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Abstract

The need for speed in communications systems is increasingly prevalent in modern
society, which is one of the driving factors for the evolution of new technologies.
At the forefront of this evolution are Multiple-input Multiple-output (MIMO)
systems. Through the usage of many antennas at the base station (BS) and user
equipment (UE), significantly enhances the potential maximum data transfer rates.
Central to the performance of MIMO systems is the concept of Degrees of Freedom
(DoF), a metric that quantifies the controllability of a system.

This thesis examines the DoF-distribution of a MIMO-system with focus on spa-
tial multiplexing which allows for several spatially orthogonal channels to be set
up and used to increase system capacity. By identifying parameters that affect the
number of DoF in the spatial domain, gives design rules and insight into simpli-
fying the design process for future communication systems, meeting the growing
demand for higher data rates.

By usage of computer simulations and the current theory of MIMO-system, this
study links the effects of apparent area in the context of solid angles on the number
of spatial DoF for Single-User MIMO as well as for Multiple-User MIMO. An
overview of DoF-metrics is given together with novel description of a volumetric
UE which extends previous low-dimensional formulations of the user together with
the implementation of a real antenna model and its impact.
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Populärvetenskaplig Sammanfattning

Elektromagnetiska vågor är svåra att förklara men enkla att uppleva. Det är de
fotoner som träffar våra näthinnor som gör att vi ser saker. Radion plockar upp
dessa för att spela nyhetsmorgon, och när wifi:t är söligt, så är det avsaknaden av
dessa vågor från routern som besvärar oss.

I synnerhet är det sista exemplet något som har sett stor utveckling de senaste
seklen. Den första elektriska telegrafen efterföljdes av telefonen för att sedan bli
trådlös för att numera användas för att surfa på internet. Elektromagnetiska vågor
är informationsbäraren i alla dessa exempel och förväntas att föra över flera hundra
gånger mer information än vad de gör idag. Likt routrarna som man har i hemmet
så har man basstationer utomhus som bygger upp det vi kallar för mobilnät (2G,
3G, 4G, 5G och snart 6G). Idag lägger företag och forskande instanser såsom uni-
versitet oerhört stora resurser på att forska fram hur man kan göra dessa system
bättre. Ordet bättre kan betyda allt ifrån högre överföringshastigheter, snabbare
responstid, bättre tillförlitlighet, mindre fysisk storlek på basstationerna till lägre
energiförbrukning.

I detta examensarbete fokuserar jag på hur man kan förbättra dessa basstationer,
särskilt med avseende på överföringshastighet i komplexa miljöer. Begreppet
"komplex" är missvisande då det hänvisar till de vanliga miljöer vi är vana vid,
exempelvis en stadsmiljö. Om man modellerar denna miljö med matematik och
fysik blir formlerna oftast långa och krångliga. Detta till skillnad från triviala (en-
kla) miljöer där formlerna oftast blir korta och enkla. Ett exempel på en trivial
miljö hade varit långt uppe i luften eller rymden där inga objekt finns så att man
kan fokusera på hur en isolerad basstation fungerar.

Denna förbättring av basstationerna görs genom att med teorin om hur bassta-
tioner uppför sig, simulera dagens design i komplexa miljöer för att få reda på vad
man behöver lägga krut på för att förbättra. Exempelvis är det kanske bättre att
placera ut två mindre basstationer istället för bara en stor. Eller så är det kanske
bättre att ändra formen på den befintiliga stationen istället för att lägga till ett
par extra antenner. Dessa avvägningar görs för att uppnå bästa möjliga prestanda
för investeringen man gör.
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Måttet som används för att bestämma om en design är bättre än en annan är an-
talet frihetsgrader. Dessa går att liknas med en polyglot (mångspråkig person) i
ett rum där han för flera diskussioner parallellt. Den som pratar finska skriker, den
som pratar svenska pratar i normal volym, den som pratar danska viskar och resten
kan man knappt höra vad de säger. Om målet för polyglotten är att maximera
det totala informationsflödet så är det endast mödan värt att prata med finnen,
svennen och dansken. Samtidigt kan polyglotten prata oerhört snabbt med finnen
då det är inga problem med att höra vad denne säger, söligare med svennen och
saktast med dansken. Antalet konversationer som är värda att upprätthålla, det
vill säga, bidrar positivt till det totala informationsutbytet är exakt det som kallas
för antalet frihetsgrader fast i kontexten för spatiell multiplexing för kommunika-
tionssytem med flera antenner i sändare och mottagare.

Denna uppsats har presenterat ett mer relevant mått som har i åtanke hur känslig
polyglottens hörsel är. Uppsatsen har även sammanfattat den spretiga röran av
nuvarande forskning på ämnet till en mer introduktionsmässig nivå och presenterar
de betydande förändringar man kan göra för att förbättra designen av kommunika-
tionssystem. Till sist har ett eget bidrag gjorts med hjälp av datorsimuleringar
som visar på betydelsen för hur den upptagna ytan av ens synfält har för den
spatiella multiplexingen för en såsom för flera användare.
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Chapter 1
Introduction

Degrees of Freedom (DoF) appears in different disciplines such as statistics, me-
chanics, chemistry and control theory [35]. Degrees of Freedom (DoF) refers to
how many independent parameters (real-valued scalar) that describes a system.
Examples include:

1. Statistics: In statistics, DoF are often associated with the number of values
in a calculation that are free to vary. For example, in a t-test, the DoF are
related to the number of observations minus the number of constraints or
conditions. In simpler terms, it represents the number of independent pieces
of information available to estimate a parameter or make a comparison [6].

2. Mechanics: In mechanics, DoF describes the number of independent ways
a rigid body can move in a given space. For example, a rigid body in three-
dimensional space has six DoF: three translational DoF (movement along
the x̂, ŷ, and ẑ directions) and three rotational DoF (rotation around the
x̂, ŷ, and ẑ directions) [19].

3. Chemistry: In molecular systems, DoF represents the independent ways
atoms and molecules can move or vibrate. This can include translational,
rotational, and vibrational DoF [25].

4. Control Systems: In control theory, DoF can refer to the number of in-
dependent inputs or control parameters available to control a system [1].

Understanding DoF is crucial in various analyses and calculations, as it helps to
determine the complexity of a system and the number of parameters that need to
be considered for accurate modeling and analysis [1, 6, 19,25].

In the context of MIMO-communications, using spatial multiplexing lets one uti-
lize spatially, orthogonal communication channels to increase system capacity
[7, 21, 29]. However, calculating how many useful modes exist for a certain com-
munication setup is still an evolving area of research that warrants further inves-
tigation for comprehensive understanding [2, 38].

1



2 Introduction

1.1 Background

DoF [21,27,31] in an ElectroMagnetic (EM) setting describes the number of useful
modes that couple a source volume to a receive volume. When an applied cur-
rent is put onto the source volume, an induced current on the receive volume is
created that originates from the electromagnetic fields created from the currents
on the source volume [20]. These coupling modes are usually referred to as EM-
DoF. However, the more general acronym DoF is selected to describe useful modes
within this thesis.

The term number (#) of Degrees of Freedom (#DoF) is used for describing the
number of modes that positively contribute to system capacity. There exist use-
ful modes and useless modes. For example, useful modes radiate in the correct
direction and create a coupling whereas useless modes might radiate in the wrong
direction. The reason we want the total number of modes to be high is because
they are orthogonal, meaning that two modes with the same effectiveness (coupling
strength) would increase the capacity if the transmit power was divided between
those two modes [21, 27, 31]. This kind of multiplexing is more available in the
nearfield (distances closer than the Fraunhofer distance, Appendix. B) which is a
use case projected to be of great importance in the near future [2]. Furthermore, a
capacity increase in urban environments is also possible due to the introduction of
multiple path (multipath) propagation of signals which enables the Base Station
(BS) to communicate with User Equipment (UE) through different spatial direc-
tions. Integration of multiple antennas into the UE, would allow it to both utilize
spatial modes and to differentiate between signals coming from different spatial
directions due to the reciprocity of beamforming, improving system capacity.

In the context of spatial multiplexing in MIMO-systems, the #DoF can be thought
of as in the following example (Visualisation in Fig. 1.1):

A polyglot is in a room with 100 people, each speaking to the polyglot in a different
language simultaneously. The first person speaking Finnish is screaming, the sec-
ond speaking Swedish is talking at a normal volume, the third speaking Danish is
whispering and each following person is speaking even more softly. If the objective
for the polyglot is to maximize the information transferred, his energy is most well
spent with the Finn, Swede and Dane. At the same time, it is beneficial to spend a
little more energy speaking faster with the Finn since there is no problem hearing
what the Finn is saying, spending less energy by talking at a normal pace with
the Swede and even slower with the Dane. The number of conversations the poly-
glot upholds is the number of conversations that positively impacts the amount
of information conveyed. That number is exactly the definition of #DoF in the
context of spatial multiplexing for MIMO-systems. The exact formulation of this
problem, on which conversations to spend energy on and how many conversations
to have which maximizes the conveyed information is described by the waterfilling
theorem in section 2.3.



Introduction 3

Figure 1.1: A polyglot speaking with 100 people, all speaking to the
polyglot in a different language where he can only hear three
persons.

A MIMO BS of size 1m × 0.5m and operating at 30 GHz [2], would have its
Fraunhofer distance at 250 m which would indicate that the UE can no longer
be considered to be in the farfield (distances greater than the Fraunhofer dis-
tance) [36] at all times. At distances greater than the Fraunhofer distance, #DoF
is close to one (two if one takes into account polarisations). However, #DoF can
be greater than one in the nearfield [21, 27, 31]. This speaks to the relevance of
near-field communications methods.

Two emerging areas of research are the concepts of Reconfigurable Intelligent Sur-
face (RIS) and Large Intelligent Surface (LIS), [2,10,11]. For example, by utilizing
active and passive scattering these structures can increase capacity by extending
the near-field, where multiplexing is high, to farther distances.

