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Abstract 

Over the past two decades, the integration of sensor technology, automation, and data 

analysis has seen increasing use in agricultural applications. Dry matter content as 

percentage (DMCaP), defined as the ratio of dry mass to fresh mass, is an essential 

quality parameter for forage. In this thesis, we utilized in-situ measurements of DMCaP 

obtained from forage grasslands to evaluate the capabilities of Sentinel-2 data, and 

combined with environmental variables in estimating community-level DMCaP in 

forage grasslands in Southern Norway. Two types of models were developed: an 

interpretable model and a Random Forest Regression (RFR) model. The RFR model 

demonstrated superior performance compared to the interpretable model, exhibiting a 

high potential for accurately estimating DMCaP (RMSE = 3.88%). Adding 

environmental variables further improved the accuracy (RMSE = 2.90%). For the 

interpretable model, little difference was observed in the use of different vegetation 

indices. Despite the inherent uncertainties in the data, the RFR model proved to be a 

viable option for estimating DMCaP in local-scale forage grasslands. This study 

underscores the potential of satellite remote sensing for estimating the DMCaP quality 

factor in agricultural applications, providing valuable insights for the forage-harvesting 

process and pasture management. It addresses the gap in estimating vegetation dry 

matter content between the agricultural and academic communities, as well as the 

limitations observed in previous studies when matching satellite and in-situ data pairs.  

Keywords: dry matter content, machine learning, remote sensing, forage grasslands, 

vegetation index 
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1. Introduction 

The continuing growth of the world population requires effective agricultural practices 

to provide sufficient food. Animal-based food (meat, dairy, eggs) currently plays a 

crucial role in global food supply, with the European region having the highest level of 

consumption of animal-based foods, and the demand for animal-sourced food is still 

predicted to increase from a global perspective (Henchion et al., 2021). Technological 

innovation has greatly influenced the society over the past two decades, which has been 

labelled the fourth industrial revolution (Shepherd et al., 2018). These technological 

advancements have also had a large impact on food systems, and livestock systems in 

particular, is on the cusp of a ‘revolution’ with the use of sensor technology, automation, 

and big data along with data analysis (Barrett & Rose, 2022; Newton et al., 2020).  

Forage grasslands, also known as pastures, are for forage production and harvest by 

grazing, cutting or both (Allen et al., 2011). They have been estimated to represent 26% 

of the global land area and 70% of the agricultural area (Conant, 2010). From the 

perspective of agricultural industry, they provide the most cost-effective source of 

herbage for the livestock sector. Forage crop could be fed directly to livestock through 

grazing or in a processed form, such as partial drying (as hay) or pre-digestion (as silage) 

(Capstaff & Miller, 2018).  

The dry matter content (DMC) of forage, which refers to the solid substances that 

remain after water has been removed. The composition of DMC includes water-soluble 

carbohydrates, proteins, lipids, fibers and other chemical and structural compounds. 

The dry matter content as percentage (DMCaP), which is defined as the ratio of forage 

dry mass to fresh mass, is an essential quality parameter for getting the maximum yield 

of nutrients and producing palatable forage. DMCaP could indicate the nutritional and 

energy level of forage, and thus, provide feeding guidance to animal keepers (Capstaff 

& Miller, 2018).  

DMCaP is especially important when engaging in silage production practices. The 

silage-making process involves the following phases: the initial aerobic condition in a 

silo immediately after harvesting, the fermentation phase after compacting and sealing 

to exclude air, the stable storage phase and finally the animal-feeding phase (Wilkinson 
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& Davies, 2013). The proper DMCaP value at harvesting ensures good fermentation 

and optimum intakes while minimizing the risk of aerobic instability (Grassland guide: 

Grass nutritional value, n.d.).The ideal range of DMCaP for making silage is between 

20% and 40% depending on the incoming type of silage, for example, the optimal range 

for grass is 25% to 30%. The silage would have a lower nutrition level and may spoil 

with very low DMCaP, whereas too high DMC would make it difficult to ferment 

(Getting Silage Dry Matter Right, n.d.). 

A conventional and the most precise method to determine DMCaP is the gravimetric 

method through destructive cutting (Hopkins, 2000). Portable field near-infrared 

spectroradiometers have also been used to estimate DMCaP (Cevoli et al., 2022). 

However, either of these two methods is small-plot based, and could be time-consuming 

and labor-intensive. Remote sensing provides spectral, temporal and spatial information, 

enabling the estimation of DMCaP of extensive areas simultaneously. This approach 

minimizes the need for field measurements and laboratory procedures, ultimately 

easing efforts of monitoring DMCaP for agricultural practices. 

Both DMC and Water Content (WC) are involved in estimating DMCaP. Past studies 

have mostly focused on estimating leaf-level traits of DMC and WC using RS (e.g., 

Wang et al. (2011), Yilmaz et al. (2008), and Shah et al. (2019)). Few studies have 

explored community-level DMCaP. Li et al. (2018) developed a linear model using 

field-measured community-level plant DMCaP and Landsat-8 vegetation indices (VIs) 

to estimate DMCaP of Alphine Grasslands for the whole Qinghai-Tibetan Plateau, 

showing the highest accuracy (R2 =0.53, rRMSE = 0.144) of using enhanced vegetation 

index (EVI) in comparison with other indices. Bretas et al. (2021) modelled the 

relationship between community-level DMCaP and Landsat-8/ Sentinel-2 VIs 

combined with meteorological data to predict DMCaP in four pastures in Brazil, where 

Random Forest (RF) algorithm had the best performance (R2 = 0.85, rRMSE = 0.079) 

among all models. These models were built based on simple linear regression and/or 

machine learning algorithm. Both studies linked field and satellite measurements by 

extracting the closet pixel values with respect to the individual field sampling locations 

and dates, which could result in significant errors with respect to timeliness. To date, 

very little is known about the potential of utilizing satellite remote sensing to monitor 

community-level DMCaP in pastures for agricultural purposes in Northern Europe.  
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The overall aim of this study is to explore the capabilities of primarily Sentinel-2 

satellite data, and combined with environmental variables, in estimating DMCaP in 

local-scale forage grasslands in Southern Norway. Mapping DMCaP would provide 

valuable insights in forage-harvesting process and pasture management. Three 

objectives of this study are as follows:   

1) Development of models for estimating community-level DMCaP by utilizing 

primarily Sentinel-2 data. The aim is to establish a robust framework that bridges the 

temporal gaps and overcome the limitation of temporal inconsistency between field 

measurements and satellite data. 

2) Evaluation of the performance of the interpretable model and the Random Forest 

Regression (RFR) model in estimating forage grasslands DMCaP. The evaluation will 

be conducted using a regional-scale dataset of community-level DMCaP samples. 

3) Upscaling of plot-based measurements to the entire field using the model of the best 

performance, and analysis of spatial and temporal variation of DMCaP.       
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2. Background 

2.1 Satellite Remote Sensing 

Remote sensing (RS) refers to techniques that observe objects from a distance without 

direct contact (Lillisand et al., 2008). It started from afar when creating maps with the 

use of balloons, and nowadays, the term RS refers to data acquired from satellites and 

airborne platforms carrying optical and radar sensors, as well as airborne surveying and 

photogrammetry (Campbell & Wynne, 2011). To distinguish between different 

platforms, depending on how far the platform is from the ground, RS could be broadly 

categorized to satellite-based, airborne-based and ground-based. Satellite RS refers to 

the satellite equipped with sensors collecting data about the Earth’s surface and 

atmosphere. 

Depending on the type of the sensor, RS technologies can be broadly categorized into 

two types: passive RS and active RS. Passive RS relies on detecting natural radiation 

emitted or reflected by an external source, such as the sun, not by the sensor. This can 

include visible (VIS) and near-infrared (NIR) radiation from the sun, as well as thermal-

infrared (TIR) radiation emitted by the Earth's surface. Passive sensors, such as 

photographic cameras and radiometers, are also referred to as optical sensors.  

Examples of passive RS applications include land cover mapping (Kroupi et al., 2019), 

vegetation monitoring (Li et al., 2018), grassland management (Xu et al., 2019), and 

atmospheric composition analysis (Clarmann et al., 2002). Active RS, on the other hand, 

captures the reflected or backscattered signal emitted by the sensor. Typical active 

sensors include radar, lidar and sonar. Examples of active RS are topography mapping 

(Lo Re et al., 2018), lake volume monitoring (Cretaux et al., 2016), vegetation 

assessment (Zhang & Shao, 2021), and ocean properties retrieval (Behrenfeld et al., 

2022). Both optical and active RS have limitations, and the former is often influenced 

by cloud cover, while the latter can penetrate through clouds but with higher noise level. 

2.1.1 Optical and active sensing in monitoring vegetation 

Optical and active RS have been both employed to monitor vegetation. The utilization 

of RS data for vegetation monitoring relies on the sensitivity of electromagnetic (EM) 

radiation within their respective spectral range to specific biochemical and/or 

biophysical parameters of plants, such as chlorophyll content, water content, and leaf 
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area. Different spectral ranges (e.g., optical or radar) can detect different parameters. 

Optical RS is based on the reflection and refraction characteristics of the canopy surface, 

and soil as well, if the vegetation cover is below 100%, providing information on 

vegetative biophysical or biochemical processes. Active radiation is measured through 

the reflected or backscattered signals, which are influenced by the geometrical structure 

and the dielectric characteristics of the canopy. Depend on the frequency, it can 

penetrate through the canopy down into the soil (Gerstl, 1990).  

In agricultural vegetation monitoring, optical data is more frequently used compared to 

radar data. This is because optical data, particularly vegetation indices (VIs), are easily 

accessible and have been proven to be suitable for monitoring agricultural vegetation 

(Liu et al., 2019; Weiss et al., 2020). However, the limitation of dependence on 

cloudless skies and solar illumination for optical RS can result in fragmented time series. 

In contrast, active RS is able to overcome this limitation, providing high temporal 

resolution regardless of the weather and time of the day. Disadvantages of radar data 

include its difficulty in comprehension due to the ill-posed nature of radar signal 

interpretation and its higher noise interference. Some radar vegetation indices derived 

from synthetic aperture radar data, have been developed and used in crop monitoring 

(Kim et al., 2012; Kumar et al., 2013).  

