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Abstract

The underwater noise has a significant negative impact on marine animals. The
EU has made efforts to keep noise emission within sustainable limits, but only
in regards to boats with Automatic Identification System (AIS). The noise of
recreational boats, which are the main noise emitter in coastal areas, is overlooked.
Thus, there is a need to quantify the noise emitted by recreational boats and, in
the extension, develop models for this noise. This thesis aims to give an overview
of how background noise varies at some coastal locations and to quantify the
contributions of boat noise based on recordings. In addition, the thesis aims to
design an energy detector, evaluate the detector applied to recorded noise, and
briefly outline alternative methods to detect boat noise. For background noise and
boat noise contribution purposes, a probabilistic power spectral density (PPSD) is
used. It is applied to a long window to see the background noise, and to two short
windows to be able to see the additional noise that is due to boat passages. The
background noise is successfully visualized, and the main contributing factor to
similar sound signatures in the PPSDs to visualize background noise in different
locations is the geometry of the seabed. A minimum level of boat noise contribution
can be found using this method, but it requires the recordings to not include
precipitation. The energy detector consisted of a rolling window structure with
a short and a long window, to compensate for the shifting background noise.
The designed detector could detect about half of the boat passages, but could be
improved by only considering a certain frequency range and adapting the threshold
to the application. Some alternative methods are to investigate the periodicity in
the tones of the boat noise or tonal detection. As a tonal detection algorithm, the
Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)
algorithm is implemented, but found not to be successful as a detector without the
use of Akaike Information Criterion (AIC) or Minimum Description Length (MDL)
to set a critical parameter. ESPRIT combined with one of the other algorithms is
deemed worthy of further investigation.

i



ii



Popular Science Summary

Studies have shown that the underwater noise undoubtedly has a negative impact
on marine animals. The EU have made efforts to keep the noise emission within
sustainable limits, but mainly in regards to commercial freight ships. This means
that noise from recreational boats, which are the main noise emitter in coastal
areas, are overlooked. The noise from recreational boats is also under-investigated,
and there are no estimates of the amount of this type of noise. Therefore, it
is important to study the noise generated by recreational boats. By doing so,
we can develop models to predict this noise and better assess its impact on the
environment.

This thesis aims to give an overview of how the background noise varies at coastal
locations and to quantify the boat noise contributions based on underwater record-
ings. Further, the thesis aims to construct and evaluate a method to detect boat
noise in the recordings and briefly outline alternative methods to detect boat noise.

Boat noise consists of broadband noise, for instance caused by propeller cavitation
and vibration from the hull, and narrowband tones consisting of a fundamental
tone and overtones, with a certain relation between the frequencies of the tones.
This leaves three main alternatives when trying to detect boat noise: Utilizing the
energy, the tonal components or the frequency relationship between the tones in
the boat noise.

A commonly used method of the first alternative is the energy detector, which
was used in the thesis. Through some modifications the detector would flag events
of increased energy relative to the temporary background energy. Though, the
method possessed a difficulty of handling precipitation of varying intensity. Over-
all, the detector identified about half of the boats, with only a few false detections.
However, it could be adjusted based on the specific terms of application.

As an alternative, a classical tonal detection algorithm called ESPRIT (Estima-
tion of signal parameters via rotational invariance techniques) was implemented,
and recommended for further investigation, since this method does not possess
the weaknesses that the energy detector has, such as the difficulties in case of pre-
cipitation. The ESPRIT algorithm identifies the frequencies of the most probable
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tones within the noise. It always detects at least one tone, but can not determine
the exact number of tones. Thus, in combination with another algorithm that
determines if there are more than one tone present in the noise, the conclusion
should be that there is a boat present if there is more than one tone.

For the purpose of identifying the background noise and boat noise contribution,
another method, a probabilistic method was used. The method calculated the oc-
currence of different types of noise, or more in detail the combinations of frequency
and intensity, and visualized the more common noise, or background noise. The
main contributing factors of similar background noise at different locations was
the geometry of the seabed. This probabilistic method also quantifies the mini-
mum levels of boat noise, assuming that there are no other noise sources, such as
precipitation.
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Chapter 1
Introduction

This introduction aims to set the thesis in a larger perspective and explain why it
was conducted. In addition, the research objectives are stated, as well as contri-
butions to the success of these objectives and the scope of the thesis. Lastly, the
thesis outline is reviewed.

1.1 The thesis in a larger context

The marine life is under enormous stress with cumulative stressors such as large-
scale fishing, marine pollution and climate change. A significant stressor, yet
underexplored, is noise emission, which affects the soundscape and the life cycles
of marine life [1].

This thesis aims to study the noise emissions from recreational boats in coastal
areas and is part of a larger project that investigates the noise emissions from
recreational boats and its impact and proposes actions to reduce noise-induced
stress in ecosystems and animals [2]. The project is conducted by IVL, KTH and
FOI through funding by Formas.

1.2 Motivation

The general impact of underwater noise on marine animals is evident, and recre-
ational boating specifically constitutes a risk of negative impact [1][3][4]. Due to
relatively low attenuation and fast propagation of sound in water, marine animals
have evolved sophisticated sound sensory organs and made hearing a key deter-
minant of marine animals’ actions. For example, they use hearing for navigation,
foraging, and reproduction [1]. Negative effects of noise can be the following, [5]
all of which may have fatal consequences:

• stress

• behavioral changes

• masking

1



2 Introduction

• temporal hearing loss

• disorientation

Despite this, the implementation of the policy on noise emissions has progressed
slowly, partly due to lack of knowledge of the emissions and its impacts [1]. Since
underwater noise and its impact have not been rigorously studied, it is hard to
establish holistic and reasonable laws and policies. Researchers describe the knowl-
edge of underwater noise as an urgent need, in order to provide policy makers with
a sufficient decision basis to properly address this problem [1]. As recently as 2015,
the issue was being ignored by high-level policy initiatives. In 2021, only one of
the 10 major international agreements addressing noise included binding criteria.
This is happening despite the growing ocean-based economy, which is expected to
double by 2030 [1].

The impact of underwater noise has slowly begun to be recognized outside the
scientific community. For example, by inclusion of the goals regarding noise emis-
sions in the United Nations Convention on the Law of the Sea (UNCLOS) and
the EU’s Marine Strategy Framework Directive, which is the binding agreement
referred to above. Through that agreement, the EU has set limits of the noise
pollution allowed, which are to be supervised by the members themselves.

An increasingly popular tool to estimate and manage the noise levels and control
that the limits within the EU are met is to use predictive models [3]. The models
are large-scale models based on the Automatic Identification System (AIS), mean-
ing that it is primarily accounting for commercial shipping. However, in shallow
coastal areas, the main contributor to noise are recreational boats, which are not
considered in the models used by the EU. In this way, the models have been shown
to underestimate the noise [3].

In coastal areas close to shipping lanes, recreational boats are also the dominant
noise emitter [3]. Shallow coastal areas are key habitats for many marine species,
and their potentially extra-sensitive breeding periods tend to overlap with the pe-
riods of more activity from recreational boats. Estimated sound predictions based
on AIS boats, such as the model used by the EU, therefore both possess a signifi-
cant risk of underestimating the emitted noise levels and their impacts on marine
life [3]. Hence, the need to investigate the noise emissions from recreational boats
in coastal areas, its impact and potential means of control is of great importance.

With this in mind - the impact on marine animals and deficient emission con-
trol techniques - this study is particularly important, and I hope to provide a
foundation for further large-scale investigations and predictions. The importance
is further reinforced since it specifically focuses on coastal areas and recreational
boats, in contrast to the majority of the very few studies available on underwater
noise.
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1.3 Aim

This master thesis aims to fill some of the gaps in knowledge about the underwater
noise emitted by focusing on recreational boats in shallow, coastal regions. More
specifically, the aim is:

Q1: To give an overview of how the background noise varies in different locations
and geomorphological conditions, using spectral statistics. Quantify the
noise contribution from boats.

Q2: To identify boat noise in recorded underwater noise using a energy detector;
a signal processing method - and to evaluate the method based on real data,
as well as briefly outline alternative possibilities in detecting boat noise.

The study of methods to capture the noise emitted from recreational boats is
important. If a method is proved to be successful it could be useful for larger scale
analysis based on measurements of the underwater noise and without relying on
data about passing boats, and it is a necessary component in the development of
a prediction model of the noise in coastal areas. These predictions could directly,
or partially, help the EU members to control whether they really satisfy the noise
limits set in the Marine Strategy Framework Directive. Further, it could be used
to investigate the complex soundscape in coastal regions, and to gain an better
understanding of the impact of the marine animals to set suitable and cost efficient
policies.

1.4 Method

The thesis is based on continuous measurements without management of the boat
traffic, and only with limited measurements of passing boats previously recorded
by IVL, and the methods used are chosen in accordance with and adapted to the
data.

Initially an analysis to remove potential bias and a stationarity analysis was done;
based on Pearson correlation coefficients and an equality test, to find a suitable
window size to apply in the other methods.

To achieve the aim of analyzing background noise and getting an estimate of the
boat noise contribution probabilistic power spectral densities and spectrograms
were used.

To detect boat passages in the data an adapted version of an energy detector
was used. Another approach, utilizing the tones to detect boat noise, was tested
through the ESPRIT algorithm. This one could either be applied to the correlation
coefficients or on the data.
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1.5 Limitations

The focus of the thesis is shallow, coastal areas. As many of the notions, methods
and measurements in the field of underwater noise, "shallow" is not properly de-
fined, but will here be used for depth of maximum 20 m. Even though the results
in this thesis are assumed to be generalizable for shallow and coastal areas, the
data being used is only collected at Vasholmarna, near Lysekil in Sweden, as it is
considered a representative coastal area.

This thesis will only focus on the sound characteristics of noise emitted from
recreational boats. Any choice of parameters and measurements will be adjusted
for this. Thus, frequency ranges that are critical for marine animals and the
impacts on marine life will not be considered. In addition, an analysis of the
possibilities of regulation of the noise pollution will be outside the scope of this
thesis.

