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Abstract

For range, velocity and angle measurements, radar is a common technique to use,
be it in the automotive industry, defense industry, or for medical purposes. Radars
can achieve accurate measurements while also being unaffected by weather condi-
tions such as rain, fog, or backlight. In many use cases, it might be necessary to
use several radar units, which in turn allows for the possibility of causing mutual
coherent interference. To avoid this interference, time division multiplexing can
be utilized, which degrades the rate of the Coherent Processing Intervals (CPIs).
Another possible solution could be to shorten the CPIs to avoid interference while
preserving the CPI rate, but this would worsen the velocity resolution. In this
work, sparse CPIs that can be transmitted simultaneously without interfering
have been designed. This allows for simultaneous transmission without decreasing
the CPI rate or degrading the velocity resolution. To preserve as much as possible
of the radar units’ measurement qualities, finding these sparse CPIs were posed as
an optimization problem where the spectral properties of the CPIs were also taken
into account. To solve this non-linear and combinatorial optimization problem the
probabilistic algorithm Simulated Annealing was used. Naive CPIs which would
not cause interference were used to compare with the CPIs resulting from the opti-
mization. The algorithm successfully finds CPIs that would not cause interference
and possess better spectral qualities than the naive CPIs. The optimal CPIs were
also compared with results generated using the coprime method used in the related
field of designing sparse arrays. However, whether the solutions found are truly
optimal is unknown, since the method approximated the optimal solution rather
than finding the exact optimal CPI.

Keywords: Radar, FMCW, Interference, Simulated Annealing, Coexistence, Non-
uniform zero-augmented sampling
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Popular Science Summary

Most people are familiar with bats and how they use echolocation to navigate and
locate prey when hunting, a technique based on emitting high-frequency sounds
and waiting for their reflection. The bat can perceive from what direction the
reflected sound comes by comparing when its right versus left ear hears the sound,
and by measuring the time between making the sound and hearing it again the
bat can estimate the distance to some reflective object. Amazingly using this tech-
nique the bat can hunt prey the size of a mosquito in pitch-black environments.

However, what most people probably not have thought about is how a bat can
make out the difference between a reflected sound emitted by itself, and a sound
emitted by another bat.

Many range and location measuring techniques such as sonar, radar, and LiDAR
work similarly, by transmitting some signal and waiting for its return. This means
that, as in the case of this thesis, a radar will also face the same challenge of
differing between a reflection and receiving the signal emitted from another radar
transmitting the same signal. Both bats and radars can make out the difference
by using slightly different frequencies and paces of emitting the signals. However,
varying the transmitted signal in the radar case is not always a possible option.
Another way of handling the problem, which is to make the bats or radars talk one
at a time. In the radar case this means that the units takes turns of transmitting
their signals. This means that some information will be lost when the radars are
silent, and how much information is lost is governed by the order in which the
radar take their turns of transmitting their signals. In essence this is a scheduling
problem, which this thesis tries to solve by using an optimization method called
Simulated Annealing. The method finds transmit codes according to which the
radars do not interfere with each other while keeping as much information as
possible.
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Chapter 1
Introduction

1.1 Background

Radar is a technique used for range, angle, and velocity measurements of targets,
where the measurements are based on transmitting electromagnetic waves in the
radio frequency spectrum and analyzing the reflected waves’ properties. Radar is
an acronym for “radio detection and ranging” which refers back to the basic prop-
erties of the technique, although radar has developed tremendously since the idea
was first patented in 1903 [1]. Radar systems can be designed in many different
ways depending on the purpose of the system, where different properties such as
maximum measurable range and velocity can differ. For example, the detection
range of a radar can vary from meters to kilometers [2]. Radars have historically
mostly been used in military applications, with some exceptions such as naviga-
tion, sea, and air traffic control, and in meteorological applications [3][4]. Today
radar is also used frequently in civil applications, such as automotive radar [5],
measurements of filling levels in storage tanks [6], and medical applications [7].
Compared to other surveillance techniques such as cameras, radars can have the
advantage of being unaffected by weather and light conditions, such as fog [8]. Ad-
ditionally, radars can be used as a means of monitoring sensitive environments such
as schools, hospitals, assisted living facilities, and public areas without intruding
on people’s privacy, since only location and velocity are measured [9]. Due to the
increased usage of radar, the risk of mutual interference between radars operating
at the same frequencies has increased as well. Mutual interference between radar
sensors is classified as either coherent or incoherent, where the incoherent interfer-
ence appears as noise, which degrades the detection ability of the radar. Coherent
interference on the other hand expresses itself as appearing ghost-targets, which
can be very difficult to differentiate from real targets. Hence, coherent interfer-
ence, which occurs when radars transmit and receive identical signals at the same
time, poses a larger challenge than incoherent interference [10][11]. The increased
risk for interference has caused a rise in the demand for interference mitigation
techniques and coexistence solutions [12].

One radar type commonly used in the automotive industry is the Frequency Mod-
ulated Continuous Wave (FMCW) radar, which is also used in this thesis [11] [10].
An FMCW radar operates by transmitting continuous frequency-modulated sig-
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4 Introduction

nals and receives the waves after reflection on some targets. FMCW radars only
sample incoming signals in conjunction to also transmitting signals. One transmit-
ted signal in the FMCW case is called a chirp, and a series of transmitted signals
is called a chirp burst or a coherent processing interval (CPI). When the radar
receives the reflected waves these are signal processed with the end goal of finding
some spectral estimates from which range, velocity and angle of arrival (AoA) of
some targets can be derived [13]. There are different methods of conducting these
spectral estimates, where one of the most common methods to use is the Discrete
Fourier Transform (DFT).

1.2 Research Problem

Assume two FMCW radars transmitting on the same frequencies are facing each
other. The radars can cause mutual interference, even if they are placed well out-
side of each other’s field of view, and hence degrade each other’s detection abilities
due to the possibility of appearing ghost targets resulting from coherent interfer-
ence. One solution to this problem can be to allow for coexistence by letting the
two radars consecutively transmit their CPIs, such that the radars never transmit
their chirp bursts at the same time. This kind of solution is called time division
multiplexing (TDM). This however might cause the time between the chirp bursts
to increase, and hence impair the overall radar performance. One analogy to in-
creasing the inter-CPI time is for example to decrease the frame rate in a film
camera. Another possible solution to allow for coexistence without affecting the
inter-chirp burst times is to make the chirp bursts sparse. This means that some
of the transmitted chirps in a CPI are removed, rendering the CPI sparse. The
CPIs can then be transmitted during the same times, given that two equal signals
from the radars never are transmitted at the same time. In other words, the CPIs
of the two radars are allowed to overlap in time and hence transmit CPIs during
the same time interval, as long as two individual signals are never transmitted
simultaneously. Because the FMCW radars only sample incoming signals when
also transmitting, this design would not cause interference. Removing chirps from
a CPI will however affect the performance of the radars as the quality of the radar
measurements is worsened.

The problem of interest in this thesis is to investigate how coexistence between
facing radars can be achieved when assuming a certain overlap in time of the CPIs
and organizing the individual signals in the CPI in an optimal manner, such that
interference is avoided and the quality of the measurements is affected negatively
as little as possible. This problem will be investigated using standard techniques
for spectral estimation, in essence the DFT.
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1.3 Aim and Scope

This thesis aims at organizing radar transmit patterns such that radars operating
at the same frequencies can coexist while transmitting at the same times, even if
there is some time drift between the CPIs. This problem essentially consists of
two parts, which are to both determine the optimal number of chirps to transmit
in a chirp burst, and how to organize these such that the radar performance is
optimal while also not causing interference.

To solve this problem the Simulated Annealing optimization algorithm is investi-
gated and evaluated. The transmit patterns found are evaluated along with their
implications on the measurement qualities. The thesis also compares using the
Simulated Annealing method with using an existing similar method, namely the
coprime method used to generate sparse arrays.
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Chapter 2
Theory

In this section, the theory needed in this thesis is presented. The section begins
with formulating a radar signal model, which is then used to explain some prop-
erties of the radar which depends on the design of the radar system. Then some
theory on how the radar classifies a target from its measurements, that is detection,
is presented. The chapter then continues with some information on non-uniformly
sampled data and interference.

2.1 Introduction to Radar

Radar is, in its simplest form, a method of detecting objects and measuring the
range of these by transmitting electromagnetic (EM) waves in the radio frequency
(RF) spectrum and studying their reflections. Today, there are many radar im-
plementations with different abilities depending on the purpose of the system, but
they are all built on the same fundamental idea and subsystem. The fundamental
idea is to transmit a signal xT towards an area of interest and wait for its reflec-
tion xR to return. For example, by using the time difference between transmitting
and receiving the signal, the range to the target can be estimated. By analyzing
changes in the waveform between the transmitted and received signal other prop-
erties of the target can be estimated, such as velocity and angle of arrival [14, p.4].

The range of a radar can vary from centimeters to hundreds of kilometers and is
partially governed by the amount of power transmitted and later on received by the
radar, which can be calculated using the radar range equation. The power density
Q1 of a transmitted wave at some range R away from the radar transmitting with
power Pt is found as

Q1 =
Pt

4πR2
(2.1)

Here it is assumed that the antenna is isotropic, meaning that the wave is dispersed
in a spherical pattern around the radar [14, pp.61-63]. If the antenna is directional,
meaning it has a transmitter gain Gt, the power is concentrated to a certain
direction which reduces the dispersion of the power density, and the power density
instead becomes

Q1 =
PtGt

4πR2
(2.2)

7



8 Theory

Note that this is the power at range R without any reflections. Now introduce a
target at range R, which will be exposed to this transmitted signal with power
density Q1. The signal is again dispersed upon reflection on the target, and the
power reflected depends on the target’s radar cross section (RCS) σ. The power
received by a radar with receiver gain Gr after reflection is found as

Pr =
PtGtGrσλ

2

(4π)3R4
(2.3)

This formula is called the Radar Range Equation [14, pp.61-63].

The fundamental subsystem in a radar includes a transmitter, receiver, antenna
and signal processor. The transmitter provides the antenna with an RF signal
which excites the antenna, making it transmit waves with the same frequency as
the current. The basic components of the transmitter is a power supply, whose
current is altered with a radio frequency by a modulator. This current is then
amplified by an RF amplifier before it reaches the transmitting antenna (TX).
The resulting RF wave travels to the target where it is reflected and eventually
reaches the receiving antennas (RX) where the wave is again converted into a
current which is then passed on to the receiver, where it is down-converted to an
intermediate frequency (IF) signal by a component called mixer. This signal is
then converted from analog to digital and can then be processed to find for exam-
ple the range and velocity of a target [14, p.4].

The transmitted wave can be either pulsed or continuous, where the pulse radar
transmits wave pulses periodically and determines the range to the target by mea-
suring the elapsed time between transmitting and receiving the signal. A continu-
ous wave (CW) radar transmits a signal continuously. An ordinary non-modulated
CW radar can be used for target detection, but not range estimation. To enable
the CW radar to measure range, the wave has to be modulated, either by frequency
or phase, yielding the acronyms FMCW-Frequency Modulated Continuous Wave,
and PMCW-Phase Modulated Continuous Wave [14, p.20].

The inner workings of a radar are of course far more complex than described here,
but it suffices for a short introduction. Most components of a radar will not be
discussed further since they are out of the scope of the thesis, however, some parts
of the receiver will be discussed in more detail.

2.2 CW Radar Signal Model

Consider a continuous wave radar with one RX and TX antenna, and assume this
radar is transmitting a signal parametrized by frequency f0, time t, phase φ0 and
amplitude A1. This transmitted signal can be described as

xT(t) = A1 cos(2πf0t+ φ0) (2.4)

Now introducing a stationary reflective target at a range R a received signal xR(t)

with the same shape as the transmitted signal is expected but with a time delay
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τ =
2R
c , due to signal propagation, and amplitude A2, where A1 > A2 due to the

energy loss at reflection and dispersion [14, p.287].

xR(t) = A2 cos(2πf0(t− τ) + φ0) (2.5)

Figure 2.1: Schematics of the components in a generic receiver
where the received signal is mixed with the transmitted signal.
Here, LPF is an acronym for Low Pass Filter, and ADC for Ana-
log to Digital Converter. The wave symbolizes the frequency
chirp generator present in the FMCW case [10].

Figure 2.2: Explanatory schematics of a Coherent I/Q Receiver [15,
p.14].

After reflection, the wave reaches the RX antennas and propagates to the receiver
as an RF wave. The main purpose of the receiver is to down-convert the received
signal into an IF signal, which is also needed to enable for an analog-to-digital
converter (ADC) to sample the signal. The IF-signal can denote a signal located
in frequency between the baseband and carrier frequencies, found by mixing the
received signal with some Local Oscillating (LO) signal. However, in this work a
homodyne receiver is used, meaning that the IF signal is found by mixing the re-
ceived signal directly with the transmitted signal. Hence, the IF signal is identical



10 Theory

with the baseband signal and the terms are used synonymously in this work. The
receiver also applies filtering to clean the signal from noise, as well as a low-noise
amplifier and a low-pass filter which excludes signals not belonging to the base-
band [14, p.391] [16, pp.27-28].

A receiver can be implemented in many ways, for example as shown in Figure
2.2, which shows a simple schematic of a coherent In-phase/Quadrature (I/Q) re-
ceiver. The advantage of this design is its ability to preserve phase information
in the down-converted signal [14, p.288]. As the received and propagated sig-
nal xR enters the I/Q receiver, it is mixed with both the transmitted signal and
the transmitted signal’s orthogonal counterpart, and then passed to a low pass
filter (LPF), forming the I and Q pair. According to this receiver design xR(t)

is mixed with xT (t) and the orthogonal xT⊥(t) = −A1 sin(2πf0t+φ0), which gives

xR(t) ·
2xT (t)

A1
= A2 cos(−2πf0τ) +A2 cos(2πf0(2t− τ) + 2φ0)

xR(t) ·
2xT⊥(t)

A1
= −A2 sin(−2πf0τ)−A2 sin(2πf0(2t+ τ) + 2φ0)

Filtering of these signals through the LPF yields

I(t) = A2 cos(2πf0τ)

Q(t) = A2 sin(2πf0τ)

It is seen that the design of the radar wave receiver gives two orthogonal waves
which then can be used to construct the analytic signal

a(t) = I(t) + jQ(t) = A2e
−j2πf0τ = A2e

−j4πf0
R
c (2.6)

where τ = 2R/c is used in the last step.