Efforts have also been made to integrate optical and radar data (Orynbaikyzy et al., 

2019). In one approach for example, Sentinel-1 (S1) and Sentinel-2 (S2) data were 

handled separately in the first step and then the two datasets were used jointly in 

regression analyses to estimate biomass (Forkuor et al., 2020), leaf area index (LAI) 

(Wang et al., 2019), yield (Mateo-Sanchis et al., 2019), or soil moisture (Amazirh et al., 

2018).  

2.1.2 Popular optical Satellite Remote Sensing systems 

Currently, there are over one thousand functioning satellites orbiting around the Earth, 

many of which are for RS purposes. Satellites are equipped with one or more sensors 

or instruments depending on their intended use. These sensors collect different types of 

data about the surface of the Earth, including land, water, and atmosphere. The satellites 

and their sensors continuously capture images of the Earth's surface at varying spatial, 

spectral, radiometric, and temporal resolutions. Spatial resolution is defined by the size 

of the pixel that represents a ground area. If the sensor has a small footprint, it tends to 
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have high spatial resolution, whereas a large footprint leads to low spatial resolution. 

Radiometric resolution refers to the ability of a sensor to measure and distinguish 

between different levels of EM energy reflected or emitted from the Earth's surface, 

which determines the level of detail that can be captured in an image. Temporal 

resolution refers to the time interval between two successive observations of the same 

area on the ground, which is considered to be associated with the satellite platform 

rather than the sensor. A high temporal resolution means that the sensor can capture 

images of the same location at short time intervals, resulting in more frequent updates 

of the area. Conversely, a low temporal resolution means that the sensor takes longer to 

revisit the same location, leading to fewer updates over time. Spectral resolution of a 

sensor is indicated the number of bands captured within a specific range of the EM 

spectrum (Nowatzki et al., 2004).   

It is critical to have appropriate spatial and temporal resolutions with agricultural 

applications. This may vary relying on multiple factors including the goals of 

management, the size the field, and the capacity of farm machinery to adjust inputs such 

as fertilizer, irrigation, and pesticides. The use of RS in agriculture has a long history, 

predating the introduction of the term "remote sensing" in 1958 (Nellis et al., 2009). 

Back then, these methods typically required extensive fieldwork and laboratory 

analysis, as low-altitude photography and ground crews were usually involved (Still & 

Shih, 1985). The introduction of satellite RS in later years enabled a more efficient and 

effective way for agricultural purposes at regional, national, and global scales. 

The era of satellite RS for agricultural applications began when the National 

Aeronautics and Space Administration (NASA) launched Landsat 1 (previously called 

the Earth Resources Technology Satellite, or ERTS) in 1972. Subsequently, a sequence 

of Landsat satellites (Landsat 2-8) was launched to provide high-quality imagery to 

researchers, policymakers, and land managers in managing natural resources. In 1984, 

Landsat 5 Thematic Mapper (TM) with visible and near-infrared bands was launched, 

providing data with higher spectrum and spatial resolution (30m). France and India 

launched their own satellites, the SPOT 1 and IRS-1A in 1986 and 1988, respectively. 

More recently, there have been more satellites RS systems for agricultural purposes. 

Table 2.1 summarizes sensed EM spectrum (bands) and spatiotemporal resolutions 

from popular optical satellite RS systems exploited by relevant research regarding 

vegetation.     
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Table 2.1. A summary of popular optical satellite remote sensing systems in vegetation monitoring. (MS: 

multi-spectral, TIR: thermal infrared)  

Satellite 

(Years 

Active) 

Bands (Spatial 

resolution) 

Temporal 

resolution 

Applications 

Landsat 8 

(2013-) 

Landsat 9 

(2021-) 

MS (30m-VIS, NIR, 

SWIR) and TIR (100m) 

16 days Plant traits estimation (Li et al., 2018); 

Vegetation mapping (Sharma et al., 

2017); Biomass and cover estimates 

(Jansen et al., 2018). 

MODIS 

(1999-) 

MS (250m, 500m) and 

TIR (1km) 

1-2 days Vegetation dry matter (Khanna et al., 

2007); Leaf dry matter content 

estimation (Adab et al., 2016); 

Vegetation water content (Zarco-Tejada 

et al., 2003). 

Sentinel-2 

(2015-) 

 

MS (VIS-10m, NIR-

10m, 20m, SWIR-20m, 

60m) 

2-5 days Vegetation mapping (Sharma et al., 

2017); Plant traits (Li et al., 2018); Crop 

yield and type(Elders et al., 2022); Leaf 

chlorophyll content (Darvishzadeh et al., 

2019); Canopy traits (Gara et al., 2019). 

SPOT 6 

(2012-)  

SPOT 7 

(2014-) 

MS (6m-VIS, NIR) 1 day Disease (Yuan et al., 2016); Vegetation 

Mapping (Hubert-Moy et al., 2020). 

AVHRR MS (1.1km-VIS, NIR) 

and TIR (4km) 

1 day Vegetation mapping (Ju & Masek, 2016); 

Phenology (Shen et al., 2014). 

 

2.2 Dry matter content 

DMC can be expressed in multiple ways depending on the purposes and different scales. 

DMCaP is such one example for agricultural purposes, and this term mentioned in this 

study all refers to the measurements at community level. DMC is often used as a term 

to measure biomass yield with the unit of kg DM/ha when quantifying herbage 

production (Oliveira et al., 2020). In terms of traits at leaf-level for vegetation 

monitoring, it is known as leaf dry matter content (LDMC) or the leaf mass per area 

(LMA), defined as the ratio of leaf dry mass to leaf area (unit, g/cm2) (Jacquemoud et 

al., 1996). LDMC and together with leaf area index (LAI) could also provide an 

estimation of canopy biomass (Baret & Fourty, 1997). The ratio between aboveground 

plant dry biomass and fresh biomass is referred to as plant dry matter content (PDMC) 

when it comes to vegetation that does not have prominent aboveground stems and those 

stems are green as well such as grass (Li et al., 2018).  

To date, most studies have focused on estimating DMC at leaf-level, or LMA. However, 
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dry matter and water content are both involved for estimating DMCaP at plant 

community-level. Vegetation water content is typically expressed using two metrics: (i) 

equivalent water thickness (EWT), defined as the ratio of water mass to leaf area (unit, 

g/cm2) (Danson et al., 1992) and (ii) fuel moisture content (FMC), defined as the ratio 

of water mass to either the fresh weight (Mbow, 1999) or the dry weight (Burgan, 1996; 

Chuvieco et al., 1999). The latter term is more commonly used in forest fire research 

(Sow et al., 2013), and plus with its ambiguous definition, EWT is chosen to represent 

vegetation water content in this study. Therefore, vegetation dry matter and water 

content at leaf-level are expressed as LMA and EWT respectively. In this section, 

relevant studies regarding LMA and EWT estimation will be reviewed to provide a 

foundation for this study, especially for building the interpretable model.    

2.2.1 Field and laboratory measurements 

DMCaP can be obtained by field measurements and RS techniques. The destructive 

small-plot cutting method is the conventional and the most precise approach for 

determining DMCaP, which includes basic operations of cutting and weighing a fresh 

vegetation sample, followed by drying the sample in the oven and calculate the DMCaP 

as the ratio of the weight of dried samples and fresh samples (Hopkins, 2000). Portable 

field spectroradiometers have also been used to measure canopy reflectance to estimate 

vegetation biophysical and biochemical characteristics such as leaf chlorophyll 

concentration and lead nitrogen concentration (Hansen & Schjoerring, 2003). However, 

small-plot methods, either destructive cutting or portable spectroradiometer methods, 

are time-consuming and labor-intensive. Especially for large areas, it is not practical to 

reach full spatial coverage of DMCaP. Alternatively, remote sensing techniques have 

shown the potential to provide both high temporal and spatial information on DMCaP 

with the advantages of being nondestructive and covering large areas (Cheng et al., 

2014; Conejo et al., 2015).  

2.2.2 Satellite imagery estimation   

The estimation of LMA and EWT using remote sensing techniques can be broadly 

divided into two categories: physical-based methods and data-driven methods. The 

physical-based methods use radiative transfer (RT) models to simulate the interaction 

between spectral information and vegetation canopy, allowing for forward modelling 

of leaf optical properties as well as backward inverse estimation of biophysical and 
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biochemical traits from leaf optical properties (Feret et al., 2021). Numerous radiative 

transfer models have been employed to model leaf optical properties, such as the 

PROSPECT (Feret et al., 2017; Jacquemoud & Baret, 1990), LIBERTY (Dawson et al., 

1998; Wang & Ju, 2017) , and SLOP models (Maier et al., 1999). PROSPECT model is 

the most widely used among them owing to its simplicity and satisfactory performances. 

Biophysical traits such as LMA and EWT could be estimated using model inversion 

methods of either look-up-table method (Ali et al., 2016) or iterative optimization 

method (Li & Wang, 2011). These methods were proposed under the assumption that 

the leaf-specific absorption spectra of all vegetation species remain constant and unable 

to accommodate the spectral variability of leaf biochemical constituents (Koirala et al., 

2020). Hence, the inversion estimation is challenging due to the significant number of 

unknowns relative to the independent information embedded in the spectral signature. 

Moreover, the inversion algorithms can be computational-demanding.  

The data-driven methods are built relying on the statistical relationship between the 

optical characteristics of leaves (mostly at canopy-level) and their biochemical 

constituents. They are widely used due to their simplicity and computational efficiency, 

which make them a preferred method for fast estimation in agricultural practices. To 

establish statistical models, various regression techniques are employed to calibrate the 

training datasets. These regression techniques include simple linear regression (Li et al., 

2018; Romero et al., 2012), partial least square regression (PLSR) (Hansen & 

Schjoerring, 2003), as well as complex machine learning (ML) models such as support 

vector regression (Feret et al., 2019; Yao et al., 2015), artificial neural networks (Jin & 

Liu, 1997) , and Random Forest Regression (Shah et al., 2019). Optical characteristics 

of leaves comprise the leaf reflectance, its derivates and combinations such as 

vegetation indices (VIs) (Feret et al., 2011; le Maire et al., 2008), and red-edge positions 

(Frampton et al., 2013).   