1.2 Purpose

At distances closer than the Fraunhofer distance (where phase variation over an
aperture starts to become relatively large according to the derivation in Appendix.
B.1), the number of useful modes (#DoF) are greater than one. Not utilizing these
modes would mean missing out on channel capacity. The study of these spatial
DoF, how they are distributed and the relevant parameters such as distance to
UE, antenna spacing, topology and area would ensure a good level of control over
the system and therefore a high-performing system [13,21,27,31].

The following research questions and working objectives can be defined.

• Objective 1: Replication of Previous Findings

During this thesis, scientific papers were examined, their results reproduced, and
conclusions drawn. The results within this thesis builds upon the same models



4 Introduction

used in [38], and the replications of its results are provided to persuade the reader
of the validity of the replicated algorithm which is available in Appendix 1.

• Research Question 1 : Examine the different metrics used for #DoF es-
timation

The current literature on the study of spatial multiplexing for MIMO-systems
utilizes many different formulae to calculate an approximation of the #DoF. Ψe

is calculated from the correlation matrix R. NH approximates #DoF from the
utilization of the paraxial approximation in optics ((sin(θ) ≈ θ) which is valid for
small angles) for two square apertures pointing towards each other. Ke utilizes
that the modal significance is dependent on the input power and Na utilizes a con-
sequence of Weyl’s law [33] on the distribution of singular values for the Laplace
operator [8] which relates to the average shadow area of an object (all metrics are
defined in the theory section). These metrics are compared to identify impactful
parameters on the DoF-distribution.

• Research Question 2 : Examine the effect of solid angle on the DoF-
distribution and regional multiplexing for volumetric users

Spatial multiplexing allows for increased capacity in MIMO-systems, and design
rules to improve the availability of spatial multiplexing are sought after. With
this research question, this thesis examined how the effect of solid angle between
transmitter and receiver structures is significant for the utilization of spatial mul-
tiplexing.

Distributing multiple BSs gives rise to regions of high BS envelopment. This thesis
examines whether this also infers regions of high spatial multiplexing. Furthermore
it is examined whether the potential effect of solid angle on DoF-distribution holds
for users defined as planar structures rather than volumetric users?



Chapter 2
Theory

In this chapter, the theoretical concepts related to this thesis are presented. First,
the notation conventions and definitions are presented followed by problem for-
mulation together with the necessary theory to solve it. Afterwards, the different
metrics to approximate #DoF are listed together with a new metric (Ke) which,
to the best of the author’s knowledge, has not been discussed in the relevant liter-
ature. Lastly, an introductory example is presented utilizing the presented theory.

2.1 Notation convention and Definitions

• Vector quantities and matrices are written in boldface. For example position
vector r = xx̂+ yŷ + zẑ.

• Scalar quantities are written as italic. For example the magnitude of the
position vector |r| = r.

• Position vector is, as according to convention, r with source position denoted
by a prime (’). For example the distance between position vector r and
source position r′ is |r− r′|.

• Unit vectors are written with a hat. For example, constructing a unit vector
from a vector pointing in the positive x-direction (xx̂ with x > 0) in R3 is
done as xx̂

|xx̂| = x̂.

• Solid angle [steradian] describes how much an external object occupies the
field of view of an observer.

• The word "Cumulative" is an adjective that means the increase or increase
in quantity, degree, or force by successive additions. An example use of
the word is "cumulative angle", which refers to the summation of multiple
angles.

2.2 Channel model based on EM-equations

The general question being asked is: given an induced current on a source volume
denoted as Js(r

′), what is the coupling to the currents generated on the receiving

5



6 Theory

structure denoted as Jr(r). How this is done is through assuming that the system
can be described by a coupling matrix H. An illustration can be seen in Fig. 2.1.
The structure of the channel matrix H is decided by how one chooses to model

HJs(r
′) Jr(r)

Figure 2.1: Illustration of applied Js(r
′) and induced currents Jr(r)

coupled through a matrix H.

the system.

2.2.1 Channel state information

Channel State Information (CSI) describes the properties of a communication
channel. A mathematical description of a narrowband flat-fading channel model
is [24]

y = Hx+ n (2.1)

where y describes the received amplitudes and phases (receive vector), x describes
the amplitudes and phases that we control and can put upon the transmitter
(transmit vector, examples of transmit/feeding vectors are found in the columns
of Table 2.1 which excite orthogonal modes), H is the channel matrix which cou-
ples the transmit vector x to the receive vector y with the addition of some noise
on the system n, which is often modeled as being circular symmetric, complex,
normal with n ∼ CN (0, S) where the mean value is zero and the noise covariance
matrix S is known [30].

Narrowband means that the signal occupies a narrow range of frequencies, and
in this band, all frequencies experience the same fading characteristics (flat fad-
ing) [24].

The channel matrix H has entries of coupling coefficients hmn where there are N
transmit antennas and M receive antennas as visualized in Fig. 2.2 and written
in equation form without noise as
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Figure 2.2: General structure for MIMO-channel model (Benjamin
Baumgärtner [34]).


y1
y2
...

yM

 =


h11 h12 · · · h1N

h21 h22 · · · h2N

...
...

. . .
...

hM1 hM2 · · · hMN



x1

x2

...
xN

 .

2.2.2 Scalar Green’s Function Channel Model

Utilising Green’s scalar function [3], as derived in Appendix (A.29)

g(r, r′) =
1

4π

exp(−jk0|r− r′|)
|r− r′|

[m−1] (2.2)

one can construct the channel matrix H with N transmitters and M receivers as
following

H =


g11 g12 · · · g1N
g21 g22 · · · g2N
...

...
. . .

...
gM1 gM2 · · · gMN

 . (2.3)

This can be seen as distributing delta-Dirac points on the source volume, describ-
ing the amplitude of the source current at different positions (analogous to the
receiving structure). In the case that the points are distributed uniformly along a
line, wall or similar, the point sources are a reasonable depiction of small isotropic
antennas and can give insights into the general effects and behaviours of the modes.
In the case that the points are not uniformly distributed, they should be densely
distributed such that each point can describe the varying amplitude of the sur-
face current. This formulation is limited since dense sampling is not continuous,
and therefore, a point described by a 3-D Dirac function with net current can be
surrounded by zero current, violating Kirchhoff’s current law. In that case, the
formulation loses physical validity.

In normal media, the direction of the E and B-fields are orthogonal to the prop-
agating direction as described by the Poynting vector [3]. Under these circum-
stances, for an antenna to have an isotropic radiation pattern together with a
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polarisation that is not parallel to one of the radiating directions is impossible.
For example, a ẑ-directed dipole does not radiate in the ẑ-direction. However,
for acoustic signals, the propagation of the sound wave is parallel to the direc-
tion in which the increase in sound pressure travels. Due to this, the formu-
lation of Green’s channel model lacks a description of polarisation. One could
utilise instances of Green’s channel model to construct a formulation of co- and
cross polarisation effects in a large matrix, which is the formulation of the Green
Dyadic [3, 37, 38]. The instance where polarisation effects should be taken into
account is when they contribute to #DoF other than when just introducing an
additional dimensionality to the problem. For example when multi-path propaga-
tion can favour one polarisation over the other and enable an additional channel
to the recipient.

2.2.3 Inclusion of basis function

Instead of describing the current on the source volume according to Green’s channel
model, one can instead apply basis functions which include a description of how
the currents behave between the discretization points. After choosing points and
basis functions, a current on the source port can be applied, E-field calculated, and
coupling be computed by taking the ratio of the induced current over the applied
current to achieve a coupling coefficient. This methodology is readily used when
discretizing problems according to the Finite Element Method (FEM) or Method
of Moments (MoM) and can also be applied to EM-problems [3, 4, 23].

2.2.4 Shannon Theorem

For a Single-Input Single-Output (SISO) system, the channel matrix H is scalar
(consists of only h11), what is the obtainable capacity? The Shannon theorem [26]
describes the maximum rate information can be passed through a communication
channel with a certain bandwidth in the presence of noise. It is defined as

C = B log2

(
1 +

S

N

)
(2.4)

where C is the channel capacity in [bits
s ], B is the bandwidth in [Hz], S is the

average received signal power over the bandwidth in [W ], N is the average power
of the noise and interference over the bandwidth, S

N is the signal-to-noise ratio
(SNR) in linear-scale but usually plotted in decibel (dB).

However, this formulation does not directly give the ability to calculate what
capacity is available for a communication system with multiple coupling coeffi-
cients, described by a channel matrix H. The maximum attainable capacity is
a property of H and can be deduced by examining the #DoF that exists in the
matrix, and optimally utilising them. In the case of H being square, describ-
ing the matrix in terms of orthogonal DoF is precisely applying an eigenvalue-
decomposition where the different eigenvectors have different eigenvalues. Gener-
alising the eigenvalue-decomposition to non-square matrices yields the ability to
calculate the capacity for non-square channel matrices. The generalisation of the
eigenvalue-decomposition results in the Singular Value Decomposition (SVD).
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2.2.5 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) generalises the eigenvalue-decomposition to
include non-square matrices [3]. It allows us to compute the capacity for a system
with a coupling matrix H.

Given a matrix H of size m× n, SVD decomposes it into three matrices

H = UΣV† (2.5)

where U is an m ×m unitary matrix representing the left singular vectors, Σ is
an m× n diagonal matrix with singular values (σ) along its left diagonal, V is an
n × n unitary matrix representing the right singular vectors, † is the Hermitian
transpose (a.k.a conjugate transpose).

There is a choice between calculating the SVD of H or the correlation matrix
R = HH† and both are in common use. Calculating the singular values of H
refers to finding the transfer and receive vectors that couples to a certain mode.
Calculating the SVD of R has a more abstract meaning as the transmitted power
of each respective antenna element is considered. Each row hx corresponds to the
coupling from antenna x to every antenna in the Rx. By calculating R = HH†

with respect to each row yields

...
...

...
...

...





h1

h2

hN

· · ·

· · ·

· · ·

· · ·

· · ·




h†
1 h†

2 h†
N

=


|h1|2 h1h

†
2 · · · h1h

†
N

h2h
†
1 |h2|2 · · · h2h

†
N

...
...

. . .
...

hNh†
1 hNh†

2 · · · |hN |2



(2.6)

where the left diagonal in the resulting matrix now contains the square of the
coupling of each antenna in Tx, which relates to its transmitted power.

