
MASTER’S THESIS 2024

Enhanced Techniques for
Detecting Performance
Abnormalities in Software
Quality Assurance Processes
Abdulrahman Husari, Sepehr Taherpour

ISSN 1650-2884
LU-CS-EX: 2024-33

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-33

Enhanced Techniques for Detecting
Performance Abnormalities in Software

Quality Assurance Processes

Förbättrade tekniker för att upptäcka
prestandaavvikelser i processer för

mjukvarukvalitetssäkring

Abdulrahman Husari, Sepehr Taherpour

Enhanced Techniques for Detecting
Performance Abnormalities in Software

Quality Assurance Processes

Abdulrahman Husari
abdulrahman.husari@outlook.com

Sepehr Taherpour
sepehr.taherpour@outlook.com

June 19, 2024

Master’s thesis work carried out at Axis Communications AB.

Supervisors: Filip Nilsson, filip.nilsson@axis.com
Jacob Lindquist, jacob.lindquist@axis.com

Per Runeson, per.runeson@cs.lth.se

Examiner: Björn Regnell, bjorn.regnell@cs.lth.se

mailto:abdulrahman.husari@outlook.com
mailto:sepehr.taherpour@outlook.com
mailto:filip.nilsson@axis.com
mailto:jacob.lindquist@axis.com
mailto:per.runeson@cs.lth.se
mailto:bjorn.regnell@cs.lth.se

Abstract

Analyzing performance test data for network camera devices presents signifi-
cant challenges due to the vast amount of data generated. The lack of efficient
methods for detecting performance abnormalities necessitates studying this area.
The analysis often requires manual work by quality engineers, which becomes in-
creasingly complicated with the expansion of test variety and product variants,
creating a bottleneck in the development and Quality Assurance (QA) processes.
This study aimed to develop effective and adaptive techniques for detecting ab-
normal behavior in performance test results.

We investigated approaches based on statistical thresholds, unsupervised learn-
ing, and supervised learning. In addition, we implemented a feedback mecha-
nism used for improving the detection over time. The proposed solution was
designed to assist quality engineers and reduce their workload. The efficiency of
the solution was evaluated using machine learning metrics and validated through
live testing sessions. The results indicated that supervised learning was the most
suitable approach in this study, with the RandomForest model achieving an av-
erage AUC score of 0.94 and an average recall value of 0.98 across three selected
products. The evaluation of the proposed solution demonstrated the effective-
ness of the detection in the QA process at the case company.

Keywords: Performance, Data Analysis, Quality Assurance (QA), Software Testing, Ma-
chine Learning (ML), Anomaly, Regression, Automation

Acknowledgments

We would like to thank Per Runeson for his guidance throughout the study and his super-
vision in the formation of this report. We would also like to thank Filip Nilsson, Jacob
Lindquist, and Antonios Skourtis for their supervision during this study at Axis Commu-
nications AB, as well as Konstantin Malysh and Willie Betschart for their input and tips on
how to improve our machine learning solution. Special thanks to Björn Regnell for exam-
ining this study. Lastly, we are grateful to friends and family for their support during this
journey.

3

Contents

1 Introduction 9
1.1 Problem Summary . 10
1.2 Project Goals & Research Questions . 10
1.3 Proposed Solution . 10
1.4 Case Company Background . 11

2 Method 13
2.1 Design Science Paradigm . 13
2.2 Research Activities . 14
2.3 Boundaries & Limitations . 16

3 Background & Related Work 17
3.1 Software Engineering and Performance . 17

3.1.1 Performance Efficiency . 17
3.1.2 Performance Testing . 18
3.1.3 Regression Testing . 18
3.1.4 Performance Regression Testing . 19

3.2 Data Analysis . 19
3.3 Performance Anomaly Detection . 20
3.4 Machine learning . 21

3.4.1 Unsupervised Learning . 21
3.4.2 Supervised learning . 23

3.5 Machine Learning Evaluation . 25
3.6 Related Work . 27

3.6.1 Software Performance Testing . 27
3.6.2 Detection of Software Performance Regression 27
3.6.3 Anomaly Detection in Similar Context 28
3.6.4 Incorporating Feedback in Detection 29

5

CONTENTS

4 Case Description 31
4.1 Problem Conceptualization . 31

4.1.1 Problem Overview . 31
4.1.2 Quality Assurance Process for Performance 32

4.2 Test Cases . 34
4.3 Available Data . 34
4.4 Alerting Cases . 35
4.5 Data Exploration . 37
4.6 Requirements . 38

5 Solution 41
5.1 Solution Overview . 41
5.2 Solution Motivation . 42
5.3 Data Analysis . 43
5.4 Statistical Thresholds . 45
5.5 Data Preprocessing . 46
5.6 Annotation Tool . 47
5.7 Unsupervised Learning as Approach . 48

5.7.1 Investigation Setup . 49
5.7.2 Towards Generalized Approach . 51
5.7.3 Extending the Scope . 54

5.8 Supervised Learning as Approach . 55
5.8.1 Evaluating Supervised Models . 55
5.8.2 Improvement Investigation . 57

5.9 Feedback Mechanism . 58

6 Evaluation 61
6.1 Supervised Learning Approach . 61
6.2 Overall Solution Evaluation . 63

6.2.1 Evaluation of Annotation Tool . 64
6.2.2 Evaluation of Detection & Feedback Tool 64

7 Discussion 67
7.1 Statistical Solution . 67
7.2 Analysis of Unsupervised Learning Results 67
7.3 Analysis of Supervised Learning Results . 68
7.4 Unsupervised vs. Supervised . 69
7.5 Threats to Validity . 69
7.6 Social & Ethical Aspects . 70
7.7 Future Work . 71
7.8 Conclusion . 72

Appendix A 79
A.1 Author Contribution Statement . 79

6

CONTENTS

Appendix B 81
B.1 Interview Questions . 81
B.2 Annotation Evaluation Questions . 82
B.3 Detection & Feedback Evaluation Questions 82

7

Chapter 1

Introduction

The ever-growing technological landscape and expanding product portfolios present signif-
icant challenges in analyzing the vast amounts of data generated from software tests. Effi-
ciently identifying potential issues in the test data is particularly critical for industries where
product quality and reliability are paramount. In software engineering, a robust Quality As-
surance (QA) processes is essential to deliver high-quality products while maintaining effi-
cient development cycles. Continuous changes require frequent monitoring and testing of
various aspects, including performance. However, analyzing the data from performance tests
becomes a bottleneck when dealing with a wide range of products and use cases.

Evaluating hardware resource utilization and service quality is crucial during software
performance testing. Performance testing helps determine whether new software meets the
defined criteria for a successful release. Analyzing performance test results presents a resource-
intensive challenge, as it often requires manual work. This manual burden creates bottlenecks
in both the software development and the QA processes.

This master’s thesis project, conducted at Axis Communications AB, one of the leaders
in the network camera solutions, seeks to address the named bottlenecks. Axis encounters
the challenge of efficiently analyzing the performance data generated from its various camera
products. This project proposes a solution based on a machine learning approach to stream-
line the analysis process. In this study, developing a user-centric solution that integrates
seamlessly into existing workflows and offers ease of use is considered important. To ensure
effectiveness, the proposed solution is evaluated in terms of both technical performance and
practical use in real-world scenarios.

9

1. Introduction

1.1 Problem Summary
Analyzing performance data to identify defects or abnormalities has been done mainly man-
ually. Quality engineers at Axis have had to laboriously review graphs generated from per-
formance test results, seeking to pinpoint problematic changes in product behavior. This
manual approach is not only time-consuming but also becomes increasingly complicated as
the variety of tests and product expands. Previous efforts by Axis to automate this process by
defining static thresholds have not yielded the expected levels of efficacy, leaving room for
significant improvement. Furthermore, these efforts have not been documented for reuse,
making it difficult to build on this previous work.

1.2 Project Goals & Research Questions
This project aims to explore various methods for detecting performance abnormalities through
analyzing performance test results and to develop a contextually appropriate solution based
on similar case studies. The primary goal is to enhance the QA processes of the case com-
pany by creating a solution that efficiently identifies and highlights relevant cases for further
review by quality engineers. By reducing the workload of quality engineers, the solution is
expected to improve the timeliness and accuracy of the analysis, thus enhancing the overall
QA processes. Positioned at the intersection of theoretical exploration and practical applica-
tion, this study aims to provide valuable insights into the broader field of performance data
analysis.

Research Questions
This study aims to answer the following questions in the context presented:

RQ1 How can efficient detection of performance abnormality be done through analyzing
performance test results?

RQ2 In what ways can the proposed solution assist and affect current QA processes?

RQ3 How can the proposed solution be adaptable for evolving needs?

1.3 Proposed Solution
In the pursuit of solutions to the addressed problem, relevant case studies were reviewed,
and the knowledge gained was applied to the specific context of this problem and finally
evaluated and validated. Generally, incorporating machine learning has proven to be an ef-
fective approach for solving the presented problem. Since the problem requires automated
data analysis and abnormality detection, it is similar to anomaly detection in machine learn-
ing. Due to the variability of the data and the evolving quality expectations, the proposed
solution needed to be able to adapt in order to overcome these circumstances. This adapt-
ability is achieved by incorporating feedback from quality engineers to continually refine its
efficacy and accuracy.

10

1.4 Case Company Background

1.4 Case Company Background
Axis Communications AB, one of the global leaders in network video surveillance, was es-
tablished in 1984 in Sweden. Initially focusing on protocol converters, the company shifted
its attention to networked video products in the mid-1990s. The groundbreaking intro-
duction of the world’s first network camera in 1996 marked a transformative moment for
the surveillance industry, propelling the transition from analog to digital video surveillance.
Axis offers high-resolution video monitoring and intelligent features, such as video analytics.
Their product line includes network cameras, video encoders, video management systems,
audio solutions, and access control systems.

With offices in more than 50 countries and partnerships in 179 nations, Axis maintains
a vast global network. This extensive reach enables the company to deliver customized solu-
tions to various sectors and meet global security requirements1.

As a technology leader, Axis must maintain high-quality products in an industry charac-
terized by rapid technological changes. Their wide range of products requires ongoing and
rigorous testing, making automated testing and innovative quality assurance methods crucial
for maintaining high standards. However, the increasing volume and complexity of data can
make it challenging for quality engineers. This master’s thesis project focuses on addressing
these challenges at Axis Communications.

1https://www.axis.com/about-axis/history

11

https://www.axis.com/about-axis/history

Chapter 2

Method

This study is conducted according to the design science paradigm (DSP) [1]. The overall
research method and activities are presented in this chapter.

2.1 Design Science Paradigm
The Design Science Paradigm (DSP) is a framework designed to address real-world problems
and validate solutions using scientific literature. This framework often involves studying case
studies to acquire knowledge and define a solution [1].

Design science aims to understand and improve human-made designs in practical con-
texts. The activities associated with this method include problem conceptualization, solution
design, and validation, all linked to real-world scenarios. Contributions with a theoretical
foundation are tailored to specific contexts, and recommendations are formed as ’technologi-
cal rules.’ These rules are practical solutions derived from general knowledge about problems
and solutions, which are then validated in the context of the study [1].

DSP focuses on addressing real practical problems rather than adhering to specific meth-
ods. To propose solutions, an iterative process is undertaken between problem conceptual-
ization and solution design. The proposed solutions are empirically validated to assess their
feasibility, contributing to the general knowledge base and broadening the scope of valida-
tion in subsequent studies [1].

According to Figure 2.1, the DSP consists of two main dimensions: practice-theory and
problem-solution. Research activities are links between constructs and instances, aiming to
find solutions to defined problems and validate them. The research process begins in the
lower-left corner of Figure 2.1 with a problem instance. Problem conceptualization forms a
problem construct, which is then used in solution design. This design can then be imple-
mented, instantiated, forming a solution instance targeted for validation.

13

2. Method

Figure 2.1: Design science paradigm, according to Runeson et al. [1]

2.2 Research Activities
This section outlines the research activities undertaken to address the identified problem.
Our research follows a structured approach, including a thorough literature review, inter-
views, and a systematic process of problem identification, conceptualization, solution de-
sign, instantiation, abstraction, and empirical validation, as described by Runeson et al. [1].
Each step is designed to ensure an effective solution. Below is a detailed description of each
research activity:

Literature review
The literature review provides the foundation for understanding current approaches that
offer potential solutions to the identified problem. Our study followed established method-
ologies for a comprehensive literature review as described by Thiel [2]. The review process
involved several steps:

• Keyword Search: Keywords such as "performance regression," "software performance,"
"anomaly detection," and "machine learning" guided our search in academic databases.

• Filtering Papers: We filtered publications based on criteria like publication date, peer-
reviewed status, and relevance to performance testing.

• Review of Abstracts: Abstracts were reviewed to identify innovative techniques or
frameworks relevant to our project.

• Full Paper Review: Promising papers were thoroughly read to analyze methodologies
and findings.

14

2.2 Research Activities

• Critical Analysis and Organization: Key insights were organized into thematic areas to
identify trends, gaps, and opportunities, providing a conceptual basis for our solution
design.

This review ensures that our proposed solution is grounded in existing research and best
practices, while also highlighting gaps that allow us to propose a tailored solution for the case
company. The result of this review is detailed in Section 3.6.

Interviews
Interviews are crucial for gaining first-hand insights into challenges and practices present in
the case company. The primary goals for us are to understand Axis’ performance issue man-
agement and improvement aspirations to define the project requirements. Key focus areas
include the quality assurance processes, performance data analysis workflows, data analysis
criteria, and the challenges faced.

We used a semi-structured format [3], combining planned questions with spontaneous
exploration. This format allows the interviewer to adapt questions based on the intervie-
wee’s responses. The interview structure followed a systematic approach [4], starting with
broad open-ended questions to establish context, then narrowing to specific topics, and fi-
nally opening up again for a comprehensive discussion. During sessions, note taking was done
to be able to use the information for further analysis and presentation.

Identifying Problem & Problem Conceptualization
During problem identification, the problem is studied and analyzed to gather information
about real-world challenges. This involves methods such as interviews, observations, and sur-
veys to capture detailed insights into specific issues faced by practitioners. Problem concep-
tualization bridges empirical findings with theoretical constructs, allowing for a structured
understanding of the issues. It marks the transition from practice to theory by forming a
structured problem statement.

In our study, problem identification was carried out through interviews and problem
analysis, as detailed in Chapter 4. Through interviews and discussions with the quality as-
surance team, we mapped out the current process, identified its challenges, and established
a clear problem conceptualization.

An extensive literature review and consultations with domain experts were conducted to
frame the problem of automating detection. This activity aligns with the "Problem Concep-
tualization" quadrant in Figure 2.1.

Problem Construct & Solution Design
The problem construct involves defining the problem in general terms within the theoretical
domain. Solution design refers to the activity of formulating one or more potential solutions
to the defined problem. At this stage, alternative solutions, related research, and case studies
are considered.

In this study, problem construct and solution design were achieved by reviewing related
literature and theories connected to the problem, as presented in Chapter 3. By studying

15

2. Method

relevant terms and literature, we developed a sketch of potential solutions to the defined
problem.

Instantiation
Instantiation refers to implementing the designed solutions in a real-world context to create
tangible artifacts. These artifacts, also known as Solution Instances, result from instantiation.
This process involves translating theoretical designs into practical implementations, which
can then be validated. In our study, the instantiation and the resulting solution instance are
presented in Chapter 5.

Abstraction
Abstraction involves generalizing validated findings into broader technological rules that can
be applied across different contexts. This step transforms specific, contextual knowledge into
generalized principles or guidelines. In our study, we formulate technological rules based on
validated solutions, providing a design that is adaptable to similar problems in other settings.
Abstraction involves moving from validated practical solutions to theoretical generalizations.
This is provided in the context of this study in Chapter 7.

Empirical validation
Validation is the empirical assessment of the effectiveness of the solution in a real-world con-
text. This involves systematic testing and feedback collection to evaluate whether the solu-
tion meets the intended goals and resolves the identified problem. In our study, we conducted
evaluations using machine learning methods and user feedback. This process is detailed in
Chapter 6, with the objective of ensuring that the implemented solution effectively addresses
the identified problem, highlighting both the strengths and the areas for improvement.

2.3 Boundaries & Limitations
This project utilizes performance data from Axis network camera devices, focusing on key
performance metrics such as video frame rate, bitrate, available memory, and CPU usage.
The proposed solution specifically targets performance regressions in these devices, with a
feedback mechanism designed for engineers familiar with camera technology.

Reliance on historical data and specific lab configurations may limit the solution’s effec-
tiveness for new or significantly different devices and environments. The project’s time frame
and available resources constrain the depth of analysis and the extent of prototype develop-
ment and testing. To manage scope, we focused on three products using distinct chipsets,
meaning the study is limited to data from these selected products. Furthermore, the focus
on machine learning assumes the availability of high-quality data. Any gaps or errors in the
data could impact the solution’s effectiveness, underscoring the importance of robust data
management and preprocessing.