The VIs are mathematical combinations of leaf reflectance, which are indicators of the 

presence, health, and productivity of vegetation, used as substitutes for time-series 

analysis (Hmimina et al., 2013) and vegetation states monitoring (Hill, 2013). They 

could reduce the volume of data and noise, making it easier to estimate biophysical and 

biochemical traits of vegetation.  
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Table 2.2. Remotely sensed indices related to vegetation dry matter and water content extracted from 

literature. NDMI (Normalized dry matter index); NDWI (Normalized Difference Water Index); NDII 

(Normalized Difference Infrared Index); RMSI (Reciprocal of moisture stress index), SRWI (Simple ratio 

water index), LWVI1(Leaf Water Vegetation Index 1), LWVI2(Leaf Water Vegetation Index 2)  

Type Abbreviation  Formula Reference 

LMA NDMI 𝜌1649 − 𝜌1722

𝜌1649 + 𝜌1722
 

Wang et al. (2011) 

 NDLMA 𝜌1368 − 𝜌1722

𝜌1368 + 𝜌1722
 

le Maire et al. (2008) 

 ND 𝜌2295 − 𝜌1550

𝜌2295 + 𝜌1550
 

le Maire et al. (2008) 

 RI 𝜌1368

𝜌1722
 

Feret et al. (2011) 

EWT NDWI  𝜌860 − 𝜌1240

𝜌860 + 𝜌1240
 

Gao (1995) 

 NDII 𝜌820 − 𝜌1650

𝜌820 + 𝜌1650
 

Klemas and Smart (1983) 

 RMSI 𝜌860

𝜌150
 

Hunt and Rock (1989) 

 SRWI 𝜌860

𝜌1240
 

Zarco-Tejada et al. (2003) 

 LWVI1 𝜌1094 − 𝜌983

𝜌1094 + 𝜌983
 

Galvao et al. (2005) 

 LWVI2 𝜌1094 − 𝜌1205

𝜌1094 + 𝜌1205
 

Galvao et al. (2005) 

 

Indices for estimation of vegetation LMA and EWT are combinations of reflectance at 

two or more bands in the spectral region of 900-2400 nm (Liu et al., 2017), where 

strong/ weak absorption of water and/or dry matter occurred. For EWT estimation, the 

near-infrared (NIR) and shortwave-infrared (SWIR) spectral regions were selected to 

build indices (Ceccato et al., 2002; Colombo et al., 2008; Yilmaz et al., 2008). It has 

been reported to be difficult to estimate LMA because of predominate absorption of 

water content in the spectral region of 1300-2400 nm (Li & Wang, 2011; Qiu et al., 

2018). To suppress the impact of water, studies typically utilize the absorption of the C-

H bond stretch at approximately 1700 nm (Wang et al., 2011). This explains why dry 

matter related indices usually involve spectral response at around 1700 nm (Feret et al., 

2011; le Maire et al., 2008; Wang et al., 2011).  

The indices have multiple types, ranging from simple ratios of different bands, 

normalized differences of two bands to complex combinations. Typically, simple ratios 
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and normalized differences are easier to comprehend and employ and thus are 

commonly utilized for estimating water and dry matter content. Table 2.2 summarizes 

commonly used indices exploited by relevant research. One typical dry matter index is 

normalized dry matter index (NDMI). It was developed by examining the spectral 

response of fresh leaves across a wide range of species (Wang et al., 2011). An 

alternative is to use vegetation indices for dry matter content (Bretas et al., 2021; Li et 

al., 2018).     

2.3 Machine Learning and Random Forest  

The growth of urban big data, advancements in computing power, and the availability 

of open-source software tools have contributed to the rapid development of Machine 

Learning (ML) techniques in recent years, making it an increasingly popular tool in a 

wide range of fields including vegetation monitoring. In recent years, ML techniques 

have been extensively employed in the remote sensing of leaf biochemical constituents, 

owing to their ability to address non-linear tasks. 

ML is a subfield of artificial intelligence (AI) that involves the use of statistical models 

and algorithms to enable computer systems to improve their performance on a specific 

task by learning from data without being explicitly programmed. The aim of ML is to 

learn from data and make predictions or decisions based on patterns in the data they 

analyze, rather than relying on prior knowledge. There are a variety of ML algorithms, 

and depend on the specific task, they work differently and can be categorized to 

classifiers and regressors. The retrieval of vegetation biochemical constituents is 

categorized as a regression task, and for this purpose, regressors would be utilized. As 

aforementioned, very few studies have explored remote sensing of community DMCaP, 

and correspondingly, the use of machine learning techniques in this area is also scarce. 

Therefore, ML regression techniques used in relevant area (e.g., retrieval of leaf 

biochemical contents) would also be reviewed. Owing to resource and time limitations, 

not all ML algorithms would be covered in this thesis. Several popular algorithms will 

be identified and one ML algorithm would be chosen to build the model in this study.  

Some renowned ML regression algorithms employed in remote sensing of vegetation 

are Artificial Neural Network (ANN), Support Vector Regression (SVR), Random 

Forest Regression (RFR). 
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Jin and Liu (1997) have demonstrated the capability of ANN to retrieve wheat dry 

matter fraction as well as other biomass parameters from high-dimensional (multi-day, 

dual-polarization, active and passive) RS data. A study by Feret et al. (2019) showed 

that SVR could provide accurate estimates of both LMA and EWT, but had weaker 

generalization ability than RT models. Yao et al. (2015) applied both ANN and SVR 

models to monitor wheat leaf nitrogen content, showing that SVR outperformed ANN 

in terms of accuracy. Shah et al. (2019) used RFR to do a stepwise reduction of input 

predictors among 2102 bands across the 400–2500 nm spectral range and 45 VIs, 

achieving significantly reduced errors than standard linear regression in the retrieval of 

leaf chlorophyll content in wheat. Bretas et al. (2021) also used RFR to predict DMCaP 

and aboveground dry matter in pastures in Brazil, suggesting that RFR has higher 

potential than linear regression.    

A distinctive feature of RFR is its non-parametric characteristic, while ANN and SVR 

are both parametric algorithms. In training a ML algorithm, this feature is extremely 

important as the data distribution needs to be considered in parametric algorithms. They 

usually require scaled, and sometimes normalized data, while non-parametric 

algorithms such as RFR, do not require prior data preparation. Another important 

feature of RFR is that it usually requires fewer training samples than other algorithms 

(Ali et al., 2015). Other advantages of RFR are its ability to attain high accuracies, fast 

training even if on large datasets, and the unbiased out-of-bag accuracy (Douglass, 2020; 

Shah et al., 2019). Due to these characteristics, RFR is selected in this study to build 

the ML model using a relatively small dataset, which also enables fast estimation of 

DMCaP for agricultural purposes.  

RFR is an ensemble learning method that combines predictions from multiple decision 

trees (DTs). The term DT is used for algorithm with a tree-like structure, where the 

child nodes are evaluated based on specific conditions, and the final result is presented 

in one of the leaf nodes. As shown in Fig 2.1, a Random Forest Regression is made up 

of N DTs, and subsets from the dataset would be assigned to DTs. Each DT is built 

using a single subset only, and the tree-building process continues until there are equal 

to or fewer than n samples in each node (typically, n is set to 5 for regression tasks). 

The final result for the regression task is obtained by averaging the predictions of each 

DT.     
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Fig 2.1. Schematic of Random Forest Regression. All nodes at the have no child are leaf nodes, and 

others are split nodes. 
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3. Data and methodology 

The general workflow from data preprocessing until model evaluation is illustrated in 

Fig 3.1. It should be noted that the interpretable model was built using Sentinel-2 (S2) 

data alone, whereas the RFR model was built using S2 data, and a combination of S2 

data and environmental variables. The interpretable model was built using data from all 

fields and individual fields, respectively, to explore its validity, as presented in Section 

4.2. 

 

Fig 3.1. General workflow. For data preprocessing, field polygons are used to clip Sentinel-2 (S2) 

satellite imageries and then sampling plots with unique geographic coordinates are used to extract S2 

measurements on these imageries. Spatio-temporal matching is performed between S2 measurements 

and in-situ dry matter content as percentage (DMCaP) measurements. The dataset contains S2, in-situ 

measurements, and a homogeneous weather history for all four fields. Model development includes 

building statistical relationships for the interpretable model and training the Random Forest Regression 

(RFR) models. After model development, error metrics were computed to determine the optimal model 

to map DMCaP.   
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3.1 Experimental area 

The study is conducted with the help of Vultus AB, Sweden and TKS Agri, Norway. 

Field measurements of DMCaP were owned by TKS Agri, Norway. The experiment 

was carried out in four trial fields, of TKS Agri with a total area of 19.34 ha, all located 

near Stavanger city in the south-west of Rogaland County, Norway (Figure 3.2). These 

trial fields are named as Field 1-4 respectively, and are all in irregular shapes. Each 

field has similar soil quality and slightly different climatic conditions, and the latter will 

be described in more detail in the following contents. 

 

 

Fig 3.2. Map of experimental area, with brown lines in the overview map for first-level administrative 

divisions in southern Norway, area rendered in yellow for Rogaland County, rectangle rendered in pink 

for an overview of experimental area, and polygons rendered in red for 4 trial fields. 

  

Field 1 (5.564700 °E, 58.713416 °N) is situated in the south-west of Stavanger city 

with an area of 3.63 ha. The terrain is overall flat, and the field has good sunlight 

conditions. This field tends to become very wet following heavy rain and often exposed 

to harsh weather conditions (wind and fog). The field has an average height of around 
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29m (+/- 1 m) above sea level (ASL), with oceanic climate due to its proximity to the 

sea. Raining season is from November to April, while the cattle-grazing season runs 

from mid-June to mid-September, with the growing period spanning from May to the 

mid-to-end of September. The field receives a long-term annual rainfall of 855.2mm, 

dropping to around 660 mm in dry years and rising to 1100 mm in rainy years. The 

grass grown in this field primarily consists of perennials (80-90%), including Ryegrass 

Lolium perenne, Blue grass Poa pratensis, White clover Trifolium pratense, Timothy 

Phleum pratense, and traces of Dandelions Taraxacum sp.  

