grid-
based algorithm.

Parameter Value
charge 0.5
constraintPrecision 3
cool 0.98
damp 0.15
dt 0.1
e 0.8
logBase 1.00005
r 200
theta 0.5
maxDepth 20
CellMaxSize 1

(c) Default pa-
rameters for the
constraint- and
quadtree-based
algorithm.

Parameter Value
charge 0.5
constraintPrecision 3
cool 0.98
damp 0.15
dt 0.1
e 0.8
logBase 1.00005
r 200
theta 0.5
maxDepth 20
CellMaxSize 1

(d) Default pa-
rameters for both
the superlayout
and the sub-
layouts in the
sublayout-based
algorithm. In our
parameter opti-
mization these
are optimized
separately.
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6.1 Random Choice

considered too long. Once we have a subspace of values for each parameter we can sample
randomly from each of these to create a new set of parameters. These can then be used and
evaluated by our utility function to see if they’re worth using instead of our current ones. For
an example in two dimensions, see figure 6.1 where we get a sense of how a large space can
be sparsely explored using only a few samples.
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6. Parameter selection

Figure 6.1: Example of random search over two parameters, where
each black dot marks the place where one parameter set is sampled.

6.2 Grid Search
Grid search is an approach where we look at all combinations of parameters taking steps of
a given length for each one. In two dimensions this can be illustrated as in figure 6.2. In
opposition to random search, we quite thoroughly look through a space with many samples,
necessarily reducing the size of the search space to compute within a reasonable time. Even if
we have a rather large step size over our subspace of values such that we look at a few values
in each parameter, the number of operations still quickly grows very large when we use a lot
of parameters. For graphs that are not very small, waiting for a single run to stabilise can take
a long time. For example, having around 1000 nodes, waiting for a single run to stabilise my
original parameter values can take time of the order 1 second (see for example figure 7.4) for
my grid-based algorithms. This means that if we have say 7 values for each parameter and
10 parameters we could end up waiting around 710 = 282475249 seconds - almost exactly 9
years.
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6.3 Per-parameter search

Figure 6.2: Grid search over two parameters, where each blue dot
marks the place where one parameter set is sampled.

6.3 Per-parameter search
A much quicker option is to not look exhaustively over the grid, but rather to iterate along
the dimension of a single parameter optimising this first, then proceeding to the next dimen-
sion. If there is some dependency between the different parameters for the outcome of the
utility function this might cause us to miss some good combinations, but we have the big
advantage of turning the exponent in the expression in the previous chapter into a factor,
making the whole process incredibly quick. Though this is rather simple, I empirically found
this approach to be quite useful. In two dimensions this can be displayed as seen in figure
6.3.
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6. Parameter selection

Figure 6.3: Per-parameter search over two parameters, where each
blue dot resembles the place where one parameter set is sampled.
The red dot marks the optima when looking at parameter 1. The
green marks where parameter 2 is optimal for this value of parameter
1.

6.4 Hybrid

An alternative approach is to try to create a hybrid of the random search and one of the
iterative searches. This will allow us the advantage of the speed of random choices, but also
allow us to optimise each random choice in some local neighbourhood. With the grid search,
this will allow us to pick a smaller but denser grid around our given choice. Still, we will
have to keep the number of values for each parameter very small in the grid if we want it to
be quick. I therefore chose a hybrid approach using both quick options, first retrieving some
sets of random parameters that proved reasonably quick and then optimising each using the
per-parameter search described above. For a small example in two dimensions, see figure 6.4
which displays how this hybrid approach could find local optima (green) around some good
initial random values (black). In this figure, we would have generated random parameter sets
until we have three "good" sets, meaning three sets that perform similarly or better than our
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6.4 Hybrid

hand-picked parameters. We then optimise around these with a per-parameter search.
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6. Parameter selection

Figure 6.4: Hybrid search, first creating random parameter sets and
then optimising these locally.
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Chapter 7

Analysis

To analyse the performance of my parameter selection I have created a separate program for
nodeJS that will run only the layout part of the algorithms without drawing the graph on the
screen in each step. In this software, I have defined graphs with the characteristics described
in table 7.1, and then compared the different layout algorithms, as well as optimised their
parameters. Before running the optimisation however, I needed to choose the constants for
the utility function in figure 5.1.

