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Abstract
With rising interest rates increasing the cost of capital, businesses are focus-
ing on reducing expenses. Tied-up capital, largely represented by inventory,
is a critical cost driver. Therefore, optimizing inventory levels is crucial for
controlling capital costs. Inventory levels consist of cycle stock and safety
stock. Cycle stock covers average demand during replenishment, while safety
stock mitigates the risk of stock-outs due to uncertainties. This thesis fo-
cuses on a Swedish food manufacturer that has implemented a new planning
system, SAP IBP, featuring an Inventory Optimizer (IO) module designed
to calculate safety stocks for its finished goods warehouses. Despite this,
the company has been hesitant to rely on its outputs, leading to manual
adjustments of safety stock levels based on staff experience. The primary
purpose of this thesis is therefore to develop an inventory model that opti-
mizes safety stock levels based on a target service level, enabling it to serve
as a benchmark for assessing the IO’s performance in the future.

To fulfill this purpose, the thesis utilizes the first four steps of the operations
research framework: defining the problem and collecting relevant data, for-
mulating a mathematical model, creating a computer-based solution based
on that mathematical model, and validating the solution through practical
testing. This resulted in an inventory model implemented in Microsoft Ex-
cel. The findings show that the new safety stocks could be reduced by 47%
compared to the current levels at the case company while meeting the com-
pany’s service level targets. Additionally, the model has been tested and the
results indicate that it performs well enough to be utilized as a benchmark
for the IO in the future.

Keywords: inventory control, forecast error, operations research
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1 Introduction
1.1 Background
With rising interest rates leading to an increased cost of capital, businesses
are placing a high emphasis on reducing their expenses. In this context,
tied-up capital becomes a critical cost driver to consider. Usually, a major
part of this tied-up capital is represented by the inventory a company holds.
Therefore, optimizing inventory levels is important to control a company’s
capital costs. Inventory levels are composed of cycle stock and safety stock.
Cycle stock covers the average demand during the replenishment period.
However, due to uncertainties, safety stock is needed to mitigate the risk of
stock-outs.

Optimizing safety stock levels is a way to reduce tied-up capital while achiev-
ing a desired customer service level. Some companies rely on manual ad-
justments based on personnel experience, which often leads to safety stock
levels being too high. The main reason for this is that there is a trade-off
between low inventory levels and achieving high service levels. When ser-
vice levels fall below the agreed-upon standards, companies typically incur
penalty fees and a risk of losing customers to competitors. Without cus-
tomers, there is no business. In an effort to minimize the risk of failing to
meet required service levels, companies often maintain higher safety stock
levels than necessary to meet the service level targets.

This thesis focuses on inventory management at a manufacturer in the
Swedish food industry, referred to as the ”case company”, that is facing
the challenge of rising capital costs. The company currently relies on per-
sonnel experience when determining safety stock levels and is consequently
seeking an understanding of the current performance levels and if they can
be improved.

1.2 Supply chain mapping and thesis delimitations
The case company is a large food manufacturer in Sweden, and part of a
larger conglomerate. It specializes in production of a wide range of food
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products that are frequently found in Swedish households. These include,
for example, frozen or refrigerated ready meals and pantry items.

Operating across Sweden, the company manages several production facilities
and finished goods warehouses. This thesis narrows its focus to a specific
finished goods warehouse, known as ”Warehouse Y”. Notably, Warehouse Y
operates under a third-party logistics (3PL) model, distinguishing it from
the company’s other warehouses due to the higher inventory holding costs
associated with 3PL operations. Therefore, the case company decided to
focus on this particular warehouse. This warehouse receives products from
two production plants. The case company has recently initiated an attempt
to lower the safety stock on some of the products that are produced at
the plant, referred to as”Plant X”, and stored at warehouse Y. As a result,
the case company requested that the focus should be to consider the safety
stocks of products produced there. Therefore, this thesis focuses on products
manufactured at Plant X and the other plant is out of scope. Although the
primary emphasis is on inventory at Warehouse Y, some factors impacting
safety stocks, such as lead times, are specific to the production plant, making
Plant X relevant.

1.3 Problem formulation and purpose
This thesis follows a methodology known as operations research (OR), which
is a six-step approach to solve an operational problem presented by Hillier
and Lieberman (2010). The first step in this approach is to define the prob-
lem. In addition, the first step involves collecting relevant data, which is
presented in chapter 4. The problem is that the case company implemented
the planning system, SAP IBP, which includes an Inventory Optimizer (IO)
module, designed to calculate safety stocks for all its finished goods ware-
houses. Despite this advanced tool, the company has been hesitant to rely
on its output, primarily due to a lack of understanding about how the mod-
ule functions and the input parameters it requires. As a result, safety stock
levels have been manually adjusted based on staff experience. To address
this issue, the company initiated a project aimed at optimizing the use of
the IO by understanding how different input parameters influence its output,
with the ultimate goal of using the IO’s calculations. The primary purpose
of this thesis is to develop an inventory model that optimizes safety stock
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levels based on a target service level, enabling it to serve as a benchmark
for assessing the IO’s performance in the future.

1.4 Report disposition
The thesis starts with a brief overview of the case company in chapter 2,
touching on its policies and processes. In chapter 3, a theoretical framework
on inventory control and forecasting is presented, providing the necessary
foundation for building the model. This framework is then applied in chapter
4, where the theory is used to analyze the data and establish a basis for the
modeling stages. The model and its results are then discussed in chapter 5,
including an analysis of input parameters, as well as model validation and
testing. A critical discussion follows in chapter 6, covering assumptions and
validation results. Finally, in chapter 7, the report concludes with remarks
and suggestions for future research.
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2 Overview of case company

The following chapter provides an overview of the case company and how
their inventory control process is set up. It begins with a description of how
the safety stock values are set. Then, the concept of service level is intro-
duced and related to the case company. Subsequently, review- and ordering
policies at the case company are described. Lastly, since forecasting future
demand is an important part of planning inventory, methods to forecast fu-
ture demand at the case company and measurement of the performance of
these are presented.

2.1 Service level and Safety stock
As mentioned in Section 1.3, the case company’s ambition is to utilize an
inventory optimizer to calculate product-specific safety stocks. However, the
optimizer is not in use presently due to concerns about whether it is con-
figured correctly. Instead, as previously noted, the case company employs
a fixed value of the safety stock known as ”Days of Safety Coverage”. This
value is based on an average of the expected daily demand quantities and is
at Plant X set at 21 days. That is, the safety stock should be able to cover,
on average, 21 days worth of demand. At Plant X this value is arbitrarily set
rather than being based on data-driven analysis, which results in excessively
high safety stock levels. To provide context, Figure 1 illustrates an example
of safety stock when using days of coverage compared to the inventory op-
timizer calculation. Upon analyzing Figure 1, it becomes evident that the
safety stock levels, currently employed by the case company, are inflated.
Furthermore, in some cases, the inventory optimizer’s recommended safety
stock may seem very low without further analysis. This discrepancy could
stem from the fact that the case company is unsure what input parame-
ters the IO requires, as discussed in the problem formulation in Section 1.3.
However, it could also be accurate, indicating that the fixed safety days of
coverage is driven by a fear of stockouts when using the lower safety stock
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values provided by the IO. Ultimately, the use of 21 days as a safety stock
threshold could be seen as an exaggerated measure to mitigate the risk of
stockouts. This discrepancy highlights the importance of figuring out what
the ”optimal” safety stocks are.

Figure 1: A comparison of the safety stock level provided by the IO and a fixed
safety stock level

Safety stock levels are commonly optimized based on a service level con-
straint. The case company uses a service level known as fill rate, denoted as
S2, which is defined as the amount of demand that can be satisfied immedi-
ately from the stock on hand. Axsäter (2006) argues that from a practical
point of view, it is important that the same type of service level definition
is used throughout the company. Moreover, the overall fill rate goal at the
case company is currently set to 98%. This number is agreed with customers
and essentially means that the case company needs to achieve an average
service level of 98% across all products. However, that doesn’t necessarily
mean that every product needs to have the same fill rate requirements since

5



the performance is measured as an average across all products. It could be
unwise to have the same service level for all products since the impact that
each product has on the profits may significantly vary due to sales volume,
price etc. Instead, one could segment the products based on some common
characteristic (e.g., with the help of an ABC-analysis). An ABC-analysis
is a method to segment products into three categories; A, B, and C based
on a predefined metric such as sales volume. In this case, the case com-
pany employs an ABC-analysis based on the contribution margin (CM),
defined as Quantity · Margin, where the quantity refers to the sales volume
and the margin refers to the difference between a product’s sales price and
its variable costs. The segmentation follows Pareto’s 80/20 rule, which is
commonly applied to ABC-analyses, where 20% of the total volume corre-
sponds to 80% of the total CM , 30% corresponds to 15% of the total CM ,
and 50% corresponds to 5% of the total CM . Using this rule, the products
are categorized as shown in Table 1.

Table 1: An overview of the Pareto rule which the ABC-analysis is based on

Product category Percentage of total CM
A 80%
B 15%
C 5%

Utilizing the results from the ABC-analysis, the case company has deter-
mined the target service level (TSL) that products within each category
should meet. The specific target service levels for each product category are
outlined in Table 2.
Table 2: An overview of the product categories and corresponding target service

levels

Product category Target service level
A 98.5%
B 97%
C 96%

It is important to clarify that while there is a product segmentation, it has
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not previously been used to calculate safety stock. This is because the safety
stock has been set for a fixed number of days rather than determined by a
service level constraint. However, there are plans to experiment with this
segmentation in the future.

