
MASTER’S THESIS 2024

Fine-tuning Phi Models for
Informed Decision Support in
Supply Chain Optimisation
Axel Beke, Théodore Zitouni

ISSN 1650-2884
LU-CS-EX: 2024-29

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2024-29

Fine-tuning Phi Models for Informed
Decision Support in Supply Chain

Optimisation

Finjustering av Phi-modeller för informerat
beslutsstöd inom

distributionskedjeoptimering

Axel Beke, Théodore Zitouni

Fine-tuning Phi Models for Informed
Decision Support in Supply Chain

Optimisation

Axel Beke
ax6843be-s@student.lu.se; axel@beke.se

Théodore Zitouni
th8738zi-s@student.lu.se; tkzitouni@gmail.com

June 17, 2024

Master’s thesis work carried out at Microsoft.

Supervisors: Pierre Nugues, pierre.nugues@cs.lth.se
Bahram Zarrin, bahram.zarrin@microsoft.com

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:ax6843be-s@student.lu.se; axel@beke.se
mailto:th8738zi-s@student.lu.se; tkzitouni@gmail.com
mailto:pierre.nugues@cs.lth.se
mailto:bahramzarrin@microsoft.com
mailto:Jacek.Malec@cs.lth.se

Abstract

In the rapidly evolving domain of supply chain management, optimising opera-
tions for efficiency and reliability is essential. Traditional methods have strug-
gled to keep pace with the complexity of modern logistics networks and the vast
amount of data they generate. However, recent advancements in artificial intel-
ligence offer a new avenue for innovation in this field. This research focuses on
the application of Phi models, a series of small language models by Microsoft, to
address two tasks in supply chain optimisation: code generation for what-if anal-
ysis and the job shop scheduling problem. We show that fine-tuning the Phi-2
model enhances its performance on these tasks, demonstrating a marked im-
provement in code generation capabilities with a BLEU score of 98.6%. Though
it encounters challenges with the job shop scheduling problem due to its inher-
ent complexity, it still displays a novel understanding of the problem and how
to solve it, attaining a BLEU score of 21.7% using a whitespace tokenizer.

Keywords: Natural Language Processing, Small Language Models, Transformers, Fine-
tuning, Phi Models, OptiGuide, Job Shop Scheduling Problem

2

Acknowledgements

We would like to extend our heartfelt gratitude to:

Prof. Pierre Nugues, for his continuous and tireless supervision, providing support and in-
sights of both logistic, technical and linguistic nature.

Bahram Zarrin for the opportunity to work with state-of-the-art technology at Microsoft,
providing tremendous resources and expertise.

Family and friends for their love, care and support during our five years in Lund.

Thank you.

3

4

Contents

1 Introduction 7
1.1 Objective . 8

1.1.1 Research Questions . 8
1.2 Contribution . 8
1.3 Related Work . 8

1.3.1 Early Methods . 9
1.3.2 Large Language Models . 9
1.3.3 OptiGuide . 10

2 Theoretical Background 11
2.1 Supply Chain Simulation . 11

2.1.1 Supply Chain Management . 12
2.1.2 Supply Chain Optimisation . 12
2.1.3 What-if Analysis . 14
2.1.4 Job Shop Scheduling Problem . 14

2.2 Machine Learning . 15
2.2.1 Learning Approaches . 15
2.2.2 Deep Learning and Neural Networks 16
2.2.3 Feed-forward Neural Networks . 16

2.3 Natural Language Processing . 18
2.3.1 Numerical Representation of Text 18
2.3.2 The Transformer Architecture . 19
2.3.3 Positional Encoding . 20
2.3.4 Encoder-Decoder Architecture . 21
2.3.5 Decoder-only Architecture . 22
2.3.6 (Pre-)Training . 23
2.3.7 Prompt Learning . 24
2.3.8 Fine-tuning . 24
2.3.9 Memory Optimisation Techniques 25
2.3.10 Inference . 26

5

CONTENTS

2.3.11 Small Language Models – Phi Models 26

3 Datasets 29
3.1 Considerations . 29
3.2 OptiGuide Benchmark Datasets . 30

3.2.1 Data Samples and Statistics . 30
3.3 Job Shop Scheduling Dataset . 32

3.3.1 Prompt Learning Data . 33

4 Method 35
4.1 Data Gathering and Formatting . 36
4.2 Base Model . 36

4.2.1 Baseline Prompting . 36
4.3 Fine-tuned Models . 36

4.3.1 Fine-tuning Process . 36
4.3.2 Infrastructure . 37
4.3.3 Memory Optimisation Techniques in Python 39
4.3.4 Training Process . 40

4.4 Evaluation . 41
4.4.1 Metrics . 41
4.4.2 Evaluating the OptiGuide Benchmark Datasets 43
4.4.3 Evaluating the Job Shop Scheduling Dataset 44

5 Results 45
5.1 OptiGuide Benchmark Datasets . 45
5.2 Job Shop Scheduling Dataset . 47

6 Discussion 51
6.1 Implications of Results . 51

6.1.1 OptiGuide Benchmark Datasets . 52
6.1.2 Job Shop Scheduling Dataset . 53

6.2 Fine-tuning SLMs . 54
6.3 Considerations and Limitations . 55

6.3.1 Resources . 55
6.3.2 Ethical Considerations . 55

7 Conclusions 57
7.1 Main Conclusions . 57
7.2 Future Work . 58

References 61

Appendix A Abbreviations 69

Appendix B A Small Note on Cover Art 71

Appendix C Division of Work 73

6

Chapter 1

Introduction

Supply chain optimisation has historically been a problem of complex nature due to its large
scale, complexity in relations and hierarchies, dynamic nature and the natural uncertainty
of planning. Computational advancements have improved supply chain optimisation and
recently, enterprise businesses have found a research interest in leveraging natural language
processing (NLP) techniques to solve tasks in the supply chain domain. The use of small
language models (SLMs) such as Phi models (Gunasekar et al., 2023) can enable novel solu-
tions to what-if scenarios and scheduling tasks, among different optimisation problems. The
use of SLMs in this context is a relatively unexplored field considering the recent impact of
advancements in artificial intelligence (AI) (Oliveira and Pereira, 2023; Shavaki and Ghah-
navieh, 2022).

SLMs are constructed using the same foundational architectural structures employed in build-
ing large language models (LLMs). These LLMs have garnered widespread acclaim for their
remarkable proficiency in processing and generating natural language, as well as excelling in
tasks such as code generation and optimisation across various domains. We employ Phi-2,
an SLM, to harness state-of-the-art (SOTA) NLP technologies for two distinct tasks within
supply chain optimisation. Moreover, SLMs present a unique advantage in their adaptability
for fine-tuning, allowing them to specialise in particular contexts or subjects. The smaller
parameter size makes models like the Phi-2 ideally suited for fine-tuning on applied tasks due
to the lesser resource requirements.

We employ SLMs to two distinct tasks within supply chain optimisation, namely code gen-
eration for what-if analysis and solving instances of the job shop scheduling problem (JSSP).
These concepts are thoroughly introduced in Chapter 2, Theoretical Background. Our fine-
tuned models obtain prominent results, excelling in code generation for what-if analysis, but
show a modest understanding of the job shop scheduling problem and how to solve it.

7

1. Introduction

1.1 Objective
On a high level, this master’s thesis investigates the possibility of using generative AI together
with operational data in data-driven supply chain optimisation. We utilise a small language
model, more precisely Microsoft’s Phi-2 model, to investigate if small language models can
be fine-tuned to perform two distinct tasks in a supply chain context.

1.1.1 Research Questions
To fulfil the research objective and adhere to the scope of this thesis, three research questions
have been defined:

1. How well can a small language model perform when fine-tuned on specific tasks in
supply chain optimisation?

2. To what extent does fine-tuning a small language model outperform prompt learning
for its pre-trained base model?

3. Does the small parameter size and resource efficiency of small language models impact
their practical viability for fine-tuning on specific tasks?

1.2 Contribution
This master’s thesis in computer science aims to contribute scientifically in the field of natu-
ral language processing through the process of fine-tuning Phi-2, a novel SLM, in an applied
context. As Phi models are relatively recent and unexplored, we explore the performance in
a number of settings. Using the Phi-2 model, we find it is of interest how the model performs
with regard to the contextualised data and what possibilities fine-tuning presents. We con-
sider this with regard to lesser resources required – allowing for simplified use and hosting.

Simultaneously, we aim to contribute to possible novel solutions in supply chain optimi-
sation, leveraging the above-mentioned recent advancements in artificial intelligence. In ad-
dition to this, we also explore the capabilities of a fine-tuned Phi-2 model as a job scheduling
solver and code generator for what-if analysis in supply chain optimisation.

By showing a marked improvement on both tasks using fine-tuned Phi-2 models, we build
upon an existing body of knowledge. We showcase that an SLM can be fine-tuned with lim-
ited resources, enabling supply chain managers to leverage the powerful capabilities of Phi
models.

1.3 Related Work
This master’s thesis bridges two separate areas together, and assesses the possibilities of lever-
aging SLMs in a supply chain context. Therefore, our research rests on previous research,

8

1.3 Related Work

findings and state-of-the-art results in these different fields. This specific research contribu-
tion could not be possible without the recent strides made in improving the efficiency and
accuracy of both large and small language models.

On the other hand, supply chain management has been the subject of extensive research
for several decades. Studies have focused on enhancing various aspects of the supply chain,
from demand planning to optimisation and job scheduling. The advent of digital technolo-
gies has further revolutionised this field, with researchers exploring the potential of artificial
intelligence and machine learning in enhancing supply chain processes.

The intersection of the subject areas supply chain optimisation and machine learning is rel-
atively new, and this thesis contributes to this emerging body of research. No studies have
previously been done on the potential of leveraging an SLM like Phi-2 in a supply chain con-
text.

1.3.1 Early Methods
We introduce the early methods employed in the two fields we apply our research to.

Supply Chain Optimisation
Early methods in supply chain optimisation focused on efficiency, cost reduction, and im-
proving coordination among various stages. One significant early method is the Just-in-Time
(JIT) inventory system, developed by Toyota in the 1970s (Ohno, 1988). JIT focuses on re-
ducing waste and improving efficiency by synchronising production with demand, thereby
minimising inventory levels and associated costs (Ohno, 1988). Early methods, including
JIT, in supply chain optimisation laid the groundwork for modern, more technological ap-
proaches by emphasising efficiency and cost reduction. More novel approaches use modern
technology such as linear programming (LP) and large amounts of data.

Job Shop Scheduling
Early methods used to solve JSSPs consist mostly of manual solutions. Later, constraint
programming solvers, such as Google’s OR-Tools, were released. Constraint programming
solvers always strive to find an optimal solution. However, due to the complexity that easily
arises in these tasks, some solutions found are not optimal.

1.3.2 Large Language Models
The evolvement of large language models has witnessed remarkable advancements over the
past decade, driven by breakthroughs in NLP and deep learning techniques. A major break-
through was made when Vaswani et al. (2017) introduced the Transformer. The widespread
adoption of Transformer based architectures revolutionised NLP by offering superior perfor-
mance in tasks such as language modelling, machine translation and text generation. Trans-
formers, with their self-attention mechanisms, capture long-range dependencies in text more
effectively than previous architectures.

9

1. Introduction

Following the Transformer, the advent of Generative Pre-trained Transformers (GPT) marked
a significant milestone in the development of large language models (Brown et al., 2020). In-
troduced by OpenAI, GPT demonstrates the effectiveness of pre-training large-scale Trans-
former based architectures on vast text corpora, enabling the generation of coherent and
relevant text (Brown et al., 2020).

Contrary to LLMs continuously growing in parameter size and complexity, smaller language
models have emerged in recent years, offering impressive reasoning capabilities while staying
slim in parameter size. This development has lowered the resource requirements for fine-
tuning language models to perform specific tasks.

1.3.3 OptiGuide
Along with the rise of large language models in the beginning of this decade, novel possibili-
ties have emerged in the domain of supply chain optimisation. Early research in this field has
been conducted through OptiGuide (Li et al., 2023a), where the possibility of using large lan-
guage models in supply chain management was explored. In the paper, supply chains are mod-
elled as mixed integer program (MIP) problems. Such solutions can be mathematically opti-
mised by SOTA optimisers such as Gorubi. Li et al. (2023a) developed a holistic LLM frame-
work, OptiGuide. Furthermore, they continue by incorporating GPT-4 (Brown et al., 2020)
for reasoning and answering of what-if questions, an integer programming solver/optimiser
for MIP and databases for information specific queries. As the Microsoft researchers behind
this paper state, the OptiGuide framework serves as a cornerstone for future research (Li
et al., 2023a). For all intents and purposes, this Microsoft Research paper provides an excel-
lent starting point for our own thesis research.

More specifically, Li et al. (2023a) themselves state that one interesting future direction is
the use of smaller models, in contrast to the massive GPT-4. As an alternative to GPT mod-
els Li et al. (2023a) specifically reference the Phi models that are used in this thesis research,
stating that smaller models allow for more affordable hosting and fine-tuning. In relation to
this, they continue to explain that there lies a research interest in examining whether fine-
tuning can help with interpreting unseen questions.

Furthermore, OptiGuide uses a number of benchmark datasets that are provided and can
be found in Microsoft’s open source GitHub repositories. Li et al. (2023a) state that the
methodology and the benchmark datasets are to be seen as stand-alone contributions that
can be used for future evaluation. The benchmark datasets are further explained in Chapter
3 of this thesis.

10

Chapter 2

Theoretical Background

This chapter provides rigorous background, firstly through an introduction to two areas in
supply chain optimisation and secondly through an introduction to the NLP technologies
covered in this thesis. Section 2.1 dives deep into how supply chains can be mathemati-
cally modelled, simulated and optimised. Moreover, Section 2.1.4 explains what the job shop
scheduling problem is.

The second part of this chapter is a deep-dive into the evolution of neural networks and
language technology techniques. Section 2.2 introduces modern machine learning and neu-
ral networks. Section 2.3 describes how modern natural language processing stems from early
ideas of numerical representation of natural language as well as modern techniques used in
this field. The landscape of text representation and interpretation has undergone significant
transformations in recent decades. The development is driven by advancements in comput-
ing and the emergence of sophisticated artificial intelligence techniques such as deep learning
and neural networks, outlined in Section 2.2.2. These techniques, including machine learn-
ing and deep learning, leverage intricate architectures to effectively capture the nuances of
natural language, covering tone, intent and structure with remarkable precision (Nugues,
2016).