2.3 FMCW Radar Signal Model

Having the CW Radar model, the next step is to find an expression for the Fre-
quency Modulated CW (FMCW) radar signal. This can be achieved by sweeping
the frequency linearly during a time interval Tc from f0 to f1. The instantaneous
frequency f(t) can be defined using the bandwidth B = f1 − f0 as

f(t) = f0 +
B

Tc
t , 0 ≤ t ≤ Tc (2.7)

To express the wave as a cosine the instantaneous phase is used, which is found
by integrating the angular frequency as

φ(ts) = 2π

! ts

0

f(t)dt = 2π

"
f0t+

B

2Tc
t
2

#ts

0

+ φ0 = 2π(f0ts +
B

2Tc
t
2
s) + φ0 (2.8)
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Using this instantaneous phase φ(ts) in the cosine function gives the frequency-
modulated signal called a chirp, of which an example can be seen in Figure 2.3
along with the instantaneous frequency. As such, the transmitted and the received
signal in the FMCW case can be expressed by substituting 2πf0t with φ(t) in (2.4)
and (2.5). Inspired by [16, pp. 26-28] and using the previous result the signals can
be described as

xT (t) = A1cos
$
2πf0ts + π

B

Tc
t
2
s + φ0

%
(2.9)

xR(t) = A1cos
$
2πf0(ts − τ) + π

B

Tc
(ts − τ)2 + φ0

%
(2.10)

Figure 2.3: Figure displaying an example of a linearly increased in-
stantaneous frequency (left) with (f0, f1) = (5Hz, 15Hz) and
the resulting chirp (right), similar to the figures in [15, p.30].
The red dashed line emphasizes the limits of the bandwidth B.

The received signal xR(t) is, just as in the CW case, passed through the coherent
I/Q detector, yielding the range-dependent IF signal

a(R) = A2e
−j4π(f0+

B
Tc

ts)
R
c (2.11)

again assuming distance R such that τ =
2R
c [16, p. 29]. In this expression,

it is seen that the detector takes two frequency-modulated signals as input, and
outputs a constant frequency IF-signal, with a frequency dependent on the range
R and hence also τ . Let us denote this constant IF-frequency, also called beat
frequency, fIF [13]. An intuitive graphic of this is shown in Figure 2.4.

To allow for digital signal processing the IF-signal is sampled by an ADC. As-
suming that the signal is sampled N times, such that ∆ts =

Tc

N and fs =
N
Tc

, the
discrete time points tn = n∆ts are acquired, where n = 0, 1, ..., N − 1 [14, p.409].
Substituting ts to tn in (2.11) and expanding gives the discrete chirp frequency

f(n) = f0 +
B

N
n

and the discretized IF signal as

an(R) = A2e
−j4π(f0+

B
N n)

R
c (2.12)
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Figure 2.4: Figure displaying an example of the frequency compo-
nents of a transmitted chirp xT and its time-delayed ditto xR.
The dashed lines again show the limits of B. The gray lines
show the time delay τ , chirp time Tc and the frequency of the
IF-signal (solid red line) fIF , which is equal to the vertical dis-
tance between the chirps. The figure is inspired by the figures
in [13].

In essence this means that the IF signal, a constant frequency sinusoid, is sampled
with sampling frequency fs. According to the Nyquist-Shannon sampling theo-
rem, any signal containing frequencies below the Nyquist frequency fn =

fs
2 can

be reconstructed, while signals including frequencies equal to or larger than the
Nyquist frequency will be aliased [17, p.30]. To avoid aliasing, a lowpass filter with
a cutoff frequency equal to ±fn is applied to the analog signal before sampling, to
exclude any frequencies f ≥ |fn|. This filter is displayed in the receiver schematic
in Figure 2.2. This means that the Nyquist frequency fn, governed by the ADC
components sampling frequency, will put a bound on the IF signal’s frequency to
a frequency band fB = [−fn, fn]. The IF signal’s frequency on the other hand is
governed by the time difference τ between transmitting and receiving the chirp.
Hence, the frequency band limiting the IF signal implies a time interval τl in which
the received signal is sampled. In essence, this gives a time-frequency sampling
region Bs, parallel to the transmitted chirp, described in the frequency domain as
Bs = [f0 +

B
Tc
(t+ τl), f0 +

B
Tc
(t− τl)] in which received signals are sampled. Some

explanatory figures can be seen in Figure 2.5.

This far one stationary target at some range R has been considered. This model
is now extended to allow the target to have a velocity v. Define the radial velocity
v as positive if the target moves radially away from the radar. Redefining the
distance R and substituting into (2.12) gives the new expression for the analytic
IF signal as

Rn = R0 + vn∆ts

an(R0, v) = A2e
−j4π(f0+

B
N n)

R0+vn∆ts
c

When using a saw tooth chirping pattern the velocity of the target cannot be de-
termined by only one chirp, but has to be found as the phase difference between
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Figure 2.5: Leftmost figure displaying an example of a gain-
magnitude frequency response (blue line) of the lowpass filter
suppressing frequencies larger than fn. The middle figure dis-
plays the constant IF-frequency (red line) along with the filter
implied bound (green lines). Rightmost figure displays the fre-
quency band Bs (orange area) around the frequency content of
the transmitted signal xT (blue line) in which received signals
are sampled.

the reflection of multiple chirps [13].

A Coherent Processing Interval (CPI), also called a chirp burst, is a series of M
consecutive chirps, each with sweep time Tc during the time interval [0, Tf ] where
the total time of the CPI is Tf = M · Tc [14, p.548]. Assuming the chirps are
placed uniformly without any idle time in between, the time between two chirps’
start times will equal Tc, and the start time for some chirp m will be m ·Tc, where
m = 0, 1, ...,M − 1.

The range to the target R can be redefined as

Rnm = R0 + (mTc + n∆ts)v

and the resulting IF-signal from chirp m at sample n reflected from a target at
range R0 with velocity v can be described as

anm(R0, v) =

A2e
−j4πf0

R0

c e
−jmTc2π(

2vf0
c )

e
−jn2π(

2vBmTc

Nc +
2BR0

Nc +
2vf0∆ts

c )
e
j2π

n22Bv∆ts
Nc

(2.13)

where the definition tn = n∆ts have been used. The last term is a chirping effect
which can be neglected due to the assumed relatively slow speed of the target.

In the case of having multiple objects, the transmitted signal will be reflected
on each target and the received and processed signal can be described as the
superposition of (2.13). In the frequency domain, this corresponds to multiple
IF-tones representing the ranges of the targets [13].
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2.3.1 Radar Data Cube

From the previous section and (2.13) it is known how to describe the IF-signal
resulting from the reflection on a target at an initial range R0 and with velocity
v at any sample n in any chirp m. A radar usually transmits a chirp burst or
CPI, consisting of M chirps where each chirp is sampled N times. The data from
one CPI is stored in a matrix structure with the samples along the row indices,
and the chirp number along the column indices. The structure of the matrix is
shown below in Figure 2.6. Let us denote this matrix A(R0, v), since the matrix
still is a function of a target’s range and velocity. Now let us introduce G targets,
each with initial radial range Ri and velocity vi where 1 ≤ i ≤ G. The IF-signal
resulting from M chirps being reflected at G targets is found as the superposition
of the received signals, this is

C =

G&

i=1

A(Ri, vi) (2.14)

Figure 2.6: Example of small radar data matrix.

Now, C denotes the matrix found as the superposition of all radar data matrices
resulting from each single target, for an arbitrary number of targets. To this point,
the model used has only included one TX and one RX antenna, which yields this
matrix when transmitting a chirp burst. To enable for estimation of the AoA of
the targets more antennas have to be included. When including more antennas the
matrix expands to a cube where the added dimension is commonly referred to as
the channel dimension. This cube is called the Radar Data Cube [14, pp.291,502-
503], and from it the range, velocity and angle of arrival (AoA) of a target can be
found [18, pp. 16-17].
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2.4 Spectral Estimates

By analyzing the spectral properties of the radar data cube in different dimensions
the range, velocity and angle to the targets can be estimated. In the following,
the range and velocity estimates will be explained, while assuming for simplicity
that the radar only illuminates one target at an initial range R0 with constant
velocity v. The spectral analysis will be conducted using the Fourier transform.
The transform will be applied to the discretized signal given by (2.13), and hence
the Discrete Time Fourier Transform (DTFT) is used. Applying the DTFT to
a sequence xn will in the following be denoted F [xn]. In practice, the DTFT
is implemented using the Fast Fourier Transform (FFT) implementation of the
Discrete Fourier Transform (DFT) [17, pp.129,153].

2.4.1 Windowing

When using the DFT, spectral leakage will occur, which is a smearing of the energy
content in one frequency bin over more frequency bins. To compensate for this
leakage, windowing can be used, which is a technique performed by multiplying
the signal with a window function in the time domain before applying the DFT
to it. Many windows with different properties exist, where Hann window is a
common choice [17, pp71-85.]. The implication of applying a Hann window to a
signal, compared to using the rectangular window, in the time domain is a slightly
wider mainlobe in the frequency domain, while also getting less spectral leakage
and smaller sidelobes [15, p.183] [19, pp.363-366]. This is equivalent to getting a
larger amplitude difference between the mainlobe and the highest sidelobe peak,
also called Peak Sidelobe Level (PSL).

2.4.2 Range estimate

The range estimation is done by examining the frequency difference between the
transmitted and received signals. Since the signal is mixed, it suffices to find
the frequency content of the IF signal, this is the beat frequencies, stored in the
matrix C. Returning to the radar data matrix, it is known that the IF-signals
from each chirp are stored as columns in C, and hence by finding the frequency
content of each column, the range can be estimated. For simplicity only one target
is concerned and hence C = A(R0, v). The DTFT is applied to each column, and
hence only one chirp in fast time is considered. Returning to (2.13) this means that
m can be regarded as constant, and this expression for the IF-signal can be used
to describe the signal values along one column in the radar data matrix. Since m

now is constant the expression of the signal can be divided into one constant part
γm(R0, v) and one variable part, where the constant part of (2.13) is

γm(R0, v) = A2e
−j4πf0

R0

c e
−jmTc2π(

2vf0
c )

and neglecting the last term in (2.13) gives

anm(R0, v) = γm(R0, v)e
−jn2π(

2vBmTc

Nc +
2BR0

Nc +
2vf0∆ts

c )
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This expression then corresponds to the IF signal of one chirp, or one fast time
column in the radar data cube. To find the frequency of the signal, a partial
Discrete Time Fourier Transform along the fast time n indices is used. The partial
DTFT with respect to the sample number n, that is Fn[anm(R0, v)], will then
result in a peak at frequency bin f̂n corresponding to the frequency

f̂n =
2vBmTc

Nc
+

2BR0

Nc
+

2vf0∆ts

c

The last term in this expression will be negligible compared with the first two,
meaning that the chirp-dependent range Rm can be estimated as

Rm = R0 + vmTc =
f̂nNc

2B

This process is then used to find the radial range information of each chirp, along
each column in the radar data cube [13, 14, p.4, p.645].

2.4.3 Velocity Estimate

For the velocity estimate the partial DTFT of the rows in the radar data matrix
is considered instead, thus regarding the sample number n as constant. When
the target moves the range will change, but due to the fast chirping the range
difference between two chirps will be too small to detect. The velocity on the
other hand will have a significant effect on the phase of the incoming wave due
to the short wave length. Hence, by measuring the phase difference between each
chirp the velocity of a target can be found, and to this end the partial DTFT along
the slow time axis is used. Again returning to (2.13), regarding n as constant and
ignoring the last term allows us to write

γn(R0, v) = A2e
−j4πf0

R0
c e

−jn2π(
2BR0
Nc +

2vf0∆ts
c )

anm(R0, v) = γn(R0, v)e
−j2πm(

2vf0Tc
c + 2vBnTc

Nc )

Again applying the partial DTFT but this time along the slow time axis, Fm[anm(R0, v)],
gives a frequency peak located at the frequency bin f̂m

f̂m =
2vf0Tc

c
+

2vBnTc

Nc

The second term will be comparably small and the frequency can be estimated as

f̂m =
2vf0Tc

c
(2.15)

and find the velocity as

v =
f̂mλ

2Tc
(2.16)

where λ =
c
f0

.



Theory 17

The partial DTFT in slow time gives the radial velocity information along one fast
time sample, and thus this process is again carried out along the slow time axis at
each fast time index in the radar data cube [13, p.5].

As a final note on the estimates, observe that if several targets would be regarded
the linearity property of the DTFT would be used, which would give one spectral
estimate per target. The simplification of only using one target in the previous
sections implies no loss of generality since if several targets would be introduced
the sequences analyzed would be the superposition of many IF-signals, and the
DFT would instead become a sum of DFTs. The end estimate would be a sum
of these frequency-valued sequences, in which we would get one peak per target,
regardless of the dimension analyzed.

2.4.4 Range Doppler Map

From the fast-time and slow-time DTFTs the range and velocity of some targets
can be estimated, along with the AoA estimated from the DTFT along the chan-
nel indices. Hence a DTFT is applied to each dimension of the radar data cube
resulting in a similar cube in which instead of chirp, sample and channel index are
partitioned into frequency bins. The fast time and slow time indices are replaced
with range bin and velocity bin indices respectively.

The range and velocity information is commonly combined into a Range-Doppler
Map. This map is a matrix with the previously mentioned range bins as rows and
velocity bins as columns. A target will in the Range-Doppler map appear as a dot
where its distance from the center line shows its velocity, and its distance from the
bottom of the map shows its range. An example of a Range-Doppler map of one
target is shown in Figure 2.7.

Figure 2.7: Figure displaying an example of a Range Doppler Plot
of a simulated target having radial velocity 5 m/s and radial
distance 10m. The simulation includes white Gaussian noise.
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2.4.5 Maximum Velocity

From the previous sections, it is known that the range can be measured using the
DFT along the fast time axis, and the velocity as the DFT along the slow time
axis. During the time Tf , in which the CPI is transmitted, the target’s position will
not change, due to its relatively small velocity. Hence, during a CPI the target’s
movement will be negligible, and therefore the DFT of each chirp in fast time will
map the target to the same range bin in the Range-Doppler map, despite having
this velocity. However, each IF-signal stored in the radar data matrix will have a
relative phase difference due to the velocity, as explained before. By applying a
partial DFT along the slow time axis this phase difference can be measured as the
frequency at the resulting spectral peak f̂m.

From the Nyquist criterion, [17, p.30] it is known that aliasing of the frequency
spectrum will occur for any frequencies outside the frequency interval [−fn, fn]

where fn =
fs
2 , or more formal |f̂m| < fn. The Nyquist critical frequency of a

signal sampled uniformly with a grid size Tg is given by

fn =
1

2Tg
(2.17)

according to Bretthorst in [20, p.3]. Thus, the normalized frequency range in
which f̂m can appear is in [− 1

2 ,
1
2 ], and hence the maximum frequency measurable

is 1
2 . Allowing the radar to measure frequencies outside of this range allows for

ambiguities due to aliasing according to the Nyquist criterion [17, p.30].