1.6 Thesis outline

The structure of the thesis is as follows. Chapter 2 includes an introduction to
the field of underwater noise to provide an understanding of the complexity of the
study and relevant considerations of the data. The chapter also gives a review of
the methods and theory available for the thesis, which are the foundations of the
methods described in Chapter 3. Chapter 4 further describes the results, while
Chapter 5 discusses the interpretation of the results, reliability, method choices
and further investigations. The final conclusions are summarized in Chapter 6.



Chapter 2
Theory

2.1 Overview of the underwater soundscape

This section includes an overview of underwater acoustics and of the noise contri-
butions, homing in on boat noise. In regards to the complexity of the soundscape
an overview and the complexity factors are brought up.

2.1.1 Acoustics

There are two ways of detecting sounds: pressure and particle motion. What is
considered a loud noise also depends on hearing frequencies and sensitivities for
different frequency ranges, which vary between marine species. Hence, the way
of quantifying sound and what calculations are considered useful to give a fair
understanding of the noise and its impacts, is dependent on the research aim in
question.

Impedance, velocity and absorption are some factors that are relevant in the study
of noise. Impedance is a physical property that describes the amount of resistance
that a sound wave encounters when it propagates through the medium. Thus,
water which has a large impedance, 3500 times greater than air, requires more
energy to create noise [6]. Impedance also impacts the amount of reflection of a
sound wave when meeting a new medium. At the surface, an underwater sound
wave encounters almost perfect reflection. When hitting rock bottom, a lot of the
sound wave is reflected, whereas a large amount propagates into the new medium
when hitting a sandy seabed. Reflection and absorption add interference and
complexity to the soundscape, making the seabed an important component of the
soundscape of shallow coastal areas.

The speed of sound in water is 1450-1600 m/s, compared to 340 m/s in air. Due
to the high speed in the water, the Doppler effect is minimal. The range in sound
speed is rather large and depends on pressure and temperature. The pressure in-
creases linearly with depth and the temperature is, at least during summer, higher
near the surface and decreases rapidly until it reaches a constant low temperature;
see Figure 2.1 for a conceptual visualization. The temperature can vary locally
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6 Theory

and close to clines. This rough velocity scheme gives, due to Huygen’s principle, a
raise to sound channels at the depths where temperature and pressure contribute
to the lowest sound speed. In these channels, the sound can travel a distance of
80 to 100 km [1]. This extreme propagation partly explains why underwater noise
can be such a problem for marine fauna, even though the sound channels do not
appear in shallow water.

Figure 2.1: A conceptual visualisation of the underwater sound
speed and the contribution from the main influence factors,
pressure and temperature.

Absorption in water varies around the range of 0.001 to 1 dB / km depending on
the frequency [7], where the lower frequencies are less absorbed. This absorption
is rather low and explains the very long propagation in water and the problem
with a lot of noise in the oceans. Furthermore, shallow water acts as a high pass
filter, further influencing the characteristics of sound propagation [3].

2.1.2 Underwater sounds

The underwater sound sources are of biological, geological, meteorological and
anthropological character, which partly explains the varying background noise in
the seascape. In addition, fast propagation in water, the propagation of lower fre-
quency sounds, the various weather conditions, and the varied depth and seabeds
cause varying background noise [8]. The biological noise originates from various
sources, such as communication, ecolocation, and unintentional sounds. Geological
noise can arise from melting or breaking ice and earthquakes, and antropological
sounds often derive from pile driving, boats and explosives [1]. Different sound
sources are often characterized by certain sound pressure levels (SPL) for different
frequencies, as illustrated in the classical Wenz curves in Figure 2.2.

The main meteorological conditions that affect underwater noise are precipitation
and wind. Precipitation causes a clattering sound as drops hit the surface and the
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Figure 2.2: Wenz curves showing the SPL and frequency range of
different sound sources at sea [9].

wind causes noise through waves that break and crash against the shore. Thus,
the impact of the wind assumes the formation of high waves, which was not the
case inwards in the archipelago at Vasholmarna.

As seen in Figure 2.2, the contributions of background noise, such as weather and
biological noise, often overlap somewhat in frequency and SPL with boat noise,
decreasing the signal-to-noise ratio (SNR) of boat noise relative to background
noise. Thus, the temporal dimension is important to consider when differentiating
the noise types. Among sound sources, one usually distinguishes between impulsive
and continuous sounds, where boat noise belongs to the latter category [3].

Boat noise consists of a broadband component and narrowband tones. Broadband
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noise mainly comes from the agitation of the surface of the water by the boat,
the cavitation of the propeller and the vibration of the hull of the boat [10]. The
contribution from the agitation shifts with velocity, since the boat in higher speeds
can plane, implying that a smaller amount of water is relocated. The planing
velocity in its turn varies with the weight and shape of the boat. Cavitation is
the formation of bubbles on the propeller that is caused by low pressure and can
appear in different ways. The common is that the cavitation occurs on the propeller
and increases with increasing speed. The narrowband tones are due to the motor
components, drive shaft and propeller. The tones appear as one fundamental
tone, with its frequency corresponding to the revolutions per minute (RPM) and
overtones. Depending on the sound level, narrowband tones are sometimes, but
not always, the dominant noise source [10].

The spectrogram in Figure 2.3 shows the noise of three distinct boats and the noise
caused by rain. The spectrogram shows the time dimension on the x-axis, the
frequency dimension on the y-axis and the PSD on the third dimension visualized
by a color scheme. The boats appear at 11:13-11:15, 11:17-11:19 and 11:20-11:22,
and the rain noise is seen in the frequency range of 300 to 5 000 Hz. As seen,
the narrow fundamental tone can be found in a wide range of frequencies. But at
least a part of the noise from the measured boat passages is usually within 200Hz
to 10 kHz. The V-shaped form of the tones of the first boat is typical of boat
noise and is due to the Lloyd mirror effect [10], [11]. The low magnitude noise in
the range of 300Hz to 5 kHz is due to precipitation. The rest of it is considered
background noise.

Figure 2.3: Spectrogram visualising the noise of three distinct boats
and precipitation noise recorded at Vasholmarna. The power of
the frequencies at each time point are given.
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2.2 Analysis tools

Given the complex soundscape and shifting background noise, the task of dis-
tinguishing the noise from the boat is not easy, and the preferred method varies
with the characteristics of the measurements and noise. Some analysis tools that
provide a better understanding of the measurements will be reviewed below.

2.2.1 Choise of measurement method and equipment

Just like the seabed, measurement devices can create reflections and hence impact
the measurement. A standardized measurement method is therefore of the essence,
as the sound level can differ by several dB and can vary differently with respect
to the frequencies using different measuring methods. There is no consensus on a
standardized measurement of continuous underwater noise, but there are guidelines
to achieve regionally consistent measurements [12].

2.2.2 Sound pressure level

SPL is a relative metric that describes the intensity or magnitude of sound and
is often used to describe continuous sounds [8]. Due to a large range of hearing
levels for humans, the scale is logarithmic, and the SPL is given through:

Lp = 20 · log10
p

p0
; dB re p0 µPa, (2.1)

where p0 is the reference pressure [8], stated as dB relative to p0µPa. In air, the
reference level is 20 µPa as that is the lowest level of audible noise for humans,
compared to 1 µPa in water, making dB levels incomparable between mediums.
Due to the large variety in hearing levels within the marina fauna, the SPL metric
is not specifically adjusted to marine animals but rather a convention.

2.2.3 Power spectral density and spectrogram

As demonstrated by the Wenz curves in Figure 2.2, the signal can be character-
ized with respect to both frequency and SPL. The power spectral density (PSD)
describes the intensity of the signal for each frequency and is suitable for studying
continuous sound, often with the intensity given in power level. The power of the
signal is given by

P = lim
N→∞

1

2N + 1

N∑
n=−N

|x(n)|2, (2.2)

where N is the period and x(n) is the discrete time signal, so that the sum denotes
the energy of the signal. For convenience x(n) can be substituted to xN (n) =
x(n)wN (n) where wN (n) is one in the interval [−N ,N ] and zero elsewhere, and
the limits thus extended to ±∞. Using Parseval’s theorem the average power can
be rewritten as
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P = lim
N→∞

1

fs(2N + 1)

∫ fs/2

f=−fs/2

|x̂N (f)|2df, (2.3)

where fs if the sampling frequency, x̂N (f) is the Fourier transformed xN (t) and
the sum still indicates the energy. This, describes the relationship between energy
in the time and frequency domains. By the Nyquist-Shannon’s sampling theorem
frequencies that are larger than fs/2 will not be recovered in the signal. Further,
the length of the time signal gives the frequency resolution.

The spectrogram is similar to the PSD but additionally visualizes a time dimension,
as seen in Figure 2.3. This is achieved by a rolling window structure, as shown in
Figure 2.4, where a total window is repeatedly iterated through its subwindows.
In each subwindow the PSD is calculated, meaning that the intensity is described
for each frequency and for each time stamp at the subwindows.

Figure 2.4: Visualisation of a rolling window structure: The subwin-
dows that iterate over the total window.

2.2.4 Probabilistic power spectral density

The probabilistic power spectral density (PPSD) can be described as a combina-
tion of the spectrogram and the probabilistic density function [13]. Essentially,
it shows the variations in the spectrum, through a histogram of several spectro-
grams, describing the proportion of time, or probability, that each combination of
frequency and SPL occurs.

Figure 2.5 shows an example of an PPSD, with frequency on the x-axis, sound
level on the y-axis and time proportion or probability on the color bar. As seen in
the PPSD, the sound level, when considering a certain frequency, varies over time.
For each frequency, the values are normalized, adding to 100 % over all sound
levels. As seen in the figure, which is applied over a long time period of recordings
obtained by sensor 1, there is a pattern of common sound levels in each frequency,
and the variation in frequency and percentage of time is seen. Further analysis of
what exactly is seen will be revisited in Section 4.
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Figure 2.5: A probabilistic power spectral density applied to a large
time period for sensor 1.

