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Abstract 

This thesis evaluated the performance of the water balance model BROOK90 for an even aged 

spruce forest in southern Sweden. The water balance of the forest was modelled from 1950 

onwards to find periods and patterns of drought. Moreover, the impact of climate change as 

well as thinning as a strategy to reduce drought stress on the water balance were evaluated. 

Hyltemossa, a managed Norway spruce forest in southern Sweden and site of a combined 

ecosystem and atmospheric measurement station by ICOS was chosen as the study site. Using 

measurement data from ICOS the BROOK90 model was parameterized and validated for the 

period of 2018 to 2024. The model was then applied with input data from nearby SMHI stations 

for the period of 1950 to 2024 and drought periods were identified based on the transpiration 

index and number of dry days. Lastly, stand management, assuming changes in stand density 

as well as a climate change scenario were applied, by changing the LAI or input data. The 

results show a robust performance from the BROOK90 model, with the modelled 

evapotranspiration rate (ET) and soil water content (SWC) not differing significantly from the 

measurements (R² of 0.74 and around 0.97 respectively). Although the model performance 

varied seasonally, the ET rate and SWC were on average overestimated by the model. 

Furthermore, the years 1951 to 53, 1959, 1972, 1975 to 76, 2016, 2018, 2020 and 2022 were 

identified as years with high water stress in the spruce forest, with the most pronounced 

droughts in 1959 and 2018. Thinning (25% decrease in stand density) was modelled to reduce 

the water stress at the site by up to 5% and shorten the dry period by about 23 days, with the 

effect being more pronounced for non-drought years. In contrast, the assumed climate change 

induced temperature increase by 2°C was shown to intensify and prolong water stress by around 

29 days.   
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1 Introduction 

Water stress can limit the growth of trees during growing seasons and can increase their mortality, 

due to increased vapour pressure deficit and transpiration rates (Allen et al., 2015; Brodribb et al., 

2020; Chapin et al., 2011). This in turn results in cavitation of the xylem and stops the water uptake 

through roots, causing damages or even the death of the plants. Therefore, weather extreme like 

droughts, defined as a precipitation deficit over the growing season can lead to increased mortality 

especially in combination with high temperatures (Allen et al., 2015; Brodribb et al., 2020; Chapin 

et al., 2011). Furthermore, droughts are projected to become longer, hotter and more frequent in 

the future reportedly increasing the vulnerability and mortality of forests (Allen et al., 2015; 

Brodribb et al., 2020; Chen et al., 2021; Seneviratne et al., 2012; Trenberth et al., 2003; Trenberth 

et al., 2014).  

 In Sweden, about two thirds of the entire country (28 million hectares) is covered by forest 

and as of 2015 around 10 percent of the country’s employment, sales and export are in the forestry 

sector, making this ecosystem a highly valuable resource (KSLA, 2015; Roberge et al., 2020). The 

most common tree species are Norway Spruce (Picea abies) and Scots Pine (Pinus sylvestris) which 

make up around 40 % and 38% of the forest cover respectively. They are found mostly in 

monoculture stands and in Sweden the most restricting resources to these forest ecosystems are 

nutrient availability and water (Alavi, 2002; KSLA, 2015; Roberge et al., 2020).  

Even though there was reportedly a wetting trend with increased soil water and 

precipitation in Sweden since the 1930s, the country has frequently experienced droughts and dry 

periods from 1950 onward in 1953, 1976, 1988 to 1989, 1992 to 1993, 2003, 2018 and 2022 (Alavi, 

2002; Chen et al., 2021; Hanel et al., 2018; Hänsel et al., 2022; Knutzen et al., 2023). The overall 

wetting trend is projected to prevail with changing climate. However, the rising temperatures will 

increase vulnerability of forests to droughts and climate change will bring more frequent heat 

waves in Scandinavia (Seneviratne et al., 2012; Seneviratne, 2023).  

One strategy applied in Swedish forestry to elevate water stress as well as improve growth, 

light and nutrient access, is thinning (Roberge et al., 2020). It is a widespread practice in the even-

age management, the most common forestry approach in Sweden, with typically at least one non-

commercial and up to three commercial thinning applications within one stand rotation. While the 

non-commercial application usually serves to improve vitality and regulates species type, stand 

height and density, commercial thinning is used to increase the stand quality and sell timber 

(Roberge et al., 2020). Studies performed by Belmonte et al. (2022); Lagergren (2001), Lagergren 

et al. (2008) and Zanchi et al. (2014) found that thinning generally reduces water use and can 

furthermore prolong soil water availability and increase transpiration rates during drought 

conditions in mixed coniferous and pine forests. Moreover, a study by Saksa et al. (2017) suggests 

that changes in the water balance from thinning are more pronounced in precipitation rich regions, 

making it a possible practice to reduce water stress and drought impacts in humid regions of 

Sweden. However, few studies have looked at impact of thinning on water availability of 

monocultural spruce forests, which are the second most common forests in Sweden (KSLA, 2015; 

Roberge et al., 2020). 

To study the impact of different management strategies on water stress and availability, the 

most important variables to consider are the transpiration rate and soil moisture (Heim, 2002; 

Puhlmann et al., 2019). Both can be measured manually, however, this is done with high costs and 

uncertainty, especially sap flow measurements for transpiration fluxes (Baumgarten et al., 2014). 



2 

 

Therefore, the application of a water balance model provides an appropriate tool to analyse past 

drought events in a forest and test the influence of thinning and climate change on forest water 

stress with more detail than drought indices (Wellpott et al., 2005). For this purpose, the 

deterministic, parameter-rich hydrological model BROOK90 (Federer, 2002; Federer et al., 2003) 

has shown to provide a good model fit for evapotranspiration, soil moisture and transpiration rates 

(Baumgarten et al., 2014; Buchtele et al., 1998; Luong et al., 2020; Tahir, 2012; Wellpott et al., 

2005). Tahir (2012) gives an example of applying BROOK90 to study different management 

strategies and climate change conditions in a mixed pine-spruce forest in central Sweden and an 

even-aged pine forest in Germany showing that thinning can decrease water deficiency. This 

leaves the question of how well BROOK90 can model the conditions of a monocultural spruce 

forest in southern Sweden and how the water supply for such a forest changed in the past, partly 

representing the conditions projected with climate change in more northern regions (Seneviratne 

et al., 2012; Seneviratne, 2023). 

1.1 Aim 

The aim of this thesis is to evaluate the accuracy of the BROOK90 model outputs for the spruce 

forest in Hyltemossa, a site in southern Sweden, based on field measurements for the period of 

2018 to 2024. Furthermore, it aims to model changes in the water balance using weather station 

data from 1950 to identify periods and patterns of water stress and drought for the spruce forest. 

Finally, the impact of thinning, as a strategy to reduce drought stress, as well as projected 

increasing temperatures on the water balance will be evaluated by applying different stand density 

scenarios in the model. 

1.2 Research Questions and Hypotheses 

This thesis focusses on the following research questions. How well does the model BROOK90 

represent the water balance of the spruce forest? How did the forest react to the changing climate 

conditions since 1950 regarding its water balance? Which management strategy could be applied 

in the future to reduce the impact of droughts? 

1) Given the complexity of the BROOK90 model and the adjustments made to the input 

parameters to fit the study site conditions a high accuracy of model is expected. 

Furthermore, Wellpott et al. (2005) and Luong et al. (2020) showed both a high model fit 

and accuracy for modelled evapotranspiration rate and soil moisture in their respective 

forest study sites. 

2) As mentioned, southern Sweden experienced periods of drought or dryness in 1953, 1976, 

1981 - 83, 1988 - 89, 1992 – 93, 2003 and 2018 and these periods are expected to be 

reflected in the modelled water stress (Actual Transpiration/Potential Transpiration; 

AT/PT) (Alavi, 2002; Hanel et al., 2018; Hänsel et al., 2022). 

3) Furthermore, Sweden has reportedly experienced a wetting trend since the 1930s which is 

hypothesized to be reflected in trends in soil water content and precipitation for this study 

site (Chen et al., 2021). 

4) Given that an increase in plant mass leads to higher transpiration and interception rates, 

with slightly lower soil evaporation, an increase of ET and decrease in soil water content 

is expected with higher stand density as well as increased water stress due to lower water 

availability (Alavi, 2002; Dingman, 2015; Puhlmann et al., 2019). Vice versa a decrease in 
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stand density will lead to reduced water stress, due to lower ET and higher water 

availability. Accordingly, increasing temperatures lead to higher vapour pressure deficit at 

the stomata and increased photosynthesis, increasing the transpiration rate and therefore 

would result in higher water stress (Dingman, 2015; Tahir, 2012). 
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2 Background 

2.1 Water Balance in Forests 

The water balance is a concept used in hydrological studies to study the in and outflow of water 

of a defined area (Dingman, 2015). It applies the mass conservation law to water within this area, 

which is typically a watershed, but it is also applicable on ecosystem or country scales. According 

to the mass conservation, the incoming water should be equal to the sum of the outgoing water 

flux and the change in storage. The basic theory here defines the equation:  
Equation 1 

𝑃 + 𝐺𝑊𝑖𝑛 = ∆𝑆 + (𝑄 + 𝐸𝑇 + 𝐺𝑊𝑜𝑢𝑡) 

Where, P is the precipitation, GW is the groundwater in- and outflow (in, out), Q is the 

stream outflow, S is the storage term (for all types), and ET is the evapotranspiration rate. 

Therefore, the water balance of a forest can be split up into the following basic components: 

The evapotranspiration (ET) of an ecosystem is the sum of all processes that result in 

water vapour leaving the system (Dingman, 2015). These include evaporation from open water, 

soil and vegetation, sublimation from ice and snow and transpiration through the leaf stomata. 

When looking at the components, evaporation depends on the weather conditions, surface 

conditions and vegetation properties. The precipitation determines the available water while the 

temperature and humidity give the water vapour pressure deficit and therefore the capacity of the 

air to take up water. Moreover, the higher the temperature and windspeed and the lower the 

humidity, the higher the evaporation rate. Moreover, water evaporates more readily open surfaces, 

with higher interception from vegetation leading to higher rates (Chapin et al., 2011; Dingman, 

2015). Similarly, transpiration, is determined by weather condition, vegetation properties and 

soil properties (Chapin et al., 2011; Dingman, 2015). The process involves water uptake by the 

roots, transport through the vascular system of the plant to the leaf and evaporation through the 

stomata in exchange for carbon dioxide and oxygen. This means that plant properties determine 

the rate of water uptake and transpiration which is often defined in models by several resistance 

terms. These usually include root resistance (how easily water is taken up from the soil), plant 

resistance (how easily water is transported within a plant), stomata resistance (how open the 

stomata are as well as the gas exchange rate with respiration and photosynthesis) and lastly 

aerodynamic resistance outside the leaves. Transpiration varies therefore with root length, plant 

height, leaf size and type and stand density. Furthermore, the photosynthesis rate is largely 

dependent on the incoming radiation and temperature. Moreover, the available water depends on 

the precipitation amount and intensity and soil properties, where soils with high water holding 

capacity and pore space for root systems enable higher water uptake, while shallow or dense soils 

largely limit water availability (Chapin et al., 2011; Dingman, 2015). 

The groundwater term is also mostly dependent on the soil properties as well as the 

topography and bedrock type which influence the flow density and speed. The same goes for 

stream flow, which depends on the infiltration rate into the soil, the precipitation intensity and 

input from ground water flow (Dingman, 2015). The storage term includes water stored in open 

water (rivers, lakes, snow, ice), ground water and vegetation. It is often difficult to determine and 

therefore attempted to minimize in models by choosing large model timeframes or specific period 

for which the change in storage can be assumed insignificant (Dingman, 2015). 
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2.2 Water Balance Models 

Over time various hydrological models have been developed to study the water balance of a 

hydrological system (Abdollahi et al., 2019). Depending on the simulation approach, they can be 

divided into physically based, statistically based, stochastic and conceptual models. Physically 

based models utilize concepts from basic physics and provide for parameterization based on the 

site properties (Dingman, 2015). They are typically rather complex and describe processes at 

comparatively small scales as compared to conceptual models which provide for often simplified 

parameters at various scales. Moreover, models can be differentiated by their spatial 

representation, dividing them into lumped or distributed models, where lumped models assume 

their parameters and input to fit the entire modelled system (e.g., ecosystem or watershed). 

Distributed models provide for spatial variability, but often apply lumped models to subregions of 

the system (Dingman, 2015). It is therefore typically sufficient to use a lumped model for mostly 

homogeneous systems. On a temporal basis, models are further differentiated into steady state, 

event-based and continuous models. Continuous models are most fitting to model changes over 

time, while event-based models are typically used to simulate specific responses to singular input 

values (Dingman, 2015). As the aim of this thesis is to study changes in the water balance of a 

monocultural spruce forest over time and evaluate management strategies, a physically based, 

continuous model is most suitable. Therefore, the physically based, lumped, continuous water 

balance model BROOK90 was chosen (Federer, 2002).  