2.1 Supply Chain Simulation
Supply chains are a critical component of any global business enterprise or organisation, cov-
ering the intricate network of processes involved in bringing goods and services from their
point of origin to the end consumer. It involves the coordination of resources, information
and activities across multiple stages, from raw material extraction to production, distribu-
tion and ultimately, consumption. At its core, a supply chain comprises various entities such
as suppliers, manufacturers, retailers, logistics providers and end users.

11

2. Theoretical Background

The simulation of supply chains is vital in order to model and analyse the dynamics of sup-
ply chain processes, enabling enterprise businesses to make informed decisions and optimise
their operations. By simulating various scenarios, such as changes in demand, disruptions
in supply, or alterations in production schedules – so called what-if scenarios – companies
can identify bottlenecks, inefficiencies and vulnerabilities within their supply chains. Op-
timising supply chain simulation ensures that businesses can proactively address challenges,
improve resilience, minimise costs and enhance overall performance.

2.1.1 Supply Chain Management
Organisations devote major resources to ensure supply chains are optimised, robust and ex-
plainable. Supply chain management plays a pivotal role in enhancing operational efficiency,
reducing costs and tackling unexpected issues. By optimising the flow of materials, informa-
tion and funds across the supply chain, organisations can minimise inventory holding costs,
streamline production processes and respond rapidly to changes in parameters. Furthermore,
an efficient supply chain enables businesses to mitigate risks associated with disruptions such
as unforeseen demand fluctuations.

Supply chain management serves as the backbone of modern commercialism, facilitating the
flow of goods and services across the global marketplace. Its importance lies in its ability to
drive operational efficiency, reduce costs, mitigate risks, promote sustainability and adapt to
the dynamic demands of the market. As businesses continue to evolve in a rapidly changing
landscape, an effective supply chain management strategy remains important.

2.1.2 Supply Chain Optimisation
In order to maximise the efficiency and effectiveness of the entire supply chain network, or-
ganisations optimise their supply chains. Supply chain optimisation involves strategic plan-
ning, decision-making and operational execution to achieve the best possible outcomes in
terms of cost, quality, speed and flexibility. This process utilises mathematical modelling and
algorithms to solve complex problems related to the efficient allocation of resources, min-
imisation of costs and maximisation of performance metrics.

One widely used mathematical technique is linear programming, which formulates supply
chain optimisation problems as a set of linear equations and inequalities, with the objective
of maximising or minimising a linear objective function subject to various constraints. Addi-
tionally, integer programming and mixed integer programming techniques are utilised when
decision variables are required to be integers, often applicable in scenarios such as production
quantities or facility locations. One example of software that optimises supply chains utilis-
ing these techniques is Gurobi. By modelling supply chains in this manner, they can easily be
transcribed to Python code. Utilising programming, models can be altered and optimised to
facilitate what-if analysis.

An infamously NP-hard optimisation problem is the Travelling Salesman problem (TSP),
commonly seen in the context of algorithms in computer science. It aims to find the shortest
route for a salesman to visit all the cities in a given set of cities and return to the starting

12

2.1 Supply Chain Simulation

point. There are several known formulations of this classic problem. The TSP can be for-
mulated according to the Miller-Tucker-Zemlin formulation (Miller et al., 1960). Below, in
Equation 2.1, we have an optimisation problem that is comprised of the objective, minimising∑n

i=1
∑n

j ̸=i, j=1 ci j xi j where ci j denotes the distance between cities i and j, xi j is a binary vari-
able denoting whether the salesman travels directly between city i and j or not. Furthermore,
minimising the objective is subject to the constraints that each city in the given set must be
visited once,

∑n
j=1, j ̸=i xi j = 1, and the return to the starting point. The last two constraints

ensure that the optimised solution does not contain any sub-cycles, commonly known as
the sub-tour elimination constraints in the Miller-Tucker-Zemlin formulation (Miller et al.,
1960). The dummy variable ui is used to understand in which order cities have been visited.

Minimise
n∑

i=1

n∑
j ̸=i, j=1

ci j xi j

s.t. xi j ∈ {0, 1} i, j = 1, . . . , n;
n∑

i=1,i ̸= j

xi j = 1 j = 1, . . . , n;

n∑
j=1, j ̸=i

xi j = 1 i = 1, . . . , n; (2.1)

ui − u j + 1 ≤ (n − 1)(1 − xi j) 2 ≤ i ̸= j ≤ n;
2 ≤ ui ≤ n 2 ≤ i ≤ n.

In the same manner as the TSP, a simple, general example of a supply chain can be for-
mulated. Let’s envision an enterprise offering two different products: A and B. These two
products are manufactured in one of two factories. Products A and B are manufactured from
the same natural material m. The material m is sourced from three distinct suppliers. The
finished products A and B are then distributed to three separate retailers. The primary ob-
jective is to minimise overall costs while ensuring the demand is met satisfactorily. These
costs encompass the expenses incurred in acquiring the material m, the processing expenses
associated with manufacturing A and B, and the shipping costs to the retail grocery stores.
This example follows, for simplicity and explainability, the example of Li et al. (2023a).

The optimisation problem is framed as a mixed integer program, where xs, f denotes the quan-
tity of material purchased from supplier s for factory f . We define yA

f ,r and yB
f ,r as the amount

of products A and B, respectively, delivered from factory f to retailer r. Each supplier has a
capacity Cs, and each retailer r has a demand DA

r and DB
r for products A and B respectively.

The cost cs, f is incurred for each unit of material m purchased from supplier s for each factory
f . Furthermore, there are manufacturing costs gA

f and gB
f associated with each unit of each

product in factory f . Lastly, a shipping cost h f ,r is applied for each unit of product delivered
from factory f to retailer r. Both this problem and the TSP can be transcribed to Python
code, facilitating code generation for possible scenarios in what-if analysis. Similarly to the
TSP modelled with the Miller-Tucker-Zemlin formulation, the optimisation problem is as

13

2. Theoretical Background

follows

Minimise
∑
s, f

xs, f · cs, f +
∑
f ,r

yA
f ,r · h

A
f +∑

f ,r

yB
f ,r · h

B
f +

∑
gf ,r · (yA

f ,r + yB
f ,r)

s.t.
∑

f

xs, f ≤ Cs ∀s;∑
s

xs, f =
∑

r

(yA
f ,r + yB

f ,r) ∀ f ;∑
f

yA
f ,r ≥ DA

r ∀r; (2.2)∑
f

yB
f ,r ≥ DB

r ∀r;

xs, f , yA
f ,r , y

B
f ,r ∈ Z

+ ∀s, f , r.

2.1.3 What-if Analysis
The practice of conducting what-if scenarios in supply chain optimisation entails simulating
various hypothetical situations to gauge their potential impact on the performance and re-
silience of the supply chain. These scenarios are important for both supply chain managers
and engineers, enabling them to proactively anticipate and address risks while optimising
resource allocation.

For instance, companies may simulate abrupt shifts in customer demand, disruptions in
transportation or production, fluctuations in commodity prices or other events. By adjust-
ing different parameters and assumptions within supply chain models, supply chain managers
can evaluate how these scenarios might influence critical performance metrics.

Importantly, this analytical approach extends beyond supply chain management, encompass-
ing a wide array of scheduling, logistics and optimisation challenges. These problems can be
characterised by variables such as inventory levels, constraints and demand patterns (Watson
et al., 2012).

2.1.4 Job Shop Scheduling Problem
The job shop scheduling problem is an optimisation challenge classified as NP-hard, focus-
ing on the allocation of jobs to machines in a way that optimises a certain objective, typi-
cally minimising the makespan – total processing time. It involves scheduling multiple jobs,
j1 . . . jn, each consisting of a sequence of tasks, t j,1 . . . t j,n, which must be processed on spe-
cific machines, m0 . . .mm for a set duration (Taillard, 1993). This process is depicted in Figure
2.1.

14

2.2 Machine Learning

The complexity of the problem arises from several constraints: each machine can only handle
one task at a time, tasks must follow a specific order and tasks must be run on a specific ma-
chine (Taillard, 1993). This leads to complicated solutions as the problem increases in size.
Solutions to JSSP are critical in manufacturing and production environments where efficient
scheduling can lead to significant time and cost savings. The problem is a fundamental study
in the field of operations research and industrial engineering, with ongoing research explor-
ing various algorithms and methods to find effective solutions.

Machine 0

Machine 1

Machine 2

Job 1 (0, 3) (1, 2) (2, 2)

Job 2 (0, 2) (2, 1) (1, 4)

Job 3 (1, 4) (0, 2) (2, 3)

Tasks (machine_id, time units)

Task 1

One Solution

Task 1

Task 1

1 2 3 4 5 6 7 8 9 10 11

Task 2

Task 2

Task 2

Task 3 Task 3

Task 3

Time Units

Figure 2.1: An example of the job shop scheduling problem. The upper table
shows three jobs with three tasks each. Each task shows what machine it needs
to be run on and for how long, respectively. The lower table shows one possible
solution to the problem.

2.2 Machine Learning
Machine learning, a subset of artificial intelligence, is a method in statistical learning that has
proven successful in more recent advancements of artificial intelligence. Machine learning
enables computers – machines – to learn from data through generalisation, pattern recogni-
tion and inference (Goodfellow et al., 2016). In order to achieve learning, models are built
and trained using data, through either supervised or unsupervised learning, explained further
in Section 2.2.1. The term machine learning was coined by IBM researcher Arthur Samuel
already back in 1959 as “the field of study that gives computers the ability to learn without
being explicitly programmed” (Russell and Norvig, 2020).

2.2.1 Learning Approaches
In the domain of machine learning, there exist different learning approaches based on the
given task and data.

15

2. Theoretical Background

Supervised Learning
Supervised learning can be applied when using labelled data. The model learns from data that
is organised in pairs of input-output to find the appropriate mapping (Russell and Norvig,
2020). In the context of natural language processing, such an input-output pair could typi-
cally be a sequence of text to be labelled with a language.

Unsupervised Learning
Unsupervised learning, on the other hand, operates without labelled data. Instead of rely-
ing on input-output pairs, unsupervised learning algorithms autonomously explore data to
uncover hidden patterns or structures (Russell and Norvig, 2020). In natural language pro-
cessing, for example, unsupervised learning is used to analyse text corpora to identify themes
or cluster similar documents (Nugues, 2016). This approach enables the discovery of valu-
able information that may not be readily apparent through labelling. A form of unsupervised
learning is masked language modelling (MLM), which makes use of masked tokens in the in-
put sequence (Devlin et al., 2019).

2.2.2 Deep Learning and Neural Networks
As a subset of machine learning, deep learning is the approach of solving problems and tasks
that for humans seem intuitive, but are hard to describe formally, by mimicking the structure
of the human brain (Goodfellow et al., 2016). The term deep learning stems from the fact that
the graphical display of modern neural networks involves many different layers, combined
to a deep model (Goodfellow et al., 2016). The goal of all neural networks is to approximate
some function f ∗ which, for example, maps an input x to an output y as

y = f ∗(x) (2.3)

where a feed-forward neural network tries to approximate f ∗(x) as

y = f (x; θ) (2.4)

where θ are the parameters to be learned (Goodfellow et al., 2016).

2.2.3 Feed-forward Neural Networks
The simplest deep learning architecture is the multilayer perceptron (MLP), a feed-forward
neural network (Goodfellow et al., 2016). The simplest MLP is a single layer perceptron with
inputs x = x1, x2, . . . , xn and weights w = w1,w2, . . . ,wn which outputs ŷ as

ŷ = ϕ
 N∑

n=1

wnxn + b
 (2.5)

where b is the bias term and ϕ is the activation function, which transforms the linear com-
bination of the weighted inputs and the bias into a non-linear output in order to capture

16

2.2 Machine Learning

complex relationships (Bläckberg, 2024; Goodfellow et al., 2016). In the context of NLP (see
Section 2.3) a popular activation function is the rectified linear unit (ReLU)

ReLU(x) = max(0, x) (2.6)

where x is the input to the neural network (Nugues, 2016). Note that the single layer per-
ceptron is essentially a logistic regression, given that the activation function is the identity
function.

Hidden Layers

Output LayerInput Layer

Figure 2.2: A fully connected neural network with two hidden layers and an out-
put layer, where xn denotes inputs, a(i)

n denotes nodes and ŷ denotes the predicted
output.

More advanced feed-forward neural networks have more layers, consisting of several nodes,
as depicted in Figure 2.2. In each layer, each node receives the full information from each
node in the previous layer (Goodfellow et al., 2016). Each node in a given layer works in
parallel with the other nodes to process the received information and send it forward to the
nodes in the next layer (Goodfellow et al., 2016). Typically, a modern deep feed-forward
neural network consists of an input layer, several hidden layers and an output layer. During
training, a deep feed-forward neural network learns by minimising the residual between its
predicted outputs ŷ and the actual labels y in the training data (Russell and Norvig, 2020).
The residual, or the error, is typically minimised through a loss function such as mean squared
error or binary cross entropy (Goodfellow et al., 2016). This process, known as backpropa-
gation, computes the gradients of a predefined loss function with respect to the network’s
parameters (Goodfellow et al., 2016). These gradients guide the update of the parameters
via optimisation algorithms like stochastic gradient descent (SGD) (Goodfellow et al., 2016;
Nugues, 2016).

17

2. Theoretical Background

2.3 Natural Language Processing
The following sections provide a full explanation of all natural language processing tech-
niques covered in this paper. It starts off in Section 2.3.1 with a justification of word embed-
dings, followed by an in-depth review of Transformers in Section 2.3.2, how they are trained
in Section 2.3.6 and ultimately finishes off with a description of SLMs in Section 2.3.11.

In recent years, the field of natural language processing has witnessed remarkable break-
throughs, driven by the convergence of computational power, abundant data availability and
innovative algorithmic approaches. One of the most notable advancements is the advent of
transformer-based models, exemplified by architectures like BERT (Bidirectional Encoder
Representations from Transformers) and GPT (Generative Pre-trained Transformer) (De-
vlin et al., 2019; Brown et al., 2020). These models have revolutionised various NLP tasks,
including language translation, sentiment analysis and question answering, by leveraging self-
attention mechanisms to capture contextual information effectively across long sequences of
text. Additionally, techniques such as fine-tuning have enabled the adaptation of pre-trained
models to specific domains or tasks with minimal additional training data, significantly re-
ducing the time and resources required for model development. Recently, small language
models such as Phi models (Gunasekar et al., 2023) have garnered increasing interest for fine-
tuning purposes. Lower model complexity offers computational advantages, allowing for
faster training and inference, particularly in resource-constrained environments. This trend
towards smaller models underscores the importance of efficient model design and optimisa-
tion techniques in the pursuit of scalable and accessible NLP solutions.