In this way, the PPSD visualizes both the variations and common sounds or noise
of a signal, and the application of the PPSD can be adjusted for the purpose. For
a PPSD applied over a larger amount of time, this can be viewed as describing
the typical background noise at the location, as the percentage of rain should
correspond to a larger amount of time, and boats can be assumed to constitute a
smaller portion of the time period, compared to in a small time window including
boat passages.

2.3 The basis of the methods to distinguishing boat noise

The approach available to distinguish the noise from other noise is already hinted
in the specification of the characteristic noise in Section 2.1.2. The alternatives of
concept for the detection methods are energy detection, detecting tones, series of
tones or to remove the background noise. Here, the basis of each methods used will
be given, in addition to stationarity which is a desirable property in some methods
or can impact method choices. Before any analysis is conducted, potential bias in
the sound pressure data should be handled by subtracting the mean pressure from
the pressure.

2.3.1 Weakly stationarity and equality test

A commonly coveted feature in time series is stationarity, as it affects the perfor-
mance of several methods. Stationarity is a metric that describes the similarity
of statistics in data over time. Strict stationarity is a strong requirement, and
regarding measured data, wide sense stationarity is usually "good enough".

Strict stationarity implies that the mean value of the data in a sliding window is
zero and that the autocovariance is constant, meaning that the covariance between
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the original signal and lagged signal is constant. Meanwhile, wide sense stationar-
ity is when the mean function is zero and autocovariance function is time-invariant.
One way to check the stationarity of the measurements is to check the mean and
the Pearson correlation function.

The Pearson correlation function is a normalized covariance measurement that
results in a value between -1 and 1, consisting of a series of Pearson correlation
coefficients. The autocorrelation function is obtained through one time series and
a lagged version of the same series. Each lag corresponds to a Pearson correlation
coefficient, which is defined as

rxy =

∑n
i=1(x(i)− x)(y(i)− y)√∑n

i=1(x(i)− x)2
√∑n

i=1(y(i)− y)2
, (2.4)

where n is the sample size, x(i) and y(i) are sample points and x and y is the
mean of the x(i), respectively the y(i), samples. The ith sample corresponds to
x(i) and y(i− k) when the lag is k, see Figure 2.6.

Figure 2.6: The structure of the samples and lags.

When checking the stationarity in a series, the mean and auto-covariance functions
are applied in a subwindow with a certain size. Then, it is controlled how many
subwindows, or how long time, the statistical features are "similar enough" to
be considered stationary. For example, in Figure 2.7 the Pearson correlations of
subwindows 0, 1, 2 and 3 are relatively similar to each other, while the correlations
for subwindow 50 which is 10 seconds from subwindow 0, are not that similar to
the other. Further, a time series can be stationary over a certain time interval in
regards to one size of subwindows, but not stationary over the same time interval in
regards to another size. A small subwindow tends to include noise in the covariance
function, while a large subwindow results in a lower resolution of the statistics.

One way to determine if the statistical features are "similar enough" is through
the use of an equality test described by Lund et al [14]. Although some tests
compare whether covariances are similar enough, this equality test controls if the
statistics of the covariances are similar enough [14]. In addition, this test is often
substantially more powerful than other tests [15].

The equality test in question is a likelihood ratio test comparing the auto-covariance
series in the frequency domain for two subwindows at a time. The fundamental
idea of the test is that if the autocovariances of two data series are Gaussian and
equal, then the Fourier transformed covariance functions are independent at each
frequency and exponentially distributed with the same mean. That is, for two
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Figure 2.7: Some examples of Pearson correlation coefficients of
the sound pressure during a boat passage to demonstrate that
the correlation could be very similar over a time of some sub-
windows, but not similar over subwindows with a larger time
distance.

Gaussian independent series Xt and Yt, f̂X(ωl) and f̂Y (ωl) are independent and
approximately exponentially distributed with the same mean fX(ωl) = fY (ωl),
where ω is the angular frequency; ω = 2πf . The covariance of the signal is re-
lated to the PSD, and applying the Fourier transform to a covariance of the signal
gives the PSD. An alternative way to calculate the PSD is through the squared
magnitude of the Fourier of the signal [16].

From the basis above, the likelihood ratio, Lrat, is defined

Lrat =

n/2−1∑
l=1

ln

(
4f̂X(ωl)f̂Y (ωl)

(f̂X(ωl) + f̂Y (ωl))2

)
, (2.5)

where n is an even integer and f̂X(ωl) is the spectral density of the covariance
series of the signal subpart X, defined by

f̂X(ω) =
1

2πn

∣∣∣∣∣
n∑

t=1

Xte
−itω

∣∣∣∣∣
2

, (2.6)

with ωϵ[0, 2π).

If Lrat is too small, the equal covariances should be rejected [14]. The condition of
the likelihood ratio between two equal covariances, for a large number of samples,
and for Gaussian distributed auto-covariances, is

Lrat <
(n
2
− 1
)[

µ− zα

√
σ2

n/2− 1

]
,
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where zα is the z-score of the Lrat, or the number of standard deviations between
the Lrat and µ. It is defined as: zα = (Lrat − µ)/σ. The variables µ and σ2 are
the mean and variance in the expected distribution,

ln

(
4E1E2

(E1 + E2)2

)
(2.7)

where E1 and E2 are independent unit mean exponential random variates. I.e. the
logarithm in (2.7) have the same mean and variance that we expect Lrat for many
samples to have. To determine µ and σ2 the distribution in (2.7) is simulated
with mean 0 and variance 1 for the exponential random variates. The mean and
variance are thus calculated as -0.614 and 0.759 [14].

If the data are not stationary, a threshold could be derived empirically from the
data. Another approach is to set an empirical threshold using a graphical method
or based on the Lrat values.

A previous study using the Kolmogorov-Smirnov test of two samples to investigate
stationarity in the ocean has found that time frames of about 430 000 samples,
with a sample rate of 441 kHz, are stationary [17]. That is, the ocean recordings
were stationary during approximately 0.97 seconds.

2.3.2 Energy detector

One way to try to capture the times when boats are present is to consider the
energy levels of the noise. A time signal can be regarded as consisting only of
noise, or noise in addition to some added noise, such as background noise and
additional boat noise. Thus the signal could be expressed:

xk =

{
bk + sk, if a boat is present
bk, otherwise

where bk is the background noise and sk is the emitted noise from boats in the
measurement indexed k, meaning that the energy in the signal would reasonably
be larger when boats are being present, since the signals should be uncorrelated.

The energy detector is a common and widely applicable detection method used
for time series, due to its low implementation and computational complexity and
the independence of prior knowledge of the signal. The detector can be applied
both on the time and frequency domain, and thus applied to specific bandwidths.
As seen above, Parserval’s formula implies that the energy in the time domain is
equivalent to the energy over all frequencies in the frequency domain.

The energy detector is based on short rolling windows, where the energy, i.e. either
of the sums in (2.2) or (2.3), of each subwindow is calculated and compared to a
threshold value. If the energy level is above the threshold, the value at that time
is set to 1, otherwise to 0, indicating additional noise or boat noise. The energy is
calculated as the mean of the squared values within the window, i.e.

E =
1

N

N−1∑
k=0

x2
k, (2.8)
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where N is the length of the sliding window [18].

In this basic detection version, the parameters to adjust are few, the width of
the subwindows and the threshold value. While the simplicity of the detector is
an advantage, inflexibility is a disadvantage, as it means that the quality of the
detector is dependent on the somewhat stationarity of the process for a threshold to
be suitable over time. If the background noise is stationary, and for example follows
a Gaussian white noise process N (0, σ2

b ), and the boat noise have an average energy
per sample of σ2

s , then the energy for a large number of samples will approximately
follow the Gaussian distribution:

E ∼

{
N (Nσ2

b , 2Nσ4
b )

N
(
N(σ2

b + σ2
s), 2N(σ2

b + σ2
s)

2
)
,

and it will be clear when the signal contains the additional noise and not. How-
ever, if those conditions do not occur, the performance of the detector will decrease
significantly [18]. Though, one can elaborate the energy detector to try to bet-
ter compensate for the varying and non-white background noise, which will be
elaborated further in Chapter 3.

2.3.3 ESPRIT

Another way of detecting boat noise would be to detect the tones that are a
distinctive feature of the noise. Tone detection can be performed in several ways.
Whether exploiting the attributes of tones or attributes of the noise for the tonal
detections, and which method to choose depends on the signal-to-noise ratio (SNR)
and the stationarity or nonstationarity of the data.

Estimation of signal parameters via rotational invariance techniques (ESPRIT) is
one algorithm that finds the tonal components in a signal and that is offering a
higher resolution than the FFT. The ESPRIT algorithm assumes that the mea-
sured signal ym(t) consists of K number of sinusoids and some noise, and estimates
the sinusoidal components xk(t) in

ym(t) =

K∑
k=1

am(ωk)xk(t) + nm(t), (2.9)

where the number of inputs K is known, and where xk(t) denotes the tones,
nm(t) is the noise at time t and m denotes the index of the output signal. It is
assumed that am(ωk) = e−i(m−1)ωk , implying that the objective is to determine
the frequencies ωk.

The crucial assumptions of the algorithm are (i) that (a(ωk))m+1 = e−iωk(a(ωk))m,
and (ii) that the subspace of the signal can be computed from ym(t). Due to this, it
is possible to isolate the signal subspace and calculate the eigenvalues that satisfy
(i). Another implication of (ii) is that the algorithm assumes the noise to be
Gaussian white noise, which would require a preprocessing of the data.

Assumption (i) follows naturally when we assume that the sampled signal is a
sum of sinusoids and noise. The second assumption, (ii), takes some more rows to
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show, but will be verified in the following. In short, assumption (ii) follows from
the assumed form of the signal described by (2.9). Equation (2.9) on vector form
is written

y(t) =

K∑
k=1

a(ωk)xk(t) + n(t),

where a(ωk) = (1 e−iωk e−i2ωk . . . e−i(M−1)ωk)T . Using matrix form and block
matrices yields

Y = AX +N = UΣV ∗ =
(
US UN

)(ΣS 0 0
0 ΣN 0

)(
VS VN V0

)
= USΣSV

∗
S + UNΣNV ∗

N , (2.10)

where UΣV ∗ denotes the singular value decomposition, and the operator ∗ denotes
the Hermitian transpose. Thus, the singular values in Σ are sorted in descending
order, with the corresponding eigenvectors. With a good SNR of the signal the
largest eigenvalues of Y should correspond to the sum of sinusoids, and therefore
the columns in US constitute the signal subspace. That is why the block ma-
trix partitioning into a signal and a noise contribution term above is reasonable.
Together with the system model, partitioning implies that AX = USΣSV

∗
S and

N = UNΣNV ∗
N . Also note that since US and VS are unitary matrices, we can

write US = AXVSΣ
−1
S = AF where F is an invertible matrix. This detail we will

get back to.