To pick the constants I looked at the values of our graph beauty metrics for graph draw-
ings that I thought were good, and thought about how problems like having crossings or hav-
ing a too dense or too sparse drawing should be weighed against each other. After picking
constants I then tried to optimise parameters to maximise the utility function, and looking at
the quality of drawings made with the optimised parameters I tried to evaluate if I had made
a good choice of weights. If the weighting was off I adjusted constants. For example, when
the number of crossings in the new drawings was unacceptably high, I increased the weight
of this measurement. In this way, one can adjust their utility function to their personal taste
for what a good drawing looks like. For a comparison of how the utility function can affect
the drawings made with optimised parameters, see figure 7.1. As can be seen in the figure,
removing the weight in our utility function on edge crossings can result in a drawing where
many of these crossings occur, as is to be expected. After some trial and error, I ended up
using the constants seen in figure 7.2
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7. Analysis

(a) (b)

Figure 7.1: A comparison of how parameter selection can differ de-
pending on the weightings of beauty metrics in the utility function.
On the right we have removed the weight on crossings.

score = −1011 ·
nCrossings

nNodes
+ |sparseness − 700000| − 108 ·

time
re f Time

(7.1)

Figure 7.2: The utility function for graph drawing quality, with
hand-picked constants for weighting the different quality metrics.
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Table 7.1: A summary of the graphs used for comparison and to op-
timise parameters.

Number of nodes Number of edges Description

1205 980

Many sets of small
clusters of nodes
of different sizes.

Each cluster consists
of a center node with

some surrounding nodes.

3560 3550

Ten sets of superclusters
of random size, where

a supercluster is a cluster
like above except each

node around the center
is also a supercluster.

3906 3905
Three large

hyperclusters.

55 35
A few small clusters and

some single nodes.

843 800
A mixture of clusters,

hyperclusters and some
chains of nodes.

Using the initial parameter values that I picked by hand - values one could describe as
"good enough" - I got the drawings seen in figure 7.3 using the constraint-based layout. The
default parameter values can be seen in table 6.1.

However, for some algorithms, it is possible that I stumbled upon values that work extra
well for this algorithm while on other algorithms the hand picked values were inferior to what
further optimisation could give. For a fair comparison we should therefore try to optimise
our parameters for all algorithms individually.

I started off with optimising my parameters for a single graph using a single algorithm as a
proof of concept. For graph 1 in table 7.1 a comparison of an optimized versus an unoptimized
drawing can be seen in figure 7.4 along with the time it took for the drawing to stabilize. The
algorithm used was the constraint- and grid-based one. To get a more fair estimate for the
time, I ran each drawing three times and took the average time. As can be seen in the figure,
the drawing time could be improved quite a bit without any significant loss of image quality.

One problem with this though is that we might pick parameters that are overly specific
to one graph. This was indeed what happened. For example, drawing graph 2 with the pa-
rameters optimised for graph 1 we got the drawings seen in figure 7.5. Clearly, the quality of
the drawing has been ruined by a significant overlap of the disconnected subcomponents.

For different graphs, we get different optimal sets. This is a problem that my supervisor
at Neo4j expressed that they also have, for example that values that work for small graphs are
less efficient for large ones. One approach to solve this could be to let the parameter values
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7. Analysis

(a) Graph 1 (b) Graph 2

(c) Graph 3 (d) Graph 4

(e) Graph 5

Figure 7.3: Drawings of the five testing graphs described in table 7.1,
using the constraint-based algorithm with grid-based electric calcu-
lations, with handpicked parameters.
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(a) Graph drawing
with programmat-
ically optimized
parameters.
Drawn in an
average of 0.50
seconds.

(b)Graph drawing
with default pa-
rameters. Drawn
in an average of
1.43 seconds.

Figure 7.4: A comparison of images and times when optimizing pa-
rameters for a single graph.

(a) Drawing of
graph 2 using
parameters pro-
grammatically
optimized for
graph 1.

(b)Graph drawing
with default pa-
rameters for graph
2.