Inserting the maximum measurable frequency f̂m =
1
2 into (2.16) gives the maxi-

mum unambigous velocity as

vmax =
λ

4Tg
(2.18)

In the context of this thesis, each chirp is regarded as one sample in slow time,
and hence Tg equals the time difference between two chirps’ start times. Since it
was assumed that there is no idle time between chirps, this means that

vmax =
λ

4Tc
(2.19)

describes the maximum velocity measurable by the radar, where Tc again is the
chirp time [13].

2.4.6 Velocity Resolution

A DFT of some discrete signal sn, where 0 can resolve two separate frequency
peaks f̂1 and f̂2 if their frequency difference ∆f̂ = f̂1 − f̂2 fulfills

∆f̂ >
1

L
(2.20)
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with L being the number of sample points in the signal sn [21, p.31]. Having two
targets with velocities v1 and v2, and their corresponding frequency peaks at f̂1

and f̂2 respectively, their velocity difference is defined as ∆v = v1 − v2. Using
equation (2.16) gives

∆v = v1 − v2 =
f̂1λ

2Tc
− f̂2λ

2Tc
=

∆f̂λ

2Tc
(2.21)

from which ∆f̂ can be found as

∆f̂ =
∆v · 2Tc

λ
(2.22)

In the case of applying the DFT to the data cube along the slow time indices L

in (2.20) is equal to M . Insertion of (2.22) into (2.20) gives

∆f̂ >
1

M
⇐⇒

∆v · 2Tc

λ
>

1

M
⇐⇒

∆v >
λ

2TcM

Using the previously defined Tf = MTc helps us find the expression for the mini-
mum resolvable velocity difference as

vres =
λ

2Tf
(2.23)

which shows that velocity resolution depends on the length of the CPI exclusively
[13, p.5].

2.5 Detection Thresholds

When the signal has been processed into the Range-Doppler map, the issue of
separating targets from noise and clutter in the signal remains. To this end a
method called Constant False Alarm Rate can be employed, but before presenting
this method some additional theory is needed.

2.5.1 Thermal Noise

The signal received by the radar will be affected by various types of noise, amongst
others thermal noise. The power of this noise Pn is given by

Pn = kT0FB (2.24)

Where k is Boltzmann’s constant, T0 = 290K which is the standard room temper-
ature in Kelvin, F is the receiver noise figure and B is the instantaneous receiver
bandwidth [14, p.65].
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2.5.2 Signal to Noise Ratio

From the introduction section, it is known that the power received from a reflected
signal is described by the radar range equation and denoted Pr. The ratio of the
received signal power and the noise power is called Signal to Noise Ratio (SNR).
This ratio is defined as

SNR =
Pr

Pn
=

PtGtGrλ
2σ

(4π)3R4kT0FB
(2.25)

Where k, T0, F and B are defined as in the thermal noise case. Gt and Gr

denote the transmitter and receiver gain respectively, λ and σ denote the carrier
wavelength and mean RCS of a target, and Pt is the peak transmitted power [14,
pp. 64-66].

2.5.3 Dynamic Range

The Dynamic Range of some quantity Q is defined as

Dynamic Range = 20 · log10
$
Qmax

Qmin

%
(2.26)

In the radar setting the quantity Q can for example be the velocity spectrum re-
sulting from the slow time partial DFT, and then Qmax corresponds to the peak
value of the main lobe. To avoid ambiguities in the measurements only amplitudes
as low as the value of the largest side lobe can be measured, this would be Qmin.
Hence, the dynamic range is the distance between the mainlobe and the largest
sidelobe in dB scale [22, p.77].

2.5.4 Constant False Alarm Rate

Generally, detection is carried out by comparing spectral peaks with some thresh-
old, where any peak larger than the threshold is considered a target. The question
of how to determine this threshold arises, and one common way is by Ordered
Statistics Constant False Alarm Rate (OS-CFAR). This method uses a window
that is swept over the signal. Each amplitude in the signal included in the window
is ordered by amplitude in ascending order. The threshold is then set by choos-
ing an amplitude in this ordered sequence at a predefined index, and multiplying
this amplitude by a scaling factor [23, pp.3-6]. The signal which the OS-CFAR
is applied to results from the superposition of noise, clutter and the spectrum
given by the reflection on the target. As such the magnitude of this threshold
will be affected by the SNR and Dynamic Range. Hence, having two targets with
different signal strengths, a small Dynamic Range or SNR will result in a higher
probability that the weaker target peak is located below the detection threshold,
and will hence not be detected by the radar [15, p.4].
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2.5.5 Integration Gain

Coherent integration means that both the amplitude and the phase of some re-
ceived signals are used in the signal processing, with one example of a coherent
integration method being the DFT. Using coherent integration on a CPI of chirps
gives rise to integration gain, in essence the SNR is increased when more chirps
are included in the CPI. Denoting the SNR of one chirp SNR1, the SNR of the
CPI can be described as SNRCPI = m · SNR1, where m is the number of chirps in
the CPI [14, p.67].

2.6 Non-Uniform CPIs

In the previous sections, it is assumed that each received chirp is uniformly sam-
pled and that the chirps are uniformly transmitted. Further on it will be useful to
be able to chirp non-uniformly.

Having a uniform CPI of chirps, a non-uniform sampled (NUS) zero-augmented
chirp burst can be found by multiplying the uniform burst by a sum of boxcar
functions, which then replaces some specified chirps with 0’s. This idea is depicted
in Figure 2.8. With the Radar Data Square in mind, it is easy to realize that setting
one chirp to equal zero at each sample is equal to setting the column corresponding
to the chirp to zero. Defining a set S containing the slow time start-indices of the
chirps to be transmitted, this is S ∈ [1,M ], a row vector with 1’s at the indices
specified in S can be described as

Ω =

'
δ1,S δ2,S δ3,S . . . δM,S

(
(2.27)

where δ denotes the Kronecker delta function defined in [24, p.10] as

δt,i =

)
1, if t = i

0, if t ∕= i
. (2.28)

With the radar data matrix C found in (2.14), Ω and the (1×N) vector

1,N =

'
1 1 . . . 1

(
the NUS zero-augmented radar data matrix can be found

as

CNUS = C⊙ (
T
1,N · Ω) (2.29)

with ⊙ denoting the Hadamard (element-wise) product. This would then make
each column with index not included in S equal to zero. This is a way of choosing
sample points from a uniform grid in a possibly non-uniform way, and as such this
is commonly called on-grid sampling [25, p.9].

2.7 Spectral Estimates For Non-Uniform CPIs

Since the chirping pattern no longer has to be uniform, the velocity estimate has
to be revised. The range estimate however only depends on the fast time axis of
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Figure 2.8: Figure depicting an example of the idea of using boxcar
functions to cancel out specified chirps. The green line in the
upper figure displays the boxcar sum. When this sum is mul-
tiplied by the uniform chirp burst the result is a non-uniform
chirp burst shown in the middle plot. The bottom plot depicts
the NUS zero augmented data matrix after Hadamard multipli-
cation with Ω, where the gray areas represents 0-valued entries.

the radar data matrix, which remains unchanged, and hence the range estimation
is still valid.

As found before, the NUS zero-augmented radar data matrix is described as

CNUS = C⊙ (
T
1,N · Ω)

and regarding only one target at initial range R0 and with velocity v this reduces
to

CNUS = A(R0, v)⊙ (
T
1,N · Ω) (2.30)

which we want to Fourier transform along the slow time m axis, following the
method of finding the velocity when having the ordinary uniformly sampled radar
data cube. The DTFT is performed along the m axis row-wise, and hence letting
the row index be constant, n = k, the radar data matrix in (2.30) corresponding
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to one target reduces to a row vector cNUS = Ak,m(R0, v)⊙ Ω.

Applying the DTFT to this row vector yields

FM [cNUS ] = F [Ak,m(R0, v)⊙ Ω] =
1

M
F [Ak,m(R0, v)]⊛ F [Ω]

where the convolution theorem has been used and (⊛) denotes the circular con-
volution. The DTFT of Ω is commonly called the point-spread function and Ω is
called the sampling vector [25].

Using the same notation as in the uniform chirping case, the expected frequency
peak of the NUS data will remain at the same frequency bin as in the uniform sam-
pled data case f̂m. If the set S does not contain the indices of all possible chirps,
that is the sequence contains some 0 elements, the convolution will result in an
increased amplitude of the side lobes. Due to the Hadamard multiplication of the
sampling vector Ω and the uniformly sampled row vector Ak,m(R0, v), the actual
time the signal is sampled will depend on the placings of the elements in Ω. A
sampling vector Ω with 0’s at the end and start position will effectively yield fewer
samples, where the first and last samples are sampled with a shorter time in be-
tween. Hence such a sampling vector would effectively decrease the sampling time.

2.7.1 NUS Velocity Resolution

From (2.23) it is known that the velocity resolution is dependent on the CPI time
Tf . When introducing the NUS zero-augmented signal the CPI time might be
shortened, for example, if the first or last chirp is canceled out. This way, the
velocity resolution will instead depend on the indices of the chirps stored in S.
The time difference between the first and last chirp can be found as

TNUS = ∆tc · (max(S)− min(S)) (2.31)

and insert this into the velocity resolution expression (2.23), and hence the NUS
velocity resolution, not too different from the uniform velocity resolution, is found
as

vres,NUS =
λ

2TNUS
(2.32)

The effect a shorter sampling time has on the frequency spectrum is known as
reciprocal spreading, where a signal compressed in the time domain results in a
widened peak in the frequency domain [15, p.25].

2.7.2 NUS Maximum Velocity

In the uniform CPI case, it was shown that the necessary bound for the maximum
velocity to avoid aliasing was given by |f̂m| < fn and normalizing by the Nyquist
critical frequency fn gives |2πf̂m| < π where f̂m is the spectral peak resulting from
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the partial slow-time DTFT along the slow time axis. For reference see the section
“2.4.5 Maximum Velocity”.

Now in the non-uniform CPI case, this has to be revised since the Nyquist crit-
ical frequency fn is no longer valid. Consider a sampled complex signal, where
the Imaginary and Real parts of the complex signal do not have to be sampled
at the same times (non-simultaneous) and the samples are non-uniform, then ac-
cording to Bretthorst the Nyquist critical frequency fNUS of a non-uniform, non
simultaneously sampled signal is instead given by

fNUS =
1

2∆tNUS
(2.33)

where ∆tNUS is the largest possible grid size such that each sample (both Imag-
inary and Real) is located at an integer multiple of ∆tNUS [20, pp.7, 16-18]. In
this context, we do not have non-simultaneous sampled data, but this does not
make any difference to the expression in (2.33), which still is valid.

Now considering the spectrum resulting from a DTFT of this NUS signal, aliasing
will occur for frequencies f̂m outside the bound |f̂m| < fNUS . Again dividing
by fn found in (2.17) and multiplying by π gives the normalized spectrum. This
yields

|2πf̂m| < fNUS

fn
· π =

∆tNUS

∆tc
· π (2.34)

which also agrees with the result presented in [26, pp.34-35].

Since the frequency peak of the DTFT on the NUS sequence in slow time will be
located at the same frequency bin as in the uniform case, we can proceed as in the
uniform example and insert (2.15) into (2.34):

|2π · 2vf0Tc

c
| < ∆tNUS

∆tc
· π ⇐⇒ (2.35)

v <
λ

4Tc
· ∆tNUS

∆tc
(2.36)

and hence

vmax,NUS =
λ

4Tc
· ∆tNUS

∆tc
(2.37)

Since ∆tc is the grid size in the uniform case there is no larger possible grid
size of which each sample is an integer multiple. Hence ∆tc ≥ ∆tNUS and
vmax ≥ vmax,NUS .

Note that this is only applicable if the sample points can be placed at integer
multiples of the grid size, that is on-grid sampling as opposed to off-grid sampling
[25, p.9]. If the samples are randomly chosen there is no well-accepted definition
of the Nyquist critical frequency [27, p.31].
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2.8 Interference

Radar interference can have different definitions and sources, such as reflections
from unwanted targets or surroundings, known as clutter, or it can be due to
jamming as a result of electronic warfare countermeasures [14]. In the context of
this thesis, interference is defined as the reception of foreign signals. The radar
being affected by the interference is called victim radar, while the radar transmit-
ting the signals causing the interference is called aggressor radar [28]. Interference
can be divided into three categories, incoherent interference, partially coherent
interference, and coherent interference. Each of these interference types is due
to radar-to-radar interference but is classified differently depending on the sim-
ilarity of the signals being transmitted and received. Coherent interference oc-
curs when the received foreign signal is no different from the transmitted signal,
xR(t) = xT (t − τ). The mixing of the foreign signal in the receiving radar will
then result in a clean sinusoid and the interfering signal will appear as a proper
target in the range-doppler image, thus rendering a ghost target which causes false
detections [11, p.7].

2.8.1 Cross-correlation and Interference

In the previous sections, it is explained that a radar transmits CPIs of chirps,
which are reflected, received and mixed with the transmitted signal. The radar
samples incoming signals only in conjunction with transmitting. Assume now that
we have a setting without reflecting objects, but with two identical radars facing
each other at a distance R, and having a probability of causing mutual coher-
ent interference. Denote the victim and aggressor radar with the superscript (v)

and (a) respectively. Let both radars transmit CPIs with total CPI time Tf . Let
the victim and aggressor radars transmit their CPIs at times t

(v) and t
(a) where

0 ≤ t
(v) ≤ T

(v)
f and t

(a)
0 ≤ t

(a) ≤ T
(a)
f . The victim radar will then receive the

aggressor radar’s signals at τ =
R
c + t

(a)
0 , such that x

(v)
R (t) = x

(a)
T (t − τ). Now

assume that the distance between the radars is small enough and the CPI is long
enough such that T

(v)
f ≥ R

c . For some transmit start time of the aggressor radar

t
(a)
0 the victim radar will receive x

(a)
T while chirping, and will hence sample the

received signal.

The number of interfered chirps in each radar, caused by coherent interference, can
then be measured as the number of chirps received by the victim radar while the
victim radar is also transmitting. Let again the signal transmitted by the victim
radar at time t be denoted x

(v)
T (t) and the signal transmitted by the aggressor

radar and received by the victim radar be denoted x
(a)
T (t − τ) = x

(v)
R (t). Assume

also that there are no reflective targets within any of the radars visible range,
meaning that they will only receive signals transmitted from other radars.

Here, the signal value x itself is not important, only if the signal is present or not,
and hence |sgn(x)| will be used, where
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| sgn(x)| =
)
0 if x = 0

1 if x ∕= 0
. (2.38)

The number of interfered signals can then be found by counting how many sig-
nals in x

(v)
T (t) and x

(a)
T (t) that occur at the same time t, using the |sgn(x)| function.