To calculate the signal subspace, the autocorrelation matrix of Y can be used.

Ryy =
1

T

T∑
t=t0

y(t)y(t)∗ =
1

T
Y Y ∗ =

1

T
UΣΣ∗U∗ =

1

T
UΣ′U∗,

where T is the last time index. From (2.10) it is evident that Ryy can be decom-
posed as

Ryy =
1

T
USΣ

′
SU

∗
S +

1

T
UNΣ′

NU∗
N ,

when using the SVD and extracting the K first columns.

Continuing toward finding the eigenvalues of the signal components, the matrices
J1 = (IM−10), J2 = (0IM−1) and H = diag(e−iω1 , e−iω2 , . . . , e−iωK ) are intro-
duced. From (i) it follows that

J2A = J1AH.

Using the noted fact from above, US = AF , yields

J2US = J1USF
−1HF.

Introducing S2 := J2US , S1 := J1US and P := F−1HF , gives S2 = S1P , which
can be solved with the least-squares method. The eigenvalues of P , λk further
corresponds to αke

iωk . Thus, the relative amplitude and the frequencies of the
found tones can be extracted from the eigenvalues.

Thus, the algorithm summarises to:
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1. Collect: y(1), y(2), y(3), . . .

2. Estimate K.

3. Compute the auto-covariance matrix. Either from covariance or based on
the signal: Ryy = 1

T

∑
T y(t)y(t)∗.

4. Compute the SVD of Ryy, and extract the signal subspace from U .

5. Compute S1 and S2.

6. Solve S2 = S1P .

7. Compute the eigenvalues λk of P.

8. Extract the phases and absolute values of the eigenvalues to finally obtain
the frequencies and relative magnitudes of the signal.

The parameter choices of ESPRIT are crucial for accuracy. The parameters to set
are the dimension of the signal, dim(S + N), the length of the time series used
and the model order corresponding to the number of sinusoids, K.

Regarding the dimension of the signal, ESPRIT has no upper limitation, but a
too high order can significantly decrease the performance of the algorithm. As a
reference, the model order in the MUSIC algorithm, the predecessor of ESPRIT,
shall follow dim(S +N) > 2K for real signals. Compared to MUSIC, ESPRIT is
less computationally heavy.

One way to set K is by testing ESPRIT for different values and then applying
the Akaike Information Criterion (AIC) or Minimum Description Length (MDL)
which penalize excessive complexity in models [16].

Just as in the case of the FFT, implementation in a larger time window implies a
higher frequency resolution and lower time resolution.
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Chapter 3
Method

3.1 The data

The data being used was measured sound pressure, radar data of passing boats
and weather data collected at Vasholmarna.

3.1.1 The sound measurement

The sound recording was collected continuously during a three-week period in
summer in 2023; from June 22 to July 11. The sound was recorded by IVL
following the national best practice refined in corporation with FOI and KTH,
using seven hydrophones in seven different locations with varying depth between
5 and 19 meters and varying seabed types, see Figure 3.1 and Table 3.1.

Figure 3.1: The measuring positions at Vasholmarna.

19
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Position Depth [m] Seabed type Logger
1 13-14 Flat bottom, sand RTSYS
2 15 Flat bottom, sand RTSYS
3 5-6 Near rock and adjacent to the

shore, sand
Soundtrap

4 5-6 Near steep rock and adjacent
to the shore, sand

Soundtrap

5 9-10 Near vertical rock and adja-
cent to the shore

DSG

6 5-6 Near steep rock and adjacent
to the shore, bedrock

Soundtrap

7 19 Flat bottom, sand DSG

Table 3.1: The depth, seabed type and loggers of the recording
positions.

As seen in Table 3.1, three different types of loggers were used, RTSYS, Soundtrap
and DSG. The Soundtrap hydrophones are shown in Figure 3.2. The sampling
frequency used was 128 kHz for the RTSYS loggers and 96 kHz for the others.

Figure 3.2: The three Soundtrap loggers used to measure the un-
derwater noise.

The recorded sound pressure at sensor 1 for a few seconds is shown in Figure 3.3
below. Both the noise from a boat passage and the regular background sound is
visible.
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Figure 3.3: The recorded sound pressure at two different times.
Data above only including background noise, data below in-
cluding boat noise.

3.1.2 The weather data

The weather data only included precipitation data during the period of sound
recordings, as the noise contribution from wind at the locations was small. It was
provided by Göteborgs Universitet, through Kristineberg marine research station,
and thus recorded about 5 km away from Vasholmarna.

Figure 3.4: The precipitation at Kristineberg during the period of
measuring underwater noise.
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3.1.3 The radar data

The radar data was recorded between 12.00 and 15.00 on the 11th of July by a
marine radar of type Koden. The radar was built to be placed on boats, but
was here mounted on a tripod, as shown in Figure 3.5. A GPS compass provides
compass directions to the radar so that it could report the position of objects
detected. The operator clicked on the radar screen to specify that a boat should
be tracked and saved. Hence, some boats were potentially unnoticed, and some
passages probably cut short at the end or beginning of the route. Also, the radar
sometimes switched from tracking a boat to tracking an island if a boat got close
to an island. In addition, software was developed to store detected objects from
the radar and to calculate the distance between the boats passing and each sound
recording location.

Figure 3.5: The radar used to capture the boat passages.

3.2 Bias, stationarity and the methods

Before investigating stationarity, applying the energy detection method, the PPSD
and the ESPRIT method the data were pre-processed by eliminating possible bias
caused by a non-zero mean.

Bias removal of a fluctuating bias can be done very accurately by using a standard
moving average or computing the mean in a rolling window, moving one sample at
a time. Due to the computational heaviness and adequate accuracy, the removal
of bias was done by moving average without overlap. When setting the subwindow
size, two factors were specially considered; the noise in the samples and potential
variations in the bias.

3.2.1 Wide sense stationarity

Wide sense stationarity was verified by using the mean and Pearson correlation
coefficient in a rolling window structure. By testing several subwindow sizes, a
subwindow size of 1.6 seconds was considered suitable with a step size of 0.2 due to
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the computational heaviness, and the step size is still not too large for stationarity
over the subwindows to be found.

In each subwindow the mean was calculated and the Pearson correlation coef-
ficient described by (2.4) for lags up to 10 000 was calculated. This, to avoid
unnecessary computational heaviness as the trend would continue after 10 000
lags, or 10000/fs = 0.078 seconds, while the correlation coefficient would become
less reliable as fewer samples were considered in the coefficient.

To determine how long the statistical features in the data remained constant, the
Pearson series were compared using the equality test described in Section 2.3.1.
This was done by choosing the signal subpart of a reference subwindow X, extract-
ing the covariance series, and iterating over the covariance series of the following
subwindows, calculating the Lrat values for X and each of the other subwindow
using (2.5), and further the obtained Lrat were compared to the limit. The limit
was calculated through estimated µ and σ2 to correspond to the exact distribution
of the PSD. The estimations were obtained by 180 calculations of (2.7), one for
each subwindow, using the PSD, or the Fourier transformed Pearson correlations
of the subwindows, instead of the simulations E1 and E2. The estimations of µ and
σ2 were the mean, respectively, standard deviations of the 180 calculated values.

The stationarity test was only applied to sensor 1, both in times of nonprecipitation
with no boats and with a boat present. To get a good representation of the
stationarity results, the test was performed using the covariance of several of the
subwindows, or X, as a reference to compare the other subwindow, Y , to. Initially,
the first subwindow would be used as the reference subwindow, X. In the following,
X was chosen as the subwindow corresponding to the largest change in the series
of Lrat values.

3.2.2 Probabilistic power spectral density

To get an general understanding of the variations in the soundscape at different lo-
cations of the sensors, and to obtain a clearer picture of the variation due to boats,
the PPSD was calculated over different time intervals. It was calculated both for
some long periods spanning days and over shorter time intervals of three hours.
Long PPSDs were used to compare the background noise at different locations,
and two short PPSDs for each sensors were used to quantify the noise contribu-
tions. One PPSD during the quiet night data and one during the boat passages
during the day, as much as possible avoiding precipitation. For information on the
exact data used in the PPSDs, see tables 3.2 and 3.3.

The fundamental form of a PPSD has, as mentioned, similarities to a histogram
and is achieved through the utilization of a rolling window iterating over a time
period and calculating a spectrogram in each subwindow. The spectrograms are
then used to eventually determine how usual each combination of frequency and
sound level is seen to all subwindows. The size of the subwindow and the step size
of the rolling window were 10 seconds. The spectrograms were calculated through
rolling windows with subwindows and a step size of 1 second, and with a Hann
window applied.
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In addition, the frequency bins of the PPSD were determined to be the logarith-
mic intervals of the frequency range in each spectrogram, and the resolution of
the sound level was established. The histogram was obtained by calculating the
number of appearances in each sound level bin, considering one frequency at a
time. A normalization of the probability axis was desired so that all possible out-
comes/noise levels for a noise of a certain frequency correspond to 1. That is, the
total probability is equal to 1 when all noise levels in each frequency are summed,
independent of the resolution of the frequency windows. Due to normalization,
the probability dimension was given in percentage per dB. Also, the probability
axis was logarithmized so that the variation of small probabilities would be visible
in the PPSD.

Table 3.2: The time interval and duration for the application of the
long PPSD.