2.3 Drought and Water stress 

Droughts are defined as periods with a water deficit for the ecosystems and can be caused by 

wind, high temperatures or insufficient precipitation (Seneviratne, 2023). The literature defines 

three types of droughts: i Agricultural or ecological droughts, focussing on the effects on the biome 

and limiting ecosystem functions; ii Hydrological droughts, describing a shortage in water bodies 

and reservoirs, and iii meteorological droughts, describing a period of unusual lack of precipitation 

(Seneviratne, 2023).  

To assess the impact of water stress and droughts on ecosystems multiple models and indices 

were developed over time, including the Standard Precipitation Index (SPI) (Mckee et al., 1993), 

Consecutive Dry Days (CDD) (Lloyd-Hughes & Saunders, 2002), Palmer Drought Severity Index 

(PSI ) (Palmer, 2006) and Standardized Precipitation-Evapotranspiration Index (SPEI) (Vicente-

Serrano et al., 2010). However, these generally only display changes in drought conditions, with 

the SPI and CDD only considering precipitation variation and the PSI and SPEI integrating effects 

of accumulative forcing and evapotranspiration (ET) to effectively reflect soil moisture droughts 

(Lloyd-Hughes & Saunders, 2002; Mckee et al., 1993; Palmer, 2006; Seneviratne et al., 2012; 

Vicente-Serrano et al., 2010). Hammel and Kennel (2001) therefore suggested to evaluate the 

water stress conditions of forests using the transpiration index, which is given by the ratio of 

actual and potential transpiration. This provides then a measure of water availability specifically 

for the vegetation (Hammel & Kennel, 2001; Wellpott et al., 2005). 
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3 Material and Methods  

3.1 Study Area 

The study area chosen for this thesis was Hyltemossa, a managed spruce forest located in Scania 

region, southern Sweden around 40 km east of Helsingborg, 50 km north of Lund and 25 km west 

of Hässleholm (56.09763° N, 13.41897° E; 115 m above sea level) (Heliasz, Mölder, et al., 2024). 

The site is managed and owned by Gustafsborg Säteri AB (GustafsborgAB, 2024) and 

accommodates a combined ecosystem and atmosphere station since 2014 run by the Integrated 

Carbon Observation System (ICOS) partly funded by the Swedish research council and partly by 

project partners (Levin et al., 2020). The Hyltemossa Research Station (Htm) is distributed over 

two stands (35 and 40 years old) mostly consisting of Norway Spruce (Picea abies, over 99% 

cover according to Heliasz, Mölder, et al. (2024)) with small fractions of birch (Betula sp.) and 

Scots pine (Pinus sylvestris). The vegetation below the canopy is sparse and consists mostly of 

mosses covering the sandy till soil. This soil consists mainly of glacial sediments and sandy 

moraines forming a Cambisol with a thin organic horizon, sometimes replaced by Podsol, on acidic 

intrusion bedrock (SGU, 2024). Ground water is relatively shallow in the area and some areas 

show groundwater influence in 1 m depth (Heliasz, Mölder, et al., 2024; ICOS). The topography 

in the area is relatively flat with a change in elevation of 35 m throughout the site (Levin et al., 

2020). Hyltemossa has a temperate humid climate (Cfb after Köppen (1900)) with a mean annual 

precipitation of 707 mm and mean annual temperature of 7.4 °C, based on climate data from the 

station in Ljungbyhed from 1961 to 1990, and a prevailing wind direction from the West. The 

closest weather stations from the Swedish Meteorological and Hydrological Institute (SMHI) are 

located in Ljungbyhed (13 km West of Hyltemossa, shut down in 2001), Klippan (20 km North of 

Hyltemossa) and Helsingborg (SMHI, 2024). 

The managed forest has a turnover rate of 50 years with the forest growing 31 meters in 

100 years on average. One stand (number 2320) was planted in 1983 with an initial stand density 

of 3300 trees per hectare, after storm damage in 1981 and a clear cut in 1982. Following this the 

spruce forest was cleared in 1998 and 2005 and thinned in 2009 and 2013 (GustafsborgAB, 2016; 

Heliasz, Mölder, et al., 2024). Similarly, the second stand (number 2341) was clear cut in 1988 

and replanted in 1989, cleared in 1998 and 2012 and thinned by 30% in 2015 (GustafsborgAB, 

2016). There is little information on the forest management and properties before 1980 provided. 

Furthermore, ICOS measured a leaf area index (LAI) ranging from 3.9 to 4.9 with an average of 

4.4 for the forest since 2018 and a stand height of 16.7 m with a maximum tree height of 26.6 m 

in 2022 (Heliasz, Mölder, et al., 2024). 

3.2 BROOK90 

The hydrological model used here is BROOK90 (Version 4.8a) (Federer, 2019), a parameter-rich, 

deterministic, one-dimensional model originally developed to study vertical soil water movement 

of forests as well as evapotranspiration in a daily resolution over the whole year (Federer et al., 

2003). The model is a lumped model allowing only to model the water balance of a singular point 

using physically meaningful parameters (Federer, 2002; Federer et al., 2003). In general, the model 

can be used to investigate evapotranspiration, water budget, soil water movement in typical forest 

ecosystems or water management strategies for land use practices (Baumgarten et al., 2014; 

Combalicer et al., 2008; Hammel & Kennel, 2001; Kronenberg et al., 2013; Schmidt-Walter et al., 
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2020; Tahir, 2012; Wellpott et al., 2005). It also provides for studies of streamflow generation 

from various flow path, as well as studies of flash floods or similar phenomena (Luong et al., 2021; 

Vilhar et al., 2010; Vorobevskii, 2022; Zheng et al., 2021). Furthermore, comparing outputs to 

simple models can be used to evaluate the performance of those models (Federer et al., 2003). 

3.2.1 Input and Output 

BROOK90 requires values for daily precipitation (in mm) and maximum and minimum 

temperatures (in °C). Furthermore, if available total daily solar radiation (MJ/m²), average daily 

vapour pressure (kPa) and windspeed (m/s) should be included, otherwise averages or default 

values will be used in the model. If not provided to the model, solar radiation is estimated by the 

potential insolation on a horizontal surface which is determined by the day of the year (doy) and 

latitude and corrected for scattering, reflection and absorption with a radiation of ratio of 0.55 

(Federer, Revised - April 9, 2021; Holst et al., 2005). The windspeed is assumed to be 3 m/s and 

the vapour pressure is estimated as the saturation vapour pressure for the minimum daily 

temperature (Federer, Revised - April 9, 2021). 

The model gives a large variety of output values representing water balance components 

of the site which can be produced in daily, monthly, or yearly resolution. These include 

evapotranspiration rate (ET in mm/day), the soil water content (SWAT, in mm), interception 

(mm/day), available water, soil water deficit, actual (AT) and potential transpiration rate (PT in 

mm/day) and evaporation rate (in mm/day) from different surfaces, as well as water stress given 

by the transpiration coefficient (STRES given by AT/PT). Furthermore, flow and groundwater 

properties such as measured and simulated flow, seepage, soil and storm flow, groundwater table, 

as well as snow fall and rain to snowpack can be modelled, but are not the focus of this thesis and 

therefore not included here (Federer, 2002). 

3.2.2 Processes 

The model considers and models the following processes within the hydrological cycle of an 

ecosystem (described in detail by Federer (2002); Federer et al. (2003)): 

Precipitation is either intercepted by or falls through the forest canopy cover. To allow for 

a precipitation intensity term and reduce daily interception loss from daily precipitation data, 

BROOK90 loops through an interception model every hour. It assumes a precipitation duration 

determined by DURATN, centred around noon. Over this period the rain or snow is assumed to 

occur at a constant rate which allows for part of the interception evaporation to be allocated to the 

next day. These processes are treated separately for day and nighttime assuming constant rates for 

interception and evaporation for these periods, respectively. Throughfall can result in infiltration 

into the first soil layer or deeper by macropore flow or in streamflow through impaction or pipe 

flow within the soil. The model also allows for streamflow from delayed flow by downslope soil 

drainage or groundwater storage. Furthermore, snowmelt processes are included with the melting 

process depending on the degree day factor, including liquid water content and temperature, and 

are modified according to the LAI. Evapotranspiration (ET) is the sum of evaporation from 

interception and soil and transpiration from the plant canopy. It is here based on the Penman-

Monteith method (Monteith, 1965), which estimates ET as a functions of vapour pressure deficit, 

available energy canopy resistance and aerodynamic resistance. The canopy or stomatal resistance 

here as a function of the LAI and incoming shortwave radiation and vapour pressure as input data. 

This approach is generally regarded as accurate (Wang et al., 2020). 
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The model further differentiates between rain and snow evaporation. Here, evaporation 

from interception assumes no canopy resistance and is based on average storm duration, canopy 

capacity and aerodynamic resistance within and above the canopy dependent on canopy height and 

LAI. Soil evaporation resistance is dependent on the water potential of the top soil layer (Federer, 

2002; Federer et al., 2003). For all those processes, the model separates between day and night-

time based on the day of the year (doy). 

To estimate potential interception and separate soil evaporation and transpiration the 

Shuttleworth and Wallace method is applied (Shuttleworth & Wallace, 1985). This assumes a 

sparse canopy for a single layer sparse canopy and is applied to the first soil layer. The model 

further differentiates between potential (PT) and actual transpiration (AT) using a method 

developed by Federer (1979). While PT is determined by aerodynamic resistance and canopy 

resistance, estimated from maximum leaf conductance, light penetration, temperature and 

humidity, AT is a reduced PT based on soil water availability. This is determined by the root 

distribution, soil water potential, critical leaf water potential, and plant and rhizosphere resistance 

(Federer, 1979). The aerodynamic resistance here is based on the modified method introduced by 

Shuttleworth and Gurney (1990) and varies with LAI and canopy height. Transpiration rate is 

defined as the lesser of daily demand by the air and supply rates from the soil. For this, the daily 

supply is assumed to be constant over the length of a day and depends on the soil water content 

and the plant water potential as well as the plant storage uptake at the beginning of the day. The 

demand rate has a diurnal half sine pattern and the daily term is the integral of this relation over 

the day (Federer, 1982).  

For soil water movement, BROOK90 allows for up to 25 layers of adjustable thickness and 

properties including water content and potential at field capacity, stone content, water content at 

saturation and hydraulic conductivity. The vertical movement is determined by Darcy’s law for 

saturated and unsaturated flow and the parameterization of matric potential, hydraulic conductivity 

and soil water content relationships is based on a formulation modified from Clapp and Hornberger 

(1978). Streamflow from groundwater is set as a fraction of groundwater per day and groundwater 

influx is from gravity drainage from the lowest soil layer. 

The processes are also displayed in the flow chart provided with the model (Federer, 2019): 

Figure 1: Flowchart showing the water flow paths for the 

hydrological system modelled in BROOK90 (Federer, 2019). 

All variables are explained in the following text. 
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As shown in Figure 1, the incoming precipitation (PRECIP) in the form of snow (SFAL) 

or rain (RFAL) is either intercepted (INTS, INTR) or falls to the ground as throughfall (THR) 

where rain either freezes on the snowpack (RSNO) or reaches the soil surface in liquid form 

together with melted snow (RNET and SMLT). The water then either infiltrates into the soil (SLFL 

to INFL) or results in surface flow (SRFL) which adds up to complete outflow (FLOW) together 

with bypass flow (BYFL) and soil out flow (SLFL) from different soil layers (1 to N). The 

remaining soil water contributes to the soil water table in the form of stored water (SWAT) at 

different layers which can be taken up by plants for transpiration (TRAN) or in ground water 

(GWAT determining the seepage SEEP). Intercepted precipitation and transpiration add up to 

evapotranspiration (EVAP). For further information, detailed processes are described in Federer 

(2019). 

3.2.3 Parameters  

BROOK90 utilizes a large variety of physically meaningful parameters, which can be externally 

altered to fit the specific site and were originally developed for forest sites. However, reasonable 

results can also be achieved with predetermined parameters, for e.g. spruce forests, described by 

Federer et al. (2003) (Federer, 2002; Wellpott et al., 2005). All parameters are provided externally 

in 6 different files: 1) Soil, 2) Flow, 3) Canopy, 4) Location, 5) Fixed and 6) Initial. Important 

parameters and their value ranges fitted for various ecosystems are described in detail in the model 

application to allow for reasonable fitting (Federer, 2019). 

1) SOIL: The soil file provides properties for a specified number of soil layers (1 to 25) including 

parameters for layer thickness (THICK, in mm), stone content (STONEF, as fraction), field 

capacity (water potential PSIF in kPa and volumetric water content THETAF as a fraction), 

water content at saturation (THSAT, as a fraction), the exponent in the Brooks Corey equation 

(BEXP), the hydraulic conductivity (KF, in mm/day) and other components of water retention 

properties of soil layers. While a higher STONEF, with a range of 0 to 1 reduces soil water 

content (SWC) and evapotranspiration rate (ET), an increased PSIF (b/w -1 and -330kPa) and 

THETAF (typically 0.1 to 0.5) adds to the ET rate and SWC. The BEXP determines how coarse 

a soil is (values between 3 and 12) and has low influence on the output with higher BEXP 

(finer soil) increasing the ET rate and reducing the SWC. Similarly, KF (0.1 to 10 mm/day and 

typical value of 5 mm/day) shows low influence on the outputs. All these parameters are 

interconnected.  