2.2 Inventory control system
The purpose of this section is to give a brief overview of how the inventory
system works at the case company. The different concepts will be further
discussed later on in section 3.1. As of now, the SAP IBP system handles a
significant part of the ordering process, with supply planners making adjust-
ments to its settings in response to changes in planning or unforeseen factors,
such as promotions or production malfunctions. The inventory system at
the case company can be represented by an (R, Q)-system, i.e. that an or-
der of a fixed lot size (quantity), Q, is placed at a time when the inventory
position is R units. Additionally, the system’s review policy is effectively
continuous, meaning that the inventory position is reviewed on a continuous
basis. As of now, the lot size is seen as the amount of units a shift at Plant
X is able to produce. This results in lot sizes that are not consistently equal,
so the system data includes a minimum lot size and a maximum lot size.

In section 3.1, the significance of lead time in inventory control is discussed.
Some years ago, there was a discussion on interpreting lead times and it
was decided to represent the lead time for finished goods based on the cycle
time of the entire product portfolio for each production line, i.e., how long
it would take to produce the entire product portfolio. The case company is
interested in exploring whether this is an effective approach for determining
lead time values.

2.3 Forecasting
The case company is undertaking a forecast improvement project aimed at
enhancing seasonality predictions using a seasonal model. Seasonality refers
to some products exhibiting higher sales volumes during certain periods of
the year. The project focuses on applying a statistical forecast method in
conjunction with an index that accounts for seasonality variations, which is

7



further described in section 3.3.1. Further details of the project are beyond
the scope of this thesis since this thesis is not explicitly about forecasting,
rather inventory control. However, the relationship between forecasting and
inventory control is evident. An accurate forecast reduces uncertainty, pro-
viding an opportunity to lower safety stocks compared to a less accurate
forecast.

From an inventory control perspective, forecast errors like the mean absolute
deviation (MAD), which directly compares actual demand to the demand
forecast, is a commonly used metric. The main reason for keeping safety
stocks is to cover for demand uncertainty. Since the demand is forecasted,
that demand uncertainty could be expressed as the errors in the forecast.
Therefore, the forecast error is used to represent the demand uncertainty
in this thesis. Although MAD is used in this thesis when calculating the
safety stocks, the case company frequently uses the mean absolute percentage
error (MAPE), a metric that contextualizes the difference between sales and
demand forecast by comparing it to the size of the demand forecast. The
reason for introducing MAPE is that it is hard to determine whether a MAD
value represents a high or low forecast accuracy, since it does not take the
volume of the demand forecast into account. MAPE is therefore used in this
thesis when discussing the performance of the forecast.
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3 Theory

This chapter presents the theoretical framework essential for understanding
the inventory control principles discussed in this thesis. It begins with an
overview of inventory systems. Subsequently, the chapter explores how de-
mand can be modeled with statistical distribution functions, recognizing the
critical influence of demand on inventory control decisions. Due to the de-
mand’s importance, different demand forecasting methods are presented but
more importantly, the concept of forecast accuracy is introduced, which is rel-
evant when determining safety stock levels. Lastly, the chapter addresses the
optimization of inventory systems, integrating the aforementioned concepts
to create a final approach.

3.1 Inventory control systems
The objective of inventory control is to maintain a balance between the
capital invested in inventory and meeting customer demand (Axsäter 1991).
To manage this trade-off effectively, an inventory control system is essential.
Such a system is guided mainly by two key decisions: when to order and
how much to order, i.e., the lot size (Q). It was previously mentioned that
there is a minimum and maximum lot size in the system. However, The IO
currently utilize the minimum lot size as the value of Q. This is currently
not adjustable and thus, the focus shifts primarily to the timing of orders,
i.e., when to place an order. This decision is based on an ordering policy
but to fully understand this policy, the concept of inventory position is
first introduced. The inventory position can be described as a thorough
perspective on inventory levels, since it does not only account for the physical
stock on hand but also pending transactions such as outstanding orders and
backorders. Axsäter (2006) introduces the following relationship: p

Inventory position = stock on hand + outstanding orders − backorders

where stock on hand is the actual number of 6)sunits in stock, outstanding
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orders are the orders that have not arrived, and backorders is the demand
that has been ordered but not yet delivered.

An important policy in inventory control is the review policy. The review
policy determines how often the inventory position is reviewed. There are
two main types of review policies discussed in the literature, continuous and
periodic (Axsäter 2006). When utilizing a periodic review, the inventory
position is reviewed on a regular basis, with a predetermined time between
each review. That could for instance mean that one reviews the inventory
position once a week and at every review decides whether to place an order
or not. As previously discussed in section 2.2, the concept of continuous
review is used at the case company, where the inventory position is monitored
continuously.

Whilst the review policy is important to determine how often the inventory
position is set to be reviewed, the ordering policy is necessary to fully un-
derstand when to place the order. The two most common ordering policies
discussed in the literature are often denoted (R,Q) policy and (R,S) policy
(Axsäter 2006). In both cases, R is referred to as the reorder point, i.e.,
a point where once the inventory position falls below, an order is placed.
Instead, the difference is how much to order, where S refers to an order
up to level. Essentially, that means that once the inventory position falls
below the reorder point R, an order is placed so that the inventory position
reaches a level S. As previously mentioned, the case company utilizes an
(R,Q) policy which will therefore be the basis of the model created in this
thesis. As opposed to the order up to level S used in the (R,S) policy, an
(R,Q) policy places an order with the fixed lot size Q whenever the inven-
tory position reaches the reorder point. To fully understand how such an
ordering system works, figure 2 illustrates how an (R,Q) policy works when
applying a continuous review policy.
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Figure 2: A continuous (R,Q) policy

As illustrated in Figure 2, lead time is the period between placing an order
(when the inventory position reaches the reorder point) and its arrival at
the warehouse. Once an order is placed, the inventory position increases
with the lot size, Q, even though the order has not arrived at the ware-
house. Then, the safety stock can be defined as the expected amount of
stock on hand when that order arrives. Aside from the target service level,
the primary consideration is demand during the lead time when determining
safety stocks. Thus, understanding demand is essential for effective inven-
tory management and will be elaborated on in the following section.

3.2 Stochastic demand
As explained in section 3.1, the inventory position does not only consist of
stock on hand, but also considers the outstanding orders and backorders.
In this context, the outstanding orders are important since their arrival is
dependent on a lead time. Since the safety stock is the expected amount
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of stock on hand just before an order arrives, it is therefore important to
consider the demand during this lead time period to prevent running out of
stock. This is done by fitting a suitable demand distribution for the quantity
demanded during the lead time. Given the stochastic nature of demand, the
conventional method involves assuming demand during the lead time adheres
to a certain suitable probability distribution (Mattsson 2007a). Although
this is not the case for all demand distributions, there are two parameters
that describe the demand in this thesis. Those are the mean (µ), which is the
average demanded volume, and the standard deviation (σ), which describes
the variability of the demand. These are defined with equations (1) and (2),
where xt is the demand quantity during time t and N is the number of data
points.

µ = 1
N

N∑
t=1

xt (1)

σ =

√√√√ 1
N

N∑
t=1

(xt − µ) (2)

For instance, if the data is weekly, the mean and standard deviation represent
the average quantity demanded per week and the variability of that quantity
each week. Since demand during the lead time is what is important in
inventory control, these values are adjusted for the lead time and are marked
with an apostrophe, as shown in equations (3) and (4).

µ′ = µ(L) = µL (3)

σ′ = σ(L) = σ
√

L (4)

Further, sales data is often used to measure the demand in practice since the
actual demand is hard to measure. However, it is crucial to acknowledge,
as noted by Axsäter (2006), that sales figures and actual demand are not
synonymous. The distinction lies in the fact that sales data fails to account
for lost sales, which can lead to discrepancies between reported sales and
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true market demand. Although using sales data as a stand-in for demand
often provides a reasonable estimate, potential irregularities should not be
overlooked. To mitigate this fact, the service level can be considered before
the analysis. A low service level implies a significant volume of lost sales,
suggesting that the sales data may not be a fully reliable indicator of de-
mand. However, products from Plant X consistently achieve high service
levels, with an average of 99.8% for the past year, and the sales data is
therefore used as a proxy for the demand.

3.2.1 Demand distributions & distribution fitting
The importance of fitting a suitable demand distribution has previously
been stated. The distribution fitting process is described later in this sec-
tion. Demand in real-world scenarios is discrete, meaning it almost always
is represented by a positive integer. Consequently, employing a discrete de-
mand model is often suitable (Axsäter 2006). However, although demand
is discrete in practice, a continuous demand model serves as a practical ap-
proximation and is commonly used when demand levels are high which is the
case when analyzing the demand of the case company’s products. The mi-
nor discrepancies resulting from the continuous nature of the model can be
considered negligible in this case (Axsäter 2006). Two continuous demand
models that are often used in the context of inventory control are the normal
distribution and the gamma distribution. These are briefly introduced in the
following paragraph.

