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Abstract 
Currently, there is no direct support for storing simulation output within semantic 3D city models 

(CityGML). This master thesis explores a potential methodology for this purpose, with a focus on using 

appearances of 3D geometries instead of creating generic city objects and attributes or adding an 

Application Domain Extension (ADE). The caveat with the last two methods is that they require additional 

changes or extensions to the CityGML schema and introduce interoperability issues. It means that 3D 

models and simulation output cannot be processed and/or visualized in one software simultaneously, 

instead this must be done utilizing different software. This workaround increases the processing time of 

the simulation output. To address these challenges, this thesis proposes a third option: utilizing the 

3DCityDB appearance module, which can store surface-related visualization, including non-visible 

specifications like daylight and sunlight simulation outputs. This method leverages existing CityGML and 

3DCityDB structures to integrate simulation outputs without extending the schema, thereby simplifying 

the process for urban planners or other decision makers while maintaining model efficiency. 

The thesis aims to bridge the gap between utilizing extensive simulation data—specifically sunlight and 

daylight simulation outputs—and the capacity of 3D city models to effectively incorporate this 

information. By implementing and testing the use of the appearance module, the proposed methodology 

demonstrates its feasibility for storing, querying (SQL), and visualizing simulation outputs. 

The thesis work concludes that the appearance module of CityGML can be used to store sunlight and 

daylight simulation data in 3DCityDB successfully. The integration process has been validated, ensuring 

accurate implementation within the CityGML schema. Additionally, the thesis work confirms that querying 

and retrieving appearance data may simplify established work practices related to the urban planning 

process, further promoting the utilization of CityGML models in this branch. This advancement provides 

a valuable tool for decision-makers, particularly in assessing compliance to daylight regulations at 

different stages of the urban planning process. 

  



vi 

Contents 
Acknowledgments ........................................................................................................................................ iv 

Abstract ......................................................................................................................................................... v 

List of abbreviations .................................................................................................................................... vii 

List of figures .............................................................................................................................................. viii 

1. Introduction .............................................................................................................................................. 9 

1.1 Background ......................................................................................................................................... 9 

1.2 Problem statement ........................................................................................................................... 10 

1.3 Aim .................................................................................................................................................... 11 

1.4 Limitations ......................................................................................................................................... 12 

2. Theoretical background .......................................................................................................................... 12 

2.1 CityGML ............................................................................................................................................. 12 

2.1.1 Overview .................................................................................................................................... 12 

2.1.2 Geometry model in CityGML ..................................................................................................... 13 

2.1.3 Level of detail (LOD) in CityGML ................................................................................................ 15 

2.2 3DCityDB ........................................................................................................................................... 16 

2.3 Appearance module .......................................................................................................................... 16 

2.4 Daylight and sunlight simulation outputs ......................................................................................... 18 

2.4.1 Obstruction angle ....................................................................................................................... 19 

2.4.2 Direct Sun Hours (DSH) .............................................................................................................. 20 

2.4.3 Total Annual Solar Irradiance ..................................................................................................... 21 

3. Methods .................................................................................................................................................. 22 

3.1 Obstruction Angle and Direct Sun hours .......................................................................................... 22 

3.2 Total Annual Solar Irradiance ............................................................................................................ 26 

3.3 Direct Sun Hours ............................................................................................................................... 29 

4. Results ..................................................................................................................................................... 29 

4.1 Created CityGML models .................................................................................................................. 29 

4.2. Querying appearances from a 3DCityDB ......................................................................................... 30 

5. Discussion ................................................................................................................................................ 34 

6. Conclusion ............................................................................................................................................... 37 

7. References .............................................................................................................................................. 37 

 

  



vii 

List of abbreviations 
0-3D 0-3-Dimensional 
3DCityDB  3-Dimensional City Database 
ADE Application Domain Extension 
CityGML  City Geography Markup Language 
CityJSON  City JavaScript Object Notation 
DSH  Direct Sun Hours 
EN 17037  European Standard 17037 
FME Feature Manipulation Engine 
GIS  Geographic Information System 
GML Geography Markup Language 
ID Identifier 
LOD  Level of detail 
OA  Obstruction Angle 
OGC Open Geospatial Consortium 
PostgreSQL Postgre Structured Query Language 
RDBMS Relational database management system 
UUID  Universally Unique Identifier 
XML  Extensible Markup Language 

 

  



viii 

List of figures 
Number Name Page 

Figure 1.1a Example of single value sunlight simulation output  10 

Figure 1.1b Example of grid data sunlight simulation output  10 

Figure 1.2 CityGML module overview.  11 

Figure 2.1 Appearances of buildings in CityGML 2.0 13 

Figure 2.2 UML diagram of City GML's geometry model 14 

Figure 2.3 Boundary Representation used for object modelling and corresponding graph 15 

Figure 2.4 Geometry complexes and aggregates 15 

Figure 2.5 Level of detail in CityGML 16 

Figure 2.6 Appearances database schema 17 

Figure 2.7 Different appearances applied to surfaces 18 

Figure 2.8 Obstruction angle 20 

Figure 2.9 OA simulation output example  20 

Figure 2.10 Direct Sun Hours example 21 

Figure 2.11 Total annual solar irradiance example in Rhino environment 22 

Figure 3.1 Workflow of implementation OA as an appearance module 23 

Figure 3.2 FME workflow of processing the simulation output 23 

Figure 3.3 FME workflow of processing wall surfaces geometries 24 

Figure 3.4 FME workflow of creating roof surfaces 25 

Figure 3.5 Writing CityModel and Building to the model 25 

Figure 3.6 Turning facade grids into an appearance 26 

Figure 3.7 First section of a FME workflow related to wall surfaces 26 

Figure 3.8a Applying one raster as an appearance to a simple wall 27 

Figure 3.8b Applying one raster as an appearance to a complex wall 27 

Figure 3.9a Custom transformers gml_finder 27 

Figure 3.9b Custom transformer rastercreator 27 

Figure 3.10 Custom transformer Offset_fixer  28 

Figure 4.1 Resulting models with window appearances before importing them into 3DCityDB 29 

Figure 4.2 Resulting models with window appearances after importing them into 3DCityDB 30 

Figure 4.3. Visualization issues in FZK Viewer 30 

Figure 4.4 Required tables to query to receive appearances from 3DCityDB 31 

Figure 4.5 FME workflow to extract geometries with appearances from a 3DCityDB 32 

Figure 4.6 The result of the created workflow 32 

Figure 4.7. Result of the modified query to show specific values of OA 32 

Figure 4.8 Required tables to retrieve wall appearances from a 3DCityDB 33 

Figure 4.9 FME workflow to visualize exported geometries and appearances 33 

Figure 4.10a Appearances retrieved from the 3DCityDB by SQL Queries  34 

Figure 4.10b Appearances exported from 3DCityDB with the 3DCityDB Importer/Exporter tool 34 

Figure 5.1 Appearance distortions 35 

Figure 5.2 Appearance orientation issues 35 



9 

1. Introduction 

1.1 Background 
With the growing rate of urbanization leading to changes in global landscape, planning cities more 

efficiently is of a crucial importance. In this context, semantic three-dimensional (3D) city models have 

become an impactful tool. They can be described as detailed digital representations of urban objects 

(including buildings, streets, parks, bridges, etc.) combining geometries with additional semantic data 

(e.g., façade material or color, year of construction, etc.). Digital models are used in different urban 

applications, from environmental impact analysis to civil infrastructure management, functioning as a 

basis for the simulation and visualization of a complex urban-landscape system (Biljecki et al., 2015). 