Sensor Start time [day,
time]

End time [day,
time]

Duration [days]

1 23/6, 00.00 24/6, 19.00 2
2 22/6, 01.00 24/6, 11.00 2.5
3 22/6, 14.00 30/6, 00.00 7.5
4 22/6, 14.00 11/7, 17.00 19
5 22/6, 14.00 9/7, 08.00 16.5
6 22/6, 14.00 11/7, 10.00 19
7 22/6, 14.00 2/7, 06.00 10

Table 3.3: The start times of the PPSD applied on time with boat
passages and in night time to see the noise contribution.

Sensor Start time of the boat
PPSD [day, time]

Start time of night PPSD
[day, time]

1 22/6, 10.00 23/6, 01.00
2 22/6, 08.00 23/6, 01.00
3 24/6, 15.00 23/6, 04.00
4 8/7, 11.00 23/6, 04.00
5 24/6, 15.00 23/6, 04.00
6 9/7, 13.00 22/6, 02.00
7 11/7, 09.00 22/6, 02.00

3.2.3 The energy detector

The energy detector used to try to find boat noise was an elaboration of the basic
version explained in Section 2.3.2. This detection method can be described as two
energy detectors with different time intervals that move equally fast, as shown in
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Figure 3.6. The short subwindow is for detection of temporarily high energy levels,
and one longer as an approximate of the background energy level, allowing one to
include weather influences.

Figure 3.6: Visualisation of the construction of the energy detection
method with two combined rolling windows.

The practical implementation of this detector was only one rolling window with a
long subwindow of 10 minutes, from which a short middle part was extracted as
the short subwindow. The time frame of 10 minutes seemed to capture background
noise and temporary rain. To find a suitable size of the short window, balancing
the resulting noise and the usually minute long boat passages, windows of different
size were tested. The detector was applied to the data from 12.00 to 15.00 on the
11th of July when a radar measured the distance to present boats. The detector
was also applied at times when raining at the location of each sensor to see possible
change in performance. The precipitation showed to vary locally in the area and
therefore the time period for each sensor differed. The precipitation data were a
guidance to finding measurements including rain noise.

In each of the subwindows the bias was removed using a suitable window size,
and the energy calculated by (2.8) in the long and short subwindow. In addition,
the energies were converted to dB levels by (2.1). The temporary energy level
and the approximated background energy level in each short, respectively, long
subwindow were divided or, in practice, subtracted since the energy were given in
dB. This was done to obtain a measure of the energy taking the background noise
into account.

To determine whether the energy included noise from a boat, the final energy levels
were compared to a threshold of 5 dB, as it seemed reasonable seen to the data.

As a verification of the detector, the times of boat passages were also noted. The
time stamps of the passages indicated the time in minute precision when the boats
were closest to each sensor, based on the radar data. To determine the number of
false negative, true and false positive boat flags, flags within 2 minutes of the time
of a boat were allowed. The detector was applied to all sensors during the time
of the radar measuring, except for sensor 6 which was retrieved from the water
earlier.
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3.2.4 ESPRIT method

The method was applied to sensor 1 and the application was carried out in the
following way: The bias was removed, the number of sinusoidal components, K,
was tested for 2, 5, 10 and 15, to hopefully find the most intense tones, and
dim(S+N) was tested for 100 and 2K+2, following the MUSIC rule of thumb [16].
The length of the signal, which affects the time and frequency resolution, was set
to 1 second. The implementation was verified through a simulation described in
Appendix A.
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Results

4.1 Bias

The bias in the sound pressure data fluctuated over time. The average plots based
short subwindows lasting some seconds or a few minutes were dominated by noise.
Already in the 30 second subwindow a trend in the bias was visible in each sensor
data. But the average values still look noisy, as seen in Figure 4.1a.

(a) The average sound pressure using 30 second subwindows for sensor 5.

Figure 4.1: The average sound pressure using different subwindow
sizes.

With a growing subwindow the average values got less noisy and the trend was
clearer, see Figure 4.1. The subwindow of 10 minutes seemed to be suitable for
the bias removal, removing the noise without compromising the trend resolution
too much.

27
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(b) The average sound pressure using 1 minute subwindows for sensor 5.

(c) The average sound pressure using 2 minutes subwindows for sensor 5.

(d) The average sound pressure using 4 minutes subwindows for sensor 5.

Figure 4.1: The average sound pressure using different subwindow
sizes.

The data from sensor 5 was noisier then other data, hence the need for extra
attention to that sensor when determining the subwindow size. For the average
plots of the additional sensors, see Appendix B. In general all sensors had a trend
and the trends were different for different sensors. The trends for sensor 1 and
2 which were located closely and in similar surroundings lacked similarities. The
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(e) The average sound pressure using 6 minutes subwindows for sensor 5.

(f) The average sound pressure using 10 minutes subwindows for sensor 5.

Figure 4.1: The average sound pressure using different subwindow
sizes.

same was true regarding sensor 3, 4 and 7.

4.2 Stationarity

The Fourier transformed Pearson correlation series, i.e. PSDs, for some of the sub-
windows, whose potential equalness was to be determined, are visible in Figure 4.2
below.
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(a) The PSDs for some subwindows during a boat passage.

(b) The PSDs for some subwindows during background noise.

Figure 4.2: Some PSDs zoomed in on the lower frequencies.

The empirical results of expression 2.7 for each pair of subwindows, for some Y
are showed in figure 4.2. The values in the plot were intended to represent the
expected distribution to be able to set suitable values of the estimated µ and
σ2. Only the terms, corresponding to the frequencies in the plot, are used for
the estimation, and 80 subwindows were used for the estimation due to the time
consumption of the calculations. So, unfortunately the estimations was based on
a small number of subwindows, and only subwindows without boat noise. The µ
and σ2 were obtained as the mean of the means of the frequency and the standard
deviation as the standard deviation of the standard deviation of the values, so that
a somewhat average distribution of the likelihood ratios would be represented.
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Figure 4.2: The empirical limit expression, 2.7, for some pair of
subwindows without boat noise.

The comparison of the Lrat values with the limit, based on the estimated µ and σ2

values and z = −84.5, is seen in Figure 4.3. As seen in the figure, the boat noise is
deemed to be wide sense stationary for a time period of 8 ·0.2 = 1.6 seconds, as the
likelihood ratio is smaller than the limit until the 8th subwindow comparison. The
background noise, is deemed to be wide sense stationary for a time of 5 · 0.2 = 1
second. These results seem reliable, but the time periods are large compared to
0.97 seconds, which was the stationarity of a previous study [17]. The estimation
of the statistical values, hence also the limit values, are not perfectly representative
since the estimation is based on a small amount of subwindows which none includes
boat noise as mentioned. Seen to the PSDs, and the likelihood ratios and limits
of another subwindow as reference window, X, a period of about 1 seconds seem
reasonably generous. In regards of the analysis above, and for convenience a time
frame of 1 second seemed suitable to use in methods requiring stationarity.

(a) The likelihood values and corresponding limit applied to boat noise.

Figure 4.3: The likelihood values and corresponding limit values,
calculated using the estimated µ and σ.
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(b) The likelihood values and corresponding limit applied to background
noise.

Figure 4.3: The likelihood values and corresponding limit values,
calculated using the estimated µ and σ.

4.3 Probabilistic power spectral density

In general the PPSDs applied to long time periods visualized a clear, unique pat-
tern of background noise for each sensor, composed of different sound levels for
each frequency range. The comparison of the short PPSDs of different time frag-
ments partly showed the boat noise contribution.

4.3.1 The difference in background noise at different locations

Figure 4.4a shows the PPSD for data recorded at sensor position 1 during a long
time frame, see Tabule 3.2. The PPSD shows the probability of different frequency
and sound level combinations, with a clear trend. For each frequency range there
was a dominating sound level, occurring a large portion of the time seen as the
more yellowish green in Figure 4.4a. Similar patterns are visible in the PPSDs for
the other sensors as well. This common combinations were assumed to represent
the background noise well. The more common noise, or background noise, of sensor
1 is in the range of 20 to 50 dB re 1 µPa2/Hz. When comparing the PPSD for
sensor 1 and 2, by comparing Figure 4.4a with Figure 4.4b, the background noise
pattern looked similar. For low frequencies, the sound levels at sensor position 2
spanned a wider range than at sensor 1.
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(a) The PPSD during 2 days visualising the background sound at sensor
1.

(b) The PPSD during 2.5 days visualising the background sound at sensor
2.

Figure 4.4: The PPSD during a long time period visualising the
background sound.

The PPSDs for sensor 3, 4 and 6 showed a background noise with similar pattern
of the background noise, as seen in figures 4.4c, 4.4d and 4.4f. The common sound
level for these sensors varied around 35 to 70 dB re 1 µPa2/Hz. The dip in sound
level around 30 kHz for sensor 1 and 2 did not appear for the rest of the sensors.
Instead there was a dip at 50 kHz for these PPSDs.
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(c) The PPSD during 7.5 days visualising the background sound at sensor
3.

(d) The PPSD during 19 days visualising the background sound at sensor
4.

(e) The PPSD during 16.5 days visualising the background sound at sensor
5.

Figure 4.4: The PPSD during a long time period visualising the
background sound.

The background noise logged by sensor 5 and 7 are very similar, as shown in
figures 4.4e and 4.4g. For both PPSDs the common noise levels of lower frequencies
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span a larger range than the background noise for sensor 1, 3, 4 and 6. The
maximum common noise level is about 110 dB re 1µPa2/Hz. In general the
background noise is in the range of about 35 to 80 dB re 1µPa2/Hz. Also these
PPSD showed a dip in the common sound level at 50 kHz.

(f) The PPSD during 19 days visualising the background sound at sensor
6.

(g) The PPSD during 10 days visualising the background sound at sensor
7.

Figure 4.4: The PPSD during a long time period visualising the
background sound.

4.3.2 Comparison to see the boat noise contribution

All PPSDs of the day recordings showed to contain variability and higher noise, for
all frequencies but the lowest, compared to the PPSDs of night data without rain
which will be seen below. Further, the amount of noise shifted between different
sensors.
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Especially for sensor 1 and 2, the boat noise was distinct. The PPSD of boat noise
shown in Figure 4.5a contained noise that was distinctly more frequent than other
noise, apart from the background noise seen in Figure 4.5b. For the corresponding
plots of the recordings from sensor 2, see Appendix C. The more frequent noise is
seen in the frequencies 1 to 20 kHz. The boat noise, at a maximum reached noise
levels of about 60 dB re 1 µPa2/Hz compared to the background noise at about
50 dB re 1µPa2/Hz or 40 dB re 1 µPa2/Hz during night.