When managing products with high demand, a discrete process can be ap-
proximated by a continuous normal distribution over an extended time pe-
riod. With a known mean µ′ and standard deviation σ′, a normal distri-
bution can be defined. For normally distributes demand, the probability
density function (PDF) is shown in equation (5). The cumulative distri-
bution function (CDF) represents the probability of the demand size being
equal to or less than x, and is shown in (6). The notation x(L) is used to
describe that the functions represent the demand, x, during the lead time,
L.

13



f(x)x(L) = 1
σ′

√
2π

exp
−1

2

(
x − µ′

σ′

)2
 (5)

F (x)x(L) =
∫ x

−∞
f(x)x(L)dx (6)

However, it’s important to note that one characteristic of the normal dis-
tribution is its allowance for negative demand values, which can result in
inaccurate approximations for small demand levels and for products with a
high coefficient of variation (CV), which is the ratio between the standard
deviation and the mean, σ′/µ′ (Axsäter 2006).

When the CV is high, there is a high probability for negative demand when
using the normal distribution. In these cases, it might be a safer choice to
use the gamma distribution, since it does not allow negative demand sizes.
The gamma distribution has the PDF shown in (7), and the CDF shown in
(8).

g(x)x(L) = ωrxr−1e−ωx

Γ(r) , x ≤ 0 (7)

G(x)x(L) =
∫ x

−∞
g(x)x(L)dx (8)

where Γ(r) represents the gamma function (see (9)) and r and ω are defined
as in (10) and (11).

Γ(r) =
∫ ∞

0
xr−1e−xdx (9)

r =
(

µ′

σ′

)2

(10)

ω = µ′

(σ′)2 (11)
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To offer a graphical comparison of the two continuous functions, distribu-
tion curves for the normal and gamma distributions have been plotted with
identical means and standard deviations. They are presented in figure 3,
where the CV is 0.6, and in Figure 4, where the CV is 0.2. These figures
illustrate how the normal probability density function (PDF) permits neg-
ative demand values when the CV is high (0.6), whereas the gamma PDF
does not. In the case of a CV corresponding to 0.2, the graphs look more
similar.

Figure 3: Normal- and gamma distributions with the same µ and σ with a CV of
0.6.

15



Figure 4: Normal- and gamma distributions with the same µ and σ with a CV of
0.2.

In estimating demand over a specific period, normal and gamma distribution
serve as common choices. A frequently used technique in this process is
conducting a statistical goodness of fit test (e.g. Kolmogorov-Smirnov test),
which is a statistical method that compares historical data to the expected
outcomes of a chosen model, e.g. the normal distribution. It is important
to highlight that this test should ideally be applied to each Stock Keeping
Unit (SKU) individually, though, in reality, applying it to a vast number of
SKUs can be impractical. This is due to the fact that a goodness of fit test
usually require a software or a more advanced computation and in this case,
the case company might want to replicate the analysis without relying on a
computer based program. Alternatively, a simpler method can be employed
to ascertain the most fitting distribution for a dataset.

In the context of continuous demand, distribution fitting is widely discussed
in the literature. To investigate this, a literature review was conducted us-
ing databases like Scopus, EBSCOhost, and Google Scholar, all accessible
through Lund University. Keywords such as Demand distributions, Distribu-
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tion fitting, and Continuous demand were used to identify relevant articles.

As a result of the literature review, it was concluded that the CV during the
lead time, serves as a benchmark for assessing the feasibility of approximat-
ing demand with a normal distribution. H. S. Lau and H. L. Lau (2003) and
Tyworth and O’Neill (1997) suggest that a CV below 0.5 during the lead
time indicates suitability for normal distribution approximation. However,
it is crucial to note that higher CV values increase the risk of encountering
negative demand figures. For instance, a CV of 0.5 corresponds to a 2.28%
risk of negative demand. H. S. Lau and H. L. Lau (2003) further discusses
that even relatively small CV values (e.g., 0.3) may lead to noticeable er-
rors, with a corresponding 0.04% risk of negative demand. Snyder (1984)
argue that to minimize the risk of negative demand to a negligible level,
the CV value should not exceed 0.2 for the normal distribution to remain
appropriate in demand approximation. When the CV is 0.2, the probability
for negative demand is 2.87 · 10−5%. In this thesis, the strict CV threshold
for normal distribution was applied to the model, due to it leading to a
negligible probability for negative demand.

3.3 Forecasting
Although this thesis does not directly focus on forecasting, the significance
of the concept should not be underestimated. Safety stocks aim to account
for demand uncertainties, which can be quantified using forecast errors. An
accurate forecast closely matching actual sales volumes enables lower safety
stock levels. Forecast errors thus represent demand variability within the
model. Therefore, forecasting methods are briefly introduced, followed by a
description of how forecast errors are measured.

3.3.1 Forecasting methods and demand models
The predominant forecasting method involves analyzing historical data un-
der the assumption that future demand will mirror past patterns to some
extent (Axsäter 2006; Olhager 2013). Statistical methods are then employed
to model this future demand, accommodating factors like trends and sea-
sonality. However, many inventory models default to the simpler constant
model, which posits that future demand will deviate randomly around a
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stable mean, xt (Axsäter 2006). In the constant model, x̂t,l represents the
demand forecast made for a given period t, made in period l and εt repre-
sents the independent stochastic deviation. Consequently, the forecast for
period t can be represented by (12). The model introduces the concept of
lag, denoted by l, which is the time difference between making a forecast
and the actual event. That is, a lag of l means that the forecast is made l
time units prior to the sale that is forecasted.

x̂t,l,constant = xt + εt (12)

The forecast improvement project that the case company has initiated, pre-
sented in section 2.3, applies a model that is also found in the literature,
where Olhager (2013) expands the constant model by adding a seasonal
index for period t, Ft.

The seasonal index for an average period within a year, such as a month or
quarter, is denoted as Ft = 1.0. If the index is, for instance, Ft = 1.2, it
indicates an expected demand increase of 20% compared to the average for
period t due to seasonal factors. Therefore, across T periods in a year, the
cumulative sum of all seasonal indices equates to T . The demand for period
t can then be represented by (13), where the lag remains denoted as l.

x̂t,l,seasonal = xt + Ftt + εt (13)

The concept of seasonal index is used to asses the seasonality of the products
prior to choosing a suitable time period for which the safety stocks are set
(see section 4.1.2), which makes the concept worth presenting.

3.3.2 Forecast errors
In the context of inventory control, estimating the mean of the future de-
mand is not sufficient. As discussed, uncertainties are a big factor when
dealing with inventory control at the case company and to be able to de-
termine a suitable safety stock, it becomes necessary to know the extent of
these uncertainties, i.e., how large the forecast errors tend to be (Axsäter
2006). The various methods for calculating forecast errors can be divided
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into two categories; absolute forecast error and relative forecast error. An
absolute forecast error involves calculations based on the absolute error, et,
which is defined as the difference between the demand for that period and
the forecast for that period (Olhager 2013; Shcherbakov et al. 2013), see
(14):

et = xt − x̂t,l (14)

Further, the most common method in inventory control is to quantify vari-
ation around a mean, by using standard deviation, σ (see equation (2)).
A common assumption is that the forecast errors are normally distributed,
which leads to the standard deviation being estimated using (15) (Axsäter
2006).

σ =
√

π

2 · MAD ≈ 1.25 · MAD (15)

Prior to the advancements in information technology and computational ca-
pabilities, the mean absolute deviation (MAD) was commonly used to repre-
sent variability and is calculated with (16), where n represents the forecast
horizon. Despite the capability to estimate σ with modern technology, many
forecasting systems continue to estimate the standard deviation as per (15)
(Axsäter 2006; Olhager 2013; Shcherbakov et al. 2013), including the IO at
the case company.

MAD = 1
n

n∑
t=1

|et| (16)

Meanwhile, the relative forecast error, pt, is shown in equation (17), which
is essentially the ratio of the absolute error |et| to the actual demand xt

(Shcherbakov et al. 2013). This measure contextualizes the error in relation
to the forecasted quantity, providing a useful metric for evaluating forecast
performance. However, many inventory models rely on the standard devia-
tion to measure variation, which makes relative error metrics less practical
for direct incorporation into these models.
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pt = |et|
xt

(17)

Despite its name, the Mean Absolute Percentage Error (MAPE) is classified
as a relative forecast error in this context as it is a percentage value that is
compared to the demand forecast size. It stands out as the most widely used
measure (Fildes and Goodwin 2007; McCarthy et al. 2006), including at the
case company. MAPE computes the average of the absolute percentages of
pt capturing the error’s proportion relative to actual demand, as indicated
by (18).

MAPE = t = 1
n

n∑
t

100 · |pt| (18)

3.4 Optimization of continuous review (R,Q)-policy
As mentioned, the core aim of inventory control is to balance the service
level achieved against the costs of maintaining inventory, where of safety
stocks serve to maintain a competitive delivery capability (Mattsson 2007b).
Hence, the optimization of these safety stock levels is typically based on some
predefined service level constraint set by the company (Axsäter 2006).

3.4.1 Inventory level distributions and service level constraints
Considering an (R, Q) ordering system, an order is triggered as soon as the
inventory position (IP ) is less than or equal to the reorder point R with the
lot size, Q. Knowing that, the relationship between the reorder point, R,
and the safety stock SS is shown in (19) (Axsäter 2006). It is noteworthy
that this is an approximation that relies on that the reorder point is always
exactly hit in practice.