However, the efficiency of these models in representing the dynamic nature of complex urban landscapes 

is somewhat lacking when it comes to data management strategies for e.g., storing simulation outputs 

(Biljecki et al., 2018). Having results from different simulations stored within a 3D model offers the 

opportunity to execute queries and obtain results without the need to use separate software for 

processing different types of data formats. This will enable urban planners to use simulation results from 

different simulations multiple times after getting them from consultants without additional software 

costs. Providing a way to store simulation results within 3D models can potentially aid urban planners in 

making more informed decisions when it comes to sustainable urban planning. In addressing these 

challenges, the exploration of standardized ways of storing simulation output in semantic 3D city models 

becomes impactful, laying the foundation for enhanced data management of simulation outcomes. 

City Geography Markup Language (CityGML; Open Geospatial Consortium, n.d.; Kutzner et al., 2020) 

serves as an open standard for the storage of semantic 3D city models. Versions 1.0 and 2.0 are built upon 

Extensible Markup Language (XML), utilizing geometries based on Geography Markup Language (GML) 

alongside additional features. 

The most recent version, CityGML 3.0, introduced in 2023 by the Open Geospatial Consortium (OGC), 

expands its capabilities beyond GML to include JSON-encoded schemas (OGC, 2023). This evolution allows 

for greater flexibility in data representation and interoperability, aligning with contemporary standards 

and practices in data management. 

Moreover, it's important to mention CityJSON (City JavaScript Object Notation), a format that has 

implemented many functionalities of CityGML 2.0 (Ledoux et al., 2019). Notably, CityJSON is also an OGC 

community standard (CityJSON OGC web page, n.d.). Unlike CityGML, which uses GML for storing 

geometries and XML for semantic data representation, CityJSON uses JSON for semantic information and 

GeoJSON for geometries. 

It's worth noting that deploying CityGML and CityJSON models effectively, necessitates specialized 

environments to efficiently manage and utilize the data. This is attributed to their complexity and richness 

in representing urban environments. 3D City Database (3DCityDB) is an open-source software geo 

database for storing, representing, and managing CityGML models. This database supports several 

database types such as PostgreSQL, Oracle, PolarDB (3DCityDB documentation, n.d.) and the execution of 

spatial queries. The structure of the database aligns with the CityGML standard including geometry, 

semantic information, appearance, building, land use, vegetation, water bodies and other modules with 

spatial indexing and extensions to features. CityJSON models are also supported by 3DCityDB (3DCityDB 

Documentation, n.d.). 
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Daylight simulation recommendations are stated in the European standard EN 17037:2018 and guide 

urban planners on how to estimate daylighting conditions in planned buildings. Ensuring adequate 

daylight access is beneficial not only for citizens, e.g., mental health, sleep latency, job burn-out, alertness, 

etc. (Aries et al. 2013, Borisuit et al. 2015) but may also bring economic benefits through increased 

productivity of workers and increasing value of real estate (Turan et. al, 2020; Yang & Nam, 2010). 

Simulating daylight conditions over 3D city models provides urban planners and authorities with more 

information that can assist them in making better decisions. Storing the simulation results in the 3D city 

model and making them easily accessible, aids decision-makers assessing daylight conditions in multiple 

planned buildings. Spotting lighting problems beforehand and solving them may be beneficial for all 

stakeholders. There is also the option of storing simulation results from different types of simulations 

(e.g., daylight, noise, flood) in the same 3D city model. Storing simulation outputs with options to utilize 

these data will help these decision-makers to assess daylight and/or noise conditions of planned buildings 

simultaneously. Enabling quick access to the data with visualizations of simulation results, may highlight 

“daylight access”-related issues before a point of no return. 

In this thesis work, two types of simulation output were utilized: daylight and sunlight simulations. These 
are commonly required at multiple stages of the urban planning process (Kanters & Wall, 2014). Sunlight 
simulations are a qualitative and quantitative estimation of direct sunlight incident on a surface (e.g., 
window, façade, etc.), while daylight simulations assess both direct and reflected sunlight. The common 
format of results from these simulations are either a single value related to the geometry of a certain part 
of a building (e.g., a window) (figure 1.1.a) or a regular grid of values placed on the surface of different 
building parts (e.g., windows, facades, or roofs) (figure 1.1.b). The utilization of two distinct formats of 
outputs poses a notable challenge that requires the implementation of different methods for storing 
them.  

     (a)        (b) 

             
Figure 1.1. a) Example of single value sunlight simulation output (done by author) and b) Example of grid data sunlight 

simulation output (Source: Ericson et al. 2019).  

 

1.2 Problem statement 
At present, there is no direct support for storing simulation output in CityGML 3D models. However, by 

studying the structure of the CityGML schema, one could identify two possible ways: (1) using generic city 

object and attributes or (2) by adding an Application Domain Extension (ADE). Nevertheless, both ways 

have shortcomings (Uggla et al., 2022). Generic city objects and attributes (i.e., manually created objects 

and attributes within a 3DCityDB extending a CityGML model) do not demand a schema; therefore, these 

objects and attributes cannot be validated against a schema. An ADE is added as a new schema and it 

allows to create own classes and attributes, but it creates interoperability and data exchange issues, as 

classes and attributes are not standardized. It also increases the complexity and the size of a 3D model, 

considering the condition that there might be a need to store several sets of simulation data in a model, 
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e.g., noise and daylight or sunlight simulations of a model. Developing software applications for reading, 

storing, and processing 3D city models with stored simulation output according to either one of the 

aforementioned options would be a cumbersome and time-consuming task. It is therefore very likely that 

no such applications would be developed, something that would repeat the observations of Noardo et al. 

(2021) regarding CityGML and what Biljecki et al. (2015) have observed for CityGML ADEs. To overcome 

these issues, it is worth considering a third option for storing simulation output in semantic 3D city models. 

This option would include the use of the CityGML appearance module which can be stored in 3DCityDB as 

part of a 3D city model. 

The appearance module (figure 1.2) is used to store information on object surfaces. It relates not only to 

visible surface characteristics like color or texture, but also to non-visible specifications as infrared 

radiation (3DCityDB, n.d.). It may be a promising way of integrating simulation outputs within models 

since the appearance model stores 2D array information of color and texture. So, we could borrow this 

structure and use it for storing 2D array simulation output instead of color or texture. Therefore, existing 

visualization formats, classes, and objects of 3DCityDB may be used without extending CityGML. This could 

also simplify the process for developers to extend their software to support importing and visualizing 

simulation outputs stored this way. 

 

Figure 1.2. CityGML module overview. Source: 3DCityDB documentation, n.d. 

This master thesis is addressed to answer the need for creating simulation results storage methodologies 

within the framework of CityGML models. It tries to bridge the existing gap between the expansive data 

produced by sunlight and daylight simulations and the capability of 3D city models to accommodate this 

information effectively. The thesis will focus on implementing and testing the proposed mechanism of 

storing data. 

1.3 Aim 
The primary aim of this study is to assess the feasibility of storing simulation output within the appearance 

module of a CityGML model in 3DCityDB. The thesis questions are: 

1. Can the appearance module in CityGML be used for storing the datasets generated by daylight 

and sunlight simulations? 
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2. What are the steps required to integrate simulation outputs into the appearance module of 

3DCityDB? 

3. Is it possible to efficiently query and retrieve simulation output stored as appearances in a 

3DCityDB for analysis and visualization purposes? 

 

1.4 Limitations 
The thesis is limited by the following factors: 

1. The study focuses on daylight and sunlight simulation outputs, which may not be generalizable to 

other types of simulation data (e.g., noise, flood simulations). However, since daylight access is 

regulated by Swedish law, daylight simulations are a mandatory part of the urban planning process. 