The cross-correlation is defined as

Definition 1 Continuous cross correlation of functions f and g

(f ( g)(τ) =

! ∞

∞
f(t)g(t+ τ)dt (2.39)

at time displacement τ with complex conjugate operation •

Using the cross-correlation function, the amount of interfered signal for some delay
τ can be found as (| sgn(x(v)

T )|( | sgn(x(v)
R )|)(τ). In this work, the signals processed

are sampled, and hence we will instead have use of the discrete cross-correlation
function.

Definition 2 Deterministic Discrete Cross-correlation of signals f[n] and g[n]

CCfg[l] =

∞&

n=−∞
f [n]g[n+ l] (2.40)

at correlation lag l with complex conjugate operation •

Denote the discretized signals x(v)
T,n and x

(v)
R,n at index n. The expression | sgn(x(v)

T,n)|
indicates when in time the victim radar transmits, and thereby also samples, sig-
nals. The expression | sgn(x(v)

T,n)| on the other hand represents when in time the
victim radar receives the aggressor radar’s transmitted signals. The interpretation
of using the discrete cross-correlation on the two discrete signals at some lag l is
that the number of samples at which we both sample and receive foreign signals
are counted.

2.9 Figures of Merit

In order to be able to measure the quality of some frequency spectra and corre-
lations some figures of merit are introduced in the following section. Here, three
metrics are introduced which later on will aid when comparing the quality of
transmit codes and their spectra.

2.9.1 Peak Sidelobe Ratio

Let x be some signal and F(x) = X its corresponding frequency spectrum, then the
power spectrum in dB is given as Sxx(f) = 20 log10(|X(f)|). The Peak Sidelobe
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Figure 2.9: Figure showing an example of the PSR in a power spec-
trum Sxx(f). The shadowed area marks the sidelobe region
fs, and the non-shadowed area marks the mainlobe region fm.
The two dots (red) represent the positions of the max mainlobe
amplitude and the max sidelobe amplitude which in this specific
example is located at the peak of the first side lobe. The PSR
is given as the distance between these two. The unit on the
y-axis is dB.

Ratio (PSR) is the ratio of the mainlobe peak and the largest sidelobe peak in a
spectrum X, which in the logarithmic power spectrum can be written as

PSR(x) = 20 log10(max[|X(fs)|])− 20 log10(max[|X(fm)|]) (2.41)

where fs is the indices of the sidelobe region of the spectrum and fm is the indices
of the mainlobe region. Simply put this is the amplitude of the largest sidelobe
divided by the amplitude of the mainlobe. These regions are depicted in Figure
2.9.

2.9.2 Full Width at Half Maximum

The Full Width at Half Maximum (FWHM) measures the spectral width of a main-
lobe. Let again x be some signal and X(f) its corresponding frequency spectrum at
frequency f , and the power spectrum in dB is given as Sxx(f) = 20 log10(|X(f)|).
Denote by fa and fb the frequency indices in the mainlobe region of the spectrum,
Sxx(fm), such that Sxx(fa) = Sxx(fb) = max[Sxx(fm)]− 3 and fa < fb, then

FWHM(x) = fb − fa (2.42)

which is the spectral width of the mainlobe of the normalized power spectrum at
−3 dB. An explanatory graphic of the FWHM measure is shown in Figure 2.10.
The mainlobe width affects the ability to resolve two separated peaks, as a narrow
mainlobe will make the peaks easier to resolve, as also stated in [29], [30] and [21,
p.40].
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Figure 2.10: Figure showing an example of the Full Width at Half
Maximum (FWHM) for a power spectrum Sxx, where the shad-
owed area marks the sidelobe region, and the non-shadowed area
marks the mainlobe region fm. The unit on the y-axis is dB.

2.9.3 Correlation Sum

It will prove to be useful to be able to measure the discrete cross-correlation of two
sequences f and g of length N at a lag τ , this is CCf,g[τ ] according to Definition
2, relative to the correlation between two identical uniform sequences u = 1,N

with length N at the same lag τ , this is CCu,u[τ ]. Having two binary sequences
their correlation will be bounded from above by CCu,u[τ ]. From an interference
perspective, this will correspond to having interference at each possible chirp in
the overlapping interval of the CPIs. Let us therefore define the Correlation Sum
(CS) as

CS(f, g,T ) =

&

τ∈T

CCf,g[τ ] (2.43)

which is the sum of the crosscorrelations of two sequences f and g at lags τ stored
in T .

2.10 Simulated Annealing

Simulated Annealing (SA) is a probabilistic heuristic algorithm designed to approx-
imate a global minimum of a function that may have several local minima. The
algorithm is typically used in approximating solutions to discrete combinatorial
optimization problems, but can also be used to approximate solutions to contin-
uous problems. The algorithm has for example proven useful in approximating
solutions to the NP-hard “traveling salesman problem” (TSP) and the “knapsack
problem” [31]. The main advantages of the Simulated Annealing algorithm is both
that it is easy to implement and its ability to avoid getting stuck in a local minima.
The drawback is on the other hand the difficulty of finding reasonable algorithm
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parameters, which also can have a large impact on the performance of the method
[32].

The algorithm works by initializing a random solution a and a temperature T0.
From a, a neighboring solution a

′ is found. A neighboring solution is a solution
close to a and how this a

′ is chosen is dependent on the problem structure. The
process of finding a neighboring solution is called perturbation [33]. The energy,
which is just another name for the cost function, is calculated for both solutions
and if the newly found solution a

′ has a lower energy than the current solution a,
then a

′ is accepted as the new current solution. If a′ turns out to be a worse solu-
tion than a, in essence a

′ has higher energy than a, then a
′ might still be accepted

as the current solution with some probability which depends on the temperature
of the method.

The temperature of the method is governed by the cooling function, which can be
defined in varying ways depending on the desired properties of the method. For
example, a cooling function yielding a slowly decaying temperature will have a
high probability of converging, but will at the same time demand many iterations
in doing so. On the other hand, a cooling function yielding a quickly decaying
temperature might not get enough iterations to find an optimal solution [34]. Two
common cooling schedules are the linear cooling schedule Tn+1 = T0 − βt and the
geometric cooling schedule Tn+1 = Tn · α, where T0 is the initial temperature, t is
the iteration time and β and 0 < α < 1 some constants. In the geometric schedule,
α is generally set to values close to 1, for example in the range α ≈ [0.7, 0.99].
The cooling function, regardless of what kind is used, will in some manner decrease
the temperature of the method. This implies that the probability of accepting a
worse solution decreases with each iteration, and the method is more prone to ac-
cepting worse solutions in the beginning than in the end of the optimization. This
step also allows the method to avoid getting stuck in local minima. Due to the
temperature’s importance to the convergence, the initial temperature T0 becomes
crucial to the convergence of the method. A high initial temperature will allow for
many iterations and a high probability of convergence, while a lower T0 has a lower
probability of convergence, but will be faster due to the fewer iterations [35, Ch.4].

Given a set A = {a1, a2, ..., a3} on which a cost function Energy : A → R is
defined, together with some perturbation function Perturb : A → A and a cooling
schedule cooling, the algorithm can be described as

As stated before the advantage of the Simulated Annealing algorithm is its ability
to avoid getting stuck in local minima, and also that it is easy to implement. The
drawbacks of the algorithm on the other hand is the difficulty that can arise with
choosing parameters such as the cooling rate α and the initial and end tempera-
tures T0 and Tmin [35, Ch.4].
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Algorithm 1: Simulated Annealing Algorithm
Input: T0, Tmin

a ← a0 ∈R A ⊲ Initiate current solution a as random element in A
T ← T0

E ← Energy(a) ⊲ Calculate energy of current solution

while T > Tmin do
a
′ ← Perturb(a) ⊲ Find neighbor solution a

′ to a
if E ≥ Energy(a′) then

a ← a
′

E ← Energy(a)
else

if v ≤ exp(E−Energy(a′)
T ), v ∈ U(0, 1) then

a ← a
′

E ← Energy(a)
end

end
T ← cooling(T )

end
Return a

2.11 Traveling Salesman Problem

The traveling salesman problem (TSP) is an NP-hard graph problem, where a
salesman travels between a number of cities. The salesman has to visit all of the
cities but also wants to travel the shortest distance possible. This is a graph prob-
lem where the visiting order between some nodes is to be determined such that
the distance is minimized.

The SA algorithm is a common method to use to solve this problem, where the
energy function is the total traveled distance [36]. The visiting order is initialized
as a random vector of the node names, where the index of the nodes in the vector
corresponds to when in the order the node is visited. The perturbation in the TSP
problem is typically implemented as interchanging two nodes in the visiting order,
and hence changing positions of two elements in the vector. A visualization of the
perturbation function in the SA algorithm applied to the TSP is shown in Figure
2.11.



Theory 31

Figure 2.11: A figure displaying the perturbation of a solution π
in the TSP case when solving the problem using the Simulated
Annealing algorithm.

2.12 Previous Research

To the best of the author’s knowledge, there are no previous works with the same
aim as this thesis. However, research in areas related to this work can be found.
For example, in information and communication theory a lot of research has been
done on finding sequences with low auto-correlation sidelobes.

2.12.1 Bi-Phase Codes

Barker codes and Minimum Peak Sidelobe (MPS) sequences are examples of se-
quences with low auto-correlation. These codes are bi-phase codes, meaning that
each element in the sequences equals 1 or −1. These codes are designed to have
minimal sidelobe levels in the auto-correlation function for a given code length N .
The longest known bi-phase Barker sequence is of length N = 13, and due to the
need for longer sequences other codes such as the MPS and MLS sequences were
found. These are similar to the Barker sequences but have less strict constraints on
the auto-correlation coefficients. The MPS sequences are designed to have auto-
correlation coefficients which are low relative to the length of the sequence [14, pp.
817-824]. There are other examples of similar bi-phase sequences that are even
longer than the before mentioned sequences, such as Maximum Length Sequences
(MLS) and Gold sequences [37].

2.12.2 Sparse Antenna Arrays

In the related field of antenna array design, there is much work to be found on the
subject of Sparse Antenna Arrays, in which Non-Uniform Linear Array (NULA) is
most related. The aperture of the radar antenna array affects the DOA estimation
since the distance between the first and last elements of the array will affect the
width of the spectrum used in DOA estimation [38]. In order to avoid aliasing in
the DOA spectrum, the minimal distance d between antennas in an antenna array
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is usually set to d ≤ λ
2 , but this small distance between antenna elements might

cause mutual coupling [39]. This close distance between the antenna elements
also implies that increasing the angular measurement resolution by increasing the
aperture can be very expensive, due to the many elements needed. A NULA array
design can be beneficial to use since it compared to a ULA allows for using fewer
antenna elements which decreases the risk of mutual coupling between antennas,
and NULAs are also able to detect more signal sources. An NULA array can be
designed in a number of ways, such as a Minimum Hole Array, or Minimum Re-
dundancy Array or Co-Prime Array [38].

One major advantage of the coprime array design is that there exists a closed
form expression for the placements of the elements assuming that the number of
elements is known. A coprime array is designed by choosing two relatively prime
integers P and Q, such that their only common divisor is 1 and where P < Q.
Using these integers two sets G containing indices are defined as

G1 = {p ·Q | p = 0, 1, 2, ..., 2P − 1} (2.44)
G2 = {q · P | q = 0, 1, 2, ..., Q− 1} (2.45)

from which indices of the element positions in the coprime array are found as

Gcoprime = G1 ∪G2 (2.46)

which is used to construct the coprime array Ωcoprime [38]. The advantage of
designing an antenna array in a coprime way is that the grating lobes of the
two arrays appears on different positions of the spectrum, meaning that there is
no constructive interference of sidelobes. Hence, the sidelobes are lower and the
dynamic range is increased [40].



Chapter 3
Method

In this section, some background to the problem is given based on the theory
presented in the previous chapter, along with some motivation as to why and
when the problem occurs, and the cases regarded in this thesis are presented.
From this background and theory, the problem is stated mathematically and then
the method used to solve the problem is introduced. Along with the method
used in the optimization problem, the different parameters and weights used are
displayed. The section also introduces the different sequences used in the thesis,
both sequences resulting from running the method and primitive sequences to be
used for comparison with the results. In the end of the chapter the alternative
“Coprime” method is introduced as well as an explanation of the Monte Carlo
simulations used in the thesis.

3.1 Background and Motivation

As stated in the introduction, the aim of the thesis is to arrange chirps in sparse
CPIs such that radars transmitting these CPIs at given relative times will coexist
in the sense of not causing mutual interference. To this end, assume two identical
FMCW radars are facing each other outside of each other’s field of view, covering
an area without reflective objects. Assume also that during some time interval
both of these radars transmit their CPIs containing no idle time, and that the
distance R is small enough such that the time the RF waves travel the distance
R can be omitted. From the theory section and equations (2.2) and (2.3) it is
known that the direct power density decreases with range as 1

R2 while the indirect
power density, where the signal has been reflected, decreases with range as 1

R4 .
This implies that the two radars facing each other at a range well outside each
other’s field of view are probable to interfere with each other. In order to not
degrade the CPI rate, and hence degrade the overall radar performance, Time Di-
vision Multiplexing is not considered. From the theory section “2.3 FMCW Radar
Signal Model” it is also known that FMCW radars sample incoming signals while
chirping, and hence the CPIs have to be designed in a sparse way, such that only
one of the radars transmits a chirp at a time.

Given two radars, the amount of interference between the two CPIs will depend
on how much each chirp in the first CPI overlap the chirps in the second CPI.

33
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Without loss of generality, the worst-case scenario of having the CPIs time-shifted
relative to each other only with discrete time steps with size equal to the chirp time
Tc is assumed. This way the interference-causing chirps overlap each other fully,
and cause maximal interference. This assumption allows for regarding the CPIs
in slow time only, and a CPI can then be represented by a sequence of ones and
zeros, where 1 represents a transmitted chirp, and 0 represents not transmitting a
chirp. The binary sequences which govern when the radars transmit their signals
are again denoted Ω, in which Ωi ∈ {0, 1}∀ i ∈ {1, 2, ...,M} for M chirps. In
the following, the superscript will denote different sequences, while the subscript
denotes the index in the sequence. For example a 1 on index n represents a CPI
with a chirp at the n:th position.

Many different problem configurations can be regarded, concerning a different
number of sequences, numbers of chirps, and overlap between sequences. In this
thesis, the following two cases were considered:

Homogeneous Case

The case when two radars transmit identical but time-shifted CPIs. This implies
that the sequence has to be able to overlap itself while not causing interference.

Heterogeneous Case

The case when three radars are allowed to transmit different and time-shifted
CPIs. However, it is assumed that the number of chirps in the sequences are equal.

