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Abstract 
The growth of the wild boar (Sus Scrofa) population in Sweden results in increasing wild 
boar damage on agricultural grounds, thereby influencing the livelihoods of farmers. Finding 
mitigation strategies that are positive for both wildlife and human society is challenging. It is 
therefore essential to enable the creation and investigation of precise and differentiated wild 
boar management strategies. This necessitates the development of semi-automatized and 
trusted methods that quantitatively and spatially assess wild boar damages on agricultural 
lands at the landscape scale (i.e., cm-level). Current methods cannot answer this need as they 
consist of manual field surveys that are time-consuming, subjective, and have a too-coarse 
scale. Unmanned Aerial Vehicle (UAV) can be a solution to systematically assess damages in 
agricultural fields on this landscape scale, as it provides data with high temporal and spatial 
scale, flexibility, and affordability. This study developed three methods that utilized UAV data 
to automatically map (wild boar) damages in agricultural grass and wheatlands in Boo, 
Hjortkvarn Municipality, Sweden. Two methods, pixel-based and object-based classifications, 
focused on performing an image classification on 2-dimensional (2D) multispectral UAV data 
by applying the machine learning algorithms Random Forest (RF) and Support Vector 
Machine (SVM). The object and pixel-based RF and SVM classification retrieved overall 
accuracies of 85% and above for the wheatlands and 91% and above for the grassland, 
whereby the best overall performance was achieved by the object-based SVM method for 
both wheat and grassland. The two classification methods created damage maps with similar 
damage locations but the pixel-based classification mapped the damage extents smaller 
compared to the object-based classification. The third method utilized the 3-dimensional (3D) 
UAV photogrammetry-derived point clouds of the wheatlands. This method extracted the 
normalized height values of the point cloud and applied a height threshold to create the 
damage mapping. The method was not able to capture the damage mapping in wheatlands 
due to the too-low density point clouds but has the potential to aid the 2D classifications by 
providing the extracted normalized height values as additional information for the machine 
learning classifiers.  
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1. Introduction 
In today’s world, human societies face many challenges to coexist with wildlife. Amongst 
these challenges is the increasing human-wildlife conflict (HWC), resulting from enlarging 
wildlife habitat loss due to factors such as human exploitation of limited natural resources 
(e.g. expansion of agriculture and urbanization), population growth and climate change 
(Ravenelle & Nyhus, 2017; Torres et al., 2018; International Union for Conservation of 
Nature [IUCN], 2022). HWC entails, in one respect, the direct conflict between wildlife and 
human societies (e.g. crop damages, livestock kills, and road accidents). In Sweden, a direct 
HWC is caused by the growth of its wild boar (Sus Scrofa) population, resulting in increasing 
damages on agricultural grounds, thereby influencing the livelihoods of farmers. The annual 
growth rate of the wild boar in Sweden was 50% between 2000-2010 (Gren et al., 2019) and 
is currently estimated to be around 300,000 individuals (Swedish Association for Hunting and 
Wildlife Management). Wild boar cause damage to almost all agricultural crops in Sweden 
with the highest losses for wheat (Edman & Ländell, 2021). The losses of wheat yield in 2020 
totaled 84,400 tonnes (i.e., 1.4% of the total wheat harvest), which is double the losses caused 
by wild boar in 2014. The negative consequences of wild boar rooting behavior in 
agricultural lands were estimated to be around 17% of Sweden's average net farm income in 
2015 (Gren et al., 2019). These negative consequences are due to cost from crop damages 
(e.g., yield loss) and additional costs (Rao et al., 2002), such as costs related to machinery 
damage, reduced soil quality, and protection (e.g., hunting and field fencing).  

Finding mitigation strategies for these direct conflicts between wildlife and human societies 
is a challenging task. For example, the mitigation strategy called the Hunting Act (Jaktlagen), 
implemented in 1966 in Sweden, had the desired outcome of an increase in the wolf 
population, but brought negative consequences for some, resulting in a divide between ‘pro-
wolf’ and ‘anti-wolf’ people within the Swedish society (Lin et al., 2021). This shows that 
within the HWC, conflict can also arise between groups of people (IUCN) such as 
environmental policymakers, urban planners, farmers, and indigenous people (e.g. Sami 
people) (Sjoegren and Matsuda, 2016). These conflicts are a result of the differences in each 
group’s perceptions, which are framed by past experiences, beliefs, and values (e.g. what is 
the place of the human in nature) (Peterson et al., 2010). Finding the right mitigation 
techniques is complex due to this social influence. Other challenges of mitigation strategies 
are related to financial constraints and the unavailability of resources in specific regions. So 
are technological mitigations (Fall and Jackson, 2002; Dickman, 2010) such as the use of 
electronic collars (Rossler et al., 2012), often non-ideal because financial limitations restrict 
their large-scale deployment. 

To comprehend an HWC, such as the negative impact of wild boar activities on Sweden's 
agricultural sector, studies (Rostro-García et al., 2016; Jin et al., 2021) have researched the 
potential of risk models. Jin et al. (2021) showed that a risk model could aid precise and 
differentiated management strategies for wild boar management in Hunchun, China. These 
risk models use historical damage locations to enable the assessment of HWC risks and 
provide possibilities to investigate different mitigation strategies (Miller, 2015). Studies on 
risk models show that with the availability of systematic time-series data on historical 
damage locations (e.g., wild boar damages on agricultural grounds), wildlife managers and 
policymakers (e.g., The Swedish Environmental Protection Agency) can have the knowledge 
and the ability to discover temporal and spatial patterns of HWC. This is crucial information 
for the development of mitigation interventions that are beneficial for all parties (i.e. humans 
and wildlife) (Ding et al., 2023).  
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In this environmental and economic context, there is a need to develop semi-automatized and 
trusted methods, that quantitatively and spatially assess wild boar damages on agricultural 
fields at the landscape scale (i.e., Very-high spatial resolution, cm-level). By working with 
information on a high scale (i.e. cm-level), precise management strategies can be created that 
have a lower chance of negatively impacting parts of the wildlife and human society. The 
creation of semi-automatized methods is important, as it will increase the usability of the 
method by a broad range of potential users, as specific technical knowledge will be less 
required when utilizing the method.  

To my knowledge, no systematic data collection of damage locations is done on agricultural 
lands in Sweden. Current methods consist of manual field surveys executed by authorized 
people (e.g. Swedish Agency for Agriculture (Jordbruksverket)). They are limited by being 
time-consuming, subjective, error-prone, and may cause additional crop damage during 
surveying (Dabrowska-Zielinska et al., 2009). Also, the spatial scale of the data collection is 
often too coarse to be useful in applications such as HWC risk modeling. This spatial scale 
issue is visible in a large-scale data collection report that was published by Statistics Sweden 
(SCB) in collaboration with the Swedish Agency of Agriculture in 2020 (SCB and 
Jordbruksverket, 2020). This report provided statistics on wildlife damages on agricultural 
lands in Sweden on county and production area scale (i.e. total counts and percentages of 
destructed area). Although this data can provide insights into wildlife damages and its 
implications on a large scale, for the current need for precise and differentiated mitigation 
management, it is crucial to have landscape scale (i.e. separate agricultural fields) data with 
very-high spatial resolution.  

Over the past four decades, remote sensing data such as Unmanned Aerial Vehicle (UAV) has 
been widely used by scientists for agriculture applications (Mulla, 2013). For instance, 
studies conducted by Wang et al. (2018) and Ge et al. (2019) utilized UAV data for biomass 
estimation, Feng et al. (2015) for vegetation mapping, and Su (2017) for water quality 
monitoring. A valuable characteristic of UAVs is their ability to collect data in an automated 
and repeatable manner (i.e. via setup flight plans) with very-high spatial (i.e. <1m) and 
temporal resolution scales. Also, the high flexibility that exists within the UAV data 
collection enables the collection of a wide range of data. This flexibility is reflected in the 
instrumentation adaptability of the UAV (e.g., angle of observation, flight route, flight height, 
flight speed, and sensor types), flying time decisions (e.g., controlling the weather conditions 
during the flight), and the options for live data transmissions (Pádua et al., 2017).   

Satellite data, another form of remote sensing data, has also been proven valuable in 
agricultural applications (Skakun et al., 2016; Nguyen et al., 2020). It can cover large areas 
and can collect data without the need for an operator to be physically present at the study site. 
However, the fixed time acquisition (Müllerová et al., 2017) and environmental factors, such 
as cloud coverage, affect the usability of this data in space and time. The spatial resolution of 
freely available satellite data, such as the Sentinel-2, is lower (e.g., several meters) than the 
UAV data (e.g., cm-level). The kind of information that can be extracted from the data is 
therefore different between the satellite and UAV (Woodcock and Strahler, 1987; Rocchini, 
2007). Commercial satellite images can have better spatial resolutions, however, prices of 
purchasing satellite images can become very high, this depends on factors such as the amount 
of preprocessing (e.g., atmospheric corrections), order size, spatial resolution and availability 
(Vailshery, 2022). For example, an order of one square kilometer of a WorldView-3 with an 
8-band Multispectral and a spatial resolution of 1.24 meters costed around 3200 dollars in 
July 2023 (Hubing, 2023). Compared to these prices for separate satellite images, the 
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purchase of a UAV device is more affordable, for example, one unit of the UAV DJI Mavic 3 
Multispectral (DJI, n.d.) costs around 53,000 SEK in March 2024.  

The characteristics of UAV data (i.e. high temporal and spatial scale, high flexibility, and 
affordability) and the limitations of satellite data (i.e. lower temporal and spatial scale, low 
flexibility, and high costs) privilege the use of UAV data over satellite remote sensing for the 
application of mapping (wild boar) damages in agricultural fields on a landscape scale (i.e., 
cm-level).  

 

2. Aims and Objectives 
This master’s thesis aims to contribute to the development of methods to map wild boar 
damages on very-high spatial scale resolution (i.e. 5 cm-level) in agricultural wheatlands (i.e. 
vertical growing crop) and grasslands (i.e. non-vertical growing crop) in Boo, Hjortkvarn 
Municipality, Sweden (Figure 1). Three different image classification methods utilizing UAV 
data have been developed, analyzed, and compared in performance. The first two methods, 
object-based classification and pixel-based classification, focused on two-dimensional (2D) 
UAV data and utilized the machine learning algorithms Random Forest (RF) and Support 
Vector Machine (SVM) (theoretical explanations in subsection 4.3.2.2). Their performances 
on (wild boar) damage mapping in agricultural wheat and grasslands were studied and 
compared. By comparing the two 2D methods, it could be investigated, whether the pixel-
based classification (i.e. a computationally less demanding approach) could potentially be 
used as an alternative to the more computationally demanding object-based classification 
approach (more information subsection 4.2). The third method was developed for damage 
mapping in wheatlands and focused on three-dimensional (3D) UAV data (i.e. point cloud). 
The approach was based on the height differences between locations of damage and wheat 
that could be classified using a height threshold (i.e. point cloud height threshold 
classification). Studying the performance of the 3D-based approach gave insight into whether 
utilizing 3D UAV data could add benefits to the (wild boar) damage mapping in agricultural 
wheatlands.  

This thesis focused on the development of objective, accurate, generalizable, open-source, 
and automated methods that utilize 2D-UAV and 3D-UAV data to map damages in 
agricultural wheat and grasslands within RStudio 2023.12.1 + 402 (“Ocean Storm” Release).   

The following aim and research questions were addressed in this master’s thesis.  

Research aim: 

Automatically map damages (e.g. wild boar, environmental, machinery) on very-high 
spatial scale resolution (i.e. 5 cm) in agricultural wheat and grasslands in Sweden, 
using image classification techniques on multispectral 2D and 3D UAV data. 

Research questions: 

1. What are the performances of object-based and pixel-based image classifications 
on 2D multispectral UAV data using the machine learning classifiers RF and SVM to 
map damages in agricultural wheatlands and grasslands? Do they provide similar 
damage mappings? 
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2. What is the performance of a 3D-based UAV data approach, point cloud height 
threshold classification, on mapping damages in agricultural wheatlands? Does the 
method add any benefits for mapping damages in agricultural wheatlands? 
 

Due to the high spatial scale and multispectral sensor data available by the utilization of UAV 
data captured from agricultural wheat and grasslands, and by the exploration of the three 
different damage mapping techniques (i.e. object-based, pixel-based, and point cloud height 
threshold classification), it is expected that a method can be created that automatically maps 
damages in agricultural grass and wheatlands in Boo, Hjortkvarn Municipality, Sweden. 

For clarification, this study focused on mapping all damages present in the agricultural grass 
and wheatlands. Although the fields contained mostly damage originating from wild boar 
activities, damage originating from other sources such as machinery tracks, drought, and 
other wildlife, could have also been present in the agricultural fields. Secondly, no 
investigation has been done on whether the created methods for mapping damages in wheat 
and grassland can be used for the mapping of damages in other agricultural lands (e.g. sugar 
beet and potatoes). Thirdly, due to time and computational constraints, the scope of the study 
was set to the mentioned study area of Boo, Hjortkvarn Municipality. Even though there is a 
high potential that the developed methods will also work on agricultural wheat and grasslands 
in other regions within and outside of Sweden, this has not been tested for and can therefore 
not be presumed. Lastly, it should be clear that no discrimination could be made between 
mapped damages regarding the exact time of occurrence (e.g., is this, this year’s damage or is 
this damage due to previous year’s wild boar destructions), this as previous records from 
other years of damage locations were unavailable. 

The upcoming sections will start with the context and background that provides an outline of 
studies that used UAV data to map wild boar damages in agricultural lands. Afterward, the 
methods (section 4) used in this study will be explained in detail, these entail the explanations 
of the study area and data collection (subsection 4.1), general methodology (subsection 4.2), 
object- and pixel-based classifications (i.e. 2D-methods, subsection 4.3), point cloud height 
threshold classification (3D-method, subsection 4.4) and the validation field data evaluation 
(subsection 4.5), after which the results (section 5) are presented. The results are then 
discussed (section 6) and lastly, a conclusion (section 7) is provided.  

 

3. Context and Background 
Processing of raw UAV images can provide both 2D UAV data in the form of ortho-mosaics 
(i.e. stitched together UAV images into one image) and 3D point cloud data (i.e. points in a 
3D space with a location and height information). For both these 2D and 3D UAV data, 
methods have been studied to map damages in agricultural lands. This section will start with 
studies based on 3D-based methods. 
 

3.1 Damage Mapping with 3-Dimensional Unmanned Aerial Vehicle Data 
Studies utilizing 3D UAV data used UAV photogrammetric (i.e. based on multi-angle 2D 
UAV images, more information subsection 4.1) and Light Detection and Radar (LIDAR) (i.e. 
based on active sensor pulses, more information subsection 4.1) point clouds to map wild 
boar damages in agricultural lands with vertical growing crops (i.e. wheat and corn fields). 
Garcia Millan et al.  (2020) studied the mapping of wheat and corn damages in sites with 
different climate and soil conditions in Europe and America. They utilized methods such as 
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slope detection (Burrough et al., 2015) and variance analysis (Anys et al., 1994) on the digital 
surface models (DSM) created from LIDAR point clouds. By detecting lowering changes in 
topographic elevations between neighboring pixels they were able to map severely damaged 
areas with an accuracy of 90%. Similar studies using methods based on crop and damage 
height differences used photogrammetry-derived point clouds. Kuželka and Surový (2018) 
performed a height analysis method for wheat loss estimation in the Czech Republic. Their 
method used kernels to detect height differences between wheat and damage in normalized 
height models (i.e. height above the surface) that were derived from the point clouds. Their 
method retrieved high accuracies (>90%), but had the disadvantages that prior knowledge of 
the sizes of the damages was required and that the method assumed similar crop heights 
throughout the field, an assumption that cannot always met. Michez et al. (2016) focused on 
wild boar damage mapping in cornfields in Belgium. They performed a subtraction of a 
LIDAR digital terrain model from their photogrammetry point cloud-derived DSM to obtain 
normalized height values. The normalized height differences between damage and corn were 
detected and they found that their model was underestimating the damaged areas with a 
maximum underestimation of almost 10%.  

Even though these 3D UAV methods are promising for wild boar damage mapping in 
agricultural grounds, the 3D methods have their limitations. So are these methods relying on 
the height difference between damaged areas and non-damaged crops, making it mostly 
applicable to crops that grow in height (e.g. vertical) and not for low-height crops such as 
grass. Next to this, as advances for UAV platforms resulted in the availability of multispectral 
sensors (e.g. Red, Green, Blue and Near-infrared, thermal), a lot of different data is available 
for the mapping of wild boar damages (Eskandari et al.,2020). When only using the 3D data, 
this information is neglected. In addition, point clouds derived from 3D UAV data require 
larger storage space (e.g. multiple gigabytes per agricultural field of several hectares) 
compared to 2D UAV data. 
 