Future research should also consider simulation output data formats of other types of simulations 

whose execution is mandatory in the urban planning process (e.g., noise, flood, landslide, etc.). 

2. The thesis concentrates on a limited set of daylight and sunlight simulation outputs. This selection 

was driven by the daylight and sunlight simulation metrics specified in the Swedish legislation and 

the Swedish and European recommendations. 

3. The choice of 3DCityDB over other relational database management systems (RDBMS) was 

influenced by its specific support for CityGML and its capabilities for spatial data management. While 

3DCityDB is a powerful tool, other RDBMS solutions need special extensions to support CityGML, 

increasing difficulty of the proposed implementation. 

4. The implementation is limited to the current version of 3DCityDB. Future versions may offer 

additional functionalities or improvements that are not considered in this study. 

5. The performance and scalability of querying and visualizing large datasets within 3DCityDB have not 

been tested, which may impact the efficiency of the proposed solution in real-world scenarios. 

6. Although CityJSON is supported by 3DCityDB and offers benefits such as simplified JSON and GeoJSON 

encoding, this study focuses on CityGML. The decision to use CityGML was based on its widespread 

adoption and comprehensive feature set as well as because the new semantic 3D city model national 

profile for Sweden, 3CIM, is based on it (Uggla et al., 2023). In any case, it should be noted that 

CityJSON could also be a viable option for similar applications (3DCityDB Importer/Exporter, n.d.; 

3DCityDB, n.d.). 

7. This thesis only deals with the representation of simulation output on semantic 3D city model 

geometries that correspond to the same LOD as the one used in the simulation that produced them.  

2. Theoretical background 
This chapter provides a theoretical background for the thesis, introducing concepts of daylight simulation 

outputs which will be used to achieve the aim of the study. Furthermore, it explains the structure of 

CityGML, 3DCityDB, and CityGML’s appearance module. 

2.1 CityGML 

2.1.1 Overview 
In 2008, the Open Geospatial Consortium (OGC) announced CityGML as an open standard for representing 

and exchanging 3D urban models (Gröger et al., 2012). Since then, CityGML was developed further, 

leading to the release of CityGML 2.0 in 2012 and CityGML 3.0 in 2020 (Kutzner et al. 2012,2020). CityGML 

enables the representation of urban structures' geometries, themes, and visual attributes (Gröger and 
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Plümer, 2012). Now, CityGML is widely used to present the thematic and semantic attributes of urban 

systems, including buildings and their constituents (roofs, walls, windows, etc.), terrains, water bodies, 

and vegetation (Gröger and Plümer, 2012). CityGML not only defines the semantic attributes of objects 

but also delineates their relationships, such as between a building and the underlying terrain. Additionally, 

CityGML data is typically stored in a relational database (e.g., 3DCityDB) to facilitate efficient data 

management and querying.  

CityGML provides clear definitions for semantic information, attributes, relationships, and 3D geometrical 

representations for all urban objects, including buildings (Gröger and Plümer, 2012). CityGML is organized 

into modules, allowing for the combination of different modules to meet specific use-case requirements 

(Gröger and Plümer, 2012). Apart from CityGML’s Building theme, which has been extensively utilized in 

a variety of applications, the remaining themes have primarily been used for visualization purposes and 

only sparsely been used in other applications. (Biljecki et al., 2015). 

CityGML enables the description of building objects with visual appearances on their outer boundaries, 

such as walls or roofs (Gröger and Plümer, 2012). For each geometry (roof, wall) a different appearance 

(e.g., see figure 2.1) is stored in a separate table of a 3DCityDB. These appearances are represented 

through various types of categorical data (e.g., low, medium, or high pollution) used in analytical tasks, 

including noise pollution, sun exposure, wind simulations, shadow cast simulations, and energy demand 

estimations (Biljecki et al., 2015). These capabilities allow 3D city models to not only serve visualization 

purposes but also facilitate further analysis of urban structures in space. 

 

Figure 2.1. Appearances of buildings in CityGML 2.0. Source: 3DCityDB Documentation, n.d. 

Various use-cases in 3D city models demand functionalities beyond the scope of CityGML (Gröger and 

Plümer, 2012). These specific cases require additional attributes, feature types, or relationships not 

provided by CityGML. To address this, CityGML introduced the Application Domain Extension (ADE), a 

customizable application schema allowing users to extend the functionality of the standard CityGML 

schema (Biljecki et al., 2018). By incorporating new relationships and attributes, users can create tailored 

feature types in CityGML to suit specific purposes (Kumar et al., 2017). Furthermore, CityGML supports 

the simultaneous use of multiple ADEs, enhancing the versatility of 3D city models (Biljecki et al., 2018). 

2.1.2 Geometry model in CityGML 
Spatial characteristics of features in CityGML are based on objects of GML 3 geometry model, which was 

developed upon the spatial schema of the standard ISO 19107. It starts with geometric primitives: a zero-

dimensional point, a one-dimensional curve with height and a two-dimensional surface having length and 

width (figure 2.2). 
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Figure 2.2. UML diagram of City GML's geometry model. Source: CityGML specifications, OGC, 2006. 

The representation of geometry for solids is defined by the Boundary Representation (B-Rep, Foley et al., 

1995). B-Rep is a method for describing the shape and structure of a 3D object. In this representation, a 

solid object is defined by its surface boundaries, which include faces, edges, and vertices (figure 2.3): 

• A face is a flat or curved surface that forms part of the boundary of a solid object. Each face is 

typically defined by a closed loop of edges. 

• An edge is a line segment where two faces meet. Edges define the boundaries of faces and are 

essential for constructing the overall shape of the object. 

• A vertex is a point where edges meet. Vertices serve as the corner points of the object and are 

crucial for defining the geometry of the edges and faces. 

This method allows for precise and detailed modeling of complex shapes by focusing on the external 

surfaces of the object rather than its internal structure. Figure 2.3 illustrates the components of B-Rep, 

showing how faces, edges, and vertices are used to define the geometry of a solid. 



15 

 

Figure 2.3. Boundary Representation used for object modelling and corresponding graph. Source: Lou, 2011 

 

By using B-Rep, CityGML can accurately represent the geometry of various urban features, ensuring that 

the models are both detailed and true to their real-world counterparts. 

Solid is bounded by surfaces, curve by a line, and Surface is represented by Polygons. A combination of 

primitives may be used to create such complexes and aggregates as MultiSolid, MultiSurface, MultiCurve, 

MultiPoint to GeometricComplex, GeometricPrimitive and AbstractGeometricAggregate (figure 2.4). 

 

Figure 2.4. Geometry complexes and aggregates. Source: CityGML specifications, OGC, 2006. 

For example, a building can be represented by defining its surfaces (walls, roof, etc.) using polygons. 

These surfaces are bounded by edges, which in turn are defined by vertices. 

2.1.3 Level of detail (LOD) in CityGML 
The CityGML 2.0 standard divides 3D building models into five levels of details (LOD) (Figure 2.5). Gröger 

& Plümer, (2012) describe each LOD in detail. They start with LOD0 as the 2D footprint of the building. A 

building object in LOD1 is represented as a 3D box model using the building footprint as base and the roof 

height as height. LOD 2 is more complex because of additional RoofSurface, WallSurface and 

GroundSurface objects added to the LOD 1 representation. 3D building representation in LOD 3 contains 

information of façade elements: doors and windows which are included as features of roof and walls. 