The singular values of R are related to the singular values of H by the square. The
derivation is done by computing the correlation matrix R with the decomposition
of H as in (2.5) which yields

R = UΣV†(UΣV†)† = UΣV†VΣ†U†. (2.7)
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Since U and V are unitary matrices (Unitary: U† = U−1 =⇒ U†U = UU† = I),
(2.7) can be further simplified as follows

R = UΣΣ†U† = UΣ2U† = U


|σ1|2 0 · · · 0
0 |σ2|2 · · · 0
...

...
. . .

...
0 0 · · · |σN |2

U†. (2.8)

Σ contains the singular values of H and Σ2 contains the singular values of R.
Therefore they are related by the square.

In the context of spatial multiplexing, decomposing the correlation matrix allows
us to compute the capacity since the singular values correspond to the coupling
strength of different spatial modes.

2.2.6 SVD of Shannon Theorem (MIMO-capacity)

The Shannon capacity theorem can be expanded such that one can calculate the
capacity for a channel matrix H (MIMO-capacity [24, 38]), represented through
the utilisation of SVD by singular values (channel gains) σ2

i , SNR ρ and dividing
the power between the modes with a factor of 1

ni
as [24,38]

C = B ·
n∑

i=1

log2

(
1 +

ρ

ni
σ2
i

)
(2.9)

where n is the number of non-zero singular values and ni represents unequal power
distribution.

Pt is contained in ρ as Pt/Pn. By allowing for the power to be divided among the
modes yields Pt/ni

Pn
. Assuming all modes experience the same noise characteristics.

By dividing the power among n modes, one must ensure that the magnitude of ρ
is preserved which is done by ensuring that ni fulfils

n∑
i=1

1

ni
= 1. (2.10)
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2.3 Waterfilling

Waterfilling is an algorithm [24] which solves the following constrained optimisa-
tion problem

max
{xi}

L∑
i=1

log(1 + xiλi)

s.t. xi = (µ− λ−1
i )+, i ∈ {1, 2, . . . , L}

With constraints:
L∑

i=1

xi ≤ Pt

xi ≥ 0, i ∈ {1, 2, . . . , L}

(2.11)

where (x)+ denotes taking the positive part of the number, i.e. (x)+ = max(0, x).

The formulation of the waterfilling algorithm is analogous to optimising for capac-
ity of a MIMO-system where each σ2

i

ni
can be mapped to a λi.

The reason why the algorithm is nicknamed waterfilling is because how the solu-
tion has a nice visual analogy depicted in Fig. 2.3. Instead of using numerical
solvers, the same solution would be achieved if a water bucket with the amount of
water Pt were poured into the graph. The stabilised water level µ would be the
same as the solution as achieved by the waterfilling algorithm, where in the case
of the figure, only the first 3 subchannels should be used. Further details can be
found in [24].

Subchannel

Power

1 2 3 4 5 6

λ−1
1

λ−1
2

λ−1
3

x1
x2

x3

λ−1
4

λ−1
5

λ−1
6y = µ

Figure 2.3: Visual interpretation of optimal power allocation per
subchannel according to waterfilling theorem. The stabilised
water-level y = µ gives the solution of how large each xi should
be to maximise the problem statement in (2.11).
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2.3.1 Frobenius norm and its relation to the sum of singular values of a
matrix

The Frobenius norm can be used to calculate the sum of singular values σi of
R = HH† by taking the Frobenius norm of H [5]

∥H∥F =

√√√√ m∑
i

n∑
j

|hij |2 =
√
trace (H†H) =

√√√√min{m,n}∑
i=1

σ2
i . (2.12)

Since the singular values for R and H are related by the square, ∥H∥F simplifies
to the square root, of the sum of the singular values of R. And by taking the
square of ∥H∥F, gives the sum of singular values of R.

By first computing the square of ∥H∥F, can alleviate the calculation complexity
of the SVD of R such that when the current sum of already found singular values
starts to approach the total sum of all singular values, one can stop the looking for
new singular values since these will at most be equal to what is left of the square
of ∥H∥F.

2.4 Definition of Degrees of Freedom

In this section, the term Degrees of Freedom (DoF) is discussed and explained in
the context of MIMO-communications. The following example explains the main
concepts.

Imagine two antennas directed towards each other in the xy-plane, separated by
a distance in ẑ-direction such that they can be considered to be in the farfield
(Fraunhofer distance Appendix B). If one wishes to transfer as much data as pos-
sible between these, one is looking for independent basis vectors that can be used
for communication. In the example, these would be the two orthogonal polarisa-
tions of the electric-field in the x̂ and ŷ directions. Another word for these bases
would be Degrees of Freedom (DoF). An illustration can be seen in Fig. 2.4

The case where this is useful for MIMO-systems is spatial multiplexing [2,7,24,33]
where instead of dividing the wave into orthogonal polarisations, the wave is di-
vided into orthogonal spatial modes. This is possible due to many antennas in
the transmitting and receiving structure, being able to produce and pick up on
phase variations. This would allow several communication channels to be set up,
analogous to how a C-note on a piano consists of its fundamental tone and over-
tones. A tone from the piano can be separated by applying a Fourier transform [3],
and information can be transferred by coding it onto the amplitudes of each mod-
e/overtone, allowing for multiple streams of information through one media.
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Vin
+- Vout

+-

x̂
ŷ

Figure 2.4: Two antennas communicating with x̂ and ŷ polarisa-
tions.

2.4.1 Metrics to estimate the number of spatial Degrees of Freedom

In a MIMO-system, spatial #DoF is defined by how many modes are used in a
system after maximising capacity by applying the waterfilling algorithm. Calcu-
lating the #DoF serves as a substitute for comparing capacity since if the #DoF
is greater than one, and one can facilitate the implementation, system capacity/-
controllability will increase [21,27,31].

After computing the SVD of the correlation matrix, convention dictates that the
singular values are contained in a vector where they are ordered in descending
order. The nature of these modes is such that a few of the first ones are of
the same magnitude and then decline sharply. The exact value for #DoF comes
as a part of the solution of the accompanying waterfilling problem. If one does
not wish to solve this, there are approximation methods available with varying
accuracy and influential parameters. The most popular ones are listed in the
following subsections where Ke presents the author’s contribution on an improved
metric that takes into account that the SNR should impact the #DoF.

Effective Degrees of Freedom (EDoF) Ψe

A common way to approximate the #DoF is [21,27,31]

Ψe =

(
tr(R)

∥R∥F

)2

=
(
∑

i σi)
2∑

i σ
2
i

(2.13)

where Ψe is the EDoF and subscript e is short for effective, tr() is the matrix trace
operator, ∥R∥F is the Frobenious norm (2.12) and σi the singular values of R.

A consequence of the introduction of EDoF Ψe is that the formula for the resulting
capacity according to Shannon theorem (2.4) can be approximated. Assuming
that all modes (n) are orthogonal and of equal strength (R is the identity matrix),
Shannon theorem can be rewritten as [38]
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C = Bn · log2
(
1 +

ρ

n

)
. (2.14)

However, this ideal case is unreachable. Ψe describes the number of significant
modes and takes on values between Ψe ∈ [1, n], where n is the maximum rank of
R. Inclusion of this instead of n yields

C ≈ BΨe · log2
(
1 +

ρ

Ψe

)
. (2.15)

The major drawback of (2.15) is that the SNR dictates the number of available
significant modes. An explanation follows from the extension of the polyglot anal-
ogy [7, 24,29]:

First, we need to assume that other people speaking do not contribute to how
clearly the polyglot can hear the speech of another person. The polyglot, being a
normal person who has normal hearing, can distinguish between the speech he is
listening to from the environment as long as the person speaking does not speak
too softly. If the polyglot’s hearing was extremely good, he should be able to
hear every person speaking in the room no matter how softly they are speaking.
However, if we gave our polyglot severe tinnitus, then he might only be able to
vaguely make out the Finn screaming.

With the previous extended analogy, a metric that gives the number of significant
modes depending on the given SNR is described in the following section.

DoF metric Ke by the usage of the derivative with respect to the binary loga-
rithm

Pouring additional water (transmitted power) into Fig. 2.3 yields a linear increase
in water level up until an additional mode is included in the optimal solution for
maximising capacity. After that instance, the increase in water level is slower.
Since the optimal number of modes in use is reciprocal for a given optimal capac-
ity with a set of available modes, a connection between these must exist. This is
done by differentiating the capacity curve with respect to the binary log of the
SNR, eliminating the binary log’s influence on its appearance. What is left is how
fast the water level rises with the added water, which is proportional to how many
modes are in effect.

For the derivation of Ke, the derivative will be calculated as ∂C/B
∂log2(ρ)

to isolate the
relation between the capacity and the sought-after number of modes being used
for a given frequency. Taking the derivative is a linear operator and we focus on
one term of (2.9). Therefore the derivative can be calculated using substitution
as follows
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∂C/B

∂log2(ρ)
=

d

d log2(ρ)

n∑
i=1

log2

(
1 +

ρ

n
σ
)

[
ρ = 2log2(ρ)

x = log2(ρ)

]

=
d

dx

[
log2

(
1 +

σ

n
· 2x

)]
=

d

dx

[
ln
(
σ·2x
n + 1

)
ln(2)

]
=

1

ln(2)
· d

dx

[
ln

(
σ · 2x

n
+ 1

)]

=

1
σ·2x

n +1
· d
dx

[
σ·2x
n + 1

]
ln(2)

=
σ
n ·

d
dx [2x] + d

dx [1]

ln(2)
(
σ·2x
n + 1

)
=

ln(2)·2xσ
n + 0

ln(2)
(
σ·2x
n + 1

) =
σ · 2x

n ·
(
σ·2x
n + 1

) .
(2.16)

Simplifying, undoing the variable substitution and inclusion of all terms previously
ignored, yields the final expression

Ke =
∂C/B

∂log2(ρ)
=

n∑
i=1

σiρ

σiρ+ n
. (2.17)

Ke can be used in place of Ψe, although an inspection of Ψe reveals that scaling of
the singular values will not affect the result whereas it does for Ke. The discrep-
ancy between the two estimates is because Ψe describes how many of the most
well-coupled modes are on the same magnitude whereas Ke describes how many
modes are significant for a specific SNR. For a very high SNR, the summation is
equal to n which is the number of available modes, no matter how poorly they
couple.