3.2 Damage Mapping with 2-Dimensional Unmanned Aerial Vehicle Data 
The extensive volume of available 2D UAV data per field has increased owing to its high 
spatial resolution and multispectral capabilities. Due to these extensive volumes of data, 
machine learning (ML) has been made possible and found to be a fast and reliable method for 
solving linear and non-linear problems for agricultural applications (Eskandari et al., 2020). 
The meta-analysis done by Eskandari et al. (2020) and the review of Belgiu and Dragut 
(2016) found that studies using UAV data for agricultural applications extensively apply the 
machine learning algorithms RF and SVM (for theoretical explanations refer to subsection 
4.3.2.2.). Studies by Stas et al. (2016) and Heremans et al. (2015) used a SVM and RF 
respectively for wheat yield predictions where they found that small training samples and 
several spectral parameters could train SVMs and RFs to accurately predict the yields. A 
study highly related to wild boar damage mapping was recently done by Kumar et al. (2024). 
They focused on mapping rice damages due to lodging and trained an RF with several 
combined features such as spectral and textural information. They obtained an accuracy of 
over 95%. A study that used the classifier RF to assess wild boar damages in cornfields and 
grasslands was done in northern Belgium by Rutten et al. (2018). They made use of 
Geographic Object-Based Image Analysis from the eCognition® Developer software 
(Trimble Inc., Westminster, CO, USA), which transforms the input UAV data into objects of 
agglomerated pixels. The objects are groups of neighboring pixels that contain similar 
spectral values (Addink et al., 2010 and Blaschke, 2010). By using these objects as input data 
(i.e. object-based classification), additional information such as texture, shape and size could 
be provided to the RF classifier (Blaschke et al., 2014). They obtained an overall accuracy of 
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85% for the cornfields and 94% for the grasslands. Another study on wild boar damage 
mapping in cornfields was done by Friesenhahn et al. (2023) in Texas, USA. They ran a 
convolutional neural network (CNN) algorithm (more information subsection 6.7) available 
in ArcPro 2.7 (ESRI 2022). The input data to the CNN consisted of information extracted 
from a Red, Green, Blue (RGB) ortho-mosaic and a raster containing height values. They 
obtained an overall accuracy of over 80%. A SVM algorithm for mapping wild boar damages 
in cornfields in Mississippi, USA was applied by Samiappan et al. (2018). They used as well 
objects of pixels (i.e. object-based classification) to have additional texture information for 
the input of the SVM. Their retrieved classification accuracies were between 65% and 75%, 
where the classification underestimated the damages. Lastly, a study done by Fischer et al. 
(2019) focused on wild boar damage mapping in cornfields in Missouri, USA using a ML 
method that consisted as well of an object-based classification. To map the damages, a semi-
automated and object-based software application called Feature Analyst (Overwatch Systems 
Ltd, 2010) was used. They found overall accuracies that ranged between 74% and 98%.  

 

4. Methodology  
In this section, the methods of analysis are presented together with the reasoning for choosing 
the specific methods. Keep in mind, however not written down explicitly in the upcoming 
sections, that all these methods are applied on both the grasslands and wheatlands separately. 
 

4.1 Study Area and Data Collection 
Given the time and computational constraints that were present in this master’s thesis, the 
study area was narrowed to focus on agricultural wheat and grasslands in Boo, Hjortkvarn 
Municipality, southeast of Örebro County, Sweden (see Figure 1). This area is concerned with 
wild boar damages and the farmers in this area are in close contact due to other research-
related studies. Boo can be characterized as a farmer’s estate with agricultural lands that are 
in proximity of numerous forest patches and with a low human population density (i.e. 2.7 
residents per hectare in 2020 (SCB)). Next to farming activities, hunting activities take place 
due to the high wildlife activity in this area.  

The data used in this study was collected in May 2023 for grassland and August 2023 for 
wheatland using the UAV DJI Mavic 3 Multispectral (DJI, n.d.). These dates were based on 
the harvest months of the two crops. By capturing data from the fields just before they are 
harvested, a better visible contrast is present between damaged and non-damaged areas. The 
camera of UAV DJI Mavic 3 Multispectral (DJI, n.d.) consists of a 20 Megapixels RGB 
camera and single band cameras: green (G) 550nm, red (R) 650nm, and Red Edge (RE) 
730nm with all a bandwidth of +- 16nm and a Near-infrared (NIR) camera of 860nm with a 
bandwidth of +- 26nm. The raw data collected by the UAV was in order of several Gigabytes 
per agricultural field. Each field was flown over five times, once in nadir position (e.g., the 
center of the UAV is pointed directly towards the surface) and the other four times, to capture 
the data needed for 3D generation, in the four different camera angle orientations with an 
oblique position of -45 degrees. The decision to use the oblique flight data for the 3D 
generation is due to the increased probability of capturing data that can be translated to 
ground points. The UAV flew at a height of 40m with a speed of 15m/s. These camera 
settings produced a ground sampling distance (GSD) (e.g., the distance between two 
consecutive pixel centers measured on the surface) of 2.3 cm.  
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The data from eight agricultural fields for both grassland and wheatland were randomly 
selected to be used for this study. These fields were split into two groups of four fields, 
representing the train (Tr#) and test data (Te#) used in this study (Figure 1). The train data 
was used for the hyperparameter tuning (i.e. a method to find optimal model parameters, refer 
to subsection 4.2 for an elaborate explanation) and training (e.g., learning a classifier the 
damage mapping, more information in subsection 4.2) of the object, pixel, and point cloud-
based classifications. The test fields were used as independent data for the evaluation of the 
classifications. These fields in total cover an area of 19.5 hectares for grassland and 20.5 
hectares for wheatland. Table S1 in Appendix 9.1 contains the total areas for the training and 
test fields separately.  

 

 
Figure 1: The study area Boo, Hjortkvarn Municipality, south-east of Örebro County, Sweden 
represented in the coordinate reference system WGS 84 / UTM zone 33N. In total UAV data 
from 8 grasslands and 8 wheatlands were collected. Along with the fields, it is indicated 
whether the field is used as train (Tr..) or test (Te..) data for grassland and wheatland 
separately. The data was collected in May 2023 for the fields belonging to Grass and in 
August 2023 for the fields belonging to Wheat using a UAV DJI Mavic 3 Multispectral (DJI, 
n.d.) that had a flight height of 40 meters and a speed of 15m/s. 

 

PIX4Dmapper version 4.8.4. (Pix4D S.A., Prilly, Switzerland) was used to process the raw 
UAV data for the creation of the ortho-mosaics (i.e., UAV images of one field stitched 
together into one multilayer raster) containing the R, G, B, NIR, and, RE multispectral 
values, these reflect the bands of the ortho-mosaic. The raw images had an initial spatial 
resolution of 2.3 centimeters (GSD), using a bilinear interpolation the resolution of the ortho-
mosaics was resampled to 5cm spatial resolution. The ortho-mosaics were in the coordinate 
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reference system WGS 84 / UTM zone 33N (i.e. EPSG: 32633). There was no radiometric 
calibration performed, as the fields were processed separately and were captured during 
similar weather conditions (i.e. sunny). Next to this, there was no need to calculate precise 
plant phenology metrics, therefore accurate reflectance values were of less importance to this 
study. However, each field’s bands were normalized to a range between zero and one (i.e. 
based on each field's maximum and minimum values) to mitigate the potential effect of 
radiometric variations between the fields. See Tables S2-5 in Appendix 9.1 for the created 
ortho-mosaics of each field separately, only the RGB bands are shown for visualization 
purposes. 

The creation of the UAV point clouds was also performed using the PIX4Dmapper version 
4.8.4. LIDAR data (i.e. 3D data created from a sensor that actively fires pulses to the surface 
and recollects them to retrieve detailed height information) can provide high-quality data to 
create high-density point clouds that contain return information (i.e. information indicating 
whether points are first returns, meaning that they are ground points, or later returns, 
reflecting the other layered matter on the surface). As LIDAR data was not available for all of 
the eight wheat fields, it was chosen to create point clouds from the images collected in 
oblique positions (i.e. photogrammetry-derived point clouds). These point clouds are of a 
lower point density compared to LIDAR data-derived point clouds and do not contain return 
information. The average density of the created point clouds was 1350 points per cubic meter 
(m3). Information from the quality reports (i.e. total area, average GSD, keypoint match 
density, average point cloud density, mean reprojection error) retrieved for each field from the 
PIX4Dmapper processing is shown in Tables S6 and S7 in Appendix 9.1).  

Next to the UAV data, validation field data for each grass and wheatland field was manually 
collected using a Global Navigation Satellite System (GNSS) receiver achieving centimeter 
accuracy. These consisted of coordinates of damage locations. The data consisted of damages 
originating from wild boar but also from machinery, deer, badgers, drought, floods, insects, 
rocks, and plant disease. This data was used as independent validation data for the evaluation 
of damage locations as mapped by the classifications. 

 

4.2 General Methodology 
Three methods for mapping damages on a cm-level spatial scale in agricultural wheat and 
grasslands were created and compared. The three methods were chosen to reflect a wide 
spectrum of ways to utilize UAV data to map damages in agricultural grass and wheatlands. 
Two methods focused on analyzing 2D multispectral UAV data (i.e. the object-based and 
pixel-based classifications), and the third focused on 3D UAV data (i.e. the point cloud height 
threshold classification). Figure 2 shows an overview of the methodology used in this study 
which was entirely created in R-Studio version 4.4.0 (R core Team (2024)). Refer to Table 
S16 in Appendix 9.4 for an overview of all the packages utilized in the creation of the R-
pipeline. 

The 2D methods differed in the way the 2D UAV data was processed before it was used as 
input to the classifiers (more information in subsection 4.3.2.2) of the classifications. The 
pixel-based classification provided its classifiers with single-pixel information to classify 
each pixel in the ortho-mosaic. For the object-based classification, the ortho-mosaic was 
segmented into groups of pixels (subsection 4.3.2.1). The segments could provide additional 
information, such as contextual, morphological (e.g. related to the shape of the segment) and 
spatial data for the classifier to use (Blaschke, 2010; Hay & Castilla, 2008; van der Werff & 
van der Meer, 2008). In this way, the classifier did not just classify every pixel of the ortho-
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mosaic (i.e. pixel-based classification) but whole objects (i.e. object-based classification). Via 
this, the 2D classifications were either done on pixels or objects, thereby an exploration of the 
influence of input data on the damage mapping in agricultural grass and wheatlands using 2D 
UAV data could be achieved.  

 

Figure 2. The workflow used for the mapping of damages in agricultural wheat and 
grasslands in this study. The workflow consists of three classifications divided into two 2-
dimensional (2D) UAV-based methods and one 3-dimensional (3D) UAV-based method. The 
2D-based method consisted of the components hyperparameter tuning, model training, and 
evaluation, and the 3D-based of the hyperparameter tuning and evaluation. The last step of 
the workflow consisted of the comparison of the retrieved evaluations of the classification 
methods. The data from this study was collected using a UAV DJI Mavic 3 Multispectral 
(DJI, n.d.) that had a flight height of 40 meters and a speed of 15m/s in May 2023 for 
grassland and August 2023 for wheatlands in Boo, Hjortkvarn Municipality, Sweden. 

 

The 3D point cloud height threshold classification differs from the 2D methods, as it did not 
use the multispectral UAV data but used the 3D UAV point cloud, where the height of points 
in space was used to classify an area as damage or not. This method was based on the idea 
that damaged areas have a lower height than non-damaged areas (i.e. crops). A medium-
density point cloud was used for this method (detailed explanation in previous section 4.1), 
this resulted in the method being applied only on wheatlands, as the height difference 
between grass and damaged areas in these photogrammetry-derived point clouds was not 
significant for the method to work on grasslands.   

Both the 2D and 3D methods to map damages in agricultural grass and wheatlands were 
based on the notion of image classifications (Perumal & Bhaskaran, 2010). This means that 
specific units of the UAV data, pixels for pixel-based, objects of pixels (i.e. segments) for 
object-based, and 3D points for the point cloud height threshold classification, were assigned 
(i.e. classified) to a specific target class. These target classes are informational categories that 
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are of interest to the user and depend on the scale (i.e. cm-level) of the classification 
(Palaniswami et al., 2006). For the 2D classifications, it was chosen to have four target 
classes for both grass and wheatlands (i.e. multi-class classification, see Figure 2). The target 
classes were chosen with the interest of being able to distinguish damaged areas from other 
phenomena in the agricultural fields. When choosing target classes it was important that the 
pixel/segment values of the target classes were distinct from each other and that all instances 
(i.e. pixels/segments) of the same target class had similar pixel/segment values. This was 
necessary as the classifiers learn what specific pixel/segment values corresponded to what 
target class. By having the classes as homogenous as possible the risk of confusion between 
target classes gets lowered. Considering the high spatial resolution (i.e. cm-level) of this 
study, it was chosen to have two target classes representing damage. This was done to lower 
the heterogeneity within the damage target classes. Considering the other phenomena present 
in the agricultural fields, the target classes for grassland were set to dry damage (e.g., older 
damage therefore at data capturing bare land/dry soil), new damage (e.g. recent damages 
therefore wetter soil), shadow (e.g., areas blocked from sunlight), and grass. For wheatlands, 
the target classes were set to dry damage, grass, dark damage (e.g. recent damages containing 
destroyed wheat or wet soil), and wheat. As Figure 2 shows, the 3D point cloud classification 
was a binary classification, meaning that only two target classes, damage and non-damage, 
were considered during the classification. As the method was based on height differences 
between the wheat plants and the damaged area, target classes such as dark and dry damage 
(used in the 2D wheatland classifications) were non-distinguishable.  

Both 2D methods were based on supervised classifications to map damages in agricultural 
grass and wheatlands. Supervised classification is a form of image classification that consists 
of training a classifier to predict the target classes, where the training data contains both the 
pixel/segment values and the associated target class. By the availability of the target class 
information, the classifier can learn what data corresponds to what target class and therefore 
learn how to predict new situations (e.g. where the target class is unknown). The 3D method 
used an unsupervised classification, which is another form of image classification. This form 
has the advantage that it does not require training data that contains the target classes to 
create the classification model. The point cloud height threshold method classifies the points 
in the point cloud into two unspecified classes, after which the correct target class has to be 
assigned to it (e.g., via a height threshold, refer to subsection 4.4 for a detailed explanation of 
the 3D point cloud height threshold classification method). Despite the advantage of the 
unsupervised classifications for not needing target class data, the 2D classifications made use 
of supervised classifications as the assignment of the target classes can become very difficult 
to automate when working with high-dimensional data (i.e. the bands of the ortho-mosaic, 
more information in subsection 4.3.1) and multi-class classifications.  

Figure 2 shows that the two 2D methods consisted of three main components, hyperparameter 
tuning (1), model training (2), and evaluation (3). The 3D method consisted of 2 main 
components, the hyperparameter tuning (1) and the evaluation (3), as the model training (2) 
was not needed due to the method being an unsupervised classification. The first component, 
the hyperparameter tuning (1), was used to find optimal settings (i.e. hyperparameters) for 
each method’s classification model. A hyperparameter tuning is a technique that 
automatically and systematically searches for optimal hyperparameters to optimize (i.e. tune) 
the model performance. Whether hyperparameters are optimal is checked upon a performance 
measure that is to be set by the user. Several algorithms exist to tune the hyperparameters of a 
machine learning model, such as Random Search (Bergstra & Bengio, 2012), Bayesian 
optimization (Snoek et. al., 2012), and gradient optimization (Chapelle et. al., 2002). These 
algorithms, among others, are good for situations where a lot of hyperparameters are present, 
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as they systematically search (or randomly in case of random search) in the hyperparameter 
value space for more optimal solutions. For this study, a full grid search was chosen, hereby 
all combinations of the provided hyperparameter values were assessed in performance. This 
was possible as only a few hyperparameters were present to tune in each of the methods (i.e. 
the pixel, object-based, and point cloud classifications). Refer to subsections 4.3.2.3, 4.3.3.1, 
and 4.4.3 for object-based, pixel-based, and point cloud classification methods respectively, 
for detailed information on the hyperparameters tuned and the performance measure used 
within the method. Once the optimal settings were found for each model, the 2D models 
could be trained (component 2), or in the case of the 3D method, were ready to perform the 
damage mapping after which the damage mappings were evaluated (component 3). Lastly, 
the classifications and the evaluations of the different methods were compared. The 
upcoming subsections will explain each of the methods in more detail, starting with the two 
2D methods. 
 

4.3. Object and Pixel-based Classification (2D) 
4.3.1 Pre-processing 
Pre-processing steps had to be performed on the 2D multispectral UAV ortho-mosaics 
(explanation in subsection 4.1) before it was ready to be used by the object and pixel-based 
classifications (refer to Table S16 in Appendix 9.4 for the used R packages). First, any data 
outside of the agricultural field itself (e.g., farmer's house or patches of forest) present in the 
ortho-mosaics were removed. It was chosen to add, next to the original five bands in the 
ortho-mosaics (i.e. R, G, B, NIR, and RE), a band containing the vegetation index 
Normalized Difference Vegetation Index (NDVI) and bands containing the Texture indices 
RGB/NIR mean and RGB/NIR variance. The decision to add a vegetation index was based 
on the expectation that it could provide valuable information for a classifier to use when 
discriminating between damaged areas, containing relatively more soil (lower NDVI), and 
crops (higher NDVI). Furthermore, texture was calculated as it was observed in the UAV 
images that texture differences existed between the target classes. It was therefore expected 
that the texture indices could increase the performance of the classifications. 