Buildings represented in LOD 4, also contain elements of the building interior (e.g., internal walls, floors, 

etc.). 
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Figure 2.5. Level of detail in CityGML. Source: Hartman K., 2022 

 

2.2 3DCityDB  
The 3D City Database (3DCityDB) is an Open-Source extended database schema that aligns with the 

CityGML standard (Kolbe et al., 2019). It functions as a supplementary database schema within a spatially 

enhanced relational database management system (SRDBMS) (Kolbe et al., 2019), and accommodates 

two database systems: the commercial Oracle and the Open-Source PostgreSQL/PostGIS (Kolbe et al., 

2019).  

Aligned with the CityGML 2.0 standard, 3DCityDB's primary function is to store CityGML models of varying 

sizes, at different levels of details (LOD), and geometries (Kolbe et al., 2019). This functionality is facilitated 

through a graphical user interface (GUI), featuring tools for importing, exporting, examining, and 

managing stored city models. The database schema currently supports CityGML 1.0 and 2.0, but future 

implementation of CityGML 3.0 is anticipated (Kutzner et al., 2020). 

Offering additional support for users of 3D city models, 3DCityDB provides tools for exporting data to 

Keyhole Markup Language (KML), COLLAborative Design Activity (COLLADA), and the GL Transmission 

format (glTF) (Barnes and Finch, 2008; Burggraf, 2015; Bhatia et al., 2017). These formats are primarily 

utilized in 3D applications for visualization and exchange, and can also be employed in Google Earth, 

ArcGIS explorer, and Cesium (Kolbe et al., 2019). Moreover, 3DCityDB manages additional extensions to 

CityGML files by creating custom Application Domain Extensions (ADEs). 

2.3 Appearance module 
The Appearance module is used to store data about object surfaces. It relates not only to visible surface 

characteristics like color or texture, but also to non-visible specifications as, for example, noise simulation 

or infrared radiation (3DCityDB Documentation, n.d.). The Appearance table is stored in 3DCityDB on top 

of the CityGML core (figure 1.2). The UML diagram of the module is shown in figure 2.6. 

The table contains details regarding the surface characteristics of objects, which are stored in the 

DESCRIPTION attribute, while their corresponding categories are stored in the THEME attribute. For 

instance, the DESCRIPTION attribute might hold information about the texture or color of an object's 

surface, while the THEME attribute categorizes it by labeling it as "urban," "natural," or "industrial." This 

classification helps in organizing and identifying objects based on their visual attributes. Every city object 

has its appearance information stored, facilitated by the Appearance table, which establishes 

relationships with the CityObject and CityModel base classes through foreign keys. In addition to its role 
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as a feature class, the Appearance class enables referencing via GML identifiers such as GMLID within the 

table, which makes it possible to query it directly within a 3DCityDB. 

 

Figure 2.6. Excerpt of appearance module. Source: 3DCityDB Documentation, n.d. 

The SURFACE_DATA table contains various data types corresponding to each surface. These data types 

are then linked to specific geometries referenced within the APPEARANCE table. The SURFACE_DATA 

table has the following properties: 

1) IS_FRONT describes the side a surface data object applies to (1: front face; 0: back face). 

2)  The OBJECTCLASS_ID column denotes if materials (just a simple color with specific properties, e.g., 

how light is diffused by a surface, as walls are presented in the figure 2.7 of the building on the left) 

or textures (e.g., bricks of the building on the right in fig. 2.7) are used for the visual representation 

of the object of the class. 

3) Materials are specified by the attributes X3D_xxx which define its graphic representation. Details on 

using georeferenced textures, such as orientation and reference point, are contained in attributes 

GT_xxx (figure 2.6). 

4) TEX_IMAGE_ID is an ID of a raster representation of a surface texture (for example, taking a photo 

of a building and applying it to the building). 
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Figure 2.7. Different appearances applied to surfaces. Source: 3DCityDB Documentation, n.d. 

There are several applications of appearance implementation with a combination of semantic data in 3D 

models. The project done by Law et al. (2006) introduced using noise simulation outputs as a graphical 

representation of buildings in 3D model, however it was done for a GIS based 3D model and not for a 

CityGML model. The second approach was done by Kolbe (Kolbe et al., 2015), where RGB and infrared 

photos of buildings were used as textures. Unlike simulation outputs, these textures serve as direct 

representations of actual facades within the built environment. There is a knowledge gap regarding the 

absence of articles addressing the utilization of simulation outputs as appearances for buildings within 

CityGML models which are possible to query in 3DCityDB. 

2.4 Daylight and sunlight simulation outputs 
Daylight conditions in Sweden are regulated by the building regulations of National Board of Housing, 

Building and Planning (Boverket, 2011). These rules apply to frequently used rooms, regulating adequate 

access to sunlight or daylight. It's suggested that these rooms should have at least one window so the 

daytime and seasonal changes can be followed by inhabitants. 

Urban planners in Sweden seldom consider sunlight access in outdoor environments and building facades 

or incorporate active use of daylight (e.g., solar systems) in their planning processes (Kanters et al., 2021). 

This is attributed to a lack of legislation, established practices, input data, and suitable tools (Kanters et 

al., 2021). The new European standard for daylight simulations (EN 17037:2018, SS-EN 17037:208 in 

Sweden) suggests recommendations on daylight conditions, including solar access in rooms and the 

duration of direct sunlight. These recommendations do not state strict regulations, leaving room for 

interpretation. Additionally, it's essential to consider the latitude of the study area when conducting 

daylight simulations. In northern countries like Sweden, the sun angle remains very low for a significant 

portion of the year, resulting in long shadows and highlighting the significance of reflectance from one 

building to another for indoor daylighting. 

Daylight simulation tools based on CAD and BIM are prevalent (e.g., Jakica, 2017) and support not only 

single-building simulation but also small neighborhood simulations. On the contrary, 2.5D or 3D GIS tools, 

e.g., a Sun-shadow volume tool for ArcGIS Pro (ArcGIS Pro Documentation, n.d.) and for the open-source 

QGIS Urban Multi-scale Environmental Predictor (QGIS UMEP SEBE Documentation, n.d.), which seldom 

incorporate interior daylight simulations, are often employed to cover multiple buildings over larger areas.  
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3D city models are considered suitable input data for daylight simulations as they potentially encompass 

all required geographical information. However, depending on the LOD of a model, different outputs 

might be generated, because there are more details to influence the output of a simulation (Kanters et 

al., 2021). In Sweden, most urban planning offices have 3D city models over the municipality in LOD2 and 

lack essential window information (Harrie et al., 2021). Geometries and reflectance properties of windows 

for planned buildings may be derived from BIM (W. Huang, Olsson, Kanters, & Harrie, 2020), while for 

existing buildings, street view pictures (Dogan & Knutins, 2018; Kong & Fan, 2021; Lee & Nevatia, 2004) 

or previous studies of architectural decisions (Schindler & Bauer, 2003) are utilized to provide window 

information for daylight simulations.  

Light simulations are not complicated in rural areas, because meteorological conditions are the main 

factor of energy potential (Freitas et al., 2015). However, complexity increases in urban environments due 

to spatial constraints (e.g., one building blocking light to the other) limiting incoming sunlight. Urban-level 

simulations must encompass building details, various building types and designs, outdoor areas (open 

spaces, street layouts, materials, etc.), and reflectance pf surfaces(Freitas et al., 2015). Consequently, 

multiple simulation tools are often employed simultaneously to conduct comprehensive analyses (SHC, 

2021).  