2.3.1 Numerical Representation of Text
When dealing with NLP and language models it is important to understand that these models
cannot read words and sentences the same way we humans do and instead need to rely on
numerical representations of the text (Russell and Norvig, 2020). There are many ways of
mapping text to a mathematical representation, and to accustom the reader to the concept,
we hereby explain a simple encoding scheme named one-hot vector encoding (Russell and
Norvig, 2020). Consider this set of words; {dog, cat, bird} and let all words be represented
by a boolean vector of dimension three – because there are three words, in which exactly
one of the indices are true. The resulting vectors will be: dog – [1,0,0], cat – [0,1,0], bird –
[0,0,1]. However, if the vocabulary increases then the dimension of the word vectors increases
correspondingly, which might result in very large and sparse vectors (Nugues, 2016).

Word Embeddings
One-hot vector encoding appears to be a simple and efficient method, but unfortunately, its
simplicity is also its downfall. Additionally, it does not encapsulate any contextual informa-
tion between different words, and therefore a more modern approach of encoding is used,
often referred to as word embeddings (Pennington et al., 2014). In this method, the words are
mapped to real-valued, low-dimensional dense vectors (Pennington et al., 2014). These vec-
tors are constructed in a way that preserves the semantic relations between words, by having
words that are related close to each other in the vector space (Pennington et al., 2014). The

18

2.3 Natural Language Processing

words happy and joyful will, for example, be very close to each other in the vector space, but
happy and sad, which are antonyms, tend to have opposite vectors if the embeddings are well
constructed (Pennington et al., 2014). These relationships between the vectors show how the
semantic meaning between words are preserved and gives an understanding of how a model
might benefit from this while learning (Pennington et al., 2014).

There exist many ways of creating word embeddings, e.g. word2vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014). Traditionally, these are constructed with the use of
neural network-like models. However, since the commencement of more powerful language
models, e.g. Transformers (Vaswani et al., 2017), the creation of these embeddings has shifted
towards newer methods (Devlin et al., 2019).

2.3.2 The Transformer Architecture
Here we provide a simplified yet in-depth overview of the Transformer architecture and its
components. For a full explanation of it we refer the reader to the original paper by Vaswani
et al. (2017).

The Transformer is a neural network architecture that revolutionised NLP. Unlike more tra-
ditional architectures which depend on recurrence such as recurrent neural networks (RNNs),
the Transformer operates solely on attention. Moreover, this attention-mechanism enables
the model to focus its attention on specific words that are more relevant than others, making
it highly efficient.

Self-Attention
Self-Attention, as proposed by Vaswani et al. (2017), is the most important part of the Trans-
former. The idea of self-attention relies on the fact that for any sequence, some words or
tokens matter more than others for a given context, and should therefore weigh in more in
the prediction of the following token. For example, in the sentence

The animal didn’t cross the street because it was too tired,

the word it is ambiguous. It can be associated to both The animal and the street. However,
self-attention allows the model to associate it more strongly with The animal than the street.
Furthermore, this attention-mechanism is often used in parallel with other self-attention
mechanisms giving rise to the multi-head attention mechanism. The idea is that each layer
of self-attention will attend to different parts of the input, increasing parallelisation.

Vaswani et al. (2017) proposed this to be done using a scaled dot-product attention mech-
anism where a query matrix Q is multiplied by the transpose of a key matrix K , and then
normalised by the dimension of dk . The result is then sent through a softmax function and
lastly multiplied by a value matrix V yielding the following:

Attention(Q,K,V) = softmax
(
QKT
√

dk

)
V (2.7)

19

2. Theoretical Background

Attention Scores

Projection Matrices

Transpose

Output vectors

Figure 2.3: Diagram of the attention mechanism as described in Section 2.3.2

To produce these matrices, as shown in Figure 2.3, Vaswani et al. (2017) propose that each
input vector (embedded word) is transformed by a learnable projection query matrix A, Key
matrix B and value matrix C into a query vector, key vector and value vector. All vectors for
each type are then grouped together in order to create Q, K and V . The learnable projection
matrices are parameters optimised during training by the model in order to achieve good
attention. To clarify Equation 2.7, Q is multiplied by KT acquiring attention scores between
each query and key. These are then scaled down to mitigate the problem of vanishing gra-
dients during training. The resulting vectors are passed through a softmax layer, obtaining
the attention weights. These weights are then multiplied by the value matrix, computing a
weighted sum of the value vectors, hence obtaining a new vector for each word that deter-
mines its context in the text. This final vector is constructed by combining information from
all other words in the text, weighted by their relevance.

2.3.3 Positional Encoding
Since the model contains no recurrence, it is necessary to inject some information about
the positions of the words into the embeddings. Vaswani et al. (2017) proposed a sinusoidal
encoding as depicted in Figure 2.4. The sinusoidal positional encoding is computed as

Figure 2.4: Positional encoding as illustrated by Haque and Ghani (2022).

20

2.3 Natural Language Processing

PE(pos,2i) = sin(pos/100002i/dmodel) (2.8)

where pos is the position and i is the dimension, corresponding to one sinusoidal wave. The
positional encoding retains the same dimensionality as the embeddings, enabling a summa-
tion between them (Vaswani et al., 2017; Haque and Ghani, 2022).

2.3.4 Encoder-Decoder Architecture
The original architecture consists of an encoder and a decoder parts as displayed in Figure
2.5. This architecture is predominantly used in sequence-to-sequence tasks such as language
translation. The strength of the encoder-decoder architecture lies in its ability to transform
input sequences into a latent space representation and decode them back into output se-
quences (Vaswani et al., 2017).

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Inputs

Input
Embedding

Positional
Encoding

Add & Norm

Masked
Multi-Head
Attention

Feed Forward

Multi-Head
Attention

Add & Norm

Add & Norm

Linear

Softmax

Outputs (Shifted right)

Output
Probabilities

Block

Block

Block

Block

Positional
 Encoding

Figure 2.5: The Transformer architecture, showing the encoder (left), and de-
coder (right) as in the original paper by Vaswani et al. (2017) The blocks are
repeated N times.

Encoder
As illustrated in Figure 2.5, the encoder is composed of N identical layers, where N is typi-
cally determined by the complexity of the task. Each layer is composed of two sub-layers; a
multi-head attention layer and a fully connected neural network. Vaswani et al. (2017) pro-
posed a two layer network with ReLU activation in between the layers.

21

2. Theoretical Background

As mentioned, the sole purpose of the encoder is to transform the input sequence into a
latent space representation. This latent space representation functions as a compressed form
of the original input sequence. Despite its reduced dimensionality, it is designed to maintain
the critical information needed for the decoder to generate an accurate output sequence.
Since the final vector outputted by the encoder is contextualised by the attention depend-
ing on the other words in the sentence, it is sometimes also referred to as a context vector
(Vaswani et al., 2017).

Decoder
Similar to the encoder, the decoder is also composed of N identical layers. Vaswani et al.
(2017) explain that each layer in the decoder contains three sub-layers. The first sub-layer
performs what is known as masked attention on all previously generated tokens (Devlin
et al., 2019). This means that each word can only attend to preceding words, preventing
future words being used in the prediction of the next token. The second sub-layer is a reg-
ular multi-head attention layer, which takes the output of the encoder as well as the output
from the first sub-layer. It uses encoder outputs as queries and keys, and the output from the
first sub-layer as values, granting the ability to attend over the entire input sequence as well
as the previously generated tokens (Vaswani et al., 2017). The final layer is identical to the
final layer of the encoder. The final output is then sent through a final neural network layer,
ultimately being soft-maxed which yields the final prediction (Vaswani et al., 2017).

As stated, the primary role of the decoder is to transform the context vector from the encoder
into the output sequence. It performs this by generating one token at a time, using the con-
text vector and all previously generated tokens (Vaswani et al., 2017). The decoder therefore
plays a crucial role in ensuring that the output sequence accurately reflects the information
contained in the input sequence.

The remarkable aspect of this architecture is that the encoder and decoder are trained to-
gether, allowing them to optimise their transforming skills for the task at hand. This joint
training enables the model to learn the most effective ways to compress and decompress the
sequence information (Vaswani et al., 2017).

2.3.5 Decoder-only Architecture
The original Transformer architecture has proven to be incredibly skillful in sequence-to-
sequence tasks, such as language translation. However, using only the decoder has also proven
to be very proficient. While still retaining the power and efficiency of the original Trans-
former, Radford et al. (2018) therefore propose the decoder-only Transformer. The decoder-
only Transformer architecture utilises only the decoder part of the original Transformer by
Vaswani et al. (2017), enabling it to generate new tokens based only on an input prompt.
The architecture is shown in Figure 2.6. As previously noted, the main modification of the
decoder-only Transformer is its lack of an encoder. However, since no encoder is used, the
decoder therefore does not need the sub-layer connected to it. Consequently, each decoder
block consists of only two sub-layers, one masked multi-head attention layer making sure it

22

2.3 Natural Language Processing

Input
Embedding

Positional
Encoding

Add & Norm

Masked
Multi-Head
Attention

Feed Forward

Add & Norm

Softmax

Output
Probability

(Next Token)

Block

Block

Linear

Input
(prompt)

Figure 2.6: Decoder-only Transformer architecture. Blocks are stacked N times
to create a deeper network.

only attends on preceding words, and one feed forward neural network layer. When given an
input prompt, the model then sends the entire input through the model and generates one
token. This token gets appended to the end of the input and sent in again. This process then
repeats until a special end token is generated.

2.3.6 (Pre-)Training
The training process of large-scale language models entails significant computational costs
(Sharir et al., 2020). This is primarily attributed to the great number of parameters that
these models encompass. An essential component of neural network computations is matrix
operations (Russell and Norvig, 2020), which are computationally intensive and consequently
lead to heavy energy consumption during training and even inference (see Section 2.3.10)
(Samsi et al., 2023; McDonald et al., 2022). Moreover, the model’s weights and biases undergo
iterative updates, a process commonly titled self-supervised learning, to refine the model’s
performance on the assigned tasks.

23

2. Theoretical Background

Self-supervised Learning
Self-supervised learning is an important technique for pre-training models. This approach
capitalises from unlabelled input data, finding patterns and predictability and the learned
information can then be used for a supervised learning approach.

Consider a sequence of tokens s = (t0, t1, t2, t3, ..., ti), where each token t j corresponds to
a lexical unit, either a word or a sub-word. Each sequence, potentially a sentence from the
corpus employed for model training, undergoes a transformation where the last token is re-
moved. The model is then presented with the transformed input sequences, subsequently
letting it predict the token distribution of the excised token. By using a loss-function, such
as cross-entropy loss, the predicted token distribution is compared to the actual distribution
(the predicted token versus the actual token) (Chen et al., 2023b). This provides a foundation
in the back-propagating process, updating the weights and biases of the model accordingly.
This iterative refinement process persists until all predefined training conditions, for exam-
ple number of epochs, are satisfied.

2.3.7 Prompt Learning
Prompt learning, also called in-context Learning, is a technique used to adapt a language
models’ ability to perform better on specific tasks (Liu et al., 2021; Floridi and Chiriatti,
2020). This technique utilises the pre-existing knowledge of large language models by using
prompts – contextual instructions – to steer the model’s predictions without any extensive
retraining of model parameters (Floridi and Chiriatti, 2020). Given that no parameters are
updated during prompt learning, this approach typically faces limitations in memory reten-
tion and may not achieve optimal task performance, in the given tasks.

Furthermore, in order to steer the prediction of the model in a certain direction, n-shot
prompting is frequently used (Chen et al., 2023a). The approach of n-shot prompting involves
injecting n number of examples, with a ’Question’ and an ’Answer’, into the prompt,
giving the model temporary knowledge of the problem (Chen et al., 2023a).

2.3.8 Fine-tuning
In order to adapt pre-trained models to new tasks or datasets, fine-tuning is used. It involves
taking a model that has been trained on a large dataset for a specific task, and then continuing
the training process on a smaller dataset or a related task (Ruder, 2016). During fine-tuning,
the parameters of the pre-trained model are updated using the new data, allowing the model
to learn task-specific features and patterns while retaining the knowledge gained from the
original training (Ruder, 2016). Fine-tuning is particularly useful when labelled data for the
target task is limited, as it leverages the knowledge encoded in the pre-trained model to
improve performance on the new task, which is why self-supervised learning can be utilised
(Ruder, 2016). The technique of fine-tuning is commonly used for large and small language
models, where the base model typically is very general and pre-trained on vast datasets, and
the need to specialise the model in a specific domain persists.

24

2.3 Natural Language Processing

Low-Rank Adaptation (LoRA)

Hu et al. (2021) introduced a novel approach to fine-tune pre-trained deep neural networks,
such as Transformers, for tasks constrained by limited labelled data. This methodology, low-
rank adaptation, confronts the challenge of fine-tuning large-scale neural networks, or lan-
guage models, on smaller datasets, frequently resulting in overfitting and sub-optimal gen-
eralisation.

Training the entire weight matrix of a model is infeasible. Hu et al. (2021) gained the in-
sight that it is not necessary to update each weight separately and therefore proposes LoRA
– a low-rank matrix decomposition of the weight matrix. It is proposed in the forward pass
h as

h = W0x + ∆Wx = W0x +WAWBx (2.9)

where W0 ∈ Rd×k is the pre-trained weight matrix, ∆W is the updated weight matrix which
is decomposed into low-rank matrices WA ∈ Rd×r and WB ∈ Rr×k where r ≪ min(d, k). The
input in the forward pass h is x (Hu et al., 2021). The regular fine-tuning process and the
fine-tuning process using LoRA are depicted in Figures 2.7 and 2.8, respectively. Effectively,
this means that a weight update matrix ∆W will be computed from the low-rank matrices
WA and WB, retain its dimensions d×k, but use up to 10,000 times less amount of parameters
than the pre-trained base model (Hu et al., 2021).

Input

Embedding

Pre-trained Weights Weight Update

Figure 2.7: The fine-tuning pro-
cess where a regular weight up-
date h = W0x+∆Wx is computed.

Input

Embedding

Weight UpdatePre-trained Weights

Figure 2.8: The LoRA process
where the weight update h =

W0x +WAWBx is computed.

2.3.9 Memory Optimisation Techniques
Reducing memory consumption is always a priority when training neural networks. We in-
troduce two techniques that optimise memory usage when fine-tuning.