The NDVI was calculated based on the NIR and R values and derived using the original 
formula (Formula 1) proposed by Rouse et. al. (1974).  

𝑁𝐷𝑉𝐼 =
  

  
        (1) 

Where NIR is the Near-infrared and R the red wavelength bands.  

Utilizing the R-package GLCMTextures (Ilich, 2020), the RGB (i.e. based on the data from 
the 20 Megapixels RGB camera) and NIR mean and variance texture values were calculated 
based on their Gray-Level Co-Occurrence Matrix (GLCM) (Haralick et al., 1973). This 
GLCM consisted of the quantized RGB and NIR values in the ortho-mosaic divided into 16 
equal probability quantile bins (i.e. each bin contains an equal number of pixels). Using the 
GLCM (i.e., containing 16 gray levels), a moving window of five by three pixels was used to 
calculate the texture mean and variance values for the pixels in the ortho-mosaic. All the 
bands together (R, G, B, NIR, RE, NDVI, RGB mean, NIR mean, RGB variance, NIR 
variance) made a total of ten bands available for the 2D classifications.  

Second, as mentioned in subsection 4.2, the 2D image classifications were based on 
supervised learning. This means that it was needed to create data containing the locations of 
target classes in the ortho-mosaics. Separate target class data had to be created for the training 
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and testing within the hyperparameter tuning (component 1 in Figure 2), the model training 
(component 2 in Figure 2), and the model evaluation (component 3 in Figure 2). These data 
are all separate datasets to avoid creating a bias in the evaluation results of the trained 
classifications for mapping damages in agricultural grass and wheatlands. By visual 
assessment of the ortho-mosaics, this target class data was manually created in QGIS 3.28.10-
Firenze. For the 4 fields assigned as train fields (subsection 4.1 and Figure 1), 40 polygons 
per target class (i.e. 4 target classes so 160 in total) were randomly selected for the training of 
the classifier during the hyperparameter tuning (component 1) and another 40 per target class 
for the training of the classifier for the model training (component 2). Next to this, test data 
from these train fields was created for the evaluation of the hyperparameter tuning 
(component 1) and the evaluation of the trained model (component 3), these consisted 
respectively of 20 and 40 randomly selected polygons per target class. In addition to the test 
data created from the four train fields, test data was created from the four selected test fields 
(subsection 4.1 and Figure 1), thereby serving as completely independent test data. For these 
fields, 40 random polygons were selected per target class as test data. The data from the 
independent test fields were only used for the evaluation of the trained classifiers (component 
3), not for the evaluation within the hyperparameter tuning (component 1). Table 1 shows the 
created train and test data. 
 

Table 1. The number of fields and polygons used as train and test data for the classification 
and hyperparameter tuning. The polygons represent samples of the target classes Dry 
Damage, New/Dark Damage, Shadow/Grass, and Grass/Wheat. The number of fields and 
polygons displayed is available for grassland and wheatland separately.  

What Amount of 
Fields 

Amount of 
polygons 

Area (m2) 
Grassland 

Area (m2) 
Wheatland 

Train data classification 4 640 585 349 
Test data classification 8 1280 452 740 
Train data 
hyperparameter tuning 

4 640 584 487 

Test data 
hyperparameter tuning 

4 320 240 219 

 
 

The upcoming subsubsections will contain a detailed explanation of the workings of the 
object-based and pixel-based classifications.  

4.3.2 Object-based Classification 
The main package used for the object-based classification was the R package SegOptim 
(Gonçalves et. al., 2019). This package allows the performance of both segmentation (i.e. 
element 1 of the object-based model, see Figure 2) and classifier training (i.e. element 2 of 
the object-based model, see Figure 2) within the R environment for single and multi-class 
problems. Refer to Table S16 in Appendix 9.4 to see all R-packages used in this method. 
 

4.3.2.1 Object-based: Segmentation 
As explained in subsection 4.2, the object-based classification used objects of pixels (i.e. 
segments) as input to the classifiers. Therefore, the first element of the object-based 
classification model was the segmentation. The segments were created by merging pixels in 
the ortho-mosaic according to homogeneity criteria (Blaschke, 2010). The criteria of the 
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segmentation depend on the objective of the task. For this method, the objective was that a 
segment solely consisted of pixels belonging to one of the four target classes. As 
segmentation is a computationally heavy task, one out of the ten available bands was selected 
to perform the segmentation with. The band that was selected, was the band that had 
spectrally the largest separability ability between the different target classes. To assess this 
separability, the Jeffries-Matusita (JM) distance was used. The JM is a statistical separability 
criterion widely used to assess the separability of classes by spectral bands (Dabboor et al., 
2014). The version of the JM by (Dalponte et al., 2013; Bruzzone et al., 1995) available via 
the R-package VarSel (Dalponte & Ørka, 2021) was used to perform the calculations. The 
separability value is given per band between each combination of target classes (e.g. New 
Damage vs Dry Damage, New Damage vs Shadow, Shadow vs Dry Damage, etc., six 
combinations in total). The JM score has a range between zero and two, where zero means 
non-separability, one medium separability, and two full separability. The band giving the 
maximum sum of the JM scores of all the combinations of target classes was used to perform 
the segmentation. The hyperparameter training data created from the four training fields was 
used for the calculations of the JM. The RGB mean texture band had the highest separability 
for both grass and wheatland with an average value of 1.08 and 1.04 respectively. Therefore 
the RGB mean band was used to perform the segmentation for both grass and wheatlands. 
Figures 3 and 4 show the histograms of the RGB mean bands for grass and wheatland. Refer 
to Table S8 in Appendix 9.2 for the JM scores per combination of target classes for the RGB 
mean and Table S9 Appendix 9.2 for the top 5 bands with the highest summed JM scores. 

 

 

Figure 3. The histogram shows the separability ability of the RGB mean band between the 
different target classes for the grassland fields (i.e. Dry Damage, New Damage, shadow and 
Grass). The normalized spectral values are represented on the x-axis and the frequency is 
displayed on the y-axis. 
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Figure 4. The histogram shows the separability ability of the RGB mean band between the 
different target classes (i.e. Dry Damage, Dark Damage, Grass and Wheat). The normalized 
spectral values are represented on the x-axis and the frequency is displayed on the y-axis. 

For each of the created segments, the mean and standard deviation of the combined pixels 
from each of the ten input bands were calculated and the datasets containing the target classes 
(section 4.3.1, Table 1) were joined to their corresponding segment. Therefore, in total 20 
bands (i.e. 10 mean and 10 standard deviation bands) per segment were available as input to 
the classifiers (second element). As the manually selected polygons only consisted of parts of 
target class areas (e.g. the polygon does not contain the full outline of one damage spot but a 
part of it), the attachment of the target classes was done by setting the inclusion threshold at 
0.01% overlap with a segment. This was done with the assumption that each segment satisfies 
our objective of containing solely one target class. This means that when 0.01% or more of 
the segment was covered by a polygon, the segment was used as train/test sample and labeled 
to the corresponding target class of the polygon. Once this was done, the data was prepared to 
be used by the three components of object-based classification, namely the hyperparameter 
tuning (i.e. component 1, Figure 2), training of the classifiers (i.e. component 2, Figure 2), 
and the evaluation of the trained classifiers (i.e. component 3, Figure 2). 
 

4.3.2.2 Object-based: Model Classifiers 
The second element of the object-based classification model is the model classifiers. Random 
Forest (RF) and Support Vector Machine (SVM) were selected, among other reasons 
discussed in the paragraphs below, due to the promising results from previous studies that 
used the RF and SVM for related agricultural applications (Subsection 3.2). The following 
two subsections contain a detailed theoretical explanation of the RF and SVM classifiers. 

4.3.2.2.1 Random Forest   
The Random Forest algorithm used in this study was proposed by Breiman (2001) and 
consists of multiple decision trees that perform the prediction. Each decision tree has to learn 
how to predict the correct target class given the input data. To prevent the decision trees from 
learning similar information, randomness is incorporated in the training data used for the 
individual decision trees in both the features (e.g. the bands to use) and training samples 
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(what part of the created training objects). Given each tree’s randomly selected features and 
training samples, the tree has to learn how to classify them into the target classes. This is 
done by splitting up the data into increasingly homogenous groups of target classes. The 
splits are based on conditional statements such as ‘Data samples containing a spectral value 
higher than 200 for Red is split from the samples with a value for Red equal or lower than 
200’. The Gini Index calculation is used to find the optimal split. The Gini index represents 
the probability of misclassification after the split (Formula 2).  

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 𝑃(i)        (2) 

Where c is the number of classes (i.e. four) and P(i) is the probability of misclassification of 
class i (i.e. the amount of class i in the split divided by the total amount of instances in this 
split).  

For four classes the maximum impurity split would have a Gini index of 0.75. A pure split, 
the preferred situation (e.g. where only samples of one target class are present in the group 
after the split), has a Gini index of 0. A split is made in such a way that the Gini index after 
splitting is as small as possible. Once every decision tree is trained, the trees together form 
the Random Forest. The classification by RF is made by selecting the target class that has the 
majority of the outcomes of all the decision trees. 

The notion of Gini Index is also used for calculating each band’s importance within the whole 
RF. To calculate each band’s importance, the mean decrease of the Gini Index is calculated. 
This measurement indicates the influence of each band on the homogeneity of the nodes 
(groups of split samples) in the decision trees that make up the RF. The bands that eliminate 
the most impurity in nodes have the highest mean decrease values. The higher the mean 
decrease value is, the higher the importance of the band (Martinex-Taboada and Redondo, 
2020). E.g. the Gini Index shows what bands contain most of the information needed to map 
damages in agricultural wheat and grasslands. 

The RF classifier was chosen for the 2D classifications because it can classify categorical 
target classes and can handle datasets with high dimensionality (e.g., 10 bands in the ortho-
mosaics). Next to that, because of the multiple decision trees, a RF can learn complex, non-
linear relationships between the input bands and the target classes. Another advantage of the 
use of multiple decision trees is that a RF is less prone to overfitting. Lastly, a RF can provide 
information about the importance of specific bands for doing the classification. This 
information can give valuable insight and understanding into the application of damage 
mapping in agricultural grass and wheatlands (AIML, 2023).  
 

4.3.2.2.2 Support Vector Machine 
The foundation of the SVM was introduced by Vapnik (1998). A SVM searches and defines a 
higher dimensional space where the samples belonging to different target classes are 
maximally separable (Scholkopf & Smola, 2018). The separation is defined by a hyperplane 
(i.e. decision boundary separating the samples of the target classes) in the higher dimensional 
space. The original SVM algorithm was created for linear class discrimination (i.e. two class/ 
binary classification) but later adaptations have transformed the algorithm into one that has a 
non-linear working. SVM uses a concept named Structural Risk Minimization (Vapnik, 
2013), where the hyperplane is created in such a way that the distances (i.e. margins) between 
the closest sample of each target class to the hyperplane are maximized. Next to this, is the 
complexity of the model taken into account, thereby preferring simplistic models over 
complex models. In these ways, the chance of overfitting gets reduced (e.g. generalization 
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improves). The coefficients used for the vectors that make up the SVM hyperplane can be 
used as a measure of importance. By squaring up all the coefficients per band, an estimation 
can be retrieved of how much influence a band has on the hyperplane used for classification.  

Next to the generalization characteristics of a SVM, another reason to investigate the 
performance of the SVM classifier in this study is that it works effectively with high-
dimensional data. Lastly, did, among others, Najah et al. (2011) conclude that the SVM is 
computationally more efficient than classifiers like ANN and that a higher precision can be 
retrieved with less computational complexity. 
 

4.3.2.3 Object-based: Hyperparameter Tuning 
To optimize the performance of the object-based classification models (i.e. segmentation + 
RF classifier and segmentation + SVM classifier, Figure 2), a hyperparameter tuning 
(component 1, Figure 2) was performed on the hyperparameters for the segmentation (refer to 
subsection 4.2 for the explanation of hyperparameter tuning). The segmentation function 
provided by the R-package SegOptim required three user-defined hyperparameters, which 
were the spectral range, spatial range and the minimum segment size (Michel et. al., 2015). 
The spectral range indicated the maximum difference of the spectral values in the feature 
space that was allowed to be within one segment, the spatial range was the maximum 
distance in the neighborhood and the minimum segment size was the minimum amount of 
pixels a segment should contain to be considered.  

The provided value ranges used in the hyperparameter tuning were based on theory, trial-and-
error explorations on the study’s data, and default values provided by the SegOptim R-
package (Gonçalves et. al, 2019). Refer to Table 2 for the chosen value ranges per 
hyperparameter. As all the data was normalized to a range between zero and one, the spectral 
range values indicated that variations of 1%, 2%, 3% or 4% in spectral value within one 
segment were permissible. When the value for the spectral range is too high, the segments 
become too heterogeneous, thereby increasing the chance that segments did not satisfy the 
objective (i.e. one segment only contains pixels belonging to one target class). The spectral 
range was set to a maximum of 30 pixels, mainly due to the time limitations present in this 
study, as computation time increased drastically when the search space was set to even larger 
areas. The minimum size of the segments was set to a maximum of 25 pixels, to prevent 
small target areas (e.g. small damage spots) from being removed from the analysis. A 
minimum was set to 15 pixels to prevent situations where segments were created that 
consisted of just one to very few pixels. This situation had to be prevented as the performance 
could become artificially high (or low). This happens because one damage spot gets 
represented by a lot of different segments. This then results in test data that refers to one 
damage spot, is represented by multiple one to few pixel(s) objects (see Figure S1 Appendix 
9.2). When this damage spot is predicted correctly by all the segments representing this 
object, this one damage spot counts as many correct predictions, making the classification 
look like it performs better than it actually does. This is a situation that has to be avoided.   

For each combination of hyperparameter values, the segmentation (i.e. element 1) and the 
training of the machine learning classifier (i.e. RF and SVM, element 2) were performed and 
evaluated in optimality using the Kappa coefficient (refer to subsubsection 4.3.2.5 for 
explanation of this performance metric). The hyperparameter tuning was done for both the 
RF and SVM classifiers separately using the same created hyperparameter training and test 
datasets (subsection 4.3.1, Table 1).  
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Table 2. Hyperparameter tuning - full grid search for the segmentation function that is part of 
the object-based classification. These values were used for the hyperparameter tuning of both 
the models containing Random Forest and Support Vector Machine. The spectral range, 
spatial range, and minimum size are hyperparameters that need to be set in the segmentation 
method provided by R-package SegOptim (Gonçalves et. al., 2019).  

Hyperparameter Values 
Spectral range  0.01, 0,02, 0.03, 0.04 
Spatial Range 10, 20, 30 
Minimum size 15, 20, 25 

 
 

4.3.2.4 Object-based: Model Training  
After the optimal hyperparameters were retrieved, the actual model could be trained 
(component 2, Figure 2). The RF and SVM classifiers were trained using a 10-fold cross-
validation. This means that the created training data for the classification model (information 
in subsection 4.3.1 and Table 1) was split up into 10 equal randomly sampled parts (i.e. 
folds). The model was trained 10 times using each time 9 different folds for training and the 
leftover fold for calculating the expected performance (i.e. Kappa and Overall Accuracy, 
explanation in subsection 4.3.2.5) of the trained classifier. The expected performance gives an 
indication of how well the trained classification model will perform on the test data 
(subsection 4.3.1 and Table 1). By training the model 10 times using different parts of the 
train data, a more robust estimation of the expected performance could be retrieved.  

SegOptim used the RF algorithm provided by the R-package RandomForest (Liaw & Wiener, 
2002)  and the SVM algorithm (Boser et al., 1992; Vapnik, 1998) provided by the R-package 
e1071 (Meyer et al., 2017). The RF consisted of 250 decision trees that were trained using 4 
randomly selected bands as candidates for the splits (refer to subsection 4.3.3.1 for an 
elaborate explanation). Refer to Table S16 Appendix 9.4 to see all R-packages used in this 
object-based classification method. 
 

4.3.2.5 Object-based: Model Evaluation  
Once the models of the object-based classification were trained, the models could be 
evaluated using the created classification test data (subsubsection 4.3.1 and Table 1). The 
following performance evaluation metrics were calculated for both the pixel and object-based 
multi-class classifications.  

- (Overall) Accuracy of the whole classification.  
The overall accuracy is the total number of correct classifications divided by the total 
amount of classifications. The range is between zero and one, where one means 
‘perfect’ classifications and zero means all classifications are wrong. 

- Kappa coefficient of the whole classification.  
The kappa coefficient takes into account the correct classifications that you would 
have by chance (Ensrud, 2021). Hereby the expected agreement (the agreement at 
chance level) is subtracted from the observed agreement (overall accuracy) and 
divided by (1 – expected agreement). A kappa coefficient of zero reflects that the 
classification is not better than chance and a coefficient of one means ‘perfect’ 
classification (no classification mistakes made according to the test data).  
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- F1 Score of the whole classification 
This score is based on a trade-off between how many of the present target class 
instances are detected and how many of the classifieds are correct. Given the fact that 
four target classes were present, the average value of each of the target class’s F1 
scores was calculated and used as the F1 score.  

- User’s accuracy per target class.  
The user’s accuracy of a target class reflects how many of the pixels that were 
classified as this class are actually this target class. This accuracy is 100% when all 
the classifications predicted as this target class belong to this target class. 