16

Chapter 3

Background & Related Work

This chapter provides the background and terminology essential to this study. Further, the
related work section summarizes relevant literature.

3.1 Software Engineering and Performance
This section covers terms and topics related to software engineering and testing, focusing
on performance and performance measurements. The aim is to provide an understanding of
these concepts and establish a foundation for further discussions in this work.

Software development encompasses various activities that together form a software so-
lution. This is usually done through different stages which can be also called a lifecycle.
According to the International Software Testing Qualifications Board (ISTQB), software
development lifecycle is defined as "the activities performed at each stage in software development,
and how they relate to each other logically and chronologically"1.

In this study, testing refers specifically to software testing, which ISTQB defines as "the
process within the software development lifecycle that evaluates the quality of a component or system
and related work products"2. Software testing encompasses various types, each with its own
objectives and practices. Of particular relevance to this study is performance testing, which
will be elaborated upon in the following.

3.1.1 Performance Efficiency
In this study, the term performance refers specifically to performance efficiency, which ISTQB
defines as "the degree to which a component or system uses time, resources, and capacity when ac-

1https://glossary.istqb.org/en_US/term/software-development-lifecycle
2https://glossary.istqb.org/en_US/term/testing-9

17

https://glossary.istqb.org/en_US/term/software-development-lifecycle
https://glossary.istqb.org/en_US/term/testing-9

3. Background & Related Work

complishing its designated functions"3. This definition is based on ISO 250104, a standard issued
by the International Organization for Standardization (ISO) that defines a product quality
model for Information and Communication Technology (ICT) and software products. The
model includes nine characteristics, each divided into sub-characteristics regarding the qual-
ity properties of the products. Performance efficiency is one of these characteristics and is
divided into three sub-characteristics:

• Time behavior: The capability of a product to perform its specified function under
specified conditions so that the response time and throughput rates meet the require-
ments.

• Resource utilization: The capability of a product to use no more than the specified
amount of resources to perform its function under specified conditions.

• Capacity: The capability of a product to meet requirements for the maximum limits
of a product parameter.

To determine performance efficiency, various parameters are measured, such as hardware
resource utilization. Hardware resource could be CPU, memory, storage, etc. Throughput
and capacity/bandwidth are specially important parameters for network devices. Addition-
ally, energy consumption and material usage can be measured as well. The measurement part
leads us to the next term, performance testing.

3.1.2 Performance Testing
Performance testing is defined by ISTQB as "a type of testing to determine the performance effi-
ciency of a component or system" 5. Essentially, it involves examining the performance efficiency
characteristic mentioned above through various measurements. The tools used for this pur-
pose are known as performance testing tools 6, defined as "test tools that generate load for a des-
ignated test item and measure and record its performance during test execution". These tools form
the performance testing framework employed by the case company in this study. The results
produced by these tools constitute the data analyzed in this study.

3.1.3 Regression Testing
Regression testing is defined by ISTQB 7 as "a type of change-related testing to detect whether
defects have been introduced or uncovered in unchanged areas of the software". In other words, it
assesses how new changes affect other components of the software, ensuring that previously
existing functionalities continue to work as expected. The case company in this study uses
this testing method to ensure the changed software meets the requirements.

3https://glossary.istqb.org/en_US/term/performance-efficiency-2-2
4https://www.iso.org/obp/ui/#iso:std:iso-iec:25010
5https://glossary.istqb.org/en_US/term/performance-testing-2-2
6https://glossary.istqb.org/en_US/term/performance-testing-tool
7https://glossary.istqb.org/en_US/term/regression-testing-1-3

18

https://glossary.istqb.org/en_US/term/performance-efficiency-2-2
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010
https://glossary.istqb.org/en_US/term/performance-testing-2-2
https://glossary.istqb.org/en_US/term/performance-testing-tool
https://glossary.istqb.org/en_US/term/regression-testing-1-3

3.2 Data Analysis

3.1.4 Performance Regression Testing
Performance regression Testing (PRT) is directly related to the case studied as it the results
of these tests which forms the data analyzed in this study. PRT is a subset of regression test-
ing that focuses on verifying performance criteria after any changes. As part of the software
development life cycle, performance regression testing (PRT) is crucial to ensure that new
integrations and features do not degrade existing functionality and performance. By identi-
fying and resolving performance issues before release, PRT aims to improve product quality
and reduce the need for post-release fixes.

To determine if there has been a regression or improvement, measurements of key per-
formance metrics based on the system’s use case are compared to expected values. Examples
of performance metrics include response time, duration, throughput, stability, and hardware
resource usage. The process involves establishing a baseline performance from previous soft-
ware versions and continuously monitoring new releases under varying conditions to identify
any deviations from this baseline. The results of new tests are compared with the established
baseline, requiring analysis to identify and address unwanted or unexpected deviations. Per-
formance monitoring and analysis tools can provide insights into performance bottlenecks,
helping to ensure optimal system performance.

3.2 Data Analysis
Data analysis is the process of inspecting, cleansing, transforming, and modeling data with
the goal of discovering useful information, informing conclusions, and supporting decision-
making8. As this study works with data, terms and methods related to analyzing this data
are presented.

Correlation

Correlation analysis measures the relationship between two quantitative variables9. For ex-
ample, in testing network cameras, understanding the correlation between frame rate and
bitrate under normal operating conditions helps to establish expected performance bench-
marks. A significant shift in this relationship can alert engineers to hidden issues, such as
software inefficiencies or unexpected hardware behavior, which may not be immediately ev-
ident through other testing methods.

Additionally, if performance metrics analysis indicates a strong correlation between two
or more metrics across different test cases and conditions for various products, it suggests
that a shift in one metric may lead to a corresponding shift in the correlated metrics. This
understanding is highly useful, as it allows engineers to monitor a single metric instead of
multiple ones, simplifying the detection process and potentially speeding up troubleshooting.

8https://en.wikipedia.org/wiki/Data_analysis
9https://en.wikipedia.org/wiki/Correlation

19

https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Correlation

3. Background & Related Work

Interquartile Range (IQR)
IQR is defined as the difference between the 75th and 25th percentiles of the data and is
used to measure statistical dispersion. This method is particularly effective for identifying
outliers, as it is robust against extreme values that could skew the analysis. In practice, data
points falling outside a specified multiple (X) of the IQR from the upper or lower quartile
are flagged as outliers, indicating potential operational irregularities or misconfigurations 10.

Z-Score
Z-score, standard score, is a statistical measure that describes the relative position of a value
within a data set by expressing its distance from the mean in terms of standard deviations
11. This method helps identify outliers by quantifying how many standard deviations a data
point is from the mean, making it useful for detecting anomalies in normally distributed
data.

The z-score, denoted by z, is calculated using the following formula: z = x−µ
σ

where:
z, x, µ, σ represent respectively the z-score of the data point, the value of the data point,

the population mean and the population standard deviation.

Exploratory Data Analysis (EDA)
Exploratory Data Analysis (EDA) is a type of data analysis that aims to summarize, visualize,
and understand the characteristics of a dataset. This step helps analysts gain insights into the
data beyond traditional hypothesis testing by uncovering patterns, outliers, and underlying
structures. EDA employs various techniques such as visual methods, including histograms,
box plots, and scatter plots, to provide a quick, intuitive understanding of distributions and
relationships. Statistical summaries, including measures such as mean, median, and standard
deviation, describe the central tendency and variability of the data. Correlation analysis and
dimensional reduction techniques, such as Principal Component Analysis (PCA), can also
be used as tools12.

3.3 Performance Anomaly Detection
In the context of our study, anomaly detection refers to identifying unusual patterns or devi-
ations in performance data from network camera solutions that differ from expected behav-
ior, the established baseline. These anomalies may indicate potential defects, performance
regressions, or other issues that could negatively impact the quality and functionality of the
products. Effective detection in this context is crucial as it facilitates quicker troubleshoot-
ing, enhances product quality and customer satisfaction.

Static Thresholds involve setting predefined limits on specific metrics. Any data point
out of the limits is considered an anomaly. This method is straightforward and effective
in simpler contexts. Static thresholds can be used for metrics that are expected to remain

10https://en.wikipedia.org/wiki/Interquartile_range
11https://www.machinelearningplus.com/machine-learning/

how-to-detect-outliers-with-z-score/
12https://www.ibm.com/topics/exploratory-data-analysis

20

https://en.wikipedia.org/wiki/Interquartile_range
https://www.machinelearningplus.com/machine-learning/how-to-detect-outliers-with-z-score/
https://www.machinelearningplus.com/machine-learning/how-to-detect-outliers-with-z-score/
https://www.ibm.com/topics/exploratory-data-analysis

3.4 Machine learning

within a narrow range during normal operations. Any deviation out of these limits is then
immediately flagged as an outlier requiring investigation.

Statistical Thresholds, unlike static thresholds, are defined according to the character-
istics and patterns in the data. These characteristics can be identified through data analysis
and statistical methods, as discussed in Section 3.2. The insights gained from this analysis
can either directly inform threshold definitions or provide a foundation for more nuanced
threshold setting. This method is more adaptive and can be suitable for metrics that natu-
rally fluctuate or for environments where test conditions or performance criteria may change
over time13.

3.4 Machine learning
Machine learning (ML) is a subfield of Artificial Intelligence (AI) that involves algorithms
that learn from data without explicit programming. This learning process includes identi-
fying patterns and relationships within the data, enabling the model to develop a "rule set".
There are three main machine learning approaches: supervised, unsupervised, and reinforce-
ment learning. Once trained, the model can make predictions on unseen data points.

Within the domain of performance regression testing, ML techniques can be leveraged to
analyze historical performance metrics. By training on past measurement data across differ-
ent metrics, the model can learn the system’s typical performance behavior. This established
baseline allows the ML model to identify anomalies in subsequent test results, potentially
uncovering performance regressions that might be missed by other means.

Classification problem in machine learning is to predict the category of which any new
data point belongs to based on past observations. Binary classification is a specific type of
classification where there are only two possible classes or labels. For instance, an abnor-
malities detection system that labels test executions as either anomaly (1) or normal (0) is an
example of binary classification 14.

3.4.1 Unsupervised Learning
Unsupervised learning is a type of machine learning that involves training algorithms on un-
labeled data, focusing on identifying patterns, structures, or relationships within the data
itself. These methods are particularly valuable in environments where defining explicit rules
or labels is impractical due to the complexity or evolving nature of the data 15. By analyzing
data without predefined categories, unsupervised learning can uncover patterns, clusters, or
outliers that indicate normal or abnormal behavior. Unsupervised learning can be catego-
rized into different types or groups including:

Clustering
Clustering algorithms group objects so that those in the same cluster are more similar to each
other than to those in other clusters. This is useful in anomaly detection, as anomalies often

13https://www.sinch.com/blog/dynamic-threshold-estimation-for-anomaly-detection/
14https://en.wikipedia.org/wiki/Binary_classification
15https://www.ibm.com/blog/anomaly-detection-machine-learning/

21

https://www.sinch.com/blog/dynamic-threshold-estimation-for-anomaly-detection/
https://en.wikipedia.org/wiki/Binary_classification
https://www.ibm.com/blog/anomaly-detection-machine-learning/

3. Background & Related Work

form smaller, less dense clusters than normal data.
K-means partitions data points into K predefined clusters based on similarities. It iter-

atively assigns points to the nearest cluster centroid and recalculates centroids. While effi-
cient for grouping similar data, K-means struggles with outliers, potentially leading to missed
anomalies despite high overall accuracy 15.

Density-Based Spatial Clustering (DBSCAN) identifies clusters of varying shapes and
sizes by examining point density. It does not require predefined clusters and classifies points
with sufficient neighbors as core points forming clusters, while isolated points are classified
as noise (potential anomalies). This makes DBSCAN useful for detecting anomalies in data
with varying densities 16.

Local Outlier Factor (LOF) measures the local deviation of density of a given data point
with respect to its neighbors. It is effective in detecting anomalies that may not fit into the
global distribution but are outliers in their local contexts 17.

Decision-tree
Decision-tree algorithms split data into branches at the decision nodes, where each node
represents a test on an attribute, and each branch represents the result of the test.

Unlike clustering techniques, the Isolation Forest algorithm isolates anomalies instead of
profiling normal data points. It randomly selects features and split values, isolating anomalies
that tend to have shorter paths in the tree structure because of their rarity and distinctiveness.
This makes Isolation Forest efficient for detecting anomalies 15.

Copula-Based
Copula-based algorithms use copulas to describe the dependence between random variables,
joining multivariate distribution functions to their one-dimensional marginal distributions.

Copula-Based Outlier Detection (COPOD) utilizes copulas to model dependencies be-
tween variables, effectively detecting outliers in cases where relationships between perfor-
mance metrics are non-linear or not normally distributed 18.

Histogram-based
Histogram-based algorithms analyze data distributions by constructing histograms, which
are bar charts representing the frequency distribution of variables.

Histogram-based Outlier Score (HBOS) assumes independence between features and
calculates anomaly scores by building histograms. It is faster than multivariate models, mak-
ing it suitable for high-dimensional datasets, and can quickly highlight unusual distributions
in performance metrics19.

16https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.
html

17https://en.wikipedia.org/wiki/Local_outlier_factor
18https://paperswithcode.com/paper/copod-copula-based-outlier-detection
19https://www.dfki.de/fileadmin/user_upload/import/6431_HBOS-poster.pdf

22

https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
https://en.wikipedia.org/wiki/Local_outlier_factor
https://paperswithcode.com/paper/copod-copula-based-outlier-detection
https://www.dfki.de/fileadmin/user_upload/import/6431_HBOS-poster.pdf

3.4 Machine learning

Support Vector Machines
Those are a popular machine learning model used primarily for classification and regres-
sion tasks. They work by finding the hyperplane that best separates different classes in the
data with the maximum margin, thereby minimizing classification errors. SVMs can also be
extended for use in unsupervised learning, particularly for anomaly detection through the
One-Class Support Vector Machine (OC-SVM).

OC-SVM fits a decision function around normal data to detect outliers. It is useful for
learning boundaries around normal data points, effectively distinguishing them from anoma-
lies 15.

Neural network
Deep learning and neural networks are fundamental concepts in ML, distinguished primarily
by their complexity. Neural networks consist of interconnected nodes, inspired by biological
neurons, that transmit and process information. These networks can learn and adapt based
on the data on which they are trained.

Autoencoder is a type of neural network used to learn efficient codings of unlabeled
data. The network is trained to ignore “noise” by learning to reconstruct the most important
features from the input data. In anomaly detection, autoencoders can accurately reconstruct
typical data but will fail to do so for anomalies, making them useful for detecting unusual
data patterns 20.

3.4.2 Supervised learning
Supervised learning is a type of machine learning in which the model is trained using labeled
data. In this approach, each input data point is paired with an output label. The model learns
the relationship between input and output during training, which allows it to predict output
labels for new unseen data based on the learned relationships 15.

Support Vector Machines (SVMs) are classifiers that work by finding the hyperplane that
best separates different classes in the feature space with the maximum margin. This makes
them particularly effective in high-dimensional spaces. SVMs are robust against overfitting,
especially in cases where the number of dimensions exceeds the number of samples 21.

RandomForest is an ensemble learning method based on multiple decision trees, pro-
viding high accuracy and robustness by averaging multiple deep decision trees trained on
different parts of the same training set. Random Forest performs well on large datasets and
can handle thousands of input variables without variable deletion, providing estimates of
what variables are important in the classification 22.

ExtraTrees stand for Extremely Randomized Trees, this algorithm builds multiple trees
like Random Forest but with random splits of all observations and features rather than
searching for the best split among a random subset of the features. This method typically
yields even more diversified trees than Random Forest and can result in better performance
[5].

20https://www.ibm.com/topics/autoencoder?mhsrc=ibmsearch_a&mhq=Autoencoder
21https://scikit-learn.org/stable/modules/svm.html
22https://www.ibm.com/topics/random-forest

23

https://www.ibm.com/topics/autoencoder?mhsrc=ibmsearch_a&mhq=Autoencoder
https://scikit-learn.org/stable/modules/svm.html
https://www.ibm.com/topics/random-forest

3. Background & Related Work

K-Nearest Neighbors (KNN) is a non-parametric method used for classification. In KNN,
the output is a class membership. An object is classified by a plurality vote of its neighbors,
with the object being assigned to the class most common among its k nearest neighbors (k is
a positive integer, typically small) 15.

Synthetic Minority Oversampling Technique (SMOTE) presented by Chawla et al. [6],
addresses unbalanced data sets which are a common challenge in machine learning. When
one class (often the interesting or anomalous one in our case) has significantly fewer examples
than others, models can become biased towards the majority class. SMOTE tackles this issue
by creating synthetic data points for the minority class. It analyzes existing minority class
examples and their nearest neighbors in the feature space, generating new data points along
the lines connecting them. This helps balance the data set and potentially improves the
performance of the model for the minority class 23.