In this thesis, the following simulation outputs were used: obstruction angle as an estimation of sunlight 

access, direct sun hours as a variable of lighting conditions in rooms, and total annual solar irradiance as 

an amount of solar energy incoming to facades of buildings. These simulation outputs are used to regulate 

daylight and sunlight conditions of buildings in Sweden (Boverket, 2011). 

2.4.1 Obstruction angle 
One of the primary daylight simulation outputs addressed in this thesis is the obstruction angle (OA). OA 

is defined as the angle between the line of an imaginary horizontal plane and the line connecting the 

middle of a window and the top part of an object positioned directly in front of the window, such as a 

neighboring building (Swedish Standard SS914201) (figure 2.8). According to Alenius et al. (2019), the 

obstruction angle dictates the amount of skylight (diffuse light) that penetrates the interior of a building 

or apartment. For direct sunlight to infiltrate a building, the windows must have unobstructed access to 

both the sky and sunlight. Consequently, in urban environments, particularly at steep sun angles, reflected 

light prevails, leading to limited availability of direct sunlight and skylight. For example, a window on a 

lower floor has higher OA and less access to the direct sunlight than a window located at a higher floor 

with lower OA and less access to the direct sunlight.  
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Figure 2.8. Obstruction angle. Source: Pantazatou et al., 2023 

The result of the obstruction angle calculation is an obstruction angle attributed to a point located at the 

centroid of each window. This value can be linked to the geometry of a window (figure 2.9).  

 

Figure 2.9. OA simulation output example (red: OA over 30 degrees, yellow: between 27 and 29). Source: Daylight simulation 
exercise report, Miras Kozgan, Christopher James Wear, Daniёl Zegeling, 2023) 

The simulation output of OA used in this thesis is a polygon ESRI shapefile of with OA values in the attribute 

table of it. 

2.4.2 Direct Sun Hours (DSH) 
The term “Direct sun hours” is a sunlight measurement stated in the European Standard EN 17037 – 

Daylight in Buildings. It is expressed as the total number of hours the Sun directly shines towards a window 

of a room in a building at a defined height (0.3 m) above the lower part of the frame of a window. The 

height of a point which DSH are simulated for is 30 cm above a window frame, and it is recommended by 

the European standard (European Standard, EN 17037). The data used in the thesis was created by 

executing a DHS simulation within the CAD 3D software environment Rhino (Rhino 3D, n.d.) using the 

Ladybug (Ladybug, n.d.) and Grasshoper plugins (Pantazatou et al., 2024).  

The simulation output is calculated in the following steps: 

1. Defining a virtual scene using the latitude of the location and a time of the simulation (March 21st) 

2. Calculating a path of the Sun over the scene 
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3. Adding geometries: both study surfaces (windows and balcony doors) and objects which create 

obstruction to sunrays (all buildings in the study area) 

4. Placing a grid of points with a spatial resolution of 0.1m over apertures (windows). 

5. With the Ladybug module Direct Sun Hours calculating the output for each point of the grid and 

exporting two tables in a .TXT format: coordinates and direct sun hours for each point of the grid 

6. Joining both tables together in a GIS software and converting the resulting KML file into a 

multipatch Shapefile. 

7. Compute the DSH for the window centroid. 

Example of the raw data produced as output from computing the DSH output is presented in figure 2.10. 

 

Figure 2.10. Direct Sun Hours example. Source: Pantazatou, 2023 

2.4.3 Total Annual Solar Irradiance 
Total annual solar irradiance is another simulation output measuring the quantity and quality of irradiance 

incident to a study surface. This measurement is calculated as a transmission of solar energy per time to 

a point of a grid which is placed over a study surface in kWh/m2. The annual irradiance is computed using 

ClimateStudio, a plugin to Rhino CAD-environment (Solemma LLC, n.d.). This simulation allows to assess 

the potential of building energy efficient buildings equipped with solar panels. The output of this 

simulation is a grid of points with a defined density for a façade or a roof of a building. The example of the 

output result is depicted in figure 2.11. 
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Figure 2.11. Total annual solar irradiance example in Rhino environment. Source: Solemma LLC, ClimateStudio, n.d. 

The simulation output of the total annual solar irradiance is a multipoint grid in the format of ESRI 

shapefile for facades with values for each point in the attribute table. 

3. Methods 
This section describes the workflow of methods applied to add simulation outputs as appearances to 

CityGML geometries. Simulation outputs are presented by two different types of ESRI shapefiles: 

obstruction angle is a polygon shapefile with OA values for each window, while direct sun hours and total 

annual solar irradiance are multipoint grids for windows and facades respectively. However, DSH 

simulation output may be calculated not for the entire window, but just for the centroid of it. Therefore, 

the method used for the OA may be also applied to DSH. 

All methods that are described below have similar parts in common: finding spatial relationships of 

simulation output with geometries, writing a correct ID of a target geometry, creating appearances and 

writing them into a CityGML model. Simulation outputs like OA and DSH, which have only one value for a 

given geometry (e.g., window), may be expressed as a color depending on interval of values. On the other 

hand, multipoint grids require to create rasters with coloring depending on values and after that applied 

as an appearance to geometries of walls or windows. The main tool to manipulate the data was FME 

Workbench. 

3.1 Obstruction Angle and Direct Sun hours 
This section details the workflow for integrating simulation outputs into a CityGML model, focusing on the 

OA (Obstruction Angle) simulation output. The goal is to process simulation outputs to generate visual 

appearances for windows, making it easier to understand and analyze the data. The workflow is divided 

into several parts, each addressing a specific aspect of the process, from data preparation and 

transformation to spatial relationship analysis and final output integration. By following this structured 
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approach, the workflow ensures accurate and meaningful representation of simulation results within the 

3D city model. An overview of the entire workflow is presented below (figure 3.1).  

 

 

Figure 3.1. Workflow of implementation OA as an appearance module 

 The workflow can be broken down into 4 parts: 

Part 1. Processing simulation output (figure 3.2). In this part of the workflow, appearances of windows 

are created depending on values of OA. 

 

Figure 3.2. FME workflow of processing the simulation output 

After reading the shapefile there is a block of transformers to uniform input: coordinate swapper is used 

to change X and Y coordinates, because of difference in the order of coordinates in FME features and ESRI 

shapefiles. UUID Generator and String Concatenator transformers are applied to create unique IDs to each 

output and create a gml_id by concatenating “GML_” and ID created in UUID Generator. 

Then geometries of the simulation output are used to find a spatial relationship with geometries of walls. 

For this purpose, both geometries are forced to 2D by an FME transformer. 2D wall geometries were 

buffered by 1 meter. A SpatialRelator transformer finds all objects of 2D simulation output which are 

within the buffer zone of wall geometries and joins attributes, where gml_ids of walls are used as parent 

IDs to write appearances correctly into a CityGML model with corresponding geometries. This is 

performed by renaming the attribute gml_id derived from the wall surfaces to gml_parent_id by an 
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AttributeCopier transformer. The next step is to join these attributes with a 3D representation of the 

simulation outputs and remove attributes which are no longer used. 

For correctly writing geometries into a CityGML model it is vital to create two attributes: 

Citygml_lod_name and Citygml_feature_role and with values LOD4MultiSurface and opening. This helps 

to indicate a level of detail and geometry type. In this case opening means that the geometry belongs to 

a window. To achieve this, a custom transformer CityGMLGeometrySetter was used. This custom 

transformer is available in FME Community Hub (FME Community Hub, n.d).  

The next step was to break all OA values in intervals to apply different colors to each interval. For this 

purpose a TestFilter transformer was used to channel all obstruction angle values in different breakdowns 

which in this case was taken from “Dagsljus i Planering” by Alenius et al., (2015): less than 30o, 30o-45o, 

45o -60o and more than 60o.  