- Producer’s accuracy per target class.  
The producer’s accuracy per target class reflects how many of the pixels belonging to 
a target class are also classified as this target class. This accuracy is 100% when all 
the pixels belonging to this target class are also predicted as such. 

 

4.3.3 Pixel-based Classification 
The pixel-based classification classifies each pixel into one of the 4 target classes. The pixel-
based classification is faster, as the data after the pre-processing steps (subsection 4.3.1) 
could directly be used to train and test the RF and SVM classifiers (subsection 4.2 and Figure 
2). The main package used for the pixel-based classification was the R-package Caret 
(version 4.47) (Kuhn, 2008). This package enables hyperparameter tuning within the training 
of the classifiers, thereby speeding up the computational running time. Refer to Table S16 in 
Appendix 9.4 for an overview of all R-packages used in this method. 
 

4.3.3.1 Pixel-based: Hyperparameter Tuning 
For the training of the RF 1000 decision trees were trained. The number of bands that were 
randomly sampled as candidates to create the splits in the decision trees of the RF was 
optimized during the hyperparameter tuning (component 1, Figure 2). This hyperparameter 
decides from the bands that are available for the decision tree, how many of those are 
randomly selected to be considered to perform the split on. This is done to prevent the 
decision trees from becoming too dependent on one or a few specific bands to perform the 
classification, thereby increasing the robustness of the trained classifier. This hyperparameter 
is a number between two and the total number of bands used for the classification (i.e. 10), 
therefore the tuning grid was set to the values 2, 4, 6, 8, and 10.  

For the SVM classifier (theoretical explanation in subsection 4.3.2.2.2), the SVMLinear3 
(Helleputte et al., 2023) was used. This decision was made as a linear kernel, which requires 
less computational capacity than a non-linear kernel (e.g., Radial Basis Function), was 
expected to retrieve good classification performances. The hyperparameter tuning 
(component 1, Figure 2) was set to find the optimal cost parameter and loss function. The 
cost parameter reflects how much a sample is penalized for being within a close margin 
between the different target classes. If the cost is too low, there is a chance of overfitting (i.e. 
noise point have a large influence on the classification) and if the cost is too high the model 
can become too generalized, it was therefore of importance to tune this parameter. The tuning 
grid was set to 0.2, 0.5, 1 and 1.5. The loss function is used to measure the performance of 
the SVM hyperplane in classifying the target classes and is used to adapt the hyperplane to 
optimality (i.e. lowest total loss). The two loss functions that were used in the hyperparameter 
tuning were L1 and L2, where L1 is a linear sum of the misclassifications and L2 is the sum 
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of squares of the misclassifications.  
 

4.3.3.2 Pixel-based: Model Training and Evaluation 
The training of the models (component 2, Figure 2) for the pixel-based classifications was 
done using a 10-fold cross-validation (see subsection 4.3.2.4 for an explanation). The same 
model evaluation metrics were used as was used for the object-based classification (see 
subsection 4.3.2.5). 

 

4.4 Point Cloud Height Threshold Classification (3D) 
Next to the two 2D methods, a point cloud height threshold classification was studied, a 
method based on the 3D UAV data. The main R-package used for this method was lidR 
(Roussel et al., 2020 and Roussel and Auty, 2024). Refer to Table S16 Appendix 9.4 for an 
overview of all R-packages used in this method. 

4.4.1 Pre-processing Point Cloud 
Before the photogrammetry-derived point clouds (subsection 4.1) could be used for the 
classification, the following preprocessing steps were performed. 

First, any data outside of the agricultural field itself present in the point cloud were removed.   

The second preprocessing step was related to noise removal. The photogrammetry-derived 
point clouds available for the wheat fields contained outliers originating from various sources 
(e.g. birds, wind, processing errors, sensor errors) that had to be removed as they could 
influence the analysis. The Noise Segmentation Algorithm was utilized from the R-package 
lidR (Roussel et al., 2020; Roussel & Auty, 2024) to perform this noise removal. This 
algorithm is based on the Statistical Outliers Removal method, first described in the R-
package Point Cloud Library (Rusu & Cousins, 2011). The algorithm uses the mean distance 
and standard deviation of points to their k closest neighbors to define a maximum distance 
threshold. Visual performance assessment of the noise removal resulted in the decision to use 
the 15 closest neighbors of each point to calculate the mean distance and standard deviation 
for. The maximum distance threshold is based on Statement (1), hereby it was chosen that 
three times the standard deviation is allowed on top of the mean distance for being considered 
a non-noise point. All points with a distance larger than this threshold are classified as noise 
and removed from the point cloud.  

IF Point distance > Mean distance + 3 * standard deviation THEN  noise        statement (1) 

The Point Cloud Height Threshold method is based on unsupervised learning and does not 
require training data. However, to be able to test the performance of the classification during 
the hyperparameter tuning (component 1, Figure 2) and the model evaluation (component 3, 
Figure 2), test data was created from the manually collected validation field data (subsection 
4.1). This validation field data originally contained only GNSS coordinate points of the 
locations of the damages. Therefore, these coordinates had to be transformed into polygons 
containing the outline of the damage spots. Using QGIS 3.28.10-Firenze, the ortho-mosaics 
were visually assessed to manually digitize polygons at the indicated damage locations. 40% 
of the created validation test data from the train fields (subsection 4.1 and Figure 1) was used 
for the hyperparameter tuning, and the other 60% of the train fields and 100% of the created 
validation test data from the test fields (subsection 4.1 and Figure 1) were used for the model 
evaluation (component 3, Figure 2).  
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4.4.2 Point Cloud Classification - Model  
Figure 2 shows that the 3D-based method consisted of a model with 3 elements, the Ground 
Point Classification, the Digital Elevation Model (DEM) creation, and the Normalized Height 
Threshold. The main idea of the method was to retrieve the height above the surface (i.e. 
normalized height) for all the locations in the wheatfields, whereafter a height threshold could 
be applied to classify the locations in damage and non-damage. To be able to retrieve the 
normalized heights, the elevation of the surface in the form of a digital elevation model 
(DEM, i.e., representation of the topographic bare-earth surface) had to be calculated. First, 
the ground points within the photogrammetry-derived point clouds (element 1) had to be 
identified, after which a DEM could be created via interpolation of the ground points 
(element 2). After the DEM is subtracted from the heights of the points in the point cloud, the 
normalized heights could be retrieved and the height threshold for classification (element 3) 
could be applied. The upcoming subsections will contain an elaborate explanation of each of 
the three elements of the model used in the 3D-based method.   
 

4.4.2.1 Ground Point Classification 
The first element of the model consisted of the classification of the ground points within the 
denoised point cloud to be able to calculate the DEM. With this, the decision was made to 
consider damage (e.g. tracks, wild-boar rooting places) as matter that has a negative height 
(i.e. the height of damage in the form of pits in the ground is not considered as ground 
elevation height). This means that it was aimed to not obtain classified ground points in the 
damage locations. The topography of the fields was mostly flat with no steep slopes. 

The algorithm used for ground point classification is based on the method developed by 
Zhang et al. (2016). It consists of a cloth simulation where the point cloud is inverted and a 
cloth is fitted using the notion of gravity to cover the surface (see Figure 6). A main 
advantage of this method is that there are only a few, easy-to-understand, hyperparameters to 
be determined. As this research aimed to create a method for the mapping of damages in 
agricultural lands that is as automated as possible, this robust with few parameters method 
was preferred over the ground classification methods that use morphological filters. These 
methods obtain good accuracies, but the parameters have to be adjusted for each local scene, 
which made them less useful for this study (Mongus & Žalik, 2012).  

The first hyperparameter needed for the cloth simulation is the resolution of the cloth. This 
value is often set to be around the average distance of the points in the considered point cloud 
which was for this study 5 centimeters. The cloth resolution together with the area of your 
point cloud defines the number of grid particles the cloth consists of. These grid particles are 
movable in height during the simulation. At each iteration, gravity simulation changes the 
height of the movable cloth particles. How the gravity simulation moves the particles, is 
dependent on a second hyperparameter which is the rigidness of the cloth. The rigidness 
value is dependent on the type of terrain. As this study worked with agricultural lands, the 
value was set to 3, this specific value reflects terrains that are more or less flat with no steep 
slopes. At each iteration, after the gravity simulation is performed on the cloth particles, the 
height of each particle is checked for being lower than its nearest point in the point cloud. If 
this is the case, the particle’s position is set to the height of that point and is unmovable by the 
gravity simulation from that moment on. After a maximum number of iterations are 
performed (i.e. 500) the gravity simulation is stopped. At this moment, the points in the point 
cloud that have a distance to their closest cloth particle that is smaller than the classification 
threshold are classified as ground points. This classification threshold is the third 
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hyperparameter and was tuned in the hyperparameter tuning (for details on the 
hyperparameter tuning refer to subsection 4.4.3).  

 

 

Figure 6. Simplified illustration (modified from Zhang et al., 2016, Figure 1) of the workings 
of gravity simulation on the cloth within the cloth simulation that was used to classify ground 
points in the photogrammetry-derived point cloud. The measurement represents the 180-
degree turned point cloud on which a cloth simulation is performed. Points in the point cloud 
are classified as ground points when their distance to the cloth is smaller than a user-set 
threshold.  

4.4.2.2 Digital Elevation Model Creation 
The second element of the model consisted of the creation of the DEM. An interpolation had 
to be performed between the classified ground points to obtain the DEM of each of the wheat 
fields. For this, the Inverse Distance Weighting (IDW) method (Schut, 1976) was used which 
was available via the R-package Lidr (Roussel et al., 2020; Roussel & Auty, 2024). This 
method is a simplistic method that creates realistic DEMs, also on the edges of the study area. 
As the point clouds contained areas with missing points and the DEM had to be created 
including all the edges of the wheatfields, other methods like Kriging (Journel & Huijbregts, 
1978) or Thiessen polygons (Longly et al., 2011) were less suitable. 

The main idea of the IDW method is that all elevation points are related, whereas near points 
are more related to each other and should therefore have more influence on the estimated 
interpolated elevation value. This relatedness is inversely proportional to the distance from a 
specific point to each other point considered for interpolation. The power of the proportional 
is a hyperparameter and was tuned in the hyperparameter tuning. As well as the 
hyperparameter reflecting the amount of neighboring known elevation points that will be 
taken into account to perform the interpolation (for details on the hyperparameter tuning 
decisions and search grid refer to subsection 4.4.3). The resolution of the interpolated DEM 
raster was set to 10cm. 
 

4.4.2.3 Normalized Height Threshold 
The third element of the model consisted of applying a height threshold on the normalized 
height values. To retrieve the normalized height values at each location in the wheatfields, the 
created DEM was subtracted from the original point cloud. The normalized point cloud was 
then rasterized by taking the minimum height values and a resolution of 10cm to avoid 
retrieving missing data values within the created raster. The minimum height was selected, as 
it prioritized low height values that could potentially represent damage pits (e.g., areas with 
minus height values). Once the raster with the normalized height values was retrieved, the 
raster could be classified into the binary classification of Damage and Non-Damage. The 
threshold was set to have cells classified as Damage when they were containing a height 
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equal to or below zero. The cells with a normalized height value of above zero were classified 
as Non-Damage. This threshold was chosen as it was assumed that non-damaged wheat 
plants have a positive height and damages have negative heights as they are pits in the 
ground.  
 

4.4.3 Point Cloud: Hyperparameter Tuning 
A hyperparameter tuning (component 2, Figure 2) using full grid search was performed to 
retrieve the optimal hyperparameter value for the classification threshold for the ground point 
classification algorithm (subsection 4.4.2.1) and for the hyperparameters, power of the 
proportional distance and the number of neighbors, used for the Inverse Distance Weighting 
Interpolation of the classified ground points (subsection 4.4.2.2). See Table 3 for the 
hyperparameter values that were evaluated for optimality. The aim to have points in damage 
pits not classified as ground points was taken into account by having higher values for the 
number of neighbors used in the interpolation. Using a high number of neighbors ensures that 
the heights of points in damage pits that got classified as ground points are smoothed out 
during the interpolation. The test data, created from the validation field data of the train fields 
(subsection 4.4.1) was used to measure the performance of each of the hyperparameter 
combinations. The dice coefficient was used as the performance measure and indicated the 
pixel-wise agreement of the test data with the classified data (see formula 3).  

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
| ∩ |

| | | |
       (3) 

Where X ∩ Y is the amount of pixels that both the test data and the classification have as 
damage. |X| is the amount of pixels containing damage in the test data and |Y| is the amount 
of pixels within the damage areas of the test data that are classified as damage by the 
classification.  
 

Table 3. The hyperparameter values used for the grid search for the hyperparameter tuning of 
the 3-dimensional UAV-based method which performs a point cloud height threshold 
classification. The classification threshold is used in the cloth simulation and represents the 
distance that points in the point cloud can have to the cloth particles to be classified as ground 
points. The power of proportional distance and the number of neighbors are hyperparameters 
used for the interpolation method called Inverse Distance Weighting (IDW), which is 
performed on the identified ground points to create a digital elevation model. The IDW 
method and the cloth simulation method provided by the R-package Lidr (Roussel et al., 
2020; Roussel & Auty, 2024) were used.  

Hyperparameter Values 
Classification threshold 0.0001, 0.000025, 0.00005, 0.000075, 0.00001 
Power of proportional distance 1, 2 
Number of neighbors 20, 50, 80 

 

4.4.4 Point Cloud: Model Evaluation   
After the optimal hyperparameters were retrieved, the classifications were performed for all 
fields and evaluated with the test data created from the validation field data for the 
classification evaluation (subsection 4.4.1). 
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4.5 Validation Field Data Evaluation 
As shown in component 3 in Figure 2, the performance of the three classification methods 
(i.e. object-based, pixel-based, and Point Cloud Normalized Height classification) were 
compared. To be able to compare the three classifications, equal test data was required. It was 
therefore decided to use all the validation field data, preprocessed similarly as described in 
subsection 4.4.1, as test data for the grasslands and to use the test data created from the 
validation field data for the testing of the classification in the 3D method (subsection 4.4.1) as 
the test data for the wheatlands. This test data contains only information on damage areas, 
therefore the 2D methods, that classified into 4 target classes, had to be reclassified to a 
binary classification of Damage and Non-Damage. For the grasslands it was decided to merge 
the Dry Damage and New Damage into one Damage target class, to remove the Shadow 
target class from the analysis (i.e. set to NoData), and to reclassify the Grass target class as 
Non-Damage. For the wheatlands, the Dry Damage and Dark Damage were merged into one 
Damage target class, the grass was removed from the analysis and the Wheat target class was 
reclassified as Non-Damage. Next to using this test data to compare the three methods, 
difference maps between the different classification methods were created. 
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5. Results 
5.1 Object and Pixel-based Classification Results (2D) 
 
5.1.1 Object-based Classification Results 
5.1.1.1 Object-based: Hyperparameter Tuning Results 
Refer to Table 4 for the hyperparameter tuning results of the object-based method. Table S10 
in Appendix 9.2 shows the top 5 hyperparameter combinations for the object-based 
classifications. For grass and wheatlands, it shows the higher the spatial range the lower the 
performance. The same pattern but weaker could be observed for the spectral range. Lastly, 
there was a preference for medium to high minimum segment sizes. 

Table 4: Results of the hyperparameter tuning for both the Random Forest and Support Vector 
Machine classifier using Object-Based classification. The spectral range, spatial range, and 
minimum size are hyperparameters that had to be set in the segmentation method provided by 
R-package SegOptim (Gonçalves et. al., 2019). 

Hyperparameter Grassland RF Grassland SVM Wheatland RF Wheatland SVM 

Spectral Range  0.01 0.04 0.01 0.02 
Spatial Range  10 10 10 10 
Minimum Size  20 25 20 20 
Kappa 0.97 0.96 0.97 0.97 

 

5.1.1.2 Object-based: Band Importance 
Refer to Table 5 for the band importance values obtained by the object-based classifications. 
It can be observed that the RF classifier had all the original sensory bands (R, G, B, NIR, RE) 
in the top 10, whereas this was not the case for the SVM as more derived texture values and 
standard deviations were of importance. A comparison of the importance values for the RF 
between grass and wheatland shows more derived texture values in the top 10 for wheatland. 
The importance values for the SVM between the grass and wheatland show little difference. 

Table 5. Top 10 retrieved band importance values of the object-based trained RF (Mean 
decrease GINI) and SVM (squared coefficients) models with the optimized hyperparameters 
for both grass and wheatlands. The bands are either the mean values of the band in the 
segments, represented by the original band names, or the standard deviation (std) of the band 
values in the segments, represented by the band name + std. 