Semi-supervised Learning
Semi-supervised learning is a machine learning approach that combines a small amount of
labeled data with a large amount of unlabeled data during training. Positioned between
unsupervised learning (which uses no labeled data) and supervised learning (which only uses
labeled data), this method is particularly valuable when acquiring a fully labeled dataset is
prohibitively costly or labor-intensive15.

23Analytics Vidhya - SMOTE

24

https://www.analyticsvidhya.com/blog/2020/10/overcoming-class-imbalance-using-smote-techniques/

3.5 Machine Learning Evaluation

3.5 Machine Learning Evaluation
To assess the performance of different ML models, several metrics are used based on the out-
comes classified into a confusion matrix. These metrics help to understand the effectiveness
of the model in predicting different classes.

Confusion Matrix is a table used to describe the performance of a classification model on
a set of test data for which the true values are known. It allows visualization of the model’s
predictions, including true positives, true negatives, false positives, and false negatives, pro-
viding insight into the types of errors made by the model. In the context of anomaly detec-
tion, if an anomaly case corresponds to a 1 and a normal case to a 0, a positive prediction
corresponds to detecting the case as an anomaly 24. The metrics can be described as follows:

(+)

(−)

(+) (−)
Predicted

Actual

TP FP

FN TN

Figure 3.1: Confusion Matrix

• True Positive (TP): Correctly identified as a positive case. (An abnormal case correctly pre-
dicted as anomaly).

• True Negative (TN): Correctly identified as a negative case. (A normal case correctly predicted
as normal).

• False Negative (FN): Incorrectly identified as a negative case. (An abnormal case is missed and
predicted as normal mistakenly).

• False Positive (FP): Incorrectly identified as a positive case. (A normal case predicted as anomaly
mistakenly).

Recall (Sensitivity) measures the ability of a model to find all the relevant cases within a
dataset. High recall indicates that the model is good at detecting the positive class 24.

Recall =
True Positives

True Positives + False Negatives

Precision reflects the accuracy of the positive predictions made by the model. High pre-
cision indicates that a higher percentage of positive identifications was actually correct 24.

Precision =
True Positives

True Positives + False Positives
F1-Score is the harmonic mean of precision and recall. It is a way of combining both

precision and recall into a single measure that captures both properties. It is particularly
useful when the class distribution is uneven. High F1 score means that the model has low false

24https://www.ibm.com/topics/confusion-matrix

25

https://www.ibm.com/topics/confusion-matrix

3. Background & Related Work

positives and low false negatives, so it’s correctly identifying real threats and not disturbing
users with false alarms 24.

F1-Score = 2 ×
Precision × Recall
Precision + Recall

Accuracy is the most intuitive performance measure and it is the overall ability of the
model to correctly identify both positive and negative outcomes 24.

Accuracy =
True Positives + True Negatives

Total Observations
False Positive Rate (FPR) measures the proportion of actual negatives that are incorrectly

identified as positives by the model. A lower FPR indicates fewer instances of normal cases
being misclassified as anomalies 24.

FPR =
False Positives

False Positives + True Negatives

False Negative Rate (FNR) measures the proportion of actual positives that are incor-
rectly identified as negatives by the model. A lower FNR indicates fewer instances of anoma-
lies being missed by the model 24.

FNR =
False Negatives

False Negatives + True Positives

Receiver Operating Characteristic (ROC) is a graphical plot that illustrates the diagnos-
tic ability of a binary classifier system as its discrimination threshold is varied. It is created by
plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold
settings. The area under the ROC curve (AUC) is a measure of the ability of a classifier to
distinguish between classes and is used as a summary of the ROC curve25.

Cross Validation is an essential technique in machine learning for assessing a model’s
generalizability and mitigating overfitting by partitioning the dataset into multiple subsets.
When data is limited, methods like K-Fold Cross Validation are employed, where the dataset
is divided into K parts, and the model is trained and validated K times, each time using a
different part as the validation set 26. This technique ensures each data point is used for
both training and validation. By averaging the performance across all folds, cross-validation
provides a more robust estimate of how well the model is likely to perform on unseen data
[7].

25https://developers.google.com/machine-learning/crash-course/classification/
roc-and-auc

26https://www.coursera.org/articles/what-is-cross-validation-in-machine-learning

26

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://www.coursera.org/articles/what-is-cross-validation-in-machine-learning

3.6 Related Work

3.6 Related Work
Literature relevant to this study is presented in this section.

3.6.1 Software Performance Testing
The goal of software performance testing is to verify that the software under test meets per-
formance expectations or requirements. Many quality metrics and attributes, such as re-
sponse time and resource utilization, can be used for this purpose, depending on the type of
product and the testing context [8, 9].

Performance testing is crucial for many companies before releasing a product to the mar-
ket or to customers. It helps to identify issues that cannot be detected during lower-level
functional testing. The selection of test cases and goals is critical in performance testing and
varies based on the company’s specific needs. Common performance parameters measured
include throughput, response time, number of tasks, bandwidth, and hardware resource us-
age (such as CPU, disk, and memory). These parameters are compared with the expected or
required values in each case [10].

Patel and Gulati [11] propose a method to identify critical factors affecting software per-
formance and determine ideal ranges for those factors. They analyze historical data to find
correlations between different performance measures, using statistical techniques like lin-
ear regression and confidence intervals to create a performance measurement matrix. This
matrix helps developers identify potential performance problems early in the development
process, ensuring that the software meets expected performance benchmarks.

3.6.2 Detection of Software Performance Regression
Fagerström et al. [12] investigated the challenges of automating performance regression test
analysis in continuous integration and deployment. Their qualitative case study at Ericsson
highlighted the difficulties in deriving verdicts from non-functional testing due to unclear
goals, insufficient requirements, and unreliable data. They suggested improvements such
as standardization, a testing map, and intelligent tools that can leverage historical data to
enhance efficiency and accuracy in analysis.

A study by Daly et al. [13] examined the detection of software performance regressions in a
continuous integration system at MongoDB. This study introduced a new approach based on
change point detection, moving away from manual graphs monitoring and threshold-based
detection. The primary data consisted of time/speed measurements for performance tests,
which included noise complicating automation and monitoring. The change-point detection
algorithm provides a list of problematic cases to a reviewer, who then selects true regressions
from the suggestions. The new approach positively impacted the process, significantly reduc-
ing the number of false positive cases.

Building on the previous work, Fleming et al. [14] focused on enhancing the change point
detection algorithm and developed a tool named, Hunter. This tool aimed to eliminate the
need for dedicated engineers to review performance test results by providing an intuitive
and user-friendly interface suitable for non-experts. Hunter was evaluated against two well-
known algorithms on time series data with injected regressions and demonstrated superior

27

3. Background & Related Work

performance.
Bauer et al. [15] proposed an automated method for classifying and detecting change

points in performance test data using machine learning. Their approach involved training
supervised models on pre-labeled change points, achieving a 94.3% accuracy in distinguishing
true from false change points. Additionally, a real-time detection method using a window-
ing technique achieved an AUC of 92.0%. This work underscores the potential of machine
learning to automate change point detection, thereby reducing the need for manual analysis.

Nguyen et al. [16] explored the challenges in analyzing performance test results to identify
the causes of performance regressions. Their method used historical performance data and
hardware utilization measurements (e.g., CPU usage) to detect regression causes with up to
80% accuracy without requiring extensive historical data. They employed statistical methods
and machine learning, along with synthetic problem injection, to bootstrap the approach,
demonstrating its effectiveness on both open-source and commercial projects.

Liao et al. [17], in conjunction with [18], addressed challenges similar to those identified
in other studies. They proposed using black-box machine learning models, which require no
knowledge of the system’s internal behavior, to detect performance regressions. These models
were trained on historical and regressions in new performance data were identified even
under varying workloads. The method was effective in both open-source and large industrial
systems, proving to be a viable alternative to traditional performance testing, especially in
resource-constrained environments.

3.6.3 Anomaly Detection in Similar Context
In a study by Mendes et al. [19], two different unsupervised machine learning algorithms were
deployed to distinguish anomalous energy usage patterns in hotel units, leveraging a compre-
hensive sensor network to monitor electricity, water, and gas consumption, along with vital
environmental parameters. This research underscored the significance of Exploratory Data
Analysis (EDA) as a foundational step before using ML algorithms in anomaly detection, and
showed that Isolation Forest (IF) performs better in their case.

Mejri et al. [20] explored unsupervised anomaly detection methods for time-series data,
evaluating not only precision and recall but also model size, stability, and efficacy across var-
ious anomaly types. Their analysis covered five datasets and included both machine learning
(ML) and deep learning (DL) methodologies, with DL demonstrating superior performance
in standard metrics. This study highlighted the importance of considering multiple aspects
when assessing the effectiveness of anomaly detection models.

Vávra et al. [21] proposed an adaptive ML-based anomaly detection system tailored for
industrial control environments. The study pointed out the limitations of traditional meth-
ods and emphasized the potential of both unsupervised and supervised learning approaches
to identify abnormal operations. The system utilized historical data to learn patterns and flag
deviations as anomalies, stressing the importance of data preprocessing and feature selection
for optimal performance.

Shahid et al. [22] investigated deep learning unsupervised models for anomaly detection in
school buildings’ electricity and district heating consumption. They compared various mod-
els that capture sequential data and effective for general data representation. The study found
that the Long Short-Term Memory Variational Autoencoder (LSTM-VAE) model achieved
superior results in capturing normal consumption patterns. LSTMs are a type of Recurrent

28

3.6 Related Work

Neural Network (RNN) that particularly are effective in tasks requiring understanding the
entire context, highlighting their suitability for this type of anomaly detection 27.

Aronsson [23] proposed an unsupervised machine learning tool for detecting anomalies
in multivariate data collected over time in industrial settings. The solution achieved high
accuracy in identifying anomalies. The study implemented specific preprocessing techniques
and used particular metrics to assess model performance, which proved especially useful in
dealing with datasets where anomalies are rare.

A study by Jernbäcker [24] evaluated various unsupervised learning models for anomaly
detection in time-series data. This research compared models adept at handling sequential
information with those suitable for general data representation. The findings suggested that
combining different types of unsupervised models might be necessary to capture the wide
range of anomalies in time-series data, as different models have strengths that make them
suitable for real-time anomaly detection.

Finally, Zhao et al. [25] presented the Scalable Unsupervised Outlier Detection (SUOD)
framework, which addresses the scalability challenges of machine learning by employing a
modular and parallelizable architecture. SUOD integrates multiple detection algorithms to
enhance robustness, utilizes distributed computing for efficient processing of large datasets,
and offers flexibility through its modular design. This framework ensures efficient and ef-
fective outlier detection even as data size and dimensionality increase, making it a valuable
tool for practical applications.

3.6.4 Incorporating Feedback in Detection
Improving the accuracy and relevance of detected anomalies has been the focus of several
studies. Das et al. [26] focused on incorporating user feedback during the anomaly detection
process to decrease the number of false positive cases. They modified IsolationForest algo-
rithm by integrating binary feedback, which re-weighted the detection based on user input.
This modification significantly enhanced the algorithm’s performance, with some instances
showing double the accuracy compared to the original version.

Vercruyssen et al. [27] proposed a framework combining unsupervised and supervised
learning techniques for monitoring water usage in supermarkets. Initially, the framework
operates in an unsupervised mode, organizing data through clustering methods. As human
experts provide feedback, the system transitions to a semi-supervised mode, refining its de-
tection capabilities by spreading labels throughout the data. This approach is particularly
effective in scenarios where normal behaviors are diverse and less frequent than anomalies,
addressing a common challenge in anomaly detection.

Building on previous work [26, 27], Zha et al. [28] explored an alternative method to im-
prove the ranking of detected anomalies using reinforcement learning. Instead of relying
on re-weighting or greedy algorithms, this method trains a policy for selecting the detected
anomalies. The proposed approach demonstrated superior performance in benchmark set-
tings compared to baseline methods, highlighting the potential of reinforcement learning in
enhancing anomaly detection processes.

An example of integrating feedback into a performance monitoring system is presented
by Hrusto et al. [29]. This study presented an example of integrating feedback into a per-

27https://developer.ibm.com/tutorials/iot-deep-learning-anomaly-detection-1/

29

https://developer.ibm.com/tutorials/iot-deep-learning-anomaly-detection-1/

3. Background & Related Work

formance monitoring system to tackle alert fatigue experienced by developers. The study
proposed an approach to filter excessive alerts and improve the feedback loop between de-
velopers and the deployment process. By using unsupervised anomaly detection together
with feedback-based filter, the system created a more sophisticated mechanism that consid-
ered the context and learned from past experiences, thereby reducing unnecessary alerts and
improving developer efficiency.

Building on their previous work, Hrusto et al. in [30] proposed an approach for anomaly
detection in microservices. Microservices are an architectural style that structures applica-
tions as a collection of loosely coupled services 28. This study focused on a microservice-based
back-end system for public transportation ticket and payment management. The proposed
approach used unsupervised deep learning to analyze multivariate time series data. Upon
detecting anomalies, developer feedback was collected to evaluate the model and identify
the optimal method. Initially employing unsupervised learning, the study planned to explore
supervised learning models trained on feedback labels as a future improvement, aiming to
bridge the gap between monitoring performance metrics (operations) and detecting issues
(development) in a DevOps context.

28https://microservices.io/

30

https://microservices.io/

Chapter 4

Case Description

In this chapter, the results of the interviews conducted are presented, followed by an overview
of the current process, the relevant data, and a detailed case description.

4.1 Problem Conceptualization
As described in Section 2.2, interviews were conducted to gather detailed information and
define the problem. Three semi-structured interviews were held with engineers involved
in performance testing and regression detection, with the questions listed in Appendix B.1.
Additionally, two informal discussions were conducted with the senior test framework de-
veloper and the leading test expert. Each discussion was held in person to encourage open
conversation and was tailored to the interviewee’s role and responsibilities.

Using the results of these interviews and discussions, we were able to understand the chal-
lenges and the current workflow. This process also provided an introduction to the existing
test cases, available data, and the quality assurance process. This foundational understanding
allowed us to further study these aspects and ultimately define the problem in the context of
this study. Detailed presentations of these areas are provided in the following sections.

4.1.1 Problem Overview
The interviews identified key performance metrics for further investigation, provided insight
into how the participants perceive the problem and helped us to study different aspects of
the problem further. This resulted in a problem definition and an initial process towards
answering RQ1.

All participants found the current process limiting, hindering timely performance issue
detection and extending feedback loops in development. This results in longer troubleshoot-
ing times, increased resource needs, lower product quality, and extended lead times. The
organization aims for a more robust performance testing strategy with increased frequency,

31

4. Case Description

scale, and automation. However, challenges include a lack of understanding of significant
performance factors and difficulties in establishing criteria for identifying anomalous per-
formance after code changes. Test results can include noise from changes in the lab envi-
ronment, test framework, tools, or issues regarding product hardware. These uncertainties
hinder effective automation and scaling of the testing process.

Technical questions from the interviews revealed different perspectives: developers are
concerned about longer feedback loops from quality engineers; quality engineers face high
monitoring demands and time constraints; the lead test architect sees resource limitations
as a bottleneck for more testing, making the process vulnerable and unsustainable for main-
taining high quality measures and future growth.

A summary of these points is presented in Table 4.1, showing important performance
metrics, the scope of investigation, level of detail, and desired elements in a potential solu-
tion, according to the interview participants.

Table 4.1: Summary of interview results

Senior Test Framework
Developer

Quality Engineer Lead Test Architect/Expert

Important
metric(s)

Frame rate, bitrate, memory,
CPU.

Datasheets as hard
requirement when using the
default setting. Frame rate,
bitrate, CPU, memory

Frame rate, bitrate, memory,
CPU.

Relation between
metrics

Frame rate - bitrate, chipsets -
overall behavior.

Chipset - overall behavior,
frame rate - bitrate, CPU -
frame rate (when using apps).

(Question not applicable)

Size of historical
data

Not so long back, focus on
recent.

Selected weekly releases,
longer periods second priority.

Months, focus on longer
periods.

Level of detail in
data

Builds for a developer, focus
on weekly firmwares in start.

Compare with previous
release, weekly.

On every build.

Desired
features/solution

Present anomaly with link to
graph, choose feedback and
get information about which
test and possibly time.

Better & easier visualization,
indication on a potential
issue, provide firmware
version and test case.

Find an optimal degree of
alerting and decrease the
analytical work burden.

4.1.2 Quality Assurance Process for Performance
The quality assurance process related to performance testing at the case company involves
several steps. Measurements from automated performance tests are collected in connection
with the development of the camera firmware. The tests are executed using streaming tools
within the performance test framework for each product under test, and results are logged in
JSON format with timestamps. The JSON files are stored in the case company’s artifactory.