All outputs from test filter are channeled to own AppearanceSetter transformer where a chosen color is 

given to a geometry. The color palette for OA is presented in the table 1. 

Table 1. Color palette of OA value intervals. 

 

 

 

 

The color codes are important to save, because they allow to query specific windows with the color code. 

The last step was to write all features as windows to a CityGML writer. 

Part 2. Join the output to a wall surface (figure 3.3). This part is responsible for finding spatial relationships 

between windows and wall geometries. It is important to find which windows belong to which walls to 

correctly write geometries into a model. 

 

Figure 3.3. FME workflow of processing wall surfaces geometries 

This step was partially described in part 1 of the workflow. Wall geometries were used to find spatial 

relationships with windows as an attribute supplier.  

Color OA value RGB color code 

 < 30o 1, 1, 0.698039 

 30o- 45o 0.996078, 0.8, 0.360784 

 45o - 60o 0.992157, 0.552941, 0.235294 

 > 60o 0.890196, 0.101961, 0.109804 
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First, the custom transformer called attribute_filter was used to fix orientations of wall surfaces. Half of 

the wall surfaces were oriented incorrectly, which caused inaccurate representation of wall transparency. 

Walls and wall parts were manually picked and oriented backwards.  

The following block of transformer is aimed to edit and delete unnecessary attributes. Coordinates were 

swapped and a transformer called CityGMLGeometrySetter sets wall surfaces to LOD4MultiSurface and 

BoundedBy feature role to write geometries properly to the model. It is important to mention that a 

transformer Orientor was used twice, because after importing the model to a 3DCityDB all orientations of 

objects are inverted so at the export the same model is in the correct orientation. 

Part 3. Creating roof surfaces (figure 3.4). This part describes how roof surfaces were created and written 

into the CityGML model. 

 

Figure 3.4. FME workflow of creating roof surfaces 

Roof surfaces written from the initial CityGML model did not work with the rest of the building parts. After 

changing coordinates, coordinate reference systems, extracting to a shapefile and importing roofs were 

still invisible. However, these geometries were still visible and match spatially in a different software 

(ArcGIS Pro), but in FME the same geometries did not match. Therefore, it might be an issue specific to 

FME. 

The solution to this issue was to create footprints of walls and extrude them for a Z-value of walls in ArcGIS 

Pro. The result was imported in FME to prepare the feature and write it to the final model. The 

transformers do the same as previously for windows: creating unique IDs via UUID Generator and 

StringConcatenator, swapping coordinates and setting geometry to LOD4MultiSurface and the BoundedBy 

feature role. 

Part 4. Writing the rest of geometries (figure 3.5). 

 

Figure 3.5. FME workflow of writing CityModel and Building to the model 

In this part, the CityModel was directly written from the original model. Building objects were filtered by 

building gml_ids to extract all affected buildings with windows and obstruction angle values to write them 

to the building part of the output model. 
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Combining all parts a CityGML model was created. It was imported to a local 3DCityDB using the 3DCityDB 

Importer/Exporter tool. 

3.2 Total Annual Solar Irradiance 
This simulation output is represented as a grid of points with solar irradiance value for a façade of a 

building. To apply these grids to a building, the following workflow was created (figure 3.6). 

  

Figure 3.6. Turning facade grids into an appearance 

The workflow can be broken down into the following sections: 

Part 1. Rasterizing annual solar irradiance grids and writing wall surfaces (figure 3.7). The first part is the 

most important in this workflow, as it is necessary to transform the total annual solar irradiance grids into 

images which may be applied to facades as appearances. 

 

Figure 3.7. First section of a FME workflow related to wall surfaces 
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The first approach was to create raster images and apply them to wall geometries. It was unsuccessful 

because some wall geometries comprised several parts and were more complex. This method was 

working for simple walls consisting just of one aggregate without parts (figure 3.8a), but it applied the 

same raster for each section if a geometry consisted of several parts (figure 3.8b). 

 

Figure 3.8. Applying one raster as an appearance to a) a simple and b) a complex wall 

This way even if applied to a simple wall surface the appearance is still distorted (figure 3.8a). To resolve 

this issue custom transformers gml_finder and rastercreator were made (figure 3.9a and 3.9b). 

 

Figure 3.9. Custom transformers: a) gml_finder (top) and b) rastercreator (bottom). 

The transformer gml_finder (figure 3.9a) is based on the previous workflow, when points and wall surfaces 

are forced to 2D, walls are buffered to 0.1 meter and spatial join was executed, which helps to find all 

points within a buffer zone. The Bufferer transformer creates a buffer zone around the 2D walls, in other 

words from lines polygons were created. The minimal buffer zone was used because there were some 

intersections with other walls, as points have no size, this was resolved by the less buffer zone around 
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walls. Joining features allowed to assign gml_id of walls for each point of the simulation output grid 

without errors. 

The subsection of this custom transformer is swapping coordinates from Y to Z so the grid will be projected 

to the ground to create a raster for a wall, because without editing coordinates raster will be one pixel 

wide just in X and Y coordinates. A 3DForcer transformer assigns solar irradiance values as a Z coordinate 

to create a grid of Z values which is an input to the next transformer.  

The rastercreator transformer (figure 3.9b) rasterizes grids received and gives it a color based on solar 

irradiance value. The first transformer is NumericRasterizer which creates raster grouping by gml_ids of 

wall parts received by a previous transformer. This means that for walls where only one gml_id is given 

only one raster is produced and in the opposite if there are many gml_ids provided several rasters will be 

created and grouped according to this value. 

RasterExpressionEvaluator classifies rasters into 9 classes, AttributeCreator is to create a value of palette 

color to each class, RasterPaletteAdder gives cells of raster a color depending on the class. The intervals 

and color palette is presented in table 2. 

Table 2. Color palette for annual solar irradiance intervals. 

Color Annual solar irradiance value 

 <100 kWh/m2 

 100-200 kWh/m2 

 200-300 kWh/m2 

 300-400 kWh/m2 

 400-500 kWh/m2 

 500-600 kWh/m2 

 600-700 kWh/m2 

 700-800 kWh/m2 

 >800 kWh/m2 

 

Part 2. Adding OA simulation output as an appearance to windows and writing the rest parts of the model. 

This part of the workflow was taken from the previous (figure 3.2) as it was decided to combine both 

simulation outputs in one model where annual solar irradiance as an appearance was applied to walls and 

obstruction angle to windows. In the resulting model wall geometries covered window geometries, 

therefore windows were not visible. The solution was to create a custom transformer offset_fixer (figure 

3.10). 
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Figure 3.10. Custom transformer Offset_fixer  

The main purpose to filter out windows by IDs of walls and buildings which need to be moved in 4 

directions: positive and negative in X axis and Y axis for 0.1 degrees of cartesian coordinates in order not 

to detach windows from walls. 

Part 3. Creating roof surfaces and writing the rest of geometries. This part is the same as in the previous 

workflow. The resulting CityGML model was imported to a local 3DCityDB using the 3DCityDB 

Importer/Exporter tool. 

3.3 Direct Sun Hours 
The same workflow (figure 3.6) was executed to create rasters from multipoint grids of DSH output and 

apply them as an appearance to windows. 

The only difference of the workflow was that a spatial join with 2DForcer and Bufferer did not work, 

because several windows could be joined spatially in 2D. Instead of these transformers a Near 3D tool in 

ArcGIS Pro was used to find IDs of windows and join it to each point of DSH grid.  