Grassland 
Object-RF 

Grassland  
Object-SVM 

Wheatland  
Object-RF 

Wheatland  
Object-SVM 

Blue  592.56 
RGB 
mean std. 1057.70 Blue 557.28 

RGB 
mean std. 2886.10 

Green  294.52 
RGB 
mean 1037.54 NDVI 517.92 

RGB var. 
std. 2677.20 

RGB 
mean 257.40 RE std. 1028.43 RGB var. 489.83 

NIR mean 
std. 2540.76 

NIR 227.83 
NIR var. 
std. 1019.24 Red 414.85 Re std. 2494.02 

Red 218.17 
NIR mean 
std. 1011.40 

RGB 
mean 412.45 

NIR var. 
std. 2424.49 
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RE 212.31 NIR std. 1002.81 Green 395.19 Nir std 2283.70 
NDVI 147.66 Green std. 989.96 Nir mean 392.81 Green 2240.92 
NIR 135.83 NDVI 979.33 Nir  235.42 Red std 2107.77 
RGB 
var. 97.76 

NIR 
variance  978.34 

RGB 
mean std. 220.51 

RGB 
mean 2072.85 

Blue 
std 89.36 Red std. 972.69 RE 207.53 Red 1966.26 

 
 

5.1.2 Pixel-based Classification Results 
5.1.2.1 Pixel-based: Hyperparameter Tuning 
The pixel-based method results had, for both grass and wheatlands, the same optimal 
hyperparameters. These were 4 candidate bands used at the split by the RF and for the SVM 
the cost value 1.5 and the loss function L2. Figures S2:S5 in Appendix 9.2 show the behavior 
of the performance for the different pixel-based RF and SVM hyperparameter combinations. 
The results from the random forest classifier (Figures S2 & S4) show that a higher and lower 
number of predictors than 4 lowered the performance. The SVM results (Figures S3 & S5) 
show that the higher the cost, the higher the performance of the classification and that the L2 
loss (i.e. squared losses) in general retrieved better performances. 
 

5.1.2.2 Pixel-based: Band Importance 
Refer to Table 6 for the band importances for the pixel-based classifications. The table shows 
that the derived texture RGB mean band was most important for each of the classifications. It 
can be observed that the SVM had similar bands as important for both grass and wheatland. 
These are after the texture band RGB mean, mainly the original UAV sensory bands (i.e. R, 
G, B, NIR, and RE). The RF had more texture-derived bands (e.g., NIR mean and RGB 
variance) in the top 5. 

Table 6. Top 5 retrieved band importance values of the pixel-based trained RF (Mean 
decrease GINI) and SVM (squared coefficients) models with the optimized hyperparameters 
for both grass and wheatlands. The bands are either the mean values of the band in the 
segments, represented by the original band names, or the standard deviation (std) of the band 
values in the segments, represented by the band name + std. 

Grassland  
Pixel-RF 

Grassland 
Pixel-SVM 

Wheatland  
Pixel-RF 

Wheatland  
Pixel-SVM 

RGB 
mean  57074.83 

RGB 
mean  397.12 

RGB 
mean 43601.82 

RGB 
mean  396.65 

Blue 29386.21 Red 380.57 RGB var. 20699.88 Red 382.80 
NIR mean 25410.60 Green 378.19 NIR mean 18291.48 Blue 373.26 
Green 24627.49 Blue 373.21 Blue 13549.96 NDVI 357.67 
Red 18757.84 RE 315.19 Red 11712.89 Green 344.60 

 

5.1.3 Object & Pixel-based Classifier Train and Test Results 
Tables S11 and S12 in Appendix 9.2 show the average scores for the kappa and overall 
accuracy from the 10-fold cross-validation training for the object and pixel-based RF and 
SVM classifier methods. All scores are above 84% for both grass and wheatland. The 
classifiers’ test results are, for readability, split up into grassland and wheatland subsections.  
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5.1.3.1 Grassland: Object & Pixel-based Classifications Test Results 
5.1.3.1.1 Grassland: Confusion Matrices and Test Evaluation Metrics 
Tables 7 and 8 contain the evaluation results of the object and pixel-based RF and SVM 
classifications for the grasslands. The confusion matrices (Table 7) show that all 
classifications have instances where Dry Damage was confused with New Damage area, both 
ways. Next to this, they all have several instances where True Shadow was confused as New 
Damage, this is to a lesser extent the other way around. The evaluation metrics (Table 8) of 
the Object-based RF are lower than the other classifications, which all have similar values for 
the evaluation metrics. The highest accuracies are retrieved by the pixel-based RF 
classification.  

Table 7. Confusion matrices containing the average values of the confusion matrices obtained 
from the test data origination from the separate fields used in the evaluation of the RF and 
SVM object-based and Pixel-based classifications for damage mapping in grassland. The 
numbers represent pixels. 

Object-Based RF 
True Dry 
Damage 

True New 
Damage 

True 
Shadow True Grass 

Pred Dry Damage 3381 328 123 24 
Pred New Damage 232 5837 565 126 
Pred Shadow 102 174 4772 165 
Pred Grass 1 75 165 6558 

 

Object-Based SVM 
True Dry 
Damage 

True New 
Damage 

True 
Shadow True Grass 

Pred Dry Damage 3544 296 82 41 
Pred New Damage 96 5831 305 124 
Pred Shadow 72 177 5053 40 
Pred Grass 2 110 184 6667 

 

Pixel-Based RF 
True Dry 
Damage 

True New 
Damage 

True 
Shadow True Grass 

Pred Dry Damage 3605 198 1 21 
Pred New Damage 49 5919 364 11 
Pred Shadow 59 272 5187 39 
Pred Grass 3 26 72 6802 

 

Pixel-Based SVM 
True Dry 
Damage 

True New 
Damage 

True 
Shadow True Grass 

Pred Dry Damage 3591 235 3 17 
Pred New Damage 60 5607 311 10 
Pred Shadow 57 183 5206 54 
Pred Grass 7 53 104 6793 
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Table 8. Evaluation metrics were obtained by the object and pixel-based RF and SVM 
classifications on grassland. Accuracy, Kappa and F1 are based on the four-class 
classification performances. The producer and user accuracies are based on the performance 
of the Dry and New Damage target classes taken together as one damage class. Std. shows 
the standard deviation of the evaluation metric.  

Grassland  
Evaluation Metrics 

Object-based 
RF 

Object-Based  
SVM 

Pixel-Based  
RF 

Pixel-Based  
SVM 

Accuracy 0.91 0.93 0.95 0.94 
Accuracy Std. 0.02 0.02 0.04 0.03 
Kappa 0.86 0.90 0.93 0.91 
Kappa Std. 0.03 0.04 0.05 0.04 
F1 0.88 0.91 0.94 0.92 
F1 std. 0.08 0.06 0.03 0.04 
Damage Producer’s acc 0.87 0.93 0.94 0.94 
Damage Prod. Acc. Std. 0.08 0.07 0.04 0.05 
Damage User’s acc 0.84 0.91 0.94 0.94 
Damage User Acc. Std. 0.09 0.09 0.09 0.04 

 

5.1.3.1.2 Grassland: Classification Output (2D-methods) 
Figure 7 shows the damage mappings resulting from the object and pixel-based 
classifications for field test4 (Figure 1) for the grassland. This field had the median amount of 
agreed classifications (see Table S13 Appendix 9.2) for both the object and pixel-based 
classifications. It can be observed that similar locations of damage spots were found by the 
object and pixel-based classifications but that the amount of classified damage pixels at a 
location was a lot higher for the object-based classification. 
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Figure 7. Visualization of the four-class classifications of the object and pixel-based RF and 
SVM classifications for grass field test 4 in coordinate reference system WGS 84 / UTM 
zone 33N. The data was collected in May 2023 in Boo, Hjortkvarn Municipality, Sweden 
using a UAV DJI Mavic 3 Multispectral (DJI, n.d.) that had a flight height of 40 meters and a 
speed of 15m/s. 
 

5.1.3.1.3 Grassland: Damages Counts (2D-methods) 
Table 9 shows for grassland, that the object-based classifications classify about 10-15% more 
pixels as damage compared to the pixel-based classifications.  

Table 9. The percentage-wise counts of pixels classified as Damage (i.e. Total of the Dry 
Damage and New Damage target classes) relative to the total amount of classified pixels for 
the grassland fields using the object and pixel-based RF and SVM classifications. 

Grassland Percentage 
counts Damage 

Object-based  
RF 

Object-Based  
SVM 

Pixel-Based  
RF 

Pixel-Based  
SVM 

Damage Pixels 47.36% 48.02% 37.41% 33.31% 
 
 

5.1.3.1.4 Grassland: Difference Maps (2D-methods) 
To further investigate the difference between the object and pixel-based classifications for 
grassland, difference maps were created (Figure S6 in Appendix 9.2 shows the difference 
maps of grassland field test 4 and wheatland field train 3). Refer to Table 10 for the frequency 
table created from the difference map of the grassland fields. The agreement was high 
between the pixel and object-based classifications for the different classifiers, most 
disagreement was at locations where the object-based classification classifies damage and 
pixel-based does not. 

 
Table 10. Percentage-wise visualization of the averaged frequency tables of the difference 
maps of the pixel and object-based classifications for the Grassland fields. The pixels 
classified as Shadow were not included in the analysis.  

Difference freq. Table Grass Random Forest Support Vector Machine 
Pixel-based: Damage 
Object-Based: No-Damage 3.44% 2.80% 
Agreement  
(both damage/ no damage) 82.71% 78.76% 
Object-based: Damage 
Pixel-Based: No-Damage 13.85% 18.44% 

 

5.1.3.2 Wheatland: Object & Pixel-based Classifications Test Results 
5.1.3.2.1 Wheatland: Confusion Matrices and Test Evaluation Metrics 
Table 11 shows that all the classifications had instances confusing True Dark Damage as 
Grass or Wheat. Next to this was True Wheat confused as Dry Damage. This is both ways 
around for pixel-based classifications. Table 12 shows that, as observed for the grassland, the 
object-based RF classification had lower Accuracy and Kappa values compared to the others. 
The F1 score is for all the classifications more or less similar, however, the object-based 
classifications had higher standard deviation scores for the F1 compared to the pixel-based 
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classifications. It can also be observed that for all the classifiers, the Producer’s accuracy 
turned out lower, about 10%-15%, compared to their user’s accuracy (this was not the case 
for the Object-Based SVM, here only a 4% difference). Lastly, the User’s accuracies for the 
pixel-based classifications were around 95%, which is 5% higher compared to the object-
based RF and SVM classifications.  
 

Table 11. Confusion matrices containing the average values of the confusion matrices 
obtained from the test data origination from the separate fields used in the evaluation of the 
RF and SVM object-based and Pixel-based classifications for damage mapping in wheatland. 
The numbers represent pixels. 

Object-Based RF 
True  
Dry Damage True Grass 

True  
Dark Damage True Wheat 

Pred Dry Damage 6001 63 114 674 
Pred Grass 77 5566 1294 106 
Pred Dark Damage 101 270 7648 448 
Pred Wheat 115 55 2127 12033 

 

Object-Based SVM 
True  
Dry Damage True Grass 

True  
Dark Damage True Wheat 

Pred Dry Damage 6116 64 129 1141 
Pred Grass 53 5744 862 182 
Pred Dark Damage 78 134 8781 269 
Pred Wheat 56 12 1411 11665 

 

Pixel-Based RF 
True  
Dry Damage True Grass 

True  
Dark Damage True Wheat 

Pred Dry Damage 5941 28 28 387 
Pred Grass 3 5798 536 17 
Pred Dark Damage 58 56 8161 95 
Pred Wheat 287 55 2454 12735 

 

Pixel-Based SVM 
True  
Dry Damage True Grass 

True  
Dark Damage True Wheat 

Pred Dry Damage 5911 31 23 612 
Pred Grass 17 5801 412 6 
Pred Dark Damage 99 58 8442 94 
Pred Wheat 262 46 2301 12521 
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Table 12. Evaluation metrics were obtained by the object and pixel-based RF and SVM 
classifications on wheatland. Accuracy, Kappa and F1 were based on the 4-class classification 
performances. The producer and user accuracies were based on the Dry Damage and Dark 
Damage taken together as one damage class. Std. shows the standard deviation of the 
evaluation metric. 

Wheatland 
Evaluation metrics 

Object-based  
RF 

Object-Based  
SVM 

Pixel-Based  
RF 

Pixel-Based  
SVM 

Accuracy 0.85 0.88 0.89 0.90 
Accuracy Std. 0.03 0.05 0.04 0.04 
Kappa 0.79 0.84 0.85 0.85 
Kappa Std. 0.04 0.06 0.05 0.05 
F1 0.90 0.89 0.90 0.90 
F1 std. 0.08 0.11 0.04 0.04 
Damage Producer’s Acc. 0.78 0.85 0.81 0.82 
Damage Prod. Acc. Std. 0.06 0.07 0.06 0.07 
Damage User’s Acc 0.89 0.89 0.96 0.94 
Damage User Acc. Std. 0.06 0.08 0.04 0.07 

 

5.1.3.2.2 Wheatland: Classification Outputs (2D-methods) 
Figure 8 shows the classifications for object and pixel-based field train3 (Figure 1) for the 
wheatland, this field had the median amount of agreed classifications for both the object and 
pixel-based classifications (see Table S14 in Appendix 9.2). Similar to grassland, the pixel-
based classifications mapped similar damage locations but mapped the damages less dense 
with the pixel-based RF mapping the least amount of damages at the damage locations. 

 

5.1.3.2.3 Wheatland: Damage Counts (2D-methods) 
Table 13 shows for wheatland, that the SVM classifications classified relatively more pixels 
as damage. Object and pixel-based comparison shows that the object-based classifies more 
pixels as damage.  

Table 13. The percentage-wise counts of pixels classified as Damage (i.e. Total of the Dry 
Damage and Dark Damage target classes) relative to the total amount of classified pixels for 
the wheatland fields used in the object and pixel-based RF and SVM classifications. 

Wheatland 
Percentage counts 
Damage 

Object-based  
RF 

Object-Based  
SVM 

Pixel-Based  
RF 

Pixel-Based  
SVM 

Damage Pixels 27.79% 35.39% 20.52% 29.20% 
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Figure 8. Visualization of the 4-class classifications of the object and pixel-based RF and 
SVM classifications for wheat field train 3 in coordinate reference system WGS 84 / UTM 
zone 33N. The data was collected in August 2023 in Boo, Hjortkvarn Municipality, Sweden 
using a UAV DJI Mavic 3 Multispectral (DJI, n.d.), flight height of 40 meters and a speed of 
15m/s. 
 

5.1.3.2.4 Wheatland: Difference Maps (2D-methods) 
Refer to Figure S6 in Appendix 9.2 for the difference map of wheat field train3. Refer to 
Table 14 for the frequency tables created from the difference maps of the wheatland fields. 
The agreement is high between pixel and object-based classifications for the different 
classifiers, most disagreement is at locations where the object-based classification classifies 
damage and pixel-based does not. 

Table 14. Percentage-wise visualization of the averaged frequency tables of the difference 
maps of the pixel and object-based classifications for the wheatland fields. The pixels 
classified as Grass were not included in the analysis. 

Difference freq. Table Wheat Random Forest Support Vector Machine 
Pixel-based: Damage 
Object-Based: No-Damage 6.11% 5.97% 
Agreement  
(both damage/ no damage) 77.85% 79.85% 
Object-based: Damage 
Pixel-Based: No-Damage 16.04% 14.18% 
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5.2 Point Cloud Height Threshold Classification Results (3D) 
5.2.1 Point Cloud: Hyperparameter Results 
Refer to S15 in Appendix 9.3 for the top 10 optimal hyperparameters found in the 
hyperparameter tuning of the point cloud classification method. It shows that the 
hyperparameters, classification threshold and the power, should be as low as possible and the 
number of neighbors as high as possible to obtain better classification performance. Table 15 
shows the optimal hyperparameters.  

Table 15. Results of the hyperparameter tuning of the point cloud height threshold 
classification method. 

Classification 
Threshold 

Power of proportional 
distance 

Number of 
neighbors 

Dice 

1.00E-5 1 80 0.28 
 

5.2.2 Point Cloud: Classification Outputs 
The classification of wheat field train 3 (Figure 9) shows that not all damages were captured. 
The damaged pits made by machinery were mapped as damage but the other damage spots, 
represented as gray areas in the RGB image, were less significantly detected, whereby only a 
few pixels were classified as Damage in these damage locations. 

 
Figure 9. Resulting binary classification classified by the point cloud method of the wheat 
field train 3 in coordinate reference system WGS 84 / UTM zone 33N. The left shows the 
RGB image of the field and the right the binary classification. The data was collected in 
August 2023 in Boo, Hjortkvarn Municipality, Sweden using a UAV DJI Mavic 3 
Multispectral (DJI, n.d.), flight height of 40 meters and a speed of 15m/s.  
 

5.2.3 Point Cloud: Damage Counts 
Percentage-wise counts of the damage relative to the total amount of classified pixels for the 
point cloud classification is 5.29%. 
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5.2.4. Point Cloud: Difference Maps 2D-3D 
Figure S7 in Appendix 9.3 shows the difference maps between the wheat 2D object and pixel-
based, RF and SVM classifications and the 3D point cloud classification. The difference 
maps show that the same regions were detected by the 2D and 3D classifications, but fewer 
pixels were classified as damage by the point cloud height threshold classification. Table 16 
shows that most agreement was obtained by the pixel-based RF and the point cloud 
classification and the lowest agreement by the Object-based SVM. The disagreement was 
mostly due to the 2D classification classifying damage while the point cloud classification 
was not.  

Table 16. Percentage-wise visualization of the averaged frequency tables of the difference 
maps of the wheat pixel and object-based classifications with the point cloud classification 
(i.e. 3D).  