Figure 4.1 illustrates an overview of the quality assurance processes for performance test-
ing in connection with development. The development process begins with changes or com-
mits made to the codebase by developers. These changes are integrated into the system and
compiled into builds. Selected builds are then tagged as firmware, representing a new revi-
sion of the software operating the camera.

Daily performance tests are executed automatically on many different camera products
in a lab environment using the latest builds. During these tests, measurements are logged in
JSON format. This data includes various performance metrics related to video and device

32

4.1 Problem Conceptualization

Figure 4.1: Quality Assurance Process Related to Performance Test
Analysis

performance quality. The collected data is summarized and visualized using tools to generate
graphs. These graphs are used by a quality engineer to conduct a manual review of the selected
firmware for weekly analysis. The selection criteria for these firmware versions are based on
the company’s testing and quality assurance strategies.

The manual analysis includes examining the graphs, comparing the current performance
test results with the established baseline to identify irregular behaviors, potential defects,
and regressions. Any identified issue or notable finding is investigated further by the quality
engineer and developers. They work together to identify the cause and resolve the problem,
ensuring the new firmware meets the required standards. If a suspected issue is confirmed as
a defect at this stage, it is reported to relevant roles for further investigation and resolution.

How is this study related to QA processes? This study specifically focuses on the manual
analysis and detection parts, highlighted in orange in Figure 4.1. This includes enabling the
engineers to review the results and assist them in a more automated way. By focusing on these
stages, the study aims to enhance the effectiveness and improve the overall quality assurance
process.

What can be identified as a problem? The company prioritizes delivering video stream
quality values, specifically frame rate and bitrate, as stated in the product datasheets. These
values serve as performance requirements when monitoring results. However, this applies
only to the default setting tests, as stated in Section 4.2. In general, any significant deviation
from the established baseline is investigated further. Adverse or unexpected deviations over
longer periods are usually considered more serious. However, the level of scrutiny varies
depending on the product, the use case, and the performance metric (feature).

Challenges & Motivation
The reliance on manual analysis for performance data creates bottlenecks. As product com-
plexity and the product pool grow, this method becomes unsustainable. Training new staff
for this specialized role is hindered by the extensive knowledge required, further limiting
scalability for broader quality assurance initiatives. Additionally, the engineer(s) tasked with

33

4. Case Description

this analysis often lack the time to thoroughly review data across various features for most
products, further exacerbating the issue.

These challenges underscore the need for new approaches to simplify and support the
manual analysis process. As mentioned in Section 1.1, previous attempts by the case company
to set up a rule-based system with static thresholds for automating analysis have proven to
be unsustainable, inflexible, and unscalable. Therefore, this study aims to explore alternative
approaches to address these problems effectively.

4.2 Test Cases
All registered test results are related to a test case which in turn is related to a product.
The test cases are based on the use case and specifications of the product. In addition, test
cases can be defined to address specific quality issues, allowing focused monitoring of those
concerns. In this context, the performance tests are primarily video streaming tests. These
involve sending requests with specified settings to the camera under test, monitoring the
response stream provided by the camera, and recording values for various video, network,
and hardware parameters.

The tests can be divided into three main categories: default setting tests, single-channel
tests, and multiple-channel tests. A channel refers to an individual logical path for video
data within the camera, and it can handle one or multiple streams of video. Tests can include
various settings and conditions which are presented in the following.

• Default Setting Tests: This is the most basic use case for each camera, defined as a test
on one channel and one stream with no other special settings.

• Single Channel Tests: These tests evaluate the camera’s performance when operating
a single channel with one or multiple streams over this channel.

• Multiple Channel Tests: These tests assess the camera’s performance when handling
multiple channels with one or multiple streams over each channel.

All tests, other than default setting tests, may include special conditions. These con-
ditions or settings can involve streaming through various protocols, containers, or formats,
additional features such as audio, and different applications such as video analytics. For ex-
ample, single-channel tests can incorporate multiple streams to evaluate the camera’s perfor-
mance while handling multiple streams alongside more advanced features. Multiple-channel
tests involve multiple streams and can include scenarios like group view, quad stream, mixed
encoders, and varying view areas with different stream counts. These subcategories represent
the test setting combinations depending on the camera’s functionalities and use cases.

4.3 Available Data
The available data consists of data points from test measurements recorded during daily test
executions according to defined test cases, stored in JSON format. These measurements
include values for various performance metrics such as video frame rate, bitrate, bandwidth,
and hardware resource utilization on CPU and memory.

34

4.4 Alerting Cases

Figure 4.2 illustrates the structure of the available data in a tree view. The figure demon-
strates various data configurations based on different components in a potential test case.
The levels in the tree are interconnected, forming various settings for a test case.

Starting from the top of the tree in Figure 4.2, products built on specific chipset genera-
tions operate on particular firmware (build). Performance test cases are first categorized ac-
cording to channel settings (single or multiple channels). Test cases can then include various
options, such as different codecs, protocols, and applications, as shown under With options.
Each execution of a test case generates detailed measurements for the features presented in
the bottom of the figure. Measurements on these features form the test data used in this
project.

Figure 4.2: The structure of available data regarding each product

Regarding measurements, the sampling occurs every other second during each execution
regarding each test case, resulting in approximately 30 measurement points for each feature,
assuming an execution lasts about one minute. In other words, a test execution corresponds to
30 data points on each feature multiplied by the number of test cases for a product. Products
and test cases may be added or removed over time, influenced by changes in the company’s
test plan and testing priorities. As mentioned in Subsection 4.1.2, the data are then translated
into graphs to be reviewed.

4.4 Alerting Cases
Defining regressions or anomalies is challenging, especially in the studied case. Performance
changes can depend on various factors, and understanding these factors is necessary to de-

35

4. Case Description

termine if the change is a true regression. To evaluate different methods for detecting regres-
sions, we define a regression or an anomaly as a measurement or behavior that deviates from the
established baseline. Essentially, the goal is to detect abnormal values or trends in the data and
alert about them.

Alerting cases in this problem can be divided into two main categories: local and global.
The following descriptions and examples illustrate these categories. Note that Figure 4.3 and
Figure 4.4 do not depict real data but are intended to demonstrate what anomalies might
look like in summarized data. These mock figures have been cleared of noise and do not
cover the natural variations within the test cases.

Local Case
A local case refers to a single measurement point of a feature that deviates from the baseline
behavior. This deviation could be caused by changes in the system or external factors affecting
the measured parameter. An example of a local case is shown in Figure 4.3, which displays
a deviating value at a specific timestamp. In this example, the value drops to an abnormal
level, assuming that the baseline behavior for this particular test case and feature has been a
stable value at 30.

Figure 4.3: An abnormal value

Global Case
A global case can manifest itself in the following patterns, assuming that the corresponding
baseline does not contain such a pattern:

1. Several consecutive measurements deviating from the baseline, suggesting a persistent
problem, as shown in Figure 4.4a.

2. A repeated pattern of abnormal values, for example, in a periodic or cyclical manner
that deviates from the baseline, as shown in Figure 4.4b.

3. A changed trend or behavior over time compared to the baseline, as seen in Figure 4.4c
and Figure 4.4d.

36

4.5 Data Exploration

(a) A series of abnor-
mal values

(b) Repeated abnor-
mal values (periodic)

(c) An upward trend
over a longer period
of time

(d) A downward
trend over a longer
period of time

Figure 4.4: Illustrating global regression cases

Global cases might indicate a more serious or sustained problem within the system. In
some instances, the abnormality depends strictly on the context of the test and use case.
Identifying this type of abnormality requires analyzing data for patterns over a longer period.

As seen, the regression cases are context-based and have variation in their pattern that
introduces complexity in detection. This underscores the need for a nuanced approach that
considers specific occurring characteristics and contexts, meaning an adaptive and flexible
solution.

4.5 Data Exploration
To understand the problem and define the named alerting cases in Section 4.4, we began with
exploring the available data. The main purpose and general findings of this exploration are
presented in this section, while more detailed method and results are provided in Section 5.3.

The main purpose of this exploration was to get familiar with the data and gain a better
understanding of different scenarios. This involves identifying and defining alerting cases
through simple data exploration. Additionally, the exploration aimed to investigate recurring
patterns in the data by examining test cases, test settings, and different products. Finally, it
explored the existence of correlations between various features.

37

4. Case Description

Findings
A feature here refers to performance metrics such as video frame rate, bitrate, and others, as
previously discussed. The general findings derived from the conducted data exploration are
as follows:

• Stability: The video frame rate typically appears more stable compared to other fea-
tures, especially in lighter test settings such as default setting tests. Overall, the stabil-
ity and value ranges of features vary by test case and product.

• Defining normal behavior for a feature: Normal behavior is context-specific, defined
for each feature and test case.

• Performance depending on codecs: Some codecs exhibited lower performance com-
pared to those used in the default settings.

• Observing deviations in box-plots: Box-plots provided a clear view of deviations be-
tween different builds. These plots helped identify potential performance regressions
in some cases.

• Correlation analysis & relationships: A strong positive correlation was observed be-
tween bitrate and bandwidth. In some cases, there was a correlation between memory
and CPU usage. When deviations in video frame rate occurred, bitrate sometimes fol-
lowed a similar pattern. However, these correlations were not consistent across all
cases.

These findings guided us through further investigation and the formation of solutions.

4.6 Requirements
Through problem analysis and conceptualization, we identified key requirements and desired
criteria for the solution. These requirements were established as objectives for this project,
guiding the development process. They are listed below:

Outcome & Development
The outcome and development category of requirements is designed to help us cover the
aspects related to RQ1. The solution shall:

1. Detect and report cases of interest regarding each new test execution.
2. Achieve a high detection rate, meaning minimizing missed cases.
3. Ensure more sensitive detection regarding default setting tests, as required by the com-

pany.
4. Provide reliable results using minimal input data, ensuring high data efficiency.
5. Be implemented in Python using common libraries to ensure compatibility with the

existing code base at the case company.
6. Use technical components that are as explainable as possible to avoid unnecessary com-

plexity.
7. Be evaluated through consultation with domain experts and data labeling.
8. Deliver a solution that is as general as possible, facilitating use across different products

and test cases.

38

4.6 Requirements

Usage
The usage category of requirements is designed to help us cover the aspects related to RQ2
and RQ3. The solution shall:

1. Simplify the monitoring and detection work to assist the quality engineer and reduce
their workload.

2. Be easy to integrate into the current process.
3. Allow adjustment of the detection parameters as needs evolve.
4. Be user-friendly and intuitive to operate.

39

Chapter 5

Solution

This chapter outlines the steps taken to propose a solution to the problem defined in Chap-
ter 4. It provides details about the implementation and evaluation of the proposed solution,
along with the rationale behind these decisions.

5.1 Solution Overview

The objective is to propose a solution that simplifies manual analysis and assists quality engi-
neers in reducing their workload, while addressing the research questions presented in Sec-
tion 1.2. The solution involves developing a tool that meets the criteria and requirements
outlined in Chapter 4. This tool aims to detect new test executions related to a product
that exhibit unexpected behavior or regressions. The detected cases are then presented to a
quality engineer through a visualization tool developed during this project, allowing them to
provide feedback that can be used to improve future detections.

As described in Section 2.3, the study focuses on three selected products, referred to as
A, B, and C. The initial data exploration, mentioned in Section 4.5, was conducted on these
products and is analyzed further in Section 5.3. This analysis helped us identify performance
metrics that could serve as input features for this study. With a thorough understanding
of the available data, we began by exploring the feasibility of a solution based on statistical
thresholds. Subsequently, we investigated solutions using unsupervised machine learning
and later transitioned to supervised learning. To evaluate these approaches, datasets for each
product were labeled using a tool developed during this project. Continuous feedback from
the quality engineer, gathered through the visualization tool, will be incorporated into future
training and detection.

41

5. Solution

5.2 Solution Motivation
The primary motivation behind this project is to address the research questions outlined in
Section 1.2 and to solve the defined problem in Chapter 4. Our main research question, RQ1,
aims to explore how detection can be done more efficiently. This involves developing a so-
lution that assists quality engineers in detecting regression cases, as described in Section 4.4,
by analyzing data retrieved from performance test results.

Providing a solution in the form of a tool to achieve this objective is central to this
study. Python was chosen for the tool’s implementation, as required in Section 4.6, due to its
widespread use in data analysis and machine learning [31], and to ensure compatibility with
the case company’s extensive existing Python codebase. Various potential solutions were
sketched by reviewing related literature presented in Section 3.6 and the problem construct
in Chapter 4, including inspirations from existing quality assurance processes, as discussed
in Subsection 4.1.2. A more detailed motivation, according to the research questions and re-
quirements of this study, is presented in the following sections, grouped into two categories:
development and outcome-related, and usage-related.

Development of the Tool & Outcome
The following points address the requirements in Section 4.6 which are related to RQ1.

Based on the insights gained from problem identification and data analyses, the focus
was initially narrowed down to investigating two critical performance metrics for the case
company while focusing on single-channel tests. These metrics were bitrate and video frame
rate, which also corresponds to frames per second (FPS) further in this study. Later, the
scope was extended to include additional metrics such as CPU and memory, as well as more
advanced test cases like multi-channel tests.

Our primary goal for the detection mechanism was to minimize missed cases and achieve
a high detection rate, guiding our evaluation and selection of solutions. We began by ex-
ploring statistical thresholds as an initial solution, which involves defined rule sets based on
contextual data, as detailed in Section 5.4. This approach advocates for simplicity to avoid
unnecessary complexity. Although effective in certain scenarios, statistical thresholds did
not provide the results, flexibility, and adaptability required for this study. This highlighted
the need for further investigation into a more suitable solution.

After experimenting with thresholds, we considered unsupervised learning methods. This
approach does not require labeled data, making it a compelling choice for initial detection
efforts. To compare the results from different approaches, we evaluated them, including
unsupervised methods, against labeled data. We further investigated optimizing the approach
based on unsupervised learning. However, to achieve more precise and reliable detection, we
transitioned to a solution based on supervised learning.

In supervised learning, models are trained on a dataset where each entry is labeled as
either an anomaly (1) or normal (0). This method allows the model to predict the class of
new data points, specifically data from new test executions. While unsupervised learning was
initially explored, the potential for greater control and performance with supervised learning,
despite its time-consuming data labeling process, led us to prioritize this approach for a
potentially better overall solution. To enhance data efficiency and ease of use, we investigated
methods to minimize the required labeled data size and simplify annotation. Furthermore, to

42

5.3 Data Analysis

reduce computational requirements, we adopted a multi-stage approach, exploring simpler
methods first to find the most efficient solution that addresses the problem effectively.

Usage & Integration
The following points address the requirements in item 4.6 which are connected to RQ2 and
RQ3.

By addressing our research questions, this project aimed to develop a tool that not only
improves detection mechanisms but also enhances existing work processes and adapts to
evolving needs, providing a comprehensive and effective solution for analyzing performance
test results. This was achieved by designing the annotation tool to be simple and user-
friendly, and by visualizing the results in a manner familiar to users, thereby allowing the
solution to be easily integrated into the existing process.

We ensured the solution’s adaptability to evolving needs by allowing users to provide
feedback on the results. To assess the impact of the solution on the process and engineers’
workflow, we conducted usability testing and observations.

5.3 Data Analysis
The purpose and general findings of the data exploration conducted in this study are outlined
in Section 4.5. This section presents the detailed method and results of the analysis of the
exploration.

Analysis Method
Exploratory data analysis (EDA) was conducted on performance data collected over 20 weekly
test executions for the selected products. Video frame rate and bitrate was analyzed as the
primary features due to their importance. The analysis included the listed activities regarding
each feature, test case and product under study:

• Plotting values over time.
• Reviewing statistical metrics, including mean, median, standard deviation, minimum

value, maximum value, and percentiles.
• Plotting rolling standard deviation.
• Reviewing box-plots across consecutive weekly test executions.

Additionally, a correlation analysis was performed on features such as FPS, bitrate, band-
width, CPU usage, and available memory. This involved calculating the correlation between
each feature to assess relationships between them. This analysis helps to identify redundancy
in the data, reduce data dimensions, and uncover more characteristics of the data.

Analysis Result
Plotting the measurements of each feature over time for each test case and product allowed us
to observe the level of variation and value range over time, providing insights into common

43

5. Solution

and uncommon behavior. Statistical metrics gave a general overview of the data’s character-
istics and variations. The rolling standard deviation highlighted the variation of values over
time, potentially indicating problematic cases. Box-plots revealed deviations in test execu-
tions, helping us investigate how detection based on deviations could be implemented.

One key observation was that data from default setting tests, compared to those using
custom settings, showed more stable values, usually following the same pattern and value
range. Values were typically more stable in lighter test settings compared to more advanced
test settings (e.g., using applications). When comparing data from test cases using different
codecs, specific codecs resulted in lower performance compared to others or the default ones.
Overall, the analysis revealed significant variation in data characteristics across test cases and
products, which was expected.