Field 2 (5.799364 °E, 58.754540 °N) is situated south of Stavanger city with an area of 

8.89 ha. This field lies on a slope of a hill with average altitude of 156m ASL, tilted 

towards the southwest. Some areas of the field are often covered with water about 5cm 

in depth, despite having three drainage wells installed. The field has good sunlight 

condition but are prone to weather due to lack of hedgerows. The climate is oceanic, 

with rainfall typically occurring from November to April. On average, the field receives 

1248.2mm of rainfall per year, dropping to 760mm in dry years and rising to 1100mm 

in rainy years. The growing period is from May to September and the cattle-grazing 

season is from mid-June to mid-September. The grass composition is mainly perennials 

(80-90%), including Ryegrass Lolium perenne, White Clover Trifolium pratense, 

Timothy Phleum pratense, and traces of Dandelions Taraxacum sp. 

Field 3 (5.669885 °E, 58.754540 °N) is in the south of Stavanger, with an area of 3.67 

ha. It is situated on a slope tilting towards the north-northwest, surrounded by forests 

from the two sides: north and south. The field is relatively dry and sunlight exposition 

partially is non-optimal. The altitude ranges from 9 to 21m ASL. The climate is mostly 

oceanic, with rainfall typically occurring from October to March. The grass growing 

period extends is from May until the middle or end of September. The grass 

composition is predominately perennials (80-90%), including Ryegrass Lolium perenne, 

Blue grass Poa pratensis, White Clover Trifolium pratense, Timothy Phleum pratense, 

and traces of Dandelions Taraxacum sp. 

Field 4 (5.673124 °E, 58.796697 °N) is situated in the south of Stavanger, with an area 

of 3.15 ha, near Field 3. It is almost flat and levelled, with an evenly distributed growth 

of perennials and excellent sun exposure. The field has an average height of 11m ASL. 

The climate is oceanic, with rainfall primarily occurring from October to March. The 
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growing period is from May until the middle or end of September. The grass 

composition is mainly perennials (80-90%), including Ryegrass Lolium perenne, Blue 

grass Poa pratensis, White Clover Trifolium pratense, Timothy Phleum pratense, and 

traces of Dandelions Taraxacum sp. 

Table 3.1 summarizes the conditions in all fields described above. Species distribution 

is relevant for determining community-level DMCaP; however, a thorough 

investigation of this has not been conducted. As the dominant vegetation types are the 

same in the four trial fields, we hypothesized that there is no significant difference in 

species distribution between the fields. The sampling method of DMCaP values will be 

described in the section 3.2.  

Table 3.1. A summary of traits of trial fields. (1. Ryegrass Lolium perenne, 2.Blue grass Poa pratensis, 

3.White clover Trifolium pratense, 4.Timothy Phleum pratense) 

Name Area Characteristics Dominant vegetation 

types 

Field 1 3.63 ha Overall flat terrain; 

good sunlight condition; 

annual rainfall of 855.2mm. 

1,2,3,4 

Field 2 8.89 ha Slope terrain; 

extremely moist in some areas; 

good sunlight condition; 

annual rainfall of 1248.2mm. 

1,2,3,4  

Field 3 3.67 ha Slope terrain; 

forests surrounded; 

non-optimal sunlight condition. 

1,2,3,4 

Field 4 3.15 ha Overall flat terrain; 

good sunlight condition. 

1,2,3,4  

 

3.2 Field data 

Field measurements of DMCaP values were collected in 56 sampling plots across all 4 

trial fields, spanning from May to August 2022, with time intervals of 1-2 weeks. The 

sampling plots (10m*10m) were selected using stratified random sampling. Each plot 

with unique geographical coordinates was marked with poles in the center. DMCaP 

values were obtained using gravimetric method, which included cutting and weighing 

fresh grass samples, followed by drying the samples in the oven and calculate the ratio 
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of the weight of dried samples and fresh samples. Grass samples were cut off at around 

5cm above the ground, which is the same height as mechanical harvesting, and dried in 

the oven in 100 °C for 2 hours. Based on the fact that all samples were collected through 

destructive cutting, each grass sample consisted of subsamples collected in a specific 

sampling plot instead of collecting in the exact same location each time.  

The sampling plots could be different for different collecting dates, and all plots used 

are shown in Fig 3.3. The number of sampling plots and samples of each plot could be 

different for each field, details are described in Table 3.2. The dates that samples being 

collected could be different as well (see Table B.1).  

 

 

Fig 3.3. Spatial distributions of sampling plots, with Field 1 in top-left, Field 2 in top-right, Field 3 in 

bottom-left, and Field 4 in bottom-right. 

The samples included 200 DMCaP values in total and 7 values were excluded due to 
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long temporal gaps between field and RS measurements. The samples had a minimum 

value of 15.8% and a maximum value of 36.9%, and with most of them between 20%-

30% (Fig 3.4).   

A homogeneous weather history was retrieved from the nearest weather station and was 

used to represent the whole area. It contains mean air temperature, precipitation, 

radiation, soil temperature at 10 cm and 20 cm depth, relative air humidity, and wind 

speed.  

 

Fig 3.4. Frequency distribution of in-situ measured dry matter content as percentage (N=193).  

 

Table 3.2. Number of sampling plots of each field and number of samples of each plot, with comments 

showing the number of missing samples due to unexpected situation (No. = number). 

Name No. of  

plots 

No. of samples 

per plot 

Total samples 

collected 

Fresh weight per 

sample/g 

Comments 

Field 1 7 7 49 400  

Field 2 8 8 64 400  

Field 3 9 5 43 400 2 missing 

Field 4 9 5 44 400 1 missing 

 

3.3 Remote sensing data 

Popular satellite RS systems applied in vegetation monitoring are described in section 

2.1.2. The following content will explain why Sentinel-2 (S2) has been chosen to 

conduct this study. As the study material covers 4 trial fields at a regional scale, high 
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spatial resolution data is required. Moreover, high temporal resolution is necessary to 

effective estimation of DMCaP. In addition, the VIS, NIR, and SWIR bands are 

necessary for estimating dry matter content and water content, both of which are 

involved in the estimation of DMCaP. Due to these requirements, the optimal candidate 

is S2 of Copernicus program. 

S2 is a wide-swath satellite RS system equipped with MultiSpectral Instrument (MSI), 

and has high resolution. Its purpose is to typically supports land monitoring studies 

including vegetation, soil, and water coverage monitoring, as well as inland waterways 

and coastal area observation. This mission comprises a twin polar-orbiting satellites 

(A&B) at a mean altitude of 786 km, phased at 180° to each other, decreasing the 10-

day revisit time of one satellite to 5 days of the twin-satellite system at the equator, and 

2-3 days in mid-latitude areas (SUHET, 2015). This system captures 13 wavelength 

bands of the EM spectrum, including 10 VIS-NIR bands and 3 SWIR bands. As 

described in 2.2.2, these MSI bands have been widely used for LMA and EWT 

estimation.  

When satellite sensors capturing images, the atmosphere affects EM radiation from the 

sun before it reaches to the surface. This means that the radiation reflected back to the 

sensor is also affected and weakened, making atmospheric correction necessary. ESA 

has been distributing several product types of S2, which includes the S2 Level-2A (L2A) 

bottom-of-atmosphere (BOA) reflectance product. S2 L2A products, which were used 

in this study, are processed from Level-1C top-of atmosphere (TOA) products, by 

applying atmospheric, terrain, and cirrus corrections.  

L2A products, besides BOA reflectance of 13 wavelength bands, also include scene 

classification layer (SCL) with eleven classes together with quality indicators (QA) for 

cloud and snow probabilities, aerosol optical thickness (AOT) and water vapor (WV). 

SCL provides 12 different classes including clouds, vegetation, and bare soils/desert. 

SCL was used in this study to distinguish between cloudy pixels and clear pixels. 

Google Earth Engine (GEE) is a cloud-based platform developed and managed by 

Google Inc., which stores massive amounts of satellite imagery data. It provides a 

valuable tool for RS scientists, as well as for other users, to access data on a planetary 

scale. GEE also offers a high-performance computation service that allows users to 

process and analyze data within the same environment where the data is stored. The 
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data stored in GEE is gathered by Google Inc. directly from data providers such as 

NASA and ESA. In addition to accessing the public data catalog, users can also upload 

and merge their own data with the existing data to solve customized and more advanced 

problems. 

S2 L2A reflectance of corresponding ground points are retrieved in GEE. In GEE, when 

matching ground-measured DMCaP values with their corresponding RS measurements, 

pixel values of unique geographic coordinates can be extracted without downloading 

the whole image. This was done using JavaScript in a web graphic user interface. To 

minimize the impact of cloud, the imagery was masked using SCL. Pixels classified to 

classes excluding vegetation and bare soil/ desert would be masked out and not 

retrieved. This brings to another detail that, on one sing date, several ground sampling 

plots would have two corresponding S2 images if they are in the overlap areas of two 

tiles. This means one DMCaP value could have two corresponding RS values. In this 

case, Field 1 is in the overlap area of tile 32VLL and tile 32VKL. To ensure the 

consistency of atmospheric correction, only tile 32VLL were used to retrieve S2 data 

and subsequent work as all four fields can be covered in tile 32VLL. When extracting 

pixel values from satellite images, the geographic coordinates of sampling plots were 

usually not located in the center of one pixel, a 5m-radius circle buffer to match the 

spatial resolution of 10m was created centered in each plot and the median of all 4 

neighboring pixels was retrieved (Fig 3.5).  

 

Fig 3.5. Diagram of extracting remote sensing measurements based on location of sampling plots, with 

the red dots indicating the center of the sampling plot, the red circle for buffer created, and blue for 

neighboring pixels. 

A total of 75 S2 images from May to August 2022, which corresponded to the period 

of sample collecting, were retrieved. In these 75 images, some of the images may 

contain a large number of cloudy pixels, which were masked out using SCL. As a result, 
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pixel values from 35 images were retrieved for all sampling plots, which means one 

sampling plot would have a time series of RS measurements containing a maximum of 

35 values, if this sampling plot was could-free in all 35 images. Fig A.1 shows the 

temporal gaps of these 35 images.     