2) FLOW: The flow file contains parameters describing the infiltration and drainage properties at 

the location including infiltration depth (IDEPTH, in mm), a parameter determining infiltration 

distribution throughout the soil profile (INFEXP, with 1 meaning uniform distribution of 

infiltration and 0 resulting in a wetting front from the first soil level). Other parameters are the 

fraction of soil that is impermeable (IMPERV, ranging from 0 – fully permeable to 1 - 

impermeable), parameters for bypass flow and downslope matric flow and drainage out of the 

soil into groundwater (DRAIN, between 0 – no drainage from the bottom and 1 – vertical 

drainage by gravity). For this study, bypass flow and downslope matric flow were disregarded, 

as it does not focus on flow rate and soil properties are mostly unknown for the soil, by setting 

the respective parameters to “0”. IDEPTH, INFEXP and DRAIN all have low influence on the 

outputs, while IMPERV impacts the water availability with a higher fraction resulting in 

reduced ET and increased SWC.  

3) CANOPY: The canopy file includes properties of the assumed single layer canopy, which is 

here a forest canopy, including parameters on external factors, the canopy structure and 
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photosynthesis processes in the plant. Some of the parameters are the albedo (ALB), maximum 

tree height (MAXHT, in m) and leaf area index (MAXLAI), a ratio for stem area index to 

canopy height (CS, typically 0.035). Furthermore, internal conductivity of the plant (MXKPL, 

typically around 8 mm/ MPa,day) and internal plant resistance (FXYLEM, between 0 and 1) 

as well as parameters on photosynthetic rate such as maximum leaf conductance for fully open 

stomata (GLMAX, 0.2 to 2), leaf width (LWIDTH) and radiation extinction (CR) in the canopy 

can be adjusted. The root density in layers of 100 mm thickness and the overall maximum root 

length can be changed. The LAI and height can be determined by measurements with an 

increased LAI usually resulting in higher ET rates. MXKPL shows an increasing ET rate for 

higher MXKPL and only gradual changes to the SWC. A higher FXYLEM similarly results in 

increased ET as well as lowered SWC, while the GLMAX is determined to be around 0.5 for 

spruce forests. 

4) LOCATION: The Location file contains parameters specific to the geographical location 

determining radiation input, snowmelt, precipitation patterns (average daily duration of 

precipitation for each month DURATN) and vegetation patterns including parameters for 

seasonal changes in vegetation height and LAI throughout the year (RELHT and RELLAI as 

a fraction for specified doy). The RELLAI can be used to simulate phenology changes 

throughout the year and can account for both shedding of leaves from deciduous canopies and 

stomatal closure during winter.   

5) FIXED & INITIAL: These two files include indices and set parameters needed for initiating 

the model run that were empirically determined and are typically not altered when fitting the 

model. They can be changed, but the set values should work for all environments robustly and 

it is difficult to estimate reasonable ranges (Federer et al., 2003). 

3.2.4 Assumptions and Limitations 

The model includes several limitations and assumptions as it is a simplified representation of the 

hydrological processes of a site (described also in more detail by Federer (2002); Federer (Revised 

- April 9, 2021); Federer et al. (2003)). Firstly, the model applies the “Big leaf concept” assuming 

a single homogeneous leaf canopy without considering vegetation layers. This also does not allow 

for non-green leaves which can intercept rain but do not transpire or changes in the albedo with 

varying solar elevation, snow age or canopy cover. Secondly, BROOK90 cannot account for 

changes in the vegetation over longer time spans such as growth in height and LAI or long-lasting 

damages from e.g. droughts. Thirdly, regarding the soil properties, it does not allow for soil frost, 

low vegetation cover such as mosses and the model for canopy and aerodynamic resistance by 

Shuttleworth and Wallace (1985) assumes a bare, uniformly distributed soil. Lastly, snow 

evaporation is, according to Federer (Revised - April 9, 2021), not handled well with an arbitrary 

correction of Shuttleworth and Gurney (1990). 

3.3 Adjusted Parameters for Hyltemossa 

To parameterize the model to the conditions in Hyltemossa and achieve a better model fit, the 

parameters listed below were adjusted (Table 1). The model was then run with input data from the 

ICOS measurements (Heliasz, Mölder, et al., 2024), and the outputs were tested against the 

measurement data from ICOS (Heliasz, Kljun, Biermann, Holst, Holst, Linderson, Mölder, et al., 

2024) for the year of 2020. Here the variables evapotranspiration (ET) and soil water content 

(SWC) for all five layers were taken to minimize the difference between measurement and model 
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with 2020 data in a regression analysis. The best fit was assumed when both the R² value was high 

and the slope of the linear regression was close to 1. 
Table 1: Parameters of BROOK90 changed to fit the measured evapotranspiration (ET) rate and 

volumetric soil water content (SWC) in five soil layers at Hyltemossa for the year 2020. The parameters 

are given in different parameter files (Flow, Soil, Canopy and Location) and are based on the physical 

properties of the model site. 

File Parameter (Abbreviation) Set Value Tested values 

Flow 

Infiltration Depth (IDEPTH) in mm 500 750, 730, 1000 

Bypass flow depth (QDEPTH) in mm 0 500, 730 

Impermeable fraction (IMPERV) 0.3 0, 0.02, 0.05, 0.3 

Infiltration distribution (INFEXP) 1 0, 0.5, 0.75 

Soil 

Layer Thickness (THICK) in mm 40; 35; 125; 450; 700  

Field Capacity Ѱ (PSIF) in kPa -10; -8; -10; -12; -8.5 -5.5, -8.5, -10.0 

Field Capacity Θ (THETAF) 0.39; 0.4; 0.39; 0.4; 0.39 0.2, 0.32, 0.37, 0.4 

Brooks exponent (BEXP) 5.39; 6; 5.5; 3.5; 4 3, 3.5, 4, 5.5, 6, 7 

Hydraulic Conductivity (KF) in mm/d 6.3; 5; 7; 6.5; 5 1, 3, 5, 6.3, 7, 10 

Stone Content (STONEF) 0; 0; 0; 0; 0.5 0.1, 0.2, 0.3, 0.5 

Canopy 

Albedo (ALB) 0.09  

Maximum height (MAXHT) in m 24.4  

Maximum LAI (MAXLAI) 5 AVG up to 4.92 

Internal Conductivity (MXKPL) in 

mm/day,MPa 
8 2, 3, 4, 5, 8, 

Internal plant resistance (FXYLEM) 0.5 0.1, 0.6, 0.9 

Max Leaf Conductance (GLMAX) in 

cm/s 
0.53 0.2, 0.3, 0.4, 0.6 

Location 

Latitude (LAT) in °N 56.1°N  

Average Daily Precipitation Duration 

per month (DURATION) in h/day 
4,3,3,2,2,2,2,2,2,3,3,4  
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Variation of LAI (RELLAI) 

(at day: 1, 54, 84, 299, 329, 366) 
0, 0.5, 1, 1, 0.5, 0 1 (all year) 

 

The MAXLAI, MAXHT and Albedo (ALB) are based on the measurements done by ICOS 

between 2018 and 2024 (Heliasz, Mölder, et al., 2024). Because of a lack of information on the 

soil properties, the soil layers and their thickness were set to fit the measurement depths of the 

ICOS sensors, at 30 mm, 50 mm, 100 mm, 300 mm, and 1000 mm depth, with a soil layer ending 

in the middle of two sensors. All parameters not specified here were taken from default parameter 

files provided by the model producer (Federer, 2019; Federer, Revised - April 9, 2021). The 

canopy file was for temperate evergreen forest (CTemperateEvergreenForest), the soil file for loam 

(SCl), the flow file for a top-down wetting front (FTopdown), the location file for Atlanta (LAmd) 

and the default Fixed and Initial files were used (Xdefault and Idefault). The location file was 

altered based on information on the site from Heliasz, Mölder, et al. (2024) and the average daily 

duration of precipitation per month was calculated from the meteorological data measured by 

ICOS between 2018 and 2024. The RELLAI is here loosely based on the vegetation period of 

Norway spruce and the seasonal pattern in the measured ET rate (Pastorello et al., 2020; Roloff et 

al., 2010), starting in February (doy 54) with reduced LAI by 50% and reaching the maximum LAI 

in March (day 84). The fraction value is then linearly interpolated between the set parameter 

values. This results in changes in both interception and transpiration rates throughout the year, 

with “RELLAI = 0” resulting in a LAI of 0.00001 and therefore strongly limited interception and 

transpiration. The other parameters were then adjusted one at a time and values were chosen when 

the best fit to the 2020 measurement data was achieved and all other parameters not shown in 

Table 1 are additionally displayed in Appendix 1. These parameters were used for all following 

modelling steps if not specified otherwise. 

3.4 Data 

Table 2 shows the data sets used as input for the BROOK90 model and to assess the model 

accuracy. 

Table 2: Data used as model input for BROOK90 and for regression analysis of model outputs including 

the name of the data set and reference, variables used from the data and time coverage. 

Data Variable(s) (Unit) Time Frame 

ICOSETC_SE-

Htm_ANCILLARY__2023

1023154450_INTERIM_L

2 (Heliasz, Mölder, et al., 

2024) 

LAI (m²/m²), Canopy height (m) 2016 to 2023 

ICOSETC_SE-

Htm_METEO_INTERIM_

L2 (Heliasz, Mölder, et al., 

2024) 

Precipitation (mm), Temperature (°C), Relative 

Humidity (%), Windspeed (m/s), Incoming 

Shortwave Radiation (SW_in, W/m²); Soil water 

content (%) at 5 levels (30, 50, 100, 300, 1000 

mm) 

2018 to 2024 
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As the BROOK90 model requires daily precipitation, maximum and minimum temperature, 

these measurements were acquired from the ICOS station measurements (for April 2018 to 

December 2023) and the closest SMHI weather stations, which are in this case Klippan for 

precipitation data, Ljungbyhed and Helsingborg A for temperature, wind speed, and humidity data 

(Table 2). The ICOS measurements were done at different heights, with latent heat flux and wind 

speed at 27 m height, precipitation at 2 m at a different location, relative humidity and air 

temperature at 24 m and short-wave radiation at 50 m height. Since the model requires input and 

produces outputs in a daily resolution, the gap-filled data from ICOS was chosen here to minimize 

bias created by missing data in the daily averages (temperature, relative humidity, and wind speed 

data) and sums (precipitation, solar radiation, and latent heat flux). This was provided by Heliasz, 

Kljun, Biermann, Holst, Holst, Linderson, Mölder and Rinne (2024) and the data was gap-filled 

using the marginal distribution sampling (MDS) method, which approximates the atmospheric 

fluxes based on covariance with the meteorological drivers air temperature, incoming shortwave 

radiation and vapour pressure deficit as well as temporal autocorrelation (Pastorello et al., 2020). 

The incoming short-wave radiation, air temperature and wind speed data were additionally gap-

filled with the ERA-interim method for values, where the MDS performance was unsatisfactory 

(Pastorello et al., 2020; Vuichard & Papale, 2015). Furthermore, the incoming shortwave radiation 

and latent heat flux data (LE) were corrected for a closed energy balance. For all variables, no 

ICOSETC_SE-

Htm_FLUXES_INTERIM

_L2 (Heliasz, Kljun, 

Biermann, Holst, Holst, 

Linderson, Mölder, et al., 

2024) 

Latent Heat Flux (W/m²) 2018 to 2024 

ICOSETC_SE-

Htm_FLUXNET_HH_L2 

(Heliasz, Kljun, Biermann, 

Holst, Holst, Linderson, 

Mölder, & Rinne, 2024) 

Gap filled data: Precipitation (mm), Temperature 

(°C), Relative Humidity (%), Windspeed (m/s), 

Incoming Shortwave Radiation (SW_in, W/m²); 

Soil water content (%) at 5 levels (30, 50, 100, 

300, 1000 mm), Latent Heat Flux (W/m²) 

2018 to 2024 

Station data from 

Helsingborg A 

(HelsingborgA, 2024a, 

2024b, 2024c, 2024d) 

Daily Minimum, Maximum, Average 

Temperature (°C); Hourly Wind Speed (m/s); 

Relative Humidity (%) 

1995 to 2024 

Station data from Klippan 

(Klippan, 2024) 
Daily Precipitation (mm) 1945 to 2024 

Station data from 

Ljungbyhed (LjungbyA, 

2024; Ljungbyhed, 2024a, 

2024b, 2024c) 

Daily Minimum, Maximum, Average 

Temperature (°C); Hourly Wind Speed (m/s); 

Relative Humidity (%) 

1950 to 2000 

Global Radiation data from 

Lund Sol (LundSol, 2024) 
Hourly Incoming Shortwave radiation (W/m²) 1983 to 2024 
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measurements were done between 01/01/2018 and 18/04/2018 meaning that input data as well as 

SWC and LE for this period is interpolated with the MDS or ERA-interim method and no SWC 

data is provided after 12/07/2022, because the sensors were damaged by a lightning strike (Heliasz, 

Mölder, et al., 2024).  