Figure 7.5: A comparison of drawings, showing what can happen
when parameters are optimised for a different graph.
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7. Analysis

totalScore =
score1

|re f Score1|
+

score2

|re f Score2|
+ ... (7.2)

Figure 7.6: The total score, or utility for an algorithm with a given
parameter set when looking at multiple graphs, where scorei is the
utility score received when drawing graph i.

be a function of the graph structure, most simply as a function of the number of nodes and
number of relations. Another simpler approach would be to try to use the found sets to try to
find some set of parameters that works quite well for all graphs. An easy way is to see which
set of the optimal sets for each respective graph creates the best results for all given graphs by
weighting together the evaluation scores for multiple graphs. To get a more fair comparison
between multiple graphs I normalised scores by the ones achieved with default parameters,
using an equation as seen in figure 7.6.

Using this approach I could find new optima for the constraint- and quadtree-based ap-
proach that was on average 1.08 times faster, for the constraint- and grid-based approach we
got results 1.11 times faster on average, and after a long search the sublayout-based approach
could get a big improvement that was about 5.37 times faster. Speed improvements were
often larger for big graphs, with the smaller graphs 4 and 5 sometimes even becoming a bit
slower. Since these were very fast to draw in the first place I would not see this as a problem
however. I suspect that this difference in speedups is due to the fact that I used a timeout
for drawing any given graph, and that any drawing slower than this would get a huge penalty
basically ensuring that no parameter set where any drawing timed out would be viable. Since
speeding up the small graphs could cause the already slow large graphs to slow down further,
parameters sets causing this would not be selected.

As mentioned earlier, speed is of course not the only important factor when drawing a
graph. Since the evaluation function 7.2 weighs in the number of crossings and the density of
the drawing too though, the hope is that the quality of the drawing should also improve, or at
least stay as good. To evaluate whether this worked to also improve my subjective perception
of the graph I looked at the drawings for each graph by eye. Most times I found the drawing
as good, see for example figures 7.7, 7.8 and 7.9. In one case however, I found the optimised
drawing to be significantly worse, although not to an unacceptable degree. This can be seen
in figure 7.10, where the resulting drawing is too dense in some parts and too spread out in
others.

I also wanted to analyse the performance of our different versions of algorithms. First,
we can compare the spring-based approach to the constraint-based when using the opti-
mised parameter sets. For both algorithms, we will use a grid for electric calculations. The
constraint-based approach turned out faster for all drawings, on average 3.23 times faster,
where drawings are of similar quality, sometimes slightly better in my opinion when using
constraints. An example comparing drawings can be seen in figure 7.11. Other drawings were
even more similar between the algorithms. Secondly, we can compare the quadtree-based
optimisation for electric calculations to the grid-based one. In this comparison, I will use
constraint-based calculations for maintaining edge distance. In general, I found the quality
of drawings to be quite similar, while the quadtree-based approach was a bit slower. A com-
parison showing the similarity of drawings can be seen in figure 7.12. As seen there are small
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(a) Drawing with
optimised param-
eters. Average
time was 3.60
seconds.

(b) Drawing with
default parame-
ters. Average time
was 5.39 seconds.

Figure 7.7: A comparison of drawings graph 1 in table 7.1, using the
constraint- and quadtree-based approach.

(a) Drawing with
optimised param-
eters. Average
time was 9.44
seconds.

(b) Drawing with
default parame-
ters. Average time
was 50.61 seconds.

Figure 7.8: A comparison of drawing graph 3 with the sublayout-
based approach where sublayouts were drawn with the constraint-
and quadtree-based algorithm.
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7. Analysis

(a) Drawing with
optimised param-
eters. Average
time was 2.97
seconds.

(b) Drawing with
default parame-
ters. Average time
was 4.09 seconds.

Figure 7.9: A comparison of drawing graph 3 with the constraint-
and grid-based approach.
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(a) Drawing with
optimised param-
eters. Average
time was 3.00
seconds.

(b) Drawing with
default parame-
ters. Average time
was 2.28 seconds.

Figure 7.10: A comparison of drawing graph 5 with the constraint-
and quadtree-based approach.

(a) For the
constraint-based
approach the
graph was drawn
in an average of
3.93 seconds.

(b) For the spring-
based approach
the graph was
drawn in an
average of 9.94
seconds.

Figure 7.11: A comparison of drawings when using the constraint-
based approach in comparison to the spring-based one. The graph
drawn is graph 2 in table 7.1.