25

2. Theoretical Background

Quantised Low-Rank Adaptation (QLoRA)
Further improvement was made to LoRA when Dettmers et al. (2023) introduced quanti-
sation in the context of fine-tuning. This makes the process of fine-tuning with LoRA even
more efficient, making it even less computationally demanding to fine-tune language models.
Quantisation involves converting data from a high-information representation to a lower-
information representation, thus requiring less memory. This typically means reducing the
number of bits used, such as converting from 16-bit floats to 4-bit integers. To fully utilise the
range of the lower-bit data type, the input data is often rescaled to fit within the target data
type range by normalising it based on the absolute maximum value of the input elements,
typically organised as a tensor. With this approach QLoRA is defined as

hBF16 = dequant(dequant(cFP32
1 , ck-bit

2),W 4bit
0)xBF16 +WBF16

A WBF16
B xBF16 (2.10)

where dequant() is the dequantisation process which retrieves the quantised information
and c is the quantisation constant, BF16 is a so called brain float with 16 bits and FP32 is a
32-bit floating point tensor.

DeepSpeed
DeepSpeed is an optimisation library developed by Microsoft Research. DeepSpeed offers a
suite of features and optimisations aimed at enhancing the efficiency and scalability of train-
ing large-scale models. Rajbhandari et al. (2020) introduced the Zero Redundancy Optimiser
(ZeRO) to optimise memory usage and accelerate training as a part of DeepSpeed.

ZeRO tackles the memory limitations inherent in training large-scale models by eliminat-
ing redundant model states across distributed devices. While this can be achieved with basic
data parallelism, ZeRO can partition model states and gradients during training, dismiss-
ing redundant memory states during parallelism (Rajbhandari et al., 2020). Complementing
ZeRO, DeepSpeed offers a suite of features and optimisations designed to further enhance
training efficiency and scalability. One example of this is model parallelism for distributing
parameters across multiple devices for improved computational efficiency.

2.3.10 Inference
In the prediction phase often referred to as inference, a trained language model is employed to
generate subsequent tokens predicted on a given prompt (Pope et al., 2022). Since the model’s
inherent architecture is overall sequential, depicted in Figure 2.6, it only has the capability of
predicting a singular token. Post-generation, this token is appended to the original prompt,
serving as a new basis for subsequent token generation. This iterative process, making it
autoregressive, is run until the model produces a special terminal token or a pre-defined
threshold is satisfied, e.g. the maximum number of tokens is generated (Pope et al., 2022;
Vaswani et al., 2017).

2.3.11 Small Language Models – Phi Models
Small language models (SLMs), such as Phi models, introduced by Gunasekar et al. (2023), are
language models with a small parameter count trained on high quality, textbook-like data.

26

2.3 Natural Language Processing

The modest parameter count allows for smart fine-tuning and customisation where resource
constraints are a concern (Zhou et al., 2023). The model is what is sometimes referred to as
a raw model, meaning that it has only been pre-trained, making its output sometimes unre-
lated and hallucinatory (Frieske and Shi, 2024). Moreover, as the field of AI progresses the
development of SLMs is mainly driven by the need for environmentally sustainable and cost-
effective solutions, in contrast to large language models that require enormous amounts of
energy to function (Zhou et al., 2023).

Phi models – a series of SLMs – are relatively small compared to other language models.
Phi-1.5 achieved a score of 44.6 GSM-8K, 41.4 on HumanEval and 43.5 on MBPP, which
are commonly utilised benchmark datasets for evaluation of language models. GSM-8K, or
Grade School Math 8K, is a dataset consisting of 8500 diverse grade school math problems
(Cobbe et al., 2021), HumanEval is a dataset designed to assess the problem-solving capabil-
ities, specifically code synthesis from strings (Chen et al., 2021) and MBPP, or Mostly Basic
Python Problem is a dataset consisting of 1000 Python programming problems evaluating
basic fundamental programming concepts (Austin et al., 2021). For reference, GPT3.5 has
achieved scores of 78.1, 62.2 and 77.8 respectively. Phi models perform better than much
larger language models, such as Llama2-7B and Llama-65B (Li et al., 2023b), which is a testa-
ment to its efficiency and the quality of its training data. Phi-1.5 consists of only 1.3 billion
parameters while its successor Phi-2 consists of 2.7 billion parameters (Microsoft, 2023). On
April 22nd 2024, Microsoft published the technical paper announcing Phi-3, the latest itera-
tion of models in the Phi series. Phi-3 has the same underlying architecture as its predecessor,
Phi-2, but its training data is altered. The newest model comes in a number of different ver-
sions, with the smallest one, Phi-3 mini, consisting of 3.8 billion parameters (Abdin et al.,
2024). It achieved a score of 82.5 on GSM-8K, 59.1 on HumanEval and 70.0 on MBPP.

27

2. Theoretical Background

28

Chapter 3

Datasets

This chapter explains the datasets used in this project, detailing how they were collected,
processed, formatted and utilised for both inference and training during the fine-tuning of
the Phi-2 model. Section 3.1 goes through the different considerations taken into account,
while Sections 3.2 and 3.3 cover the two datasets used.

The Phi-2 model is fine-tuned using two distinctly different datasets. When fine-tuning a
pre-trained model such as a Phi model it is important to ensure that the data is specialised
and relevant to the task at hand. The goal of fine-tuning a pre-trained model is to increase
its expertise in one domain. As the Phi-2 model is already pre-trained with high quality,
textbook-like data, it is important that the data used for fine-tuning also adheres to similar
levels of quality. The datasets used for this work are introduced in this chapter.

3.1 Considerations
Finding high quality, relevant data for text generation is an important task in the fine-tuning
process of a language model, whether small or large. An inherent aspect of fine-tuning is that
the data is somewhat niche or specialised, and can not be of any nature. Considering that
Phi-2 is pre-trained on high quality, textbook-like data it is also important not to dilute the
model with low quality data for the fine-tuning process.

Furthermore, the size of the dataset used for fine-tuning does not necessarily need to be
very large. While this may seem far too small for a language model, one must consider the
task at hand. To fine-tune a pre-trained language model not as much training data is needed
before the base model starts to converge to a new setting. As the base model is pre-trained,
it is already trained on large amounts of data. On a side note, smaller datasets also help with
the easing of memory requirements during the training process. OpenAI, the leading LLM
developer, provides a fine-tuning guide of their models, the GPT class. In OpenAI’s guide,

29

3. Datasets

it is suggested that when fine-tuning GPT3.5 and GPT4, one should use at least 10 exam-
ples. Also, improvements from fine-tuning are typically seen when the training dataset has
50 to 100 entries. In addition to this, OpenAI state that the correct number can vary greatly
(OpenAI, 2024).

3.2 OptiGuide Benchmark Datasets
A number of benchmark datasets are provided by Li et al. (2023a) for OptiGuide. These
smaller datasets are suitable for evaluating if SLMs like the Phi-2 model can be fine-tuned
for what-if analysis within the field of supply chain optimisation. In this thesis, we are using
the benchmarks’ questions and answers for our fine-tuning. There are six datasets in total
based on different settings and scenarios. One of the datasets, coffee.benchmark.json,
is a benchmark dataset that is provided by Microsoft Research, and one for which Li et al.
(2023a) have implemented the supply chain optimisation model. The other examples, includ-
ing a TSP model with benchmark questions and answers, are provided along with code taken
from Gurobi source code examples (Gurobi, 2024). This means that this work can easily be
extended with other datasets.

The datasets are relatively small, compared to the datasets which the model is pre-trained
on, containing a couple of hundred data points. Referring to the considerations done in Sec-
tion 3.1, this size is not an issue, but rather fitting for the fine-tuning task. Being a benchmark
dataset, it is especially suitable for comparison among language models and provides a result
for further research on Phi-2 or other SLMs and LLMs. Furthermore, combining all models’
benchmarks results in a dataset of substantial size.

The model benchmark datasets are for the purpose of our research expanded with the model
source code, implemented in Python. The dataset is structured in a Question-Answer (QA)
format in a JSON file, where the Question corresponds to a prompt, and the Answer corre-
sponds to a completion. A key is defined for both the prompt and the completion, and these
are naturally ’Question’ and ’Answer’, which is the structure of each row of the dataset.

3.2.1 Data Samples and Statistics
The source code for the models used in the OptiGuide benchmark datasets are retrieved
directly from Gurobi Python examples (Gurobi, 2024). The relevant model source code is
concatenated to the question to add context for the SLM. In Table 3.1 we look at some samples
of questions and answers from the dataset. In total, the dataset has questions and answers
for six different models, corresponding to the number of benchmark datasets, and these are

• diet.py

• facility.py

• netflow.py

• tsp.py

30

3.2 OptiGuide Benchmark Datasets

• workforce1.py

• coffee.py

where coffee.py is developed by Microsoft Research for OptiGuide (Li et al., 2023a).

Context Question Answer
Given the following code
depicting a supply chain

or optimisation prob-
lem . . .categories,

minNutrition,
maxNutrition =
gp.multidict(
{"calories":

[1800, 2200], . . .

Is it possible to steer
clear of macaroni?

m.addConstr(
buy["macaroni"]

== 0, "_")

Given the following code
depicting a supply chain
or optimisation problem

. . .capacity_in_supplier
= {’supplier1’: 150,

’supplier2’: 50,
’supplier3’: 100} . . .

What is the impact of
cafe3 exclusively purchas-
ing coffee from roastery1

and roastery1 solely
selling its coffee to cafe3?

for c in cafes:\n\t
if c = "cafe3":\n\t\t

m.addConstr(
y_light["roastery1",
c] == 0, "_")\n\t\t

m.addConstr(
y_dark["roastery1",

. . .
Given the following code
depicting a supply chain

or optimisation prob-
lem . . .commodities

= ["Pencils",
"Pens"] \n nodes =

["Detroit", "Denver",
"Boston", "New

York", "Seattle"]
\n arcs, capacity
= gp.multidict(

{("Detroit",
"Boston"): 100, . . .

What would happen if the
shipping charges to Boston

increased by 9 dollars?

for a in
commodities:\n\t

for b in nodes:\n\t\t
if (a, b, "Boston")
in cost:\n cost[a,
b, "Boston"] += 9

Table 3.1: Samples from the OptiGuide benchmark dataset with questions, in-
cluding context, and answers. The samples are from diet.py, coffee.py,
netflow.py in that order.

The full dataset contains 1419 samples, which have been split into 993 for training, 227 for
validation and 199 for testing. This corresponds to 70%, 16% and 14% respectively. Question
types range from variations in demand, fluctuations in transport costs and changes in demand
to numerous other factors that impact the specific supply chain or optimisation problem.

31

3. Datasets

As outlined in Section 2.1, these problems are typically constructed as mixed integer pro-
grams in a constraint based approach. By utilising the Gurobi Python models of these six
problems, we seek to understand if a fine-tuned SLM can be used for code generation as a
part of a holistic framework for what-if analysis. Providing the correct code snippet to up-
date the supply chain model, or optimisation problem, a model may act as a useful tool for
supply chain managers. Importantly, questions are asked in natural language, and answered
in Python code that would be added to the original supply chain model. Incorporating a
proficient model in the workflow of optimising supply chains may help streamline what-if
analysis.

3.3 Job Shop Scheduling Dataset
In this section, we explore the dataset used to fine-tune the model for the job shop scheduling
problem (JSSP).

Using a large, balanced, high-quality dataset is arguably the most important aspect when
trying to teach a model new knowledge. In this problem it is important that the model gets
an understanding of the intricate aspects of it and learns how to actually solve them. There-
fore, we created our own data, consisting of 5000 instances of the JSSP. When creating the
instances we followed a similar format to Taillard (1993). An example of the format used can
be seen below:

7 7
4 32 0 27 1 35 3 91 2 28 6 68 5 73
3 71 4 92 5 92 6 58 1 92 2 28 0 31
0 26 2 94 4 32 5 35 3 78 1 65 6 73
1 47 4 22 2 36 6 55 5 44 0 60 3 66
3 69 5 91 1 21 4 96 6 90 2 67 0 34
2 73 5 61 0 45 4 51 3 87 6 39 1 90
4 50 0 73 5 49 6 73 2 45 3 38 1 89

where the first line defines the number of machines and number of jobs. After that there is
one line per job where each line defines the tasks for that specific job. The tasks are grouped
by two numbers, what machine, mi , it has to be run on and t, how long time that task takes.
All examples were randomly generated with values shown in Table 3.2.

Furthermore, for each sample a solution was derived using Google’s open-source solver, OR-
tools. The solution consists of two parts; the first being the optimal makespan – total pro-
cessing time, for the problem and secondly, a detailed schedule of all tasks. Furthermore,
the dataset was partitioned into training, validation, and test sets, with the training set com-
prising 70%, the validation set 15%, and the test set 15%. Lastly, each sample was formatted
into the QA format. Each instance was formulated as a question, encompassing both the
problem’s constraints and objectives, along with the actual problem description. Similarly to
the OptiGuide benchmark datasets, keys are defined as ’Question’ and ’Answer’. This
is done to ensure that the model comprehends the problem thoroughly, taking into account
all relevant constraints of the structured data.

32

3.3 Job Shop Scheduling Dataset

3.3.1 Prompt Learning Data
In order to apply prompt learning, the test set was transformed. Each sample was encapsu-
lated with the identical problem formulation, as seen in 3.1, and constraints as those present
in the original formatting technique. However, to imbue the prompt with relevant knowl-
edge, we inserted a pair of illustrative examples, complete with problem statements and cor-
responding solutions. This test set is therefore used when any reference to 2-shot prompting
is made, within JSSP. Likewise, 0-shot prompting indicates the usage of the original test set.

Solve the following Scheduling Problem where the first line contains
two numbers: number of jobs, n_jobs, and number of machines,
n_machines. Then follows n_jobs lines, one for each job. Each job
consists of n_machines tasks where each task consists of two numbers;
what machine it needs to be run on and how many time units it takes.
The machines are indexed starting from 0. Each job has a sequence
of tasks that must be run on specific machines for a certain
duration. Each machine can only run one task at a time, and tasks
for a job must be run in the order given. The goal is to minimize
the total processing time (makespan): Problem:

Figure 3.1: Problem formulation for JSSP. In a 0-shot setting, only the problem
instance is appended to the end after Problem: . In a 2-shot setting, two ex-
ample instances with solutions are appended as well as the instance to be solved.

Type Range
Number of machines 5 − 12

Number of jobs 5 − 12
Processing times for a task 20 − 100

Table 3.2: Ranges used to generate instances for the job shop scheduling problem
(JSSP). Each instance is characterized by three types of variables: the number of
machines, the number of jobs, and task processing times. These variables are
sampled from the specified range, with an evenly spread distribution

33

3. Datasets

34

Chapter 4

Method

This chapter provides an end-to-end overview and in-depth description of the steps taken to
conduct the research and reach the results presented in this thesis. The chapter begins with
a small note on the process of handling data, described in Section 4.1. After this section fol-
lows an explanation of the procedure of prompting the base model, described in Section 4.2.
Moreover, the process of fine-tuning a language model and the requirements that come with
it are described in Section 4.3. Finally, Section 4.4 describes the evaluation of the resulting
outcomes.