#DoF NH by usage of paraxial approximation

D.A.B. Miller, through the use of the paraxial approximation in optics [20], approx-
imates #DoF for a given setup with two planar structures separated by a distance.
The approximation is provided in (2.18) and an illustration for the setup used to
derive it in Fig. 2.5.

NH =
ASAR

λ2D2
(2.18)

In (2.18), NH is an approximation of #DoF, A is the area and the subindex refers
to either the receive area or sender area, and D is the distance between the two
planar surfaces.

Further, the formula for NH can be rewritten by the approximation of how the
surface area and solid angle relate in Fig. 2.5 as Ω ≈ A/D2. For a general viewing
angle, the area has to be reduced to apparent area. For example, a sheet of paper
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x̂ ŷ

ẑ

D

L

Figure 2.5: The setup used to derive NH in [20] which is two square
planes with sidelength L separated by a distance D.

has zero apparent area when viewed from the side and largest apparent area when
viewed from the front. A visualisation is provided in Fig. 2.6. NH can therefore
be rewritten as

NH ≈ ΩS
AR

λ2
≈ ΩR

AS

λ2
. (2.19)

#DoF NA dependent on average shadow area

In the paper [8], the authors examined the available #DoF for an arbitrary radiat-
ing structure. The differentiation between evanescent modes and radiating modes
is done by punishing the amplitude of the currents on said radiating structure
which physically would infer high ohmic losses, thereby suppressing those modes.

The main result is that for convex and non-convex geometries, the number of ra-
diating modes is related by the average shadow area, which is the average shadow
when illuminating an object with planar light from all directions. The average
shadow area for convex objects can be simplified as ⟨A⟩ = A

4 , as originally derived
by A. Cauchy [32]. Non-convex shapes have to be computed numerically.

The metric NA can be calculated as

N ≲ NA =
2k2⟨As⟩

π

convex object
=

k2A

2π
(2.20)

where N is the total amount of modes, NA is the #DoF, ⟨As⟩ is the average
shadow area of source object and A is the surface area of the object.
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Figure 2.6: A visualisation of how an object which gives rise to an
apparent area A occupies a segment of an observer’s FOV and
results in a solid angle Ω.

2.5 Introductory example

A simple introductory example is constructed and presented to act as an intro-
duction to the subject and to build up an intuition of the results presented herein.

To get an intuitive feel for spatial modes, two array structures, one for Tx and one
for Rx, are constructed as 9 isotropic antennas distributed over 4λ and separated
4λ in distance, which means that the antennas are separated by λ/2 as in a ULA.
The setup is visualised in Fig. 2.7.
The channel matrix H for the setup given in Fig. 2.7 was constructed by coupling
the antennas between the transmit and receive structure by utilisation of Green’s
function (section 2.2.2). The singular values of the channel matrix R were calcu-
lated together with the left singular vectors which excite a certain mode and the
propagation of these is plotted in Fig. 2.8. For improved graphical clarity, the
magnitude of the propagating EM-field were scaled with the distance the wave had
travelled. Since propagating E-fields decay proportional to distance, the plotted
waves do not decay. The real part of the E-field for the first three modes and the
last one can seen in Fig. 2.8 where the receive array is indicated by a gray line (to
the right).

The SVD is calculated on R, left singular vectors and singular values extracted.
To showcase the mode significances, they are plotted in Fig. 2.9 as a percentage of
the square of ∥H∥F. The left singular vectors (amplitudes and phases) for modes
1,2,3 and 9 to excite orthogonal modes in the receiving structure are provided
in Table 2.1. To construct the plots in Figure 2.8, each antenna in the Tx ULA
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Tx Rx

4λ

4λ

λ/2

Figure 2.7: The setup to visualise spatial multiplexing between a
transmit (Tx) and receive (Rx) structure where the isotropic
antennas are distributed as an ULA.

(from top to bottom in Figure 2.7) is fed according to each row in Table 2.1 for a
specific column (mode). The rows correspond to the element’s position in the ULA.

The propagation, which gives rise to phase variations, is then calculated through-
out the room for a given set of amplitudes and phases (mode). By superimposing
the solutions for each antenna, the resulting constructive and destructive interfer-
ence patterns are obtained and can be seen in Fig. 2.8.

Since pure black depicts the minimal electric field, pure white maximal electric-
field and grey depicts zero electric field in Fig. 2.8, the tendency for increasing
modal number is a lowered amplitude of the electric-field at the receiver. Since for
high modal numbers (mode 9 for instance), the electric-field tends to zero at the
receiver and therefore no current is induced on the receive structure and hence, no
signal. This gives an intuitive explanation for the existence of well-coupled modes
and poorly coupled modes. If high order modes were to be used, the transmitted
power would be directed in directions other than the receiver. Dividing the lim-
ited input energy of the transmit array among the spatial modes in an optimal
way would result in an increased capacity, contrary to if only one spatial mode
was used. A question posed is how many modes are available and how can they
contribute to increased capacity? Also, which parameters are relevant?
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 9

Figure 2.8: Visualisation of three significant spatial modes 1,2,3 and
the 9:th for the setup defined in Fig. 2.7.

Table 2.1: Left singular vectors for modes 1,2,3 and 9 of R = HH†

for the setup in Fig. 2.7

Mode
1 2 3 9
0.17 ∠-180° 0.12 ∠-180° 0.38 ∠180° 0.024 ∠0°
0.36 ∠-124° 0.18 ∠-101° 0.45 ∠-134° 0.1206 ∠-131°
0.47 ∠-87° 0.30 ∠-30° 0.26 ∠-115° 0.30 ∠85°
0.34∠-65° 0.46 ∠11° 0.19 ∠160° 0.49 ∠-74°
0 ∠-178° 0.55 ∠23° 0.34 ∠145° 0.56 ∠113°
0.34∠115° 0.46 ∠11° 0.19 ∠160° 0.49 ∠-74°
0.47 ∠93° 0.30 ∠-30° 0.26 ∠-115° 0.30 ∠85°
0.36 ∠55° 0.18 ∠-101° 0.45 ∠-134° 0.12 ∠ -131°
0.17 ∠0° 0.13 ∠180° 0.40 ∠-180° 0.024 ∠0°

To achieve a physical interpretation of the performance gain in capacity, we fol-
low a structured approach by calculating the capacity with toy-example-values in
two scenarios: first, using only the most strongly coupled mode, and then using
waterfilling to optimize the usage of all available modes. Assuming a typical 4G
frequency bandwidth of 45 MHz, 100 Watt of transmitted power and a noise floor
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Figure 2.9: Mode number [1,2,3,...,9] as a percentage of the sum
of all singular values (S = ∥H∥2F as described in Section 2.3.1)
for the setup in Fig. 2.7.

of 1 Watt. The solution can be calculated in MATLAB as following

1 : D = [ 5 . 3 e−3 5 .2 e−3 4 .8 e−3 2 .6 e−3 4 .8 e−4 2 .9 e−05 . . .
2 : 7 . 0 e−07 6 .8 e−09 1 .6 e −11] ; % Singu la r va l u e s o f R
3 : B = 45∗10^6; % Bandwidth
4 : Pt = 100 ; % Transmitted power
5 : N = 1 ; % Noise power
6 : % 20dB SNR
7 : C1 = B∗ log2(1+D(1)/1∗10^(20 / 10)) % C only 1 s t mode
8 : w a t e r f i l l (100 , 1 . /D( 1 : 4 ) ) ; %Use f i r s t 3 modes
9 : D = D( 1 : 3 ) ;
10 : P = w a t e r f i l l (100 , 1 . /D) ; %P−d i s t r i b u t i o n over the modes
11 : C2 = B∗sum( log2(1+D( 1 : 3 ) . ∗ ( 0 . 0 1 ∗P(1 :3 ) )∗10^(20 / 10 ) ) )
12 : % C1 = 2.7609 e+07, C2 = 3.0708 e+07 −> C2/C1 = 1.1122

which suggests for a small scale MIMO-system as visualized in Fig. 2.7, a potential
capacity increase of 11.22% is possible if spatial multiplexing is utilized. Line 10
waterfill(Pt, Pn) [12], applies the waterfilling algorithm for transmitted power Pt

to channels with channel noises Pn and returns the optimal distribution of power
P such that it optimizes the capacity C2. Assuming the same noise power (line
5) on all channels and that the efficiencies λ−1

i handwavingly can be seen as the
uneven noise power across the channels as visualized in Fig. 2.3. The vector D
was sliced so that line 8 would return a readable plot. Since vector P on line 10
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was set to the length of three, then it was enough to include only the first four
singular values (D(1 : 4)).
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Chapter 3
Method

In this chapter, the method for answering the research questions and fulfilling the
objectives of this thesis are presented separately (1.2).

3.1 Examination of the different metrics used for #DoF esti-
mation

A comprehensive comparison of a few applicable DoF metrics is presented, enabling
differentiation between their uses, validity, and influential parameters. The metrics
are presented in Table. 3.1.

Table 3.1: Table of the four DoF metrics, Ψe from (2.13), NH from
(2.18), Ke from (2.17) and NA from (2.20)

EDoF Formula

Ψe

(
tr(R)
∥R∥F

)2
=

(
∑

i σi)
2∑

i σ
2
i

NH
ASAR
λ2D2

Ke
∂C/B

∂log2(ρ)
=

∑n
i=1

σiρ
σiρ+n

NA
2k2⟨As⟩

π

convex object
= k2A

2π

To enable comparisons, NH , Ke and NA are paired with Ψe and applicable setups
are created.

The Ψe and NH pair was compared in a setup of two square planar transmit-
ting and receiving arrays where different parameters from the formula for NH are
tweaked and #DoF observed.

The Ψe and Ke pair was measured in the same setup as the Ψe and NH pair with
the distance static, SNR increased and #DoF observed.

The measurement of the Ψe and NA pair was conducted in a setup designed
to mimic the conditions where NA was originally introduced in [8]. This setup
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involved the construction of a single sphere with an exceptionally large radius to
emulate a receiver at infinity. The receiver was constructed as a small sphere,
radius increased and #DoF observed.