Both of these cases are depicted in Figure 3.1. In each case, the CPIs are assumed
to have the same CPI time Tf = 512Tc, with Tc being the chirp time. This im-
plies that each CPI can contain a maximum of 512 chirps. It is also assumed that
the CPIs overlap each other in time with 103 chirps, which corresponds to about
20% of the CPI length. This overlap is depicted in Figure 3.1. In both cases,
the end goal was to find orthogonal sequences, in essence sequences that do not
cause mutual interference, and hence have 0 correlation at the lag corresponding
to an overlap of 103 chirps. To measure the interference between two sequences
the Correlation Sum (CS), introduced in the theory section in (2.42), was used.
For example, assume the two radars start to transmit according to the binary
sequences Ω(1) and Ω(2) at times t1 and t2 respectively, where both sequences are
of length 512 and t1 < t2. The interference between the sequences when t1 and t2

are set such that the CPIs overlap 103 lags is found as the correlation between the
sequences at lag 408 if the correlation is carried out in the order Corr(Ω(1)

, Ω(2)).
Hence, as a measure of the interference between the sequences Ω(1) and Ω(2) with
this overlap the Correlation Sum CS(Ω(1)

, Ω(2)
, 408) is used.

Due to the potential difficulties of making two radar systems transmit their CPIs
at exact times and preserving an exact overlap of 103 chirps, allowing the CPIs to
drift relative to each other might be an important feature. To allow for this, the
CPIs have to be designed such that a small drift does not cause interference. A
CPI designed this way will be referred to as a CPI, or sequence, with a correlation
buffer, which means that the sequences are allowed a relative time drift of Tc be-
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Figure 3.1: A figure depicting the different ideas of achieving co-
existing radars. At the top the time division idea is depicted,
followed by the homogeneous case, and the heterogeneous case.

tween the CPIs in either direction, without causing interference. In practice, this
corresponds to having a cross-correlation equal to zero at lag 408, but also at lag
407 and 409.

From the theory section, it is known that shortening the sample time will result
in a lower velocity resolution vres, and hence it is desirable to keep the first and
last chirps in each CPI. To preserve the vmax properties of a uniform CPI it is
also needed to have at least two consecutive chirps in the CPI. Since the CPIs
are to be designed in a sparse way to reduce interference, some chirps have to be
removed in order to avoid overlapping chirps between the CPIs. From the theory
section on Integration Gain, it is known that the Integration Gain is proportional
to the number of chirps used in a CPI. As such, removing chirps will decrease the
integration gain and thus risk increasing the Peak Sidelobe ratio. Getting higher
sidelobes relative to the mainlobe causes a risk of getting worsened detection abil-
ities, as explained in the section “2.5.4 Constant False Alarm Rate”. At the same
time, as introduced in section “2.9.2 Full Width at Half Maximum” the width of
the mainlobe will affect the resolvability of two peaks, as narrower peaks having
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a smaller FWHM value are easier to resolve. It is therefore desirable for the se-
quences to have as small PSR and FWHM as possible due to the implications
these metrics have on the frequency spectrum and thus on the detection abilities.

3.2 Problem Statement

The problem can be regarded as consisting of 2 parts, where part one, P1, concerns
finding the optimal ordering of k number of ones and the rest zeros in a 512-long
sequence. The other part, P2, concerns finding the optimal number of ones to use
in the sequence. Defining a vector of weights w and a vector of figures of merit of
some sequences Ω(1) and Ω(2) at some lag or lags τ as f(Ω(1)

,Ω(2)
, τ) defined by

f(Ω(1)
,Ω(2)

, τ) =
'
CS(Ω(1)

,Ω(2)
, τ) PSR(Ω(1)

) FWHM(Ω(1)
)

(
(3.1)

and w =

'
w1 w2 w3

(
(3.2)

the optimization problem can be described as

P2 =

*
++,

++-

minimize
k

P1(k)

subject to
k ∈ {1, 2, ..., 512}

(3.3)

P1(k) =

*
+++++++++,

+++++++++-

minimize
Ω

w · f⊺(Ω(1)
,Ω(2)

, 408)

subject to
||Ω||1 = k

Ωm ∈ {1, 0},m ∈ {1, 2, ...,M}
Ω1 = 1, ΩM = 1

∃i ∈ {1, 2, ...,M} : Ωi = Ωi+1 = 1

(3.4)

where

• Ω is defined as in the theory section, which is an integer sequence of ones
and zeros. In P1 only the order of the elements in Ω is changed, while the
number of non-zero entries in Ω is changed in P2.

• ||Ω||1 is the L1 norm, measuring the number of ones in Ω. Thus there is a
constraint that the number of ones used in the sequence should be k, which
is given as input to the problem.

• Ω1 = 1 and ΩM = 1 puts constraints on the endpoints of the sequence,
in order to preserve the length of the sequence and thereby the velocity
resolution, as seen in (2.23).

• ∃i ∈ {1, 2, ...,M} : Ωi = Ωi+1 = 1 puts the constraint that the sequence has
to have at least one pair of consecutive chirps, which makes ∆tNUS = ∆tc

in (2.37) which gives vmax,NUS = vmax.
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• k is limited to the interval [1,512], since 512 is the length of Ω.

In the homogeneous case, using the same sequence repeatedly is considered, and
hence Ω(1)

= Ω(2) in P1(k). In the heterogeneous solution on the other hand this
is not a strict constraint, and Ω(1) and Ω(2) are allowed to be different. Note that
the PSR is negative by definition, and given the introduced definition of the cost
function

w · f⊺(Ω(1)
,Ω(2)

, 408) (3.5)

a sequence will benefit from having a PSR value as negative as possible, and val-
ues of the CS and FHWM close to 0. In other words, sequences having as few
interfered chirps as possible while having a spectrum with a high dynamic range
and narrow mainlobe will be premiered by this cost function.

By solving problem P2 it was expected that a sequence with the optimal number
of zeros organized in an optimal way would be found. The expected sequence
would be optimal in the sense of having desirable spectral qualities while not caus-
ing interference at a 103-chirp overlap would be returned. In order to be able to
compare this optimal sequence some primitive sequences were produced, which are
designed only to have 0 correlation at one or more lags. Note that the problem of
using a correlation buffer is formulated in the same way but with the lag number
408 replaced by the list of lags [407, 408, 409]. The sequences used are described
in short below, and introduced more thoroughly in the beginning of chapter “4
Results”.

Uniform sequence

A uniform sequence of length 512 exclusively consisting of ones, hence representing
a uniform chirp burst.

Primitive sequence without buffer

A sequence defined to have 0 correlation at exactly lag 408 and −408 using as few
zeros as possible.

Primitive sequence with buffer

A sequence defined to have 0 correlation at exactly lags 407 to 409 and −409 to
−407 using as few zeros as possible.

Primitive sequence 2

A sequence defined to have 0 correlation at exactly lag 408 and −408, using 120

zeros.

Homogeneous case sequence without buffer

The optimal sequence found by the Simulated Annealing algorithm solving the ho-
mogeneous problem, using the same sequence repeatedly, by having 0 correlation
at lags ±408.



38 Method

Homogeneous case with buffer

The optimal sequence found by the SA algorithm which solves the homogeneous
problem, using the same sequence repeatedly, by having 0 correlation at lags 407

to 409 and −409 to −407.

Heterogeneous case sequence without buffer

The optimal sequence found by the SA algorithm which solves the heterogeneous
problem, using different sequences, by having 0 correlation at lag ±408.

Heterogeneous case sequence with buffer

The optimal sequence found by the SA algorithm which solves the heterogeneous
problem, using different sequences, by having 0 correlation at lags 407 to 409 and
−409 to −407.

3.3 Simulated Annealing

To solve the optimization problems posed in the previous section, the Simulated
Annealing algorithm, presented in Algorithm 1, was used. Since the problem is di-
vided into two parts also two algorithms were used, where one algorithm solves the
problem of ordering the sequence in an optimal way in P1, and a second algorithm
finds the optimal number of ones to use in the sequence in P2. The algorithms
were implemented a bit differently in the heterogeneous and homogeneous case
and hence both algorithms are explained.

3.3.1 Homogeneous solution algorithms

Again the notation N×M is used for the matrix with N rows and M columns
with all entries being 1. The algorithm used to solve P1 in the homogeneous case
formulated above is defined in Algorithm 2. The algorithm begins by initiating
a solution with k zeros placed randomly in a 512-long vector. The energy E,
in essence the cost function, of this solution is evaluated and compared with the
energy E

′ of a neighboring solution found through the perturbation function. If
the neighboring solution has a lower energy it is accepted as the current solution.
However, if the neighboring solution has a higher energy than the current solu-
tion it is accepted anyways with a temperature-dependent probability exp(

E−E′

T ).
The temperature is decreased according to the cooling schedule, and the process
is repeated until the temperature reaches the minimal temperature Tmin.

In this algorithm, the cooling schedule is defined as Tn+1 = α · T where α = 0.999

to make the method converge with high probability, at the cost of being quite slow.
The energy function is defined as w ·fT (Ω,Ω, 408) with w and f as defined in (3.1),
and effectively this is a weighted sum of the figures of merit of the sequence Ω and
the weights specified in w. The weights used in the energy function are given by
Table 3.1. To denote that element a is chosen at random from the set b in the
algorithm the notation a ∈R b is used. The perturbation function that finds a
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Algorithm 2: Homogeneous Solution SA Algorithm P1

Input: k, TP1
0 , TP1

min

Ω ← 1×512 ⊲ Initialize as vector with ones
Ωai = 0, ai ∈R {1, 2, ..., 512} ∀ i = 1, 2, ..., 512− k

T ← T
P1
0

E ← w · fT (Ω,Ω, 408) ⊲ Calculate current energy

while T > T
P1
min do

Ω′ ← Perturb(Ω) ⊲ Find new solution Ω′

if E ≥ w · fT (Ω′
,Ω′

, 408) then
Ω ← Ω′

E ← w · fT (Ω,Ω, 408)
else

if v ≤ exp(
E −w · fT (Ω′

,Ω′
, 408)

T
), v ∈ U(0, 1) then

Ω ← Ω′

E ← w · fT (Ω,Ω, 408)
end

end
T ← 0.999 · T

end
Return Ω

neighbor solution in the SA Algorithm used in the homogeneous case Algorithm 2
is described in Algorithm 3.

In problem P2 the search space is limited to the integer interval k ∈ {3, 4, ..., 512},
where k denotes the number of ones to use in the P1 optimization. To find the
optimal k an exhaustive search algorithm was used, which iteratively evaluated
P1(k) ∀ k ∈ {3, 4, ..., 512} and returned the k which minimized P1(k). Essentially
the solution was found by evaluating Algorithm 2 for some number of ones k, and
doing this both finds what number of ones to use in the sequence and how the
sequence is to be organized to be considered optimal with regards to the energy
function. The interval to which k is bounded starts at 3 since this is the minimal
number of ones needed to fulfill the constraints posed in 3.4. However, values of k
close to 0 and 512 did not give any interesting solutions since a small value k gives
fewer zeros than needed to get 0 cross-correlation. At the same time, too high k

values gives too bad spectral qualities. Hence, in practice, k values were chosen in
the interval [250, 450] to make the solution converge faster.
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Algorithm 3: Perturbation function used in Algorithm 2
Perturb(Ω):

Ω′ ← Ω ⊲ Create copy Ω′ of sequence Ω
G ← indices where Ω = 1 excluding first and last index
H ← indices where Ω = 0
g

R←− G ⊲ Draw g uniformly from G

h
R←− H ⊲ Draw h uniformly from H

Ω′
g ← 0 ⊲ Replace element at index g with 0

Ω′
h ← 1 ⊲ Replace element at index h with 1

return Ω′

Table 3.1: Table displaying the weights used in w when optimizing
P1 in the Homogeneous solution.

Homogeneous Solution Weights

Sequence CS PSR FWHM

Without
buffer 2.3 4.5 0.25

With
buffer 4.8 4.6 0.25

3.3.2 Heterogeneous solution algorithms

In the heterogeneous solution, three sequences allowed to be different were used.
Again the algorithm used was a Simulated Annealing algorithm, but since the se-
quences now were allowed to be different some changes had to be made compared
to the homogeneous case. The cooling schedule was defined just as in the homo-
geneous case algorithm, as Tn+1 = α ·T where α = 0.999. The energy function on
the other hand was implemented differently since there in this case is more than
one sequence. The energy is instead calculated as the sum of the energies of each
sequence, as described in Algorithm 5. Thus in the heterogeneous case algorithm,
described in Algorithm 4, compared to the homogeneous case dito, each of the
three sequences was updated one at a time, but the energy was evaluated using
the energy of all the solutions combined. As seen in the description of the energy
function, in Algorithm 5, it works by iterating over all sequences and summing
up their costs. Another difference to the homogeneous case method is how to
handle the correlation. Now the CPIs overlap each other in consecutive pairs, for
example CPI 1 overlaps CPI 2, and CPI 2 overlaps CPI 3, according to how the
heterogeneous case has been defined. Hence, the correlation measure is calculated
between each consecutive pair of sequences in the order described in the hetero-
geneous case. Due to this, in the energy function, the i and j indices are always
consecutive pairs, with a periodicity of 3, for example (1, 2) → (2, 3) → (3, 1).
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How the correlation is used in the energy function is also shown in Algorithm 5.

Algorithm 4: Heterogeneous Solution SA Algorithm P1

Input: k, T0, Tmin,
S ← empty list ⊲ List to fill with sequences
for i in nbr_sequences do

Ω ← 1×512 ⊲ Initialize one sequence
Ωai = 0, ai ∈R {1, 2, ..., 512} ∀ i = 1, 2, ... , 512− k

S.insert(Ω)
end

T ← T0

E ← Energy(S)

while T > Tmin do
for Ω in S do

temp ← copy(S)
Ω′ ← Perturb(Ω)
replace Ω with Ω′ in temp

if E ≥ Energy(temp) then
S ← temp

E ← Energy(temp)
else

if v ≤ exp(E−Energy(temp)
T ), v ∈ U(0, 1) then

S ← temp

E ← Energy(temp)
end

end
end
T ← 0.999 · T

end
Return S

It is assumed that each sequence in the heterogeneous case uses the same amount
of ones in the sequence, and hence to solve the P2 problem an exhaustive search
algorithm is used again. Thus, the only difference between solving the P2 problem
in the heterogeneous and homogeneous case was found in the algorithm solving
the P1 problem. The weights used in the heterogeneous case are found in Table 3.2.

The perturbation in the algorithms solving P1 was inspired by the TSP problem
perturbation, where the structure of the problem makes the definition of “neighbor
solution” difficult to interpret. Hence, in the same way as in the TSP problem,
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Algorithm 5: Heterogeneous case P1 Energy function
Energy:
Input: S ⊲ Input list with sequences
energy=0
for i in {1,3} do

j=mod(i, 3)+1 ⊲ Find consecutive indices
energy + = w · fT (Si, Sj , 408) ⊲ Add energy of seq. Si and Sj

end
return energy

Table 3.2: Table displaying the weights used in w when optimizing
P1 in the Heterogeneous solution.