The key findings regarding the comparison of data characteristics between features in-
dicated that the nature of an alerting case differs based on the feature. For example, bitrate
measurements, in megabits per second (Mbps), are generally stable with fluctuations within
the expected range. However, when regressions occur, the bitrate values deviate significantly
from the norm, indicating potential issues that require attention. This is not always the case
with FPS values. In some instances, a change in FPS values was mirrored by changes in bitrate
values at approximately the same timestamp.

(a) Correlation Ma-
trix for Product A

(b) Correlation Ma-
trix for Product B

(c) Correlation Ma-
trix for Product C

Figure 5.1: Figures on correlation matrices for each product

44

5.4 Statistical Thresholds

The results of the correlation analysis are presented as heat maps in Figure 5.1. A value
of 1 represents the highest positive correlation, while -1 represents the highest negative cor-
relation. The correlation study revealed that bitrate and bandwidth metrics consistently
have a strong positive correlation, as shown by the value 1 in the cells representing bitrate-
bandwidth correlation. FPS and bitrate generally showed a partially strong negative correla-
tion, as seen in Figure 5.1a and Figure 5.1b. Some correlation was observed between available
memory and CPU usage, mostly in the case of product C, as shown in Figure 5.1c, indicat-
ing an anticipated relationship between these two features. However, apart from the strong
correlation between bitrate and bandwidth, other correlations were not consistent across all
test cases and products. For instance, a strong correlation between frame rate, bandwidth,
and bitrate was present except in Figure 5.1c for product C.

5.4 Statistical Thresholds
The initial step in developing our solution was to assess the feasibility of implementing a
solution based on statistical thresholds using statistical methods. The aim was to determine
whether the identified problem could be addressed with adaptable, data-driven thresholds
that would allow for simple and explainable detection of alerting cases.

The thresholds were established based on the results from the data analysis and in con-
sultation with the quality engineer, considering the alerting cases described in Section 4.4.
These thresholds were not static; instead, they adapted to the character of the data through
statistical measures such as quartiles, representing the expected value range for both FPS and
bitrate. The bounds of these thresholds were statistically calculated using the interquartile
range (IQR) and the mean value, following the formula bound = mean ± f actor ∗ IQR.

Since using only statistical measures was not sufficient for detecting alerting cases, vari-
ous factors such as the bound factor, the local factor, and the quartile factor were introduced
to refine the thresholds depending on specific features and test settings. For instance, tests
involving a specific codec that often exhibited higher variability used thresholds adjusted to
accommodate a wider range, apart from the thresholds being statistically set.

Thresholds Results
Implementing and evaluating these statistical thresholds provided insights into the complex-
ity of the problem. Table 5.1 summarizes the results of the statistical threshold evaluation for
products A, B and C. The evaluation metrics include AUC, recall, precision, F1 score, preci-
sion, false positive rate (FPR), and false negative rate (FNR).

Table 5.1 shows that using FPS alone generally provided better performance compared to
using bitrate alone. For Product A, FPS alone achieved an AUC of 0.91, while bitrate alone
achieved 0.60. Combining FPS and bitrate resulted in an AUC of 0.72. For Product B, FPS
alone achieved an AUC of 0.68, bitrate alone achieved 0.65, and combining both features
resulted in an AUC of 0.65. For Product C, FPS alone achieved an AUC of 0.71, bitrate alone
achieved 0.77, and combining features resulted in an AUC of 0.66.

Notably, the FNR and FPR were relatively high in several cases. For instance, in Product
A, using both features resulted in an FNR of 0.26 and an FPR of 0.30, indicating that many
true anomalies were missed. Similarly high FNR and FPR values were observed for Prod-

45

5. Solution

Table 5.1: Evaluation Results of Statistical Thresholds on Test Runs
for Products A, B, and C. Test set size indicate the number of weekly
test executions used in the evaluation.

Product Feature Te
st

Se
tS

iz
e

A
U

C

R
ec

al
l

A
cc

ur
ac

y

F1
Sc

or
e

Pr
ec

isi
on

FP
R

FN
R

fps 4,924 0.91 0.92 0.91 0.77 0.67 0.10 0.08
A bitrate 4,924 0.60 0.48 0.68 0.32 0.24 0.29 0.52

fps & bitrate 4,924 0.72 0.74 0.71 0.58 0.48 0.30 0.26

fps 4,557 0.68 0.38 0.83 0.54 0.95 0.01 0.62
B bitrate 4,557 0.65 0.53 0.76 0.25 0.17 0.22 0.47

fps & bitrate 4,557 0.65 0.50 0.71 0.51 0.51 0.20 0.50

fps 1,815 0.71 0.45 0.84 0.58 0.81 0.03 0.55
C bitrate 1,815 0.77 0.82 0.73 0.38 0.25 0.28 0.18

fps & bitrate 1,815 0.66 0.60 0.68 0.51 0.44 0.29 0.40

ucts B and C. These high FNR and FPR values suggest that while the statistical thresholds
were useful for identifying anomalies in some cases, they lacked the precision and robustness
needed for reliable detection.

Given these results, we recognized the need for a more advanced solution. Therefore, we
investigated whether transitioning to machine learning-based approaches would address the
problem better compared to statistical thresholds.

5.5 Data Preprocessing
Data preprocessing was performed as a preliminary step to implement a solution based on
machine learning. This step was essential for preparing the data to be fed into the models and
for improving their performance. It ensured that the data was consistent and in a suitable
format for optimal model results. The input to machine learning models is typically a matrix
of numerical data, with features as columns.

When fetching the data from the case company’s servers, the dataset included perfor-
mance measurements along with a timestamp for each entry. Additionally, it contained
the name of the test case for each entry as a categorical feature among all other features as
columns. To identify which test case each entry belonged to, we used the test name column.

Feature Encoding for Test Differentiation: Since test case names are categorical, we ap-
plied one-hot encoding to transform these names into numerical binary values. In the input
matrix, each unique test name is represented by a binary feature; a 1 in a given test name col-
umn denotes that the entry is related to that test name, while a 0 indicates its absence. This
transformation is crucial for enabling the model to differentiate effectively between various
test cases1.

1https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/

46

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/

5.6 Annotation Tool

Data Cleansing: Data cleansing was performed to remove any incomplete, insufficient,
and corrupted entries. This step increases the quality and reliability of the data fed into the
model, avoiding inconsistencies that could impair the model’s performance.

Time Alignment: Due to discrepancies in the timing of recorded performance metrics,
such as frame rate and bitrate noted to the precise millisecond versus slightly delayed times-
tamps for CPU usage and available memory, it was necessary to align and match all entries by
the second instead of the millisecond. This step ensured that each set of measurements shared
consistent timestamps, allowing for accurate mapping of CPU and memory measurements
to the corresponding frame rate and bitrate measurements.

Normalization: The features’ data were normalized using scikit-learn’s StandardScaler.
This technique ensures all features have a similar scale, preventing features with larger ranges
from dominating the model’s learning process. By doing so, the model can focus on the rela-
tive importance of each feature, regardless of its unit or scale 2.

Dataset
For each product X, a general dataset was created using a chosen number of test executions.
The processed data were organized into training and test datasets before use in models. The
data for each product included performance metrics presented earlier along with their times-
tamps. As a result of the data analysis conducted in Section 5.3, the final features used in the
machine learning approaches are detailed in Table 5.2.

Table 5.2: Overview of the Dataset

Feature/Column Name Description

Datetime The timestamp of a measurement point

FPS The video frame rate value

Bitrate The bitrate value

CPU The total CPU usage value

Memory The available memory value

Test Names (One-Hot Encoded) The test names transformed into binary features using one-
hot encoding.

5.6 Annotation Tool
The development of a reliable detection tool required labeling the dataset to evaluate the
results of the detection tool. Given the lack of pre-existing labeled data and the large size of
our dataset, an efficient and user-friendly annotation tool was crucial. The annotation tool
was developed using Python’s Tkinter library3, providing a straightforward graphical user
interface (GUI) for ease of use as shown in Figure 5.2.

2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
StandardScaler.html

3https://docs.python.org/3/library/tkinter.html

47

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://docs.python.org/3/library/tkinter.html

5. Solution

The workflow of the tool begins with the user loading the dataset of a product as a CSV
file. Once the data is loaded, the user selects the specific feature they wish to annotate for
each test case. The GUI of the annotation tool is designed to be intuitive, featuring two main
plots for data visualization. The first plot displays the measurement points for the selected
feature and test case, allowing users to view individual data points in detail. The second plot
provides an overview of data trends over time, aiding in the identification of patterns and
potential anomalies.

Users can interact with the plots by drawing a box around points they wish to mark as
anomalies, see the red box in Figure 5.2. This interactive approach simplifies the process of
labeling large datasets by visually assisting the user in identifying abnormalities. The tool also
includes options for zooming and adjusting the view to closely inspect different sections of
the data. After completing the annotation, the user can export the labeled data to a CSV file.
This annotated dataset is then used for model training and/or evaluation. This user-centric
design ensures that the annotation process is both efficient and accurate.

Figure 5.2: The Developed Annotation Tool: The first plot displays
measurement points for a selected feature in a test case. The second
plot shows data trends over time to help identify patterns. Users
can easily draw a box around points in the first plot to mark them
as anomalies.

The development of the annotation tool followed an iterative process in which quality
engineers assessed its usability and modifications were made accordingly. This iterative de-
velopment ensured that the tool met the practical needs of engineers and improved its overall
effectiveness. The tool was tested in collaboration with quality engineers to label datasets for
the selected products. This collaborative effort ensured that the annotations were accurate
and aligned with detection criteria.

5.7 Unsupervised Learning as Approach
In this stage of our project, we focused on exploring various anomaly detection techniques us-
ing unsupervised learning methods. This approach was particularly motivated by the lack of

48

5.7 Unsupervised Learning as Approach

officially labeled data. Given the complexity and variability of our data, we initially con-
strained our experiments to simpler scenarios involving single channel single stream test
cases. This reduction allowed us to thoroughly evaluate each model’s capability in identi-
fying anomalies before scaling up to more intricate datasets.

We selected 10 different unsupervised models for our initial analysis: K-means, DBSCAN,
Autoencoder, One-Class SVM (OC-SVM), Isolation Forest, Local Outlier Factor (LOF),
Copula-Based Outlier Detection (COPOD), Histogram-Based Outlier Score (HBOS), Gaus-
sian Mixture Model (GMM), and K-Nearest Neighbor (KNN). We configured the models to
apply stringent detection criteria, aiming to identify as many anomalies as possible while
minimizing the risk of missing true anomalies.

5.7.1 Investigation Setup
We used data from 110 test executions for training and tested the models on the 5 most recent
executions for each product. We first focused on two primary features: FPS and bitrate. To
evaluate the impact of different training and test set configurations on the models’ perfor-
mance, we used three distinct strategies:

1. Single Test Case Training: Models were trained and tested on individual test cases.

2. Aggregated Training with Individual Testing: A model was trained using data from all
test cases of a product but tested on individual test cases.

3. Aggregated Training and Testing: A model was trained on all test cases of a product
and tested on all test cases collectively.

The initial results indicated that training models on individual test cases for each product
yielded the most reliable performance. K-means consistently underperformed in our exper-
iments due to its assumption that clusters are spherical and isotropic, which does not hold
true for the complex and varied shapes of clusters in performance data. This limitation made
K-means less effective for our specific detection requirements, leading us to exclude it from
further tests.

Our observations also showed that DBSCAN required a significant amount of computing
resources, particularly in terms of memory usage. The high resource demand is due to the
computational complexity of DBSCAN, especially when dealing with large datasets and high-
dimensional data, as it requires calculating the distances between all points in the dataset.
For this reason, DBSCAN was also excluded from further experiments.

Initial Results
We evaluated the performance of each model using several metrics: recall, AUC, accuracy,
F1-Score, and precision. Given the importance of minimizing false negatives in the detec-
tion process, recall was prioritized as the primary metric, followed by AUC and accuracy
respectively. The results summarize the performance of the models using FPS and bitrate as
features while training and predicting on individual test cases of each product.

In the first part of the results, specifically in Table 5.3 for Product A, five models achieved
a recall score of 1.0. Although HBOS had a slightly lower recall of 0.94, it excelled in other

49

5. Solution

metrics. For Product B, as shown in Table 5.4, KNN demonstrated best performance in all
metrics. Similarly, for Product C, as seen in Table 5.5, KNN led the metrics except recall.

Table 5.3: Initial Evaluation for Product A

Metric AutoEncoder OC-SVM IF LOF COPOD HBOS GMM KNN
AUC 0.51 0.54 0.53 0.68 0.59 0.86 0.53 0.70
Recall 1.00 1.00 1.00 0.89 1.00 0.94 1.00 0.60

Accuracy 0.20 0.25 0.23 0.55 0.33 0.81 0.24 0.77
F1 Score 0.32 0.33 0.33 0.43 0.36 0.65 0.33 0.49
Precision 0.19 0.20 0.20 0.28 0.22 0.50 0.20 0.42

False Positive Rate 0.99 0.93 0.95 0.53 0.83 0.22 0.93 0.19
False Negative Rate 0.00 0.00 0.00 0.11 0.00 0.06 0.00 0.40

Test set size 185 185 185 185 185 185 185 185
Train executions 110 110 110 110 110 110 110 110
Test executions 5 5 5 5 5 5 5 5

Table 5.4: Initial Evaluation for Product B

Metric AutoEncoder OC-SVM IF LOF COPOD HBOS GMM KNN
AUC 0.54 0.65 0.51 0.64 0.76 0.79 0.61 0.88
Recall 0.84 1.00 1.00 1.00 1.00 0.95 1.00 1.00

Accuracy 0.38 0.47 0.25 0.45 0.63 0.71 0.40 0.81
F1 Score 0.39 0.47 0.39 0.46 0.56 0.61 0.44 0.72
Precision 0.26 0.31 0.24 0.30 0.39 0.45 0.28 0.56

False Positive Rate 0.77 0.70 0.98 0.72 0.49 0.37 0.79 0.25
False Negative Rate 0.16 0.00 0.00 0.00 0.00 0.05 0.00 0.00

Test set size 185 185 185 185 185 185 185 185
Train executions 110 110 110 110 110 110 110 110
Test executions 5 5 5 5 5 5 5 5

Table 5.5: Initial Evaluation for Product C

Metric AutoEncoder OC-SVM IF LOF COPOD HBOS GMM KNN
AUC 0.66 0.66 0.67 0.67 0.74 0.83 0.69 0.83
Recall 1.00 0.92 1.00 1.00 1.00 1.00 1.00 0.85

Accuracy 0.44 0.49 0.45 0.45 0.57 0.72 0.48 0.83
F1 Score 0.38 0.39 0.39 0.39 0.45 0.55 0.40 0.63
Precision 0.24 0.24 0.24 0.24 0.29 0.38 0.25 0.50

False Positive Rate 0.68 0.60 0.66 0.66 0.52 0.34 0.63 0.18
False Negative Rate 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.15

Test set size 75 75 75 75 75 75 75 75
Train executions 110 110 110 110 110 110 110 110
Test executions 5 5 5 5 5 5 5 5

Table 5.3, Table 5.4 and Table 5.5 also show a very high false positive rate, meaning that
the models marked most of the cases as anomalies.

Despite being computationally intensive, the Autoencoder did not perform as well as
expected, as evidenced by the evaluation results for different products. Consequently, it was

50

5.7 Unsupervised Learning as Approach

excluded from further experiments. These findings guided our subsequent steps, allowing us
to focus on the most promising models for further development.

5.7.2 Towards Generalized Approach
The results of the initial unsupervised learning experiments varied between different prod-
ucts. This was expected as the data analysis, discussed in Section 5.3, showed that the data
has unique characteristics for different test cases and products. A more generalized solu-
tion that could encapsulate better performance in a wider range of test cases and products
would be beneficial. Following this aim, we investigated generalizing the solution regarding
unsupervised models.

To develop a more generalized approach, we took inspiration from ensemble learning
methods and combined the predictions from the remaining models forming a Mode Ensemble,
as illustrated in Figure 5.3. By aggregating the predictions, we aimed to leverage the strengths
of each model and mitigate their individual weaknesses. We collected the predictions from
all models and calculated the mode (the most frequent prediction) among them. The mode
value then became the final prediction. This approach ensured that anomalies were identified
based on a consensus, thereby enhancing the robustness of the detection mechanism. The
best results for this approach are presented in Table 5.6, in comparison to other ensemble
approaches.

Figure 5.3: Simplified overview of the ensemble approach based on
the mode value of the predictions

Another approach for generalizing the solution based on unsupervised learning was us-
ing Scalable Unsupervised Outlier Detection (SUOD) framework [25]. The SUOD framework is
designed to parallelize the execution of multiple detection algorithms and combine their re-
sults. We specifically used OC-SVM, HBOS, and IF as the estimators within this framework.
The results of using the SUOD framework are presented in Table 5.6.