SS = R − µ′ (19)
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Normally distributed demand
When considering continuous and normally distributed demand, the inven-
tory level’s CDF, for all values of x, can be found using (20), where IL
represents the inventory level, and P (IL ≤ x) is the probability that the
inventory level falls below x (Axsäter 2006).

P (IL ≤ x) = σ′

Q

[
G

(
R − x − µ′

σ′

)
− G

(
R + Q − x − µ′

σ′

)]
(20)

where G is the loss function, obtained by the density and cumulative distri-
bution functions, φ and Φ, of the standard normal distribution (see (21).

G(x) = φ(x) − x(1 − Φ(x)) (21)

The probability of not being able to satisfy the demand with the inventory
on hand (S2) can then be expressed as 1 − P (IL ≤ 0), as seen in (22)
(Axsäter 2006). Equation (22) can then be used to obtain the reorder point,
and the safety stock is then computed with equation (19).

S2 = 1 − P (IL ≤ 0) = 1 − σ′

Q

[
G

(
R − µ′

σ′

)
− G

(
R + Q − µ′

σ′

)]
(22)

Axsäter (2006) also notes that equation (22) is often approximated using
equation (23), as this approximation generally performs well for large values
of Q. Therefore, equation (23) is useful for manual calculations.

S2 ≈ 1 − σ′

Q

[
G

(
R − µ′

σ′

)]
(23)

Gamma distributed demand
For products with gamma distributed demands, calculating safety stocks
involves similar principles but with specific methods for assessing the prob-
ability of demand being higher than the reorder point (Burgin and Norman
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1976; Keaton 1995). In the literature, safety stocks are commonly calcu-
lated with a service level defined as cycle service level, S1. However, there
are fewer examples of methods that calculate the fill rate, S2. Still, a method
that utilizes the fill rate is discussed by Mattsson (2007a) and is presented
as an iterative method, employing the gamma density function, g(x), to es-
timate expected backorders, E[IL−] for a given demand size, x, with the
reorder point, R, shown in equation (24).

E[IL−] =
∑

x/x≤R

(x − R)(1 − g(x)) (24)

Mattsson (2007a) describes the allowed backorder quantity, E[IL−]S2 , as the
number of backorders that would lead to a specific fill rate, where the index
S2 represents that the backorders are calculated based on the target fill rate.
This is seen in equation (25), where Q represents the lot size.

E[IL−]S2 = Q(1 − S2) (25)

To determine the optimal reorder point, iterations are conducted over various
possible reorder points using equation (26). This process identifies the most
suitable reorder point. Then, equation (19) is applied to compute the safety
stock. The notation E[IL]− denotes the function that calculates backorders
for each reorder point R. The calculated reorder point represents the reorder
point where the expected backorders come closest to the allowed backorders.

min
∣∣∣E[IL−](R) − E[IL−]S2

∣∣∣ (26)
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4 Analysis

This chapter outlines the analysis process, detailing the groundwork for cus-
tomizing the model based on the distinct characteristics of the available data.

4.1 Data cleaning
One part of the first step in operations research involves gathering rele-
vant data (Hillier and Lieberman 2010). This step was performed during
the data analysis. The initial phase of the data analysis involves filtering
and cleaning the company data to align with the project’s objectives and
boundaries. This step starts with gathering data from the case company’s
planning system and the data that was provided for this thesis dates back
to early 2021. The initial dataset comprised 68 products. Post-cleaning,
36 products remained, with the reduction primarily due to the exclusion of
discontinued items, i.e., items that are no longer included in the product
portfolio. Additionally, three recently introduced products, having been on
the market for about 16 weeks, were identified. Given their short history,
these items presented unique challenges for the analysis, particularly in cal-
culating historical forecast errors and means. Incorporating them would
result in a skewed analysis due to the lack of data points (refer to section
4.3). Due to this, these products were excluded from the analysis.

After identifying the relevant product set, an examination of the data un-
veiled certain inconsistencies, notably weeks missing forecast data points –
meaning that some weeks where represented by a zero for all products. If
these weeks would have been included, the value of the forecast error would
have been misrepresentative. Approximately four weeks per year were af-
fected by this issue. This could be seen as a systematic error since all
products had the value of zero in the forecast for the same weeks. To main-
tain data integrity and reliability, these periods were excluded from both
the demand and forecast datasets.
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4.1.1 Demand distributions
The planning system inputs suggest an assumption that all product demands
follow a normal distribution. However, it is not certain that all the products
can be assumed to be normally distributed. Moreover, it is also not certain
that all products can be approximated by a continuous distribution. To
determine if that is the case, a distribution fitting analysis was performed.

Working with continuous distributions is computationally efficient and build-
ing an inventory model that assume discrete demand distributions is not in
the scope of this thesis. Therefore, the analysis began by understanding
whether the products’ demand distributions could be closely approximated
by a continuous distribution. This assessment involved examining the de-
manded quantities for each product and their CV. The findings indicated
that a continuous distribution model could represent all products’ demands,
barring two exceptions. This result is shown in figure 5, which shows the
CV for each of the 36 products. This decision is based on the criteria that
Axsäter (2006) presents, where a demand can be represented by a contin-
uous distribution if the demand during lead time consistently exceeds 10
units and the CV stays below 0.5. In this case, the demand of all products
consistently exceeds 10 units during lead time. However, the two products
above the continuous CV threshold were removed from the analysis.
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Figure 5: Each product’s CV plotted with the threshold for being able to assume
a continuous demand distribution.

Subsequently, the decision between using a gamma or normal distribution
for modeling demand needed to be addressed. To simplify the process and
enhance its replicability across different warehouses and product lines in
the future, the analysis opted to use the CV as a guiding metric rather
than performing a Kolmogorov-Smirnov test for each SKU. With the strict
guideline of the maximum CV of 0.2 provided by Snyder (1984), which
carries a risk of 2.87 ·10−5% chance of negative demand, the analysis showed
that 12 products could be approximated using a normal distribution while
the remaining 22 should be represented by a gamma distribution. The results
of this analysis, after the exclusion of the two non-continuous products, are
shown in figure 6, where each products’ CV is shown in relation to the
0.2-threshold.
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Figure 6: Each remaining product’s CV plotted with the threshold for being able
to utilize the normal distribution.

4.1.2 Considering seasonality in demand
When assessing seasonality quantitatively, data availability often presents
challenges. In this case, only two complete years of sales data are available,
making it difficult to conduct a robust seasonality analysis with statistical
significance. Given that each month across two years provides only two data
points per product, the analysis is limited in its ability to draw definitive
conclusions about seasonal patterns.

However, discussions with supply planners and others familiar with the prod-
ucts at Plant X have identified that only product 28 is considered seasonal.
This product is closely associated with a Swedish holiday in late summer,
during which it experiences significant increases in sales volumes. To illus-
trate this seasonal effect, the seasonal model described in section 3.3.1 was
used to provide a graphical overview of how sales volumes for this prod-
uct peak during the holiday month. Figure 7 shows the seasonal index,
Ft, for this product alongside several non-seasonal products, highlighting
the distinct seasonal pattern compared to the more uniform indices of the
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non-seasonal items. For example, as seen in figure 7, the seasonal index
for product 23 shows that its sales are approximately 20% higher than its
average in September indicating possible seasonality. However, due to the
data availability, this cannot be confirmed. Furthermore, discussions with
the people that have extensive experience with these products, confirmed
that this product is not considered seasonal.

Given the assumption of stationary demand patterns in this thesis, this
specifically seasonal product was excluded from the broader analysis. This
exclusion ensures that the results for the remaining products, presumed
non-seasonal, are not skewed by the marked seasonality of one outlier. This
approach suggests that the limited dataset does not significantly impact the
analysis outcomes for the non-seasonal products.

Figure 7: A comparison of the seasonality index, Ft, of four different products.
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4.2 Lead times
As mentioned, the lead times were previously interpreted as the cycle time
for the entire product portfolio, i.e., how long it takes to produce all prod-
ucts. However, this classification relied predominantly on general experience
from the production plant. Moreover, the soundness of interpreting the lead
times as a cycle time were questioned at the case company. Therefore, re-
garding lead time, the analysis is divided into two steps. First, it determines
how lead times should be interpreted to most accurately reflect reality. Sec-
ond, it involves extracting and analyzing data to establish values based on
this interpretation.

The clarification of lead times and their conceptual interpretation entailed
informal discussions with representatives from the case company. While
the conventional term for gathering qualitative data is interview, in this
study, the term informal discussions is used. This distinction arises from
the absence of structured interviews with predetermined question lists for
data collection (Höst et al. 2006). In this case, the discussions were particu-
larly held with individuals overseeing operations at the targeted production
plant connected with the investigated warehouse. Initially, the focus was on
defining lead time, particularly in the context of calculating safety stocks.
However, the presence of multiple products on the same production line
posed a challenge for the case company in establishing predefined lead times
for each product, as simultaneous production of all products was imprac-
tical. Furthermore, considering the short production and transportation
duration, wherein specific products were produced within a few hours and
transported to the finished goods warehouse the following day, the discus-
sions shifted towards determining what other factors that have an impact
on the overall lead time.