Heterogeneous Solution Weights

Sequence CS PSR FWHM

Without
buffer 3.2 4.2 1/4

With
buffer 6.2 4.2 1/4

a neighboring solution is chosen by switching the position of two elements with
different values. Since the algorithm initializes the sequences as random sequences
with k ones, and these only are re-ordered, the algorithm preserves the constraint
on using a constant amount of ones when solving P1. Both when setting some
random elements to 0 when initializing the sequences, and when choosing between
elements to switch in the sequences in the perturbation, the first and last elements
are excluded from the set of possible elements to choose. Hence these entries
remain equal to 1 throughout the optimization process, and thus the algorithms
obey the third constraint presented in (3.4).

As explained in the theory section, choosing optimization parameters to use in the
Simulated Annealing algorithm is notoriously hard. The cooling function along
with the temperature parameters, for example Tmin and T0, was chosen to guar-
antee a slow convergence and many iterations when solving the P1 problem. This
was due to the size of the problem, where a sequence of 512 elements able to take
2 values each can be organized in 2

512 ways. To get this slow convergence the
Tmin and T0 were set such that there was a large difference between them, and the
cooling parameter α was set close to 1 to make the temperature decrease between
each iteration small. The weight of the cost function Correlation Sum was set
sufficiently high to generate results with no correlation. This was done since no
solution with any overlapping chirps in the CPIs was wanted, as any coherent in-
terference invalidates the information in the CPI, rendering the frequency spectral
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Table 3.3: Table displaying the optimization parameters used when
optimizing P1 in both the Homogeneous and Heterogeneous
solution, with and without correlation buffer.

Heterogeneous Solution
Optimization Parameters

Parameter Value

T
P1
min 10−10

T
P1
0 103

qualities irrelevant. The exact weights used were found empirically, by iteratively
running the algorithms and evaluating the convergence and the results. When a
solution was found without any correlation at lag 408, and having a low PSR and
FWHM relative to other simulations, it was deemed as a good configuration of the
weights.

3.4 Coprime method

To be able to compare the simulated annealing method with some already existing
similar method, the coprime method of designing sparse antenna arrays was used,
which was introduced and explained in the theory section and in [38]. The issue
of designing sparse antenna arrays, as done with the coprime method, is similar
to the problem posed in this thesis. In the sparse antenna array case, a number
of antennas are to be placed at a uniformly space grid, and the aperture of the
array affects the resolution of the DOA estimate. In this thesis, the problem in-
stead consists of placing chirps on a uniform time grid, where the time difference
between the first and last chirp affects the resolution of the velocity estimate.

The comparison was conducted by first generating a sparse time CPI using the
coprime method and comparing this coprime sequence with the optimal sequence
found using Simulated Annealing. To make such a comparison reasonable, coprime
sequences with about the same length as the optimal sequences were found. The
length of a coprime (P,Q) sequence is given as P ·Q, and the condition that P and
Q have to be coprime gives the condition GCD(P,Q) = 1. Suitable coprime num-
bers were found by iterating P and Q over all numbers in the interval [1,512] until
the conditions P · Q ≈ 512 and GCD(P,Q) = 1 were met. The closest sequence
length for which reasonable results were found was length 513, where 4 different
possible sequences were found.

It was decided that the fairest comparison would be to compare the optimal
sequence with the coprime sequence constructed with (P,Q) = (2, 171), since
this coprime sequence did not have the same aliasing issues as many other co-
prime sequences with about the same length. After generating the sequence using
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(P,Q) = (2, 171) and the method proposed in [38] the spectral qualities and the
correlation of the coprime sequence were found.

3.5 Monte Carlo Simulations

Due to the method used having stochastic parts, where there is a possibility of
accepting a worse solution, Monte Carlo methods were used to find some statistical
measures of the performance of the method, such as the variance of the number
of zeros used in the sequences. Monte Carlo methods were also used to evaluate
the effect on the vres property of a sparse CPI sequence.

To approximate the expected value and variance of the number of zeros used in
a sequence and the energy state of the final solution, the method was run 500
times, from which data on the number of zeros used and the energy of the se-
quence were gathered. The descriptive statistics were thereafter calculated using
standard methods of calculating sample mean and variance.

To find the velocity difference limit below which two targets’ corresponding spec-
tral peaks can not be resolved as 2 peaks with unit probability, Monte Carlo meth-
ods were used. This is a way of measuring the vres resulting from transmitting
according to one of the found sequences. The Monte Carlo method is used since
the initial phase of the transmitted signals has to be varied randomly to achieve
realistic results. The sought-after value is the expected probability that two peaks
in the slow time spectrum can be separated at a given velocity difference. To this
end, two targets were simulated at the same range but with a velocity difference.
This was done 4000 times for each velocity difference ∆v with an added random
phase to each iteration, and the expected probability of being able to separate
two peaks was calculated using the sample mean. This was done for each velocity
difference in a certain range, to find at which velocity difference the system almost
surely would be able to separate two peaks.

Some noise was added to the signals of the simulated targets, such that the mean
SNR was 18.015 dB, with a standard deviation of 2.67 dB. A point in the spectrum
was classified as a peak if its amplitude was 10 dB above the mean noise level and
if its two neighboring points were smaller than the point itself. There was also a
constraint put on the values of the curve connecting two peak candidates. Two
points located within a predefined frequency range, 10 dB above the mean noise
level and with neighbors with smaller amplitudes than the points themselves were
deemed separate peaks only if the curve connecting the points at some point was
-3 dB smaller than the largest peak. If this condition is not met, the highest of the
two is classified as a peak and the smallest of the two is not. This classification was
inspired by the Rayleigh-Resolution [15, p.785], and a figure displaying when two
peaks can be separated or not is displayed in Figure 3.2. The phase was randomized
in each iteration to avoid having the sources coherent, which otherwise would cause
a deterministic interference between the spectra. Due to this added randomness,
the Monte Carlo method was considered suitable.
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Figure 3.2: Figure showing how a peak in a logarithmic (dB) power
spectrum would be classified. In the upper plot, the curve con-
necting the two possible peaks is never lower than the solid red
line, and hence the points are classified as one peak. The blue
vertical lines show the frequency range in which two points can
be classified as the same peak, and the red dots represents the
points classified as peaks.

3.5.1 Implementation

The algorithm and the Monte Carlo simulations were implemented in Python, us-
ing the Numpy and SciPy packages. When running the algorithm we continuously
get a sequence of ones and zeros, which spectral qualities are to be determined.
To this end, the power spectrum of the sequence is calculated by first multiply-
ing the sequence with a 512-long Hann window found using the NumPy function
numpy.Hann(512). After the window was applied to the sequence its frequency
content was found by first zero padding the end of the signal with 1536 zeros and
then applying a 2048-point DFT to it by using the numpy.fft.fft(signal,2048)
function. The sequence was zero-padded with 512 zeros added to the end of the
sequence to decrease straddle loss, while keeping the signal length as a power of
2, allowing for using the FFT implementation of the DFT. Having the frequency
content of the signal the power spectrum along with the FWHM and PSR could
be calculated.
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Chapter 4
Results

This section is divided into four parts, where the first part presents the sequences
found when running the Simulated Annealing algorithm, along with the sequences’
power spectra, correlation plots, and figures of merit, in both concerned cases with
and without buffering lags in the correlation functions. In the second part, the
results of using the coprime method of generating sequences are presented. In
the third part, Monte Carlo simulations of the velocity resolutions are shown, and
lastly some results of the convergence of the method are also presented.

4.1 Simulated Annealing Results

In this subsection the optimal sequences found by the Simulated Annealing al-
gorithm are presented along with their resulting power spectra and correlation
plots, as well as tables presenting the sequences’ figures of merit. The subsection
begins with displaying the values of the figures of merit of each sequence, both
the uniform sequence, the primitive sequences, and the sequences found running
the Simulated Annealing Algorithm and using the coprime method. After these
tables, barcode plots of the actual sequences are displayed along with their nor-
malized crosscorrelation and power spectrum plots. The spectra in this section are
presented as normalized power spectra, where each has been normalized by the
maximum amplitude of the spectrum of a uniform sequence. The mainlobe and
sidelobe dB values are also given for the normalized spectra.

The first plot presented in Figure 4.1 displays the primitive sequences where they
are visualized as barcode plots. Despite their similarities, the first and second plot,
corresponding to sequences without and with correlation buffer respectively, are
actually slightly different as the white areas in the second plot are 2 lags wider
than in the first plot. This is not visible here, but looking at the correlation plots
further on will make the difference clear. In the third barcode plot in the figure,
a number of zeros are inserted in the middle of the sequence in order to make the
number of zeros in the “Primitive 2” sequence equal the number of zeros in the
optimal sequence without a correlation buffer in the homogeneous case.
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Table 4.1: Table displaying the figures of merit of the uniform and
coprime sequence and the primitive and optimal homogeneous
case sequences. Due to table size limitations "Homogeneous"
is abbreviated to "Hom", and "With Buffer" is abbreviated to
"w.b".

Category Sequence PSR FWHM MSA1 MA2 Nbr
Name (dB) (rad/s) (dB) (dB) Zeros

Uniform Uniform −32.2 0.0366 −32.2 0 0

Primitive
seqs.

Primitive −20.9 0.0292 −21.7 −0.8 104
Primitive w.b3 −20.7 0.0278 −21.5 −0.8 107
Primitive 2 −15.4 0.0282 −16.8 −1.4 120

Optimal
seqs.

Hom. −32.6 0.0225 −33.4 −0.7 120
Hom. w.b 3 −31.8 0.0235 −32.5 −0.8 127

Coprime(P,Q) Coprime(2,171) −18.9 0.0272 −26.6 −7.8 340

1 Max Sidelobe Amplitude
2 Mainlobe Amplitude
3 With Buffer

Table 4.2: Table displaying the figures of merit of the Heteroge-
neous case sequences. The upper half of the table displays the
sequences designed with a correlation buffer, and the lower part
displays the same figures of merit of the sequences without this
buffer.

Sequence PSR FWHM MSA1 MA2 Nbr
Name (dB) (rad/s) (dB) (dB) Zeros

With
Buffer

Seq. 1 −27.4 0.0232 −28.2 −0.8 135
Seq. 2 −31.7 0.0271 −32.5 −0.9 135
Seq. 3 −32.4 0.0243 −33.2 −0.8 135

Without
Buffer

Seq. 1 −33.1 0.0231 −33.9 −0.7 122
Seq. 2 −32.2 0.0246 −33.0 −0.8 122
Seq. 3 −32.9 0.0220 −33.7 −0.8 122

1 Max Sidelobe Amplitude
2 Mainlobe Amplitude
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Figure 4.1: Figure showing barcode plots of the three primitive
sequences used, where black lines correspond to 1 and white
lines correspond to 0.

4.1.1 Homogeneous Case Results

The homogeneous case sequences were designed both with and without a corre-
lation buffer and hence this section, presenting the results of the homogeneous
sequences, is divided into two parts where the sequences with and without buffer
are handled separately. The figures of merit of these sequences can be found in
Table 4.1. In the following the power spectra and correlation plots of the sequences
are presented along with barcode plots displaying the actual sequences.

Without Correlation Buffer

Here the results of the homogeneous case sequences without a correlation buffer
are presented. The sequence found optimal uses 120 zeros which are organized as
shown in Figure 4.2 as a barcode plot where each black line represents a 1 in the
sequence, and a white line represents a 0. It is displayed in Figure 4.5 that the
auto-correlation is 0 at lag 408, which means that the Simulated Annealing method
successfully found a sequence that would not cause interference when overlapping
itself with 103 lags. It can also be seen in Table 4.1 that the absolute PSR value
of the found sequence is slightly larger than the absolute PSR of the uniform
sequence, and hence this optimal sequence has a slightly better spectral dynamic
range than both the uniform and the primitive sequence. This can also be observed
in Figure 4.3 where the maximum sidelobe amplitude of the optimal sequence is
significantly lower than the corresponding maximum sidelobe amplitude of the
primitive sequence. The FWHM of this optimal sequence is slightly smaller than
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Figure 4.2: Figure showing a barcode plot of the optimal sequence
for the homogeneous case without a correlation buffer, where
black lines correspond to 1 and white lines correspond to 0. The
upper plot shows the actual sequence and the lower plot shows
the 103-point overlap where it can be seen that there is never
more than one 1 placed at the same time.

that of the primitive sequence without a correlation buffer, but larger than that of
the uniform sequence. Note that for this sequence two spectral plots are presented,
one comparing the optimal and uniform sequence with the ordinary primitive
sequence, and one instead comparing these with the “Primitive 2” sequence, seen
in Figure 4.4.

With Correlation Buffer

Here the homogeneous case sequences with a correlation buffer are shown. This
sequence is designed to have 0 correlation at 3 lags and the algorithm found it
optimal to use 127 zeros to achieve this, as seen in Table 4.1. As seen both in
this table and Figure 4.8, the algorithm succeeds in finding a sequence with 0
correlation at lags 407-409 and hence there are no interfered chirps at overlaps of
102, 103, or 104 chirps. The absolute PSR value of this sequence is a bit lower
than in the case of having no correlation buffer, but is still better than the absolute
PSR of the primitive sequence. The FWHM of this sequence is close to that of
the optimal homogeneous sequence without a correlation buffer.
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Figure 4.3: Figure showing the power spectrum of the Uniform,
Primitive, and optimal sequence in the homogeneous case with-
out correlation buffer.

Figure 4.4: Figure showing the power spectrum of the Uniform,
Optimal and the "Primitive 2" sequence in the homogeneous
case without correlation buffer.
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Figure 4.5: Figure showing the auto-correlation plot of the Uniform,
Primitive and the Optimal sequence in the homogeneous case
without correlation buffer. Only half of the auto-correlation re-
sults are presented, due to the symmetry of the autocorrelation
function. The zoomed-in part of the plot clearly shows that the
correlation at lag 408 is 0.

Figure 4.6: Figure showing a barcode plot of the optimal sequence
for the homogeneous case with a correlation buffer, where black
lines correspond to 1 and white lines correspond to 0. The
upper plot shows the actual sequence and the lower plot shows
the 103-point overlap where it can be seen that there is never
more than one 1 placed at the same time.
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Figure 4.7: Figure showing the power spectrum of the Uniform,
Primitive and the Optimal sequence in the homogeneous case
with correlation buffer.

Figure 4.8: Figure showing the auto-correlation of the Uniform,
Primitive and the Optimal sequence in the homogeneous case
with correlation buffer. Only half of the auto-correlation results
are presented, due to the symmetry of the autocorrelation func-
tion. The zoomed-in part of the plot shows that the correlation
at lags 407-409 is 0.
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Figure 4.9: Figure showing barcode plots of the three optimal se-
quences in the heterogeneous case without a correlation buffer,
where black lines correspond to 1 and white lines correspond to
0.