The utilization of basis functions was studied for the Ψe metric in a modification
of the setup in the introductory example. This was done by constructing a linear
array of ẑ-directed dipoles and computing the coupling as the induced current
over the applied current. The receiving structure was swept around the transmit
structure in the x̂ẑ-plane to emphasize the effect of the dipole’s radiation patterns
effect on the Ψe metric while conserving the upwards direction of the ULA being
swept.

3.2 Replication of Previous Findings

During the literature review phase of this thesis, previous results were reproduced
to ensure the validity of scripts used in this report.

To validate Algorithm 1, a few of the findings in paper [38] were reproduced.
Firstly two square apertures with a given sidelength separated by a distance were
examined by observing the increase of the Ψe metric as the number of antennas
on the structures increased.

Afterwards, the Ψe metric was measured for the same setup as in the paper [38].
The setup consisted of two sets of point sources and receivers, each consisting of
20x20 isotropic antennas, distributed uniformly on surfaces of an area of 10×10λ2.
The separating distance was then increased and its effects observed and compared
with the square root of NH .

3.3 Examination on the effect of solid angle on the DoF-
distribution and regional multiplexing for volumetric user

In a given geometric configuration with obstructing walls, defined receive and
transmit structures (visualization in Fig. 3.1), does the solid angle between those
have an impact on the DoF-distribution?
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Tx

Rx

θ

Figure 3.1: Visualisation of a generic geometric configuration with
a transmit (Tx) and receive structure (Rx) and the solid angle
θ marked between the Rx and Tx.

Algorithm 2 was implemented as an exhaustive search of all possibilities and re-
turned the optimal solution. The specific implementation was such that a segment
of the walls of the room was allowed to be defined as two points, separated by a
distance of 100λ along the direction of one of the basis-vectors. Many of these wall
segments were appended such that a connected structure was created. Thereafter,
an ULA with the length of a half wall segment was placed along the wall at the
position which maximised the solid angle (cumulative solid angle in case of mul-
tiple ULAs) to the user. Additionally, after computing the position for maximum
solid angle, the user was moved around inside the room such that the resulting
DoF-distribution inside of the room could be visualized.

A comprehensive series of tests were conducted, beginning with an examination of
an observation point positioned in the center of a rectangular room. Subsequently,
the functionality of the line-of-sight (LOS) collision code was validated using an
L-shaped room. Algorithm 2 was then applied to investigate a C-shaped room for
two linear arrays. The L-shaped room scenario was revisited with the observation
point situated near one of the room’s corners. Multiple observation points were
studied within the initial rectangular room setting.

Finally, a Multiple-User MIMO (MU-MIMO) configuration was examined by choos-
ing the ULA-placement which maximizes spatial multiplexing for a square receive
topology and for a volumetric receive topology respectively.
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Chapter 4
Results & Discussion

Firstly, pairwise comparison between the four #DoF metrics in Table 3.1 is con-
ducted for appropriate setups and presented pairwise. The first comparison was
performed between Ψe and NH followed by Ψe and Ke in the same setup. The
setup was constructed by placing two planar surfaces towards each other in R3

and then computing #DoF according to the pairs. The Ψe and NA pair were
examined in a setup consisting of a sphere radiating out towards infinity.

Secondly, the creation of a physical antenna model (half-wavelength dipole) is in-
cluded and a comparison with Green’s channel model is highlighted.

Thirdly, results from [38] were reproduced and presented, intended to validate the
model used within this thesis.

Fourthly, the impact of solid angle between UE and BS is examined and discussed.
Lastly in the same section, a distributed Multiple User MIMO (MU-MIMO) case
is examined for a planar and volumetric use case respectively.

4.0.1 Comparison between #DoF metrics

Comparison between (Ψe and NH) and (Ψe and Ke)

The setup for the comparison of Ψe and NH is visualised in Fig. 4.1. It shows two
square planes with side length L on which there is uniformly distributed points
λ/2 apart.

As seen from Fig. 4.2 (a), NH and Ψe are similar up until the array size becomes
large in comparison to the distance between the panels. For large side lengths,
Ψe starts to stagnate whereas NH keeps increasing. Therefore it is reasonable to
suspect that Ψe increases with the increase of apparent area which is suggested
in [8].

For small side lengths [1-5 λ], NH and Ψe are far from similar because then ≈ 0,
NH ≈ 0 (since As and AR ≈ 0) whereas Ψe is bounded by one. This is because
intuitively, if the side length of the panels is zero, they can still facilitate one
Delta-dirac isotropic antenna and a communication link can be created. If the
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x y

z

D

L

Figure 4.1: Setup for comparison of #DoF calculated with Ψe (2.13)
and NH (2.18) for two square planes with side length L sepa-
rated by distance D with λ/2 uniformly distributed points.

(a) Side lengths [1-25 λ] for D = 10 λ (b) Side lengths [1-25 λ] for D = 20 λ

Figure 4.2: Comparison between #DoF as given by Ψe (2.13) and
NH (2.18) for different side lengths of the square apertures as
given in Fig. 4.1

antenna requires an area/volume and can therefore not be placed there, then Ψe

is undefined as H will be a zero matrix.

A comparison between Ψe and Ke is given in Fig. 4.3 with the same setup as
previously, but only for the separation of D = 10λ.

Ψe normalizes away scaling of the singular values whereas Ke retains it and de-
pending on a given SNR, computes how many of the modes are contributing. The
discrepancy between Ψe and Ke is that the Ke curve is affected by the increase
of SNR, and for very high SNR, Ψe and Ke starts to align. It can therefore be
argued that Ψe assumes high SNR.
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(a) (b)

(c)

Figure 4.3: Comparison between #DoF as given by Ψe (2.13) &
Ke (2.17) where "@x dB" dictates the given SNR for the Ke

metric. (a, b, c) Side lengths [1-25 λ] for D = 20 λ.

Comparison between Ψe and NA

A comparison between Ψe and NA is given in Fig. 4.5. The setup consists of two
spherical shells with dense sampling according to Lebedev-quadrature (Appendix.
C) where the outer sphere has a has an extremely large radius to imitate a receiver
at infinite and the inner sphere has its radius varied. Due to NA accounting for two
polarisations, the values for Ψe have been scaled by a factor of two. Visualisation
is provided in Fig. 4.4 and results are provided in Fig. 4.5.

It was notable that Ψe and NA followed the same trend but with a small difference
in the gradient. This can be attributed to how the cutoff for significant modes
is defined. For NA, the authors [8] utilise a cutoff of 50 % radiation efficiency,
whereas the cutoff for which modes are significant according to Ψe is more loose.
Ψe returns how many of the most strongly coupled modes are on the same mag-
nitude. Note that the increase of order in Lebedev-quadrature yields a result that
corresponds more to the result of NA. An order beyond 5294 was not pursued due
to limitations of avaible computing power.
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x

y

z

≈inf

a

Figure 4.4: Setup for comparing NA (2.20) and Ψe (2.13) where the
inner and outer sphere are discretized according to the Lebedev-
quadrature (section C). The variable a is the increasing radius
of the inner sphere and the outer sphere is located far enough
away (≈ inf).

Figure 4.5: Comparison between #DoF as given by NA (2.20) and
Ψe (2.13) for different radii a measured in electrical lengths of
the inner sphere using different N-order of Lebedev-quadrature
(section C) with the setup as defined in Fig. 4.4.
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4.0.2 The effect of EM-simulations compared to Green’s Function for-
mulation

A setup as given in Fig. 4.6 was created to compare receive and transmit struc-
tures consisting of isotropic antennas (ideal, do not exist) compared to ẑ-directed
dipoles (exists in real life) respectively. For the case of isotropic antennas, the
model used was Green’s channel model. As for the dipoles, the coupling between
the receive and transmit antennas was created by the transmitted EM-fields as
computed by solving a MoM problem on the dipoles. The channel matrix’s H
coupling coefficients were constructed as the ratio of induced currents and the ap-
plied currents in the feed of each dipole pair. The Ψe metric was calculating when
the receiver array was swept around circularly around the transmit array while
preserving the ULA’s upwards pointing direction. The results can be seen in Fig.
4.7.

Tx Rx

4λ
8λ

λ

Figure 4.6: The setup used to visualize the difference between
Green’s channel model and EM-simulations for λ/2 long, ẑ-
directed dipoles (upwards). The Rx-array was rotated around
the Tx-array while preserving the upwards pointing direction of
the ULA.

As shown by the different values for the Ψe metric in Fig. 4.6, the availability for
spatial multiplexing decreases by using dipoles, compared to isotropic antennas.
This reduction can be partially attributed to the introduction of the dipole’s radia-
tion pattern, which partially impairs the effectiveness of spatial multiplexing since
ẑ-directed dipoles are unable to radiate in the ẑ direction. As per the introductory
example, no electric fields implies no signal, and inhibited coupling infer reduced
#DoF.
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Figure 4.7: The different values for Ψe (2.13) when comparing
Green’s channel model with the model based on the induced
currents from the electric fields as calculated by MoM. The re-
ceiver of ẑ-directed λ/2-dipoles was swept in a circle around
the transmitter while preserving the upwards pointing direction
of the Rx-array as visualised in Fig. 4.6.

4.1 Replication of Previous Findings

In this section, the interesting results from [38] will be reproduced to convince the
reader of the validity of the theory and scripts used within this thesis. For the
reproducibility of the results, a definition for open and closed uniform distribution
needs to be made.

The phrase "Uniformly distributed" is often ill-defined for complex problems. See
for example Appendix C. In antenna design, uniformly distributing N antennas
over a line refers to attributing equal space to each antenna, and then placing
them in the middle of their designated space. In other disciplines, the endpoints
are used (this is the same as MATLAB’s linspace(start,end,#points)) to maximise
the spacing between the objects. These two definitions are henceforth referred to
as open uniform distributed and closed uniform distributed respectively. Visuali-
sations of the concepts can be found Fig. 4.8.