Difference freq. Table 
2D – 3D Wheat 

Object-Based  
RF  

Object-Based  
SVM  

Pixel-Based  
RF  

Pixel-Based  
SVM  

3D Damage, 
2D No Damage 1.45% 1.08% 2.00% 1.49% 
Agreement  
(both damage/ no 
damage) 70.64% 63.48% 78.76% 70.60% 
2D Damage, 
3D No Damage 27.91% 35.44% 19.24% 27.91% 

 
 

5.3 Validation Field Data Comparison  
5.3.1 Validation: Object and Pixel-based Classifications 
Table 17 shows for both grass and wheatland, that the object-based RF and SVM detected a 
higher percentage of the validation field data compared to the pixel-based classifications 
(with the exception of wheat object-based RF). The standard deviations of the detections 
were of similar magnitude for the wheat fields for all classifications, for the grassland were 
the standard deviations higher for the pixel-based classification compared to object-based. 
Lastly, the grassland detections were higher compared to the wheatland detections of the 
validation data.  
 

Table 17. Percentage-wise detection of the validation data for the grass and wheatland object 
and pixel-based RF and SVM classifications. The average and standard deviation of the 
fields’ detections of the validation data are given in percentages.  

Percentage Detection 
Validation data 

Object-
based  
RF 

Object-
Based  
SVM 

Pixel-Based  
RF 

Pixel-Based  
SVM 

Grassland Average 94.32% 94.98% 89.93% 86.17% 
Grassland Std. 4.23% 2.48% 9.77% 12.11% 
Wheatland Average 64.44% 71.60% 53.86% 66.17% 
Wheatland Std. 13.41% 12.21% 13.67% 14.42% 
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5.3.2 Validation: Point Cloud Height Threshold Classification 
The average detection of the validation data in the different wheat fields was 19.33% with a 
standard deviation of 10.54%. Table 17 shows that relatively more of the validation field data 
was detected by the 2D methods compared to the 3D method for wheatlands.  

 

6. Discussion 
6.1 Key Findings 
The object-based SVM performs best on the grassland damage mappings, as all the 
evaluation metrics (Table 8) obtained a score above 90% and as it obtained the highest 
detection of the validation field data (i.e. 95%, Table 17). The extra information that becomes 
available by the segmentation during the object-based classifications (i.e. mean and standard 
deviation of the bands of the grouped pixels) and the fact that the object-based SVM puts the 
most importance on the segment’s standard deviations of multiple derived texture bands (i.e. 
RGB mean, NIR variance, and Nir mean, Table 5) resulted in a better performance of this 
classifier compared to the other 2D-based methods (i.e. object-based RF, pixel-based RF, and 
pixel-based SVM). These results were expected, as the UAV images for the grasslands did 
expect, that the texture variation between the different target classes would be distinct enough 
to be of use for the classification. The other classifiers, which put more importance on the 
spectral values themselves, also retrieved good mapping results. This was also expected, as it 
was observed that the spectral information had low heterogeneity within the target classes 
and had little overlap between the target classes. Lastly, it can be concluded that the collected 
UAV data (i.e. bands containing R, G. B, NIR, and RE sensory information) that was 
expected to be useful for the classifications, was of use for the classification, as each of these 
bands obtained high importance scores (Table 5) for all the classifiers (i.e. object and pixel-
based RF and SVM).  

The results of the 2D-based classifications for the wheatlands do not clearly show one 
classification method that performs best in damage mapping. However, depending on the 
purpose of use of the classifier, a distinction can be made as to what classifier performs best. 
First, when it is important that the overall damage mapping is as best as possible, expressed 
in the highest evaluation metrics for Accuracy, Kappa, and F1 (i.e. evaluation metrics based 
on the overall performance, subsection 4.3.2.5, Table 12) and the highest detection of the 
validation field data (Table 17), then the object-based SVM is best. This shows, similar to the 
results from grassland, that the information that becomes available due to the segments 
created in the object-based classification (i.e. mean and standard deviation of the bands of the 
grouped pixels) and the fact that the SVM classifier puts more importance on the derived 
texture bands and the standard deviations of the segments (Table 5), is improving the 
performance of the damage mapping in wheatlands. However, the pixel-based SVM can be 
concluded to perform best, when it is of importance that the classified damage areas are with 
high certainty true damage locations (e.g., low number of mistakes in classifying areas as 
damage that are not damage). This can be concluded from its high retrieved user’s accuracy 
(i.e. 96% compared to 89% achieved by the object-based SVM, Table 12). However, the 
lower validation detection (i.e. 66% compared to 72% achieved by the object-based SVM, 
Table 17) and the lower producer’s accuracy (i.e. 81% compared to 85% achieved by the 
object-based SVM, Table 12), show that this algorithm misses (greater than Object-based 
SVM) classifying all the damage locations and is classifying them as Wheat or Grass instead 
(Table 11). The finding that the object-based SVM performed overall best was as expected. 
Similar to grassland, the UAV images did expect that the texture variations between the 
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different target classes would be distinct enough to be useful for classification. However, 
dissimilar from grassland, it was observed that the spectral information of the pixels from the 
different target classes was very heterogeneous and contained overlapping values between the 
target classes. The fact that the other classifiers (i.e. object-based RF, pixel-based RF, and 
pixel-based SVM), which used mostly the spectral band information (e.g., R, G, B, RE, and 
NIR), performed worse, was therefore to be expected. 

Lastly, it can be concluded that the standalone point cloud height threshold classification does 
not capture the damage mapping and that its performance is worse than the 2D classifications 
on wheatlands. The results from the point cloud classifications were not expected as the 
height differences between damaged areas and wheat were expected to differ enough to be 
able to map the damages. However, the resolution of the photogrammetry-derived point cloud 
caused the classification to miss and underrepresent the size of the damage locations.   

The upcoming subsections contain a more detailed discussion of the different methods (i.e. 
Object-based, Pixel-Based, and Point Cloud Height Threshold Classification). 

 

6.2 Object and Pixel-based Classifications (2D) 
 

6.2.1 Object-based Classifications 
6.2.1.1 Object-based: Segmentation Band 
It was expected that the JM score’s best band (i.e. RGB mean) would also be the band with 
the highest importance by the trained RF and SVM classifiers. As the JM score is calculated 
based on pixel-based values, it is difficult to relate the JM findings to the object-based band 
importances (Table 5), as these are based on the mean and standard deviation of the 
segments. However, it can be observed that the RGB mean is the most important band for the 
SVM-object-based classifications for both grass and wheatlands. The RF-object-based 
classifications deviate from the findings of the JM score as the RGB mean is the third and 
fifth most important band for grass and wheatland respectively. The JM scores can be related 
to the pixel-based results (Table 6) and as expected is the RGB mean band for each of the 
classifications (i.e. grass and wheatland, RF and SVM) the most important. These results 
show that the JM score is a good indicator of the band importances found by the different 
classifiers and has therefore the potential to be a valid method to be used to select the 
segmentation band. This is of importance, as this way of selecting a segmentation band saves 
a lot of computational time, as no separate hyperparameter tuning has to be performed to set 
this decision. 
 

6.2.1.2 Object-based: Hyperparameter Tuning Results 
The observation of the preference for a lower spatial range in Table S10 (Appendix 9.2) can 
be explained by the fact that an increasing search space (i.e. spatial range), increases the 
probability for higher heterogeneity within the pixel’s spectral values of the created segments. 
This, in turn, results in an increased probability of single segments containing more than one 
target class. The preference for medium to high minimum sizes of the segments can be linked 
to the size of the polygons in the target class data. Given the landscape ecology of this study, 
the target class data used for training and testing contained damage spots bigger than 20 
pixels (i.e. 0.05 m2). Therefore, very small segments (15 pixels) could lower the performance 
of the classification, as more confusion can occur when too many different segments 
represent one damage spot (explanation in section 4.3.2.3). It should therefore be noted that 
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when a study is also focusing on mapping very small damages (e.g. 0.01m2, 4 pixels), most 
probably lower minimum sizes would have been found optimal. 
 

6.2.1.3 Object-based: Band Importances 
The findings on the band importances are discussed in section 6.1. It can be concluded that 
different bands are important for the different machine learning classifiers RF and SVM. It 
cannot be expected that future studies using an object-based RF or SVM on damage mapping 
in agricultural grass and wheatlands will retrieve the same results. This is because the band 
importances are dependent on various factors such as the training data, the hyperparameters, 
and the randomness that is incorporated in the classifier algorithms, such as the random 
sample and feature selection within the RF classifier (subsection 4.3.2.2.1). 

 

6.2.2 Pixel-based Classification 
6.2.2.1 Pixel-based: Hyperparameter Tuning 
The pixel-based hyperparameter tuning results of the RF (Figures S2:S5 in Appendix 9.2) 
show that a higher number of predictors (i.e. bands) lowered the performance. This can be 
explained by the fact that by having too many candidate predictors at the splits of the 
different decision trees, the trees have a higher probability of using similar bands to split on, 
thereby learning similar phenomena. This can lower the robustness of the trained RF with a 
lower performance as a result. The lower performance when too few predictors were used, is 
because it increases the chance that the bands that hold the important information for a high-
performing classification will not be selected to be used in the decision tree training, resulting 
in worse performances. 

The SVM’s preference for a higher cost can be explained as follows. A lower cost can prevent 
your model from being too much affected by noise in the data (e.g., preventing overfitting), 
this is done by a lower penalty of these samples when they are too close to the separation line 
between the different target classes. However, when the cost is too low, the influence of the 
non-noise points on the separation line is also lowered, thereby increasing the chance of a 
too-generalized model that leads to more misclassification. The result of having better 
performance using the L2 loss could be because it penalized larger errors more than L1 (i.e. 
linear loss), meaning that the L2 loss made the SVM more robust to outliers. 

The importance of performing hyperparameter tuning can be shown by these results and has 
also been studied by others (Yu and Zu, 2020; Yang and Shami, 2020). They show that the 
right balance has to be found to make the methods robust and to prevent them from 
overfitting to the training data. However, it should be noted that these machine learning 
algorithms are of a great part black boxes (Lipton, 2018), meaning that it can only be 
reasoned about what might have made the algorithm behave in a certain way. It is therefore 
important to realize that these hyperparameters are optimal specifically to this specific multi-
class classification and can therefore not be generalized directly towards other classifications. 
 

6.2.2.2 Pixel-based: Band Importance 
The results of the SVM band importance (Table 6) might indicate that one texture band could 
have contained enough texture information, next to the sensory spectral information, for the 
SVM classifier to perform the classification.  
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6.2.3 Object & Pixel-based Classifier Training and Test Results 
6.2.3.1 Grasslands: Object and Pixel-based Results (2D-methods) 
The similar train (Table S11 in subsection 9.2) and test (Table 8) evaluation results indicate 
that the 4 train fields used for training the object and pixel-based classifiers contained the full 
spectrum of each target class’s spectral and textural information that were present in each 
field used for testing the classification methods on grasslands.  

The confusion matrices in Table 7 show confusion between instances of Shadow and New 
Damage for all the object and pixel-based classifiers. This can be explained by the fact that 
the class New Damage, due to fresh and therefore wetter soil, and the class Shadow, due to 
sunlight blocking, contained pixels with similar spectral values (e.g., lower spectral values) 
for the original sensory bands (i.e. R, G, B, NIR and RE). This resulted in a more difficult 
discrimination. Another important aspect of the Shadow target class that could confuse the 
classifications, is that it contained the shadow versions of the other target classes (i.e. the 
target classes dry Damage, New Damage, and Grass that are in the shadow were part of the 
Shadow target class). Therefore, values from the Shadow target class that are not influenced 
by the sunlight blocking such as the derived vegetation index and the texture values, may 
have been similar to those of the other target classes. Another confusion existing for all 
classifiers, is the confusion where True New Damage is classified as Dry Damage. This could 
be explained by the fact that these New Damage spots may have had lighter parts within the 
damage spot (e.g., spots with higher spectral values due to direct sunlight or dryness of the 
soil) resulting in overlapping spectral values with the Dry Damage target class, which 
confused the classifier. The Object-Based RF classification confuses True Dry Damage with 
New Damage. Why this is the case cannot be inferred given the information available on the 
classification. 

Comparing the results of the object and pixel-based classifications (Table 7) shows that the 
object-based classification had more confusion between the Grass and New Damage classes. 
This is most probably the result of the segmentation of the object-based classifications that 
was done using only the RGB mean band. As Figure 3 shows, this band had a lot of 
overlapping values between these two target classes, meaning that there was a high chance 
that segments were created that consisted of both Grass and New Damage pixels. The 
misclassification could also be the result of the lower spectral distinction between the target 
classes, which is the result of using the mean and the standard deviation of the pixels in the 
segments for training the classifications (e.g., the individual pixel information is lost).  

The standard deviations of the evaluation metrics, an indication of how stable the classifier is 
in performance for the different tested fields, show overall similar values for all the classifiers 
(Table 8). However, one deviation exists where the standard deviation of the F1 score was 
higher for the object-based classifications compared to the pixel-based classifications. This 
indicates that even though for all the fields there was a similar overall performance (i.e. 
performance measured on all target classes at once, accuracy and kappa), some fields have 
obtained a lot of misclassifications for some specific target classes while performing well on 
others (see section 4.3.2.5 for F1 explanation). This results in F1 scores that deviate largely 
between the fields, thereby receiving a higher standard deviation on this evaluation metric. 
Lastly should be noted that the highest mean evaluation metrics and the lowest standard 
deviations are retrieved by the Pixel-based SVM classifier, making it the most stable and 
best-performing classifier for damage mapping in grassland according to these results only.  
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The damage counts (Table 9), object and pixel-based agreements (Table 10), and the less 
dense classification of the damage locations by the pixel-based classification (Figure 7) can 
be explained by the fact that single pixels instead of segments were classified by the pixel-
based classifications. This resulted in a more speckled (i.e., salt and pepper texture) 
classification, thereby classifying fewer pixels at those locations as damage.  

 

6.2.3.2 Wheatlands: Object and Pixel-based Results (2D-methods) 
The lower test evaluation results (Table 12) compared to the train results (Table S12) indicate 
that the 4 train fields used for training the object and pixel-based classifiers did not contain 
the full spectrum of each target class’s spectral and textural information that was present in 
each field used for testing the classification methods on wheatlands. This was to be expected, 
as the wheatland data is a lot more heterogeneous in spectral and textural information, 
therefore a higher chance existed that the 4 train fields did not contain the full spectrum of 
each target class.  

The confusion of all classifiers of classifying True Dark Damage as Wheat (Table 11) can be 
explained by the fact that these target classes had a wide range of spectral values that 
overlapped. The fact that less confusion existed for the object-based classifications is because 
they made use of the mean spectral values of the segments. Therefore these within-class 
differences were better filtered out, making the classes more homogenously represented to the 
classifier, thereby improving its performance. The greater confusion of the object-based 
classifiers where True Dark Damage was classified as Grass can again be explained due to 
the segmentation that was performed by one band. The RGB mean band used for the 
segmentations had a lot of overlapping values between these two target classes (Figure 4), 
resulting in segments that contained a mixture of these classes, thereby worsening the 
classification results. Lastly, the instances where all classifiers confuse True Wheat as Dry 
Damage could be explained by the fact that certain spots of the Wheat target class could have 
had high spectral values, as these spots’ orientation was towards the sun, making them, as the 
Dry Damage, had high spectral values that overlap.  

The result of the lower producer’s accuracy (Table 12) compared to the user’s accuracy, most 
significant for the pixel-based classifications, indicates that most of the damage 
classifications that were made are correct. However, the lower producer’s accuracy indicates 
that damage spots were missed and classified as something else (i.e. Grass or Wheat).  

The damage counts (Table 13), agreements (Table 14) and the observed damage mappings 
pattern (Figure 8) can be explained by the same reason as for grassland (section 6.2.3.1). 

 

6.3 Point Cloud Height Threshold Classification (3D) 
6.3.1 Point Cloud: Hyperparameter Tuning Results 
The hyperparameter tuning results (Table S15 in Appendix 9.3) can be explained by the set 
objective for the DEM creation (i.e. the damage pits have a negative normalized height after 
the subtraction of the DEM). Using these hyperparameters, only a few points in the point 
cloud were selected as ground points and any points selected as ground points that might 
belong to a damage pit would be for a large part filtered out when creating the DEM. It 
should be noted that this way of DEM creation only works when working with terrain that 
does not contain steep slopes, which is usually the case for agricultural grounds.  
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6.3.2 Point Cloud: Test Evaluation Results  
The low damage count (i.e. 5%) and the visualization of the output in Figure 9 show that not 
all damage was captured by the point cloud classification. This is because the too-low density 
point cloud filtered out small elevation differences in the fields that were needed by the 
method to map damages. The highest and lowest agreement with the pixel-based RF and 
Object-based SVM can be linked to the fact that these classifications also had, respectively, 
the lowest and highest damage counts (Table 13). 