Besides the VIS, NIR and SWIR bands, indices were also calculated and used for build 

models. Two types of indices were calculated: vegetation and water indices, which 

represent dry matter and water content respectively. Table 2.2 describes indices that are 

sensitive to dry mater and water content respectively. However, a few of them might be 

directly calculated from S2 data because of its limitation of the spectral resolution. 

There is a wide range of VIs proposed for different purposes and validated using 

different datasets at varying levels. Each of these indices has its own strengths and 

weaknesses, and some are more optimal in certain applications than others. Table 3.3 

summarizes all indices used in this study. Six VIs were used as substitutes for detecting 

dry matter content and NDWI (Normalized Difference Water index) was used for 

detecting water content. These VIs ranged from ratios, normalized differences, to more 

sophisticated forms. The rationale for including multiple vegetation indices is to 

compare and determine the optimal index for the specific case. 

VIs were initially developed to quantify vegetation greenness by contrasting the high 

reflectance in the NIR region of the EM spectrum with the strong absorption by 

chlorophyll in the red region. Jordan (1969) proposed using the ratio of NIR to red band 

to estimate canopy chlorophyll content and leaf area index (LAI), which became known 

as the Simple Ratio (SR) or Ratio Vegetation Index (RVI). The RVI was further 

developed into the NDVI by Rouse et al. (1974), and it has since become the most 

commonly used vegetation index for various applications. There are other studies 

challenged the approach of using red band and used green band instead such as green 

normalized difference vegetation index (GNDVI) proposed by (Gitelson et al., 1996). 

Some have argued that it is at least five times more responsive to levels of chlorophyll-

a compared to the NDVI and especially useful in distinguishing in vegetation that is 

under stress and senescence. It is known that NDVI can be sensitive to external factors, 

such as soils and atmospheric conditions, which can lead to potentially misleading 

results in some cases. Other indices that address these limitations were proposed, such 

as the soil adjusted vegetation index (SAVI) (Huete, 1988), atmospherically resistant 

vegetation index (ARVI) (Kaufman & Tanre, 1992). Huete et al. (2002) presented a 
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combination of these two as the enhanced vegetation index (EVI). Normalized 

difference red-edge (NDRE) utilizes the developments in spectral capabilities to obtain 

a more detailed characterization of the red-edge region, which is a significant spectral 

response of vegetation found between the red absorption maximum and high reflectance 

in the NIR region. Chlorophyll vegetation index (CVI) is also an index used for biomass 

monitoring. 

NDWI is often using NIR-SWIR combination, which is used synonymously with 

NDMI (Normalized Difference Moisture Index). It seems that NDMI is consistently 

described using NIR-SWIR combination while NDWI is also described using GREEN-

NIR combination. The indices with these two combinations function very differently, 

with NIR-SWIR highlighting variances in water content of leaves and GREEN-NIR 

highlighting variances in water level of water bodies (McFeeters, 1996). In this study, 

NIR-SWIR combination is referred as NDWI in order to separate from NDMI 

(Normalizes Dry Matter Index) mentioned in section 2.2.2. 

Table 3.3. A list of Sentinel-2 derived indices used for modelling. 

Type Name Formula S2 Formula 

Vegetation index RVI 𝑁𝐼𝑅

𝑅𝑒𝑑
 

𝐵8

𝐵4
 

 NDVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

𝐵8 − 𝐵4

𝐵8 + 𝐵4
 

 GNDVI 𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

𝐵8 − 𝐵3

𝐵8 + 𝐵3
 

 EVI 
2.5 ∗

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 1
 2.5 ∗

𝐵8 − 𝐵4

𝐵8 + 𝐵4 + 1
 

 CVI 𝑁𝐼𝑅 ∗ 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 ∗ 𝐺𝑟𝑒𝑒𝑛
 

𝐵8 ∗ 𝐵4

𝐵3 ∗ 𝐵3
 

 NDRE 𝑁𝐼𝑅 − 𝑅𝑒𝑑_𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑_𝐸𝑑𝑔𝑒
 

𝐵8 − 𝐵5

𝐵8 + 𝐵5
 

Water index NDWI 𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

𝐵8 − 𝐵11

𝐵8 + 𝐵11
 

 

3.4 Linking field and satellite measurements 

Section 3.3 describes satellite RS measurements that were obtained, as well as the 

methodology used to retrieve these measurements. They are a collection of plot-based 

pixel values of all plots and all available sensing dates between May to August 2022. 

RS measurements are multi-dimensional, encompassing bands, sampling plots, fields, 
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and dates. In order to get them organized and match them to ground measurements of 

DMCaP values, each sampling plot was given a unique identifier which contained the 

information of field and sampling number. In this way, dispersed times series of RS 

measurements were retrieved for each plot. Despite the use of SCL mask (classes of 

soil/ desert and vegetation) in extracting RS measurements, the data is still noisy. Thus, 

a smoothing gap-filling, instead of interpolation alone, was applied to RS 

measurements of each plot to get smoothed and gap-filled time series (daily), which 

were then linked to field measurements based on dates. To summarize, RS 

measurements were smoothed and interpolated values while field measurements 

retrained their original values.  

Smoothing spline was used to smooth and gap-fill the dispersed time series. It is a 

mathematical function that fits local piecewise third-order polynomials to small number 

of data points and then integrate them together so that they join smoothly(De Boor, 

1978). The resulting smooth function is then used to estimate values between the given 

data points. Cubic spline smoothing could achieve a good balance between smoothing 

and retaining important features within the data, and thus selected to perform on the RS 

measurements. This process was done using the cubic smoothing spline function of 

Curve Fitting Toolbox in MATLAB. The smoothing parameter, s, ranges from 0 to 1, 

with 0 representing the least-squares straight line fit to the data and 1 representing cubic 

spline interpolation (Cubic smoothing spline - csaps, n.d.). Fig 3.6 shows time series of 

the original RS measurements and smoothed ones of one sampling plot in Field 1. A 

value between 0 and 1 represents a trade-off between the two extremes. As shown in 

Fig 3.6, a smoothing parameter between the range of 0.01 to 0.09 is sensible and the 

intermediate value, 0.05, was used to match RS and field measurements.  
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Fig 3.6. Time series of RS measurements before and after smoothing in one sampling plot, with s 

indicating the smoothing parameter. 

 

3.5 Modelling 

Based on literature review, two types of models, an interpretable model and a ML RFR 

model described in Section 2.3 were built. Both models were implemented using 

Python. The interpretable model was built using Python SciPy package and the RFR 

model was built using Scikit-learn package.  

3.5.1 The interpretable model 

DMCaP (DMC%) was calculated using the ratio of dry weight and fresh weight. It 

applies to at both leaf-level (Eq. 1) and canopy-level (Eq. 2). As aforementioned in 

Section 2.2, LMA is a metric used for determining leaf dry matter content and EWT for 
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leaf water content. 

𝐷𝑀𝐶% =
Wm

Wm + Ww
=

Wm

𝐴
Wm

𝐴 +
WA

𝐴

=
Cm

Cm + C𝑤

(1) 

where Wm is leaf dry matter weight (g), Ww is the leaf water weight (g), A is the leaf 

area (cm2), Cm is the LMA (g/cm2), and C𝑤 is the EWT (g/cm2).   

𝐷𝑀𝐶% =
Cm ∗ 𝐿𝐴𝐼

Cm ∗ 𝐿𝐴𝐼 + C𝑤 ∗ 𝐿𝐴𝐼
(2) 

where LAI is the leaf area index (cm2/cm2), and canopy dry matter content and water 

content are LMA and EWT multiplied LAI respectively.    

Data-driven methods for estimating dry matter (or dry biomass) and/or water content 

either at leaf- or canopy-level, rely on building a linear (Boutton & Tieszen, 1983; 

Bretas et al., 2021; Li & Guo, 2018; Sow et al., 2013) or an exponential relationship 

(Romero et al., 2012), or both (Yang et al., 2020) between biochemical continents and 

the indices. The linear function is the simplest and most widely used and it was adopted 

in this study. The difference between leaf dry mass and aboveground dry biomass is 

that the latter refers to the stems as well. These two terms will not be strictly 

distinguished as DMCaP referred to the measurements of a fraction of above-ground 

parts (cut off at around 5cm above the ground), and grass does not have prominent 

aboveground stems and those stems are green as well.   

The interpretable model (Eq. 3) was built based on the assumptions that there is a linear 

relationship between: (i) dry biomass and VIs and, (ii) water content and water index.         

𝐷𝑀𝐶% =
scalara ∗ VI + offseta

scalara ∗ VI + scalarb ∗ WI +  offset𝑐

=  
(scalara ∗ VI + offseta)/scalara

(scalara ∗ VI + scalarb ∗ WI +  offset𝑐)/scalara
 

=  
VI +

offseta

scalara

VI +
scalarb

scalara
∗ WI +

offset𝑐

scalara

=  
VI + β1

VI + β2 ∗ WI + β3

(3)
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where, scalar is the slope, offset is the intercept, VI is the vegetation index, WI is the 

water index, and offset𝑐 in the denominator is the sum of offset for VI and WI. By 

dividing both numerator and denominator by scalara, we get a simplified formula (Eq. 

3) with three coefficients (β1, β2, and β3) to estimate in the parameterization process. 

This reduces the complexity of the model and can make it more robust. VI and WI 

applied were described in table 3.3. In this non-linear fractional equation, the numerator 

represents dry biomass, and the numerator represents fresh biomass. 

3.5.2 Random Forest Regression  

The RFR algorithm was implemented in this study to estimate DMCaP values. An 8:2 

ratio was used to split the dataset into training and testing set. The training set was used 

to train and validate the model, and the testing set was used to evaluate its performance. 

RS measurements, including band 2-4 (VIS), band 5-7(Red-edge bands), band 8-9 

(NIR), band11-12(SWIR), and dry matter index and water index listed table 3.3 were 

fed in to RFR model as predictors, with DMCaP as the response variable. A second 

RFR model incorporated both RS measurements and environmental predictors. The 

input predictors were then ranked according to permutation feature importance, and a 

step-wise reduction in the number of input predictors was adopted.  