As discussed, lead times had previously been conceptualized with a cyclic
mindset, executed at a higher level rather than being product-specific. In
this scenario, the determination of lead time for each individual product
emerged as a primary focus, given that safety stock calculations were in-
tended for every product. Through discussions with the case company, it
was concluded that interpreting lead time as the cycle time for each prod-
uct was a logical approach. That is, instead of using the cycle time for
the whole product portfolio, each product’s individual cycle time would be
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used. Consequently, it was mutually agreed that the lead time used in safety
stock calculations should be based on the average time between a product’s
production occasions. The main reason for this decision is the fact that if
the lead time was interpreted only as the actual time it takes to produce a
batch, store it at the plant, and transport that batch to the warehouse, the
queue time will not be accounted for. The queue time represents the time it
takes for a product to wait to be produced and in this case, the queue time
represents the majority of the total lead time, which is showed in figure 8.

In this particular case, there are several factors that influence the queue time.
Firstly, the production adheres to a production plan which is fixed for the
following week. This production plan shows what product that is produced
every day. Furthermore, due to strict hygiene requirements and therefore
long changeover times (the time it takes to switch production from one
product to another), only one product per production line is produced each
day. That means that the entire cycle, including the queue time, becomes
the time that needs to be accounted for when making decisions about how
much cycle and safety stock are needed. In practice, lead times may vary
depending on the queue time but in this thesis, constant lead times are
assumed.

Figure 8: A representation of how the cycle time can be divided into Queue-,
production, and inventory & transportation time.

Based on the aforementioned discussion, an approach to calculate new lead
time values of the respective products was formed. In this case, data from
the planning system was collected for the analysis. The collected data rep-
resented the date for every order that was produced for each product. How-
ever, the data that was collected needed cleaning. This was mainly due to
to fact that there was a ramp up in production frequency from 2021 until
the summer of 2023 because a reconstruction of Plant X was scheduled and
the plant would therefore be closed for a longer time period during the sum-
mer 2023. To cover for this break in production, excessive stock was needed
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and hence, the ramp up in production. Therefore, it was decided that the
production data from this period was excluded from the analysis to ensure
that the data set provided the best possible representation of reality. The
data that was used is therefore from week 32 in 2023. Also, the calculation
took into account the fact that the production plant was closed for the last
three weeks of that particular year.

After data cleaning procedures, the mean duration between production cy-
cles of individual products was computed. The outcomes, along with a
comparison against prevailing values, are presented in table 3. When ana-
lyzing the values, it becomes apparent that certain products display notable
disparities between the lead time values calculated using the new approach
and those that are currently set in the system. One reason for this could be
the fact that there is a considerable variability in the number of data points
across different products in this analysis. This is due to the fact that some
products are produced less frequently than others and thus had a limited
number of data points within the period since the reconstruction. As a re-
sult, their average cycle time might yield less reliable estimates. This source
of error is further discussed in chapter 6.

Notably, it was previously discussed in section 2.2 that the lead times were
set based on the time it would take to produce the whole product portfolio.
However, as seen in table 3, the values of lead times currently set in the
system are not uniform and some values for L2 are larger than for L1, which
does not represent the prior approach. This is due to an unknown system-
related technical issue but since these are the values that the IO uses, these
become the benchmark.

30



Table 3: An overview of the current values of the lead times L1 (weeks) that are
in the system compared to the values calculated with the new approach L2 (weeks)

.

Product L1 L2 Product L1 L2

1 3 4.9 18 3 4.3
2 1.5 6.7 19 10 5.1
3 8 4.4 20 10 4.5
4 5 2.2 21 8 2.6
5 8 6.3 22 5 6.5
6 8 1.2 23 5 6.2
7 5 3.3 24 5 4.0
8 5 4.5 25 3 6.2
9 5 4.1 26 5 3.3

10 5 2.2 27 5 5.3
11 5 2.0 28 8 9.5
12 5 9.7 29 8 5.7
13 5 2.1 30 10 1.8
14 8 2.6 31 8 5.3
15 5 1.9 32 10 2.1
16 5 1.4 33 8 3.4
17 5 0.9

4.3 Demand variability
Demand variability and uncertainty is the primary reason for maintaining
safety stocks, making it a crucial parameter in the presented model. To
determine the variability of the demand, there are two common approaches:

1. Using forecast errors to represent variability, with calculations based
on equations (15) and (16).

2. Calculating demand variability directly from the historical demand
data.

The case company has decided that the first approach will be utilized when
implementing the SAP Inventory Optimizer. The reason for this is that the
inventory plan ahead is based on a demand forecast, and hence, the forecast
error gives an indication to the variability that the safety stock need to
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account for. A possible downside to this is that a low forecast accuracy
naturally leads to higher forecast error and ultimately, higher safety stock
levels. In these cases, the second approach can become more useful, due to
it not being reliant on a high forecast accuracy. However, a downside with
using historical standard deviation to represent demand variability is that
it includes demand peaks that may have been accounted for by the forecast,
potentially leading to a higher variability than necessary.

In relation to the analyzed products, the forecast error method is found to
generate, on average, a 19% higher variability than the standard deviation
obtained by only considering past demand data. The product specific com-
parison is shown in table 4. This concludes that, in order to accurately use
the forecast error, as intended at the case company, the forecast needs to
be improved. To provide an overview of how this decision affects the final
safety stock level, a comparison is presented in section 5.6.1.

Table 4: A comparison between using the forecast error, σMAD, and using the
standard deviation of historical demand, σdemand.

Product σMAD σdemand Product σMAD σdemand

1 115 130 18 94 78
2 71 57 19 40 46
3 91 78 20 69 55
4 752 740 21 181 147
5 41 30 22 127 90
6 497 381 23 102 58
7 723 607 24 706 646
8 459 385 25 475 337
9 355 289 26 609 454

10 1038 826 27 285 291
11 856 748 28 324 299
12 229 179 29 480 330
13 450 397 30 387 275
14 959 875 31 152 137
15 1400 1216 32 318 264
16 1684 1424 33 172 154
17 1915 1570
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4.4 Mean demand
Although the purpose of safety stocks is to cover for demand variability, the
demand volume during the lead time is an integral part when calculating
reorder points and should therefore be discussed. In this context, two ap-
proaches can be utilized. The first approach is to base the mean demand
during the lead time on historical data, essentially operating without con-
sidering forecast data. This approach may be adopted for reasons such as
low forecast accuracy or the absence of forecasts. For this method to be
relevant, historical demand must be stationary and not expected to change
in the future. However, demand volumes have dropped during the past two
years. This is due to the food industry being sensitive to macro-economic
factors such as rising inflation rates. This indicates that using historical
data alone can lead to inaccuracies. Specifically, if demand decreases in the
future, reorder points calculated on past data may be too high. For ex-
ample when considering the drop in demand volumes during the last year,
a reorder point set for the year of 2023 will result in reorder points that
are unnecessarily high if this sales volume drop is not anticipated by the
forecast. Conversely, if demand increases they might be too low.

Given that the average MAPE has been relatively low at 13.1% over the past
year at Plant X and considering the recent decrease in demand volumes.
Calculating the mean of the forecasted demand instead of using historical
data was therefore considered a reasonable approach.

In this thesis, the reorder point will remain fixed for a certain time period
ahead. Considering the fact that the model assumes stationary demand,
the demand during the fixed time period must be stationary. This period
will be referred to as the span for the reorder point calculation. Several
choices can be made regarding this span. From a demand perspective, the
reorder point relies on two primary demand parameters: variability and
volume. While the safety stock is influenced solely by demand variability,
the reorder point also depends on the mean demand during the lead time
(µ′), as outlined in equation (19). The selection of span affects these reorder
points because the mean demand might change when the span changes and
thus, the span becomes an important consideration. To decide a suitable
span, it is important to determine if there is any nonstationarity during this
span. Since it has been established that there are no seasonal products in the
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analysis, the reorder points set are set for the remainder of the year of 2024
in this thesis. However, the choice of span remains important even without
seasonal products, since it becomes harder to be accurate in forecasting as
the span increases.
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5 Implementation and results

This chapter firstly presents the final model. It begins with a description of
how the model is created based on the previous chapters, which is followed
by a description of how the model works. Thirdly, the results from the model
calculations are presented along with results from testing the performance of
the model. Lastly, results on how the different values of the input parameters
affect the final safety stock is presented.

5.1 The model
According to Hillier and Lieberman (2010), the second step in operations re-
search involves formulating a mathematical model that represents the prob-
lem at hand. In this case, the mathematical models that represents the
problem are (23) for normally distributed products, and (24)–(26) for gamma
distributed products.

The third step in operations research involves developing a computer-based
procedure to derive solutions from the model (Hillier and Lieberman 2010)
The final model is presented as an Microsoft Excel-file consisting of mul-
tiple spreadsheets. In this case, the model differentiates between products
following a gamma distribution and those following a normal distribution.
The primary interface sheet displays a list of products with their respective
names and numbers, allowing manual inputs such as product ID and target
service level adjustments. Appendix A offers an overview of the interface
sheet. Another sheet contains relevant data for each product necessary for
safety stock calculations, including:

1. Lead time

2. Lot size

3. Mean forecasted demand

35



4. Forecast error

5. Statistical distribution

Upon entering a product number, all relevant parameter values are fetched
from the data sheet, presenting them in a user-friendly table format (see
figure 9).