Model Selection Algorithm
To experiment with optimizing the performance of unsupervised learning, we developed a
custom algorithm designed to select the best-performing model for each test case for a prod-
uct. We called this approach the Model Selection algorithm, which chooses the most effective
model for each specific test case. An overview of how the algorithm is used is illustrated in
Figure 5.4. The process begins with training seven unsupervised models using a training set.
These models include OC-SVM, IF, LOF, COPOD, HBOS, GMM, and KNN.

51

5. Solution

Once trained, these models are used to predict anomalies in a separate tuning set. Si-
multaneously, a quality engineer labels the tuning set to provide ground truth in order to be
used by the algorithm. The algorithm evaluates the prediction results for each model using
the labeled tuning set. This is done by ranking according to evaluation metrics in the follow-
ing order: prioritizing recall to minimize false negatives, followed by accuracy, F1 score, and
precision. After this evaluation, the algorithm identifies the best-performing model for each
test case across different products. The selected models are then employed to detect anoma-
lies in upcoming test executions. The best results regarding this approach are presented in
Table 5.6.

Figure 5.4: Simplified overview of using the Model Selection algo-
rithm

Improvement Experiments
We used different methods for training the unsupervised models and incorporated additional
feature engineering techniques, such as calculating averages, percentile changes, and differ-
ences between points in the dataset. These experiments were done to investigate if they could
improve the performance of the unsupervised approach. These experiments used the previ-
ous generalization approaches and were conducted by training individually on each test case,
as explained in Subsection 5.7.1. Below is a summary of the experiments that yielded the most
positive results among all those conducted:

Exp1 Direct Training and Prediction: This straightforward approach involves training the
machine learning models on the entire training dataset and then using them to pre-
dict anomalies in a test set. This method provides a direct assessment of the model’s
performance on unseen data.

Exp2 Baseline Training: In this approach, models are trained on a selected number of weekly
test executions (five) that represent the expected data. This establishes a baseline for
the behavior, which can then be used to train models.

52

5.7 Unsupervised Learning as Approach

Exp3 Deviation Analysis: This method calculates the average of each performance metric
in a chosen baseline according to Baseline Training. The models are then trained and
tested on the difference between these averages and the measurements in the dataset.

Exp4 Relation Analysis: Similar to Deviation Analysis, this method further includes the rela-
tion between the average of each performance metric in the baseline and the measure-
ments by calculating avg for metric

avg for metric in baseline . Training on both differences and percentage
deviations aims to provide a more nuanced feature set for detection.

Exp5 Standardization with Z-Score: Before training, this experiment standardizes the data
using z-scores, which adjust each feature based on its mean and standard deviation.
This standardization helps make the features more comparable with the aim of im-
proving the model’s ability to identify anomalies.

The results that made a significant difference in the performance of the models are pre-
sented among the best results achieved in Table 5.6. Other experiments did not result in
expected performance thereby they are not studied further.

Results of Generalization
In Table 5.6, we present the best results obtained by using the generalization approaches
with the different improvement experiments discussed above. We only include the top results
from the five experiments. The table shows that the Model Selection algorithm outperformed
others in most metrics when testing on all three products, except in recall when using the
Direct Training and Prediction method. For the mode ensemble method, the best results
were also obtained using the Direct Training and Prediction method across all three products.
The ensemble method outperformed in recall for two of the products. Conversely, SUOD
underperformed in all three products. Additionally, the Model Selection algorithm achieved
the best FPR value in two of the three products. Based on these findings, we decided to
continue with the Model Selection algorithm for further analysis with unsupervised learning,
specifically using the Direct Training and Prediction method.

Table 5.6: Best results from Feature Engineering & Generalization
experiments for products A, B, and C

Product Method Features Ex
pe

ri
m

en
t

A
U

C

R
ec

al
l

A
cc

ur
ac

y

F1
Sc

or
e

Pr
ec

isi
on

FP
R

FN
R

Tr
ai

ni
ng

Si
ze

Tu
ni

ng
Si

ze

Te
st

Si
ze

Model Selection fps & bitrate Exp1 0.92 0.97 0.89 0.76 0.63 0.13 0.03 110 5 5
A Mode Ensemble fps & bitrate Exp1 0.59 1.00 0.34 0.36 0.22 0.82 0.00 110 5

SUOD fps & bitrate 0.45 0.80 0.23 0.28 0.17 0.91 0.20 5 5

Model Selection fps & bitrate Exp1 0.87 0.98 0.82 0.72 0.57 0.23 0.02 110 5 5
B Mode Ensemble fps & bitrate Exp1 0.72 1.00 0.57 0.52 0.35 0.57 0.00 110 5

SUOD fps & bitrate 0.60 0.98 0.41 0.44 0.28 0.77 0.02 5 5

Model Selection fps & bitrate Exp1 0.96 1.00 0.93 0.84 0.72 0.08 0.00 110 5 5
C Mode Ensemble fps & bitrate Exp1 0.73 1.00 0.55 0.43 0.28 0.00 0.00 110 5

SUOD fps & bitrate 0.72 1.00 0.53 0.43 0.27 0.56 0.00 5 5

53

5. Solution

5.7.3 Extending the Scope
As explained earlier, we initially narrowed down the focus of the study to only FPS, bitrate
and tests with single channel and stream. Next, we expanded our study to additionally in-
clude CPU usage and available memory as performance metrics. Further, we included all
types of test cases, including those involving multi-channel and multi-stream setups. This
extension was the final step in assessing the feasibility of an unsupervised learning solution.
We utilized the Model Selection algorithm along with the Direct Training and Prediction
approach to evaluate the method with all four performance features together and including
all test cases.

In Figure 5.5 we illustrate the rolling evaluation method used to assess the performance
of our unsupervised learning models with the model selection algorithm. This evaluation
process is designed to mimic real-world scenarios where models are continually applied to
new data. The evaluation begins by training the models on a training set consisting of the first
10 test executions. After training, a labeled tuning set, which includes the next execution (the
11th execution), is used by the model selection algorithm . The selected models then predict
anomalies in the test set, which consists of the 12th execution. Following the evaluation
on the test set, the test set rolls forward by two executions at a time. This rolling forward
continues iteratively through the entire dataset. Upon each prediction on a new test set, the
models’ performance is evaluated, and the evaluation metrics are recorded. The average of
these metrics across all iterations provides an overall assessment of the model’s capability in
a setting that reflects continuous, real-world usage. By averaging the evaluation metrics, we
obtained a measure of the approach’s performance over time.

Figure 5.5: Overview of Rolling Evaluation for Unsupervised Learn-
ing with Model Selection Algorithm

The results of the rolling evaluation are summarized in Table 5.7. For Product A, the
model achieved an AUC of 0.51, and a recall of 1.00. Product B showed an AUC of 0.56,
and a recall of 1.00. Product C demonstrated an AUC of 0.57, and a recall of 1.00. These
results indicate that the method were effective in detecting anomalies, as evidenced by the
high recall values. However, having a high recall but relatively low AUC score means that the
result includes positives even for negative cases, predicting anomaly when it is not an actual
one. This resulted in a high portion of false positives as reflected in FPR and a low AUC.

54

5.8 Supervised Learning as Approach

Table 5.7: Rolling Evaluation Results for Products with 4 Perfor-
mance Metrics/Features

Product AUC Recall Accuracy F1 Score Precision FPR FNR
A 0.51 1.00 0.77 0.86 0.77 0.98 0.00
B 0.56 1.00 0.99 1.00 0.99 0.19 0.00
C 0.57 1.00 0.76 0.85 0.76 0.77 0.00

5.8 Supervised Learning as Approach
After evaluating the feasibility of the unsupervised solution on the expanded scope, we ex-
plored supervised learning techniques. This transition aimed to leverage the labeled data for
more accurate anomaly detection through supervised classifiers. This was due to that the un-
supervised solution resulted in many false positives, as indicated by the high FPR in Table 5.7.
This meant that a quality engineer would need to review a large number of cases to rely on
the unsupervised approach effectively.

Instead of reviewing all detected cases (both false and true positives), the engineer could
spend the same amount of time labeling a portion of the data to investigate if a supervised
approach would be more suitable. This shift would allow for the development of a more
precise model, reducing the number of false positives and, consequently, the review workload
for the engineer.

5.8.1 Evaluating Supervised Models
During our exploration of supervised learning, we utilized four different models: Random-
Forest, K-Nearest Neighbors (KNN), ExtraTrees, and Support Vector Machine (SVM). The
models were trained on a labeled training set for each of the selected products. The process
involved training models for each product using a training set, then testing the model on a
test set. Our experiments revealed that to produce meaningful results with SVM, it required
training a model for each test case of each product individually. In contrast, other models
like Random Forest, KNN, and Extra Trees were able to generalize across different test cases
within each product. Given the goal of proposing an efficient and general solution, as stated
in Section 4.6, SVM was excluded from further analysis due to its higher computational in-
tensity and lower generalization capability compared to the other used models.

To assess the capability of the remaining models (Random Forest, KNN, and Extra Trees),
we followed a rolling evaluation method similar to the one used previously to evaluate the
extended unsupervised solution. This evaluation process is illustrated in Figure 5.6. The pro-
cess began by training the models on a training set consisting of the first 10 test executions
and testing the models on the following test execution. We then moved both sets forward by
two test executions in each step. For example, after the initial step, the training set included
executions 3 to 12, and the test set was execution 13, as seen in Figure 5.6. This rolling process
was repeated iteratively until the entire dataset was evaluated. By averaging each evaluation
metrics across all iterations, we obtained a comprehensive assessment of the models’ perfor-
mance and generalization capabilities over time.

55

5. Solution

Figure 5.6: Overview of Rolling Evaluation on Supervised Learning

Evaluation Results
The results of the evaluation are shown in Table 5.8. For Product A, Random Forest and Extra
Trees achieved AUC scores of 0.96, with recall values of 0.96 and 0.95, respectively. KNN
showed slightly lower performance with an AUC of 0.93 and a recall of 0.89. For Product B,
both Random Forest and Extra Trees achieved high recall and accuracy, with AUCs of 0.90.
KNN performed comparably well with an AUC of 0.91. For Product C, Random Forest and
Extra Trees performed well, each with an AUC of 0.95 and high recall values. KNN had an
AUC of 0.94 and slightly lower recall.

The results in Table 5.8 indicate that Random Forest performed better in all evaluation
metrics compared to the other two models across the three products.

Table 5.8: Rolling Evaluation Results for Supervised Learning on
Products. The training set consist of 10 test executions

Product Model AUC Recall Accuracy F1 Score Precision FPR FNR

RandomForest 0.96 0.96 0.97 0.97 0.99 0.03 0.04
A KNN 0.93 0.89 0.91 0.93 0.99 0.03 0.11

ExtraTrees 0.96 0.95 0.96 0.97 0.99 0.03 0.05

RandomForest 0.90 1.00 0.99 1.00 1.00 0.05 0.00
B KNN 0.91 0.99 0.99 0.99 1.00 0.05 0.01

ExtraTrees 0.90 1.00 0.99 1.00 1.00 0.05 0.00

RandomForest 0.95 0.96 0.95 0.96 0.96 0.05 0.04
C KNN 0.94 0.93 0.93 0.94 0.96 0.04 0.07

ExtraTrees 0.95 0.95 0.95 0.95 0.96 0.04 0.05

Labeling data for training supervised models is a time-consuming process. Therefore,
we decided to minimize the amount of labeled data required while maintaining detection
performance. To achieve this, we adopted an approach that involved using a relatively small
training set consisting of 10 test executions.

56

5.8 Supervised Learning as Approach

5.8.2 Improvement Investigation
We aimed to enhance the performance of our initial supervised learning solution with the
aim of reducing the required labeled training data and lowering the false negative rate. In
the following, the conducted investigations and the results are presented.

Synthetic Anomaly Injection

Initially, we created a clean training set by removing all measurements labeled as anomalies
(1). Next, we injected synthetic measurement points representing anomalies for all features
(FPS, bitrate, CPU usage, and available memory) and labeled them as 1. This injection aimed
to cover a wide range of potential anomalies that might occur in the test set. The injections
were controlled by factors based on the interquartile range (IQR) of the cleaned dataset.
These factors were then multiplied by various factors to represent different levels of anoma-
lies. The number of injected points matched the number of data points in the cleaned train-
ing set, effectively doubling its size. By doing so, we ensured that the training set included a
diverse range of anomalies.

Different features required varying sensitivity levels: frame rate (FPS) detection needed
high sensitivity, CPU and memory usage required moderate sensitivity, and bitrate had the
least sensitivity due to acceptable fluctuations in its original values. This differentiated sensi-
tivity ensured that the models could accurately detect significant anomalies across all features
without being overly sensitive to minor fluctuations.

The results representing the rolling evaluation for all products using synthetic anomaly
injection are shown in Table 5.9. Comparing these results to those presented in Table 5.8
shows that almost all evaluation metrics exhibited lower performance. The injection appears
to have negatively impacted the overall performance of the models, highlighting an increase
in FPR and less efficient detection.

Table 5.9: Rolling Evaluation Results for Supervised Learning on
All Products Using Synthetic Anomaly Injection. The training set
consist of 10 test executions

Product Model AUC Recall Accuracy F1 Score Precision FPR FNR

RandomForest 0.85 0.96 0.91 0.93 0.91 0.25 0.04
A KNN 0.82 0.93 0.87 0.91 0.90 0.28 0.07

ExtraTrees 0.86 0.95 0.90 0.93 0.92 0.22 0.05

RandomForest 0.83 0.99 0.99 0.99 1.00 0.09 0.01
B KNN 0.79 0.98 0.98 0.99 1.00 0.10 0.02

ExtraTrees 0.81 0.98 0.98 0.99 1.00 0.09 0.02

RandomForest 0.88 0.96 0.92 0.94 0.93 0.17 0.04
C KNN 0.86 0.93 0.90 0.93 0.93 0.17 0.07

ExtraTrees 0.87 0.94 0.91 0.93 0.94 0.16 0.06

57

5. Solution

Balancing Classes
Another approach that could contribute to improved detection was balancing the training
set between anomalies and normal measurement points. This approach involves generating
synthetic data that match the characteristics of the minority class (anomalies) to increase
their representation in the training set. For this, we utilized the Synthetic Minority Over-
sampling Technique (SMOTE).

Synthetic samples were generated for each performance metric in the training set. Due to
the differing nature of anomalies between test cases and performance metrics, SMOTE was
applied individually to each test case. The generated samples were then added to the origi-
nal training set, maintaining the same data distribution and characteristics as the expected
anomalies. This led to a more balanced dataset.

Despite our hypothesis, the results of this approach were worse than the results obtained
using synthatic anomaly injection, as presented in Table 5.9. Consequently, we did not see
the results as valuable to present and decided not to continue investigating this approach.

5.9 Feedback Mechanism
One of the requirements defined earlier was to provide a mechanism for quality engineers
to give feedback on the model’s results, refining them over time based on this input, adding
adaptability to the solution. This refinement process includes two scenarios:

• True Positives: If the results are of interest to the quality engineer and are indeed
true positives or indicate a problematic behavior, the engineer outlines the specific
measurement points they are interested in detecting in future executions.

• False Positives: If the results are not of interest and turn out to be false positives, they
should not be detected in future executions. In this case, the engineer can proceed to
review the next test case.

The main concept is that after the model presents its prediction results, the quality engi-
neer reviews these results and provides feedback, indicating whether the alerted cases were
interesting or not. This feedback is then incorporated into the training set, which is used
to retrain the model. By gradually adding more accurate training data, the model aims to
recognize the quality engineer’s criteria for desired detection, reducing irrelevant and non-
interesting detected cases over time.

To facilitate the feedback mechanism, we developed a simple user interface, seen in Fig-
ure 5.7, similar to the one presented in Section 5.6. The quality engineer can load the de-
tection results as a CSV file and review the test cases flagged as problematic or containing
anomalies in the latest test execution. Inspired by the current work process of quality engi-
neers in analyzing results, the tool displays the detected cases together with the data for the
previous test execution. This allows engineers to compare the detected cases with the base-
line, helping them verify interesting cases. Another feature inspired by the current quality
engineer work process was the addition of a button that links directly to the test cases on
the Grafana4 platform, which is currently used for manual analysis. This feature ensures that

4https://grafana.com/oss/grafana/

58

https://grafana.com/oss/grafana/

5.9 Feedback Mechanism

they can seamlessly switch between the feedback tool and their regular workflow to get a
better perspective.

In general, this feedback loop and visualization interface were designed to facilitate an
improved workflow for quality engineers, allowing them to refine the detection and ensure
that the detection aligns with their current needs.

Figure 5.7: The Feedback Tool was developed to facilitate the feed-
back process. Green points represent data from the baseline, which
are compared to the blue points representing the new execution.