The workflow worked and created rasters were applied as an appearance of windows, but while writing 

resulting geometries into a CityGML model an error of texture coordinates was encountered. To resolve 

it, texture coordinates for geometries were generated, first, automatically, and then manually, but the 

issue persisted. Afterwards, the created rasters were clipped by the window geometries, raster cell sizes 

were changed, which did not solve the issue. At the end, geometries from a CityGML model and not from 

a shapefile were used to avoid possible issues in coordinates. These attempts to resolve the issue did not 

help.  

4. Results  

4.1 Created CityGML models 
The resulting CityGML model with added appearances of walls and windows described in the previous 

section was saved locally. Afterwards, the model was imported into a local 3DCityDB and exported from 

it using 3DCityDB Importer/Exporter tool. Before importing and after exporting the model FME Data 

Inspector was used to check if the model was written correctly (figures 4.1 and 4.2). 
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Figure 4.1. Created CityGML model with OA as appearance of windows and total annual solar irradiance as appearance of walls 
before importing into 3DCityDB. 

In figure 4.1 the appearance is inverted because of before mentioned behavior of 3DCityDB 
Importer/Exporter when exporting the model turns back the appearance to the correct state (figure 4.2). 

 

Figure 4.2 The same CityGML model exported from 3DCityDB. 

The model was validated without errors by the 3DCityDB Importer/Exporter tool. In figure 4.2 the 
appearances of windows present OA values. Wall geometries have as appearance the total annual solar 
irradiance value. The color palette for both appearances was described in the part 1 of both workflows 
(sections 3.1 and 3.2 respectively). 

The resulting CityGML models were tested in FZK Viewer (FZK Viewer, KIT, n.d.) but geometries with 

appearances did not show properly. In the process of the thesis appearances were applied as on a global 

level and not directly to geometries, which may cause these visualization issues (figure 4.3). 

 

Figure 4.3. Visualization issues in FZK Viewer 

4.2. Querying appearances from a 3DCityDB 
One of aims of this thesis was to test possibilities of retrieving a CityGML model with simulation outputs 
as appearances from a 3DCityDB. Exporting it with the Importer/Exporter tool of 3DCityDB is the easiest 
way to receive a result, but SQL queries allow to retrieve specific appearances from a database. 

Considering 3DCityDB schema (figure 2.6) four tables are necessary to join (figure 4.4):  
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1) citydb.surface_geometry contains geometries of all objects in a model;  

2) citydb.opening with IDs of objects only for windows to filter incoming geometries; 

3) citydb.surface_data with parameters of appearances (e.g., a color of a geometry); 

4) citydb.textureparam which is a bridge between citydb.surface_data and citydb.surface_geometry as 

it contains IDs of both tables; 

 

Figure 4.4. Tables to query to receive window appearances from 3DCityDB 

To receive window geometries with the appearances, the following SQL queries were created and 

executed using a SQLCreator transformer in an FME environment: 

1) A query to extract all geometries of a model 

SELECT sg.id, sg.cityobject_id, sg.geometry 
FROM citydb.surface_geometry sg 
WHERE sg.geometry IS NOT NULL 

 

2) A query to extract all BuildingWindow IDs. This attribute is used to filter out only window geometries 

from the previous table. It is worth noting that the opening table also contains doors if there are any 

in the model. A condition with a specific objectclass_id, 38 for BuildingWindow (3DCityDB 

Documentation, n.d.), should be applied in that case. 

SELECT * FROM citydb.opening 

 

3) A query to receive appearance parameters, color, and shininess in this case.  

SELECT sd.id AS sd_id, sd.x3d_diffuse_color, sd.x3d_shininess, sg.cityobject_i 
FROM citydb.surface_data sd 
INNER JOIN citydb.textureparam tp ON tp.surface_data_id = sd.id 
INNER JOIN citydb.surface_geometry sg ON sg.id = tp.surface_geometry_id 
WHERE sd.tex_image_id IS NULL 

 

After extracting all features from the database, the following FME workflow was created (figure 4.5). 
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Figure 4.5. FME workflow to extract geometries with appearances from a 3DCityDB 

The result of the workflow is a 3D model with appearances received from a 3DCityDB (figure 4.6). 

 

Figure 4.6. The result of the created workflow 

The proposed queries can be modified to extract appearances of windows within specified range of OA 

by adding a condition WHERE with a known color code to the SURFACE_DATA query (figure 4.5). For 

example, a query to extract all OA less than 30 degrees was created: 

SELECT sd.id AS sd_id, sd.x3d_diffuse_color AS color, sd.x3d_shininess, sg.cityobject_id 
FROM citydb.surface_data sd 
LEFT JOIN citydb.textureparam tp ON tp.surface_data_id = sd.id 
LEFT JOIN citydb.surface_geometry sg ON sg.id = tp.surface_geometry_id 
WHERE sd.x3d_diffuse_color = '1.0 1.0 0.698039' 

The result of the modified query is presented in figure 4.7. 

 

Figure 4.7. Result of the modified query to show specific values of OA 
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The workflow may be modified to add geometries of the rest of windows, but their color code should be 

additionally written as an attribute. If it is not done, color will be random. 

The extraction of total annual solar irradiance as appearances for walls from a 3DCityDB with SQL queries 

was also performed. In this case only one query was created with condition WHERE to filter all geometries 

without raster images. 

SELECT sd.id, sd.tex_image_id, sg.id AS sg_id, sg.geometry, ti.tex_image_uri, ti.tex_image_data 
FROM citydb.tex_image AS ti 
INNER JOIN citydb.surface_data sd ON sd.tex_image_id = ti.id 
INNER JOIN citydb.textureparam tp ON tp.surface_data_id = sd.id 
INNER JOIN citydb.surface_geometry sg ON sg.id = tp.surface_geometry_id 
WHERE ti.tex_image_uri IS NOT NULL 

 

The main purpose of the query is to retrieve joined geometries with raster images which belong to each 

geometry. To execute this a connection of two tables citydb.surface_geometry and citydb.surface_data 

can be established via citydb.textureparam which contains IDs of these tables. Citydb.surface_data 

contains keys to citydb.tex_image which stores images (figure 4.8). 

 

 

Figure 4.8. Required tables from a 3DCityDB to retrieve wall appearances 

To process retrieved data from the database a FME workflow was constructed (figure 4.9). 

 

Figure 4.9. FME workflow to visualize exported geometries and appearances 

The main difference of this workflow is that previously created rasters had to be saved locally before being 

applied to geometries. Encoded rasters directly retrieved from the 3DCityDB cannot be used as an 

appearance. AppearanceSetter transformer requires fme_raster feature type, and without writing rasters 

locally, they have fme_sql_creator feature type. After reading images again, feature type changes to 

fme_raster. 
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Geometries retrieved from the database have feature type fme_polygon, which is also unsuitable for the 

AppearanceSetter transformer. To resolve the issue a transformer FaceReplacer was added, which 

converts the feature type to fme_surfaces, what was required. 

The only value which helps to join a raster to its related/corresponding geometry is the image name stored 

within the model. Therefore, an attribute storing raster names for geometries and rasters is necessary to 

perform feature merge between two datasets. It allows to group wall geometries by image names and 

apply raster data as appearances to them. 

After querying raster files from a 3DCityDB it was noticed that appearances retrieved by SQL queries are 

mirrored (figures 4.10a and 4.10b). 

 

a) 

 

b) 

Figure 4.10 a) Appearances retrieved from the 3DCityDB by SQL Queries, b) Appearances exported from 3DCityDB with the 
3DCityDB Importer/Exporter tool 

This issue was resolved by changing texture wrap pattern in AppearanceSetter to Mirror. 