Figure 9: Relevant product data shown to the user

As seen in the figure, the lead time and the lot size for the product is
presented. The mean demand and the forecast error during lead time is
automatically calculated based on the product data. Lastly, the statistical
distribution is presented. This is based on the CV mentioned above and
has the threshold of 0.2 for normal distribution. Based on these values and
whether the product is normally or gamma distributed, the safety stock is
calculated in number of units and then translated to weeks and days using
the average weekly demand volumes. The results are presented to the user
as seen in figure 10.
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Figure 10: An example of how the results are presented to the user

5.2 New safety stocks with a TSL of 98%
The model implemented recalculated fixed safety stock levels for all 33 prod-
ucts for the remainder of 2024 based on a TSL of 98%. There are a few
reasons to why the span is set as the remainder of 2024 and why the safety
stocks are fixed during that time period. Firstly, a longer forecast period
tends to decrease accuracy, contributing to potential errors. Additionally,
the forecasts for 2025 were not sufficiently updated, prompting a decision to
confine the analysis within 2024. Setting fixed safety stock levels assumes
a stationary system, meaning that the demand’s mean and standard devi-
ation are fixed for the entire period. Additionally, it has been concluded
that the influence of seasonality is minimal, apart from one product which
was removed from the analysis. Therefore, it was decided that setting fixed
safety stocks for the remainder of 2024 was reasonable without significant
risk of error. The results show that the average days of safety stock can be
reduced by 47% compared to the current safety stock level of 21 days, as
illustrated in Figure 11. In terms of units, this resembles a reduction from
approximately 101 000 units to 37 000 units, a decrease of 64 000 units.
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Figure 11: New safety stock levels compared to the old safety stock levels.

The results show significant difference in safety stock levels across different
products, primarily due to differences in lead times and forecast accuracy.
Products with longer lead times typically require more safety stocks, while
those with shorter lead times need less. Additionally, products with higher
forecast accuracy, which are easier to predict, necessitate lower safety stocks.
Conversely, those with lower forecast accuracy require higher safety stocks
to compensate for the increased uncertainty in their demand forecasting.

Examining Figure 11, two outliers, product 12 and product 25, are high-
lighted. For these products, a reduction in safety stock is not feasible; in-
stead, their safety stocks need to be increased from the current level of 21
days. Product 12, as shown in table 3, has the highest lead time among the
analyzed products at 9.7 weeks. While this contributes to its high safety
stock levels, a comparison with product 28, which has a nearly equivalent
lead time of 9.5 weeks yet significantly lower safety stock, suggests that lead
time alone does not drive the need for higher safety stocks. The primary
distinction lies in their forecast accuracy. Product 12 has a MAPE of 42%,
significantly higher than product 28’s MAPE of 20%.

38



Additionally, consider product 25, which, although not having the longest
lead time at 6.2 weeks, has a safety stock level comparable to that of product
12. This similarity is attributed to its low forecast accuracy, with a MAPE
of 46% over the past year. In contrast, products 6 and 21, which have
much lower safety stocks, have impressive MAPE values of 17% and 15%,
respectively. This pattern highlights the important role of forecast accuracy
in determining safety stock levels, as safety stocks primarily serve to buffer
against demand uncertainties stemming from forecast errors.

5.2.1 Validating the model
The operations research framework outlined by Hillier and Lieberman (2010)
is integral to this thesis, specifically the fourth step which entails testing the
model using historical data to ensure it adequately addresses the intended
problem. This validation step is crucial for the case company because the re-
sults suggest a significant reduction in safety stocks compared to prior levels,
potentially leading to skepticism or hesitation if not properly validated.

To validate the model, three six-month periods were examined: the second
half of 2022, the first half of 2023, and the second half of 2023. The valida-
tion required specific historical data, particularly the forecast data for the
subsequent period, which was extracted from SAP. Since the safety stock
calculation is forecast-dependent, a new safety stock calculation was con-
ducted for each period, with the same TSL of 98% for all products, but with
a different forecast for each testing period. This means that the forecast
data is different for each period, leading to a different mean demand during
lead time, and therefore a new reorder point. Additionally, since the forecast
error calculation is based on one year prior to the beginning of the period,
these will also differ across the periods, impacting the safety stocks. The
performance was then assessed using actual sales data to determine how the
recalculated safety stocks would have influenced service levels over these six-
month spans. The tests yielded average achieved fill rates of 98.95%, 98.17%,
and 98.67% for the three respective six-month periods, with product-specific
results detailed in figures 12, 13, and 14.
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Figure 12: The results of testing the model on the second half of 2022.

Figure 13: The results of testing the model on the first half of 2023.
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Figure 14: The results of testing the model on the second half of 2023.

The tests demonstrate that the model calculations generally achieve the
target fill rates for all periods. However, products 4, 19, 24, 25, and 27 all
recorded fill rates below 95% for at least one of the tested periods. These
deviations are attributed to forecast errors being higher than expected. The
model utilizes past forecast errors as a proxy for anticipated errors in upcom-
ing periods; however, this assumption can prove inaccurate, affecting the fill
rates. This challenge highlights the risks associated with managing demand
uncertainties in inventory control. When dealing with multiple products, it
is likely that stockouts will occur for some items, reflecting the unpredictable
nature of demand and the limitations of forecasting models.

5.2.2 The safety stocks’ sensitivity to the TSL
Given that safety stock levels are optimized with a target service level con-
straint, and this constraint is a manual input into the model, analyzing how
different service level constraints affect the output is relevant. Therefore,
this analysis provides insight into how sensitive the safety stock is to the
choice of TSL. Also, as outlined in 1.1, there exists a trade-off between the
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target service level and inventory levels, which frequently presents strategic
dilemmas for companies. Therefore, seeing how the SL constraints affect the
results can become a valuable insight for the company. Firstly, a comparison
between safety stock levels with a TSL of 97% and 98% was made and is
shown in figure 15. Further, an illustration of how a TSL of 99% compares
to the base of 98% is provided in figure 16.

Figure 15: An overview of the safety stock levels calculated with service levels
97% and 98%.
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Figure 16: An overview of the safety stock levels calculated with service levels
98% and 99%.

When it comes to implementing a uniform TSL of 97% instead of 98% results
in a 13% reduction in safety stock on average. Using a TSL of 99% leads to
an 18% increase compared to a TSL of 98%.

However, as illustrated in Figure 15, the impact of lowering the TSL varies
significantly across different products. For instance, the differences between
the outcomes for products 18 and 19 under the two scenarios are notably
distinct. This variation can be attributed to the model’s approach of each
product having a unique probability of no stockout (1−P (IL ≤ 0)). The fill
rate, S2, is the same as the the probability for positive stock when it comes to
continuous demand distributions and can therefore be defined as 1−P (IL ≤
0) (Axsäter 2006). Since each product’s P (IL ≤ 0) is distinct and not linear,
the effects of changing the TSL manifest differently across products, leading
to varying impacts on safety stock levels. Table 5 showcases the results of
the comparison between the different target service levels.
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Table 5: The average safety stock level calculated with three different target
service levels

Target service level Average safety stock (days)
97% 9.61
98% 11.07
99% 13.11

5.3 New safety stocks with segmented TSL
As discussed in section 2.1, products are segmented based on the contribu-
tion margin and as a result, each product group, A, B, and C, is assigned
a target service level of 96%, 97%, and 98.5%, respectively (see table 2).
Due to the fact that safety stock is currently not determined using a service
level constraint, product segmentation has not been utilized in setting these
levels. The case company is now interested in exploring whether this seg-
mentation should be incorporated into the IO rather than utilizing a uniform
target service level of 98% for each product and what the final safety stock
level would be compared to using a uniform TSL. Therefore, new safety
stock levels were calculated based on this segmentation as a request from
the case company. That is, each product’s target service level is based on
their respective segmentation group in the ABC segmentation. The results
are presented in figure 17.
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Figure 17: Safety stock values calculated with a TSL based on a
ABC-segmentation compared with safety stocks calculated with an overall TSL of

98%

As the result shows, every product showcases different values compared to
the initial calculation which is expected since the TSL constraint is different
in the two cases. Also, it is not surprising to see that some products display
a larger difference compared to the previous result due to the fact that the
B and C products have a TSL of 97% and 96% respectively. On average, the
safety stock was 9.5% lower when utilizing the segmentation as opposed to
applying the same TSL on every product. Since some of the products have a
TSL of 97% and 96%, it is interesting to see whether the safety stock levels
that are based on the segmentation are high enough to achieve the average
service level goal of 98% across all products. This will be evaluated in the
following section.

5.3.1 Validating the model
The model was tested using the same approach as described before, but using
product-specific TSL based on the company ABC-segmentation. Although
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it is evident that these safety stocks result in a slightly lower achieved service
level compared to using an overall TSL of 98% for all products, all periods
resulted in an overall achieved service level above the target of 98%. Figure
18 shows how the achieved service levels for each segments differ across the
three periods.

Figure 18: The resulting achieved service levels for each product segment for all
three six-month periods.