4.1.2 Heterogeneous Case Results

Here the results of the heterogeneous case sequences are presented, where three
different sequences have been optimized to solve the problem. For each triplet of
sequences the figures of merit are presented, along with the correlation plots and
power spectra. The correlation plots shown are the correlations of each consecutive
pair of the sequences, in accordance with the heterogeneous case description and
Figure 3.1.

Without Correlation Buffer

The heterogeneous case sequences without correlation buffers were found optimal
when using 122 zeros, as seen in Table 4.2. In Figure 4.10 it is seen that the
correlation equals 0 at the relevant lag, and hence there are no interfered chirps
at a CPI overlap of 103 lags between each of the sequences. Note that this is
true for overlaps in the order shown in the method section for the heterogeneous
case. From Table 4.2 it can be seen that the PSR values of the sequences found in
the heterogeneous case generally is close to the PSR of the sequences found in the
homogeneous case, and still notably lower than the PSR of the primitive sequences
and on par with the PSR of the uniform sequence. The FWHM is close to that
of the homogeneous solution, and each of the sequences in the heterogeneous case
without a correlation buffer is generally similar to each other.



Results 55

Figure 4.10: Figure showing the cross-correlation between the three
optimal sequences in the heterogenous case using no correlation
buffer. As seen in the zoomed-in part of the plot, the correlation
at lag 408 is 0 in each case.

Figure 4.11: Figure showing the Power Spectrum of the three se-
quences along with the uniform sequence found in the hetero-
geneous case without correlation buffer.
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Figure 4.12: Figure showing barcode plots of the three optimal
sequences for the heterogeneous case with a correlation buffer,
where black lines correspond to 1 and white lines correspond to
0.

With Correlation Buffer

In the heterogeneous case, the sequences designed with a correlation buffer were
found optimal when using 135 zeros, and it is seen in Table 4.2 that the PSR values
of the sequences in the heterogeneous case with a correlation buffer are similar to
the PSR values of the sequence in the corresponding homogeneous case, except
for sequence 1 in the heterogeneous case with a buffer which has a slightly larger
PSR value. This is also true for the FWHM values which are about the same
size in both cases. Again, the method successfully has found sequences with no
correlation at lags 407-409, which can be seen in Figure 4.12.

4.1.3 Descriptive Statistics

To get some descriptive statistics on the performance of the method, the homoge-
neous algorithm without buffer was run 500 times, from which the 95% confidence
interval displayed in Table 4.3 on the number of zeros used was found. The lower
and upper confidence bound CIl and CIu respectively were found using the ex-
pected value 120.474 and the standard deviation 3.099. A confidence interval for
the energy of the final solution was also found as displayed in Table 4.4 where the
expected value was found as −152.666 and the standard deviation 1.035.
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Figure 4.13: Figure showing the cross-correlation between the three
optimal sequences in the heterogeneous case with a correlation
buffer. As can be seen in the figure the cross-correlation is 0 at
the specified lag 408 and the surrounding lags 407 and 409.

Figure 4.14: Figure displaying the Power Spectrum of the three
optimal sequences in the heterogeneous case with a correlation
buffer.
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Table 4.3: Table displaying a 95% confidence interval of the number
of zeros k used in the final solution found when running the
algorithm. The confidence interval is based on 500 iterations of
the algorithm.

CIl E(k) CIu

120.201 120.474 120.747

Table 4.4: Table displaying a 95% confidence interval of the energy
of the final solution found when running the algorithm. The
confidence interval is based on 500 iterations of the algorithm.

CIl E(energy) CIu

-152.757 -152.666 -152.576

4.2 Coprime Method

In this section results from using the coprime method are presented. Coprime
sequences of length 513 were found since these were close in length to the ones
found by using Simulated Annealing. The similarity in length was needed to en-
able comparison between the methods.

The pairs of coprime integers P and Q found, which through the coprime method
achieve sequences of length 513, are presented in Table 4.5. In Figure 4.15 the
power spectrums resulting from applying the FFT to each coprime sequence are
presented. Before applying the FFT to the sequences, each sequence has been
multiplied with a Hann window. In these spectra, the power spectrum resulting
from the FFT of the homogeneous case optimal sequence without correlation buffer
is included as well, seen as the red curve. In the power spectrum it can be seen that
for each coprime integer pair, except for (P,Q) = (2, 171), aliasing of the spectral
peak occurs at lower angular frequencies than compared to the frequency peak in
the power spectrum of the optimal sequence. Further on the power spectrum of
sequence (P,Q) = (2, 171) is displayed in Figure 4.15 is plotted again but on its
own in Figure 4.16, in which it can be noted that the peak at the far right end of the
spectrum, close to π at the frequency axis, is not an aliased peak but is instead
a sidelobe. Note that the sidelobes of the coprime sequence are notably higher
than those of the optimal solution and that the mainlobe has quite low power,
due to the very few ones compared to the number of ones in the optimal sequence.
Lastly, in Figure 4.17 the auto-correlation of the coprime sequence designed with
(P,Q) = (2, 171) is displayed, where it can be seen that the correlation fluctuates
between 0 and 1 after about lag 350, and notably the correlation is 0 at lag 408.
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Table 4.5: A table displaying the pairs of coprime integers P and Q

used to construct coprime arrays.

Pair P Q

1 2 171
2 5 57
3 10 27
4 14 19

Figure 4.15: Figure displaying the Power Spectrum of the four se-
quences found using the coprime method(blue), along with the
homogeneous case optimal sequence without buffer(red).
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Figure 4.16: Figure displaying the Power Spectrum of the P = 2

Q = 171 sequence found using the coprime method.

Figure 4.17: Figure displaying the Auto-Correlation of the P = 2

Q = 171 sequence found using the coprime method, along with
the auto-correlation of the homogeneous case optimal sequence
without buffer.
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Table 4.6: Table displaying the minimum velocity difference at which
the probability of detecting 2 targets equals 1 for the primitive,
short and homogeneous optimal sequence.

Without
Buffer (∆v)

With Buffer
(∆v)

Uniform 0.0052 0.0052
Optimal 0.0056 0.0058
Primitive 0.0062 0.0063
Short 0.0066 0.0067

4.3 Monte Carlo Simulations

In this subsection, Monte Carlo simulations of the velocity resolution are presented
to show how the probability of separating two targets with slightly different ve-
locities changes depending on the sequence used when transmitting chirps. The
sequences found by the simulating annealing algorithm are tested along with the
primitive sequence as well as a uniform sequence which is shorter than the optimal
sequences. Remember that the primitive and optimal sequences are of length 512,
and that it is assumed that the overlap between the sequences is 103 lags. The
short sequence is an alternative to having this overlap, in essence removing the 103
lags that overlaps, and hence getting a shorter sequence but without any overlap
and interference. Thus, the short sequence is of length 409.

In Table 4.6 the minimal velocity difference ∆v needed to resolve two objects al-
most surely is shown. These values correspond to the values at the x-axis in Figure
4.18 where the curves first reach P (resolved) = 1. In both the table and the figure
it is seen that there is no notable difference in the achieved velocity resolution
when using a correlation buffer or not. However, the achieved velocity resolution
differs between the sequences, where the optimal sequences can separate two tar-
gets with a smaller velocity difference than the primitive and short sequences.

In the heterogeneous case, the corresponding results have been calculated for each
of the three sequences with and without a correlation buffer. As can be seen in
Figure 4.19 there is no substantial difference between the performances of the dif-
ferent sequences regardless of whether using the correlation buffer or not. Each of
the sequences performs equally well in resolving 2 targets as the optimal sequence
in the homogeneous case.

These results are based on simulated data with added noise and with the as-
sumption that the two targets are located at the same radial range. In a real-life
scenario, the actual velocity differences needed will probably differ from these re-
sults, depending on for example the receiver noise figure. Hence, the key takeaway
from this Monte Carlo simulation is not the exact values of the velocity differences



62 Results

Figure 4.18: Figure showing the probability of detecting 2 targets
as a function of the velocity difference between these targets
when transmitting chirps according to the different sequences
in the homogeneous case.

Figure 4.19: Figure showing the detection probability as a function
of the velocity difference ∆v of the three optimal sequences
found in the heterogeneous case
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needed to separate the peaks, but rather shows that there will be a difference in
velocity resolution when transmitting chirps according to the sequences presented.

4.4 Method Convergence

In this section, some results of the P1 method used to find the optimal order of
a given number of ones and zeros are presented. In Figure 4.20 the energy of the
P1 Simulated Annealing method, introduced in the method section, can be seen.
Obviously the energy decays and converges to some limit where the method can-
not find a solution with a lower energy state. From this plot, it is also seen that
the method is more prone to accepting worse solutions during the early iterations
than during the later iterations, which is expected and is a result of the method’s
cooling schedule. Finally, in Figure 4.21 one example of the objective function in
P2 is shown, where the energy resulting from the P1 Simulated Annealing is plot-
ted for each number of zeros. Due to the weights set, where the correlation has a
high weight, the energy is high for a low number of zeros where it is impossible for
the P1 Simulated Annealing method to find a solution with 0 correlation at the
specified lag. For some number of zeros, about 120, the P1 Simulated Annealing
is able to find solutions with 0 correlation at the specified lag. For solutions using
more than 120 zeros the energy again starts to increase due to the negative effects
the many zeros have on the spectral quality, which increases the FWHM and PSR
values.

When looking at the results presented in Figure 4.20 and 4.21, remember that
the method used is partially stochastic, and hence the energy plots and the objec-
tive function shown are only instances of all possible energy plots and objective
functions. Probably each energy plot and objective function will be very similar
between iterations and similar to the results plotted here, but some differences will
occur due to the stochasticity.



64 Results

Figure 4.20: Figure displaying the energy at each iteration of one
run of the P1 Simulated Annealing algorithm. As can be seen
in the plot the energy fluctuates around some decaying mean.
The intensity of the fluctuations also seems to decrease with
each iteration.

Figure 4.21: Figure showing one example of the actual objective
function which the exhaustive search in the P2 problem tries to
minimize.
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Discussion

5.1 Optimal sequences

From the results section, it is obvious that the simulated annealing algorithm
successfully finds sequences that, at a 103 lag overlap, have no interfering chirps
since the correlation in each case is 0, both in the homogeneous and heterogeneous
cases. Sequences with and without correlation buffers are found, and hence the
method has proven itself useful in providing sequences orthogonal at both sin-
gle and multiple lags. This is of course a nice result, but the problem of finding
orthogonal sequences also included optimizing the sequence’s spectral properties.
When regarding the spectral aspects achieved when optimizing solutions to this
problem, the method still performs quite well, and this can be seen in Tables 4.1
and 4.2 and in the spectral plots of the result section. An effect of taking the
spectral quality into account is seen in the PSR values presented, which shows
that the sequences found generally have a Peak Sidelobe Ratio close to that of the
uniform solution. For the optimal sequence without any correlation buffer in the
homogeneous case, the PSR is even lower than the PSR of the uniform sequence.
As pointed out before, the PSR of each found solution is close to −30 dB as shown
in Table 4.1, which is much lower than the PSR of the primitive solution which
has a value of about −20 dB, and hence a radar transmitting according to the
optimal sequences will be about as probable as a radar transmitting according to
a uniform pattern in detecting targets at different ranges with different powers.
On the other hand, a radar transmitting according to the primitive sequence is
less likely to detect a small target in the presence of a larger target, due to the risk
of the small target’s mainlobe ending up below the larger target’s highest sidelobe
and remaining undetected. Both the primitive and the optimal solutions achieve
orthogonality at the overlap 103 lags corresponding to about 20%, but get quite
different spectral properties. Thus it is evident that sequences that are orthogonal
in the sense of not causing interference might be better or worse with respect to
the spectral quality. This might seem like a basic result, but at the same time
it validates the research question posed at the beginning of the thesis: there is a
point in trying to optimize the sequence with regard to both orthogonality and
spectral quality.

Continuing on the discussion on the spectral quality, the difference between the
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sequences is the number of 0’s inserted and the order in which these are placed. In
Figure 4.4 we can compare the “Primitive 2” sequence with the optimal sequence.
Both of these have the same number of 0’s, and they both have a correlation of 0
at lag ±408, but the positions of the zeros differ. In the figure it is seen that the
two sequences, despite their similarities, yield power spectrums with different PSR
values. Apparently, the order of the zeros in the sequences is not only important
to the correlation of the sequences but also has quite a large impact on the Peak
Sidelobe Ratio and thereby the detection probability. Thus it seems like both the
number of zeros inserted and the order of these affect the PSR which in turn can
affect the detection probability of targets as explained in section “2.5.4 Constant
False Alarm Rate”.

Following the previous discussion, it might be easy to get the impression that it
is beneficial to use fewer chirps than necessary. This might be true from a PSR
perspective, but it comes with the cost of losing integration gain. Losing inte-
gration gain will affect the PSR since the mainlobe amplitude will decrease, but
the decrease in PSR can be compensated for by arranging the 0’s in a clever way,
as discussed above. However, the loss of mainlobe amplitude following the loss
of integration gain cannot be accounted for. This lower amplitude will lead to a
lower SNR and hence a smaller detection probability in the presence of thermal
noise. This implies that for example the detection range will be impaired since
the signal peak amplitude is lower and the amplitude difference between the signal
peak and the detection threshold is lower than in the uniform case.

From the problem formulation in the method section, we know that we want to
keep the first and last chirp in order to preserve the velocity resolution, which de-
pends on the total CPI time. This has been included in the problem optimization
as a fixed constraint, such that each optimal sequence has as long CPI time as the
uniform sequence. According to the theory, the length of a signal affects its main-
lobe width, which in turn will have an impact on if two targets can be separated
or not. However, from the FWHM values in the result section, it is seen that the
values of the peak width at half maximum vary between the uniform, optimal and
primitive sequences, even if these have the same length. This might seem a bit
odd, but it is also in line with the results from the Monte Carlo simulations. In
the Monte Carlo simulations, we can see that using the optimal sequence yields
a higher probability of the system being able to separate two targets than using
the primitive sequence, despite these having the same CPI time. This indicates
that the mainlobe width, and thereby the velocity resolution, is affected by more
than the CPI time. This is also supported by the fact that both the optimal and
primitive sequences have a worse velocity resolution than the uniform sequence
when again each of these sequences has the same CPI time. This result is quite
unexpected, and unfortunately can not be explained given the theory or results
in this thesis. However, it is believed that this increased mainlobe width is due
to the applied Hann window, which is designed for uniformly sampled sequences.
This is however not certain and needs to be investigated further.

The FWHM figure of merit was introduced to the problem after it was realized
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that the constraint on having chirps at the first and last position of the CPI was
not sufficient to preserve the velocity resolution. However, it was noticed that the
metric had little to no effect on the mainlobe width at −3 dB, and hence had little
effect on the velocity resolution as well. Hence, the weights used when generating
the sequences presented in this work were set quite low compared to the other
metric’s weights.