(a) The PPSD during 3 hours containing boat passages for sensor 1.

(b) The PPSD during 3 hours in the night for sensor 1.

Figure 4.5: PPSDs during 3 hours, to give a sense of the boat noise
contribution.

Comparing the PPSDs of night and boat noise for the other sensors, the added
noise is in a large range of frequencies, and the typical level and frequency combi-
nation of boats is not as distinct as in previous PPSDs. For the PPSD of sensor
3 in Figure 4.5c, there is a faint but still somewhat more probable area of noise
between 1 to 10 kHz reaching 80 dB re 1µPa2/Hz, which is higher than the back-
ground noise. Also at 100 Hz, there was a large increase in the sound levels in
the PPSDs including boats. A similar increase was seen in the comparisins of the
PPSDs for all sensors.



Results 37

For sensor 6, there is no such field visible in Figure 4.5e. The sound at all frequen-
cies higher than 200 Hz, cover a broader range of sound levels and the background
noise in the PPSD of the boat noise, is not as distinct as in the PPSD of night
data, see figure 4.5f.

(c) The PPSD during 3 hours containing boat passages for sensor 3.

(d) The PPSD during 3 hours in the night for sensor 3.

(e) The PPSD during 3 hours containing boat passages for sensor 6.

Figure 4.5: PPSDs during 3 hours, to give a sense of the boat noise
contribution.
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(f) The PPSD during 3 hours in the night for sensor 6.

Figure 4.5: PPSDs during 3 hours, to give a sense of the boat noise
contribution.

The comparison of the other sensors, were of a similar result. See Appendix C for
the corresponding figures.

4.4 Energy detection

Below the basis of elaboration, and the validation of the detector is presented.

4.4.1 Choice of subwindow size

The resulting energy detector output for different subwindow sizes are visible be-
low. For shorter subwindows some noise was visible, while longer seem to result
in slightly too low resolution. Seen to the energy levels in the short subwindow, a
subwindow of 20 seconds seemed reasonable both in times of and without precip-
itation, see figures 4.6 and 4.7. The boats registered by the radar are marked by
a dashed line in the energy ratio plots of the time when the radar was used. For
some of the times of application of the detector no radar data was available. For
comparison of all subwindow sizes see Appendix D.

4.4.2 The resulting detector, partly during rain

The histogram in Figure 4.8 shows the false negative, true and false positive boat
flags for each sensor and the mean values. I.e. missed, detected and falsely detected
boat passages.

The number of detected boats were highest for sensor 1 and 2. The missed and
falsely detected passages were least for the same sensors. Sensor 5 had the highest
number of falsely flags, but still missed almost all boats, only a few passages were
detected. In general, except for sensor 5, the number of falsely detected boats was
low, while the detected passages constitutes approximately 35% of the number of
registered boats.
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Figure 4.6: The energy level of the short subwindow for subwindow
size 20 seconds, sensor 1.

Figure 4.7: The energy level of the short subwindow for subwindow
size 20 seconds, sensor 1, during heavy precipitation.

For all sensors the energy ratio level usually fluctuated around 0, with dips and
tops. The performance of different sensors varied.

The calculated energy detector output for sensor 1 in Figure 4.9a, shows several
clear and distinct energy peaks that coincides well with the radar data. Some
energy peaks were smaller than the threshold of 5 dB and not marked as boats,
for example at 12:27 and 14:14. At some additional times the energy peaked, but
the energy peak was very low. At for example 12:58, 13:38 and 15:15 the peaks
were high but no boats were detected by the radar.
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Figure 4.8: The performance of the energy detector in form of de-
tected, falsely detected and missed boats.

The energy detection for sensor 2 in Figure 4.9c was similar to the detection for
sensor 1, both in regards to performance and correlation in energy curve. The
energy peaks in both plots followed each other pretty accurately. Just as above
some energy peaks in the curve were not marked as boats, for example 12:14, 12:30
and 13:00, some of those peaks such as 12.14 were high but surrounded by negative
energy dB values and thus not deemed as detected boats.
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(a) The result of the energy detector for sensor 1.

(b) The registered boats and the distance between the boats and the
sensor.

Figure 4.9: The energy detection result and the registred boats by
the radar.

The energy detector applied to sensor 3 flagged several distinct peaks but also
missed many registered boat passages, as shown in Figure 4.9e. At several in-
stances of nonflagged boats, the energy barely gave rise to a peak or a very low
peak, for example at 12:01, 12:42 and 13:43. This, despite some of these registered
boats were very close to the sensor, as seen in Figure 4.9f. In addition to the
detected and missed boats, the general level of the peaks was low. Some peaks, at
14:28 and 14:45 for example were large and broad.
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(c) The result of the energy detector for sensor 2.

(d) The registered boats and the distance between the boats and the
sensor.

Figure 4.9: The energy detection result and the registered boats by
the radar.

The energy levels for sensor 4 had similarities to the one for sensor 3, shown in
Figure 4.9g. The detector flagged some distinct peaks, but missed most of the
registered boats. Often at these times of registered boats there was no peak at
all. All boats previous to 12:25 and several between 12:30 and 12:45, were located
more than 1 km away. During some of the close registered passages the energy
level did not peak at all. Further, some of the distinct energy peaks were not close
to registered passages.
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(e) The result of the energy detector for sensor 1.

(f) The registered boats and the distance between the boats and the sensor.

Figure 4.9: The energy detection result and the registered boats by
the radar.

The data of sensor 5 was, as mentioned, very noisy and that was evident also
in the energy levels in Figure 4.9i. Regarding the flagged boats many passages
were flagged but many of those times were not within the two minute margin to
registered boats. Some of the really close detected boats, about 100m away, with
exceptions at 13.27, were distinctly detected.
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(g) The result of the energy detector for sensor 4.

(h) The registered boats and the distance between the boats and the
sensor.

Figure 4.9: The energy detection result and the registered boats by
the radar.

Also for sensor 7 there were fewer but still distinct boats, as seen in Figure 4.9k.
The flags corresponded to boats with varying distance to the sensor. Some of the
close registered boats did not correspond to a peak in the energy plot. Further,
the energy was more noisy between 12:45 to 13:30 compared to the rest of the
plot.

4.4.3 The resulting detector during heavy precipitation

The energy detector was applied as previously stated also to time periods of heavy
precipitation to see if the performance shifted. The noise among the energy level
ratios differed remarkably between the sensors. For some sensors, the passages of
the boats could be clearly distinguished without false detections, as in Figure 4.10a.
For other sensors, the energy levels were very noisy and the boat noise and other
noise could not be distinguished successfully. Figure 4.10b shows this case with
only false detections, which was verified by data spectrograms.
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(i) The result of the energy detector for sensor 5.

(j) The registered boats and the distance between the boats and the sensor.

Figure 4.9: The energy detection result and the registered boats by
the radar.
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(k) The result of the energy detector for sensor 7.

(l) The registered boats and the distance between the boats and the sensor.

Figure 4.9: The energy detection result and the registered boats by
the radar.
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(a) The energy detection result for sensor 1.

(b) The energy detection result for sensor 3.

Figure 4.10: The energy detection result during a rainy period.
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Chapter 5
Discussion

5.1 Overview

Overall, background noise at the different locations was established through the
PPSDs. The probable main factors of the similarities in the noise, where seabed
geometry and logger type. The energy detector functioned reasonably well for
recordings without precipitation, depending on the use of application. Setting a
different threshold might adopt the detector for another use and specifying the
frequency range might improve the detector. The application of ESPRIT did not
work out well, and it was disregarded as a potential detector.

5.2 Bias

Evidently, there was a bias in the data. The fluctuations in the bias possibly
depended on differences in the static pressure that were not picked up by the
hydrophones. In the plots of the average values, a subwindow of 10 minutes
seemed reasonable and was used for the bias removal in the other methods. Of
course, the size of the subwindow involves a trade-off between noise and being able
to see the structure of the bias, as hinted in Section 3.2.

5.3 Stationarity

The final result of the stationarity analysis was that data have wide sense sta-
tionarity for a time frame of 1 second. This result seemed reasonable as observed
in the PSD plots, the equality test based on estimated limits, and the reference
value of stationarity in the sea of 0.97 seconds from a previous study. The equality
test was one alternative among several stationarity tests and was chosen due to
its usual solidity.
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5.4 Probabilistic power spectral density

The PPSD that spans a long time frame included recordings of varying weather
and of nights, and thus a relatively low proportion of boats. Due to this, the
statistics contained by the PPSDs in general were considered to be a relatively
good representation of the background noise.

The background noise was distinct at all sites and in all frequencies, but the lowest
ones. Sensors 1 and 2, sensor 3, 4 and 6, and sensor 5 and 7 showed similarities
in background noise, with background noise levels shifting between 20 to 50, 35 to
70 respectively 35 to 80 dB re 1 µPa. A probable cause of these similarities were
the positions of the sensors. Sensor 1 and 2 were located close, in a similar depth,
and farther away from the islands, probably explains the lower background noise
levels. Also, they were of the same sensor type.

Sensor 3, 4 and 6 were located in similarly shallow water. Although sensor 3 and 4
were very closely located and were of logger-type Soundtrap, sensor 6 was farther
away, closer to sensor 7. Potentially this is partly due to the high pass filter effect
in shallow water, making the background noise at sensor 6 more similar to the
others.

Sensor 5 and 7 were placed in very different locations, with different seabeds,
depth and structure. The sensors were of the same sensor type, DSG. In addition,
weather is a probable contribution of similar recorded noise. The potential effect
of the vertical rock at sensor location 5 can not be excluded. In general, one
should be careful not to draw strong conclusions out of this. These factors do
have an effect on background noise, but the extent should be verified by further
investigation.