Fine-tuning a language model is a process that draws heavily from the theoretical concepts
discussed in Chapter 2, Theoretical Background. It involves adapting a pre-trained model to
perform specific tasks to excel in particular domains. This chapter delves into the specifics
of the fine-tuning process, providing a detailed road map for leveraging the Phi-2 model ef-
fectively.

In essence, fine-tuning involves understanding the intricacies of the model’s architecture and
adapting it to address the targeted objectives. The approach outlined in this section encapsu-
lates a five-step process designed to streamline the fine-tuning process, ensuring theoretical
foundations and the practical implementation are aligned.

By adhering to this methodological framework, the aim is to not only optimise the perfor-
mance of the fine-tuned Phi-2 model on specific tasks in a supply chain context, but also to
showcase the rationale behind each step taken in the fine-tuning process. With the help of
this methodological framework, this chapter aims to provide a comprehensive understand-
ing of the strategies used and their implications for the performance of the fine-tuned Phi-2
model.

35

4. Method

4.1 Data Gathering and Formatting
The datasets we use in this thesis are introduced in Section 3. We opt to use open source data
in this project. Using confidential or proprietary data can limit transparency, while using
open source data allows for benchmarking and reproduceability. In order to adhere to the
QA format suitable for text generation and prompting in general, and Phi-2 in particular,
we format the data to produce datasets suitable for the task of fine-tuning an SLM. Similar
formatting is done for both the OptiGuide benchmark datasets and the JSSP dataset.

4.2 Base Model
In order to evaluate and assess the performance of the fine-tuned Phi-2 models, it is essential
to have an understanding of the performance of the base Phi-2 model. Although this is not
a comparative study, and the Phi-2 model is primarily designed specifically for fine-tuning,
we undertake a preliminary analysis on the base model to establish a reference point. This
analysis includes 2-shot prompting to gauge the model’s initial capabilities before fine-tuning.

4.2.1 Baseline Prompting
In order to investigate the impact of fine-tuning the model in the two areas handled in this
thesis, a baseline result is of interest. This baseline serves as a reference point for assessing
the effectiveness of subsequent fine-tuning efforts.

The initial step in the process of prompt learning involves formatting prompts in order to
encapsulate context, questions and relevant information in order for the model to generate a
relevant answer (see Section 3.3.1 for further details). In the second step the model is inferred
with the crafted prompts. Lastly, we evaluate the generated output using metrics defined in
Section 4.4.

4.3 Fine-tuned Models
Exploring fine-tuned versions of Phi-2 is the main research interest of this thesis. Therefore,
it is essential to provide a detailed explanation of the fine-tuning process and outline the
associated requirements thoroughly.

4.3.1 Fine-tuning Process
The process of fine-tuning Phi-2 is a five-step process. These five steps ensure the pre-trained
model is leveraged in a relatively inexpensive, efficient and useful way. We present a high-level
overview of the steps taken in order to fine-tune the Phi-2 model:

1. Find relevant data. Ensuring that the model is fine-tuned on relevant, high-quality
data is vital for performance. Reliable training data for the task at hand must be used
to provide the necessary context and information for the model to learn effectively. In

36

4.3 Fine-tuned Models

this thesis, benchmark datasets for what-if scenarios in supply chain optimisation are
used in one scenario and JSSP instances in another.

2. Ensure infrastructure requirements are met. In order to initiate the fine-tuning pro-
cess, it is essential to ensure that the infrastructure meets the necessary requirements
for efficient training. This includes having access to suitable hardware resources such
as a graphics processing unit (GPU) and sufficient storage capacity for the dataset and
the base model.

3. Use techniques to limit memory usage. Fine-tuning a language model like Phi-2 can
be resource-intensive, particularly in terms of memory usage. Even though Phi-2 is
categorised as a small language model, it still has 2.7 billion parameters. Employing
techniques such as quantisation and using a smaller dataset helps manage memory
usage effectively.

4. Train the relevant layers. During fine-tuning, it is crucial to selectively update the pa-
rameters of the pre-trained model to adapt it to the specific task or domain. Typically,
only a subset of layers in the model are fine-tuned, while the rest are kept frozen to
retain the knowledge learned during pre-training. We select the layers to be trained
on the fine-tuning dataset.

5. Evaluate the results. Once the fine-tuning process is complete, it is important to eval-
uate the performance of the tuned model on a validation set or through other appro-
priate metrics. Furthermore, we look at different metrics such as ROUGE and BLEU
to evaluate the performance. This helps assess whether the fine-tuning process has led
to improvements in model performance in the specific domain and whether any fur-
ther adjustments are necessary. Also, the fine-tuned model can be loaded and used for
prompting.

4.3.2 Infrastructure
For any project, it is essential to carefully consider the infrastructure for building, training
and deploying. This becomes even more crucial when dealing with machine learning projects
that involve models containing billions of parameters.

Azure
The entire project was hosted on Microsoft Azure, utilising its robust cloud computing in-
frastructure. The implementation, comprising of training and evaluation, was done using
Python. Python, often used together with Jupyter Notebook, is a tool with which most mod-
ern language models are designed, trained and evaluated. This way of working is prevalent
in the field of machine learning, especially for natural language processing tasks. Microsoft
Azure provide a comprehensive set of services suitable for this project and workflow, along
with offering impressive scalability and reliability.

Firstly, modern neural networks, including models based on the Transformer architecture,
require a great amount of computing power. Language models, small or large, typically re-
quire GPU (see Section 4.3.2) for training. Azure streamlines access to GPUs hosted as a cloud

37

4. Method

service by Microsoft through a virtual machine (VM). This enables us as students to conduct
research which involves computationally heavy tasks, such as training and fine-tuning lan-
guage models. Access to computing resources can easily be scaled up or down which adds
flexibility to the project. For the purpose of the tasks that are performed in this thesis, it
offers a similar, but far more holistic, service similar to the popular Google Colaboratory in
Google Drive.

Azure provides many services such as Kubernetes or Docker which adds flexibility and en-
sures projects can be hosted end to end on Azure. In a sense, Azure is an end-to-end plat-
form for hosting machine learning projects. Azure also offers source control and the use
of pipelines. Furthermore, one has direct access to many language models in Azure via the
Azure Machine Learning portal.

Furthermore, Azure Machine Learning Studio offers several built-in tools for fine-tuning and
evaluation, where hyperparameters are easily set and changed. The training process is set up
as a pipeline within Azure to make use of the chosen compute instance, which in our case is
a specific GPU. The trained model can then be registered and deployed as endpoint within
Azure to be used for inference. The full model weights can also be directly uploaded to Hug-
ging Face or downloaded. For our research purposes, this is not something we utilised. The
base model is simply loaded from Hugging Face, a machine learning platform and community
where one can find all the latest models and architectures from the leading AI companies.
The Hugging Face identifier for Phi-2 is microsoft/phi-2.

Hosting the project on Azure provides a scalable, reliable, and efficient infrastructure, en-
abling training, data handling and model deployment throughout the lifespan of this project.
Most importantly, it allows us to leverage the vast computational resources needed for train-
ing.

Graphics Processing Unit (GPU)
Graphics processing units are specialised hardware components designed to handle and ac-
celerate the rendering of images and graphics in computers. Originally developed for gaming
and graphical applications, GPUs have found extensive use in artificial intelligence.

GPUs play a crucial role in training and running complex models, such as large language
models. One of the main research interests of fine-tuning Phi-2 is the relatively small com-
plexity of the model compared to the pre-training of LLMs like GPT4 that requires large
amounts of GPU computing resources. These requirements make dealing with LLMs very
costly and thus very cumbersome for anyone – individual or organisation – other than the
biggest technology companies. Unlike traditional central processing units (CPUs), GPUs are
highly parallelised, meaning they can perform multiple computations simultaneously, making
them ideal for handling the massive amounts of matrix multiplications and neural network
computations involved in training Phi-2.

38

4.3 Fine-tuned Models

In the fine-tuning process of Phi-2, a number of layers are selected to be retrained. Phi-2 is
a model with 2.7 billion parameters, meaning that hundreds of millions of parameters are
fine-tuned during training. This requires performing numerous matrix operations and back-
propagation steps, which is computationally very intensive.

For the training conducted during the fine-tuning of Phi-2 we are using a scalable compute
cluster from NVIDIA, with its specifications outlined in Table 4.1. The training time using
this GPU for the fine-tuning process is presented in Table 4.2 and Table 4.3.

vCPU Memory Temp Disk NVMe Disks GPU GPU Memory
24 220 GiB 64 GiB 960 GB 1 80 GiB

Table 4.1: Specifications for compute cluster Standard_NC24ads_A100_v4
used in Azure for the fine-tuning of Phi-2 models. This compute cluster has
24 vCPU cores with 220 GiB RAM and one GPU with 80 GiB RAM. The GPU
is an NVIDIA A100 PCIe Tensor Core GPU. The computer cluster also has 64
GiB temporary disk storage and 960 GB NVMe (Non-Volatile Memory express)
SSD (Solid-State Drive) storage.

4.3.3 Memory Optimisation Techniques in Python
We describe how the memory optimisation techniques introduced in Section 2.3.9 and LoRA,
introduced in Section 2.3.8, are used in Python.

Quantisation
To effectively reduce the memory usage during the fine-tuning of the model, the model is
quantised during training. The model can be quantised to a set number of bits as shown
by the results of QLoRA (see Section 2.3.9). Quantisation in Python was done using the
bitsandbytes library (HuggingFace, 2024). In consideration with the GPU architecture
used, depending on during which stage of the project the training was conducted, floating
point tensors were used, rather than brain floats.

DeepSpeed
The techniques of DeepSpeed, outlined in Section 2.3.9, are applied during the training phase.
In Azure, there is a choice between stage 2 and stage 3 DeepSpeed, where stage 2 enables
parallelism optimisation and stage 3 further memory reduction through techniques such as
parameter partitioning. During training in this project, stage 2 was used in Azure.

LoRA in Python
To fine-tune the model, we select the layers that are to be trained with the fine-tuning data.
Generally, one only re-trains a number of the last layers to fine-tune a base model. We train

39

4. Method

the q, v, fc1 and fc2 layers during fine-tuning. We do this using LoRA, a technique out-
lined in Section 2.3.8. When fine-tuning using LoRA, it is central that a rank, r, is deter-
mined before the training commences. Furthermore, LoRA usage is enabled through the
PEFT (Parameter-Efficient Fine-Tuning) library in Python. Also, LoRA alpha, α, is defined
as a spreading factor. The LoRA alpha parameter is typically set to 1 or 2 times the value of
the LoRA rank, r.

4.3.4 Training Process
During fine-tuning, the layers specified in Section 4.3.3 are trained in a similar form to how
they were (pre-)trained for the base model. In light of this, the same considerations as when
training a base model must be taken. Parameters such as number of epochs, learning rate and
batch size need to be determined. Furthermore, fine-tuning and memory optimisation re-
lated parameters such as LoRA r and DeepSpeed need to be determined. Also, the optimiser
is chosen as the AdamW optimiser, a derivative of the popular Adam (Adaptive Moment Es-
timation) optimiser that incorporates weight decay into the optimisation process (Loshchilov
and Hutter, 2017).

It is important to note that training has been run several times, with different parameter
setups, to achieve the best results. Due to the heavy computational burden and requirements,
we are not able to perform a grid search or use other techniques to find the optimal parameter
and hyperparameter setup. The values of the parameters presented in Tables 4.2 and 4.3 are
the parameters used for the runs that achieved the best results. For instance, these runs do
not utilise QLoRA. Instead, the models are trained using LoRA and DeepSpeed techniques.
In the same manner, the decaying rate of the weights is zero, essentially meaning an Adam
optimiser was used as opposed to an AdamW optimiser.

We used the parameters and hyperparameters presented in Table 4.2 for the fine-tuning task
on the OptiGuide benchmark datasets while Table 4.3 presents the parameter and hyperpa-
rameter values used for the fine-tuning task on the JSSP dataset.

40

4.4 Evaluation

Parameter Value
Epochs 5

LoRA alpha α 16
LoRA rank r 16

LoRA dropout 0.15
Batch size 10

Max sequence length 2048
Learning rate 0.0003

DeepSpeed stage 2
Linear warmup steps 20

Weight decay 0
AdamW β1 0.9
AdamW β2 0.999
AdamW ϵ 1e-8

Evaluation steps 500
Training time 2h

Table 4.2: Parameter and hyperparameter setup for the fine-tuning task of Phi-2
on OptiGuide benchmark datasets. The training time is also included.

4.4 Evaluation
The fine-tuning task involves specialising the model in a particular subject or task, requiring
an evaluation accommodating for this fact. Commonly seen in evaluation of the general per-
formance of LLMs and SLMs, a plethora of tasks and benchmarks are used. For our purposes,
we use a couple of relevant and widely recognised metrics to assess the performance of both
the base Phi-2 model and the two fine-tuned Phi-2 models. This approach ensures a nuanced
evaluation of the results of this thesis.

4.4.1 Metrics
In order to evaluate both the base Phi-2 model and the two fine-tuned Phi-2 models, we
employ a number of metrics. For the OptiGuide benchmark datasets, we calculate the average
BLEU and ROUGE scores in a 0-shot setting on the test set for both the base model and the
fine-tuned model. We apply the same evaluation metrics on the base model and the model
fine-tuned for JSSP. The base model is prompted in a 2-shot setting and the fine-tuned model
is prompted in both a 0-shot and a 2-shot setting on the test set.

BLEU
BLEU (Bilingual Evaluation Understudy) score is a metric introduced by Papineni et al.
(2002). It is often employed to evaluate the quality of machine-generated translations, pri-
marily in natural language processing tasks like machine translation. However, it can also
find application in code generation tasks. In this context, the generated code is compared
against one or more reference codes to measure their similarity. BLEU computes precision

41

4. Method

Parameter Value
Epochs 5

LoRA alpha α 32
LoRA rank r 32

LoRA dropout 0.15
Batch size 64

Max sequence length 2048
Learning rate 0.0003

DeepSpeed stage 2
Linear warmup steps 20

Weight decay 0
AdamW β1 0.9
AdamW β2 0.999
AdamW ϵ 1e-8

Evaluation steps 500
Training time 8h

Table 4.3: Parameter and hyperparameter setup for the fine-tuning task of Phi-2
on JSSP. The training time is also included.

by tallying the number of overlapping n-grams (sequential sequences of n tokens) between
the generated and reference codes. We calculate an average BLEU score based on the scores
for BLEU-1, BLEU-2, BLEU-3 and BLEU-4, corresponding to the BLEU score for unigrams,
bigrams, trigrams, and quadgrams.