43



7. Analysis

(a) For the grid-
based approach
the graph was
drawn in an
average of 1.57
seconds.

(b) For the
quadtree-based
approach the
graph was drawn
in an average of
3.60 seconds.

Figure 7.12: A comparison of drawings when using the grid-based
approach to speed up electric calculations in comparison to the
quadtree-based one. The graph drawn is graph 1 in table 7.1.

differences but overall quite large similarities. This was the case for the other drawings too.
I suspected that the difference in speed was due to the implementation of the algorithms,

for example the recursive structure of the quadtree. To motivate that this was the case I
looked at how long the different algorithms took when using 1-to-1 electric comparisons
and not doing any simplification, which for the quadtree-based approach would correspond
to theta=0. For the grid, I simply did a regular loop over the list of nodes. For the same
calculations on graph 1 in table 7.1, I then got stability from the regular electric calculations
in 10.8 seconds compared to the 30.0 seconds it took for the quadtree-based calculation, using
the same parameters. It seems that the recursive structure of the quadtree causes a significant
increase in time to access our values. The times to stability for all comparisons above were
taken as averages of three runs.
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Chapter 8

Conclusions and Future Work

Firstly, lets consider the different drawing algorithms. Using constraints for edges rather than
springs was quicker for all my drawings as mentioned before. I also found it easier to optimise
parameters for the constraint-based layouts, although this could be because I spent more time
picking good default parameters for this method. Subjectively I also found the visual quality
higher for the constraint-based algorithm when looking at the resulting graphs, which leads
me to believe that this is a preferable method overall.

For the electric calculations, we saw that using a grid was often quicker than using a
quadtree. This means that in some cases, unless one manages to significantly improve the
implementation of the quadtree-based algorithm, it might be better to use the grid-based
approach. One should note however that to reach this speed I had a rather fine grid, and that
this causes the risk of running out of memory, or losing out on quality, if the graph grows
beyond the grid size too many times. In fact, when I tried drawing the same area with a grid
only a few times finer I did actually run out of memory.

Another thing that I wanted to find out was the beauty evaluation function and its use
for assessing parameter fitness.

Looking at the time and images in figure 7.4 it is clear that the use of an evaluation func-
tion to measure the quality of a drawing can be a good way to measure which parameters to
use if we want to optimize drawing of a single graph. Since we weigh the different beauty
metrics with constants, setting these in different ways can be used to prioritise different parts
of the drawing, as can be seen in figure 7.1. In this way selecting constants for the utility func-
tion becomes a quick way to optimise all given parameters at once, and as seen in the analysis
this can both improve running time and often my subjective appraisal of drawing quality too,
see for example 7.9.

Even for the generalised parameter search, the algorithm often found better parameters
for all given graphs, with one notable exception. This signifies that the approach would also
be valuable in a more general setting, with the caveat that one should take care to avoid opti-
mising too much to certain graphs by testing for many graphs, and modifying the evaluation
function seen in 7.2 if necessary.
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8. Conclusions and Future Work

A further development of this function could be to not just make the evaluation a mul-
tilinear function of the metrics but to also allow different kinds of expressions. For example,
the time difference for two very quick drawings might not be too important but grows more
important the longer the time is to begin with. One could then make the time expression a
power of the length of time, or even exponential with the length of time.

It is worth noting that the results seen in figures 7.7, 7.8, 7.9 and 7.10 are highly dependent
on the utility function that I selected. In a product where the aim is to create drawings that are
of high quality in the eyes of some general consumer, one would probably wish to use different
weights. One idea for future work would be to create drawings with different algorithms,
measure multiple metrics and then perform some kind of user study to try to capture how
viewers perceive the general quality of multiple graph drawings. This could then allow one
to try to find how the different values of the metrics correlate with graph beauty.

It might be the case that a single set of parameters used for all graphs is not the best
option and that letting the parameters be a function of the graph structure would be a better
option. This would also be an avenue for future work. Another variant of this would be
to retrieve multiple sets of parameters optimised for graphs of different structures and then
allow the user to pick which parameter set to use in some kind of setting.