From the Monte Carlo simulations, we get the expected result that using a short
uniform sequence yields a worse velocity resolution than using the sparse optimal
sequences. This means that with the effort of implementing the solution some
velocity resolution is gained compared to the alternative solution of avoiding in-
terference by just using a shorter uniform sequence.

The idea of using correlation buffers in the solution came from the awareness of
the difficulties it means to try and implement a solution with sparse CPIs, since
this would demand perfectly time-synched chirp times and no time drift between
radar units. The correlation buffer can aid in implementing such a solution by
offering some flexibility in chirp time configuration and clock drift since an offset
of one chirp in any direction would not cause interference. It has also successfully
been tested in the work of this thesis to use more than one buffering correlation
lag, however these results are not included in the report. This buffer comes with
the cost of even more loss in integration gain, since more 0s in the sequence are
needed to successfully find sequences orthogonal at more than 1 lag. At the cost of
having to find sequences with a correlation buffer, the gain compared with using
a shorter CPI seems to be a slightly better velocity resolution.

Since we use three sequences instead of one in the heterogeneous solution we get
more data points to organize. This both adds more degrees of freedom to the
problem but also increases its complexity. A direct comparison between the re-
sults of the two cases might therefore be erroneous since the two solutions are given
equally many iterations, since the cooling schedule is the same in the two problems,
but are of different sizes. Preferably the heterogeneous solution would be given
more iterations to enable a more fair comparison, due to it being larger than the
homogeneous solution. It would probably be possible to find similar results and
draw conclusions thereafter using only 2 different sequences in the heterogeneous
solution, instead of 3. The difference though is that using 2 sequences would make
each sequence dependent on the other in both the beginning and the end. Using
three sequences instead makes for example sequence 2 dependent on sequence 1
in the beginning, but dependent on sequence 3 in the end. This makes for some
difference, and the case of using 3 sequences is more general than using 2, since
the three-sequence case can be expanded into using many more sequences.

When discussing these results it is important to remember that the method used,
Simulated Annealing, in no way guarantees to find the exact optimal solution,
but rather approximates the optimal solution. However, the results found by the
algorithm are closer to optimal in the sense of minimizing the cost function defining
the problem, compared to the primitive and coprime solutions. Since the method
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is stochastic, two confidence intervals are presented as there is some variation in
the solutions found. The confidence intervals of the number of zeros used in the
solution show that the P2 method, which tries to optimize the number of zeros
used, usually finds 120 zeros optimal, with some variation. Also, a corresponding
confidence interval of the energy of the final solution is presented to show that
there also is some variance in how the zeros are ordered. This is a very expected
result due to the nature of the method. However despite this stochasticity, the
variation of the method does not seem too large as the confidence bounds are
relatively narrow.

5.2 Coprime method comparison

In the literature, several codes or sequences which are designed to have low auto-
correlation are presented, such as Gold-, Barker and MPS sequences, which all
are introduced in the theory section. Each one of these are bi-phase sequences,
consisting of elements having values 1 or −1. In this work binary sequences con-
sisting of ones and zeros have been used to represent when, in slow time, a radar
transmits a chirp or not relative to a uniform grid, hence making the chirping
pattern non-uniform. The process of finding orthogonal chirping patterns with as
good as possible spectral properties, that is dynamic range and mainlobe width,
has essentially consisted of optimizing these binary sequences. Since there already
are sequences from previous research the initial idea was to investigate how these
sequences would work out as chirping patterns in a radar. However, due to the
small but important difference in using 1 and −1 elements or 1 and 0, such a
comparison becomes difficult. This is due to the problem of finding a reasonable
analogy to using −1 elements in a chirping pattern, instead of using zeros. The
physical interpretation of using −1 entries in a sequence in the context of this
thesis could be to use chirps with a negative frequency slope. Another possible
interpretation of using −1 entries in the sequence could be transmitting a signal
with a phase shift of π in a PMCW radar context. However, both of these possible
cases are out of the scope of this thesis.

Due to the difficulties of comparing the optimal sequence with some bi-phase se-
quences, it was instead decided to compare the optimal sequence with a sequence
found using the method of constructing coprime sparse arrays, as explained in
the theory section and in [38]. From the theory section on maximum velocity,
it is known that the maximum unambiguous velocity depends on the minimum
distance between two chirps. When trying to find suitable coprime sequences it
turned out that many of these had a much lower unambiguous maximum velocity,
due to aliasing resulting from large distance between the chirps. Due to this, it was
decided to compare the optimal sequences to the coprime sequence designed with
the pairs (P,Q) = (2, 171), which was close in length and had a similar maximum
unambiguous velocity.

In the result section figures of the spectrum of this sequence alone are shown,
where it is seen that the sidelobes of this coprime sequence are much higher than
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the ones of the optimal sequence. Notably, the autocorrelation of the sequence is 0
at lag 408. This would allow two radars to operate without interference at a time
overlap corresponding to 103 chirps. However, choosing between using the coprime
sequence or the optimal sequence, choosing the optimal sequence is advantageous
due to it having more ones, hence more chirps and a better integration gain and
dynamic range. The peak at the far right end of the power spectrum of the
coprime sequence is not an aliased mainlobe, but rather a sidelobe. The fact that
this sidelobe appears and has a very high amplitude would make it difficult to use
the coprime sequence. To avoid erroneous measurements or ambiguities a limit
on the maximum measurable velocity would be needed to not include this large
sidelobe in the measurement. The choice of using the coprime method to design
a sequence was due to it being able to construct large sequences, as well as being
easy to implement.

5.3 Method

The problem was formulated as concerning two radars transmitting the same se-
quence, or three radars transmitting different sequences. In both cases, the radars
were assumed to be separated by a sufficiently small range, such that the time the
radio waves travel between the units can be omitted, It was also assumed that no
reflective objects were included in the scene. These assumptions made it possible
to state the problem as finding sequences causing no interference at one specific
overlap, which effectively mean that the correlation at one lag was supposed to be
0. If some targets were introduced, the problem would have to be reformulated,
as more than one specific overlap would be concerned. The waves reflected at the
target would travel a longer distance than the direct path, and thereby it would be
interesting to decrease the interference at all lags in the range [408, 511]. Probably,
the method method used in this thesis could be used for this purpose as well by
including more lags in the Correlation Sum metric.

The problem was divided into the cases homogeneous case and heterogeneous case
in order to investigate how the method would respond to the additional freedom of
having more sequences. From the results section and the discussion on the results
it is known that this added freedom in the heterogeneous case does not achieve
as good spectral properties as the homogeneous solution when finding a sequence
with a correlation buffer. It is hard to draw any conclusions about why this is,
but it can be speculated that adding more freedom to an already large problem
becomes too computationally heavy and that it is possible that the heterogeneous
case sequences would achieve better spectral properties than the homogeneous se-
quence if the method would be allowed to iterate more times.

As explained in the theory section on the Simulated Annealing algorithm, it is
well known that the algorithm is easy to implement and popular to use in com-
binatorial optimization problems, but with the drawback of being hard to choose
optimization parameters to. In this work, the Simulated Annealing algorithm has
been used to solve the P1 problem of ordering of a number of zeros in a sequence.
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As stated in the method section, the problem is discrete and non-convex, which
omits any possibility of using a convex optimization method. The problem is also
non-linear, due to the max-function used in the PSR cost function. Due to the
algorithm being frequently applied to combinatorial and non-linear problems, the
Simulated Annealing algorithm seemed like a convenient choice. Looking at the
convergence plot in Figure 4.20 in the result section, it is obvious that for a given
number of zeros to use in a sequence, the algorithm succeeds in organizing the
sequence such that the total cost decreases with each iteration. At the same time,
the plot also shows when a worse solution is accepted and the cost is momentarily
increased. As such, it seems like the method works as it was supposed to since it
tries to minimize the cost function while also trying to avoid local minima.

The problem of finding the number of zeros is very different from finding the best
ordering of the zeros, mainly because finding a neighboring solution is only a mat-
ter of increasing or decreasing the number of zeros used in the solution and hence
this problem is not combinatorial. This allows for a wider range of possible meth-
ods to use to solve the problem, out of which the exhaustive search is one. The
exhaustive search evaluates each option, and hence it is very time-consuming. If
the sequence length would increase, an alternative and faster method would prob-
ably be necessary.

As stated in the theory section the issue of choosing the parameters of the algo-
rithm remains. In this work the temperature parameters, which govern both the
probability of accepting worse solutions and the number of iterations have been
chosen by repeatedly testing different combinations and evaluating if the method
gets enough time to converge and if the probability of accepting worse solutions
decreases enough. The acceptance rate of worse solutions also depends on the
cooling schedule, which also can be tricky to choose. In this work, the cooling
schedule has been chosen as geometrically decreasing, as

Tn+1 = Tnα (5.1)

with α being close to 1, which ensures slow convergence. The difficulty in choos-
ing the cooling schedule is due to the convergence time, a too fast convergence
might amount to the method finding a local minimum and getting no opportu-
nity to avoid getting stuck due to the fast decreasing probability of accepting a
worse solution. On the contrary, a slow-decreasing cooling schedule implies that
the method uses many iterations and requires a lot of time before converging. In
this work, a slowly decreasing cooling schedule has been used since it is preferred
to find the best solutions possible rather than finding a solution quickly. From
tries with different alpha values it also became apparent that a value close to 1
generally led to solutions with lower energy, which is preferred.

The figures of merit used in the problem formulation, which the method is made to
minimize, were the Full Width at Half Maximum (FWHM), Peak Sidelobe Ratio
(PSR) and Correlation Sum (CS). These were chosen to find sequences without
any interfering chirps at a given overlap while preserving as much as possible of
the velocity resolution and dynamic range. In similar problems, the PSR has been
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used, for example in designing sparse antenna arrays, and hence it seemed like a
suitable metric to use. The FWHM is a common metric to use to determine the
width of a spectral peak, and hence this is used with the same purpose in this
work. The Correlation Sum was used to measure the number of interfering chirps
between the sequences. The discrete correlation is commonly used to measure the
similarity between signals which thus makes it a reasonable choice. The weights
have been chosen both from experience from using the method and empirical tries
with different combinations, but also from the idea that a sequence having a Cor-
relation Sum different from 0 is useless since it will cause interference. The amount
of interference will in reality depend on how the CPIs overlap. In the setting of
this work though, where the CPIs are assumed to have a time overlap equal to a
multiple of Tc, the chirp time, interference occurs whenever the correlation sum
is not 0. The higher the correlation sum, the more chirps are interfered, but the
end goal was to find sequences causing no interference, and hence no interfered
chirps were tolerated. Given this, the CS weight was set to imply a high cost if the
correlation was different from 0 to guarantee that there would be no correlation
between the sequences. In Figure 4.21 the result of setting the CS weight higher
than the others can be seen. This aids in finding sequences without any correla-
tion, given the Correlation Sum presented in the results section.

To evaluate the method some statistical measures were estimated using Monte
Carlo Methods. These statistics show that there is some variance in the method,
which is expected due to the stochastic part of the Simulated Annealing Algo-
rithm. Despite this variance, it seems like the method finds similar results in each
iteration, and hence it also seems that the method converges to an approximated
optimal solution.

Monte Carlo simulations were also used to show the difference in velocity resolution
as a result of transmitting chirps according to the optimal, the primitive and the
short sequences. As mentioned in the results section, the values presented show
that there is a difference, but the values presented are not the exact velocity
differences that would be needed when actually transmitting these sequences in a
real test. This is due to the definition of “separable peaks”, which in real radar
systems are implemented using, for example, a OS-CFAR as explained in the
theory section. Running the simulation again with another definition of what is
a peak, and when they can be separated, will affect the result. However, the
important result is not the difference itself, but the fact that there is a difference
that depends on the sequence used when transmitting chirps. In the Monte Carlo
simulations it has also been assumed that the two targets are located at the exact
same range, which in reality is very rare. For the purpose of showing this difference
however, the definition of a peak and when two peaks can be separated, as well as
the assumptions of the targets being present at the same range is reasonable.
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5.4 Further Research

While this thesis might have answered some questions, new questions have arisen
and in this section, some further research questions which would be interesting to
investigate are presented.

The most obvious and maybe largest research question that would be interesting
is to investigate the effect of transmitting sparse CPIs, such as those presented in
this thesis, using other means of spectral estimation for range and velocity mea-
surements. To limit the work in this thesis, using the DFT was set as a premise for
the work. This was also done since this is a common technique used for spectral
estimation. However, when removing chirps from a CPI some of the properties
of the detection will be worsened. By removing chirps the integration gain is
decreased and thereby it becomes harder to maintain a good SNR and high dy-
namic range. Using other spectral estimation techniques, such as high resolution
techniques, could however aid in this regard. Examples of methods that could be
tried are the non-parametric Non-Uniform FFT (NU-FFT) [41], or the parametric
methods Iterative Adaptive Approach (IAA) [42, 43] and MUSIC algorithm [44].
The IAA method is also supposed to work well with sparsely sampled data.

It would also be interesting to investigate the usage of other optimization methods.
The choice of using the Simulated Annealing method for the problem referred to as
the P1 problem seems like a reasonable choice. However, for the P2 problem, other
methods could possibly be more suitable. The P1 problem is combinatorial, and
the value of the cost function depends only on the order of the zeros and ones in
the sequence. The P2 problem’s objective function depends on the combinatorial
P1 problem, but in hindsight looking at the objective function, it seems like other
methods, such as the bisection method, possibly could be more suitable to use.



Chapter 6
Conclusion

Following the results and discussion, the first important conclusion to be made is
that it is possible to find orthogonal sequences with different spectral properties,
and as such it is also reasonable to try and find the orthogonal sequence with
the best spectral properties. What are “good” spectral properties in this thesis
is determined through the figures of merit, premiering a high dynamic range and
narrow main lobe width, and sequences having these properties are also found
using the Simulated Annealing method. The method succeeds in finding orthogo-
nal sequences with spectral properties better than the simple primitive solutions,
whether be it with a correlation buffer or not. The Simulated Annealing method
on the other hand is not guaranteed to find the optimal solution, but rather ap-
proximates the optimal solution. Hence it is likely that there exists orthogonal
sequences with better spectral qualities than the ones found, but they will also
probably be similar to the sequences presented in this thesis. Even if the method
used finds satisfactory results it is possible that other methods might perform
better. However, given the complexity of the problem, the use of this method
seems reasonable. In the thesis, it is also shown that transmitting signals in an
orthogonal pattern is beneficial compared to transmitting shorter CPIs due to
the gain in velocity resolution. However, implementing the solution will involve
having to solve problems such as clock drift and perfect sync between units. If
solving these issues is worth the gain in velocity resolution is for the user to decide.

73
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