Additionally, it incorporates a brevity penalty to address the tendency of machine-generated
code to be shorter than reference code (Papineni et al., 2002). Similar to its use in translation
tasks, a higher BLEU score in code generation suggests a closer match between the gener-
ated and reference codes. Despite its utility, BLEU has limitations, including its reliance on
n-gram precision and insensitivity to code semantics, necessitating the employment of sup-
plementary evaluation methods for a comprehensive evaluation of code generation quality
(Papineni et al., 2002).

ROUGE
ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of metrics introduced
by Lin (2004). The metrics are widely employed to assess the quality of machine-generated
text, with applications spanning tasks such as text summarisation and machine translation.
It evaluates the degree of overlap between the generated text and reference summaries, utilis-
ing measures like n-gram overlap and word overlap. ROUGE computes precision, recall, and
F1-score, offering valuable insights into the effectiveness of the generated text (Lin, 2004).
We calculate the average ROUGE score based on the scores for ROUGE-1 and ROUGE-2,
corresponding to the ROUGE score for unigrams and bigrams.

In addition to the traditional ROUGE metrics, ROUGE-L specifically focuses on the longest
common subsequence (LCS) between the model-generated text and the reference. This met-

42

4.4 Evaluation

ric places a greater emphasis on capturing the order of elements in the generated text com-
pared to other ROUGE variants, providing a more nuanced evaluation of the output’s co-
herence (Lin, 2004). While traditional ROUGE metrics offer a comprehensive evaluation of
text quality, ROUGE-L offers additional insights into the model’s ability to produce output
that closely resembles the reference in terms of order and structure.

4.4.2 Evaluating the OptiGuide Benchmark Datasets
For the fine-tuning task on the OptiGuide benchmark datasets, we evaluate the performance
using the metrics outlined in the above sections. The BLEU score is reported both for the
0-shot prompts given to the base Phi-2 model, as well as for the entire test set for the fine-
tuned Phi-2 model. Additionally, we report the ROUGE score along with the the ROUGE-L
score. We use the Phi-2 pre-trained tokenizer for the base model performance evaluation and
an updated tokenizer for the fine-tuned Phi-2 model. Finally, we conduct systematic tests on
the generated Python code to verify that it is executable.

43

4. Method

4.4.3 Evaluating the Job Shop Scheduling Dataset
We evaluate the performance on the job shop scheduling problem by calculating the above
mentioned metrics. In order to acquire a baseline score, the base model is evaluated with a 2-
shot setting on the test set. The fine-tuned model is then evaluated on the test set, both with a
0-shot setting and a 2-shot setting. Moreover, a core detail in BLEU score is its dependence on
n-grams. Therefore, when calculating the score, it is of great importance how the strings are
tokenized. We use two different tokenizers; a white-space tokenizer and the Phi-2 pre-trained
tokenizer which ultimately is a byte-pair encoding (BPE) tokenizer. A correct solution is very
much dependent on the time intervals and specific task numbers, meaning that a white-space
tokenizer retains the ability to accurately tokenize the strings. However, it is still of interest
to also observe the BLEU score using the Phi-2 tokenizer. As a final evaluation metric we
report the average makespan difference.

44

Chapter 5

Results

This chapter provides the results for the research conducted in this thesis. The results are
structured as two distinct sections, one for each task. Section 5.1 showcases the results for
the OptiGuide benchmark datasets and Section 5.2 showcases the results for the JSSP dataset.
This chapter provides results for the experiments done following the methodology in Chapter
4. The results lay the foundation for the discussion and conclusion, and are commented
briefly in this chapter.

5.1 OptiGuide Benchmark Datasets
As outlined in Section 4.4 we evaluate the performance of Phi-2 on the OptiGuide benchmark
datasets in two settings. Firstly, we evaluate the base Phi-2 model performance on 0-shot
prompts for the entire test set. Then, we fine-tune the model on the training dataset defined
in Section 3 and lastly we evaluate, again, the performance of the fine-tuned Phi-2 model on
the test set. We use the metrics defined in Section 4.4. The first metric is BLEU, which is an
average score of BLEU-1, BLEU-2, BLEU-3 and BLEU-4. Secondly, we use ROUGE, which is
an average of ROUGE-1 and ROUGE-2. Thirdly, we use ROUGE-L and lastly we report the
accuracy as defined in Section 4.4.

Table 5.1 and Figure 5.1 present the summarised results. The BLEU score for the 0-shot
prompted base model is very low at only 1.34%. The fine-tuned model on the other hand
performs much better with an impressive BLEU score of 98.6%. A very high BLEU score on a
code generation task means that nearly all the n-grams in the generated code match the refer-
ence answer code. Simultaneously, the ROUGE score for the 0-shot prompted base model is
also low at 7.14%, while the fine-tuned model is scored at 99.4%. Furthermore, the ROUGE-
L score lands at 9.55% and 99.4% for the base model and the fine-tuned model respectively.
In summary, the results differ vastly between the base model indicating that fine-tuning the
model clearly leverages the underlying strengths of Phi-2. Importantly, we manually confirm

45

5. Results

that the generated Python code is syntactically correct and executable. This is the case for
the entire test set.

Phi-2 model BLEU ROUGE ROUGE-L
Baseline
0-shot

1.34 7.14 9.55

Fine-tuned
0-shot

98.6 99.4 99.4

Table 5.1: The observed results on the OptiGuide benchmark datasets. The base-
line score was calculated on the entire test set using 0-shot prompts.

Figure 5.1: Visualisation of the scores presented in Table 5.1.

We also observe that the training loss decreases and converges to a very low value of around 1%
after five epochs. Figure 5.2 depicts the evolution of the training loss during the five epochs
of fine-tuning of the Phi-2 model. We observe the same result for the validation loss, which
also consistently decreases. After five epochs, the validation loss is 1.45% as seen in Figure 5.3.
By systematically comparing the ground truths with the predictions, we conclude that 100%
of the generated code can be added to the supply chain model code. This means that all code
generated is executable.

46

5.2 Job Shop Scheduling Dataset

Figure 5.2: Training loss during
fine-tuning of the Phi-2 model
on the OptiGuide benchmark
datasets.

Figure 5.3: Validation loss dur-
ing fine-tuning of the Phi-2 model
on the OptiGuide benchmark
datasets.

5.2 Job Shop Scheduling Dataset
We evaluate the performance as stated in Section 4.4 and report the obtained results for the
JSSP dataset in Table 5.2 and Figure 5.4. The baseline Phi-2 model, with a 2-shot setting,
shows modest results across all scores: BLEU with white-space tokenizer at 0.53, BLEU with
Phi tokenizer at 41.0, ROUGE at 46.6, ROUGE-L at 39.3 and finally an average makespan
difference of 101. We observe a significant improvement for the fine-tuned model with a
0-shot setting. The scores improved dramatically; BLEU with white-space tokenizer at 21.7,
BLEU with Phi tokenizer at 72.4, ROUGE at 68.9, ROUGE-L at 63.1 and finally an average
makespan difference of 40. However, the fine-tuned model in a 2-shot setting shows scores
slightly better than the baseline; BLEU with white-space tokenizer at 5.00, BLEU with Phi
tokenizer at 42.8, ROUGE at 48.6, ROUGE-L at 42.3 and finally an average makespan differ-
ence of 67. As stated in Section 5.1, both the BLEU and ROUGE score are averages. However,
even though the performance greatly increased for the fine-tuned model, it is important to
note that it was not able to fully complete any of the problem instances. The model con-
sistently manages to schedule only a couple of the first tasks and machines correctly before
making an error.

Furthermore, Figure 5.5 and Figure 5.6 depict training and validation loss respectively dur-
ing the fine-tuning process of Phi-2 on JSSP. We can observe that the training loss drastically
reduces during training. The validation loss follows the steep decrease of the training loss
during the entire training.

47

5. Results

Phi-2 model BLEU
WS

BLEU
Phi

ROUGE ROUGE-L Makespan Diff.
(Avg.)

Baseline
2-shot

0.53 41.0 46.6 39.3 101

Fine-tuned
0-shot

21.7 72.4 68.9 63.1 40

Fine-tuned
2-shot

5.00 42.8 48.6 42.3 67

Table 5.2: The observed results on the JSSP test-dataset. WS refers to white-
space tokenizer, and Phi to the Phi tokenizer. The scores for BLEU, ROUGE
and ROUGE-L are percentages and average makespan difference is the difference
between the optimal answer and the predicted answer.

Figure 5.4: Visualisation of the scores presented in Table 5.2. Note that average
makespan difference is not visualised here because it is not measured in percent-
ages.

48

5.2 Job Shop Scheduling Dataset

Figure 5.5: Training loss during
fine-tuning of the Phi-2 model on
the JSSP dataset.

Figure 5.6: Validation loss during
fine-tuning of the Phi-2 model on
the JSSP dataset.

49

5. Results

50

Chapter 6

Discussion

This chapter further elaborates on the results presented in Chapter 5 and provides thoughts
on the implications, considerations and significance regarding the results. Section 6.1 pro-
vides an analysis of these factors along with underlying reasons for the outcome of the results,
for both datasets. Section 6.2 elaborates further on the performance of SLMs and the prospect
of utilising them for fine-tuning. Finally, Section 6.3 covers the considerations and limita-
tions of our work. The discussion and its outcomes provide the necessary background for the
conclusions drawn in Chapter 7.

6.1 Implications of Results
The results, presented in Chapter 5, provide insight into the performance of both the base
Phi-2 model and fine-tuned Phi-2 iterations on two different tasks in supply chain optimisa-
tion. In a time of ever-growing models boosting parameter sizes in the trillions, SLMs such
as Phi models can help accelerate the democratisation of AI in general and language models
in particular. As we hypothesised in the first phase of this project, smaller models such as
the Phi models benefit from fine-tuning and can become diligent performers of specific tasks
once fine-tuned. The results we achieve strongly support this.

The fine-tuned models heavily outperform the base Phi-2 model, indicating the fine-tuning
to be successful. While the metrics we use to evaluate the performance of the models are
relevant and frequently used in both research and industry, we dive deeper into the analysis
by interpreting the results. A high BLEU score or ROUGE score indicates that the n-grams
generated by the model resemble the reference answer. For many tasks, including code writ-
ing, there are several different viable solutions to a given task. However, these metrics do not
capture this aspect to an extent, which can possibly imply a poor BLEU score. We present
results with considerably high scores for the fine-tuned iterations of the Phi-2 model, mean-
ing our results seemingly do not suffer from this phenomenon.

51

6. Discussion

Additionally, we assess how well the model performs on two very different tasks, which can
lead to significant variations in results. For instance, while the base Phi-2 model undergoes
some pre-training for Python code generation, it lacks training specifically for solving opti-
misation problems. While this is an indicator of good performance on code generation tasks,
it is essential to consider other factors when assessing performance using predefined metrics.
One such factor, among many, that can influence the model’s performance is the tendency
for the model to hallucinate. This is a phenomenon observed not only in larger models but
particularly prevalent in the Phi-2 model.

When assessing model performance with metrics such as BLEU and ROUGE, performance
drops rapidly when the output from the model is not formatted as expected. This is one of
the factors behind the large jump in performance from base model to fine-tuned. Another
factor is that the base model tends to repeat its answers, seemingly indefinitely or until its
token size window is filled. These factors are not a discovery of this work, but rather known
facts provided by the authors of the model. Microsoft informs that the base Phi-2 model
suffers from unreliable responses to instruction, from which it follows that the model can
struggle or fail to adhere to nuanced instructions. The base model has a limited scope for
code, as it has only been pre-trained on Python code and common packages within Python.
Finally, the model suffers from verbosity and hallucination. Microsoft state that Phi-2 often
produces irrelevant or extra text following its first answer. The authors believe this is due to
the textbook based training data (Microsoft, 2024).

6.1.1 OptiGuide Benchmark Datasets
The results observed on the code generation task for the OptiGuide benchmark datasets
differ greatly between the base model and the fine-tuned model in terms of the predefined
metrics. As seen in Section 5, the base model has a BLEU score of a mere 1.34%, which is evi-
dently very low. For this task, the factors presented above, in Section 6.1, strongly affect the
performance of the base model. On the other hand, as hypothesised, fine-tuning the Phi-2
model for this specific task improves the performance vastly. The fine-tuned model answers
nearly every query correctly, considering both the metrics BLEU and ROUGE as well as the
executability of the generated code. As reported, the BLEU score for the fine-tuned model is
98.6%. This is a huge leap in performance from the base Phi-2 model.

The results indicate that fine-tuning is very efficient and improves performance greatly.
When the model is fine-tuned on the OptiGuide benchmark datasets, this is clearly true.
The fine-tuned model performs very well on unseen questions for the six different models
in the benchmark. During fine-tuning, the model has gained the ability to limit verbosity
and the tendency to hallucinate. It very diligently answers with only the new Python code
needed, and no further explanations. This result is important when considering that such a
fine-tuned SLM could serve as one part of a larger end-to-end framework or system, where
the fine-tuned model’s output is to be passed on to another part of the system. In this kind
of scenario, it is important to filter out the noise that the base model’s verbosity and hallu-
cinations generates.

52

6.1 Implications of Results

Given that the Phi-2 model undergoes pre-training specifically on Python code, it is hardly
surprising that the fine-tuned model swiftly attains proficiency in generating new Python
code in a supply chain setting for what-if analysis. Our findings suggest that through fine-
tuning, the model adapts to a contextualised set of tasks, demonstrating its ability to rapidly
converge to correct answers. This outcome provides valuable insight on the potential of fine-
tuning SLMs. With this insight, organisations and individuals seeking to leverage generative
AI capabilities for code generation may find interest in fine-tuning Phi models for their tasks.

For this task, we must also consider the possibility that the model overfits to the training
data during fine-tuning. However, looking at Section 5.1, we see that both the training and
validation loss are very low. Also, with the number of epochs being a mere five, the prospect
of overfitting is marginalised. However, we do observe that the validation rises from the
penultimate epoch which indicates overfitting. Looking closer, we conclude that this change
is minimal: 0.0005. Finally, the use of six different models in the benchmark reduces the risk
of overfitting to a single task.

6.1.2 Job Shop Scheduling Dataset
As anticipated, the base Phi-2 model yielded poor results. Given that the base model is a raw,
untuned model, it is natural for it to hallucinate and endlessly generate new tokens. This
was observed in the predictions it generated. However, by fine-tuning the model, training it
on this specific task, the scores increased dramatically, at least in a 0-shot setting, suggesting
a novel understanding of the problem and how to solve it, even though it was not able to
correctly complete any of the problems. Explanations for this fact include that the size of the
problem instances was perhaps too big and complex for a small language model to actually
solve, or that a bigger, more complex model might be able to more comprehensively model
the relationship between the problem and solution. Moreover, the fine-tuned model showed
a suboptimal understanding of the problem when using a 2-shot setting, performing in line
with the base model, which possibly is an indication of overfitting to the exact format used
during training. Finally, we observe that the average makespan difference greatly diminishes
for the fine-tuned model which also suggests that it has gathered knowledge about the prob-
lem.