(1) Cross-Validation 

Cross-validation (CV) is a technique used to evaluate the ability of a model to predict 

the ‘unseen’ data, which is not used to train the model. It is useful when we have limited 

amount of data, and it can detect the problem of over-fitting as well. The measurements 

used in this study are limited and are unevenly spatiotemporal distributed within fields 

and between fields (Fig A.2, and Table 3.2). Therefore, a 5-fold cross-validation was 

performed on the training set. Fig 3.7 shows the general work flow of a 5-fold CV. The 

training dataset is split into five equal parts, and each is called a fold. Then the model 

is trained using four folds and validated using the trained model on the leaf-out fold. 

This process will be iterated five times until each fold has been a validation fold once. 

The model performance is usually summarized by averaging the error in each iteration, 

and the commonly used metric is root mean squared error (RMSE).    
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Fig 3.7. Schematic diagram of 5-fold Cross-Validation (Modified from Pedregosa et al. (2011)). 

(2) Hyperparameter tuning 

In ML models, there are two types of parameters, model parameters and 

hyperparameters. The former type is parameters that being initialized and adjusted 

during the training phase. The hyperparameters are user-defined parameters to structure 

a model before training the model, which cannot be learned directly from the data, and 

they will remain constant during the learning process. RFR algorithm is a non-

parametric method, therefore, a more detailed description of model parameters will be 

omitted here.  

The optimal hyperparameters are criteria-specific, and the process of exploring the 

range of combinations and finding the optimal hyperparameter configuration is called 

hyperparameter tuning (Bergstra et al., 2011). Two of the most popular methods of 

optimizing hyperparameters are grid search and random search proposed by Bergstra 

and Bengio (2012). The success of these techniques is mainly attributed to their 

simplicity, ease of implementation, and better performance over purely manual 

optimization. When performing grid search, the model is trained on each combination 

of hyperparameter values in a set of possible hyperparameters placed in a matrix-like 

structure, to find the optimal configuration. Random search is similar to grid search, 

but instead of conducting an exhaustive search on all possible combinations, it 

randomly selects them based on a set of hyperparameters. The number of total runs can 

be specified by the user. Compared to grid search, random search can find the optimal 

configuration by effectively searching a broad range of values (Bergstra & Bengio, 

2012). Hence, random search was used in this study to perform 100 combinations on a 

5-fold CV, leading to a total of 500 fits. The optimal configuration found by random 
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each is listed in the appendix (Table B.2).  

3.6 Model evaluation 

Recommendations for commonly used metrics of evaluating the performance of a 

model can be found in a study by Seegers et al. (2018). In this study, a direct and robust 

combination of the root mean square error (RMSE), the mean absolute error (MAE), 

bias, and the coefficient of determination (R2) was used. RMSE (Eq. 4) is the square 

root of mean squared difference between the true and predicted values, and it indicates 

how far predictions fall from measured true values using Euclidean distance. The MAE 

(Eq. 5) is the mean absolute error between the true and predicted values. MAE varies 

with the average error, and RMSE differs from MAE by considering the distribution of 

error magnitudes and the size of the sample. In other words, RMSE addresses its 

sensitivity to data distributions and outliers. Bias (Eq. 6) quantifies the average 

difference between the true and predicted values, and it is an indicator of the direction 

of systematic error as either overestimating or underestimating the predicted values. R2 

(Eq. 7) explains the how much of the variance of the dependent variable is explained 

by the independent variables. It could be an indicator of goodness of the fit.  

𝑅𝑀𝑆𝐸 = √ 
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1

𝑛
(4) 

𝑀𝐴𝐸 =   
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1

𝑛
(5) 

𝐵𝑖𝑎𝑠 =  
∑ (𝑦𝑖 − 𝑦𝑖̂)

𝑛
𝑖=1

𝑛
(6) 

𝑅2 =   1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 −  𝑦̅)2𝑛
𝑖=1

(7) 

where, 𝑛 is the number of observations/samples, the subscript  𝑖 denotes individual 

data points, 𝑦 is the true values, and 𝑦̂ is the predicted values. 

  



30 

 

4. Results 

4.1 The interpretable model 

Table 4.1 provides an overview of the metrics used to evaluate the performance of the 

interpretable model. This model was built using data of all fields and data of individual 

fields respectively. The evaluating metrics for the model using individual fields as the 

input can be found in the Appendix (Table B.3).  

Table 4.1. Performance of the interpretable model using different combinations of water and vegetation 

indices. NDWI was the only used vegetation water index, and vegetation indices used were those listed 

in Table 3.3. RMSE, MAE and Bias can be interpreted as DMC (%). All fields is referring that all samples 

from Field 1-4 were put in the model (running once) and fields average is referring that samples from 

Field 1-4 were put in the model respectively (running four times) and the average of them was calculated. 

|Bias| is calculated using the absolute values of individual bias of fields, to avoid cancelling out of 

positive and negative values. 

 All fields Fields average 

 RMSE MAE Bias R2 RMSE MAE |Bias| R2 

RVI 4.42 3.70 0.0000 0.03 3.92 3.24 0.0028 0.11 

NDVI 4.38 3.62 -0.0007 0.04 3.87 3.19 0.0032 0.13 

GNDVI 4.43 3.71 0.0004 0.02 3.89 3.18 0.0044 0.13 

EVI 4.43 3.71 0.0000 0.02 3.96 3.33 0.0032 0.10 

CVI 4.48 3.74 -0.0000 0.00 3.97 3.32 0.0009 0.10 

NDRE 4.42 3.70 0.0004 0.03 3.80 3.09 0.0037 0.16 

 

In general, the performance of the interpretable model built using either all data or data 

of individual fields exhibited high uncertainties. Using data of individual fields to build 

the model led to minor improvements. There was no significant difference in model 

performance using different water index and vegetation index combinations. R2 can be 

understood as the reverse situation of standard deviation of the residuals, and it 

approaches 1 standard deviation of the residuals decreases. It equals to 1 when the 

model predicts values absolutely accurate without any error, which is rarely observed 

in real cases. A more common situation is a value between 0 and 1, a value greater than 

zero suggests a greater predicting ability of the model than simply using the mean of 

true values. As shown in Table 4.1, for using all data, R2 score is slightly larger than 

zero, indicating a close-to-mean predicting ability of the model. Bias is close to zero, 
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and RSME and MAE are around 4.4% and 3.7% respectively. Models built on data 

from individual fields respectively had minor improvements on RMSE, MAE and R2. 

We could infer that the interpretable model is not robust, and it exhibits improved 

performance when using highly local-scale data. 

 

Fig 4.1. Scatter plot showing the performance of the interpretable model built on all data using NDVI 

and NDWI combination. The x axis shows the measured DMCaP and the y axis the predicted DMCaP. 

Contour lines are included to show the data bivariate distributions. The dashed black line (equality line, 

y=x) and solid black line (fitted slope) are also included to a better illustration of R2. The legend F1-4 

represents data of Field 1-4. 

The performance of the interpretable model built on either all data (Fig 4.1) and data of 

individual fields (Fig 4.2) using NDVI and NDWI combination are further illustrated 

in scatter plots. The fitted slopes are generally closer to the equality line when the model 

is built on data of individual fields, where R2 rose from nearly zero to above 0.10. The 

data points together with contour lines, compared to the equality line indicate poor 

performance with either overestimation or underestimation of DMCaP, with few points 

centered around the equality line. Also, an overall narrower range of predicted DMCaP 

values was observed (Fig 4.1 and Fig 4.2). As shown in Fig 4.1, measured DMCaP 

values range from 15% to 37% while predicted values range from 22% to 28%. Fig 4.3 

shows the residuals of the interpretable model built on all data using NDVI and NDWI 

combination. The residuals are randomly scattered around the zero with no clear pattern 

and have fairly constant variance. However, some residuals are quite large, suggesting 

significant prediction errors. 
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Fig 4.2. Scatter plots showing the performance of the interpretable model built on individual fields using 

NDVI and NDWI combination.  

 

Fig 4.3 Residua plot of the interpretable model built on all data using NDVI and NDWI combination. 

The legend F1-4 represents data of Field 1-4. 

4.2 The RFR model 

Table 4.2 provides an overview of the performance of the RFR model evaluated on the 

testing set. The model with both RS measurements and environmental variables as 

predictors has lower RMSE, MAE, and bias, as well as a larger R2 compared to the 

model with only RS measurements as predictors. The CV-score (RMSE) based on the 



33 

 

training set is 3.09% for the former and 4.14% for the latter. As aforementioned in 

Section 3.5.2, a step-wise reduction in the number of input predictors was used. The 

number of input predictors was reduced to 12 eventually by observing permutation 

feature importance. The RFR model has slightly lower RMSEs and MAEs but higher 

biases compared to the interpretable model when using the entire dataset. Overall, the 

RFR model outperform the interpretable model, and the one with environmental 

predictors performs the best among the three. Notably, the R2 values for all three models 

are relatively low to moderate. Given the fact of low volume and high complexity of 

the data, it would be premature to conclude that the models are ineffective. This will be 

further discussed in the next chapter.  

Table 4.2. Performance of the Random Forest Regression (RFR) model. RMSE, MAE and Bias can be 

interpreted as DMC (%). 

 Sentinel-2 Data + Environmental Variables 

 RMSE MAE Bias R2 RMSE MAE Bias R2 

RFR 3.88 3.14 -1.09 0.06 2.90 2.43 -0.87 0.47 

 

 

Fig 4.4. Scatter plot showing the performance of the Random Forest Regression (RFR) model on the 

testing set. Contour lines are included to show the data bivariate distributions. The dashed black line 

(equality line, y=x) and solid black line (fitted slope) are also included to better illustration of R2. The 

legend F1-4 represents data of Field 1-4.  

As shown in Fig 4.4, despite the limited number of testing data points, the RFR model 

demonstrates an acceptable performance. The majority of the data points are centered 

around the equality line (small residuals) and the fitted slopes are close to the equality 

line (good explained variance).       

The distribution of the residuals further illustrates better performance of the RFR model 
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with environmental predictors (Fig 4.5). The interquartile range and whiskers are 

smaller with the RFR model trained using both Sentinel-2 data and environmental 

variables as predictors.  

 

Fig 4.5. Box plot of residuals of the Random Forest Regression (RFR) model using only Sentinel-2 data 

and using Sentinel-2 data and environmental variables as predictors. 