The results show that all six-month periods achieved an average service level
above the target of 98%. As seen in figure 18, the achieved service levels for
mainly products in the C-category are significantly higher than their target
of 96%, particularly in the first two time periods. The overachievement
in the C-segment has to do with the products’ forecast errors being lower
than anticipated on average, leading to higher service levels than planned
for. Based on this analysis, the segmentation could be seen as a reasonable
option to set the target service levels.
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5.4 New safety stocks with safety stock thresholds
The case company requested the evaluation of two additional scenarios for
safety stock calculations: one scenario with a minimum safety stock of one
week for all products, and another with a two-week minimum. This request
was made for several reasons. Firstly, the company operates on weekly plan-
ning cycles, and safety stocks that deviate significantly from 7 or 14 days
could complicate supply planning. Secondly, the model is intended primarily
as a benchmark tool for the company, useful for assessing the IO’s outputs
and providing a general overview of which products might have high poten-
tial for safety stock reductions. Thirdly, the model does not incorporate all
potential variables, such as longer maintenance stops or other factory clos-
ings, which will be discussed later in section 6. Finally, implementing safety
stock reductions is a gradual process that requires careful planning and time,
often extending over several months, making the incremental weekly step
changes an alternative for implementation (Zanakis et al. 1980). The results
for the scenario with a one-week minimum enables a safety stock reduction
of 43%. This is shown in figure 19 and resembles a reduction approximately
of 57 000 units in safety stocks on average.
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Figure 19: New safety stock levels compared to old safety stock levels when the
minimum safety stock is set to 7 days.

The outcomes of the minimum two-week scenario are depicted in Figure 20,
resulting in a reduction of 25% in days and approximately 33 000 units on
average. These results, under conditions of minimum safety stock, highlight
the excessive levels of current stock holdings, thereby illustrating that there
is significant potential for stock reductions even when adopting a cautious
approach to implementing changes.
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Figure 20: New safety stock levels compared to old safety stock levels when the
minimum safety stock is set to 14 days.

5.5 Summary of new safety stocks and validation results
To summarize the results, it is evident that there is potential to reduce the
safety stock levels at the case company. Different approaches have been
tested, where every approach results in a lower average safety stock com-
pared to the current levels at the case company. An overview of the new
average safety stock levels is presented in table 6.
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Table 6: A summary of the resulting safety stocks based on chosen approach

Approach Average days of
safety stock (days)

Current company solution 21.00
Uniform TSL of 97% 9.61
Uniform TSL of 98% 11.07
Uniform TSL of 99% 13.11
TSL based on ABC segmentation 10.06
Min. 7 days of safety stock with a uniform TSL 12.00
Min. 14 days of safety stock with a uniform TSL 15.86

An important part of the result analysis was to determine the performance
of the model. The fact that reducing safety stock is a sensitive process has
previously been discussed. Therefore, it is important to demonstrate that
the model works and that the new safety stock values are reasonable. The
results of testing the model showcase that the model provides reasonable
values of the safety stock that in turn are enough to achieve the overall
average service level goal of 98% that the case company has agreed with
its customers, even though some products showcase lower achieved service
levels.

Table 7: A summary of the achieved fill rates for the tested time periods based
on applied approach

Period
Average achieved fill
rate using a uniform
TSL of 98%

Average achieved fill
rate using a TSL based
on ABC segmentation

Second half of 2022 98.95% 98.40%
First half of 2023 98.17% 98.02%
Second half of 2023 98.67% 98.37%

5.6 The impact of the input parameters
The case company is interested in recalculating safety stocks and comparing
these new calculations with the outputs from the IO. While the model facil-
itates this comparison, it also serves as a tool for gaining insights into how
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various factors influence safety stock levels. Currently, there is a limited un-
derstanding of the specific contributions of different factors to safety stocks.
Therefore, further analyses and discussions exploring various scenarios and
their impacts on the model’s output are presented below.

5.6.1 Using MAD vs historical demand standard deviation
Recalling the discussion in 4.3, two different approaches could be used in
regards to demand variability. As mentioned above, the forecast error was
ultimately used as the variability parameter. However, it was noted that
there was a significant difference in the average variability when comparing
the standard deviation based on the forecast error and the historical demand
standard deviation. Since the variability significantly impacts the safety
stock calculations, the two different scenarios where tested to provide an
overview to what extent it actually impacts the final results. In figure 21, an
illustration of the result comparison between using forecast error or standard
deviation is presented.

Figure 21: An overview of the safety stock levels when using forecast error and
standard deviation as a metric for variablitiy
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As demonstrated in the figure, the variability is generally higher when us-
ing forecast errors compared to historical standard deviation. On average,
the variability using forecast errors is 19% higher, resulting in an average
increase in safety stock of 21%. This result indicates the need for improve-
ments in the forecast, since it accounts for a higher variability than necessary.
Notable examples of products that exhibit significant differences are prod-
ucts 5 and 23. For product 5, the variability parameter is 38% higher when
using forecast errors, leading to a safety stock that is 94% higher than what
would be calculated using standard deviation. Similarly, for product 23, the
variability parameter is 74% higher with forecast errors, resulting in safety
stocks more than doubling, with an increase of 126%. These examples high-
light the important role of the demand variability parameter in the model, as
it is elastic and significantly influences the output. Moreover, the differences
in safety stock levels for these products raise concerns regarding the accu-
racy and quality of the forecasting process. The forecasts for these products
appear to account for an excessively high level of variability, consequently
leading to inflated safety stocks.

5.6.2 Impact of lead times
The discourse regarding lead times and how to interpret them resulted in
a new approach to calculate the values for them. This approach is used in
the model as standard values for the lead time. Since the mean and the
standard deviation of demand are directly impacted by the lead time in the
model, the safety stock is ultimately affected as well. As the IO takes on
the current system values of lead times, L1, a comparison between how the
resulting safety stocks differ between using L1 and L2 and shown in figure
22.
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Figure 22: A comparison of safety stock levels the value of lead time is calculated
with the new approach compared to old values of lead time.

When the values in table 3 are compared with figure 22, a clear pattern
emerges: reductions in lead times lead to decreases in safety stock levels.
This fact is not surprising, since a longer lead time will translate to a longer
time where stockouts can occur and thereby a higher probability of stockouts
during the lead time. For instance, product 20 experiences a 55% reduction
in lead time, which correlates with a 49% reduction in safety stock. Fur-
thermore, the new lead times are, on average, 30% shorter than the old lead
times across all products. However, the corresponding safety stocks have
only decreased by 23% when the new lead times are applied. This discrep-
ancy indicates that while lead time reductions significantly impact safety
stock requirements, their effect is less elastic compared to the forecast error
parameter discussed earlier.

5.6.3 Impact of lot sizes
As previously noted, the value of the lot size, Q, is currently non-adjustable
in the Inventory Optimizer as the IO defaults to using the minimum lot size
specified in the planning system. Therefore, the minimum lot size, Qmin,
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has been used as the standard value for the lot size in the model. However,
there has been some discussion about whether this limitation significantly
affects safety stock levels, making the case company wondering whether SAP
can offer a solution to modify this setting. An alternative approach under
consideration at the case company is to use the average of achieved historical
lot sizes for each product as the lot size input for the IO. This method might
offer a more realistic representation since it reflects actual ordering behavior
rather than a potentially arbitrary minimum set in the system. To calculate
the average lot size, historical data of the lot sizes for each product were
collected and the average of these were calculated. To evaluate the impact
that these two different approaches have on the safety stocks, an analysis was
conducted. Table 8 presents the lot sizes for all products involved in this
analysis, highlighting substantial differences between the two approaches.
The results of the comparison, which assess how using a historical average
versus the minimum lot size affects safety stock requirements, are presented
in Figure 23.

Table 8: A comparison of each product’s minimum lot size and average lot size.

Product Qmin Qavg Product Qmin Qavg

1 2010 2339 18 120 536
2 618 1838 19 120 365
3 618 2128 20 120 536
4 3216 4764 21 618 2613
5 166 620 22 618 2472
6 892 2776 23 672 1902
7 2920 4709 24 3216 6131
8 2190 4269 25 3832 4623
9 2190 3249 26 3216 5452

10 2920 5183 27 3795 4213
11 2920 4527 28 3186 6187
12 2190 3088 29 3186 6104
13 2280 4032 30 606 2736
14 3216 5948 31 606 2509
15 3216 5238 32 606 2818
16 3216 6160 33 606 2509
17 3216 4670
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Figure 23: A comparison of safety stock levels the value of lead time is calculated
with the new approach compared to old values of lead time.

A notable observation in this analysis is that safety stock levels are generally
lower when calculated using the average lot size, showing a 21% decrease on
average across products compared to calculations based on minimum lot
sizes. This suggests that lot size significantly influences safety stock levels,
a factor that the case company should consider. However, it is important to
note the considerable differences in lot sizes between Qmin and Qavg shown
in table 8. Utilizing average lot sizes results in lot sizes that are, on aver-
age, 82% larger than the minimum lot sizes. This indicates that while lot
sizes impact safety stock levels, the magnitude of the effect varies with the
differences in Q values.