Furthermore, we also observe that the validation loss neatly follows the training loss across
all epochs during fine-tuning. Generally, this is a sign that the model fits well to unseen data.
However, both the training loss and validation loss stayed relatively high during the entire
training, continuously remaining above 40%. This suggests that the problem itself might be
too complex to model. Looking at the training and validation loss of the fine-tuned Phi-2
model on the OptiGuide benchmark datasets, we observe that there is a substantial differ-
ence. For this task, the loss is significantly higher, indicating poor convergence towards an
optimal weight space minimum.

Usually, since the nature of language models lies in language, they are not developed to solve
complex optimisation problems. The Phi-2 pre-trained base model has predominantly only
been trained on textbook like data, solving common physics, maths and logical problems, as
well as generating Python code (Microsoft, 2024). Despite the Phi-2 model’s impressive nat-

53

6. Discussion

ural language capabilities and its innovative approach to problem-solving, it could benefit
from additional or improved training and potentially better data for further enhancement
to more fluently and accurately solve optimisation problems. Another approach to solve op-
timisation problems like these could be to utilise reinforcement learning.

Transformer based language models have demonstrated remarkable proficiency across var-
ious domains. However, because of the immense parameter size of the models implicating
immense complexity of the system, it is notably difficult to explain the behaviour of the
model. Although it is possible to visualise and observe all 2.7 billion parameters during in-
ference it is certainly not viable. Ultimately, because of this, the model can be seen as a black
box. In order to fully trust models and employ them, explainability is of utmost concern.
This limits our ability to draw conclusions about the model – especially when fine-tuned.

6.2 Fine-tuning SLMs

Elaborating further on the prospect of fine-tuning SLMs, we consider how they stand up
against more popular LLMs. For instance, the most used series of LLMs, GPT, has a steadily
increasing parameter size. The latest iteration in the series, GPT4, is estimated to have 1.76
trillion parameters. To fine-tune such a model would be far more costly than the fine-tuning
we perform for this thesis. While this may be a viable option for the largest companies, SLMs
such as the Phi models provide a much more reasonable choice for most organisations and
individuals. As our results show that fine-tuning these models increases their performance
on specific tasks, organisations can seek to do the same for their specialised tasks.

The development of SLMs, like LLMs, is all but stagnant. As Microsoft released the lat-
est iteration in the Phi series, Phi-3, the performance of smaller models cut the gap to larger
models even further. Phi-3 has a similar performance to GPT3.5, a model with a parameter
size of around 175 billion. That is around 46 times more than the 3.8 billion of Phi-3-mini.
With similar performance already from the base-model, fine-tuning at a relatively low cost
can be a powerful tool for organisations performing specific tasks. Simultaneously, the pace
of development of fine-tuning techniques is not any less rapid. Modern approaches, limit-
ing the memory requirements and thus cost, provide even more opportunities to perform
fine-tuning on SLMs. Furthermore, Phi models are not the only ones in their class, facing
competition from models such as Mistral 7B, Llama 3 8B and Gemma 7B. Combined, these
conditions provide a promising platform for further development and usage of language mod-
els to solve complex tasks at a reduced cost.

Finally, we note that fine-tuning a Phi-2 model has potential in a specific domain such as sup-
ply chain optimisation. SLMs have a good ability to adapt to and learn contextual specifics
of a given domain. The results of our work apply not only to supply chain related tasks, but
show that the methods applied can be useful in a supply chain context. Fine-tuned SLMs can
be used by either supply chain managers or engineers engaged in supply chain optimisation.

54

6.3 Considerations and Limitations

6.3 Considerations and Limitations
Research in modern computer science requires thoughtful considerations. In a time of grow-
ing generative AI capacity, ethical considerations must be made. Modern models can produce
toxic or inappropriate content, all while requiring massive amounts of computational power.
We consider and reflect on our position as researchers in this domain.

6.3.1 Resources
Training language models requires substantial computational resources. Pre-training an LLM
requires GPUs in the hundreds. For SLMs like the Phi models, several GPUs are still needed
and training typically lasts for days. When fine-tuning an SLM as done in this project, GPU
resources are also needed. These resources are sought-after and the fine-tuning process is
expensive, both in terms of computation and in terms of cost. The GPU resource utilised for
fine-tuning is detailed in Section 4.3.2. While techniques such as quantisation, parallelism
and mixed precision training can be – and in our research are – employed to ease computa-
tional burden, the fact of the matter is that working with state-of-the-art language models
today, whether large or small, requires expensive resources. Smaller models and the above
mentioned techniques are steps on the way to democratising the development and usage of
language models. Still, it is important to recognise the privileged position in which we are,
to be able to work with these resources, as our research is fully dependent on it.

6.3.2 Ethical Considerations
The advent of Transformer based language models has ushered in a new era of possibilities
within artificial intelligence. However, this recent progress is not without its ethical and
environmental concerns. The immense computational power required to train these models
is stunning, consuming vast amounts of energy, which ultimately raises sustainability con-
cerns. Furthermore, the cost associated with developing these models presents an obstacle,
since hugely expensive and specialised hardware is required, possibly limiting access to a select
few who can afford them. While smaller models like the Phi models, and especially the new
Phi-3, theoretically can run on smaller machines such as laptops and smart mobiles (Abdin
et al., 2024), they still need large amounts of energy to be created. Despite these facts, there
is hope that these technologies could contribute positively to combating climate change. Yet,
the paradox remains: the models designed to help us may also be contributing to the prob-
lem, adding to the need of responsible innovation and use of such powerful technologies.
Finally, it is therefore important to not only focus on the technological achievement in de-
veloping tools like these, but also reminisce on the consequences and possibilities for misuse
they create.

55

6. Discussion

56

Chapter 7

Conclusions

This chapter presents the conclusions from the results, presented in Chapter 5 and the follow-
ing discussion, outlined in Chapter 6 in this paper. Section 7.1 presents the main conclusions
drawn, while Section 7.2 lays forward potential future work using the results in this paper as
a foundation.

7.1 Main Conclusions
In this thesis we research the performance and potential use of an SLM fine-tuned for spe-
cific tasks. We look closer at the Phi series of models and in particular we utilise Phi-2 for
fine-tuning on supply chain optimisation tasks. We evaluate the performance of the base
Phi-2 model and fine-tuned versions on two distinct tasks within supply chain optimisation,
using two different datasets. The results show that fine-tuning increases the performance of
Phi-2 vastly using the pre-defined metrics BLEU and ROUGE. For the code generation for
what-if analysis task, the performance increases with 97 percentage points in a 0-shot set-
ting when evaluated with BLEU, and increases with 92 percentage points in a 0-shot setting
when evaluated with ROUGE. For the JSSP task, the performance increases with 30 percent-
age points in a 0-shot setting when evaluated with BLEU, and increases with 22 percentage
points in a 0-shot setting when evaluated with ROUGE. While complex problems require
thorough evaluation, these metrics indicate a substantial jump in model performance when
fine-tuned. Importantly, while the base Phi-2 model suffers from hallucination and verbosity,
the fine-tuned models exhibit improvement in task-specific coherence.

Furthermore, fine-tuning an SLM such as Phi-2 is viable considering the resource require-
ments. Using modern memory optimisation techniques like DeepSpeed and LoRA, Phi-2
can be fine-tuned using one single GPU. While we do not deliberately measure memory us-
age during fine-tuning, we use one NVIDIA A100 GPU during training which is more than
sufficient for swiftly fine-tuning a Phi-2 model. To fine-tune larger models in the LLM class,

57

7. Conclusions

a substantial increase in resources would be required. In conclusion, organisations can lever-
age powerful capabilities of fine-tuned SLMs for a fraction of the cost of LLM fine-tuning.

With this in mind, we look back upon the three research questions we define in Section
1.1.1.

1. How well can a small language model perform when fine-tuned on specific tasks in
supply chain optimisation?

• A smaller model such as Phi-2 can to some extent be fine-tuned to solve tasks
of different complexity. A fine-tuned model can correctly generate new Python
code in what-if analysis within supply chain optimisation. On the other hand, a
model fine-tuned on solving job shop scheduling tasks struggles to generate cor-
rect solutions. However, it still shows promising results, displaying novel knowl-
edge of how to solve the problem at hand. The results indicate that a small model
can be fine-tuned to tackle diverse tasks in supply chain optimisation.

2. To what extent does fine-tuning a small language model outperform prompt learning
for its pre-trained base model?

• Fine-tuned Phi-2 models greatly outperform the pre-trained base model using
prompt learning on two distinct tasks. For the code generation task, the fine-
tuned model in a 0-shot setting strongly outperforms the Baseline, which suffers
from hallucination and verbosity. For the job shop scheduling problem, the fine-
tuned model in a 0-shot setting strongly outperformed the same model with a
2-shot setting. In both settings, the fine-tuned model outperforms the Baseline.

3. Does the small parameter size and resource efficiency of small language models impact
their practical viability for fine-tuning on specific tasks?

• The small Phi-2 model can be fine-tuned to increase performance and solve ap-
plied tasks in a specific domain using relatively limited resources. Using state-of-
the-art memory optimisation techniques, Phi-2 can be fine-tuned without losing
performance. This makes fine-tuning small language models a viable option in
times of ever-growing model sizes and resource requirements.

7.2 Future Work
To extend our research, we propose a number of ideas for future work. First and foremost,
as of writing, a new model in the Phi series has been released – Phi-3 (Abdin et al., 2024),
unveiling new possibilities for SLMs in the area of supply chain optimisation. Our research
in this thesis can therefore naturally be extended with Phi-3. Furthermore, the use and fine-
tuning of other SLMs such as Llama 3 8B (Meta, 2024), Gemma 7B (Mesnard et al., 2024) or
Mistral 7B (Jiang et al., 2023) in this area is also of great interest. The use of different models
in the area of supply chain optimisation applies greatly in the case of OptiGuide. However,
research on optimisation problems such as JSSP might benefit more from another approach,
utilising reinforcement learning techniques for example.

58

7.2 Future Work

Additionally, new advancements are constantly being made in both the fields of machine
learning and natural language processing. The pace of development in the field of memory
optimisation techniques is rapid. Coupled with hardware advancements, especially in GPUs,
the process of fine-tuning has potential to become more available and efficient. The same
goes for the advancements of language models, both large and small. Remarkable advance-
ments are made at an unprecedented pace.

Finally, while this thesis covers two distinct cases in the area of supply chain optimisation,
our methodology can naturally be extended to other tasks in the same domain. Fine-tuning
an SLM to solve different types of tasks in supply chain optimisation can be done given ac-
cess to structured data. For example, our research can possibly be applied to tasks within risk
management or demand forecasting.

59

7. Conclusions

60

References

Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah, A., Awadalla, H., Bach, N.,
Bahree, A., Bakhtiari, A., Behl, H., Benhaim, A., Bilenko, M., Bjorck, J., Bubeck, S., Cai,
M., Mendes, C. C. T., Chen, W., Chaudhary, V., Chopra, P., Giorno, A. D., de Rosa, G.,
Dixon, M., Eldan, R., Iter, D., Garg, A., Goswami, A., Gunasekar, S., Haider, E., Hao, J.,
Hewett, R. J., Huynh, J., Javaheripi, M., Jin, X., Kauffmann, P., Karampatziakis, N., Kim,
D., Khademi, M., Kurilenko, L., Lee, J. R., Lee, Y. T., Li, Y., Liang, C., Liu, W., Lin, E., Lin,
Z., Madan, P., Mitra, A., Modi, H., Nguyen, A., Norick, B., Patra, B., Perez-Becker, D.,
Portet, T., Pryzant, R., Qin, H., Radmilac, M., Rosset, C., Roy, S., Ruwase, O., Saarikivi,
O., Saied, A., Salim, A., Santacroce, M., Shah, S., Shang, N., Sharma, H., Song, X., Tanaka,
M., Wang, X., Ward, R., Wang, G., Witte, P., Wyatt, M., Xu, C., Xu, J., Yadav, S., Yang,
F., Yang, Z., Yu, D., Zhang, C., Zhang, C., Zhang, J., Zhang, L. L., Zhang, Y., Zhang, Y.,
Zhang, Y., and Zhou, X. (2024). Phi-3 technical report: A highly capable language model
locally on your phone. arXiv:2404.14129.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang, E., Cai, C.,
Terry, M., Le, Q., and Sutton, C. (2021). Program synthesis with large language models.
arXiv:2108.07732.

Bläckberg, H. (2024). Optimizing Soak Test Reviews: A Comparative Study of Deep Learning
Architectures. Student Paper.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M.,
Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Rad-
ford, A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners.
arXiv:2005.14165.

Chen, B., Zhang, Z., Langrené, N., and Zhu, S. (2023a). Unleashing the potential of prompt
engineering in large language models: a comprehensive review. arXiv:2310.14735.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda, Y.,

61

REFERENCES

Joseph, N., Brockman, G., et al. (2021). Evaluating large language models trained on code.
arXiv:2107.03374.

Chen, X., Wang, Y., Du, Y., Hassoun, S., and Liu, L.-P. (2023b). On separate normalization
in self-supervised transformers. arXiv:2309.12931.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek,
J., Hilton, J., Nakano, R., Hesse, C., and Schulman, J. (2021). Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168. arXiv:2110.14168.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). Qlora: Efficient fine-
tuning of quantized llms. arXiv:2305.14314.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Burstein, J., Doran, C., and
Solorio, T., editors, Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational
Linguistics.

Floridi, L. and Chiriatti, M. (2020). Gpt-3: Its nature, scope, limits, and consequences. Minds
Mach., 30(4):681–694.

Frieske, R. and Shi, B. E. (2024). Hallucinations in neural automatic speech recognition:
Identifying errors and hallucinatory models. arXiv:2401.01572.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T., Giorno, A. D., Gopi, S., Javaheripi,
M., Kauffmann, P., de Rosa, G., Saarikivi, O., Salim, A., Shah, S., Behl, H. S., Wang, X.,
Bubeck, S., Eldan, R., Kalai, A. T., Lee, Y. T., and Li, Y. (2023). Textbooks are all you need.
arXiv:2306.11644.

Gurobi (2024). Python examples. https://www.gurobi.com/documentation/
current/examples/python_examples.html.

Haque, A. and Ghani, S. (2022). The storyteller: Computer vision driven context and content
generation system. Available at SSRN.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., and Chen, W. (2021). Lora:
Low-rank adaptation of large language models. arXiv:2016.09685.