59

Chapter 6

Evaluation

This chapter focuses on empirically validating the solution based on the supervised learn-
ing approach. It includes validation of the solution’s performance, the effectiveness of the
detection tool in the QA process, and its potential impact.

6.1 Supervised Learning Approach

To validate the supervised learning approach, we used a modified extended rolling window
cross-validation technique designed to rigorously evaluate the model’s ability detecting the
alerting cases across different test executions. This validation is done to first examine the
performance of the solution in a simulated setup of practical daily use and second the gen-
eralizability of the solution, as explained under Cross Validation in Section 3.5. In addition,
performing this validation helps us to mitigate the threat of the solution being overfitted and
limited. This threat is further discussed in Section 7.5. The validation strategy is illustrated
in Figure 6.1.

It begins with an initial training set consisting of the first 10 test executions from a dataset
of length N. Subsequently, we created (N−10)

2 different test sets, each containing data from a
single test execution. The trained model predicted anomalies in these test sets, and evaluation
metrics were calculated. The training set was then shifted forward by two test executions,
and new test sets were created. This process was repeated until the entire dataset was used
for training and testing. Finally, the average of each evaluation metric was calculated.

61

6. Evaluation

Figure 6.1: Overview of Cross-Validation Technique, N: size of the
dataset

We also validated the impact of adding more data to the training set to simulate how
incorporating feedback could affect performance. We used a validation technique similar to
the previous one but with incremental training. The process of this technique is illustrated
in Figure 6.2. Initially, we trained the model on a subset of the dataset and made predictions
on the next test execution. After each prediction, we added the labeled data corresponding
to the predicted test set, along with the next execution, to the training set. This process was
repeated, with the training set expanding each time by including the new two executions,
followed by making predictions on the subsequent execution. Once the entire dataset had
been processed, we shifted the starting point of the training window forward by two execu-
tions and repeated the process. Evaluation metrics were calculated after each prediction, and
the overall averages of these metrics were used to assess the model’s performance.

Figure 6.2: The Process of Incremental Sliding Window Cross-
Validation

62

6.2 Overall Solution Evaluation

Validation results
In Table 6.1, we present the validation results for the solution using the RandomForest model.
The results show strong performance across the three products, with particularly high recall
scores. For Product A, the recall is 0.90, indicating the model effectively identifies 90% of
true positives. Product B achieves a high recall of 0.99, highlighting a near-perfect detec-
tion capability for true anomalies. Product C also performs well with a recall of 0.93. These
high recall values suggest that the RandomForest model is highly effective in identifying true
anomalies across different products, making it a reliable choice for anomaly detection. How-
ever, there is an observed increase in the false positive rate compared to the results from the
rolling evaluation in Table 5.8, indicating that a higher ratio of detections will include false
positives.

Table 6.1: Results of Cross-Validation on RandomForest. N = 111
test executions

Product Model AUC Recall Accuracy F1 Score Precision FPR FNR

A RandomForest 0.82 0.90 0.86 0.89 0.89 0.25 0.10

B RandomForest 0.64 0.99 0.98 0.99 0.99 0.26 0.01

C RandomForest 0.88 0.93 0.89 0.90 0.90 0.13 0.07

The results of validating the incremental training are presented in Table 6.2, showing that
adding more labeled data to the training set improved the results over time. RandomForest
was able to achieve a recall of 97% in two of the three products and the highest possible
recall in the third product. It also achieved a minimum AUC of 90% across all products.
Additionally, the false positive rate decreased to a more expected level, with a maximum of
0.08 across products, indicating that the addition of training data improves performance.

Table 6.2: Results of Incremental Cross-Validation on RandomFor-
est. N = 111 test executions

Product Model AUC Recall Accuracy F1 Score Precision FPR FNR

A RandomForest 0.96 0.97 0.97 0.97 0.98 0.04 0.03

B RandomForest 0.90 1.00 1.00 1.00 1.00 0.08 0.00

C RandomForest 0.95 0.97 0.96 0.96 0.94 0.05 0.03

6.2 Overall Solution Evaluation
The overall system, which combines supervised learning with a feedback loop, was validated
to ensure it meets the project’s goals. We conducted testing sessions with a quality engineer
involved in the existing manual analysis process, who will potentially use the proposed so-
lution. The goal was to evaluate the system’s usability, effectiveness, and impact on the QA
process.

63

6. Evaluation

The system was tested in a real-world environment to assess its performance under con-
ditions similar to actual operations. This phase involved analyzing live performance test data
from various products and making continuous adjustments based on real-time feedback and
performance metrics. The testing session was divided into two smaller parts: one examining
the annotation tool and the other focusing on the detection and feedback functionalities.
The questions discussed during these sessions are presented in Appendix B.2 and Appendix
B.3.

6.2.1 Evaluation of Annotation Tool
The evaluation of the annotation tool began by presenting the solution to the user and al-
lowing them to get familiar with it. The user was then asked to experiment with the tool by
annotating data from several test cases for a product. We observed the user’s interaction with
the tool and provided assistance and answers to questions as needed.

Some usability-related improvement points revealed during the session include:

• Better visualization for displaying the trend.
• Clearer navigation and zooming functionalities.
• Changing the names of the features to accurately represent the parameters they mea-

sure.

The results from the answers and discussions regarding the questions presented in Sec-
tion B.2 indicate that the user interface is simple and easy to understand, including the func-
tionalities needed for day-to-day annotation work by the engineer. However, there is room
for improvement in terms of better zooming functionalities and the addition of more ad-
vanced features.

6.2.2 Evaluation of Detection & Feedback Tool
The evaluation of the detection and feedback tool followed a similar approach to the one
used for the annotation tool, with the added step of guiding the user through the transition
between different tools—from annotation to training, detection results, and feedback. The
user was then asked to experiment with the visualization and feedback tool and share their
opinions.

Potential improvements pointed out during the session include:

• Add more information about the product and test case.
• Clearer visualization of the baseline and new results.
• More automated integration of the tools for easier transition.

The engineer felt that the solution included all the necessary functionalities to serve as a
result visualization and feedback tool in daily QA work. However, the engineer also noted
that users need to understand how the solution works and how tasks should be performed,
likely due to the low level of automation between different stages of the solution.

According to the engineer, the tool can effectively be used to review detection results on
new test executions and compare them against the established baseline shown in the tool.

64

6.2 Overall Solution Evaluation

The engineer also mentioned that, unlike manual analysis, only the test results flagged as
problematic need to be reviewed, making the workflow more efficient. Additionally, the
engineer highlighted the benefit of being able to influence detection by submitting feedback
on the detection results. This feedback, combined with previously labeled data, helps refine
the detection process, providing greater efficiency, accuracy, and flexibility.

Overall evaluation: In general, the engineer noted that more initial work is required to
get started with the solution, as 10 test executions need to be labeled beforehand to serve as
the initial training set. However, the engineer also pointed out that the solution offers op-
portunities for easier use and reduced review time, and hopefully facilitate a more controlled,
accurate, and efficient work process in the long run.

65

Chapter 7

Discussion

In this chapter, we discuss the results and outcomes from implementing and evaluating the
presented solutions towards selecting the best solution to the defined problem. Further, we
answer the study’s research questions and present the conclusion.

7.1 Statistical Solution
Initially, we explored an approach based on statistical thresholds which offered limited flex-
ibility and adaptability. The results showed that the statistical solution struggled with dy-
namic changes in data and varying test conditions. Consequently, it often generated false
positives and missed an average of 38% of true anomalies across products. This necessitated
frequent manual reviews and adjustments to the threshold factors. These limitations un-
derscored the need for a more adaptive and automated approach, leading us to investigate
machine learning solutions.

7.2 Analysis of Unsupervised Learning Re-
sults

The exploration of unsupervised learning models for detection began with evaluating 10 dif-
ferent models. Initial results showed that models such as K-means, DBSCAN, and Autoen-
coder were less effective due to their sensitivity to data distribution and high computational
demands. Models like KNN and HBOS demonstrated better performance metrics, but the
challenge of high false positive rates persisted across all models.

Further experiments with ensemble methods, such as combining predictions of differ-
ent models and using the SUOD framework, aimed to enhance robustness. However, these
approaches resulted in increased computational complexity without a significant reduction

67

7. Discussion

in false positives. The introduction of the Model Selection algorithm provided a more tar-
geted approach by dynamically choosing the best-performing model for each test case. This
improved overall detection performance but still faced challenges with generalizing across
diverse test scenarios and the need for labeling a tuning set.

When we extended the study to include additional features like CPU usage and available
memory, as well as more complex test cases, the unsupervised methods continued to strug-
gle with high false positive rates, averaging 65% across the products, despite achieving high
recall. This indicated that while unsupervised learning was effective in identifying potential
anomalies, it lacked precision, leading to an increased review workload for quality engineers.

7.3 Analysis of Supervised Learning Results

Given the limitations of unsupervised learning, we transitioned to supervised learning meth-
ods to enhance detection accuracy. The rolling evaluation method ensured continuous evalu-
ation against new data, simulating real-world usage. The results showed that RandomForest
achieved the best performance across all evaluation metrics, averaging a recall of 97%, an
AUC score of 94%, and a false positive rate of 4% across the three products.

To further improve this approach, experiments were conducted with synthetic anomaly
injection and data balancing techniques. Despite the intention to enhance model perfor-
mance, the results of synthetic anomaly injection were not promising. While it introduced
a greater variety of anomalies into the training set, it also led to a decrease in overall per-
formance metrics, decreasing the AUC score of RandomForest to 85% and increasing the
false positive rate to 17% on average across the products. This indicates that the synthetic
anomalies perhaps did not fully capture the characteristics of real-world anomalies. Another
approach involved using the SMOTE which resulted in lower performance compared to the
results from synthetic anomaly injection. These results highlights the challenge of generating
synthetic data that accurately mimics real anomalies.

Supervised learning models, particularly Random Forest and Extra Trees, exhibited strong
generalization capabilities. By training on labeled data generated by using the developed
annotation tool, these models could effectively distinguish between normal and anomalous
behavior across various performance metrics, test cases and products.

An essential requirement of this study was to implement a feedback mechanism to refine
the model over time. The feedback is added by the quality engineer annotating the prob-
lematic data while reviewing the results on the detected cases. This feedback mechanism was
facilitated through a user interface that allowed engineers to load detection results and review
flagged test cases. This interface, inspired by the current work processes of quality engineers,
included features for comparing detected cases with baseline data and linking directly to test
cases in the Grafana platform. This tool resulted in a better workflow, allowing engineers
to have the opportunity to refine the detection process continually to adapt to evolving QA
requirements.

68

7.4 Unsupervised vs. Supervised

7.4 Unsupervised vs. Supervised
The previous findings directly address RQ1. The results highlight that while unsupervised
learning can efficiently identify a wide range of anomalies with high recall, it struggles with
precision, resulting in a high number of false positives. This necessitates significant manual
review or labeling a tuning set for the Model Selection algorithm. On the other hand, the
effort needed to review false positives or to label the tuning set are roughly the same as the
effort needed to label the training set for the supervised approach. This makes supervised
learning a more effective approach for detecting problematic performance test execution
results in the context of the case company.

The results demonstrate that supervised learning, particularly with the feedback mech-
anism, assists quality engineers by reducing the number of false positives and providing a
user-friendly interface for reviewing and refining detection results. This integration with ex-
isting workflows improves efficiency and effectiveness in reviewing performance test results,
addressing RQ2.

The ability to integrate continuous feedback was an advantage of using supervised learn-
ing, enhancing its practicality and effectiveness. The findings underscore that the solution
based on supervised learning is capable of adapting to changing detection criteria and new
data characteristics, thereby providing adaptability and addressing RQ3.

Unsupervised learning solutions were found to be computationally more intensive com-
pared to supervised solutions. This high computational demand can limit their scalability
and practical application in production environments. Conversely, supervised learning solu-
tions were generally more efficient and scalable. Models like Random Forest and Extra Trees
provided a good balance between computational efficiency and detection accuracy.

7.5 Threats to Validity
Several factors could threaten the validity of this study. The quality and representativeness
of the labeled data play a crucial role in the performance of supervised models. If the label-
ing process is flawed or inconsistent, it can lead to incorrect model training and evaluation.
Mislabeling anomalies as normal data or vice versa can significantly affect the performance
metrics of the models, resulting in poor detection accuracy and increased false positive or
false negative rates. Ensuring high-quality labeling requires validation procedures and possi-
bly multiple reviews by domain experts to minimize errors and biases in the labeled dataset.

The generalizability of the models across different products and test cases is a critical
concern. While supervised learning models demonstrated strong performance on the specific
products and test cases included in this study, their ability to generalize to other products
and new test scenarios remains uncertain. Differences in product characteristics, use cases,
and performance metrics can affect the models’ detection capabilities. Further validation on
diverse datasets is essential to ensure the models remain effective across various conditions.
Additionally, the applicability of the models in real-world scenarios is another important
consideration. Although the solution showed promising results in controlled evaluation and
validation settings, the performance in live environments may still differ. In order to keep the
solution effective in real-world use, maintenance is important which requires robust moni-
toring and evaluating of the results from time to time to be able to identify and address any

69

7. Discussion

negative performance changes.
A significant concern regarding the results presented in this study and the performance

of the solution lies in the potential for implementation errors that may have influenced the
conclusions drawn from this work. Despite the authors’ meticulous efforts to ensure correct-
ness, there remains a non-trivial probability and a looming threat concerning the validity of
the presented results and solution.

Overfitting is a potential threat, particularly in supervised learning, where models may
become too specialized to the training data and fail to generalize to new data. This can
occur if the models are overly complex or if the training dataset is not sufficiently diverse.
Overfitting can lead to high accuracy on the training data but poor performance on unseen
data, reducing the practical applicability of the models. The extended rolling window cross-
validation conducted through this study had the aim to mitigate the threat of overfitting
to some degree as this validation examines if the solution is general enough to be used on
upcoming unseen data.

The feedback mechanism is a critical component of the supervised learning approach.
However, human factors such as cognitive biases, inconsistencies in judgment, and fatigue
can affect the accuracy and reliability of the feedback. Inconsistent feedback can lead to
erroneous adjustments in the model, affecting its performance. Due to time limitations,
we could not validate how the feedback mechanism would perform over time. Instead, we
attempted to simulate this by conducting an extended rolling window cross-validation with
incremental training. This approach provided insights into how the model might adapt to
changes in detection criteria. However, it is important to note that this simulation is not
equivalent to validating the feedback mechanism over time, as the feedback is only based on
the already annotated data from two test runs in each increment.

These considerations address RQ1, RQ2, and RQ3 collectively, as ensuring the validity of
the models’ performance directly impacts their efficiency, their ability to assist current work
processes, and their adaptability to evolving needs. Addressing these threats through rigor-
ous validation, continuous monitoring, and iterative improvement ensures that the proposed
solution remains robust and reliable.

7.6 Social & Ethical Aspects
By streamlining the performance data analysis process, the study aims to alleviate the manual
workload of quality engineers at the case company, thereby improving their work-life balance.
Reducing the manual burden allows engineers to focus on more critical tasks, potentially in-
creasing job satisfaction and reducing stress. While automation aims to reduce the workload
of quality engineers, there is an ethical consideration regarding its impact on employment.
It is important to ensure that the introduction of such tools does not lead to job losses but
rather supports engineers in their roles. Offering training and development opportunities to
help engineers adapt to using advanced tools can mitigate any negative organizational and
employment impacts.

Quality engineers should be able to get a clear understanding of how the tool identifies
anomalies and the criteria it uses as establishing clear accountability for the tool’s outcomes
is necessary. Engineers should be able to review and challenge the tool’s decisions, ensuring
that the final judgment is done by human experts.

70

7.7 Future Work

By considering these aspects, the project attempts to contribute positively to the societal
and ethical context beside the technical contributions.

7.7 Future Work
A critical aspect of future work involves evaluating and improving the feedback mechanism.
A more systematic evaluation is needed to understand how this feedback mechanism per-
forms over time and impacts the process. Future efforts should focus on developing more
sophisticated methods for incorporating feedback, this could involve exploring advanced
techniques for weighting feedback based on the engineer’s confidence level or incorporat-
ing semi-supervised learning approaches to better utilize both labeled and unlabeled data.

Integrating the various components of the solution into a cohesive automated pipeline
is a crucial next step. Currently, the solution involves multiple stages, including data collec-
tion, preprocessing, annotation, detection, and feedback incorporation. Automating these
processes can significantly enhance efficiency and scalability. This integration should ensure
seamless data flow between components. Additionally, developing an improved user inter-
face for annotation and feedback tool can contribute to improvement as well.

Advanced feature engineering is important for improving model performance. Future
work should focus on identifying and engineering features, together with the help of the
organization, to capture more relevant aspects of the performance data and potentially define
new features that summarize and represent these in a better way. Such features could provide
more opportunities regarding using an unsupervised learning approach as a solution due to
the reduced complexity of the data.