In all sensors, except for the first two, the sound levels reached a floor. This can
be explained by the electrical self-noise of these sensors, making it impossible for
those types of sensors to measure levels below about 35 dB.

Furthermore, the dip mentioned in Section 4.3.1 at frequency 50 kHz in sound
level seen in all PPSDs except, for sensor 1 and 2 which had a higher sampling
frequency, can be explained by the Nyquist frequency of 48 kHz. Since the max-
imum frequency in the bin was 50 kHz and only frequencies up to 48 kHz were
obtained from the signal, the total level of sound in the bin was lower, and thus a
lower level of these frequencies was shown even though such low levels could not
be recorded by the sensor due to the self noise.

Regarding the noise contribution from the boats, the initial intention was to com-
pare PPSDs of long and short time frames, as the PPSD applied to a short window
with the boats would include statistics of a high proportion of the boats. This
method turned out to be non-successful. Probably because of the large period of
rain in the long windows, making it challenging to distinguish boat and rain noise
since these could overlap in frequency and level. Instead, the approach with two
short PPSDs described in Section 3.2 was used.

This approach with two PPSDs of short frames has its limitations, but could give
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an indication of the boat noise contribution. Especially for sensor 1 and 2 the
method was successful in indicating boat noise. At least the distinct noise fields
seen there were caused by boats. Whether the boats also caused noise outside the
typical frequency and sound levels, we cannot be completely sure without being
able to exclude other causes of noise, such as precipitation. This is due to the
variation of boat noise both in frequency and sound levels potentially contributing
to the probability in other bins. As mentioned, a key for identifying boats is their
continuous noise profile, whereas rain has a more irregular noise profile. Since the
PPSD does not measure continuous sound, but rather accumulated sound, the rain
noise and the boat noise appear virtually the same. Thus, variations in boat noise
appear in the same way as rain noise, and there is no evident way of distinguishing
them from one another. For example, a long lasting rain and a single subsequent
boat passage with overlapping noise seen to frequencies and sound levels can not
be distinguished with this method.

The PPSD for sensor 3 also showed a more probable, but faint, field of noise
for typical boat noises. For the other sensors, no conclusions about boat noise
could be drawn. In addition, sensor 3, 4, and 5 were located in a natural harbor,
and the data contained boats idling and moving at low RPM. Additionally, the
formation of rocks reflected the noise, and some of the boat noise contribution did
probably appear in nontypically high noise levels within their frequency range in
those PPSDs.

Consequently, it is crucial that there is no noise contribution caused by precipita-
tion in a PPSD, to be able to draw conclusions about the boat noise. In case of
rain, it will only, at most, be possible to get an indication of distinct frequency and
sound level combinations of the undoubtedly most common boat noise. Choosing
a variation of time intervals or in combination with other analysis tools, it may be
possible to draw more conclusions based on the PPSD.

5.5 The energy detector

The choice of subwindow sizes tested was based on the time of a typical boat
passage. A short window was desired to prevent broadband rain noise with a
semi-high sound level from being mistaken for boat passages. Furthermore, the
aim was to detect boat passages even if the windows did not align perfectly with
the passages, considering that they typically lasted 2-3 minutes. The choice was
also supported by the analysis of broadband noise levels performed by Matzner,
who also used 20 second windows [10].

5.5.1 Applying the detection method to the time of radar data capturing

The number of missed, detected and falsely registered boat passages in Figure 4.8
was given in numbers instead of percentage, as there were only 26 observations due
to a limited data collection period. Even though more observations are preferred
for modeling and more robust testing, it is still possible to draw some conclusions.
Further conclusions could likely have been drawn based on controlled measure-
ments, for instance conclusions about the propagation of the boat noise, but it is
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very resource-intensive to conduct such measurements over a long period of time.
However, before conclusions are drawn, some analysis of what could be observed
in the energy level plots is necessary.

Conceptual weaknesses of the detector

As seen the energy dB values usually fluctuated around 0. This is when the values
in the long and short subwindows are the same, ideally when there is no additional
energy, such as boat noise, in the short subwindow. The negative values appear
when the long window goes from excluding to including a lot of boat noise, and the
short subwindow thus includes less mean energy than the long subwindow. This
complicates the detection of boats that cause an energy peak in an energy dip of
negative values, as seen in the plot 4.9c for sensor 2. It potentially also complicates
the analysis of the result, since it can be tricky to distinguish if the increase in
energy is caused by the phenomena explained, by a boat or any other transient
sound source. In the energy plot of some sensors this phenomenon further appears
in a series. Whether the energy shifts are caused by the phenomena or by boats
can be partly verified on the basis of if the decrease corresponds well to increase of
energy levels during the boats, and if the time distance to the boats and negative
values correspond to one half of the long subwindow time frame. It can also be
verified by looking at the energy level plots in the short subwindows.

Another weakness of the detector concept is that of long boat passages. The
detector will not be able to capture boat passages with a high and unison energy
level during a time frame longer than the long subwindow. Cases of this, ex long
idling, appeared for the sensors located in the natural harbor and was amplified by
the reflection in the formation, but were considered acceptable to gain generality
of the method.

Difficulties in the performance analysis

The performance analysis of the detector was complicated due to the strict time
margin, due to difficulty if several of boats were captured in the same peak, boats
not being registered by the radar and boat passages that are far off or with an
island in between the boat and the sensor.

The performance analysis of the energy detector was very basic, and a slightly
larger margin of time distance between flags and registration would in some cases
have led to flags being categorized as detections instead of false detections. Spe-
cially in cases where the registered start or end times of passages were off. Perhaps
these cases impose a skewness in the results. In addition, some boats were not
necessarily registered by the radar, as mentioned in Section 3.1.3. This case was
the energy peak at 12:58 seen in most sensor plots. That boat passage was verified
on a spectrogram.

Some cases of bad statistical performance of the detector are maybe best explained
by the location of the sensor or the boat. In such cases, missed boats should not
be a concern, but it require further analysis to know which these occurrences are.
Probably some cases for sensor 3 and 4 are such cases, since they are located
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between islands and some registered boats are not visible in form of noise in the
spectrograms at the times.

The effect of precipitation noise in the data

The inclusion of precipitation noise in the data strongly effect the performance
of the energy detector, both causing missed and false detections. Uniformity in
the rain is not necessarily challenging for the detector, since it is compensated for
by the long subwindow. But because of superposition, the rain partly hides the
broad-band component of the boat noise and it takes that the boat noise is very
loud for a boat to get detected. This is the case for the missed boats for sensor 7
in Figure 4.9k.

The other challenge related to precipitation is varying precipitation. The difference
in noise levels for the sensors is probably due to the variation in uniformity of
precipitation. Also, the noisy period in the plot of sensor 7 and the noise in sensor
5 are due to rain.

Improvements of the energy detector

Perhaps the detector applied to periods of varying precipitation could be improved
by using a standard deviation-based threshold, since the energy during rain was
more noisy. In contrast to a threshold of a certain value, a standard deviation-
based threshold would be based on statistics of the energy ratios, and the detector
could be configured so that it would only flag energy ratios that are distinctly
higher than the noise.

Potentially, the energy detector could also be improved by focusing on the en-
ergy within specific frequency ranges. This is enabled by Parserval’s theorem,
which, as mentioned, enables energy calculation through the Fourier transformed
signal. The ranges could then be set to include the typical frequencies of the boat
noise. Unfortunately, the frequencies of boat passages partially coincide with the
frequencies during rain, so the problem with rain would still not be completely
resolved.

It would be good with a precision recall analysis to be able to draw more conclu-
sions about the potential of the method and to be able to set a threshold according
to the purpose of the detector. For this precise threshold, the detector may not be
good at catching all boats but did flag about half of the passages when it is not
raining.

In summary, the detector applied to rainy periods usually decreases the preci-
sion but can successfully catch obvious cases of boat noise. During varying rain
intensity, the energy is very noisy and the performance is poor since the energy
generated from rain and boat passages can then not be distinguished. These cases
are somewhat apparent by looking at the curves. Perhaps it could be compen-
sated for by another threshold approach. The alternative approach to limit the
frequency range included in the energy would probably not make the detector
perfect, but it would improve it significantly.
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5.5.2 The ESPRIT method as an alternative

An alternative approach to boat detection is to focus on the tones generated by
the engine of the boats. One such algorithm mentioned is ESPRIT. ESPRIT was
applied according to the summation of the algorithm in Section 2.3.3, but it was
not considered successful for the detection of the boat without the possibility of
rigorously testing several combinations of the model parameters, using AIC or
MDL. Seen to the frequency, relative amplitude, or pattern of tones, there was no
obvious way to determine if a boat caused the tones. The frequency and pattern
of tones was very similar no matter if a boat was present; see the Appendix A.
In addition, the relative amplitudes of all estimated tones were very high, about
0.97, making it impossible to reject any tones or draw any conclusions based on
that.

With more time, it could be worth investigating ESPRIT together with AIC or
MDL further, as the tonal components are the strongest characteristics of boat
noise. Assuming that boat noise always includes more than one tone, this ap-
proach could be successful: ESPRIT finds the most probable frequencies of a
signal that is assumed to consist of one or several tones, and AIC/MDL deter-
mines the optimal number of tones. So, if the data are found to include only one
tone, it could potentially be assumed that there is no boat. Else, the tones could
be the fundamental tone and the overtones. However, the parameters of the im-
plementation should be carefully tested, as the simulation showed that the choice
of model parameters was decisive.

Potentially the poor result was due to a low SNR and non-filtered background
noise, a requirement of the algorithm. This choice was to avoid potential intro-
duction of corruptions in the data, but the intention was to test both versions if
the nonfiltered data application would not be successful. If the frequency of the
detected tones would have been very low, and thus not caused by boats or rain,
the background noise would most definitively have been the cause of the tones.
Some low frequency tones were expected, especially since the dominant tones of
the background noise were in lower frequencies for sensor 1 4.4a, but that was not
the case. Hence, the result could potentially be improved by filtering the back-
ground noise, but not certainly. Maybe adjusting the parameters K, dim(S +N)
and the application time frame could give rise to results where boat noise can be
excluded, but due to time constraints, the approach was bypassed.
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Conclusion

Q1 - To give an overview of how the background noise and boat noise
varies in different locations and geomorphological conditions, using spec-
tral statistics:

Using the long PPSDs, an overview of the background noise at the different lo-
cations of recordings was obtained. The background noise was seen as the most
probable combinations of frequency and noise level, and varied between 20 to 50,
35 to 70 respectively 35 to 80 dB re 1µPa in the measured frequencies. The ge-
ometry of the seabed seems to be one of the main factors affecting the background
noise, which seem plausible. Furthermore, the background noise pattern was more
similar for sensors of the same logger type.