5. Discussion 
This master thesis builds upon the limited previous works that have utilized appearances in 3D models for 

visualization purposes by coloring geometries based on semantic data (Law et al. 2006, Kolbe et al. 2015). 

Previous applications were limited to visualization purposes, but proposed methods now enable efficient 

querying and manipulation of 3D city models’ appearances directly from 3DCityDB. This capability not 

only enhances the visual representation of simulation data but also facilitates more intuitive and 

accessible urban analysis. For urban planners, the ability to dynamically visualize simulation results within 

3D city models, can lead to more informed decision-making and streamlined project workflows. 

Consultants can easily share these visualizations, making collaboration and communication more 

effective.  
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The proposed methodology offers significant benefits by allowing simulation outputs to be immediately 

visible upon opening a 3D city model in an FME environment, eliminating the need for additional generic 

attributes or Application Domain Extensions (ADEs). This approach addresses an interoperability issue, 

enabling different users to visualize simulation outputs within the same software environment, thereby 

improving consistency and reducing potential misinterpretations (Biljecki et al. 2015, 2018, Bilen et al., 

2014). 

It is evident that the ability to visualize simulation data dynamically may significantly impact urban 

planning and development (Kanters et al., 2021). Earlier studies highlighted limitations such as the static 

nature of visualizations and the complexity of data manipulation within 3D city models. This thesis 

addresses these challenges by providing a dynamic and user-friendly approach to visualizing simulation 

results. However, the following issues were discovered while exploring the results: 

1) Geometries impact the appearance raster distortions (figure 5.1) 

Even after creating an individual raster for each wall section which was shown 

in figures 3.8a and 3.8b, there are still some inaccuracies which are caused by 

vertices of geometries. In the figure 5.1 these distortions are visible within a 

circle. At the same time, a change in the pattern of the appearance in the 

figure proves that a new raster for each part of a complex wall geometry is 

created, resolving the issue in figures 3.8a and 3.8b. Therefore, in cases 

where the accuracy of annual solar irradiance on edges is of great importance 

this method may impact. 

 

2) Too many classes without representativity. 

Great difference in values of the whole study area increases category classes for rasters and at the same 

time the low difference of measurements in one façade does not allow to show this difference. When it 

is necessary to see differences in values in a single façade less than intervals of a neighborhood (e.g., in 

the created model intervals of solar irradiance was 100 kWh/m2, but differences less than 10 are studied), 

it is better to create a raster specifically for that façade. Instead of analyzing the entire model's simulation 

output breakdowns, this approach allows for more detailed observation. This issue may be resolved by 

applying different color palettes to different breakdowns of values, for example, yellow-red palette for 

irradiance values between 0 and 100, and white-green palette for values between 100 and 200. 

3) Appearance orientation issues when querying appearances from a 3DCityDB (figure 5.2) 

After extracting color codes from the citydb.surface_data and 

applying it to geometries, it was discovered that a part of windows 

was exported with incorrect orientation. This issue can be resolved 

with an Orientor transformer. 

Figure 5.2. Appearance orientation issues 

4) Color of windows retrieved by querying does not look identical to colors in the original CityGML model, 

however, the color codes are retrieved directly from the 3DCityDB. It is related to additional parameters 

Figure 5.1. Appearance distortions 
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of the transformer AppearanceSetter as shininess, which is not available in the transformer 

FeatureColorSetter in the querying workflow. 

5) Previously mentioned issue of visualizing appearances between different CityGML model viewers 

(figure 4.3). It may be solved by storing appearances for specific parts of the model and not for all 

geometries. This may be explored in future works. 

6) Creating raster files from simulation output grids, as it was done for total annual solar irradiance, raises 

a question on how to query simulation output values directly from a database. Therefore, there is no 

flexibility to select specific geometries by simulation output value. However, it is possible to extract certain 

geometries which have appearances. For example, there is no opportunity to query an interval of solar 

irradiance, because created rasters do not contain simulation output values Values are categorized into 

groups and colorized. Adding generic attributes may be helpful, if there is a way to associate simulation 

outputs with appearances or geometries. In this case, it will allow to retrieve data with a defined value or 

interval. 

7) Using the appearance modules increases importance of metadata in datasets if this methodology is 

used. A CityGML model without simulation value intervals and color codes for these intervals described 

in metadata loses utility. Without knowing this information from metadata users cannot interpret what 

appearances mean. It will be only a visualization outside of context. Metadata connects a specific color 

with a specific interval of simulation output values. 

Building on the findings of this thesis, several avenues for further development are possible to enhance 

the integration and utility of simulation outputs within CityGML models. 

Firstly, expanding the range of surface types with the appearance module could be explored. For example, 

the grid of points may be used as an appearance for window geometries. In the process of the thesis, it 

was tested but technical issues were encountered.  

Secondly, storing simulation outputs as generic attributes may be possible. The main limitation of this 

proposed methodology is that values of simulation outputs are not actually stored in appearances. Raster 

cells represent intervals. It is impossible to retrieve a value for a specific cell of a raster. Generic attributes 

can be saved within a model, but still cannot be validated against the schema. This may cause additional 

challenges, because the proposed method attempting to store appearances without extensions of 

CityGML. Generic attributes may complement with detailed simulation output values and appearances 

may be used to assess the context in general. 

Thirdly, a combination of appearances may be written into one CityGML model. Therefore, different 

simulation outputs with the same data format (e.g., point grid for walls but in different seasons) may be 

applied to the same geometries under individual names. For example, it is possible to store several 

datasets of one simulation output (obstruction angle with planned buildings, without planned buildings 

or with vegetation) as an appearance of geometries. However, this method requires a way to distinct 

which appearance represents which simulation output. 

Furthermore, the appearance module can use not only plain colors but also colors with additional effects 

which may be used in various graphical software, for example, an emissive color which is a color emitted 

by a surface while reflecting a light. It may add possibilities to visualize simulation outputs. 
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Moreover, it should be possible to create rasters for defined intervals of simulation output values and 

leave other cells with NODATA value. This way several rasters will be grouped by one geometry and 

overlayed as an appearance over each other. This modification can make possible querying specific 

appearances, because only known values will be presented visually.  

By pursuing these developments, the potential of CityGML models as a powerful tool for urban planning 

and simulation output integration can be further extended, offering benefits to urban planners and the 

contribute to the creation of better conditions for sustainable urban development. 

6. Conclusion 
In conclusion, this study successfully demonstrates the feasibility of storing sunlight and daylight 

simulation outputs within the appearance module of a CityGML model in 3DCityDB. The research confirms 

that the CityGML appearance module can store datasets generated by daylight and sunlight simulations 

with modifications, enabling that these datasets can be imported into and retrieved from a 3DCityDB 

database. This may be useful to decision makers (urban planners) when they check if planned buildings 

do conform to the Swedish daylight regulations.  

Furthermore, the thesis outlines a clear set of steps required to integrate simulation outputs into the 

appearance module, providing a practical guide for future implementations. This integration process has 

been validated, ensuring that the data provided by simulations can be stored in semantic 3D city models 

utilizing 3DCityDB modules in the current CityGML schema. 

Finally, the thesis work shows that querying and retrieving appearance data from 3DCityDB can be done 

efficiently, facilitating detailed analysis and visualization. This capability enhances the utility of CityGML 

models, allowing urban planners to examine if buildings adhere to the daylight or sunlight 

recommendations. The proposed methods can lead to better strategic planning, implementation of 

policies and better utilization of funds. 
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