 

Fig 4.6. Feature importance of the Random Forest Regression (RFR) model using only Sentinel-2 data 

and using Sentinel-2 data and environmental variables as predictors. Feature importance is quantified 

by the increase or decrease in mean squared error (MSE) when we permute a feature. Be aware of that 

the scores do not indicate the inherent predictive value of an individual feature, the but rather highlight 

the importance of the feature for a particular model.   

Fig 4.6 shows the permutation feature importance of the RFR model. For the model 

trained using only Sentinel-2 data, including NDVI and the VIS bands (B2-B4) leads 

to the highest MSE reduction, suggesting NDVI and the VIS bands are the most 

important predictors for the model. For the model trained using both Sentinel-2 data 

and environmental variables, including precipitation and radiation leads to the highest 

MSE reduction, followed by SWIR (B12) and NIR (B8) bands. This indicates that the 

RFR model tends to rely more on environmental predictors compared to Sentinel-2 data. 
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4.3 Visual assessments  

Based on model evaluation, it has been identified that the RFR model using Sentinel-2 

data and environmental variables as predictors outperforms both the RFR model using 

only Sentinel-2 data as predictors and the interpretable model. Hence, is selected as the 

best model for estimating field-scale DMCaP. As shown in Fig 4.7, Field 2, which has 

the largest area and the most sampling plots among all four fields, has been selected for 

demonstration. The model was applied to map the DMCaP dynamics from May to 

August, 2022. Sentinel-2 images were downloaded from GEE, and any images with 

cloud cover were excluded. A total of six images were selected to showcase estimating 

DMCaP at the field-scale.  

       

Fig 4.7. Estimation of dry matter content as percentage (DMCaP) in Field 2 on six dates in 2022 utilizing 

the Random Forest Regression (RFR) model using both Sentinel-2 data and environmental variables as 

predictors. 

The estimated DMCaP reveals spatial and temporal variances. On June 20th and July 

7th, higher DMCaP values are observed throughout the field compared to other dates, 

particularly in the south-eastern part. No distinct spatial pattern or obvious anomalies 

are observed.  
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5. Discussion 

5.1 Model performance evaluation using R2 

The evaluating metrics of the interpretable model built on individual fields and the RFR 

model suggests acceptable prediction errors (RMSE and MAE) and systematic errors 

(Bias), but poor to moderate explained variance (small R2) of the DMCaP by Sentinel-

2 data and environmental variables. The interpretation of R2 would be thoroughly 

discussed in the following paragraphs. 

R2 represents the proportion of the variance of the dependent variable that is explained 

by the independent variables in the model. The best possible score is 1.0, and it is not 

necessarily the square of correlation efficient (R) and it can be negative if the model is 

arbitrary worse. A model that consistently predicts the mean of the dependent variable 

without considering the input features would get a score of zero. R2 can be simply 

understood as using the mean value as the error benchmark to determine whether the 

prediction is better or worse than the benchmark. However, a high R2 does not 

necessarily indicate a good model. One example is when doing multiple regression, 

adding irrelevant predictor variables to the model will always increases R2 regardless 

of their contribution to the model, where larger R2 is indicating overfitting (Figueiredo 

Filho et al., 2011). Likewise, a low R2 does not imply the model is bad as it is a reflect 

of both the model and the data. R2 will be poor even in a perfect model if there is large 

variance in the noise term.  

It has been long and widely acknowledged in mathematical literature that R2 is an 

inadequate metric for evaluating the goodness of fit for nonlinear models. Nevertheless, 

it is still been frequently used in agricultural and environmental remote sensing fields 

for analyzing and interpreting nonlinear models (Bretas et al., 2021; Jing et al., 2009; 

Lv et al., 2014). Spiess and Neumeyer (2010) have conducted thousands of simulations 

in their research, demonstrating how using R2 to assess the performance of nonlinear 

models leads to incorrect conclusions.  

To wrap up, a high R2 score does not necessarily suggesting a good model and a low R2 

score does not necessarily suggesting a good model. R2 is being good for summarizing 

the strength of a relationship as a general statistic, but not a decisive statistic. This 

means that, with all conditions being equal, a model that explained 80% of the variance 
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is more likely (not absolutely) to be better than one that explains 20% of the variance. 

Solely relying on R2 score to evaluate the model can lead to incorrect conclusions as 

there are other factors (e.g., noise in the data) influencing the score and causality varies 

case by case. Case-specific context needs to be taken in consideration and, other 

evaluating metrics are usually involved to assess a model. 

In this study, regarding to the interpretable model, R2 scores of the model built on 4 

individual fields are higher than that of the model built on data of all fields. With the 

model structure and input variables being equal, we can infer that the samples from 

individual fields lead to different R2 scores. The interpretable model exhibits better 

performance on individual fields, suggesting that it is more suitable with highly local-

scaled data. Together with low R2 score of the RFR model using only Sentinel-2 data 

as predictors, we argue that, part of the reason on low R2 values lies in massive noise 

and uncertainties in the dataset so a high R2 is hard to achieve. Further discussion 

regarding to the data and models themselves will be presented in Section 5.2 and 

Section 5.3. If we do not see R2 as a decisive metric, the RFR model retains its relevance 

and utility despite low R2 scores, as the RMSE, MAE, and bias values are within an 

acceptable range for agricultural applications. 

5.2 The estimation models 

For the interpretable model, we conducted several additional tests using different input 

samples. The general observation is that the model is not robust and is very sensitive to 

the input data. The coefficients and constants can vary drastically depending on 

different input samples. Given the nonlinear characteristic of the interpretable model, 

the final estimation of coefficients and constants is also influenced by the initial guesses 

and the number of iterations, which is out of scope of this study and will not be further 

discussed. The dependency on these factors of the interpretable model necessitates 

artificial verification of coefficients and constants based on empirical experience from 

previous fittings, which introduces subjectivity.  

Moving on to the formula of the interpretable model, DMCaP is calculated by using 

ratio of dry weight and fresh weight. The main concept behind this model is to quantify 

the dry mass and water mass using vegetation and water index respectively. The model 

is built on the assumption that there is a linear correlation between two key elements: 

(i) dry biomass and VIs, and (ii) water content and water index. Although there are 
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studies suggesting a relationship between dry mass and VIs (Boutton & Tieszen, 1983; 

Bretas et al., 2021; Kong et al., 2019), it is important to note that this relationship is not 

always linear. Typically, these studies involve preliminary data exploration before 

starting to develop statistical models. The relationship between vegetation biochemical 

constituents and indices depends on various factors such as vegetation species, 

experimental areas, and growth stages. In this study, the ideal approach is to estimate 

dry mass and water or fresh mass separately, and then calculating DMCaP. However, 

due to unavailability of the qualitative data on dry mass and water mass of the 

vegetation, we relied on VIs and the water index to estimate a quality value (DMCaP) 

based on certain assumptions. Uncertainty is introduced in both the numerator and 

denominator of the estimation. It becomes challenging to determine whether the 

assumptions are incorrect, or if the presence of significant uncertainties and noise is 

hindering satisfactory model performance.  

Studies (Feret et al., 2021; Romero et al., 2012) using radiative transfer models have 

revealed that the optical properties of vegetation are influenced not only by biochemical 

constituents but also by other parameters, such as the vertical structure and density of 

vegetation. This introduces an additional layer of uncertainty to the model.  

For the RFR model, we decreased the number of predictors in the training process by 

observing permutation feature importance. It is important to note that the method of 

permutation feature importance does have certain limitations. It tends to prioritize 

numerical features and categorical features with a high number of unique values (high 

cardinality). When dealing with correlated features, it may choose one feature over the 

other and disregard the significance of the second feature, potentially resulting in 

misleading conclusions (Płoński, 2020).  

By looking at the permutation feature importance, one of the commonly raised 

questions is: What are the important predictors that the RFR model uses to make the 

predictions? From a machine learning perspective, the answer is: They are actually a 

combination of many predictors. As shown in Fig 4.6, NDVI and precipitation are the 

most important predictors for the two RFR models respectively. However, we should 

not try to associate the inherent predictive value of NDVI or precipitation to DMCaP 

group differences, even if such association exists. There is a clear difference between 

association and prediction studies: the former aims to gain a better understanding of a 
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phenomenon while the latter aims to make accurate predictions. 

Another thought regarding cross-validation (CV) in the training process of the RFR 

model is that, for time series data, the recommended approach is to use walk-forward 

validation. This entails ensuring that the validation data always comes after the training 

data in terms of time. In this study, walk-forward validation is not implemented as it is 

challenging due to uneven time intervals (see Appendix A.2) and the dataset consisting 

of samples from four different trial fields.    

It is important to note that the models were developed using localized samples from 

non-natural forage grasslands. As DMCaP characterizes community-level traits 

associated with species distribution and anthropogenic activities, the generalization 

ability to larger scales and diverse land types may be limited. 

5.3 The quality of input data  

The dataset is a combination of RS optical data, in-situ measurements of DMCaP, and 

weather history. In the following discussion, we will address three aspects: the quality 

of in-situ data, the quality of RS data, and the matching of RS and in-situ data pairs. 

Regarding the in-situ data, it includes the geographic coordinates of each sampling plot 

and the corresponding DMCaP value. There are GPS positioning errors when recording 

the coordinates. Each sample consists of manually harvested subsamples within the plot, 

without strict control over the total weight of each sample. The selection of subsamples 

relies on visual judgment, which introduces subjectivity. Considering the rather even 

spatial distribution of samples within each field and the fact that DMCaP is a quality 

value rather than a quantity value, we argue that the overall quality of the in-situ data 

is sufficient for agricultural purposes. 

As for the RS data, L2A BOA reflectance was used to minimize the atmospheric 

interference, and SCL was employed to mask out cloudy pixels. Although errors may 

exist in both BOA reflectance and SCL, we still consider the L2A products to have 

overall good quality. 

When it comes to matching RS and in-situ data pairs, larger uncertainties and/or errors 

are introduced. The geographical location of the trial fields experiences a high 

frequency of cloudy weather, resulting in a limited number of available S2 images for 
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analysis. There are significant temporal gaps exceeding 5 days between successive S2 

images used for extracting satellite measurements (see Fig A.1). Noise is present in the 

RS data, and the occurrence of two harvesting events adds another level of complexity 

to the time series. The spatial resolution of RS data is at most 10 m and may not well 

represent the optical properties of according field sampling plots. The introduction of 

artificially selected smoothing parameters further contributes to the uncertainty. These 

factors combined make it challenging to accurately match RS and in-situ data pairs. 