The relative humidity (daily average in %) and average daily temperature was used to 

estimate the vapour pressure according to the Clausius–Clapeyron (C-C) relation approximation 

for saturation vapour pressure for horizontal liquid surfaces with temperatures above 0°C 

(empirical relationship) (Dingman, 2015):  
Equation 2 

𝑅𝐻 =
𝑒

𝑒 ∗
∗ 100% 

Where RH is the relative humidity in the air (%), e is the actual vapour pressure (in 

kPa) and e* is the saturation vapour pressure (kPa). 
Equation 3 

𝑒 ∗ = 0.611 × 𝑒𝑥𝑝
17.3∗𝑇

𝑇+273.3 

Where T is the air temperature (in °C). 

The incoming shortwave radiation was measured at the closest location in Lund in the unit 

of W/m². Therefore, the data was transformed to be in MJ/(m², day) as specified by the model. All 

missing values in radiation, wind speed and vapour pressure were corrected to 0 as the model uses 

potential or default values and precipitation was also assumed 0 for any missing values. This was 

not possible for the temperature data as the model would stop working.  

The temperature data was missing in the different datasets for the following periods:  

Table 3: Periods of missing Input Data - Daily Maximum (Tmax) and Minimum Temperature (Tmin) from 

different Measurement Stations (Ljungbyhed and Helsingborg A) and method used to fill the data gaps. 

Since Ljungbyhed is closest to the forest in Hyltemossa, its station data was used fully and 

filled up with adjusted data from Helsingborg A, Kolleberga and Klippan to achieve a full input 

time series. The temperature data was taken from Kolleberga for 01/01/1950 until 31/12/195, from 

Ljungbyhed from 01/01/1951 to 17/06/2001 and then Helsingborg A from 18/06/2001 until 

30/11/2023. To account for temperature differences between Helsingborg and Hyltemossa the 

temperatures were adjusted according to the linear relationship between the datasets: 
Equation 4 

𝑇𝑀𝐴𝑋,𝐿𝑗𝑢𝑛𝑔𝑏𝑦ℎ𝑒𝑑 =
𝑇𝑀𝐴𝑋,𝐻𝑒𝑙𝑠𝑖𝑛𝑔𝑏𝑜𝑟𝑔 𝐴

0.9595
− 0.469  

Station Tmax Tmin Gap fill method 

SMHI 

Ljungbyhed 

04/12/1951 to 13/11/1952 

09 – 10/10/1954; 

23 – 26/03/1952 

31/01/1952, 

Filled in using Tmax from 

Kolleberga or Tmin if data 

was missing completely. 

SMHI 

Helsingborg A 

10 – 13/04/1998 

04 – 10/01/1999 

26 – 31/07/1999 

17 – 20/09/1999 

Set to 0 or Tmin and output 

removed from after the 

model run. 
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𝑇𝑀𝐼𝑁,𝐿𝑗𝑢𝑛𝑔𝑏𝑦ℎ𝑒𝑑 =
𝑇𝑀𝐼𝑁,𝐻𝑒𝑙𝑠𝑖𝑛𝑔𝑏𝑜𝑟𝑔 𝐴

0.8899
− 1.9621 

The precipitation data was taken fully from Klippan as the station provides data for the entire 

period (01/01/1950 to 30/11/2023). Similarly, the global radiation data was taken from Lund Sol 

for 01/01/1983 until 30/11/2023 as there are no other stations measuring solar radiation closer to 

Hyltemossa. 

The wind speed (WS in m/s) data was taken from Ljungbyhed between 01/01/1950 and 

17/06/1995 and from Helsingborg A between 17/06/1995 and 30/11/2023. The data from 

Helsingborg was again adjusted according to the linear relationship to the data from Ljungbyhed 

for overlapping time periods: 
Equation 5 

𝑊𝑆𝐿𝑗𝑢𝑛𝑔𝑏𝑦ℎ𝑒𝑑 =
𝑊𝑆𝐻𝑒𝑙𝑠𝑖𝑛𝑔𝑏𝑜𝑟𝑔𝐴

0.9781
 

The relative humidity data from 01/01/1950 to 01/01/1995 was taken as an average between 

Helsingborg and Ljungbyhed as both stations displayed large periods with missing data and then 

from Helsingborg A from 01/01/1995. Here, the average temperature to calculate the vapour 

pressure was taken from Ljungbyhed again until 1995 and from Helsingborg until 30/11/2023 and 

missing values were filled using the average of the measured maximum and minimum 

temperatures. 

3.5 Model Application  

As specified in the aim (Chapter 1.1), the model was first run with measured input data from the 

ICOS station (Heliasz, Mölder, et al., 2024). As the measurement intervals were 30 min, it was 

transformed to daily data by either summing (incoming radiation, precipitation), averaging 

(temperature, relative humidity, wind speed) or finding the extreme values (minimum and 

maximum temperature). 

To perform the accuracy assessment, the measured and gap filled latent heat flux (LE) and 

soil water content data at the five different levels (30, 50, 100, 300 and 1000 mm) were then used 

to compare to the model outputs of ET and SWC for five layers, using the adjusted model 

parameters described in Chapter 3.3. First, the actual evapotranspiration rate (ET in mm/day) was 

approximated with LE (measured in W/m²), which is the energy transported with the water vapour 

flux. To convert the unit, the LE values were multiplied by the time interval in seconds (1800 

seconds), divided by 1,000,000 (from J to MJ) and summed for each day to calculate the daily LE 

in MJ/m². The evaporation rate (ET in mm/day) is then given by: 
Equation 6 

𝐿𝐸 =  𝛿𝑊𝑎𝑡𝑒𝑟𝜆𝑉𝑎𝑝𝑜𝑢𝑟𝐸𝑇 × 1000 

where δ is the mass density of water in kg/m³, λ is the latent heat of vaporization in 

MJ/kg and 1000 is scaling factor for the density. 
Equation 7 

Where, 

𝜆𝑉𝑎𝑝𝑜𝑢𝑟 = 2.50 − 0.00236 ∗ 𝑇 

With T being the air temperature in °C. 
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The model was validated using a linear regression analysis comparing the measurements 

and the model outputs. Higher accuracy was shown the higher the R² was and the closer the linear 

slope to 1 (Salciccioli et al., 2016). Here, dates with either missing measurement data or model 

inputs were not used as they would create a bias in the regression analysis. This is also the case 

for the data between 01/01 to 18/04/2018, where no measurements were done, but gap filled data 

is provided. Because it was utilized to parameterize the model to the site conditions and would 

therefore create a bias in the validation, the data from 2020 was not used. The same was done with 

model outputs based on the SMHI input data from the closest weather stations for 2018 to the end 

of 2023. Again, all periods with missing data were removed for the accuracy assessment given that 

they do not represent the model output. Moreover, the differences and linear regression between 

the model and measurements were tested for significance (p < 0.05). 

To model the water balance of the forest since 1950 the BROOK90 model was then run 

with input from the weather stations as specified above.  

3.5.1 Assumed Changes in LAI and Tree Height between 1950 and 2024 

Since the forest does not remain constant in height (MAXHT) and leaf area index (MAXLAI) over 

a period of 80 years, these parameters were adjusted in five-year steps, as shown in Figure 2, 

according to the following assumptions: 

 

 
Figure 2: Assumed maximum LAI and maximum (tree) height at Hyltemossa for the BROOK90 model run 

from 1950 to 2025. 

The maximum tree height (MAXHT) was adjusted according to the following assumptions. 

Literature suggests that trees show sigmoidal growth curves with Norway spruce exhibiting 

typically the highest growth rate at the age of 20 to 40 (Roloff et al., 2010; Weiner & Thomas, 

2001; Zeide, 1993). This rate typically ranges from 0.01 m to 4.6 m in 5 years with an average 

increase of 1 m in five years (Huuskonen et al., 2023; Kindermann et al., 2018; Lee et al., 2024; 

Pretzsch et al., 2020). Here, however, the focus is on two different forest stands with different ages 

and properties which are lumped in BROOK90. This means that the MAXHT should represent 

both stands simultaneously. To represent both forests with adequate accuracy a linear growth in 
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the maximum tree height was assumed. The forest before the storm damage in 1982 and the 

clearcuts in 1983 and 1988 was assumed to be at the end of a turnover period (50 years old). 

Therefore, the maximum height was set to 30 m in 1980 with an increase of 4 m since 1950 

(1m/5years). Due to the clearcut in 1983 and 1988, respectively, the MAXHT was assumed 0 for 

that year and 2 m for the 1980 to 1985 time step with a linear increase to the measured MAXHT 

27 m between 2020 and 2025, resulting in a growth rate of 3 m/5 years (Heliasz, Mölder, et al., 

2024). It was assumed to not be affected by cleaning or thinning since these practices typically 

remove small trees and non-spruce trees (Roberge et al., 2020). 

Similarly, the maximum LAI (MAXLAI) was assumed to increase linearly with high 

values of 4.9 to 5.5 before the clear cut in 1980, and therefore slightly higher than the measured 

LAI by ICOS between 2016 and 2024 (Heliasz, Mölder, et al., 2024). Between 1980 and 2024 the 

change in LAI was assumed to be linear with a MAXLAI of 1.5 for 1980 to 1985, again taking 

into consideration the still full grown second stand before 1988. The increase was assumed to be 

0.8/5 years and due to the thinning in 2009 and 2013 of the first stand and in 2015 of the second 

stand the LAI was reduced by 30 % from 5 to 3.5 for 2010 to 2015, reaching a final MAXLAI of 

5 in 2020 to 2024. This rate is slightly smaller than observed by Pokorný et al. (2008), but a linear 

relationship between stand age and LAI is reportedly appropriate for young spruce forests. 

3.5.2 Identification of Periods exhibiting Water Stress  

Vegetation water stress can described by the fraction of actual transpiration over potential 

transpiration (Hammel & Kennel, 2001; Wellpott et al., 2005) also called the transpiration index 

(AT/PT). A transpiration index vluae below 1 typically indicates water stress (Federer, 2002). 

According to Hammel and Kennel (2001) a site experiences water deficiency frequently when the 

25th percentile is below 0.95. This value was used here to determine whether the site is frequently 

dry over the entire model period (1950 to 2024). Furthermore, years with an average transpiration 

index below 0.95 were identified as dry years and the number of dry days was calculated by 

counting all days within a year where AT/PT was smaller than 1, indicating water stress. 

Additionally, a regression analysis was performed, to test for significant trends (p < 0.05) in the 

transpiration index, ET rate, SWC as well as precipitation and temperature since 1950. 

3.5.3 Scenarios 

To compare the impact of different management strategies as well as the projected temperature 

increase with climate change on the water balance and experienced water stress, the following 

scenarios were applied by running BROOK90 with changed parameters or input data. 

1. The base line scenario was based on stand properties measured and determined by ICOS 

and adjusted to achieve the best fit for the year 2020. This includes input parameters in the 

Flow, Canopy, Location and Soil files for the BROOK90 model (Chapter 3.3).  

2. To model the impact on water stress of a higher stand density of the spruce forest, assuming 

no thinning was done during the growth of the forest, the leaf area index (LAI) was 

increased by 25%. This was applied by changing the leaf area index parameter MAXLAI 

from 5 to 6.25. 

3. To model the impact of a decreased stand density, assuming additional stand thinning, the 

MAXLAI was decreased by 25% from 5 to 3.75. 

4. To model the influence of rising temperatures due to climate change, the daily maximum 

and minimum temperatures were increased by 2 °C in the input data file. This value was 

chosen because according to Seneviratne (2023) and Lee et al. (2021) air temperatures will 
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increase in Scandinavia on average by 1.8°C to 4°C by 2100, depending on the forcing 

scenario (RPC 2.6 to RPC 8.5). Moreover, the relative humidity as well as the precipitation 

are assumed to be unchanged, because the changes show lower confidence and higher 

regional variability (Lee et al., 2021). 