Another thing that could improve the algorithm is adding different beauty metrics in
order to better encompass what a good drawing is, for example some measure of symmetry. As
mentioned in the analysis of 7.10 there can be a problem where some areas of the drawing are
too dense and others too sparse. To take this into account one could add a new measurement
that looks at variance in density over the drawing.

In summary, we can answer the research questions like this:

• How do different known algorithms for graph drawing compare to each other?

In our findings, using soft constraints to maintain proper distance over edges proved
the superior drawing method, producing quicker results with similar subjective ex-
perience of the drawing quality. For global separation of vertices using electric forces,
simplifying calculations using a grid or a quadtree could greatly speed up drawing com-
pared to complete calculations. The grid based approach somtimes outperformed the
quadtree based one, with the caveat that one can need much more memory for a fine
grid.

• Can one create a programmatic evaluation function of a graph drawing that will cor-
respond to the beauty or quality evaluation of the user?

For this question we found that at least in my case it was quite possible to adjust the
mentioned evaluation function to correspond well to my evaluation of the beauty of a
drawing when comparing two scores.

• Is it possible to use a programmatic evaluation function to optimise the parameters of
a given algorithm for drawing a graph?

For a single graph we could see a large improvement in drawing time using the chosen
evaluation function, without significant difference in drawing quality when looking at
such things as number of edge crossings or density of the graph. Therefor it does seem
very possible to programmaticaly optimise a graph drawing, with our implementation
being one example.
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• Is it possible to create a generalised programmatic parameter selection to improve the
speed and quality of drawing for any graph?

When looking at drawing times following the generalised programmatic evaluation we
could see a large increase in drawing speed. Though this improvement did not occur
for all graphs, it does seem possible to improve how the algorithm performs on average
in this way.

it seems that a programmatic evaluation of drawing quality can be useful for both optimising
parameters for a single graph, and to find a more general parameter set. The generally good
drawing quality resulting from optimising the evaluation function also motivates my belief
that one can quite well encapsulate the perceived quality of a drawing by looking at objective
drawing quality metrics.
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These days it seems like many websites want access to any data they can. But data
is not only a powerful force for big social media companies. Anyone can choose to
store some information in a database and analyse it for insights into their own life,
their company or even the world. Graph databases are a popular way to do this, and
an important step in this analysis can be to look at a drawing of your graph.

Mathematical graphs consisting of nodes and
edges are becoming an increasingly used way of
storing data. To illustrate these graphs, graph
database companies like Neo4j commonly use al-
gorithms simulating systems of particles affecting
each other with physical forces. For all these al-
gorithms some values often called parameters are
used, most times with hand-picked values repre-
senting for example the electric charge of a par-
ticle. Optimally picking these values can be a
cause of both boredom and frustration as the pos-
sible combinations are endless. That is where my
work comes in. I start off with an algorithm that
has a certain parameter set for drawing graphs.
Starting with this initial set I then look at some
objective quality metrics of a drawing made with
these parameters, and programmatically optimise
the parameters in a way that manages to speed up
the drawing process from hand-picked parameters
while maintaining drawing quality.

The beauty of this method is that it is not spe-
cific to any given algorithm for drawing graphs
since it only needs the final drawing and how long
it took to create in order to evaluate a parameter
set. This means that one can adapt the method
to work for any algorithm that uses some param-
eter set and improve the efficiency of the algo-

rithm without the need for testing by hand. I
implemented this method for multiple algorithms
and found significant improvements, especially in
drawing speed.

The process can be divided into a few steps.
The first step can be considered a broad search
for new initial values. In a broad surrounding of
the initial parameters, I select random parame-
ter sets and review their graph drawing perfor-
mance in the same way as for the initial parame-
ters. Then, when a sufficient amount of random
sets are found to be performing close enough to
the original parameters, I go into the second step.
In this step I optimise each random set locally,
stepping through a small neighbourhood of each
random parameter set and picking values that in-
crease the quality of the drawing in accordance
with my chosen objective quality metrics. The fi-
nal step is then to check that these parameters
are not overly specific to one graph. To do this
I looked at how well the best parameter sets for
one graph performed on a few other graphs and
removed any sets where performance was sub-par
for some graph, finally selecting the one that per-
formed best overall. In this way, we end up with a
new optimised parameter set that in general out-
performs handpicked parameters.
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