 

6.4 Validation Field Data Comparison 
The low standard deviations (Table 17) of validation data detection results obtained by the 
object-based classifications for grassland, indicate that similar results were retrieved for each 
of the fields used in testing. The pixel-based detection of the validation field data was lower 
and had higher standard deviations meaning that less stable results were retrieved between 
the different grass fields used for testing. The results for the wheatland classifications show a 
lot lower detection and higher standard deviations compared to the grassland, indicating a 
worse damage mapping performance. Overall, it could be concluded that the SVM performs 
better than RF for the wheatlands. The low detection of validation data by the point cloud 
height threshold classification (i.e. 19%), resulted from the limited number of pixels 
classified as damage, attributed to the low-density point cloud used for this method.  

 

6.5 Comparison With Other Studies  
The study by Rutten et al. (2018) used an object-based RF to map damages in cornfields 
(vertical-growing crop comparable to wheat) and grasslands. They retrieved similar results, in 
that the classification of the grasslands was better than the vertical-growing cornfields. Rutten 
et al. (2018) decided to use several years of data on the cornfields to improve its classification 
accuracy. This master’s thesis study observed that the trained classifiers for the wheatlands 
had not been able to learn the full scope of the damage mapping (subsection 6.2.3.2) by using 
the one-year available data for this study. This observation can be related to the study by 
Rutten et al. (2018) and therefore be an indication that multiple-year data will have the 
potential to improve the wheatland classifications. Rutten et al. (2018) trained the RF with a 
total of 25 bands among 8 textures and 9 spectra. Their band importances showed that the RF, 
similar to this study, put the most importance on the spectral values of the bands. A study 
done by Samiappan et al. (2018) used an object-based SVM to map damages in cornfields. 
They found that the classification was more likely to miss mapping damaged areas rather than 
mapping wrongly non-damaged areas as damage. Both the object and pixel-based SVM in 
this master’s thesis study showed similar results, as the producer’s accuracy is lower 
compared to the user’s accuracy (Table 12). The accuracies found by the study by Samiappan 
et al. (2018) were lower compared to this study’s object-based SVM wheat classification 
results (70% vs. 88% for the accuracy and 0.38 vs 0.84 for kappa). An explanation for this 
difference could be that Samiappan et al. (2018) had only an RGB sensor available, thereby 
missing information in the NIR and RE spectra. This spectral information helps the 
discrimination between soil and crop (elaborate explanation in subsection 4.3.1). Their 
absence has probably lowered their classification results. 

A meta-analysis done on the RF and SVM classifiers for remote sensing image classification 
(Sheykhmousa et al.,2020) concluded that although the RF and SVM classifiers vary in 
performance per application, a superiority of one or the other can often be assigned based on 
the application (e.g., a RF is found superior to SVM to perform a land use and land cover 



40 
 

(LULC) mapping). Within the specific application of damage mapping in agricultural fields 
on a very-high landscape scale (i.e. cm-level), a superior is not yet established. This is most 
probably because UAV data is a relatively new form of data used for this kind of application, 
resulting in the low existence of studies that used the RF and SVM for damage mapping in 
agricultural fields. It is also important to notice the high diversity of decisions that can be 
made within this application. These include decisions on the different types of UAVs used for 
data capturing, the type of sensors with differences in capabilities and performances, spatial 
resolution, 2D/3D mapping methods, and the input data (e.g., quality of the captured UAV 
images, object vs pixel-based, and decisions on the spectra, derived textures, shapes, and 
vegetation indices to use). The damage mapping application can therefore be seen as a 
diverse and complex problem, thereby complicating the finding of one classifier superior to 
the other. One finding of the meta-analysis that can be linked to the better performance found 
of the SVM in this study, is that the SVM method is better at classifying data containing more 
features (i.e. the different bands in the ortho-mosaic) (Sheykhmousa et al.,2020). As UAV 
provides the ability to collect multispectral data and allows deriving additional data such as 
vegetation indices, textures, and shapes, a high amount of features will likely be used in this 
application to map damages in agricultural grounds. However, before any superiority can be 
concluded (if even possible), more studies on this topic are needed. 

The study by Duro et al. (2012) focused on the statistical comparison of pixel-based with 
object-based classification on remote sensing image analysis of agricultural fields using 
medium spatial resolution satellite data. They similarly found no significant preference but 
found that the object-based classification gave a visually more appealing classification result. 
Yan et al. (2006) and Whiteside et al. (2011) found the object-based classification to perform 
significantly better compared to the pixel-based for a medium spatial resolution (e.g., several 
meters) remote sensing application. A possible explanation for why this finding was not 
observed in this study, can be related to the high spatial scale of this study. The behavior of 
the classifiers is dependent on the landscape factor of the input data. The high spatial 
resolution (i.e. cm-level) in this study resulted in higher heterogeneous input data compared 
to the data from the medium-scale landscapes used in the studies by Yan et al. (2006) and 
Whiteside et al. (2011). Thereby, the chance increased for the object-based classification to 
have highly heterogeneous segments that resulted in lower performances. This resulted in no 
significantly superior performance of the object-based classifications over the pixel-based 
classifications. 

A similar method to the 3D method created in this study was studied by Michez et al. (2016). 
They performed a similar height threshold method on a photogrammetric-derived UAV point 
cloud to map cornfield damages. However, they retrieved more accurate results compared to 
this study. This difference in findings can be related to the fact that Michez et al. (2016) used 
a separate LiDAR-derived, high-quality digital terrain model to retrieve the normalized 
height values. Although their mapping reflected the validation field data better, they still had, 
similar to this study, an underestimation of the mapped damages. They linked their 
underestimation to flat-lying plant stems due to strong wind on the day of data capturing and 
that the damage areas were often too small to be represented well in their photogrammetric-
derived UAV point clouds. In addition to these reasons, it is challenging to find a single 
height threshold that works in all situations as the heights of crops can differ between and 
within fields. This is due to external factors out of the operator's control, such as the 
acquisition date (e.g., reflecting the stage of the plant growth), weather conditions, and the 
health of the crops. However, it can be expected that higher-quality UAV point cloud data 
(e.g., LiDAR data, explanation in subsection 4.1) will be able to grasp the small differences 
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between damaged and non-damaged areas, even for small patches of damage, thereby 
potentially improving damage mappings in agricultural fields done with UAV 3D data.  

With this study, a step is set towards a more automated and open-source method for UAV 
damage mapping in agricultural grass and wheatlands that the scientific community can build 
upon. The methods to map damages in agricultural wheat and grasslands developed in this 
study are performing well on grasslands and have a large potential to improve in performance 
for wheatland with higher data availability. The fact that these methods are almost fully 
automated and open source, improves the usability of this UAV-based damage mapping for 
real-life applications such as damage compensation to farmers and HWC management 
strategies risk analyses. The high agreement achieved by the damage mappings from the 
pixel-based and object-based methods shows the potential of the pixel-based method which is 
computationally less demanding. This study's findings thereby increase the potential of using 
UAV data for future real-life agricultural damage mapping, as the developed methods show 
that specific prior knowledge and high computational resources, often unavailable to users, 
become less of a necessity.  However, the following limitations of this study should be 
considered.  

 

6.6 Limitations 
First, artifacts in the used UAV ortho-mosaics might have negatively influenced the results 
and the generalization of the developed methods (i.e. object-based, pixel-based, and point 
cloud height threshold classification). These artifacts can evolve during the data collection. 
Factors such as the roll, pitch, and yaw of the UAV during flight and other factors related to 
weather conditions (e.g., strong winds) can create errors in the data (e.g., motion blur, 
ghosting effects, and scale variations). Errors can arise as well within the mosaic creation 
software, a common procedure where errors arise is the tie point selection, which is used for 
stitching the UAV images into one ortho-mosaic. When working with highly heterogeneous 
data such as data from grass and especially wheatlands, this can be a challenging task as the 
unique features are limited (Samiappan et al., 2018).  

Second, due to the time constraints and computational limits present in this study, not all 
available data was used for the analysis and the study area was narrowed down to one 
specific region in Sweden. As only a few fields of all the available fields were chosen to 
perform the analyses on, a part of the scope of the problem may be missed during the training 
of the classifications. This may have resulted in a lower generalization ability of the 
developed methods. Therefore, performance generalization of the methods to other locations 
in Sweden cannot be done without investigation. Also, not all hyperparameters present in the 
2D and 3D methods were tuned using hyperparameter tuning and the hyperparameter values’ 
search grids were set to smaller value ranges as would have been optimal. This might have 
resulted in the creation of methods that performed suboptimal.  

Third, within this study, a high focus was on the creation of automated and open-source 
methods. Although the developed classification methods perform purely autonomously and 
are created with open-source programs, the program to process the raw UAV images into 
ortho-mosaics and point clouds (i.e. PIX4Dmapper version 4.8.4) is not. Another related 
limitation of the created methods is that the machine learning classifiers required human 
choices regarding what features (i.e. bands) would be relevant for the classifications. This 
means that the derived data (subsection 4.3.1), such as the texture values and the NDVI, are 
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hand-picked choices and created in the preprocessing of the input data, thereby reducing the 
objectivity and autonomy of the methods.  

Fourth, the segmentation of the object-based classification method is computationally heavy 
and time-consuming, thereby lowering the method’s usability in potential real-life 
applications.  

Lastly, due to using a photogrammetric derived point cloud, the developed 3D method is not 
performing well on the damage mapping in wheatlands. However, the normalized height 
values that are automatically extracted by this method are expected to still have value (e.g., 
heights close to zero would potentially represent damages and larger heights undamaged 
crops) when used as an additional input band for the 2D-based methods. It should be noted 
that this has not been investigated.  

 

6.7 Prospects 
Prospects for this study can be related firstly to the existing confusion for all the classifiers 
between the Shadow and the New Damage target class for grasslands. It is suggested for 
future studies to split up the Shadow target class into different types of shadow versions of 
the other target classes. This will lower the heterogeneity within the Shadow target class and 
will thereby reduce the chance of confusion in the classifications. Another solution for this 
would be to only fly during cloudy conditions. Next to this, as discussed, some confusions at 
the object-based classifications arise due to segments containing a mix of target classes, a 
result of using one segmentation band only. Future studies investigating object-based 
classifications for this application should therefore use multiple segmentation bands to 
prevent heterogeneity of target classes within single segments.  

Secondly, the agreements of about 80% between the object and pixel-based versions of the 
RF and SVM classifiers found in this study show the potential of the computationally lighter 
pixel-based method for damage mapping in agricultural grass and wheatlands. The pixel-
based methods found the same damage locations but less dense (i.e. more speckled 
classification) than the object-based methods. Therefore it can be concluded that the potential 
exists for post-classification methods, such as the majority filter (i.e. filter that replaces the 
cell values of the classification output to the majority value of a specified number of 
continuous neighboring cells) (Townsend, 1986; Qian et al., 2005) to create denser 
classification maps out of the pixel-based results, thereby improving the damage mapping. To 
my knowledge, at this moment no studies utilizing UAV data to map damages in agricultural 
lands have investigated this computational lighter approach of pixel-based classification in 
detail. It is therefore suggested that this will be investigated in future studies.  

Third, enhancing the automation of the developed methods. Work on deep learning 
approaches such as Convolutional Neural Networks (CNN) has shown their abilities to 
automatically learn relevant features directly from the original UAV ortho-mosaic (Szegedy 
et al., 2015). It is therefore recommended that future studies explore this technique as it has 
the potential to remove the human component from the UAV damage mapping, thereby 
improving the objectivity and future usability of the application. 

The fourth prospect is related to the scale of the application of damage mapping in 
agricultural lands. Solely UAV data will not be enough to scale up the developed methods to 
the national level, which is often the scale at which HWC-related policy and management 
decisions must be made. Next to this, a need exists for consistent repetitive data collection 
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(e.g., annually) to create a valuable knowledge database on this topic and to enable the 
possibility of investigating the consequences of decisions. A possible solution to scale the 
application to the national level is by using airborne data. Such data is for example available 
via the Swedish Cadastral Agency (Lantmäteriet, National Land Survey of Sweden) which 
provides repetitive aerial photographs of the entire extent of Sweden, a product called the 
Digital Aerial photographs (Flygbilder Nedladdning). They collect aerial photographs in 
different combinations of wavelength bands, resolutions, and data collection repetitions. The 
higher densely populated regions in Sweden (i.e. the south) have a spatial resolution of 0.15m 
and are collected every third year. The less-dense regions, such as the east coast and the 
inland of Sweden are captured with a resolution of 0.37m every 4 and 6-10 years 
respectively. This data has the potential to be used for this application of damage mapping in 
agricultural lands due to its high spatial and temporal resolution. In 2021 they tested using as 
well a LIDAR during the aerial data collections. This can potentially be used for the 3D-
based methods to map damages in agricultural lands.  

Fifth, with the prospect of increasing the scale of the application, more efficient and less 
demanding methods are needed. Therefore, future research could focus on the enhancement 
of the overall computing performance of methods to map damages in agricultural lands. This 
can be achieved by techniques such as code optimization (e.g., parallelization and data 
structure optimization) and by high-performance computing (HPC) (i.e. aggregation of 
computer power to solve advanced computational problems). 

Sixth, the automated damage mapping methods for agricultural grass and wheatland created 
in this study create a mapping containing both wild boar and other damages, such as 
machinery tracks, damages from other wildlife, and environmental-induced damages. Users 
such as farmers, policy and decision makers that want to use these damage maps for 
applications such as HWC management or economic loss compensation, have value by 
knowing, next to the exact damage locations, the cause of the damage. It is therefore of 
importance to investigate approaches that can automatically classify the damages into 
different types, such as wild boar, deer, batcher, insects, humans, drought and floods. Deep 
learning algorithms such as CNN could potentially be used to create a method that can 
automatically classify the types of damages. The performance of the CNN has been studied 
by Zhou et al. (2019) for classifying different crop types such as rice, peanuts, and corn in 
multi-spectral remote sensing data from Yuanyang county, China, and achieved an accuracy 
of 95%. The advantage of using this algorithm is that it uses feature maps that can 
automatically learn distinctive characteristics of each of the different damage types in the 
UAV images, thereby learning to classify them. However, it should be noted that this 
algorithm requires field data that contains the cause of damage, something that is often 
difficult to determine in the field post-time of the damage occurrence.  
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7. Conclusion 
The aim of the research has been met by this study's development of two 2D-based UAV 
methods (i.e. object-based and pixel-based classification) and one 3D-based UAV method 
(i.e. point cloud height threshold classification) for automatic damage mapping in agricultural 
wheat and grasslands. This was achieved by their development in the open-source R-Studio 
version 4.4.0 (R core Team (2024)) in the form of R-scripts that run fully automatically from 
derived ortho-mosaics and point clouds on, where required manual user input is automatized 
via hyperparameter tuning and the use of statistical methods such as the JM-score. High 
performances of all the 2D-based methods were achieved. The object and pixel-based RF and 
SVM classifications retrieved overall accuracies of 91% and above for the grasslands and 
85% and above for the wheatland. The object-based SVM classification obtained the overall 
best performance for both the damage mapping in grass and wheatland, with an overall 
accuracy and average validation field data detection of 93% and 95% respectively for 
grassland, and 88% and 72% respectively for wheatland. The agreement of about 80% 
between the object and pixel-based RF and SVM classifications for both wheat and grassland 
showed that to a certain extent, similar damage mappings were retrieved from the pixel and 
object-based classifications. Their classifications showed that they mapped similar damage 
locations but that the pixel-based classifications underestimated the size of damage at those 
locations. The point cloud height threshold classification obtained low performances with an 
average validation field data detection of 19% for wheatlands. The method automatically 
derives the normalized heights from the photogrammetry-derived point clouds, thereby 
having the potential to aid the 2D-based classifications for mapping damages in agricultural 
wheatlands when used as an additional information band available to use by the classifiers. 
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9. Appendix 
9.1 Data Collection 
Table S1. The total amount of hectares the train and test fields consisted of. The individual 
values correspond to the areas of the separate fields present in the train and test datasets. The 
data was collected in May 2023 for grassland and in  August 2024 for wheatland in Boo, 
Hjortkvarn Municipality, Sweden using a UAV DJI Mavic 3 Multispectral (DJI, n.d.), flight 
height of 40 meters and a speed of 15m/s. 

What Area (hectares) 
Train grassland 2.2 (Tr1) + 4.0 (Tr2) + 3.2 (Tr 3) + 1.6 (Tr4) = 11   
Test grassland 3.1 (Te1) + 1.0 (Te2) + 1.3 (Te3) + 3.1 (Te4) = 8.5 
Train wheatland 1.8 (Tr1) + 2.4 (Tr2) + 2.6 (Tr3) + 4.1 (Tr4) = 10.9 
Test wheatland 1.9 (Te1) + 2.4 (Te2) + 2.9 (Te3) + 2.4 (Te4)  = 9.6 

 

 

Table S2. The UAV ortho-mosaics (RGB display) in coordinate reference system WGS 84 / 
UTM zone 33N created from the drone images of the 4 train fields of grassland. The data was 
collected in May 2023 in Boo, Hjortkvarn Municipality, Sweden, using a UAV DJI Mavic 3 
Multispectral (DJI, n.d.), flight height of 40 meters, and a speed of 15m/s. 