 All scenarios were run with the gap filled weather data measured by ICOS at Hyltemossa from 

2018 to 2024 (Heliasz, Kljun, Biermann, Holst, Holst, Linderson, Mölder, & Rinne, 2024). The 

difference between the scenarios regarding their ET rate, SWC, water stress and number of dry 

days were tested for significance (p < 0.05). 
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4 Results 

4.1 Model Parameterization to 2020 ICOS data. 

The model parameterization was adjusted using measured latent heat flux and volumetric soil 

water content data from ICOS (Heliasz, Kljun, Biermann, Holst, Holst, Linderson, Mölder, & 

Rinne, 2024). It resulted in a modelled evapotranspiration rate curve mostly following the pattern 

of the measured latent heat flux (Figure 3). As shown in Figure 3, the model produces mostly a 

higher ET rate than the measurements in the winter months (January to March and November to 

December, average difference of 0.31 mm/day) and a generally lower rate in the summer and early 

autumn months compared to the measurements (July to October, average difference of 0.35 

mm/day). In contrast, spring and early summer (March to end of June) show smaller differences 

with the model being 0.16 mm/day higher on average than the measurements. The months showing 

the largest difference are July and August, where the model is lower than the measurements by 

about 0.62 and 0.6 mm/day on average, while it is higher by about 0.51 mm/day on average for 

February. The month where the modelled ET rate fit the measurements most is May with an 

average difference of 0.013 mm/day. Furthermore, the days with the largest discrepancies between 

modelled outputs and measurements are the 17/08 and 11/08 with a difference of 2.11 mm/day 

and 1.91 mm/day respectively (model is lower), as well as the 01/06 and 28/06 with 2.34 mm/day 

and 2.17 mm/day respectively (model is higher). 

 
Figure 3: Modelled and Measured daily evapotranspiration (ET, in mm/day) and soil water content 

throughout entire soil column (SWAT, in mm) at Hyltemossa for 2020 after parameterizing BROOK90 

with latent heat flux (LE) and volumetric soil water content data from 2020. 

The results of the regression analysis are shown in Table 4 and Figure 4, displaying that 

the modelled ET rate is on average higher than measured (by about 2%), however with the model 

generally underestimating it with a linear regression slope of 0.9. The modelled ET rate shows a 
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high fit to the linear regression model with an R² of 0.89 and this is also reflected in the similar 

value ranges and low average difference, which is not significant (p > 0.05). 

 
Table 4: Statistics on the BROOK90 model after parameterization with 2020 data comparing modelled 

evapotranspiration rate (ET) and volumetric soil water content (SWC) for all five soil layers (1 to 5) to 

the measured measurement data by ICOS. The statistical variables include slope of the linear regression, 

the R², average difference (measured – modelled value), standard deviation (STDV) of the difference 

between model and measurement and the range of the model outputs and measurements. 

 
Figure 4: Regression analysis of the model outputs after parameterizing BROOK90 with the measured 

data from 2020. The modelled daily a) evapotranspiration (ET) and b) volumetric soil water content 

(SWC) are compared to measured data from Hyltemossa in a scatter plot, showing the slope and R² of the 

linear regression. 

The soil water content for all layers is generally higher in the model, with the linear slope 

ranging from 1.12 to 1.41, with the first four soil layers showing a very high fit (R² of 0.99) and 

the model outputs for layer five a slightly worse fit (see also Appendix 2 and 3). The ranges of 

SWC are similar between the model and measurements and the model outputs for all layers and 

Statistical 

Variable 

ET 

(mm/day) 
SWC 1 SWC 2 SWC 3 SWC 4 SWC 5 

Regression 

Slope 
0.90 1.12 1.18 1.13 1.17 1.41 

R² 0.89 0.99 0.99 0.99 0.99 0.82 

Average 

Difference 
-0.04 -0.01 -0.01 0.005 -0.001 0.11 

STDV of 

Difference 
0.68 0.03 0.03 0.03 0.05 0.05 

Range Model 
-0.2 to 

5.33 

0.15 to 

0.37 

0.16 to 

0.37 

0.15 to 

0.38 

0.11 to 

0.42 

0.20 to 

0.41 

Range 

Measured 

-0.11 to 

5.34 

0.14 to 

0.39 

0.12 to 

0.37 

0.15 to 

0.41 

0.16 to 

0.41 

0.06 to 

0.42 
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show generally a low average difference to the measurements (ranging from 0.001 to 0.11), with 

slightly higher values for the fifth layer. 

Similarly to the ET rate the annual pattern of high soil water content in winter and low values 

in summer as measured at Hyltemossa are reflected well by the model outputs (Appendix 2). The 

model output shows generally higher short time variations than the measurements, which are 

greatest in summer (June to September) for all layers. Except for Layer 5, the model values are 

higher than the measurements in winter and spring (January to May and November and December) 

and lower during summer and autumn (May to November). The soil layer showing the greatest 

deviations between the modelled and measured water content is the fifth layer at approximately 1 

m depth. This is especially evident from April and onwards. 

4.2 Input Data – Comparison of ICOS and SMHI measurements. 

According to the data from 1950 to 2023 from the different SMHI stations, the site has an annual 

precipitation of on average 756.4 mm ranging from 462.2 mm in 2018 to 1077.8 in 1998. The site 

shows an average temperature of 7.72 °C with the maximum temperature ranging from -6.8°C to 

29.8°C and the minimum temperature from -17.4 to 17.4°C and an average daily temperature range 

of 8.1°C (Figure 5). One can observe a significant positive trend in temperature since 1950 with a 

difference of 1.1°C between 1950 to 1980 and 1981 to 2024. In contrast, precipitation shows no 

significant trend throughout the measurement period. Furthermore, the data displays an average 

windspeed of 3.57 m/s, average vapour pressure of 0.79 kPa and daily net radiation of 5.56 MJ/m². 

 
Figure 5: Annual total precipitation and average maximum and minimum temperatures at Hyltemossa 

based on measurement data from nearby SMHI stations for 1950 to 2023. 

To assess the differences between the measured input data, measurements from the closest 

SMHI station and from ICOS at Hyltemossa were plotted in scatter plots (Figure 6). 
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Figure 6: Comparison of measured input data from ICOS at Hyltemossa and nearby SMHI 

meteorological stations (name in brackets) in linear regression analysis including linear equation and R². 

The input variables are daily a) Maximum Temperature, b) Minimum Temperature, c) Total 

Precipitation, d) Average Windspeed, e) Average Vapour pressure and e) Total Incoming Solar Radiation 

for 2018 to 2023. 
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Comparing the data sets, one can see that temperature and wind speed are both generally 

higher at the SMHI station in Helsingborg A than in Hyltemossa (Figure 6). In contrast, the 

measured vapour pressure in Helsingborg A and solar radiation from Lund Sol are overall lower 

than measured by ICOS, with both showing a nearly linear relationship (high R² and slope close 

to 1). The measured precipitation shows, together with wind speed, the highest variation between 

the datasets (R² of 0.58 and 0.29), with higher precipitation typically occurring at Hyltemossa 

compared to the SMHI station in Klippan (Figure 6). There are no obvious seasonal patterns 

regarding the differences between the datasets and except for the precipitation data, the input data 

sets vary in similar yearly and seasonal patterns. 

4.3 Model Validation for 2018 to 2024. 

When comparing the ICOS measurements and modelled ET rate for the full data range (January 

2018 to December 2023), one can see that both follow the same seasonal pattern with low to no 

evapotranspiration in late autumn and winter (November to March) and the highest rates in 

summer (May to June), as shown in Figure 7. The outputs have an average yearly range of -0.2 

mm/day to 5 mm/day in the measured data and -0.7 mm/day to 6.2 mm/day in the model outputs. 

 
Figure 7: Comparison of gap-filled measured (blue) and modelled (red) evapotranspiration rate (ET) 

based on ICOS input data for 2018 to 2023 at Hyltemossa. 

As shown in Figure 7, the model outputs show on average higher ET rates in autumn and winter 

(October to March) by about 12% and late spring (May and June) by about 22%, which is most 

prominent in 2019. In contrast, the ET rates measured by ICOS for summer and early autumn (July 

to October) are generally higher than the modelled ones on average by 31 %. It should be noted 

that the measured and input data for January to the 19th of April 2018 is purely gap filled data, 

since no actual measurements were made during that period, which is reflected in the smooth curve 

of measured ET rates. 

As shown in Table 5, the modelled ET rates show a greater value range than the measurements, 

with the model outputs based on SMHI input data (SMHI model) showing the highest range. 

Furthermore, the ET (SMHI) displays higher average difference and range of differences to the 

measurements compared to ET (ICOS), with both showing higher ET rates than measured on 

average by approx. 5% and 1%, respectively. This difference is no significant for the ICOS model 

outputs but significant for the SMHI model outputs. In contrast, the linear slope is always smaller 
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than 1 meaning that the linear regression shows an underestimation of the measured ET rate 

(Figure 8, Table 5). Here, the slope is smaller for ET (SMHI) than for ET (ICOS) with a greater 

spread from the linear relationship (smaller R² at 0.74 compared to 0.84). This goes also for the 

soil water content, which shows for both model outputs closer fits to the measurements than the 

ET rate. The soil water content is overall lower in the model outputs than the measured data with 

the ICOS inputs showing again a better fit and a smaller difference of on average 5% less than the 

measurements compared to 12% for the SMHI SWC.  

The other four soil layers show similar properties, with the modelled SWC showing higher 

values than the measurements by about 10 to 15 % (SMHI input) and 3% (ICOS input) for layers 

3 and 4 and higher values by on average around 2% (SMHI input) and 8% (ICOS input) for layer 

2. Layer 5 at a depth of 1 m shows the biggest differences between the model outputs and the 

measurements, with the modelled SWC showing on average approximately 30% (SMHI input) to 

37 % (ICOS input) higher values than measured (see also Appendix 4). 

Table 5: Properties of BROOK90 modelled ET rate and SWC in the first soil layer (SWC 1) for 2018 to 

2024 using ICOS and SMHI measurements as input. This includes the data range, the average (AVG) 

difference between the model outputs ad ICOS measurements, range of the difference as well as the linear 

slope and R² of the linear regression of model and measurements. 

Variable (Source) Range 
AVG Difference 

to Measurement 

Range 

Differences 

Linear 

Slope 
R² 

Measured ET in mm/day -0.36 – 5.59 0 0 1 1 

ET (ICOS) in mm/day -1.28 – 7.14 -0.015 -3.12 – 3.61 0.94 0.84 

ET (SMHI) in mm/day -2.12 – 2.76 -0.069 -4.86 – 4.26 0.87 0.74 

Measured SWC 1 0.11 – 0.43 0 0 1 1 

SWC 1 (ICOS) 0.15 – 0.39 0.01 -0.35 – 0.15 0.96 0.98 

SWC 1 (SMHI) 0.15 – 0.38 0.03 -0.34 – 0.19 0.89 0.97 
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Figure 8: Linear Regression Analysis of Modelled vs Measured evapotranspiration rate (ET) and 

volumetric soil water content (SWC) in the first soil layer (1) comparing different input data sets (ICOS in 

red and measurements from SMHI stations in black). For the linear regression, the linear slope and R² 

are displayed. 

When comparing the model performance for different years, one can see that the model 

produced outputs close to the measurements for 2018, 2020 and the beginning of 2021, 2022 and 

2023 (Figure 9). The largest differences can be seen in 2019 where the model outputs are higher 

starting in January, show similar increase rates in spring and summer (April to October) and are 

increasing more than measured in autumn and winter (October to December), generally producing 

higher accumulative yearly ET than measured by 111 mm (SMHI) and 137 mm (ICOS). Similarly, 

at the end of 2018, 2021 and 2023 the model outputs are higher than the measurements at the end 

of the year starting in October, with total yearly differences of 39 mm, 73 mm, and 93 mm (SMHI) 

and 6 mm, 1mm and 32 mm (ICOS). The only year where the model outputs are lower than the 

accumulated measured ET is 2022, with differences of 64 mm (SMHI) and 68 mm (ICOS), which 

is also the year with the highest measured accumulated ET of 598 mm/year. Furthermore, the 

model using SMHI input data produces the higher yearly ET values than when using ICOS input 

data for most years (2018, 2021, 2022, 2023) with differences between the model outputs ranging 

from 4 mm/year in 2022 to 72 mm/year in 2021. 
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Figure 9: Daily Accumulated evapotranspiration rate (ET) comparing the measurements (Blue) and 

model outputs using different input data sets (from ICOS in red and SMHI stations in black) for 2018 to 

2023 at Hyltemossa. 

 As shown in Figure 10, the ICOS input data shows lower water stress levels (higher 

Transpiration Index) than the SMHI data for all years except 2021, with an average transpiration 

index of 0.91 and 0.88 respectively.  

Both follow the same seasonal pattern with water stress typically occurring in Summer 

(between June and September or October) and almost no stress for the rest of the year (October to 

May). For some years, this period is slightly longer (2018 and 2020) or shorter (2021) with 2018 

displaying the longest and strongest water stress period from the end of May until the end of 

October and an average transpiration index of approx.0.77 (for both models). In contrast, the years 

experiencing the least water stress, looking at the model with ICOS data are 2019 and 2023 with 

around an average of 0.96 and 2021 and 2023 with 0.94 when looking at the model with SMHI 

data. The years with the largest differences in water stress between the two model runs are 2019 

Figure 10: Comparison of modelled water stress given by the Transpiration index, AT/PT) using input 

data from nearby SMHI stations (top in black) and ICOS at Hyltemossa (bottom in red) respectively for 

the time frame 2018 to 2024 at Hyltemossa. 
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and 2022 with the model using SMHI input data showing a lower average transpiration index value 

by 0.07 and 0.04, respectively. In contrast, the year 2018 shows the smallest difference between 

the model outputs with around 0.004. 