Firstly, Fig. 3 (a) from [38] was reproduced such that one can be sure that Al-
gorithm 1 conforms with the algorithm used in [38]. The setup consisted of two
square surfaces with a fixed side length of 10λ, at different separating distance
D (such as in Fig. 2.7). The number of antennas N according to open uniform
distribution was increased and the Ψe metric observed. See Fig. 4.9 (a) compared
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x

x

Figure 4.8: Open (above) and Closed (below) uniform distribution
of points along a line.

to (b) for reassurance of the validity of Algorithm 1 used for the described setup.

(a) Thesis reproduced Fig.3 from [38]. (b) Fig.3 from [38].

Figure 4.9: EDoF Ψe (2.13) with N number of receivers and sources
with open uniform distribution in a planar area (same setup as
in Fig. 4.1) with fixed side length L = 10λ0 at a distance D
∈ [1λ0, 7λ0, 13λ0, 19λ0].

A design rule for the sufficient number of antenna elements needed for maximum
#DoF is sought after. In Fig. 4.11, the blue line was acquired by extracting
argmax (the input values that maximise a function value) from Fig. 4.10, which
is similar to Fig. 4.9 in which the difference between open and closed uniform
distribution is displayed. The orange line was acquired by computing the square
root of NH . The blue line can equivalently (confirmed by simulation) be obtained
by utilisation of a setup with line arrays instead of surface arrays.

4.2 Examination on the effect of solid angle on the DoF-
distribution & regional multiplexing for volumetric user

In this section, the effect of the solid angle on the DoF-distribution is examined
using computer simulations. By considering different geometric setups (as visu-
alised in Fig. 3.1) defined as rooms with different structures together with certain
placements of BSs, conclusions are drawn regarding how #DoF relates to the solid
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Figure 4.10: DoF with different N number of receivers and sources
with closed uniform distribution in a planar area with fixed side
length L = 10λ0 at a distance D ∈ [1λ0, 7λ0, 13λ0, 19λ0].

(a) Thesis reproduced Fig. 4 from [38] (b) Fig. 4 from [38]

Figure 4.11: Optimal number of sources/receivers calculated with
the EM channel model and the intuitive method, with the side
length L = 10λ and distance D = 1− 13λ.

angle. By defining a Tx structure as an ULA that was put onto the walls, and
sweeping said structure along the whole room for a given Rx (single/multiple user)
structure inside the room, different performance metrics were computed and pro-
vided.

We started by examining two quantities. The Ψe metric was considered together
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with the cumulative solid angle (from BS to each user). It was examined how
these relate for single and multiple users in the different room structures. Lastly,
different user topologies (volumetric and planar) were considered by examination
of only the Ψe metric.

The results have the format of a (with symbol explanation in Table 4.1) room
with users (red star) with angle θ in between the markings of the angle start and
end of the ULA which maximises the cumulative angle for the users. The DoF-
distribution is also provided. It was calculated by sweeping one user inside the
room and computing the Ψe metric as a measure for where multiplexing was high
and low. Lastly, to verify the correctness of the solid angle calculations, a graph
showing the cumulative angle calculation for each iteration of the sweeping of the
BS along the walls is provided for a few cases.

For all rooms, a wall segment (orange line between two blue stars) of 100λ was
discretised with 101 points, and the length of the ULA was 50λ with closed uni-
form spacing. This made the antenna spacing λ = 1 [m] and the total amount of
element per BS-ULA 51. Therefore, the iteration number symbolises a shift of 1λ
along the walls (when the graininess is 101 points), whereas for a few visualisation
plots, the graininess was lowered and the meaning of the iteration number altered.

A user was represented by a small red star where Fig. 4.12 constitutes its initial
layout. The DoF-distribution plots were constructed by sweeping one user across
the room to visualise how available spatial multiplexing was in different parts of
the room (and was therefore bounded by four as the user had four antennas).
Typically the antennas are correlated in the depth dimension which results in
the Ψe metric being at around two. This means that a wave that makes contact
with two of the four vertices at the user will make the same contact with the two
remaining vertices with an additional phase shift, hence no new information is
available.

* =

λ/2

λ/2

Figure 4.12: Square layout of a user as 4 isotropic antennas on the
vertices of a two dimensional square with side length λ/2.

For a rectangular room according to Fig. 4.13 (a) with a user at a position at
(100λ, 50λ), the placement for an ULA with maximum angle to the user is trivial.
The results can be seen in Fig. 4.13

It is observed from Fig. 4.13 (a) that for a user centred in the middle of the room,
the maximum solid angle is achieved by placing the ULA in the center of the long
sides of the rectangle. Fig. 4.13 (b) portrays the DoF-distribution for a user at
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Table 4.1: Table with explanation for the markings in the following
result-plots

* User

* Boundary Points

Bounding Room

Markings for ULA Start and
End

θ Optimal Angle

different positions in the room where it is observed that multiplexing is high close
to the ULA. From Fig. 4.13 (c), it is noted that there are two optimal placements.

Algorithm 2 calculates the solid angle from BS to user for each discretization point
placement of the BS. Thereafter it returns the placement (argmax) that maximises
the cumulative solid-angle for all users. The optimal placement in Fig. 4.13 was
for the ULA to be central to the long side of the rectangle (i.e. about 101 ·2+25).
This number is not exact since each connecting point (end of first wall, start of
next wall) for two 100λ wall segments was duplicate, and therefore two wall seg-
ments have 201 discretization points in total. The exact iteration number was
101 · 2 + 25− 2 = 225.

The discrepancies for the used model compared with reality are that no multipath
(created by EM-scattering on structures) effects are accounted for. It was im-
plemented by utilising Green’s channel model in free space and only interpreting
the data within the boundary walls. Despite this, multipath is assumed to be an
effect with lower impact than Line Of Sight (LOS) communication. This does not
hold for urban environments where multipath is a dominant aspect. Even without
accounting for multipath effects, conclusions can still be drawn, but it’s important
to recognise the limitations of the model used.

In the model used, blockages in LOS from the ULA to the user caused by ob-
structing walls were taken into account. If the wall obstructed a portion of the
ULA, its contribution to the cumulative solid-angle was ignored. This attribute
of Algorithm 2 is visualized for the room in Fig. 4.14 (a), the results of which can
be seen in Fig. 4.14.

According to Fig. 4.14 (c), there exist three optimal placements where the first
was utilised in the DoF-distribution calculation of the room. The effect of the user
to ULA LOS obstruction caused by the wall is depicted in the same figure. Hence-
forth, the optimal placement is given together with its DoF-distribution without
further comment.
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(a) Room geometry with user at
(100λ, 50λ) with maximum angle
marked as calculated by Algorithm
2.

(b) Ψe-distribution for the room and array place-
ment as defined in (a).

(c) Angle for each iteration number along the walls.

Figure 4.13: Performance metrics for a room with rectangular ge-
ometry.

To gain more understanding of the behaviour of the DoF-distribution, a secondary
ULA was introduced. In the same manner as previously, the placement of the ar-
rays was such that they were placed at unique locations which maximised the cu-
mulative solid-angle to the user. This means no overlap was allowed (implemented
as setting the solid-angle to zero). For the following setup, the user was placed at
(50λ, 150λ). A small segment of the active algorithm cumulative angle-iteration
number is given if Fig. 4.15 (c).
As seen from the results in Fig. 4.15, the introduction of two separate BSs results
in a region of high spatial multiplexing centred at the user. Therefore it can be
concluded that the the freedom of placing out a second BS, results in the ability
to create regional areas of high #DoF.
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(a) Room geometry with user at
(50λ, 150λ) with maximum angle
marked as calculated by Algorithm
2.

(b) Ψ-distribution in the room and array place-
ment as defined in (a).

(c) Angle for each iteration number along the walls.

Figure 4.14: Performance metrics for a room with L-shaped geom-
etry.

The exact implementation of Algorithm 2 is such that the primary array steps once
for every full sweep of the walls of the secondary array. The iteration number for a
wall with discretization of 101 points per wall segment would yield an unreadable
figure and for illustration purposes, artistic freedom was taken by decreasing the
graininess for a wall segment. The (now modified) full cumulative angle-iteration
number relation for Fig. 4.15 (c) can be seen in Fig. 4.16.
The pairwise two peaks of Fig. 4.16 are the optimal placements for the user for
the room boundary in Fig. 4.15. This showcases the symmetry of the problem
statement where, for an optimal solution, ULA 1 and ULA 2 are allowed to switch
places for an equally valid solution. The plot of Fig. 4.15 (c) can be seen as a
small segment of Fig. 4.16. Due to the complexity of portraying a truthful full
overview of the cumulative angle plot, it will not be provided.

Previously, the user was placed in the middle of the defined rooms and therefore
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(a) Room geometry with user at
(50λ, 150λ) with maximum angle
marked as calculated by Algorithm
2.

(b) Ψe-distribution in the room and array place-
ments as defined in (a).

(c) Cumulative angle for iterations number along the walls mid-calculation where the overlap
of the arrays set the value to zero

Figure 4.15: Performance metrics for a room with C-shaped geom-
etry.

a case for off-center placement is provided. For the same room as given in Fig.
4.14, the user was now placed at (75λ, 175λ) and results given in Fig. 4.17.

The resulting DoF-distribution for Fig. 4.17, where the user is placed off-centre
imitates beamforming characteristics highlighting its relation to maximum spatial
multiplexing. The resulting placement for the two ULAs is such that it occupies
more than half of the FOV of the user, enveloping the user resulting in a higher
spatial multiplexing at the user compared to other areas.

To be able to conclude the relation between solid angle and #DoF (here measured
as Ψe), the optimal array placement was calculated by optimising the #DoF met-
ric Ψe which yielded the same placement of the ULAs. Therefore, for these test



40 Results & Discussion

Figure 4.16: Total cumulative angle-iteration number calculation for
boundrary given in Fig. 4.15 (a) when iterating two identical
ULAs.

(a) Room geometry with user at (75λ, 175λ)
with maximum angle marked for two
ULA’s as calculated by Algorithm 2.

(b) Ψe-distribution for the room and array
placements as defined in (a).