71

7. Discussion

7.8 Conclusion
This study investigated various approaches for assisting quality engineers in detecting per-
formance abnormalities through statistical thresholds, unsupervised, and supervised learning
methods. After observing weak performance of statistical thresholds, unsupervised learning
was investigated, which showed better detection capability. However, it faced significant
challenges such as high false positive rates and computational demands. Despite enhance-
ment attempts, the precision of the unsupervised methods remained insufficient for practical
application without extensive manual review.

In contrast, supervised learning models, particularly RandomForest, demonstrated bet-
ter performance across all evaluation metrics. The implementation of the feedback mech-
anism allowed for continuous detection improvement based on real-world insights, which
showed a 15% reduction in the false positive rate, according to a comparison of validation
results in Section 6.1. The solution, consisting of the RandomForest model and the feed-
back mechanism, presented potential generalization capabilities, effectively distinguishing
between normal and anomalous behavior across various performance metrics, test cases, and
products.

The findings address the research questions by highlighting the following:

• Efficiency in Detection (RQ1): A solution based on supervised machine learning with
continuous feedback can provide an efficient and effective approach for detecting per-
formance abnormalities through analyzing test data.

• Assisting Current Work Processes (RQ2): The integration of the solution has the po-
tential to assist quality engineers by reducing their workload over time and improving
the efficiency of the review process. This is achieved by reducing the false positive rate
and only alerting engineers to problematic test cases that need to be reviewed.

• Adaptability for Evolving Needs (RQ3): The feedback mechanism allows the solution
to adapt to evolving quality expectations and new data characteristics, ensuring ongo-
ing relevance and effectiveness.

Future work is supposed to focus on further evaluating the feedback mechanism, inte-
grating and automating the solution components into a cohesive pipeline, and employing
advanced feature engineering refinements. These efforts aim to develop a more sophisticated
and effective detection system that meets the evolving needs of the QA team and the broader
requirements of the system.

72

References

[1] P. Runeson, E. Engström, and M.-A. Storey, “The Design Science Paradigm as a Frame
for Empirical Software Engineering,” in Contemporary Empirical Methods in Software Engi-
neering, M. Felderer and G. H. Travassos, Eds. Cham: Springer International Publishing,
2020, pp. 127–147.

[2] D. V. Thiel, Literature search and review. Cambridge University Press, 2014, p. 27–72.

[3] O. A. Adeoye-Olatunde and N. L. Olenik, “Research and scholarly methods: Semi-
structured interviews,” JACCP: Journal of the American College of Clinical Pharmacy, vol. 4,
no. 10, pp. 1358–1367, 2021.

[4] H. Kallio, A. Pietilä, M. Johnson, and M. Kangasniemi, “Systematic methodological re-
view: Developing a framework for a qualitative semi-structured interview guide.” Journal
of Advanced Nursing, vol. 72, no. 12, pp. 2954 – 2965, 2016.

[5] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine Learning,
vol. 63, no. 1, pp. 3–42, 2006.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic
Minority Over-sampling Technique,” Journal of Artificial Intelligence Research, vol. 16, pp.
321–357, Jun. 2002.

[7] H. Yoon, “Finding unexpected test accuracy by cross validation in machine learning,”
International Journal of Computer Science & Network Security, vol. 21, no. 12spc, pp. 549–
555, 2021.

[8] C. U. Smith and L. G. Williams, Software performance engineering. Springer, 2003.

[9] R. Pressman and B. Maxim, Software Engineering: A Practitioner’s Approach. McGraw-Hill
Education, 2020.

[10] E. Weyuker and F. Vokolos, “Experience with performance testing of software systems:
issues, an approach, and case study,” IEEE Transactions on Software Engineering, vol. 26,
no. 12, pp. 1147–1156, Dec. 2000.

73

REFERENCES

[11] C. Patel and R. Gulati, “Identifying ideal values of parameters for software performance
testing,” in 2015 International Conference on Computing, Communication and Security (IC-
CCS), 2015, pp. 1–5.

[12] M. Fagerström, E. E. Ismail, G. Liebel, R. Guliani, F. Larsson, K. Nordling, E. Knauss,
and P. Pelliccione, “Verdict machinery: on the need to automatically make sense of test
results,” in Proceedings of the 25th International Symposium on Software Testing and Analysis,
ser. ISSTA 2016. Association for Computing Machinery, 2016, pp. 225–234.

[13] D. Daly, W. Brown, H. Ingo, J. O’Leary, and D. Bradford, “The Use of Change Point
Detection to Identify Software Performance Regressions in a Continuous Integration
System,” in Proceedings of the ACM/SPEC International Conference on Performance Engineer-
ing, ser. ICPE ’20. New York, NY, USA: Association for Computing Machinery, Apr.
2020, pp. 67–75.

[14] M. Fleming, P. Kolaczkowski, I. Kumar, S. Das, S. McCarthy, P. Pattabhiraman, and
H. Ingo, “Hunter: Using change point detection to hunt for performance regressions,”
in Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering,
ser. ICPE ’23. Association for Computing Machinery, 2023, pp. 199–206.

[15] A. Bauer, M. Straesser, L. Beierlieb, M. Meissner, and S. Kounev, “Automated triage of
performance change points using time series analysis and machine learning: Data chal-
lenge paper,” in Companion of the 2022 ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’22. Association for Computing Machinery, 2022, pp. 29–32.

[16] T. H. D. Nguyen, M. Nagappan, A. E. Hassan, M. Nasser, and P. Flora, “An industrial
case study of automatically identifying performance regression-causes,” in Proceedings of
the 11th Working Conference on Mining Software Repositories, ser. MSR 2014. New York,
NY, USA: Association for Computing Machinery, May 2014, pp. 232–241.

[17] L. Liao, J. Chen, H. Li, Y. Zeng, W. Shang, J. Guo, C. Sporea, A. Toma, and S. Sajedi,
“Using black-box performance models to detect performance regressions under varying
workloads: an empirical study,” Empirical Software Engineering, vol. 25, no. 5, pp. 4130–
4160, Sep. 2020.

[18] J. Chen, “Performance regression detection in DevOps,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Companion Proceedings, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, Oct. 2020, pp. 206–209.

[19] T. Mendes, P. J. S. Cardoso, J. Monteiro, and J. Raposo, “Anomaly Detection of Con-
sumption in Hotel Units: A Case Study Comparing Isolation Forest and Variational
Autoencoder Algorithms,” Applied Sciences, vol. 13, no. 1, p. 314, Jan. 2023, number: 1
Publisher: Multidisciplinary Digital Publishing Institute.

[20] N. Mejri, L. Lopez-Fuentes, K. Roy, P. Chernakov, E. Ghorbel, and D. Aouada, “Un-
supervised anomaly detection in time-series: An extensive evaluation and analysis of
state-of-the-art methods,” arXiv preprint arXiv:2212.03637, 2022.

74

REFERENCES

[21] J. Vávra, M. Hromada, L. Lukáš, and J. Dworzecki, “Adaptive anomaly detection system
based on machine learning algorithms in an industrial control environment,” Interna-
tional Journal of Critical Infrastructure Protection, vol. 34, p. 100446, Sep. 2021.

[22] Z. K. Shahid, S. Saguna, and C. Åhlund, “Autoencoders for Anomaly Detection in Elec-
tricity and District Heating Consumption: A Case Study in School Buildings in Swe-
den,” in 2023 IEEE International Conference on Environment and Electrical Engineering and
2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Jun.
2023, pp. 1–8.

[23] E. Aronsson, “Unsupervised Anomaly Detection in Multivariate Time Series Using Vari-
ational Autoencoders,” Master’s Theses in Mathematical Sciences, Lund University, 2023, iD:
9135876.

[24] C. Jernbäcker, “Unsupervised real-time anomaly detection on streaming data for large-
scale application deployments,” Independent thesis Advanced level, KTH, School of Electrical
Engineering and Computer Science (EECS), 2019.

[25] Y. Zhao, X. Hu, C. Cheng, C. Wang, C. Wan, W. Wang, J. Yang, H. Bai, Z. Li, C. Xiao,
Y. Wang, Z. Qiao, J. Sun, and L. Akoglu, “Suod: Accelerating large-scale unsuper-
vised heterogeneous outlier detection,” in Proceedings of Machine Learning and Systems,
A. Smola, A. Dimakis, and I. Stoica, Eds., vol. 3, 2021, pp. 463–478.

[26] S. Das, W.-K. Wong, A. Fern, T. G. Dietterich, and M. A. Siddiqui, “Incorporating Feed-
back into Tree-based Anomaly Detection,” arXiv, Aug. 2017, arXiv:1708.09441 [cs, stat].

[27] V. Vercruyssen, W. Meert, G. Verbruggen, K. Maes, R. Baumer, and J. Davis, “Semi-
Supervised Anomaly Detection with an Application to Water Analytics,” in 2018 IEEE
International Conference on Data Mining (ICDM). Singapore: IEEE, Nov. 2018, pp. 527–
536.

[28] D. Zha, K.-H. Lai, M. Wan, and X. Hu, “Meta-aad: Active anomaly detection with deep
reinforcement learning,” in 2020 IEEE International Conference on Data Mining (ICDM).
IEEE, 2020, pp. 771–780.

[29] A. Hrusto, P. Runeson, and E. Engström, “Closing the Feedback Loop in DevOps
Through Autonomous Monitors in Operations,” SN Computer Science, vol. 2, no. 6, p.
447, Sep. 2021.

[30] A. Hrusto, E. Engström, and P. Runeson, “Towards optimization of anomaly detection
in DevOps,” Information and Software Technology, vol. 160, p. 107241, Aug. 2023.

[31] S. Raschka, J. Patterson, and C. Nolet, “Machine learning in python: Main developments
and technology trends in data science, machine learning, and artificial intelligence,”
Information, vol. 11, no. 4, p. 193, 2020.

75

Appendices

77

Appendix A

A.1 Author Contribution Statement
The authors, A.H. and S.T., contributed equally regarding all parts of the study e.g. explo-
ration, design, implementation, evaluation and documentation (the report). This was done
for instance through continuous collaboration and pair programming. A.H. focused more
on the implementation of the presented annotation and feedback tools while S.T. only con-
tributed with design ideas. S.T., on the other hand, focused more on the area of studying
performance regression detection and its challenges.

79

Appendix B

B.1 Interview Questions
Here are the interview questions used in Section 4.1:

1. How do you perceive the problem, and how does it affect you personally and profes-
sionally?

2. What characteristics define a flagged regression in your experience?
3. Can you describe the different types of regressions you encounter?
4. How do you typically handle these regressions?
5. What is your process for addressing a flagged anomaly?
6. How many products are you currently managing? Are there specific products that

frequently encounter issues?
7. How do you manage tests involving multiple streams? What factors are important in

these tests? Do such tests usually encounter problems?
8. Which parameters or measurements do you consider the most critical?
9. Do you often notice relationships between different measurements?

10. How do you monitor data over longer periods? Do you use daily averages? How do
you calculate these averages?

11. How do you review measurement values, and how precise are you in this review? Do
you round off the values?

12. (To Quality Engineer) Do you ever revisit and review old test runs? If so, why and how
often?

13. In your opinion, which of the testing levels are more critical? builds or firmwares?
14. How would you like the current process to be improved? What features or capabilities

would you like to have?
15. What do you anticipate will happen when a new product is added to the system?

81

B.

B.2 Annotation Evaluation Questions
1. What do you think about the annotation tool?
2. Describe how easy is it for you to use the tool.
3. Describe how it can be compared to the existing process/tools.

B.3 Detection & Feedback Evaluation Ques-
tions

1. Generally, what do you think about the detection and feedback functionalities?
2. Describe how the solution can be used by you.
3. Describe how the use of this tool can affect your work process.
4. How do you think you can adjust the detection upon evolving needs?
5. How adaptable is the solution?

82

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-06-12

EXAMENSARBETE Enhanced Techniques for Detecting Performance Abnormalities
in Software Quality Assurance Processes
STUDENTER Abdulrahman Husari, Sepehr Taherpour
HANDLEDARE Per Runeson (LTH)
EXAMINATOR Björn Regnell (LTH)

Automatisera upptäckter av avvikande
beteenden i testresultat

POPULÄRVETENSKAPLIG SAMMANFATTNING Abdulrahman Husari, Sepehr Taherpour

Att säkerställa mjukvarukvalitén i tekniska produkter som nätverkskameror kräver
omfattande mjukvarutestning, vilket genererar stora mängder data. Detta arbete
undersöker metoder för att detektera problem i testresultat på ett mer automatiskt
sätt för en förbättrad process.

Den huvudsakliga frågan som vi letar svar på är
hur man skulle kunna göra livet enklare för en
kvalitetsingenjör som sitter dagligen och analy-
serar testresultat i form av grafer. Detta arbete
är tidskrävande och tråkigt. Analysen av denna
typ är en långsam och manuell process, vilket blir
svårare när antalet tester ökar. Frågan är om da-
torbaserade metoder kan användas för att under-
lätta detta.

Målet med detta arbete var att skapa en lös-
ning som hjälper kvalitetsingenjörer att snabbt
och noggrant identifiera avvikande beteenden i
prestandatestdata. Prestanda innebär hur bra
något fungerar eller utförs, och i detta sam-
manhang handlar det om att testa hur väl en
produkt, som till exempel en nätverkskamera,
fungerar under olika förhållanden. Prestandatest-
ning är avgörande för att hitta problem som kan
påverka produktens kvalitet och tillförlitlighet.
Förseningar i att identifiera prestandaproblem kan
leda till långsammare utveckling och att poten-
tiellt felaktiga produkter når marknaden.

Genom att använda datorbaserade tekniker kan
upptäckter av problem automatiseras, vilket min-
skar det manuella arbetet och ökar effektiviteten
i processen. Automatiseringen kan bland annat
göras med hjälp av statistiska metoder, men även

genom användning av maskininlärning. Våra ex-
periment visade att vissa metoder fungerar bät-
tre i detta arbete. Vägledd maskininlärning är en
metod som fungerar igenom inmatning av märkta
data, indata och förväntad utdata, med syfte av
att träna datorn att upptäcka saker enligt det
inlärda mönstret. Användning av denna metod
visade bäst resultat i det här arbetet.

För att kunna använda en lösning baserad
på vägledd maskininlärning, behövdes det andra
verktyg för att märka datan, visualisera resultat
och lämna återkoppling på resultat. Detta ar-
bete har även tagit fram dessa tillhörande verk-
tyg för att möjliggöra användning av lösningen
på fallföretaget. Detta användarcentrerade tillvä-
gagångssätt säkerställer att lösningen inte bara är
tekniskt effektiv utan också praktisk och enkel att
använda i verkliga scenarier.

Detta examensarbete representerar ett steg
framåt i att automatisera kvalitetssäkringspro-
cessen vid fallföretaget. Det fungerar även som ett
exempelarbete inom detta område för vidare ut-
forskning. Genom att använda dessa datorbaser-
ade tekniker kan granskning av prestandatestre-
sultat bli mer effektiv, vilket i slutändan leder till
bättre kvalitetssäkringsprocess.

	Introduction
	Problem Summary
	Project Goals & Research Questions
	Proposed Solution
	Case Company Background

	Method
	Design Science Paradigm
	Research Activities
	Boundaries & Limitations

	Background & Related Work
	Software Engineering and Performance
	Performance Efficiency
	Performance Testing
	Regression Testing
	Performance Regression Testing

	Data Analysis
	Performance Anomaly Detection
	Machine learning
	Unsupervised Learning
	Supervised learning

	Machine Learning Evaluation
	Related Work
	Software Performance Testing
	Detection of Software Performance Regression
	Anomaly Detection in Similar Context
	Incorporating Feedback in Detection

	Case Description
	Problem Conceptualization
	Problem Overview
	Quality Assurance Process for Performance

	Test Cases
	Available Data
	Alerting Cases
	Data Exploration
	Requirements

	Solution
	Solution Overview
	Solution Motivation
	Data Analysis
	Statistical Thresholds
	Data Preprocessing
	Annotation Tool
	Unsupervised Learning as Approach
	Investigation Setup
	Towards Generalized Approach
	Extending the Scope

	Supervised Learning as Approach
	Evaluating Supervised Models
	Improvement Investigation

	Feedback Mechanism

	Evaluation
	Supervised Learning Approach
	Overall Solution Evaluation
	Evaluation of Annotation Tool
	Evaluation of Detection & Feedback Tool

	Discussion
	Statistical Solution
	Analysis of Unsupervised Learning Results
	Analysis of Supervised Learning Results
	Unsupervised vs. Supervised
	Threats to Validity
	Social & Ethical Aspects
	Future Work
	Conclusion

	Appendix
	Author Contribution Statement

	Appendix
	Interview Questions
	Annotation Evaluation Questions
	Detection & Feedback Evaluation Questions