4.4 Water Balance at Hyltemossa since 1950 

The BROOK90 model was then run for the full SMHI input data from 1950 to the end of 2023, 

producing daily ET, PT and AT rates as well as water stress level based on the transpiration index 

(Appendix 5). As shown in Figure 9, the ET rate ranges for the entire period between -3.7 mm/day 

and 7.76 mm/day with an average of 1.4 mm/day, while the AT shows a range of 0 to 5.47 mm/day 

with an average of 1.01 mm/day (around 72% of the average evapotranspiration and 88% of the 

potential transpiration rate). Furthermore, both ET and AT are considerably lower from 1980 

onwards based on the lower LAI following the replanting of the forest and reach rates like 1950 to 

1980 by 2005 (Appendix 5).  

As shown in Figure 11, the year with the lowest average and accumulated ET is 1984 with 

0.67 mm/day and a total of 246.36 mm/year while the years showing the highest ET rate are 2007 

and 2023 with an average of 1.8 and 2.0 mm/day and a total of 657.61 mm/year and 667.07 

mm/year respectively. Furthermore, about 72 % of the ET rate is transpiration leaving around 28% 

or 0.39 mm/day on average for evaporation. The actual transpiration rate is typically close or the 

same as the potential transpiration rate especially between 1980 and 2002 with the largest 

differences in 1952, 2018 and 2022 showing an accumulative difference of 192 mm/year, 275 

mm/year and 183 mm/year, respectively. For some years, the PT even surpasses the ET rate 

including 1951, 1952, 1959, 1976, 2018, 2020 and 2022 with 2018 showing a PT rate which is 

higher than the ET by 172 mm/year. 

 

 
Figure 11: Modelled total annual evapotranspiration, potential transpiration, actual transpiration and 

measured precipitation at Hyltemossa for 1950 to 2023 using SMHI input data and assuming a changing 

leaf are index and tree height over time (Chapter 3.5.1). 

 When comparing the ET to the yearly precipitation, one can see that about 69% of the 

precipitation evaporates, leaving the rest of the water for storage and flow (overland or 

underground). This ration fluctuates between the years, with ET taking up about 78% of the 

precipitation before 1980, about 50% between 1980 and 2000 and around 74% after 2000. The 

largest difference between ET and precipitation can be found in 1980 where about 31% of the 

precipitation was ET, while 1953 and 2018 show the smallest difference with 92% and a little over 
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95 %, respectively. Here, the potential transpiration only surpasses the precipitation on two years 

which are 1995 and 2018 by 21.8 mm (4%) and 152.4 mm (33%), with an average of 57.6% of the 

precipitation being allocated for potential transpiration. 

 Looking at the modelled water stress for the period of 1950 to 2023, displayed in Figure 

12, one can see that the transpiration index fluctuates between the years. It shows a similar pattern 

as the ET rate with low to no stress between 1980 and 2002 (high transpiration index) averaging 

at 0.99. Higher stress levels can be observed before 1980 and after 2002 with an average of 0.93 

and 0.95, respectively. Overall, the site shows an average transpiration index of 0.96 with a 

standard deviation of 0.16 and values ranging from 0.06 (August 2020) to 1. It experiences water 

stress for on average 40 days a year, with the duration ranging between 0 (in 1966, 1980 to 1991, 

1994, 1997, 2001, 2004 and 2011) and 135 days a year (in 2018). Furthermore, the 25th percentile 

is at 1, categorizing the site as not frequently dry.  

Looking at the seasonal patterns, winter months (November to May) show typically low or 

no water stress while the summer months (July to October) show the lowest average transpiration 

index ranging from 0.83 in July to 0.87 in August, with intermediate values in spring and October 

of around 0.95.  

 The model showed the lowest average transpiration index for the years 1959 and 2018 with 

values of 0.789 and 0.792 respectively and a total of 126 and 135 days with an index value below 

1. Furthermore, 11 more years showed an average value below 0.9 including 1950, 1951, 1952, 

1955, 1964, 1972, 1975, 1976, 2016, 2020 and 2022, with 1951 showing the lowest value of those 

years with 0.843. For these, the number of days with water stress ranged between 65 in 1976 and 

128 in 1951. Furthermore, it can be noted that none of the years of 1980 to 1991 would experience 

water stress with indices averaging below 0.9 if the forest was not cut down (assuming an 

MAXLAI of 5 and a MAXHT of 27 m). However, when assuming an unchanging forest LAI and 

height, the average stress would increase, resulting in an index of 0.95 (0.01 lower)(Appendix 6). 

Figure 12: Modelled Water stress (bottom) and annual number of dry days (top) using the BROOK90 

model and SMHI input data for the Forest in Hyltemossa between 1950 and 2024 represented by the 

transpiration index (AT/PT). A transpiration index of 1 indicates no stress. 
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Furthermore, with a constant LAI there is a significant increase in ET of 0.85 mm/year and no 

significant trend in the soil water content, precipitation, the transpiration index, or the number of 

dry days per year (p < 0.05). 

4.5 Scenarios 

When comparing the outputs of the four scenarios assuming changes in the forest 

management (Scenario 2 and 3) or in the temperature assuming an increase by 2°C due to climate 

change, one can see that on average, the ET rate is the highest for Scenario 4 (CC), followed by 

Scenario 2 (LAI 6.25), the base line Scenario 1 and lastly Scenario 3 (LAI 3.75) (Table 6). Here, 

increasing the maximum LAI by 25% (Scenario 2) results in a significant increase of ET rate by 

on average 4 %, while a decreased LAI by 25% lowers the ET rate by 5% on average. This comes 

with a significantly increased water stress level (lower transpiration index) by 2 % for Scenario 2 

and a decreased stress level by 3% for Scenario 3. Similarly, the soil water content is lowered on 

average by 6 mm (2%) and increased by almost 10 mm (4%) for the respective scenarios. 

Therefore, even though the change in LAI is by the same fraction, the decrease in LAI leads to a 

larger change in the model outputs than the increase. Looking at the climate change Scenario (4) 

one can see that the increase in temperature results in a significantly increased ET and AT rate (by 

10% and 8%) with decreased soil water content (7%) and transpiration index (by 6%). Scenario 3 

shows the largest range of values while the Scenario 4 shows the smallest. All differences between 

the scenarios mentioned above were tested for significance and show p < 0.05 and are therefore 

significant. 

Table 6: Properties of output data from the four different scenarios (1 to 4) described in Chapter 3.5.3 

including the average (AVG), standard deviation (STDV) and range of the evapotranspiration (ET) rate 

(mm/day), the average difference to the baseline scenario (1) as well as the average daily transpiration 

index (Stress), soil water content (SWAT in mm) and transpiration rate (AT in mm/day). 

When looking at the seasonal patterns and inter annual differences (Figure 13), it becomes 

apparent that Scenario 3 and 4 model water stress periods to start earlier (typically by one or two 

Scenario Measured 1 (Baseline) 2 (LAI 6.25) 
3 (LAI 

3.75) 
4 (CC) 

AVG ET (mm/day) 

(STDV) 

1.49 

(1.39) 

1.50 

(1.38) 

1.56 

(1.41) 

1.43 

(1.34) 

1.66 

(1.36) 

Range of ET 

(mm/day) 
-0.36 – 5.59 -1.28 - 7.14 -1.3 – 6.7 -1.95 – 7.85 -0.07 - 6.37 

AVG difference to 

ET baseline 
0.02 - -0.06 0.08 -0.15 

AVG Stress 

(STDV) 
- 

0.91 

(0.22) 

0.89 

(0.25) 

0.94 

(0.18) 

0.86 

(0.28) 

AVG SWAT (mm) 

(STDV) 
- 

264.9 

(80.5) 

258.5 

(80.8) 

274.6 

(78.7) 

246.8 

(79.5) 

AVG AT (mm/day) 

(STDV) 
- 

1.13 

(1.32) 

1.13 

(1.33) 

1.10 

(1.29) 

1.21 

(1.29) 
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days) to be more severe (up to 30 % lower transpiration index values) with the temperature increase 

showing more severe water stress values than higher stand density (Scenario 2). In contrast, 

lowered stand density is modelled to reduce both the duration of water stress periods and the 

severity (up to over 100% increase of the transpiration index from the baseline scenario) and 

sometimes showing no stress for periods where the other scenarios predict them (e.g., 09/07/2019 

to 23/07/2019). The number of dry days (AT/PT < 1) is significantly increased for Scenarios 2 and 

4 by on average 10.8 days and 29 days annually respectively, while the dry period is shortened on 

average by 23.5 days in Scenario 3 compared to the baseline of 73.3 days annually. 

 

 
Figure 13: Comparison of modelled transpiration index for the four scenarios (1 – baseline, 2 – 

increased LAI, 3 – decreased LAI, 4 – climate change (temperature increase)) for the growing season of 

2019. The evapotranspiration rate of the baseline scenario (1) is given at the top. 

These seasonal patterns also depend on the different years and level of stress as shown in 

Figure 14. Here, 2018 is the year that displays the highest stress level (average transpiration index 

ranging between 0.73 and 0.81 depending on the scenario) and shows the smallest differences 

between the scenarios regarding its evapotranspiration rate (around 3 to 5% difference to the 

baseline). Similarly, the transpiration index shows a lower stress level in 2019 (around 0.91 to 

0.99) with larger differences in the ET rates (4% to 12% difference from the baseline, see Figure 

13 and 14).  
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Figure 14: Comparison of the accumulative evapotranspiration (ET) rate for the four Scenarios (1 – 

baseline, 2 – increased LAI, 3 – decreased LAI, 4 – climate change (temperature increase)) between 2018 

and 2024. 
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5 Discussion 

5.1 BROOK90 Model validation for 2018 to 2024 

Looking at the model validation, one can see that BROOK90 provides a good approximation of 

the site evapotranspiration rate and soil moisture content with the R² ranging from 0.74 to 0.98, 

reflecting the seasonal pattern and interannual trends relatively well. The model fit for 2018 to 

2023 is slightly worse than for 2020 (showing an R² of 0.88 to 0.99), because the model was 

parameterized to fit the measurements from 2020. Compared to other studies using BROOK90, 

the model validation shows a good fit. For example, Luong et al. (2022), Tahir (2012) and 

Kronenberg et al. (2013) produced an ET model fit with an R² of 0.62, 0.26 and 0.95 respectively 

for pine forests or mixed forests. While Tahir (2012) generally overestimated the ET rate, Luong 

et al. (2022) produced overall lower results than the measurements. However, considering that site 

conditions and parameters differ between these studies, it is difficult to compare them and a 

specific parameter determining the differences in accuracy cannot be pinpointed. This is also 

displayed by Wellpott et al. (2005) and Tahir (2012), which both applied BROOK90 to the pine 

forest in Hartheim, Germany. While both studies found a robust model output, the study by 

Wellpott et al. (2005) showed a fit of 0.97 to the soil conditions, while Tahir (2012) study displayed 

a considerably worse fit with an R² of 0.55. This is most likely connected to the parameterization. 

Similarly, Vorobevskii et al. (2022) compares a tuned BROOK90 to a model run with arbitrary 

parameters, showing that especially the canopy and soil parameters determine the accuracy of the 

model outputs and uncertainty connected to the model. 

In this thesis, all parameters chosen for the soil and flow properties were arbitrary since no 

data was provided on the water retention properties, soil profile or structure. Even though the 

model showed a very high fit to the measured SWC at the site, the actual soil might differ greatly 

from the chosen parameters. Therefore, determining the soil properties on site for the 

parameterization might improve the model, given that it is designed to utilize physically 

meaningful parameters. Nevertheless, this shows that the application of BROOK90 in areas where 

measurements are not possible or very costly can still produce robust results. The same goes for 

the root properties of the forest, which were not adjusted due to a lack of data. According to Federer 

et al. (2003) the model is however less sensitive to the root properties with the climate and weather 

conditions, canopy properties and soil structures showing the highest influence. Moreover, the 

latent heat flux measured at the site might not correspond fully to the soil water conditions. 