Intuitively, the influence of lot size on safety stocks may seem minimal when
considering the inventory level fluctuations over a brief period, as illustrated
in figure 2. Initially, the size and timing of the order appear to be inde-
pendent factors. However, over an extended period, Q demonstrably affects
safety stock levels. Increasing Q reduces the frequency of orders, leading
to fewer ordering cycles. An ordering cycle is the period during which cy-
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cle stock is held to satisfy demand, and safety stock is added to the cycle
stock as a buffer against demand uncertainties. With fewer stock cycles
over a longer duration, the likelihood of stockouts decreases, allowing for
reduced safety stock during such periods (Mattsson 2007a; Natarajan and
Goyal 1994; Korponai et al. 2017).
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6 Critical discussion

It’s now crucial to reflect on the approach and results with a critical perspec-
tive. Several assumptions were made throughout the project, and practical
issues raised by the case company were not fully considered. The following
chapter addresses these factors. The discussion will be framed from the per-
spective of research quality, emphasizing reliability and validity, presented
by Höst et al. (2006). Reliability concerns the consistency of a measure, or
the ability to reproduce results under the same conditions. Validity, on the
other hand, is the accuracy of a measure, indicating whether the results truly
represent what they are intended to measure.

6.1 The accuracy of the lead time approach
The first aspect to consider is the approach used to interpret lead times and
establish lead time values. When it comes to reliability, which is the con-
sistency of measure, data from the planning system was extracted manually
to ensure consistent collection. However, as noted in section 3, a production
ramp-up occurred prior to the summer of 2023. Including this data would
have compromised reliability because the production frequencies would not
accurately represent current conditions. Thus, data points from before the
summer of 2023 were excluded, reducing the dataset and impacting validity,
which is the accuracy of measure. This trade-off between reliability and
validity was managed by ensuring that all products had undergone enough
production cycles to provide representative results. Additionally, as new
data points emerge each week, the validity will improve over time. If the
study were conducted in a year, the validity would likely be higher due to
the accumulation of new data.

Another factor to discuss from a validity perspective is the precision of the
lead time definition. Lead time refers to the interval between when an order
is placed and when it is stocked. Quantifying this is challenging due to
limited knowledge of the exact ordering time, as orders are often managed
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by the supply planning system according to a production plan, and capacity
constraints often lead to extended replenishment times, primarily due to
queuing. The exact queuing time is difficult to determine without a cyclical
approach because the order time is not fully known.

The chosen approach prioritized time efficiency and data availability. An
alternative would be a detailed case study, which could have delved into
product-specific lead times by accounting for technical system functions and
planning policies. However, after informal discussions with production plan-
ners, it was agreed that assuming cyclical planning would yield a ”good
enough” lead time estimate. This approach enabled the use of quantitative
system data rather than relying on qualitative interviews and process anal-
ysis, simplifying the analysis. Additionally, a qualitative approach would
have required higher research quality standards, as it could lead to results
influenced by interpretation rather than concrete system data, further com-
plicating validity.

6.2 Lot sizes and real-world production factors
As mentioned, the IO currently uses the minimum lot size in its safety
stock calculations, and since the main goal of the model presented in this
thesis is to serve as a benchmark to the IO, the minimum lot size was
utilized to optimize safety stocks. However, as demonstrated, the impact
on the output is influenced by the lot size, which makes its use noteworthy.
The adoption of the minimum lot size in safety stock calculation has its
drawbacks since it may not accurately reflect real-world conditions. The
results from calculating a more representative lot size, i.e., using average lot
sizes, revealed significant differences. This discrepancy could suggest that
using the minimum lot size to calculate safety stock in this thesis might be
viewed as a questionable decision. Nonetheless, this decision was influenced
by the current limitations of the IO.

Furthermore, the method for determining average lot sizes involved data
collection from the planning system, with data prior to the summer of 2023
excluded to ensure reliability. Like the approach for lead times, incorpo-
rating real-world production factors, such as the annual closure of Plant X
in July, requires adjustments. This closure requires an increase in safety

58



stock levels to offset the absence of production during that period. While
this situation could affect the reliability of data collection due to potential
drastic production ramp-ups, discussions with supply planners at the case
company indicated that the ramp-up is gradual, with production volumes
increasing steadily over a long period before the closing. Consequently, the
risk of compromising data reliability was considered low, and this factor was
not included in the data collection. However, it is important for users to be
aware that the model does not accommodate for this period.

6.3 Limitations of the demand- and forecast data
An essential aspect to address is the demand data. The primary issue is that
the model does not account for promotions, which may affect its validity.
During data analysis, weekly sales data was extracted from SAP Analytics.
This data did not specify whether it was from a promotional period or
linked to a specific campaign, potentially increasing perceived variability.
While promotions are a part of reality and should generally be considered
in modeling, the primary issue here is that the case company often knows
about promotions in advance and adjusts supply plans accordingly. The
model, however, assumes promotions do not exist, limiting its ability to
anticipate these fluctuations.

Another implication of excluding promotions is the discrepancy between ac-
tual and forecasted sales data. During the new project managed by the
demand planning department, a base forecast is established, where histori-
cal data is cleaned to remove the effects of past promotions. The forecast
quantity is then adjusted based on a seasonal index (see equation (13)). Al-
though earlier forecasts were not created using this exact method, similar
data cleaning practices were used, potentially creating a gap between actual
and forecast data, leading to an overestimation of forecast errors. Despite
this potential validity problem, consistent data use in both setting safety
stocks and validating the model allows the results to remain useful for the
intended purpose. The model aims to act as a benchmark and highlight
areas for reducing stock levels, so this overestimation is not seen as a critical
issue.
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6.4 Discussing the data in general
Another noteworthy aspect is the limited data availability, as the data pro-
vided by the case company only dates back to early 2021. This issue is partly
discussed in section 4, where e.g. nonstationary demand volumes during the
data period are noted. For instance, in the case of the one seasonal product
discussed in section 4.1.2, it is not statistically proven due to the analysis
being based on only two years. It might merely be coincidental that the vol-
ume rises during the same month two years in a row. However, as a result
of discussions with experienced supply planners at the case company, it was
qualitatively confirmed that this is indeed a seasonal product because it is
strongly linked to a Swedish holiday.

The validity problem that might arise with the limited data availability
cannot be completely resolved. However, section 4 outlines how the data
analysis process considered this limitation when drawing conclusions, ensur-
ing that the model’s output is not overly reliant on data availability, though
this remains a factor worth discussing.

In conclusion, achieving the highest possible research quality has consis-
tently been a primary goal, aligned with the problem-solving approach. In
operational research, focusing on the problem may sometimes compromise
research quality due to prioritizing solutions. However, to ensure consis-
tency and replicability when implementing this solution in additional pro-
duction plants within the case company, research quality remained a key
factor throughout the project.
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7 Conclusions & future work
Reflecting on the thesis’s purpose, a model has been developed to calcu-
late safety stock levels for products manufactured at Plant X and stored at
Warehouse Y. The model aims to replicate the inventory control processes
of the case company as accurately as possible. The results demonstrate sig-
nificant potential for reducing safety stock levels, even when considering a
gradual reduction process as discussed in Section 5.2. The new safety stock
levels represent the optimal level with respect to the TSL of 98%. However,
a more cautious approach, which is setting minimum safety stock thresholds
14 days, could still lead to a 25% reduction in total average safety stock
levels compared to the current safety stock levels at the case company. This
conclusion offers the case company a broader perspective and could be used
as a three-step approach for reaching the optimal level in the long term. Ad-
ditionally, the results provide insight into products with high potential for
significant safety stock level reductions and those that require more careful
consideration.

Beyond optimizing safety stock levels, the goal was to use the model as
a benchmark for the IO. As demonstrated when validating the model, the
model yields reasonable results, further solidifying its value as a benchmark
option. It’s crucial to remember the critical aspects of the model as discussed
in Section 6. Unlike the IO, which calculates safety stock levels weekly,
resulting in potential fluctuations, this model calculates a fixed safety stock
level. While this may occasionally lead to safety stock levels being slightly
too high or too low, the case company could still use the model as a tool for
benchmarking the IO’s performance in the future.

The thesis also delves into various input parameters, with a particular focus
on lead time. Extensive discussions throughout the thesis have led to an ap-
proach for setting lead time values, despite the limitations such as a scarcity
of data points. Recalculating lead times with more data points in the fu-
ture can yield more accurate values, as discussed in Section 6. Furthermore,
the approach was created with the objective to be replicated on different
production plants. When looking at lead time as per 8, one could replicate
the approach on a different production plant even though conditions like
production lead time might be different compared to this case.
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Lastly, while parameters like lot size, target service level, and variability
have not undergone as thorough analysis as lead time, the analysis presented
in this thesis provides valuable insights for future discussions and decision-
making within the case company. It can act as a guide for prioritizing
parameters or conducting further careful analysis.

7.1 Future work
While this thesis concentrated on Warehouse Y and Plant X, the model and
approach presented here can be expanded to include products from other
plants and warehouses at the case company. Although products at other
warehouses might be different compared to the products analyzed in this
thesis, the approach has been designed to be applicable company-wide if
required. Therefore, this thesis can serve as a guide for creating similar
models tailored to specific plants or warehouses. As this thesis focuses only
on products that fit continuous demand distributions, the model may not be
suitable for discrete demand distributions. After successful implementation
of the IO, further research should address modeling products that cannot be
approximated with continuous demand distributions to systematically cal-
culate safety stocks across all company products. Lastly, due to the primary
goal of this study being to develop a model that serves as a benchmark for
the IO during its implementation, future work should focus on using this
model and the findings to compare and test against the IO’s output.
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