 

 
 

 

Train 1 Train 2 Train 3 Train 4 
 

 

Table S3. The UAV ortho-mosaics (RGB display) in coordinate reference system WGS 84 / 
UTM zone 33N created from the drone images of the 4 test fields of grassland. The data was 
collected in May 2023 in Boo, Hjortkvarn Municipality, Sweden, using a UAV DJI Mavic 3 
Multispectral (DJI, n.d.), flight height of 40 meters, and a speed of 15m/s.  

 

 

 

Test 1 Test 2 Test 3 Test 4 
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Table S4. The UAV ortho-mosaics (RGB display) in coordinate reference system WGS 84 / 
UTM zone 33N created from the drone images of the 4 train fields of wheatlands. The data 
was collected in August 2023 in Boo, Hjortkvarn Municipality, Sweden, using a UAV DJI 
Mavic 3 Multispectral (DJI, n.d.), flight height of 40 meters, and a speed of 15m/s. 

Train 1 Train 2 Train 3 Train 4 
 

 

Table S5. The UAV ortho-mosaics (RGB display) in coordinate reference system WGS 84 / 
UTM zone 33N created from the drone images of the 4 test fields of wheatland. The data was 
collected in August 2023 in Boo, Hjortkvarn Municipality, Sweden, using a UAV DJI Mavic 
3 Multispectral (DJI, n.d.), flight height of 40 meters, and a speed of 15m/s.  

 
Test 1 Test 2 Test 4 Test 5 
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Table S6. Quality report numbers for each of the selected grass and wheat training fields 
separately that were retrieved by processing the raw UAV images in PIX4Dmapper version 
4.8.4 with a pixel size of 5cm. The UAV images were collected in May 2023 for grassland 
and August 2023 for wheatland in Boo, Hjortkvarn Municipality, Sweden, using a UAV DJI 
Mavic 3 Multispectral (DJI, n.d.), flight height of 40 meters, and a speed of 15m/s.  

Field  Area 
(hectares) 

Average 
Ground 
Sampling 
Distance (cm) 

Keypoint 
match 
density 
(#/image) 

Average 
Density Point 
cloud   
(per m3) 

Mean 
Reprojection 
Error 
(pixels) 

Grass 
Tr1 

2.2  1.23 34558.4 n/a 0.24 

Grass 
Tr2 

4.0 1.25 36931.7 n/a 0.25 

Grass 
Tr3 

3.2 1.23 32025.4 n/a 0.26 

Grass 
Tr4 

1.6 1.27 37356.9 n/a 0.24 

Wheat 
Tr1 

4.1 2.12 27923.7 901.41 0.17 

Wheat 
Tr2 

2.4 2.08 30704.8 788.34 0.17 

Wheat 
Tr3 

2.6 2.23 25539.8 1415.57 0.16 

Wheat 
Tr4 

1.8 2.18 20610.1 681.98 0.17 
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Table S7. Quality report numbers for each of the selected grass and wheat test fields 
separately that were retrieved by processing the raw UAV images in PIX4Dmapper version 
4.8.4 with a pixel size of 5cm. The UAV images were collected in May 2023 for grassland 
and August 2023 for wheatland in Boo, Hjortkvarn Municipality, Sweden, using a UAV DJI 
Mavic 3 Multispectral (DJI, n.d.), flight height of 40 meters, and a speed of 15m/s. 

Field  Area 
(hectares) 

Average 
Ground 
Sampling 
Distance (cm) 

Keypoint 
match 
density 
(#/image) 

Average 
Density Point 
cloud   
(per m3) 

Mean 
Reprojection 
Error 
(pixels) 

Grass 
Te1 

3.1 1.24 34784.5 n/a 0.24 

Grass 
Te2 

1.0 1.22 30895.6 n/a 0.24 

Grass 
Te3 

1.3 1.38 30252.9 n/a 0.26 

Grass 
Te4 

3.1 1.16 28126.1 n/a 0.26 

Wheat 
Te1 

1.9 2.27 28775.6 817.68 0.17 

Wheat 
Te2 

2.4 2.15 28840.9 1355.76 0.16 

Wheat 
Te3 

2.9 2.26 28620.9 1076.55 0.16 

Wheat 
Te4 

2.4 2.31 27977.5 1288.14 0.16 
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9.2 Object-based and Pixel-based Classifications 
Table S8. Jeffries-Matusita scores of the RGB mean derived texture band for both grass and 
wheatland, obtained by applying the JMdist method from R-package Varsel (Dalponte & 
Oerka, 2021). The RGB mean band obtained the highest total separability score out of all the 
10 classification bands. 

Combination Wheatland  Grassland 
Dry Damage vs New Damage/Grass  1.41 1.32 
Dry Damage vs Shadow/ Dark Damage  1.41 1.41 
Dry Damage vs Grass/Wheat 1.22 1.30 
New Damage/ Grass vs Shadow/ Dark Damage 0.04 1.05 
New Damage/Grass vs Grass/Wheat 1.08 0.22 
Shadow/Grass vs Grass/Wheat 1.08 1.20 

 

Table S9. Top 5 bands with the highest average Jeffries-Matusita scores, obtained by applying 
the JMdist method from the R-package Varsel (Dalponte & Oerka, 2021) for both the wheat 
and grasslands data. 

Grass Bands Mean Score Wheat Bands Mean Score 
RGB mean 1.08 RGB mean  1.04 
Red 0.99 Red 0.83 
Green 0.98 Blue 0.81 
Blue 0.82 Green 0.77 
Re 0.81 NDVI 0.75 
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Figure S1. This figure represents a snapshot of a segmented image created using a spectral 
range of 0.05, spatial range of 10, and minimum size set to 0 at the segmentation function 
provided by the R-package SegOptim (Gonçalves et. al., 2019). The test data polygon shown 
in the red triangle represents one damage spot and shows that within the one damage spot, 
several one/few pixel segmented objects exist. 
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Table S10. Top 5 hyperparameters for the grassland and wheatland classifications. The 
spectral range, spatial range, and minimum size are hyperparameters that had to be set in the 
segmentation method provided by R-package SegOptim (Gonçalves et. al., 2019). 

Hyperparameter Grassland RF Grassland 
SVM 

Wheatland RF Wheatland 
SVM 

Spectral Range  
1. 
2. 
3. 
4. 
5. 

 
0.01 
0.02 
0.02 
0.01 
0.02 

 
0.04 
0.04 
0.03 
0.03 
0.02 

 
0.01 
0.02 
0.02 
0.01 
0.02 

 
0.02 
0.02 
0.01 
0.03 
0.03 

Spatial Range 
1. 
2. 
3. 
4. 
5.  

 
10 
10 
10 
10 
10 

 
10 
10 
10 
10 
10 

 
10 
10 
10 
10 
10 

 
10 
10 
10 
10 
10 

Minimum Size  
1. 
2. 
3. 
4. 
5. 

 
20 
25 
20 
25 
15 

 
25 
20 
20 
25 
20 

 
20 
25 
20 
25 
15 

 
20 
15 
15 
25 
20 

Kappa 
1. 
2. 
3. 
4. 
5. 

 
0.97 
0.96 
0.96 
0.96 
0.96 

 
0.96 
0.96 
0.96 
0.96 
0.95 

 
0.97 
0.96 
0.96 
0.96 
0.96 

 
0.97 
0.97 
0.97 
0.97 
0.97 
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Figure S2. Grassland’s Random Forest pixel-based hyperparameter tuning performances 
visualized for the different number of Randomly Selected Predictors. The x-axis shows the 
number of Randomly Selected Predictors and the y-axis the performance in the form of an 
Accuracy based on a 10-fold cross-validation.  

 

 
 
Figure S3. Grassland Support Vector Machine pixel-based hyperparameter tuning 
performances for the different costs and Losses. The x-axis represents the cost values and the 
y-axis the performance in the form of an Accuracy based on a 10-fold cross-validation. The 
red line represents the L1 loss function and the blue line the L2 loss function.  
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Figure S4. Wheatland Random Forest pixel-based hyperparameter tuning performances for 
the different number of Randomly Selected Predictors. The x-axis shows the number of 
Randomly Selected Predictors and the y-axis the performance in the form of an Accuracy 
based on a 10-fold cross-validation.  

 

 
Figure S5. Wheatland Support Vector Machine pixel-based hyperparameter tuning 
performances for the different costs and Losses. The x-axis represents the cost values and the 
y-axis the performance in the form of an Accuracy based on a 10-fold cross-validation. The 
red line represents the L1 loss function and the blue line the L2 loss function. 
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Table S11. The average scores for the kappa and overall accuracy of the 10-fold cross-
validation of the training of the object-based and pixel-based classifiers for the classification 
of the grassland train fields.  

 Grass  
Object RF 

Grass  
Object SVM 

Grass  
Pixel RF 

Grass  
pixel SVM 

Kappa 0.89 0.86 0.97 0.94 
Overall 

Accuracy 
0.93 0.90 0.98 0.96 

 

 

Table S12. The average scores for the kappa and overall accuracy of the 10-fold cross-
validation of the training of the object-based and pixel-based classifiers for the classification 
of the wheatland train fields.  

 Wheat  
Object RF 

Wheat  
Object SVM 

Wheat  
Pixel RF 

Wheat  
Pixel SVM 

Kappa 0.84 0.87 0.88 0.89 
Overall 

Accuracy 
0.89 0.91 0.92 0.93 

 

 

Table S13. The number of agreements between the pixel and object-based classifications 
obtained by the trained pixel and object-based classifications of the grassland fields. Field 
Test 4 is the field closest to the median. 

#Agreements RF  Field Number RF #Agreements SVM Field Number SVM 
2398473 Test 3 2217896 Test 3 
3943603 Test 2 3711459 Test 2 
4616802 Train 4 4259366 Train 4 
6907405 Train 1 6667948 Train 1 
8512255 Test 4 8605484 Test 4 
9708142 Train 3 9903089 Train 3 
10648851 Test 1 10140052 Test 1 
11815157 Train 2 10927414 Train 2 
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Table S14. The number of agreements between the pixel and object-based classifications 
obtained by the trained pixel and object-based classifications of the wheatland fields. Field 
Train 3 is the field closest to the median. 

#Agreements RF  Field Number RF #Agreements SVM Field Number SVM 
4385040 Test 4 4278099 Test 4 
5747440 Test 3 6186529 Train 1 
5800534 Test 1 6347175 Train 3 
6018725 Train 1 6457279 Test 1 
6259974 Train 3 6553377 Test 3 
7842449 Train 2 8036223 Train 2 
7957603 Test 2 8167041 Test 2 
11984389 Train 4 12546766 Train 4 

 

 

 
Figure S6, Difference maps of the grass field test 4 (left) and wheat field train 3 (right) of the 
object and pixel-based classifications in coordinate reference system WGS 84 / UTM zone 
33N. The white areas in the fields, representing shadow/grass, were removed from the 
analysis. The damage class represents both Dry and Dew/Dark damage, the No-Damage 
represents Grass/Wheat. The data from the grassland was collected in May 2023 and the 
wheatland in August 2023 in Boo, Hjortkvarn Municipality, Sweden using a UAV DJI Mavic 
3 Multispectral (DJI, n.d.) that had a flight height of 40 meters and a speed of 15m/s. 
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9.3 Point Cloud Height Threshold Classification 
Table S15. Top ten optimal hyperparameters according to the hyperparameter tuning done for 
the point cloud height threshold classification method. 

Classification 
Threshold 

Power of 
proportional distance 

Number of 
neighbors 

Dice 

1.00E-05 1 80 0.28 
1.00E-05 1 50 0.25 
2.50E-05 1 80 0.25 
2.50E-05 1 50 0.22 
5.00E-05 1 80 0.22 
1.00E-05 1 20 0.21 
7.50E-05 1 80 0.20 
1.00E-05 2 80 0.20 
5.00E-05 1 50 0.19 
1.00E-05 2 50 0.19 

 

 

 
Figure S7. Difference maps of the wheatland 2D classifications and the Point Cloud Height 
Threshold classification for the wheat field train 3 in coordinate reference system WGS 84 / 
UTM zone 33N. The grass is removed from the analysis and shown in white. The data was 
collected in August 2023 in Boo, Hjortkvarn Municipality, Sweden using a UAV DJI Mavic 
3 Multispectral (DJI, n.d.), flight height of 40 meters and a speed of 15m/s.  
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9.4. R-packages  
Table S16. This table represents an overview of all the R-packages used to develop the 
classification methods (i.e. object-based, pixel-based, and point cloud height threshold 
classification) for the damage mappings in agricultural grass and wheatlands.  

Name Reference Where Used 
caret Kuhn, 2008 - Pixel-based Classification 
data.table v1.14.8; Dowle & Srinivasan, 

2023 
- Pixel-based Classification 
- Object-based Classification  
- Point Cloud Height Threshold 
Classification 

devtools v2.4.5; Wickham et al. 2022 - Pixel-based Classification 
doParallel v1.0.17; Weston & Microsoft 

Corporation, 2022 
- Pixel-based Classification 
- Object-based Classification  

dplyr v1.1.3; Wickham et al., 2023 - Pixel-based Classification 
- Object-based Classification  

elevatr Hollister et al., 2023 - Preprocessing: Object-based and  
Pixel-based Classification 

foreach v1.5.2; Weston & Microsoft, 
2022 

- Object-based Classification  
 

furrr v0.3.1; Vaughan & Dancho, 2
022 

- Object-based Classification  
- Point Cloud Height Threshold 
Classification 

ggplot2 Wickham, 2016 - Preprocessing: Object-based and  
Pixel-based Classification 
- Object-based Classification  
- Point Cloud Height Threshold 
Classification 

GLCMTextures Ilich, 2020 - Preprocessing: Object-based and 
Pixel-based Classification 

grDevices R Core Team, 2022 - Pixel-based Classification 
gtools v3.9.5; Warnes et al., 2023 - Pixel-based Classification 
htmlwidgets v1.6.4; Vaidyanathan et al., 2

023 
- Pixel-based Classification 

leafsync v01.0; Appelhans & Russell, 
2019 

- Pixel-based Classification 
 

LiblineaR v2.10-23; Helleputte et al. 20
23 

- Pixel-based Classification 

lidR Roussel et al., 2020; 
v4.1.1; Roussel & Auty, 2024 

- Point Cloud Height Threshold 
Classification 

mapview v2.11.2; Appelhans et al.,202
3 

- Pixel-based Classification 
- Object-based Classification  

MLmetrics v1.1.1; Yan, 2016 - Pixel-based Classification 
- Object-based Classification  

parallel R Core Team, 2022 - Pixel-based Classification 
plotly Sievert, 2020 - Pixel-based Classification 
pryr v0.1.6; Wickham, 2023 - Object-based Classification  
purrr v1.0.2; Wickham & Henry, 20

23 
- Object-based Classification  
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- Point Cloud Height Threshold 
Classification 

randomForest Liaw & Wiener, 2002 - Pixel-based Classification 
- Object-based Classification  

ranger Wright & Ziegler, 2017 - Pixel-based Classification 
raster v3.6-23; Hijmans, 2023 - Preprocessing: Object-based and 

Pixel-based Classification 
- Pixel-based Classification 
- Object-based Classification 
- Point Cloud Height Threshold 
Classification  

rasterVis v0.51.6; Lamigueiro & Hijma
ns, 2023 

- Pixel-based Classification 
- Object-based Classification  

RColorBrewer v1.1-3; Neuwirth, 2022 - Pixel-based Classification 
Rcpp v1.0.11; Eddelbuettel et al., 2

023 
- Pixel-based Classification 

RCSF v1.0.2; Roussel & Qi, 2020 - Point Cloud Height Threshold 
Classification 

rgdal v1.6-7; Bivand & Rowlingso
n, 2023 

- Preprocessing: Object-based and 
Pixel-based Classification 
- Pixel-based Classification 
- Object-based Classification  
- Point Cloud Height Threshold 
Classification 

RStoolbox v0.4.0; Leutner et al., 2024 - Pixel-based Classification 
- Object-based Classification  

SegOptim v0.2.5; Goncalves, 2022 - Object-based Classification  
sf Pebesma, 2018;  

Pebesma & Bivand, 2023 
- Preprocessing: Object-based and 
Pixel-based Classification 
- Pixel-based Classification 
- Object-based Classification  
- Point Cloud Height Threshold 
Classification 

snow v0.4-4: Tierney et al., 2021 - Pixel-based Classification 
Sp Pebesma & Bivand, 2005; Bi

vand et al., 2013 
- Preprocessing: Object-based and 
Pixel-based Classification 
- Pixel-based Classification 
- Object-based Classification  

stringr v1.5.1; Wickham, 2023 - Preprocessing: Object-based and 
Pixel-based Classification 
- Pixel-based Classification 
- Object-based Classification  

terra v1.7-39; Hijmans, 2023 - Preprocessing: Object-based and 
Pixel-based Classification 
- Pixel-based Classification 
- Object-based Classification  
- Point Cloud Height Threshold 
Classification 
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tidyterra Hernangómez, 2023 - Preprocessing: Object-based and 
Pixel-based Classification 

Tidyverse Wickham et al., 2019 - Preprocessing: Object-based and 
Pixel-based Classification 
- Pixel-based Classification 

webshot v0.5.5; Chang, 2023 - Pixel-based Classification 
whitebox Lindsay, 2016;  

v2.2.0; Wu & Brown, 2022 
- Preprocessing: Object-based and 
Pixel-based Classification 
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