Accordingly, the model input data and its accuracy are imperative. As shown in the results, 

the model performance was significantly better with input data from Hyltemossa compared to 

measurements from the closest SMHI station. With SMHI input, the model tends to overestimate 

the ET rate by approximately 5% and therefore also the experienced stress. This could be due to 

the differences in temperature and precipitation between the measurement sites (Figure 6). The 

temperatures measured at Helsingborg A are higher than at Hyltemossa, which is probably due to 

the measurement height. While the SMHI measures temperatures at the height of 2 m, the ICOS 

measurements were done at 24 m above the canopy, leading to lower values. This in turn results 

in higher ET rates with SMHI data. Similarly, the windspeed is higher in the SMHI inputs with 

lower vapour pressure which both generally produce higher ET rates. However, the most 

influential input is the precipitation, which differs the most between Hyltemossa and the SMHI 

station in Klippan. This most likely contributed most to the significant discrepancy between the 

measurements and model output on the daily resolution. Furthermore, because the input is in daily 
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resolution, it does not allow for detailed diurnal patterns. Therefore, evaporation could be allocated 

to the wrong day, which could explain some of the major differences between model and 

measurement on a daily scale. To improve on this, precipitation can also be provided in smaller 

time steps in the model, however, the historical data is rarely in higher temporal resolution, and it 

was therefore opted for daily input data. 

Looking at the seasonal pattern, the model overestimates the ET rate in winter by 12 to 22 

% depending on the input data. During this time ET is supposed to be nearly 0 mm/day due to low 

temperatures resulting in limited evaporation, possible soil frost and stomatal closure and therefore 

reduced transpiration. This overestimation was also found by most other studies using BROOK90 

(Kronenberg et al., 2013; Luong et al., 2020; Vorobevskii et al., 2022). It can be most likely be 

attributed to the poor handling of snow evaporation and the assumption that soil does not freeze in 

the model, which is also discussed by Kronenberg et al. (2013). Here, frozen ground would limit 

the soil infiltration and evaporation, even though it rarely occurs at Hyltemossa due to the dense 

canopy cover. Furthermore, the model produces negative ET rates modelling condensation rates 

down to -2.12 mm/day, which was pointed out by Kronenberg et al. (2013) as highly implausible. 

They, thus, applied a correction, which should be considered in future applications of BROOK90. 

Given that the focus of this thesis is on water stress, which typically occurs in the summer months, 

the winter months were generally disregarded. For the growing season, the model performs overall 

better and underestimates the ET rate by up to 10%. Nevertheless, it overestimates the ET rate for 

early summer periods by up to 18% and underestimates it for later months by as much as 31%. 

This could be due to the applied seasonal LAI (RELLAI) pattern which defines an LAI ration of 

0.5 at the end of February and 1 at the end of March, assuming a linear relationship between the 

two. However, spruce forests typically start the growing period in April, with temperatures rising 

rather late in southern Sweden which could explain the overestimation in spring and early summer 

(Przybylski, 2007; Roloff et al., 2010). Therefore, when evaluating the water stress coefficient, it 

should be expected that the model overestimates the length of the dry period as well as the stress 

in early summer and underestimates it in August and September, especially with the SMHI data. 

The model validation comes with multiple limitations connected to the model and the data. 

First, as mentioned in Chapter 3.2.4, the model assumes a single layer, homogeneous, green 

canopy cover, disregarding understory vegetation and its contribution to the ET rate and SWC. It 

can contribute up to 50% to the transpiration rate depending on the LAI and sunlight extinction in 

the canopy (Luong et al., 2022).  At Hyltemossa the ground is mostly covered by mosses, probably 

not contributing significantly to the transpiration rate. But it can lower the soil temperature and 

delay infiltration (Heim et al., 2014). Additionally, dead needles are not considered to contribute 

to interception and the canopy is assumed to remain unchanged over the years. Therefore, damages 

from especially drought periods and hysteresis of soil water content after dry spells are not 

simulated in the model (Federer et al., 2003{Luong, 2022 #64)}. The hysteresis of the soil can be 

observed in Figure 5b and 8b, where the SWC scatter plot shows the characteristic s-shape due to 

delayed rewetting, which is not simulated by the model. The lacking changes would also explain 

the large overestimation of the ET rate by the model for 2019 by up to 28%, where the transpiration 

and productivity was still limited due to damages from the 2018 drought year (Lindroth et al., 

2020). Similarly, other limiting factors cannot be considered here including nutrient and CO2 

availability, which are generally more relevant on larger time scales, as well as inflow from streams 

or ground water. 

Second, the separation of evaporation and transpiration can be difficult as it depends on the 

water availability, vegetation properties and soil properties (Federer, 1979). A study by 
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Baumgarten et al. (2014) showed that a version of the BROOK90 tends to overestimate 

transpiration at low soil moisture levels. However, it is difficult and often very costly to determine 

the transpiration rate experimentally, which is typically done by sap flow measurements on a few 

individual trees adding uncertainty by upscaling (Baumgarten et al., 2014). Therefore, even though 

the model makes assumptions regarding the soil and plant resistances to provide a parameterisation 

of the Shuttleworth and Wallace (1985) method, it provides a fast and cheap alternative, with 

relatively high accuracy to estimate transpiration (Baumgarten et al., 2014). 

Third, the data used for the model validation come with uncertainties and inaccuracies as 

well. The measurement data was gap filled using the marginal distribution sampling (MDS) 

method, which approximates the atmospheric fluxes based on covariance with the meteorological 

drivers: air temperature, incoming shortwave radiation and vapour pressure deficit, as well as 

temporal autocorrelation (Mahabbati et al., 2021; Reichstein et al., 2005; Zhu et al., 2022). This 

method performs well compared to other approaches for short gaps but tends to increase in 

uncertainty with longer gaps. However, it is difficult to quantify the uncertainty as the methods 

performance and bias largely depends on the site properties (Reichstein et al., 2005). Inaccuracies 

from the gap filling method are displayed for the first few months of 2018, where data was missing 

for all variables leading to large differences between the model and the measurements. However, 

for the rest of the timeframe, the periods of missing data were typically a few hours to a few days 

leading to low inaccuracies connected to the gap filling method. Using the data with gaps was not 

an option here, as this study is comparing daily totals regarding the ET rate and gaps would create 

a large negative bias. The same goes for the gap filled input data from ICOS. Moving on, the short 

timeframe for the model validation with data from five full years (2018, 2019, 2021, 2022, 2023) 

might leave a bias since as shown in the results, those years are generally warmer with higher 

water stress compared to past years. Similarly, the choice of 2020 for tuning the model was 

arbitrary here and using a different year might have improved the model performance. 

Lastly, the input data comes with uncertainty from sensor issues and biases from the 

measurement techniques. Especially precipitation measurements with precipitation gauges tend to 

show a negative bias (Dingman, 2015). Moreover, the temperature and wind speed data from 

Helsingborg A was arbitrarily adjusted to fit the data from Ljungbyhed using the slope of the linear 

relationship. However, given the spread of the data, this probably only improved the fit for part of 

the data, leading to worse result for other parts. 

In the future it might be interesting to therefore adjust the SMHI data to fit the ICOS 

measurements, to possibly improve the model performance. Furthermore, applying the 

parameterized model to other sites and evaluating the performance might give insight into how 

sensitive the model is regarding its parameters. It would show, if the model can be applied to other 

forest sites without extensive parameter adjustments. Finally, applying a different, possibly less 

complex hydrological model to compare the accuracy could showcase the performance of 

BROOK90 for this type of ecosystem. 

5.2 Water Balance at Hyltemossa since 1950 

As shown in the results (Chapter 4.4), Hyltemossa experienced water stress periods as 

expected in the early 1950s, 1975 and 1976, 2018 and 2022 as well as in 1992 when assuming a 

fully grown forest stand. However, 1981-83; 1988-1989 and 2003 showed low to no water stress, 

while 1959, 1972, 2016 and 2020 displayed long dry periods (89 to 126 days) with low 

transpiration indices (0.79 to 0.9 on average), even though these years are typically not considered 
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as drought years in literature (Alavi, 2002; Hanel et al., 2018; Hänsel et al., 2022). This could be 

partly explained by the strong spatial variability of precipitation and regional differences. 

Particularly 2003 is a year that resulted in a drought for large parts of southern and central Europe, 

however, not as much in Scandinavia (Hänsel et al., 2022). Also, while the transpiration index can 

indicate stress to the plants, it does not directly reflect drought conditions. Most years with high 

water stress can be explained by variations in precipitation and temperature, with high water stress 

usually occurring in years with low precipitation and high maximum temperatures. This can be 

seen particularly in 1959 and 2018 with below average annual precipitation and above average 

maximum temperatures, resulting in the annual potential transpiration surpassing the precipitation. 

Furthermore, the inter annual variation in the transpiration index can be explained by the seasonal 

distribution of precipitation, with transpiration occurring mostly between spring and autumn. 

Therefore, even if a year shows high annual precipitation, the forest might still experience high 

water stress because of limited rain fall in the growing season, as shown in e.g., 1953. In this regard 

it is important to consider both duration and average annual transpiration index when evaluating 

the drought impact. As Allen et al. (2015) concludes, more intense and hotter droughts typically 

lead to higher mortality rates in forests. Nevertheless, this is dependent on the seasonal distribution 

of dry days, with trees showing the highest vulnerability during the growing season, which requires 

more detailed investigation of seasonal patterns here. 

Overall, contrary to the hypothesis, the site shows no significant trend in annual precipitation 

or soil moisture and even though the annual ET would have increased significantly for a fully 

grown forest, the change is rather small with 0.85 mm/yr (around 0.1%). This is also accompanied 

by no significant increase in water stress or number of dry days. Given that this study concentrates 

on a singular location with large interannual variations in weather, the variations might drown out 

any significant trends. These might be more apparent on larger spatial scales, as described by 

Seneviratne (2023). However, a study by Ziche et al. (2021) for pine stands in Northern Germany 

also showed no significant change in precipitation or soil moisture between 1961 to 1990 and 1991 

to 2019, with an increase of potential and actual evapotranspiration by about 6%, which is higher 

than modelled here. The difference in magnitude could be attributed to the difference in vegetation 

as well as location, with the pine forest displaying lower annual ET rates of around 480 mm, higher 

temperatures (around 8.5 °C annually) and lower precipitation (around 600 mm) as well as 

different soil properties. However, in both cases the increase in ET can most likely be attributed 

to the increase in temperature (here by about 1.1°C between 1950 to 1980 and 1981 to 2023). 

Moreover, studies by Ziche et al. (2021) and Meusburger et al. (2022) also identify 2018 to be a 

year with high drought impact with 2019 being also categorized as a drought year due to low winter 

precipitation leading to increased water deficit in the growing season. This was not captured well 

in the results here, possibly since the model cannot emulate drought damages from previous years, 

largely limiting the water uptake and transpiration rate.  

The forest in Hyltemossa experienced exceptionally low water stress between 1980 and 2000 

which can be attributed to the low canopy height and cover after the plantation in 1983 or 1988. 

This shows that planted forests experience largely reduced water scarcity during the first 15 to 20 

years after plantation, again depending on the location and overall water input. However, this 

observation is largely dependent on the assumed change in LAI and height of the spruce forest. As 

described by Roloff et al. (2010), Norway spruce trees typically grow in a sigmoidal pattern with 

a slow growth at the age of up to 20 years, reaching the peak growth rate at the age of 40 years 

with exact growth rates depending largely on nutrient and water availability. However, for this 

thesis the growth was assumed to be linear with a rate of 3 meters in 5 years, which is considerably 
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higher than the average growth rate of 1 meter in 5 years measured by (Huuskonen et al., 2023; 

Kindermann et al., 2018; Weiner & Thomas, 2001; Zeide, 1993). But it might reflect the change 

in maximum tree height and is within the range of growth rates reported by Lee et al. (2024). 

Furthermore, the chosen coarse temporal resolution of 5 years per step does not allow for a detailed 

representation of the sigmoidal growth, which is additionally limited by the two stands that are 

lumped together having different ages and therefore different heights and LAI. Given that the 

forests were planted in 1983 and 1988 following clearcuts in 1982 and 1987, it is likely that the 

model underestimated the ET rate for 1980 to 1990. Likewise, the LAI and tree height are probably 

overestimated for 1990 to 2000 resulting in overestimated ET and AT rates for this period. 

Furthermore, the effect of thinning is here assumed to decrease the LAI by 30% between 2010 and 

2015, although the forest was thinned twice in 2019 by 30% and 25% and again in 2013 by 15 % 

in one stand and by 30% in 2015 in the other stand, meaning that the impact of the thinning was 

most likely underestimated. This is difficult to evaluate since the exact relationship between LAI 

and stand density changes from thinning depend largely on the thinning technique and tree species 

and are largely understudied (Davi et al., 2008; Pokorný et al., 2008). Measurements on changes 

in LAI might be therefore of interest, also to represent the impact of management strategies more 

exactly.  

Overall, the results’ reliability here is largely limited by the accuracy of the input data, as 

mentioned before. The ET rate and most likely also the water stress is overestimated for most years 

at the site, as also shown when comparing the outputs with ICOS vs SMHI input data. The exact 

amount is difficult to evaluate, because of the large variation in precipitation between Hyltemossa 

and the SMHI station in Klippan and overall interannual variation in the input data. Furthermore, 

the vapour pressure and solar radiation data show large gaps, which were then interpolated by the 

model to typically potential values. Between 1950 and 1983 solar radiation data was unavailable, 

meaning that the model assumed a corrected potential insolation and therefore most likely 

overestimated the incoming shortwave radiation and ET rates. Moreover, since no information is 

provided on the vegetation cover or management before 1983, this period should be treated as a 

model for potential periods of water stress. Therefore, exact values should not be considered here, 

and the focus should be on general patterns between years.  