Figure 4.17: Performance metrics for a room with L-shaped geom-
etry.

cases considering a single user, the behaviour of the DoF-distribution seems to
suggest that maximising the solid-angle to the user, is equivalent to maximising
Ψe. For the following cases, multiple users will be considered with the same an-
tenna topology as used for the single user cases.
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The rectangular room depicted in Fig. 4.13 is now revisited but with several
users. Five users were placed in parallel to the long side of the room at height
50 λ. They were placed according to a closed uniform distribution with start and
endpoint [10λ, 190λ], which can be seen in Fig. 4.18.

(a) Room geometry with user at
([10, 55, 100, 145, 190]λ, 50λ) with
maximum angle (cumulative to all users)
marked for two ULA’s (for the middle
element) as calculated by Algorithm 2.

(b) Ψe-distribution for the room and array
placements as defined in (a).

Figure 4.18: Performance metrics for a room with rectangular ge-
ometry.

The resulting DoF-distribution when maximising the cumulative angle in Fig.
4.18 suggests that for multiple users, the Ψe metric is high only for the user
in the symmetric centre of the room. Instead optimising for maximal Ψe yields
a placement of the ULAs such that several of the users are in the high spatial
multiplexing region which is shown in Fig. 4.19.
The Ψe metric is calculated for the array placements in Fig. 4.18 and Fig. 4.19
which evaluates to Ψe = 3.7 when optimising for maximum cumulative angle.
Also, Ψe = 7.7 when optimising for maximal Ψe metric. Therefore a counter-
example has been found and it can be concluded that the maximum cumulative
angle does not uniquely describe the maximal spatial multiplexing array placement
for several users, whereas it does for a single user (in the provided test cases).

Since cumulative angle does NOT dictate the behaviour of the DoF-distribution
for multiple users as shown in the previous counter-example, henceforth only the
array placement which maximises the Ψe metric was considered.

Lastly, 17 volumetric users as visualised in Fig. 4.20 were considered in the L-
shaped room in Fig. 4.17 (a). These users were evenly (in a good way) distributed
to simulate a typical real-world scenario with many users and multiple BSs (two).
This is referred to as a Multiple-User Multiple-input Multiple-output (MU-MIMO)
scenario. The room with the users together with the resulting DoF-distribution is
provided in Fig. 4.21.



42 Results & Discussion

(a) ULA placements which maximises Ψe for
users at ([10, 55, 100, 145, 190]λ, 50λ) for
room as calculated by Algorithm 2.

(b) Ψe-distribution for room that maximises
Ψe for the room and array placement
as defined in (a).

Figure 4.19: Performance metrics for a room with rectangular ge-
ometry.

* =
λ/2

Figure 4.20: Cube layout of a user as 8 isotropic antennas on the
vertices of a cube with side length λ/2.

Calculating the resulting Ψe metric for the setup in Fig. 4.21 with volumetric users
as defined in Fig. 4.20 yields a value of Ψe = 17. The same setup applied to pla-
nar users yielded a value of Ψe = 13.6. The increase in spatial multiplexing when
going from a planar user to a volumetric one indicates a great gain in capacity
by introducing another describing dimension to the user which is more compa-
rable to real-life scenarios. Note that due to the right diagonal symmetry of the
problem, an equally good solution exists by mirror symmetry of the right diagonal.

To obtain a crude approximation of the gain in capacity, using only the Ψe metric,
theory as described in Section 2.4.1 was used. This was done by using (2.15) and
(2.4), which were derived as a consequence of the introduction of Ψe, and assum-
ing that the modes are equally significant as described in the theory section 2.4.1.
Calculation of the gain in capacity can be done in MATLAB as follows
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(a) Room setup for distributed users at
(([25, 75]λ, [25, 75]λ) + (50λ, 50λ)
+ additional user in the middle of
shared room segments) (one square
segment).

(b) Ψe-distribution with array placements that
maximises spatial multiplexing for the
room defined in (a) by sweeping the new
cube layout of the user as defined in Fig.
4.20 where the ULA placements are along
the walls where multiplexing is high.

Figure 4.21: Performance metrics for a room with L-shaped room
for Multiple User MIMO case.

Psi_e = 17 %EDoF
SNR = 10^(20/10) ; %20 dB SNR
C1 = 1∗ log2(1+SNR) ;
C2 = Psi_e∗ log2(1+SNR/Psi_e ) ;
r e s = C2/C1
%res = 7.1

implying an over 7-fold increase in system capacity (compared to 6.3-fold for square
user layout) if spatial multiplexing were to be used for the volumetric (cube) user.

To provide visualisation for the coupling of the modes for the MU-MIMO case
in Fig. 4.21, artistic freedom was once again taken. The transmit vectors were
taken from the solution when λ = 1. However, the propagating fields in Fig. 4.22
used λ = 15. This is because the placements of the ULAs differed if the simulated
wavelength was altered. The increase in wavelength was made to be able to see
the phase variations since a full 2π phase shift is not discernible in a 200λ×200λ
layout.

This methodology isn’t just suitable for small, oddly shaped rooms; it’s also appli-
cable to large urban landscapes where obstacles and dense populations can impede
telecom coverage. Algorithm 2 can be used to optimise for Ψe, which provides a
computational method that suggests an effective placement of additional base sta-
tions, considering existing coverage areas.
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(a) Most dominant mode. (b) Second most dominant.

(c) Third most dominant. (d) Least dominant mode.

Figure 4.22: Visualisation for the three most dominant modes and
least dominant mode for the square user layout.



Chapter 5
Conclusion & Future work

This thesis looked into research on spatial modes in the context of MIMO-systems
by consolidating existing research as well as contributing novel insights. Through
an extensive review of literature and original experimentation through computer
simulation, this thesis confirms old findings and contributes to new ones. This
thesis also introduces an analytically grounded metric and presents new results
regarding the effects of apparent area (especially on the availability of spatial mul-
tiplexing for one as well as several users).

An exhaustive review of commonly used metrics for DoF estimation was conducted,
highlighting both the similarities and differences among them, which assumptions
and parameters they are based on and their applicability. Important parameters
for increased spatial multiplexing are increased apparent area, small distance be-
tween BS and UE and an increased transmitted power (increased SNR ρ) which
enables positive contribution of previously unused modes.

It was shown that for single user MIMO, maximising for spatial multiplexing was
the same as maximising for the solid angle between BS and UE. Further, it was
shown that this relation does not hold for the case of MU-MIMO which encour-
ages further research on the subject. Lastly, for MU-MIMO, the introduction of
a volumetric receive topology showed gains in spatial multiplexing due to a more
realistic UE description.

Arbitrarily placing out two BS’s gave the possibility of optimising for high multi-
plexing in a certain region. Prior knowledge of preexisting placements of BS, in
for example a city region, gives the algorithm presented herein a potential optimal
suggestion on where to introduce an additional BS to efficiently provide service to
users in a certain high traffic area.

Implementing a physics-based antenna model as a dipole decreased the spatial
multiplexing capabilities, due to the antenna not being able to radiate in all di-
rections, while simultaneously introducing a model more closely related to reality.
Further examination is merited for other common antenna models and their im-
pact on #DoF, such as patch antennas.

The dimensionality, #Tx and #Rx of the simulated problems were kept low for
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computational complexity even after parallellising and vectorising the majority
of the code. However, there is still merit in thoroughly investigating parameters
such as antenna spacing (uniform and sparse) due to the existence of an optimal
solution. However, considering the mutual coupling analysis and non-standard
spacing makes for engineering problems where performance costs have to be con-
sidered and studied.

Beamforming characteristics were observed as a part of the solution for maximising
spatial multiplexing for one of the test cases in the results chapter. Beamforming
schemes are used in today’s communications systems to in part increase signal
strength together with reducing interference for other users [13]. The introduction
of noise in the channel model would speculatively give a trade-off of the number
of spatial modes together with beamforming to increase SNR to distinguish the
modes from the introduced noise floor. The problem formulation of forming the
channel matrix and optimising for capacity is a general optimisation problem not
limited to spatial multiplexing.

Continuing with this thesis, the primary ongoing focus would be to integrate scat-
tering effects into the models. Including these effects would make the algorithms
more comparable to real-life scenarios (multipath) and enhances their practicality.
Implementing scattering effects inherently involves integrating real-life antennas
and polarization. With scattering effects in place, leading to greater spatial mul-
tiplexing [39], efforts to extend these effects to regions in the far field have been
discussed, giving rise to the concepts of RIS and LIS [2,10,11,15]. These surfaces
can in part (simple example for intuition) reflect near-field modes from a user back
to a distant BS. This makes it seem (from the BS point of view) that the signal
emanates from the large surface which enables higher #DoF due to its larger size.
If the surface is active, it can amplify the signal to achieve a higher SNR, further
enabling more spatial modes to be used.

The maximum solid angle was proven useful for single user MIMO which merits
further investigation into which design rules describe the availability of spatial
multiplexing for multiple users since that would yield substantial advancement
into the current understanding of how the DoF-distribution behaves and how to
utilise it. Finally, extracting real-life data is essential to determine whether the
theoretical findings in this report align with real-world observations.



Appendix A
Maxwell’s equations

The (Oliver) Heaviside [9] form of Maxwell’s equations [16–18] are:

∇ ·E =
ρ

ε0
(A.1)

∇ ·B = 0 (A.2)

∇×E = −∂B

∂t
(A.3)

∇×B = µ0J+ µ0ε0
∂E

∂t
(A.4)

Where:

• E is the electric field vector, measured in volts per meter (V/m),

• B is the magnetic field vector, measured in teslas (T),

• ρ is the charge density, measured in coulombs per cubic meter (C/m3),

• J is the current density, measured in amperes per square meter (A/m2),

• ε0 is the vacuum permittivity, measured in farads per meter (F/m),

• µ0 is the vacuum permeability, measured in henries per meter (H/m),

• ∇ is the nabla operator.

A.0.1 Useful vector identities using ∇ operator

We will utilise a few useful vector calculus identities:

∇× (∇×V) = ∇ (∇ ·V)−∇2V (A.5)

∇2V = ∇ · (∇V) (A.6)

A.0.2 Magnetic vector potential

One can define an arbitrary vector field and tailor it such that it can be used as
an alternative way to solve for the electric field. This arbitrary field is called the
magnetic vector potential [22]. It is defined as:

B = ∇×A , E = −∇ϕ− ∂A

∂t
(A.7)
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Where:

• A is the magnetic vector potential which is just a vector field [Vs/m],

• ϕ is a scalar potential.