Overall, errors and uncertainties were introduced from the RS data, in-situ data and 

matching them as pairs. The dataset is complex as it contains information about time 

series, spatial variation within and between each field. Consequently, the overall quality 

of the dataset is average. The average quality, combined with small data volume, 

contribute to errors and uncertainties of both the interpretable model and RFR model.    

If the objective is to improve the quality of the dataset, it would be more beneficial to 

utilize ground-based aerial platforms such as unmanned aerial vehicles (UAVs). UAVs 

typically provide higher spatial resolution (<5 m) images compared to satellites, and 

the temporal resolution can be easily adjusted. Customized sensors could also be 

deployed on the UAV platform, allowing for more optimal indices related to vegetation 

dry matter and water content. However, this approach can be expensive and time-

consuming. There is always a trade-off between accuracy and cost. For agricultural 

purposes, prioritizing a fast and low-cost method is important, even if it means 

sacrificing a certain level of accuracy.     

5.4 Experience and issues with Google Earth Engine and Python  

The retrieval of all RS data was conducted using GEE and overall, the experience was 

satisfying. GEE helped ease concerns regarding storage space that is required to store 

multi-temporal images. The built-in functions and provided demos made it convenient 

to retrieve customized data.  

During the data retrieval phase, ‘computation timed out’ and ‘memory capacity 

exceeded’ errors were frequently encountered. These issues were resolved by either 

waiting for a longer period or reducing the required time period of satellite images. 

Since this study only required local-scale data and the total number of images used for 

analysis was not large, no efforts were made to optimize the code to maximize 
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computing power and memory usage. 

A bug was hit when trying to aggregate and export the data within each field. The use 

of the Scene Classification Layer (SCL) resulted in cloudy pixels/regions being masked 

out, leading to null values. When transforming a list to a feature collection ready for 

export, all properties disappeared. This occurred because the system treats a property 

with a null value and the absence of a property as indistinguishable. As a result, when 

creating properties (fields) based on the first element in the list, if the first element has 

properties with null values, no values for those properties will be included, even if other 

elements in the list have values for those properties. To keep the properties for other 

elements, we must manually set null values of the first element in the list to some other 

value.  

It is worth noting that there is no distinction between null values and no data in GEE, 

which can be advantageous during the debugging process by saving considerable effort. 

Python Pandas library was utilized to organize and manipulate data. This library is 

recommended for data analysis, especially for time series data. 

5.5 Limitations of this study and recommendations for future studies 

The high frequency of cloudy weather in the trial fields limits the temporal resolution 

of the S2 optical data. The temporal gaps between two successive images used for 

extracting pixel values contribute to the uncertainties in the dataset. A potential future 

development of this study is to increase temporal resolution by incorporating data from 

active sensing sources, such as Sentinel-1. The utilization of multi-source RS data has 

the potential to significantly reduce uncertainties when matching RS and in-situ data 

pairs (Li et al., 2012; Xie et al., 2012). 

Another limitation is the unaddressed significant noise in the time series during spline 

smoothing interpolation. Additional efforts could be made to reduce noise and improve 

the quality of the time series data. Furthermore, the spline smoothing approach used 

was point-based and did not consider the spatial pattern of the region. For constructing 

time series, professional tools/software such as TIMESAT could be used to better 

capture the spatial dynamics of the area. 

Bretas et al. (2021) utilized a Random Forest (RF) model to predict DMCaP in pastures 

by integrating meteorological data and satellite imagery. Although weather data was 
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included in the study, it was homogenous for all fields. It would be beneficial for future 

studies to incorporate higher spatial-resolution meteorological data and meteorological 

data from diverse sources to investigate if it enhances the estimation of DMCaP in 

forage grasslands. 
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6. Conclusions 

Monitoring vegetation dry matter and water content at leaf-level has been long 

conducted, but few studies have investigated the capabilities of satellite remote sensing 

in estimating dry matter content as percentage (DMCaP) for agricultural applications. 

In this study, we utilized in-situ measurements of DMCaP obtained from forage 

grasslands to evaluate the capabilities of Sentinel-2 data, and combined with 

environmental variables in estimating community-level DMCaP in forage grasslands in 

Southern Norway. Two types of models were developed, the interpretable model and 

the Random Forest Regression (RFR) model. The evaluation of the model performance 

showed that the R2 values were relatively low to moderate for both types of models, 

while the RSMEs and MAEs were generally within an acceptable range. The RFR 

model outperformed the interpretable model, achieving a RMSE of 3.88%. Adding 

environmental variables to the RFR model improved the accuracy (RMSE = 2.90%). 

The interpretable model performed better when applied to individual fields, indicating 

its suitability for highly local-scaled data. There was no significant difference in 

performance when using different combinations of water index and vegetation index.  

Given the complexity of the dataset and the considerable uncertainties involved, it is 

challenging to determine whether the lower performance of the interpretable model is 

due to incorrect assumptions or the inherent uncertainties within the dataset. The 

interpretable model, with its lower performance and dependency on multiple factors, is 

deemed less favorable. The relatively low to moderate R2 values of both types of models 

are more likely attributed to the characteristics of the dataset. 

Although we have concluded that the RFR model is a more favorable choice compared 

to the interpretable model, it is important to note that it was built using local-scale 

samples from non-natural forage grasslands. The DMCaP, which represents 

community-level traits that associates to species distribution and anthropogenic 

activities, may result in limited generalization capability of the model in larger scales 

and different land use types. 

To reduce uncertainties in matching RS and in-situ data pairs, the use of multi-source 

RS data is recommended. Professional tools or software can be beneficial in reducing 

noise and considering spatial patterns when constructing time series. Future studies 
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could also consider to incorporate higher spatial-resolution meteorological data and 

meteorological data from diverse sources to investigate if it enhances the estimation of 

DMCaP in forage grasslands. 

In conclusion, primarily Sentinel-2 data, and combined with environmental variables 

were utilized to develop models for estimating community-level DMCaP values in 

forage grasslands for agricultural purposes in southern Norway. This study addresses 

the gap in estimating vegetation dry matter content between the agricultural and 

academic communities, as well as the limitations observed in previous studies when 

attempting to match satellite and in-situ data pairs. It highlights the potential of satellite 

RS in estimating the DMCaP quality factor for agricultural applications, providing 

valuable insights for the forage-harvesting process and pasture management. 
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Appendices 

The appendices include two figures (Appendix A) and three tables (Appendix B). The 

first figure (Fig A.1) shows the frequency histogram of temporal gaps between two 

successive Sentinel-2 images used for extracting remote sensing measurements. The 

second figure (Fig A.2) presents the sampling frequency of in-situ measurements of dry 

matter content as percentage. The first table (Table B.1) shows the dates of collecting 

in-situ measurements for four fields. The second table (Table B.2) lists the tuned 

hyperparameters using random search of the Random Forest Regression model. The 

third table (Table B.3) summarizes the performance metrics of the interpretable model 

using data of four fields respectively. 

Appendix A. Additional figures 

 

Fig A.1. Frequency histogram of temporal gaps between two successive Sentinel-2 images used for 

extracting remote sensing measurements. 

 

Fig A.2. Sampling frequency of in-situ measurements of dry matter content as percentage. 
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Appendix B. Additional tables 

Table B.1. Dates collecting in-situ measurements for all fields, all dates referred to in the year of 2022.  

Field name Dates                             

Field 1 May 12th, May 27th, June 3rd, June 27th, July 12th, August 1st,  

August 8th 

Field 2 May 5th, May 18th, June 1st, June 16th, July 8th, July 20th, August 5th, August 

12th 

Field 3 May 24th, July 1st, July 11th, August 3rd, August 10th 

Field 4 May 24th, July 1st, July 11th, August 4rd, August 11th 

 

Table B.2. Tuned hyperparameters using random search of the Random Forest Regression (RFR) model 

using only Sentinel-2 data and using Sentinel-2 data and environmental variables as predictors. Default 

settings provided by the Python Scikit-learn package were applied for hyperparameters not listed in the 

table.  

Hyperparameter RFR (Sentinel-2) RFR (+ Environmental variables) 

Number of trees 300 300 

Minimum samples split 2 2 

Minimum samples leaf 1 2 

Maximum features auto sqrt 

Maximum depth 10 7 

Bootstrap True False 
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Table B.3. Performance metrics of the interpretable model using data of Field 1-4 respectively (running 

four times). F1-4 represents Field 1-4. 

 RMSE (F1-4) MAE (F1-4) Bias (F1-4) R2 (F1-4) 

RVI 3.01, 3.35, 

5.25, 4.08 

2.47, 2.71, 

4.39, 3.38 

-0.0020, -0.0000, 

0.0010, -0.0103 

0.16, 0.03,  

0.05,0.22 

NDVI 3.01, 3.35, 

4.96, 4.16 

2.47, 2.71, 

4.07, 3.51 

-0.0020, 0.0001, 

-0.0021, -0.0085 

0.16, 0.03, 

0.15, 0.19 

GNDVI 3.01, 3.35, 

5.11, 4.09 

2.47, 2.71, 

4.20, 3.36 

-0.0021, -0.0001, 

0.0034 -0.0076 

0.16, 0.03, 

0.10, 0.22 

EVI 3.01, 3.33, 

5.29, 4.21 

2.47, 2.74, 

4.54, 3.56 

-0.0021, 0.0006, 

-0.0010, -0.0089 

0.16, 0.04, 

0.04, 0.17 

CVI 3.01, 3.35,  

5.29, 4.22 

2.47, 2.71, 

4.54, 3.57 

-0.0021, -0.0001,  

-0.0010, -0.0003 

0.16, 0.03, 

0.04, 0.17 

NDRE 2.96, 3.35, 

5.08, 3.82 

2.41, 2.71, 

4.16, 3.08 

-0.0037, -0.001, 

0.0034, -0.0067 

0.19, 0.03, 

0.11, 0.32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