5.3 Management and Climate change scenarios 

Looking at the comparison of two different management approaches as well as the increasing 

temperatures regarding their impact on the water balance at Hyltemossa, one can see that higher 

stand density and temperature result in a significant increase in ET rate. The change in transpiration 

with temperature increase by 2°C is about 5% higher than with increased stand density. These 

scenarios also resulted, as expected, in a significant increase in water stress and number of dry 

days by around 29 and 11days respectively, prolonging the dry period by almost a month when 

assuming a uniform increase in temperature. Similarly, the ET rate, water stress and number of dry 

days is significantly reduced when introducing another thinning by 25%, shortening the dry period 

by about 23 days. This can be attributed to the water availability for the plants, where lower stand 

density with the same amount of incoming water leads to higher water availability for the 

individual trees, reducing the water stress with overall reduced potential transpiration rates (Alavi, 

2002; Dingman, 2015). Meanwhile increasing temperature result in higher vapour pressure deficit 

in the air and higher potential transpiration rates. However, actual transpiration is limited by the 

availability of water, as sown for 2018. For that year differences in annual ET rate between the 
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scenarios is minor compared to other years because the actual transpiration is largely limited by 

precipitation input. This is lower than the potential transpiration for all scenarios in 2018. 

Accordingly, all scenarios exhibit similar transpiration rates with slightly different ET rates due to 

increased evaporation with higher stand density and temperatures. This results in overall 

interannual differences where the management strategies and climate change scenarios show lower 

changes for drought years regarding their ET rate and water stress. The number of dry days does 

not fully follow the same pattern. 

Compared to other studies simulating the impact of climate change on the water balance of 

forest ecosystems, the results are generally similar. A study by Ziche et al. (2021) showed that 

under the RCP8.5 with an increase in temperature by about 2.6 to 3.6°C, there can be a linear 

increase in ET rate and PET expected with a significant increase in dry days for 2010 to 2100. 

Similarly, Tahir (2012) found that for both a temperate forest in Germany and a boreal forest in 

northern Sweden, the ET rate is expected to increase by around 40 and 30 mm/year respectively 

for 1°C increase in maximum temperatures. However, it should be noted that this study showed a 

relatively poor model performance, overestimating the ET rate at Norunda by up to 250%. 

Furthermore, these results are limited by the assumption that in the future the temperature would 

change equally for both maximum and minimum temperatures with no change in precipitation. 

However, as described by Seneviratne (2023), Sweden is projected to experience a slight increase 

in precipitation and temperature, with the exact increase depending on the forcing scenario and 

model applied. However, the projection for precipitation show high uncertainties and were 

therefore not considered in this thesis (Seneviratne, 2023). Furthermore, with climate change an 

increase in atmospheric carbon dioxide is projected to improve the water use efficiency of most 

forested ecosystems and studies disagree on whether this effect would counteract the increased 

drought damage from hotter droughts (Allen et al., 2015; Brodribb et al., 2020). This effect cannot 

be integrated into this hydrological model, given that it does not provide for parameters or input 

representing other limiting resources such as atmospheric carbon or nutrients, meaning that the 

water stress is most likely overestimated for the fourth scenario. 

From the results one could infer that thinning can reduce the period of water stress each year 

by about 30 % with a reduction in ET rate by about 5% for each year, which was presented 

similarly by Tahir (2012), showing a decrease in ET rate by over 10% with a thinning of 30%. In 

contrast, a study by Boczoń et al. (2016) found that evapotranspiration and transpiration rate 

significantly increased after thinning in a pine stand. The study attributes this change to improved 

water use efficiency in the trees and higher ET in understory vegetation. This improved water use 

efficiency is also reflected in this thesis as modelled total annual transpiration is almost the same 

for the baseline and the thinning scenario in the drought year of 2018, meaning that individual 

trees transpire more under drought conditions after thinning. This in turn means that the damage 

to the individual trees is reduced substantially with still similar productivity levels. However, a 

study by Lagergren et al. (2008) showed that the impact of thinning on the transpiration rate of 

forests can differ significantly between years, with the difference in AT rate between the non-

thinned and thinned stand diminishing over time from initially 40% to 20% in later years. 

Moreover, the thinned stand displayed up to 7 times higher transpiration rates during drought 

periods. This shows one of the limitations of the model which cannot emulate changes in the 

canopy including increasing LAI with the trees filling gaps left by thinning, as well as increased 

resilience in the forest. Therefore, studying the increase in LAI after thinning in the forest stand 

and adjusting the LAI parameter in the model would provide more insight into the actual physical 

process.  
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5.4 Suggested Improvements and potential future studies 

As this study only focuses on one specific forest site in Sweden, the conclusion that can be drawn 

for forestry practices are very limited, therefore it might be of interest to apply the BROOK90 to 

multiple forested sites with the same vegetation to evaluate the differences between locations and 

produce a representative study for Swedish forests. Alternatively, applying the extension of 

BROOK90 in R for example, the global BROOK90 could provide a larger spatial cover and insight 

in specific variations of the water balance in regions of Sweden, even though it generally produces 

less reliable results than a calibrated lumped BROOK90 (Vorobevskii et al., 2022). Furthermore, 

the BROOK90-R introduced by (Kronenberg et al., 2019) can provide changes in parameters over 

time providing for vegetation growth. This could improve the model outputs for long time series, 

as applied here. Similarly, the LWF-BROOK90 introduced by (Schmidt-Walter et al., 2020) 

provides a soil parameterization, changes in the forest over time and with temperature, and could 

therefore improve the results. Furthermore, the result of this study could be used to evaluate other, 

possibly simpler hydrological models and their performance for modelling the water balance for a 

managed spruce stand.  

  



39 

 

6 Conclusion 

In conclusion, the BROOK90 model provides robust and suitable model outputs to represent 

the water balance for the spruce forest at Hyltemossa. Although the model overestimates the 

evapotranspiration significantly when using input data from the closest meteorological stations, it 

still provides a good enough fit to model past water stress periods from 1950 onwards.  

According to modelled transpiration index the forest experienced the highest water stress in 

1951, 1959 and 2018 and drought periods in the early 1950s, 1964, 1972, 1975-76, 2016, 2020 

and 2022. Even though there was a significant increase in temperature since 1950 as well as in 

evapotranspiration, the expected wetting trend was not shown in the precipitation or soil moisture 

data. Furthermore, the reported rise in temperatures also did not result in a significant increase in 

water stress or dry days per year.  

The applied management and climate change scenarios showed a significant increase in water 

stress and evapotranspiration with an increase in temperature by 2°C or an increased stand density 

by 25%. In contrast a lowered stand density results in a significant reduction of evapotranspiration 

and dry days. This infers that further thinning could reduce the water stress in the spruce forest 

and therefore reduce the impact of future drought events.  

 Going forward, expanding the spatial extent of the model, and possibly applying the global 

BROOK90 could provide more insight into the water balance in the region Scania or the entirety 

of Sweden to study spatial variability of experienced water stress and impact of climate change on 

the water balance. 
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8 Appendix 

Appendix 1: All Parameters used in BROOK90 sorted by their parameter file (Location, Flow, Canopy, 

Soil, Fixed and Initial) after calibrating to measured Evapotranspiration rate and Soil Water Content at 

Hyltemossa in 2020. All parameters including abbreviations, units, physical meaning and value ranges 

are explained in detail by Federer (2002). Parameters that are marked green include information and 

help within the model interaction surface (Federer, 2019). GW stands for ground water. 

File Parameter (Abbreviation) Set Value Tested values 

Flow 

Infiltration Depth (IDEPTH) in 

mm 
500 750, 730, 1000 

Impermeable fraction (IMPERV) 0.2 0, 0.02, 0.05, 0.3 

Infiltration distribution (INFEXP) 1 0, 0.5, 0.75 

Binary Bypass flow variable 

(BYPAR) 
0 = “no bypass flow” - 

Bypass flow depth (QDEPTH) in 

mm 
0 500, 730 

(QFPAR) – ignored since  

BYPAR = 0 
0.2  

(QFFC) – ignored since  

BYPAR = 0 
0.3  

Slope length from ridge to channel 

(LENGTH) in m 
100 

Ignored since 

DSLOPE = 0 

Hillside slope allowing matric flow 

(DSLOPE) in ° 
0 - 

Fractional multiplier for flow from 

lowest soil layer to GW (DRAIN) 
1 - 

GW storage going to GW flow and 

Seepage (GSC), fraction 
0 - 

GW discharge going to Seepage 

(GSP), fraction 
0 - 

Soil 

Layer Thickness (THICK) in mm 40  35 125 450 700 All 100 

Field Capacity Ѱ (PSIF) in kPa -10  -8 -10 -12 -8.5 -5.5, -8.5, -10.0 
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Field Capacity Θ (THETAF) 0.39  0.4 0.39 0.4 0.39 0.2, 0.32, 0.37, 0.4 

Brooks exponent (BEXP) 5.39 6 5.5 3.5 4 3, 3.5, 4, 5.5, 6, 7 

Hydraulic Conductivity (KF) in 

mm/d 
6.3 5 7 6.5 5 1, 3, 5, 6.3, 7, 10 

Stone Content (STONEF) 0 0 0 0 0.5 0.1, 0.2, 0.3, 0.5 

Gravity potential in middle of soil 

layer (PSIG) in kPa 
All 0.92 - 

Number of soil layers (NLAYER) 5 - 

Canopy 

Albedo (ALB) 0.09 - 

Albedo with snow on ground 

(ALBSN), fraction 
0.14 - 

Reduction factor for snow 

evaporation (KSNVP), fraction 
0.3 - 

Roughness factor of ground below 

canopy (Z0G), m  
0.02 - 

Ratio of projected stem area index 

to height (CS) 
0.035 - 

Total root length at maximum 

seasonal canopy height 

(MXRTLN), m/m² 

2100 - 

Critical leaf water potential for 

stomata closure (PSICR), MPa 
-2 - 

Average leaf width (LWIDTH), m 0.004 - 

Solar radiation extinction 

coefficient (CR), f 
0.5 - 

TL, °C 0 Temperatures 

ranges for 

influence on leaf 

conductance – no 

change between T1 

and T2; limited 

outside TL to TH 

T1, °C 10 

T2, °C 30 

TH, °C 40 
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Maximum height (MAXHT) in m 24.4 - 

Maximum LAI (MAXLAI) 5 AVG up to 4.92 

Internal Conductivity (MXKPL) in 

mm/day,MPa 
8 2, 3, 4, 5, 8, 

Internal plant resistance 

(FXYLEM) 
0.5 0.1, 0.6, 0.9 

Max Leaf Conductance (GLMAX) 

in cm/s 
0.53 0.2, 0.3, 0.4, 0.6 

Root density (ROOTDEN) per 100 

mm soil layer (f) 

0.44, 0.25, 0.14, 0.08, 0.04, 

0.02, 0.01, 0 
- 

Location 

Latitude (LAT) in °N 56.1°N - 

Slope (ESLOPE), ° 2.0 - 

Slope Aspect (ASPECT), °CW 270 - 

Base temperature separating  snow 

and rain (RSTEMP), °C 
-0.5 - 

Degree-day snowmelt factor 

(MELFAC), MJ/(m²,day,K) 
1.5 - 

Variation of LAI (RELLAI) 

(at day: 1, 54, 84, 299, 329, 366) 
0, 0.5, 1, 1, 0.5, 0 1 (all year) 

Average Daily Precipitation 

Duration per month (DURATION) 

in h/day 

4,3,3,2,2,2,2,2,2,3,3,4 - 

Fraction varying canopy height 

throughout year (RELHT) 
1 (all year) - 
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Appendix 2: Measured and Modelled Volumetric Soil Water Content (SWC) in the first soil layer (1) after 

parameterizing BROOK90 for Hyltemossa in 2020. 
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Appendix 3: Regression analysis comparing measured and modelled volumetric soil water content (SWC) 

for the second, third, fourth and fifth soil layer (a) to d) - 2 to 5) at Hyltemossa for 2020. This includes the 

linear regression slope (y) and R². 
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Appendix 4: Comparison of measured (blue) and modelled Total Soil Water Content through all layers 

(SWAT, in mm) using different input data sets (from SMHI stations in black and ICOS in red) for 2018 to 

the end of 2022 at Hyltemossa. 
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Appendix 5: Modelled daily evapotranspiration and transpiration rate at Hyltemossa for 1950 to 2023 

based on SMHI input data assuming a changing leaf area index and tree height over time. 
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Appendix 6: Potential Evapotranspiration and transpiration rates at Hyltemossa, assuming and 

unchanging forest stand with a maximum LAI (MAXLAI) of 5 and maximum tree height of 27 m. 

 
 