HuggingFace (2024). bitsandbytes. https://huggingface.co/docs/bitsandbytes/
main/en/index.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., de las Casas, D.,
Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-A., Stock,
P., Scao, T. L., Lavril, T., Wang, T., Lacroix, T., and Sayed, W. E. (2023). Mistral 7b.
arXiv:2310.06825.

62

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.gurobi.com/documentation/current/examples/python_examples.html
https://www.gurobi.com/documentation/current/examples/python_examples.html
https://huggingface.co/docs/bitsandbytes/main/en/index
https://huggingface.co/docs/bitsandbytes/main/en/index

REFERENCES

Li, B., Mellou, K., Zhang, B., Pathuri, J., and Menache, I. (2023a). Large language models for
supply chain optimization. arXiv:2307.03875.

Li, Y., Bubeck, S., Eldan, R., Giorno, A. D., Gunasekar, S., and Lee, Y. T. (2023b). Textbooks
are all you need ii: phi-1.5 technical report. arXiv:2309.05463.

Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries. In Text Sum-
marization Branches Out, pages 74–81, Barcelona, Spain. Association for Computational
Linguistics.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig, G. (2021). Pre-train, prompt,
and predict: A systematic survey of prompting methods in natural language processing.
arXiv:2107.13586.

Loshchilov, I. and Hutter, F. (2017). Fixing weight decay regularization in adam.
arXiv:1711.05101.

McDonald, J., Li, B., Frey, N., Tiwari, D., Gadepally, V., and Samsi, S. (2022). Great power,
great responsibility: Recommendations for reducing energy for training language mod-
els. In Findings of the Association for Computational Linguistics: NAACL 2022. Association for
Computational Linguistics.

Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju, S., Pathak, S., Sifre, L., Rivière, M., Kale,
M. S., Love, J., Tafti, P., Hussenot, L., Sessa, P. G., Chowdhery, A., Roberts, A., Barua,
A., Botev, A., Castro-Ros, A., Slone, A., Héliou, A., Tacchetti, A., Bulanova, A., Paterson,
A., Tsai, B., Shahriari, B., Lan, C. L., Choquette-Choo, C. A., Crepy, C., Cer, D., Ippolito,
D., Reid, D., Buchatskaya, E., Ni, E., Noland, E., Yan, G., Tucker, G., Muraru, G.-C.,
Rozhdestvenskiy, G., Michalewski, H., Tenney, I., Grishchenko, I., Austin, J., Keeling, J.,
Labanowski, J., Lespiau, J.-B., Stanway, J., Brennan, J., Chen, J., Ferret, J., Chiu, J., Mao-
Jones, J., Lee, K., Yu, K., Millican, K., Sjoesund, L. L., Lee, L., Dixon, L., Reid, M., Mikuła,
M., Wirth, M., Sharman, M., Chinaev, N., Thain, N., Bachem, O., Chang, O., Wahltinez,
O., Bailey, P., Michel, P., Yotov, P., Chaabouni, R., Comanescu, R., Jana, R., Anil, R.,
McIlroy, R., Liu, R., Mullins, R., Smith, S. L., Borgeaud, S., Girgin, S., Douglas, S., Pandya,
S., Shakeri, S., De, S., Klimenko, T., Hennigan, T., Feinberg, V., Stokowiec, W., hui Chen,
Y., Ahmed, Z., Gong, Z., Warkentin, T., Peran, L., Giang, M., Farabet, C., Vinyals, O.,
Dean, J., Kavukcuoglu, K., Hassabis, D., Ghahramani, Z., Eck, D., Barral, J., Pereira, F.,
Collins, E., Joulin, A., Fiedel, N., Senter, E., Andreev, A., and Kenealy, K. (2024). Gemma:
Open models based on gemini research and technology. arXiv:2403.08295.

Meta (2024). Build the future of ai with meta llama 3. https://llama.meta.com/
llama3/.

Microsoft (2023). Phi-2: The surprising power of small language
models. https://www.microsoft.com/en-us/research/blog/
phi-2-the-surprising-power-of-small-language-models/.

Microsoft (2024). Azure ai studio: Microsoft phi-2. https://ai.azure.com/explore/
models/microsoft-phi-2/version/4/registry/azureml-msr.

63

https://llama.meta.com/llama3/
https://llama.meta.com/llama3/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://ai.azure.com/explore/models/microsoft-phi-2/version/4/registry/azureml-msr
https://ai.azure.com/explore/models/microsoft-phi-2/version/4/registry/azureml-msr

REFERENCES

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word repre-
sentations in vector space. arXiv:1301.3781.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer programming formulation of
traveling salesman problems. J. ACM, 7(4):326–329.

Nugues, P. (2016). Language Processing with Perl and Prolog: Theories, Implementation, and Appli-
cation. Cognitive Technologies. Springer Berlin Heidelberg.

Ohno, T. (1988). Toyota Production System: Beyond Large-Scale Production. Taylor & Francis.

Oliveira, E. e. and Pereira, T. (2023). A new generation? a discussion on deep generative
models in supply chains. In Alfnes, E., Romsdal, A., Strandhagen, J. O., von Cieminski, G.,
and Romero, D., editors, Advances in Production Management Systems. Production Management
Systems for Responsible Manufacturing, Service, and Logistics Futures, pages 444–457, Cham.
Springer Nature Switzerland.

OpenAI (2024). Fine-tuning. https://platform.openai.com/docs/guides/
fine-tuning.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic eval-
uation of machine translation. In Isabelle, P., Charniak, E., and Lin, D., editors, Proceed-
ings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318,
Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.

Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word repre-
sentation. In Moschitti, A., Pang, B., and Daelemans, W., editors, Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543,
Doha, Qatar. Association for Computational Linguistics.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury, J., Levskaya, A., Heek, J.,
Xiao, K., Agrawal, S., and Dean, J. (2022). Efficiently scaling transformer inference.
arXiv:2211.05102.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving lan-
guage understanding by generative pre-training. https://cdn.openai.com/
research-covers/languageunsupervised/language_understanding_paper.
pdf.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. (2020). Zero: Memory optimizations
toward training trillion parameter models. arXiv:1910.02054.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv:1609.04747.

Russell, S. and Norvig, P. (2020). Artificial Intelligence: A Modern Approach. Pearson series in
artificial intelligence. Pearson.

Samsi, S., Zhao, D., McDonald, J., Li, B., Michaleas, A., Jones, M., Bergeron, W., Kepner, J.,
Tiwari, D., and Gadepally, V. (2023). From words to watts: Benchmarking the energy costs
of large language model inference. arXiv:2310.03003.

64

https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://cdn.openai.com/research-covers/language unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language unsupervised/language_understanding_paper.pdf

REFERENCES

Sharir, O., Peleg, B., and Shoham, Y. (2020). The cost of training nlp models: A concise
overview. arXiv:2004.08900.

Shavaki, F. H. and Ghahnavieh, A. E. (2022). Applications of deep learning into supply chain
management: a systematic literature review and a framework for future research. Artificial
Intelligence Review, 56(5):4447–4489.

Taillard, E. D. (1993). Benchmarks for basic scheduling problems. European Journal of Opera-
tional Research, 64(2):278?285.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. arXiv:2307.03875.

Watson, M., Lewis, S., Cacioppi, P., and Jayaraman, J. (2012). Supply Chain Network Design:
Applying Optimization and Analytics to the Global Supply Chain. FT Press Operations Man-
agement. Pearson Education.

Zhou, Z., Li, L., Chen, X., and Li, A. (2023). Mini-giants: "small" language models and open
source win-win. arXiv:2307.08189.

65

REFERENCES

66

Appendices

67

Appendix A

Abbreviations

AI Artificial Intelligence

BERT Bidirectional Encoder Representations from Transformers

BLEU Bilingual Evaluation Understudy

BPE Byte-Pair Encoding

CPU Central Processing Unit

GPT Generative Pre-trained Transformer

GPU Graphics Processing Unit

JIT Just-in-Time

JSSP Job Shop Scheduling Problem

LLM Large Language Model

LCS Longest Common Subsequence

LP Linear Programming

LoRA Low-Rank Adaptation

MIP Mixed Integer Programming

MBPP Mostly Basic Python Programming

ML Machine Learning

MLM Masked Language Modelling

69

A. Abbreviations

MLP Multi-Layer Perceptron

NLP Natural Language Processing

NVMe Non-Volatile Memory express

PEFT Parameter-Efficient Fine-Tuning

QA Question-Answer

QLoRA Quantised Low-Rank Adaptation

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

ROUGE Recall-Oriented Understudy for Gisting Evaluation

SOTA State-of-the-art

SGD Stochastic Gradient Descent

SLM Small Language Model

SSD Solid-State Drive

TSP Travelling Salesman Problem

VM Virtual Machine

ZeRO Zero Redundancy Optimiser

70

Appendix B

A Small Note on Cover Art

The cover page of this master’s thesis features a detail of an Aeonium tabuliforme from
Trädgårdsföreningen, Gothenburg, Sweden. The photograph is taken by Max Ronnersjö and
has been resized. It is used under the CC BY-SA 3.0 license.

The Aeonium tabuliforme has a multiple spiral arrangement, known as parastichy, which
seemingly follows the golden ratio, seen appearing in phyllotaxis. The golden ratio, in math-
ematics, is defined as

a + b
a
=

a
b
= ϕ (B.1)

where a and b are two quantities. Equation B.1 describes the case where the ratio of a and b
is the same as the ratio of their sum to the larger quantity. In this case, a is in golden ratio to
b. The golden ratio is denoted as the Greek letter ϕ (phi), a name it shares with the family of
small language models researched in this thesis, Phi.

71

B. A Small Note on Cover Art

72

Appendix C

Division of Work

Area A. Beke T. Zitouni
Research 50% 50%
Implementation 50% 50%
Data gathering and processing 50% 50%
Microsoft Azure fine-tuning engineering 25% 75%
Microsoft Azure endpoint deployment 75% 25%
Graphical design 80% 20%
Coordination between LTH and Microsoft 20% 80%
Writing the paper 50% 50%

Table C.1: Contribution of the authors to the different segments of the effort
behind this master’s thesis.

73

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2024-05-30

EXAMENSARBETE Fine-tuning Phi models for Informed Decision Support in Supply Chain Optimisation
STUDENTER Axel Beke, Théodore Zitouni
HANDLEDARE Pierre Nugues (LTH), Bahram Zarrin (Microsoft)
EXAMINATOR Jacek Malec (LTH)

Phi-2: en liten språkmodell med stor
kapacitet

POPULÄRVETENSKAPLIG SAMMANFATTNING Axel Beke, Théodore Zitouni

Distributionskedjeoptimering är ett brett och komplicerat område. Utvecklingen av
Transformerbaserade språkmodeller öppnat upp för ny forskning inom det här om-
rådet. Arbetet utforskar användandet av små språkmodeller inom två områden: kod-
generering för what-if analys och att lösa job shop scheduling problemet.

Distributionskedjeoptimering är ett viktigt om-
råde i industrin. Med detta kan organisationer
ta bättre och mer välinformerade beslut och öka
robustheten i kedjor. Efter den senaste tidens
utveckling av Transformerbaserade språkmodeller
har nya möjligheter för forskning som applicerar
dessa uppstått.

Vi undersöker möjligheten att finjustera
Phi-modeller för att bättre lösa två skilda
uppgifter inom distributionskedjeoptimering:
kodgenerering för what-if analys och att lösa
job shop scheduling problemet. What-if analys
tillåter företag att analysera olika scenarion som
kan uppstå. Job shop schedulingq är ett optim-
imeringsproblem som går ut på att schemalägga
olika jobb till olika maskiner.

Vi applicerar Phi-2, en liten språkmodell från
Microsoft, för att lösa dessa problem. Medan
språkmodeller kontinuerligt har växt i parameter-
storlek och komplexitet, har så även kraven på
minnesresurser. Denna utveckling har lett till ett
forskningsintresse i att konstruera mindre språk-
modeller som alltjämt har en hög resoneringsför-
måga.

Finjustering av språkmodeller har ett övergri-
pande mål, att bli bättre på ett specifikt område
som modellen inte tränats på i grundträningen.

Genom att träna om ett mindre antal av lagerna,
kan språkmodeller bli domänexperter utan att för-
lora förmågan att resonera. Moderna metoder
med låga krav på minnesresurser har medfört att
finjustering av språkmodeller kan vara av intresse
för organisationer för varierade problem.

Våra resultat visar att Phi-2 kan finjusteras
för ökad prestation på kontextualiserad kod-
generering för what-if analys inom distribu-
tionskedjor, med en BLEU-poäng – en vanligt
förekommande evalueringsmetod – på 98.6%. Job
shop scheduling problemet är mer komplext, men
den finjusterade modellen visar på en nyskapad
förståelse en BLEU-poäng på 21.7% som bäst.
Finjustering av små språkmodeller har stor po-
tential inom distributionskedjeoptimering.

	Introduction
	Objective
	Research Questions

	Contribution
	Related Work
	Early Methods
	Large Language Models
	OptiGuide

	Theoretical Background
	Supply Chain Simulation
	Supply Chain Management
	Supply Chain Optimisation
	What-if Analysis
	Job Shop Scheduling Problem

	Machine Learning
	Learning Approaches
	Deep Learning and Neural Networks
	Feed-forward Neural Networks

	Natural Language Processing
	Numerical Representation of Text
	The Transformer Architecture
	Positional Encoding
	Encoder-Decoder Architecture
	Decoder-only Architecture
	(Pre-)Training
	Prompt Learning
	Fine-tuning
	Memory Optimisation Techniques
	Inference
	Small Language Models – Phi Models

	Datasets
	Considerations
	OptiGuide Benchmark Datasets
	Data Samples and Statistics

	Job Shop Scheduling Dataset
	Prompt Learning Data

	Method
	Data Gathering and Formatting
	Base Model
	Baseline Prompting

	Fine-tuned Models
	Fine-tuning Process
	Infrastructure
	Memory Optimisation Techniques in Python
	Training Process

	Evaluation
	Metrics
	Evaluating the OptiGuide Benchmark Datasets
	Evaluating the Job Shop Scheduling Dataset

	Results
	OptiGuide Benchmark Datasets
	Job Shop Scheduling Dataset

	Discussion
	Implications of Results
	OptiGuide Benchmark Datasets
	Job Shop Scheduling Dataset

	Fine-tuning SLMs
	Considerations and Limitations
	Resources
	Ethical Considerations

	Conclusions
	Main Conclusions
	Future Work

	References
	Appendix Abbreviations
	Appendix A Small Note on Cover Art
	Appendix Division of Work