A.0.3 Vacuum and charge-free version of Maxwell’s equations

In the case of vacuum, charge-free and current free (ρ = 0,J = 0) space, Maxwell’s
equations becomes:

∇ ·E = 0 (A.8)

∇×E = −∂B

∂t
= −jωB (A.9)

∇ ·B = 0 (A.10)

∇×B = µ0ε0
∂E

∂t
= jωµ0ε0E (A.11)

By taking the curl of the Electric-curl equation (A.9) yields:

∇× (∇×E) = ∇×
(
−∂B

∂t

)
= − ∂

∂t
(∇×B) = −µ0ε0

∂2E

∂t2
(A.12)

Substituting everything to the same electric or magnetic field vector one obtains
the EM-Wave Equation (for the electric field in this case):

1

c20

∂2E

∂t2
−∇2E = 0 (A.13)

Where c0 is the speed of light in free space:

c0 =
1

√
µ0ε0

= 2.99792458× 108 m/s ≈ 3× 108 m/s (A.14)

Solutions to the second order differential equations (A.12) are propagating waves
that satisfy Maxwell’s equations. Same equation manipulation can be performed
to change out E for B. Example solutions are the following:

Spectral decomposition

Due to the linearity of Maxwell’s equations in vacuum, solutions can be decom-
posed by a superposition of sine and cosine terms. The sinusoidal solution to the
electromagnetic wave equation takes the form:

E(r, t) = E0 cos(k · r− ωt+ ϕ0) (A.15)
B(r, t) = B0 cos(k · r− ωt+ ϕ0) (A.16)

Where:

• t is time [s],
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• ω is the angular frequency [rad/s],

• k = (kxx̂+ kyŷ + kz ẑ) is the wave vector [1/m] and

• ϕ0 is the phase angle [rad].

The wave vector is related to the angular frequency by:

k = |k| = ω

c
=

2π

λ
(A.17)

where k is the wavenumber and λ is the wavelength where λf = c is utilised.

Plane Wave solution

The plane wave solution, derived from spectral decomposition, offers a concise
representation of electromagnetic fields for a single propagating wave. Suppressing
the time dependence and relative phase, this solution takes on the following form:

E(r) = E0e
−jk·r (A.18)

B(r) = B0e
−jk·r (A.19)

A.0.4 The vector wave equation in non-chargefree space and its solution

By taking the curl of both sides of (A.2), utilising (A.4) and the vector identity
(A.5) one obtains the vector wave equation for the E-field.

∇× (∇×E) = ∇×
(
−∂B

∂t

)
= − ∂

∂t
(∇×B) = − ∂

∂t
(µ0J+ µ0ε0

∂E

∂t
) (A.20)

Collecting L.H.S to R.H.S yields:

∇× (∇×E) +
∂

∂t
(µ0J+ µ0ε0

∂E

∂t
) = 0 (A.21)

Utilising that ∂
∂t = jω (since time convention ejωt is used) and moving the current

to the R.H.S yields:

∇× (∇×E) + ω2µ0ε0E = −jωµ0J (A.22)

Finally using (A.17) and vector identity (A.5) yields:

(−∇∇ ·+∇2 + k2)E = −jωµ0J (A.23)

Note that ∇ · E = 0. Calculating the electric field from the magnetic vector
potential then gives us the inhomogeneous Helmholtz equation:(

k2 +∇2
)
E = −jωµ0J (A.24)

Notice the similarity to the solution to the inhomogeneous Helmholtz equation
which is on the form:

∇2A(r) + k2A(r) = −f(r) in Rn n = 1,2,3 (A.25)
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For the solution, boundary conditions are needed. One typically uses the Som-
merfeld radiation condition [28]:

lim
r→∞

r

(
∂

∂r
+ jk

)
A(r) = 0 (A.26)

With the Sommerfeld boundary condition, the solution takes the form of:

A(r) =

∫
R3

G(r, r′)f(r′) dr′ (A.27)

Similarly to the problem formulation of applied and induced currents, the integral
is over a finite region, and G is the Green’s function of this equation which satisfies:

∇2G(r, r′) + k2G(r, r′) = −δ(r, r′) (A.28)

By using n = 3 of the Sommerfeld boundary condition, the Green’s function takes
the form:

G(r, r′) =
1

4π

exp(−jk0|r− r′|)
|r− r′|

= g(r, r′) (A.29)

Real life propagation of electromagnetic-fields also carries a polarisation which the
green’s scalar function Eq. 2.2 lacks since it is scalar-valued. This study only
focuses on examining how the DoF-distribution behaves and its influential param-
eters as the interest lies in maximising the bound of #DoF and not introducing
orthogonal bases on which multiples of the function can be defined. By super-
positioning three Green’s function along the three unit vectors in R3, the Dyadic
Green’s formulation is achieved [3] (which includes the description of polarisation).



Appendix B
Farfield Definition

An illustration of the Fraunhofer (farfield) distance can be seen in Fig. B.1. If
we denote the distance between the line aperture with length D to the isotropic
antenna denoted by a dot as z, then the extra distance travelled to the edge
of the line aperture is ∆. The relation can be expressed with the Pythagorean
Theorem as (z + ∆)2 = z2 + (D2 )

2. Extracting ∆ from the expression yields:

∆ = z
√

1 + (D
2z )

2 ≈ D2

8z where the approximation utilises the first order Taylor
expansion

√
1 + x ≈ 1 + x

2 which is valid for small x. The definition is such that
this extra distance ∆ shall not give rise to a higher phase variation than π

8 , i.e
2π
λ ∆ = π

8 . The resulting limit for near and farfield is z = 2D2

λ .

z
D

z +∆

Figure B.1: Illustration of the Fraunhofer distance on how a beam
has to travel longer to the edge of an aperture (+∆) than to
the middle of it, introducing a phase delay.
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Appendix C
Discretization schemes: Lebedev Quadrature

Uniformly placing out N points over a three-dimensional sphere is not uniquely
defined. A scheme for placing out these points in a good way such that it is an
approximation of the surface integral is the Lebedev quadrature [14].

The surface integral of a function over the unit sphere S2 = {x ∈ R3 : ∥x∥2 = 1}
in R3 is defined as

I[f ] =

∫
S2
f(x) dΩ =

∫ 2π

0

∫ π

0

f(θ, φ) sin(θ) dθ dφ (C.1)

which can be approximated by the Lebedev scheme as

Ĩ[f ] = 4π

N∑
i=1

wif(θi, φi) (C.2)

Where the weights wi and grid points (θi, φi) are to be determined. They are to
be chosen such that they are invariant under the octahedral rotation group with
inversion. Further description of this is outside of the scope of this thesis [14].
The main goal is to equalise every point such that they all have equal area and
for the locations where this cannot be done, adjust the weights such that this
inconsistency is mitigated.

Since Lebedev qudrature are more uniformly placed than (θ, φ) distributed points,
fewer points are needed for convergence. This leads to faster computation as many
of the problems are sequential. Visualisation of the differences can be seen in Fig.
C.1.
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Figure C.1: Theta-phi distributed points (left) and lebedev distribu-
tion (right).
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Pseudo Code
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Algorithm 1 Compute Ψe through Green’s function matrix

Require: Matrix Tx representing Tx locations (in R3)
Matrix Rx representing Rx locations (in R3)
Scalar λ is the wavelength

1: Ns← length(Tx(:, 1))
2: Nr ← length(Rx(:, 1))
3: distances← zeros(Nr, Ns)
4: for i = 1 to Ns do
5: distances(:, i)← vecnorm(Tx(i, :)−Rx, 2, 2)
6: end for
7: Hq ← 1

4π ×
e−j 2π

λ
·distances

distances
8: H← reshape(Hq, [Nr, Ns])
9: R← H×H†

10: Ψe ←
(

trace(R)
norm(R,′fro′)

)2

11: return Ψe

Start

Input: Matrix Tx representing Tx locations in R3,
Matrix Rx representing Rx locations in R3,

Scalar λ is the wavelength

Ns← #Tx
Nr ← #Rx

Compute distances between each Tx-Rx pair

H← 1
4π ×

e−j 2π
λ

·distances

distances

R← H×H†

Ψe ←
(

trace(R)
norm(R,fro)

)2

Return Ψe
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Algorithm 2 Compute Optimal Placement with respect to maximum angle

Require: Vector pointsO are Observation points (in R2)
Vector boundary are points (in R2) according to taxicab geometry;
start and end of a wall segment has Manhattan norm of 100
Scalar fineness is #points on one wall

1: walls ← getWalls(boundary, fineness) {Discretization of walls}
2: res ← zeros(size(walls, 1), 1)
3: deltaIndex ← floor(fineness/2) {Tx is a portion of a wall-segment}
4: for i = 1 to size(walls, 1): do
5: index1 ← i { start of array}
6: point1 ← walls(i, :)
7: index2 ← cyclicIndex(walls, i, deltaIndex) { end of array, walls are

an Eulerian circuit }
8: point2 ← walls(index2, :)
9: for k = 1 to size(pointsO, 1): do

10: pointOrigin ←pointsO(k,:)
11: if ∼checkCollision(boundary, pointOrigin, point1, point2) then
12: continue {Don’t count it in the sum}
13: end if
14: res(i) ←res(i) + angle(pointOrigin, walls, point1, point2)
15: end for
16: end for
17: return res

Start

Input: Vector pointsO are Observation points (in R2)
Vector boundary are points (in R2) according to taxicab geometry

(start and end points of a wall segment has Manhattan norm of 100)
Scalar fineness is #points on one wall

walls ← discretization between boundary points with fineness #points

Construct ULA of Tx along a portion of a wall

Original algorithm: Iterate Tx antennas along the walls and compute cumulative
solid angle (not including LOS-breakage) to pointsO, save optimal

Compute Ψe for a given structure of the Rx-topology

Modified algorithm: Iterate Tx antennas along the walls and calculate Ψe for
a given structure of the Rx-topology, save optimal

Return Ψe
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