Using two short PPSDs, the least estimate of the boat noise contribution could
be obtained. For sensor 1, 2 and 3 the boat noise was in the range of 1 to 20 Hz
and 60, 70 respectively 80 dB re 1 µPa2/Hz at the specific times of the PPSDs.
This method of quantifying boat noise relied heavily on the absence of other sound
sources, such as precipitation or biological noise. Using, for example, spectrograms
or other additional tools, the conclusions could be strengthened but are still limited
for recordings containing rain.

Q2 - To identify boat noise in recorded underwater noise using a energy
detector; a signal processing method - and to evaluate the method based
on real data, as well as briefly outline alternative conceptual possibilities
in detecting boat noise:

The energy detector constructed was a version based on two subwindows, one short
and one long to compensate the varying background noise. The resulting energy
detector detected about 40 % of the boat passages registered by the detector and
the rest were missed. Only a small percentage of the flags were false detections,
except for sensor 5, which contained precipitation noise. In general, the detector
performed poorer when applying it at times of rain than otherwise. Maybe a
different threshold could improve this. In general, a precision-recall analysis would
be desired to be able to evaluate the performance of the algorithm more adequately.
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The alternatives of concept for boat noise detection are energy detection, tone
detection, and detection of series of tones. The detector in this thesis utilized
energy levels, but this implied conceptual weaknesses that the other alternatives
did not possess, such as compensating energy in the background noise and distin-
guishing precipitation and boat noise. Thus, the other alternatives could be worth
investigating further.
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Appendix A
Plots of the ESPRIT application

A.1 Plot of the simulation and tones detected by ESPRIT

The tones detected during a boat passage and during the usual noise using ES-
PRIT. As seen in figure A.1 the tones as well as the pattern of the tones are similar.
Neither the corresponding relative amplitude in each application of the algorithm
was useful in finding out if there was a boat, since these were close in size, usually
about 0.98 out of the range between 1 and 0.

The parameters here, K and dim(S + N), are set to 15 respective 2 ∗ K + 2.
However, no significant effect was reached using dim(S+N) = 100. Probably, the
combination of the parameters is important.

Figure A.1: The detected tones during a boat passage and during
usual noise using ESPRIT.

The verification of the ESPRIT algorithm being correctly implemented is visible
in figure A.2 below. The Fourier transform of the signal shows that there are 3
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60 Plots of the ESPRIT application

sinusoidal components. The parameters K and dim(S+N) are set to 3 respectively
100.

Figure A.2: The simulation of ESPRIT.



Appendix B
Plots for the bias removal

B.1 Plots of the average sound pressure values for different
subwindow sizes

Here are the additional sensor plots for the bias removal investigation, except for
sensor 6 which was not measuring at the time. The plots show the average values
when using different subwindow sizes.

B.1.1 Sensor 1

(a) The mean sound pressure using 30 seconds subwindows for sensor 1.

Figure B.1: The mean sound pressure using different subwindow
sizes for sensor 1.
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(b) The mean sound pressure using 1 minute subwindows for sensor 1.

(c) The mean sound pressure using 2 minutes subwindows for sensor 1.

(d) The mean sound pressure using 4 minutes subwindows for sensor 1.

Figure B.1: The mean sound pressure using different subwindow
sizes for sensor 1.



Plots for the bias removal 63

(e) The mean sound pressure using 2 minutes subwindows for sensor 1.

(f) The mean sound pressure using 10 minutes subwindows for sensor 1.

Figure B.1: The mean sound pressure using different subwindow
sizes for sensor 1.

B.1.2 Sensor 2

(a) The mean sound pressure using 30 seconds subwindows for sensor 2.

Figure B.2: The mean sound pressure using different subwindow
sizes for sensor 2.
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(b) The mean sound pressure using 1 minute subwindows for sensor 2.

(c) The mean sound pressure using 2 minutes subwindows for sensor 2.

(d) The mean sound pressure using 4 minutes subwindows for sensor 2.

Figure B.2: The mean sound pressure using different subwindow
sizes for sensor 2.
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(e) The mean sound pressure using 6 minutes subwindows for sensor 2.

(f) The mean sound pressure using 10 minutes subwindows for sensor 2.

Figure B.2: The mean sound pressure using different subwindow
sizes for sensor 2.

B.1.3 Sensor 3

(a) The mean sound pressure using 30 seconds subwindows for sensor 3.

Figure B.3: The mean sound pressure using different subwindow
sizes for sensor 3.
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(b) The mean sound pressure using 1 minute subwindows for sensor 3.

(c) The mean sound pressure using 2 minutes subwindows for sensor 3.

(d) The mean sound pressure using 4 minutes subwindows for sensor 3.

Figure B.3: The mean sound pressure using different subwindow
sizes for sensor 3.
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(e) The mean sound pressure using 6 minutes subwindows for sensor 3.

(f) The mean sound pressure using 10 minutes subwindows for sensor 3.

Figure B.3: The mean sound pressure using different subwindow
sizes for sensor 3.

B.1.4 Sensor 4

(a) The mean sound pressure using 30 seconds subwindows for sensor 4.

Figure B.4: The mean sound pressure using different subwindow
sizes for sensor 4.
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(b) The mean sound pressure using 1 minute subwindows for sensor 4.

(c) The mean sound pressure using 2 minutes subwindows for sensor 4.

(d) The mean sound pressure using 4 minutes subwindows for sensor 4.

Figure B.4: The mean sound pressure using different subwindow
sizes for sensor 4.
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(e) The mean sound pressure using 6 minutes subwindows for sensor 4.

(f) The mean sound pressure using 10 minutes subwindows for sensor 4.

Figure B.4: The mean sound pressure using different subwindow
sizes for sensor 4.

B.1.5 Sensor 7

(a) The mean sound pressure using 30 seconds subwindows for sensor 7.

Figure B.5: The mean sound pressure using different subwindow
sizes for sensor 7.
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(b) The mean sound pressure using 1 minute subwindows for sensor 1.

(c) The mean sound pressure using 2 minutes subwindows for sensor 1.

(d) The mean sound pressure using 4 minutes subwindows for sensor 7.

Figure B.5: The mean sound pressure using different subwindow
sizes for sensor 7.
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(e) The mean sound pressure using 6 minutes subwindows for sensor 7.

(f) The mean sound pressure using 10 minutes subwindows for sensor 7.

Figure B.5: The mean sound pressure using different subwindow
sizes for sensor 7.
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Appendix C
Additional PPSD for boat noise contribution

The PPSDs for the night and the boat passages data for the additional sensors are
shown below. The conclusions based on the analysis of the PPSDs in the following
are equal to those in the chapter 5.

(a) The PPSD during 3 hours containing boat passages for sensor 2.

(b) The PPSD during 3 hours in the night for sensor 2.

Figure C.1: PPSDs during 3 hours, to give a sense of the boat noise
contribution.
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(c) The PPSD during 3 hours containing boat passages for sensor 4.

(d) The PPSD during 3 hours in the night for sensor 4.

(e) The PPSD during 3 hours containing boat passages for sensor 5.

Figure C.1: PPSDs during 3 hours, to give a sense of the boat noise
contribution.
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(f) The PPSD during 3 hours in the night for sensor 5.

(g) The PPSD during 3 hours containing boat passages for sensor 7.

(h) The PPSD during 3 hours in the night for sensor 7.

Figure C.1: PPSDs during 3 hours, to give a sense of the boat noise
contribution.
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Appendix D
Plots for the energy detector

D.1 Plots for the different short subwindow sizes

Below the plots for the different short subwindow sizes. The application period
also included precipitation at some sensor locations.

(a) The energy level of the short subwindow for subwindow size 1 second,
sensor 1.

Figure D.1: The energy level of the short subwindows of different
size, sensor 1.
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(b) The energy level of the short subwindow for subwindow size 10 seconds,
sensor 1.

(c) The energy level of the short subwindow for subwindow size 30 seconds,
sensor 1.

(d) The energy level of the short subwindow for subwindow size 1 minute,
sensor 1.

Figure D.1: The energy level of the short subwindows of different
size, sensor 1.
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(e) The energy level of the short subwindow for subwindow size 2 minutes,
sensor 1.

(f) The energy level of the short subwindow for subwindow size 5 minutes,
sensor 1.

Figure D.1: The energy level of the short subwindows of different
size, sensor 1.
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D.1.1 Plots for the different short subwindow sizes during heavy precip-
itation

(a) The energy level of the short subwindow for subwindow size 1 second,
sensor 1, precipitation.

(b) The energy level of the short subwindow for subwindow size 10 seconds,
sensor 1, precipitation.

(c) The energy level of the short subwindow for subwindow size 30 seconds,
sensor 1, precipitation.

Figure D.2: The energy level of the short subwindows of different
size during precipitation, sensor 1.
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(d) The energy level of the short subwindow for subwindow size 1 minute,
sensor 1, precipitation.

(e) The energy level of the short subwindow for subwindow size 2 minutes,
sensor 1, precipitation.

(f) The energy level of the short subwindow for subwindow size 5 minutes,
sensor 1, precipitation.

Figure D.2: The energy level of the short subwindows of different
size during precipitation, sensor 1.
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D.1.2 The result of the detector when raining heavily

(a) The energy detection result for sensor 2.

(b) The energy detection result for sensor 4.

(c) The energy detection result for sensor 5.

Figure D.3: The energy detection result during precipitation.
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(d) The energy detection result for sensor 6.

(e) The energy detection result for sensor 7.

Figure D.3: The energy detection result during precipitation.
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